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Abstract

Suppose that an untrusted analyst claims that it ran a distribution tester and determined
that an unknown distribution has a certain property. Can the untrusted analyst prove that its
assertion is correct to a verifier that does not have sufficient samples and computational resources
to run the tester on its own? In this work, we are interested in proofs that can be generated very
efficiently, with minimal overhead over running the distribution tester. In particular, since the
distribution tester is sublinear (in the domain size), at the very least we also want the sample
complexity for generating the proof to be sublinear. Do natural properties that have sublinear
testers admit such proof systems?

Our main result answers this question negatively for several natural properties. For these
properties, if the verifier’s sample complexity is non-trivial (smaller than just running the tester
on its own), then the (honest) prover must draw a linear number of samples. We show this result
for the problem of testing whether the distribution is uniform over its support, for specifying
the distribution’s k-collision probability (or its Lk norm), and for other natural properties.

Our results shed light on a recent line of work showing that if we allow the prover to draw
a quasi-linear number of samples, then many distribution properties have proof-systems with
very efficient verification. Our negative results imply that the super-linear sample complexity
of the prover in those proof-systems is inherent.

1 Introduction

A recent line of work considers the question of proving and verifying claims about an unknown
distribution that can only be accessed by drawing i.i.d samples. Suppose an untrusted analyst claims
to have learned an interesting property of the distribution: can the analyst supply a proof that the
distribution has the claimed property? How many samples and what computational resources are
needed to prove and to verify the analyst’s claims? We consider verification via interactive proof
systems, adapted to the setting of verifying distribution properties [GMR85, CG18]: an untrusted
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prover claims that the distribution has some property. A probabilistic verifier can sample from
the distribution and communicate with the untrusted prover. If the prover’s claim is correct, the
proof-system specifies a strategy it can use to get the verifier to accept with high probability. If the
claim is far from correct, then, no matter what strategy a cheating prover might try to employ, the
verifier will reject with high probability (see Definition 3.4). Recent works [HR22, HR23, Her24,
HR24b, HR24a] demonstrated that there are rich classes of properties where verification can be
considerably more efficient (in samples and computation) than deciding whether the distribution
has the property in the standalone setting (i.e. without an untrusted analyst / prover).

While these recent works demonstrated that many properties have efficiently-verifiable proof
systems, constructing the proof is expensive for the honest prover: it needs to learn a good
approximation to the entire distribution (loosely speaking, approximating the probabilities of
all elements in the domain). This requires sample complexity that is linear in the domain size.
For distribution properties that are hard to test (in the stand-alone setting) this is unavoidable:
constructing a non-trivial proof requires at least as many samples as are needed for testing. For
example, testing closeness to the uniform distribution requires a quasi-linear number of samples
[RRSS09, VV10]. In the proof system for this property [HR23], the prover uses a quasi-linear
number of samples (and the verifier is quadratically more efficient). Thus, the prover’s sample
complexity is optimal up to poly-logarithmic factors. However, for distribution properties that
have strictly-sublinear testers (testers whose sample complexity is polynomially bounded away
from linear), can the complexity of proving also be sublinear? This is the question we study in
this work. Our main finding is a strong negative result: we show that for natural and widely-
studied distribution properties that have strictly-sublinear testers, proving that a distribution has
the property requires a linear number of samples!

Our work continues an investigation of doubly-sublinear proofs initiated recently by Amir,
Goldreich, and Rothblum [AGR25]. They considered a similar question in a setting where the
unknown object is a large string (rather than a distribution) and can be accessed via queries (rather
than samples). They also asked whether string properties that have sublinear (query-based) testers
can have sublinear (query-based) provers, referring to such proof systems as doubly-sublinear (as
both the prover and the verifier are sublinear). We use the same terminology. Whereas they
constructed doubly-sublinear proof systems for several string properties of interest, we show that
natural distribution properties do not have doubly-sublinear proof systems.

1.1 Our Results

As a case study, we begin by considering the property of being uniform over an unknown subset
S of the domain [N ]. Batu and Canonne [BC17] showed that the sample compelxity of testing
whether a given distribution belongs to this property or is ε-far from it (in total variation distance)
is Θ(N2/3)poly(ε−1). That is, the tester only needs to observe a strictly sublinear fraction of the
support. We show that a prover for this property cannot be sublinear:

Theorem 1.1 (Sample complexity lower bound for proving uniformity over a subset). Any proof
system for verifying whether a distribution over domain [N ] is uniform over some set S ⊆ [N ], or
ε-far from any uniform distribution (in total variation distance), must satisfy at least one of the
following conditions:

• The verifier sample complexity is Ω
(
N2/3

)
poly(ε−1), matching the tester’s sample complexity.
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• The honest prover sample complexity is Ω(N).

That is, any proof system is either trivial: the verifier’s sample complexity is no smaller than
the complexity of testing (without the help of an untrusted prover), or requires the honest prover
to draw a linear number of samples. In particular, for this property, proving is significantly
harder than testing. We note that [HR23] show that there exists a proof system for this property
with an honest prover strategy that requires Õ(N)poly(ε−1) samples and a verifier that draws
Õ(N1/2)poly(ε−1) many samples. The verifier sample complexity was known to be tight up to log
factors and dependence on the distance parameters ε. Our results show that the honest prover
in their construction also has optimal sample complexity, up to polylogarithmic factors and the
dependence on the distance parameter. We further note that the lower bound also applies to
argument systems, where the soundness of the proof system hinges on cryptographic assumptions.
This implies that the sample complexity of the honest prover in the argument of system of [HR24a]
is similarly tight.

Lower bound for k-collision probabilities. Our main result is showing a lower bound for the
sample complexity of verifiably approximating a central quantity of distributions: the k-collision
probability of the distribution. For a distribution D and a positive integer k > 1, the k-collision

probability of D is defined to be ∥D∥k =
(∑

x∈Supp(D) (D(x))k
)1/k

. As the name suggests, the

quantity ∥D∥kk precisely captures the probability that k i.i.d. samples from the distribution D are
all the same element (a collision). Estimating this quantity for chosen values of k plays a central
role in testing label-invariant distribution properties (also called symmetric properties). These are
properties that are indifferent to the labels of the domain elements. For example, The property
of being uniform over some subset of the domain is such property, so are the properties of having
support size at most K ∈ N or having Shannon entropy h ∈ R+, as well as other natural and
well-researched properties of distributions. This is because, for label invariant properties, the
tester only need to consider the “(collision) fingerprint” of the sample: how many elements appear
once, twice, three times, and so on (the labels of elements are irrelevant).1 The expected number
of k-collisions in the sample is linear in the k-collision probability and so, implicitly or explicitly,
testers for label-invariant properties depend on approximations for the k-collision probabilities.

We show that for any constant positive integer k, verifiably approximating the k-collision
probability of the distribution either requires the honest prover to draw Ω(N) samples, or requires

the verifier to draw Ω(N1− 1
k ) samples, which is sufficiently many samples to trivialize the protocol,

and simply approximate this quantity without communication with the prover. In other words,
despite the fact that approximating the k-collision probability can be done by a number of samples
strictly bounded away from linear, a prover that seeks to convince a verifier of an approximation of
this quantity must incur large overhead in the sample complexity, and draw linearly many samples
in the domain size, essentially obtaining an approximation of the entire distribution:

Theorem 1.2 (Sample complexity lower bound for proving k-collision probability). For any
constant positive integer k and constant α > 1, there exists εα,k ∈ (0, 1) such that for any ε ≤ εα,k,

1See [Val11] for a deeper discussion on the connection between estimation of k-norm and the fingerprint to decision
of membership in label-invariant properties. An example to the use of these approximations in deciding properties
can be found in [BC17], who show that the optimal tester for the property of being uniform over a subset of the
domain requires the estimation of ∥D∥3 and ∥D∥2.
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any proof system for verifying whether a distribution over domain [N ] satisfies ∥D∥k ≤ α

N1− 1
k
or is

ε-far from any such distribution, must satisfy at least one of the following conditions:

• The verifier sample complexity is Ω
(
N1− 1

k · poly(ε−1)
)
, matching the sample complexity of

the optimal tester for the same property.

• The honest prover sample complexity is Ω(N).

The centrality of approximating this quantity demonstrates the stark difference between proofs
for distributions and proofs for strings, as addressed in [AGR25]. Very basic and fundemantal
properties of distributions, like the value of the k-collision probability, don’t admit a doubly
sublinear proof system, and proving requires significantly more information than testing.

On the parameters of Theorem 1.2. Note that for any domain [N ] the possible values for

the k-collision probability of distributions range between
(

1

N1− 1
k

)
at the minimum (for the uniform

distribution over the entire domain), and 1 at the maximum (for a distribution supported on a single
element). The sample complexity of approximating the k-collision probability by a standalone
tester is proportional to 1

∥D∥k . The smaller the collision probability of the distribution is, the
more samples are requires in order to approximate it well. The setting considered in Theorem 1.2:
namely, verifying that ∥D∥k is upper bounded by α

N1− 1
k

for some constant α > 1, is considered

the hardest setting for this problem, requiring a stand-alone tester to draw Ω(N1− 1
k ) samples to

be convinced that indeed ∥D∥k ≤ α

N1− 1
k
. Moreover, since we think of α and k as constants, the

parameter εα,k is also independent of N , and represents some constant as well.

Comparison to known proof-systems. Our main result shows that any protocol for verifying
the magnitude of the k-collision probability of a distribution requires either that the prover draws
linearly many samples, or the verifier runs the tester for the property. However, what if we let the
prover draw Ω(N) samples? As before, Herman and Rothblum [HR23] show a proof system for this
property with a quasi-linear prover and a strictly sublinear verifier whose sample complexity and
runtime are optimal up to log factors and dependence on the distance parameter. Here too our
work shows that the honest prover sample complexity in their result is also tight up to log factors
and dependence on the distance parameter. We highlight here as well that this lower bound also
extends to conditionally sound proof system, and from it we learn that the honest prover in the
construction of the proof systems for this property implied by [HR24a] is optimal in the same sense
as above.

Lower bounds for hard label-invariant properties. Consider the computational task of
approximating the distance of a distribution from being uniform over the entire domain. Raskhodnikova
et al. [RRSS09] show that for every constant c ∈ (0, 1), approximating this quantity up to
constant additive error requires ω(N1−c) samples. Valiant and Valiant [VV10] showed that in
fact Θ(N/ logN) samples are sufficient and necessary. This begs the question: are o(N) samples
also sufficient for proving the distributions distance from uniform to an efficient verifier? We show
that here too the answer is negative: any strictly sublinear verifier that draws O(N1−c) samples,
for some constant c > 0, forces the prover to draw at least linearly many samples. This is also true
for estimating the support size of the distribution (another hard property to test):
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Theorem 1.3. For any sufficiently large domain size N , there exist constants δ, η ∈ (0, 1), such
that any protocol for verifying any of the following properties:

• The total variation distance of D from the uniform distribution over [N ] is at most δ.

• The support size of D is at least η · N (assuming that any input distribution D assigns
probability at least 1

N to any element in its support.)2

while rejecting distributions that are at distance ε < 0.5 far from the property, must satisfy at least
one of the following conditions:

• The verifier sample complexity is ω(N1−c) for every constant c ∈ (0, 1).

• The honest prover sample complexity is Ω(N).

Digesting Theorem 1.3. [HR23] show that both these properties admit a proof system with a
honest prover that draws Õ(N) many samples, and a verifier that draws Õ(N1/2) many samples.
The testers for these properties require Θ(N/ logN) samples, i.e. they do not have full information
about the distribution. Our result shows that any protocol where the verifier sample complexity is
polynomially bounded away from linear, must have a prover that requires more information over
the distribution, than required by the stand-alone tester. Note however that this result doesn’t
rule out, for example, the option that there exists a proof system for these properties where the
honest prover requires O(N/ logN) samples, and the verifier O(N/ log2N) samples. The existence
of such doubly-mildly-sublinear proofs systems is an interesting question for future work.

Other lower bounds for proofs of distributions. Chiesa and Gur [CG18] proved that every
public-coin proof for distributions adheres to a tradeoff between the verifier sample complexity s,
the communication complexity of the protocol c, and the optimal tester complexity s′ for the same
property. They show that for every property these quantities satisfy c · s = Ω(s′). Note that this
lower bound only applies to public-coin proofs, i.e. where the verifier is limited to only sending
random bits to the prover. We highlight the fact that our result applies to every type of protocol,
and also takes a different perspective, addressing the complexity of the optimal honest prover, that
was hitherto unaddressed. Also, [CG18] show a lower bound of Ω(N1/2) for the sample complexity
of the verifier for the property of being uniform over the entire domain, matching the best tester for
the property, demonstrating a property for which proofs do not allow any speedup in comparison
to the stand-alone tester. A recent work by Jeronimo et al. [JMSW24] studies lower bounds and
connections between proofs for distributions in the classical and quantum setting.

2 Technical Overview

We start by sketching the proof behind Theorem 1.1 for the case that we are guaranteed that
|S| = N/2. This simplified case captures the main idea behind the proofs to all the lower bounds.

2An assumption of minimum probability is necessary for relating the statistical distance to the support size, and
is usually assumed when discussing properties that deal with support size. This is meant to rule out, for example, the
distribution that assigns 1− 2−N probability to a single element, and 2−N probability to the rest of the domain, as
a distribution with support size N . Moreover, this can be extended to minimum probability τ

N
for arbitrarily small

τ ∈ (0, 1). We do not review this extension here.
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The canonical protocol. Before diving into the proof, we justify a structural assumption over
the protocols for which we prove our lower bound. We say that a protocol is canonical, or of
canonical form, if it consists of 1 round of communication, in which the honest prover sends all
its samples to the verifier, who in turn uses the prover-samples alongside more samples they draw
themselves to verify the claim. Note that any multi-round protocol can be transformed into such a
protocol in the following way: the prover draws all the samples it may require in the beginning of its
run and sends them to the verifier, who in turn uses the samples to simulate the multi-round prover,
with cost only to the verifier’s runtime and the protocol’s communication complexity. Note that the
canonized protocol inherits the completeness and soundness of the original proof system, and has the
same verifier sample complexity and honest prover sample complexity. Since we only seek to bound
the the sample complexity of the verifier and the honest prover, and disregard the communication
and randomness complexities as well as runtime (of either party), we can assume without loss of
generality that the protocols we address are all of canonical form, as by this reduction, any lower
bound for the sample complexities of a canonical proof system implies a lower bound to the sample
complexity of a general proof system.

About the verifier’s decision procedure. The verifier’s decision procedure in any canonical
protocol with honest prover sample complexity t and verifier sample complexity s is a randomized
algorithm that receives as input two random variables, T ∈ [N ]t, describing the prover’s message,
and S ∈ [N ]s, describing the verifier’s sample. Completeness guarantees that if the distribution
admits the property, both T and S are i.i.d. samples from the input distribution, and with
high probability over (T, S) and the randomness of the decision procedure, the verifier accepts.
Soundness guarantees that and if the input distribution is far from the property, for every prover
strategy for producing T , with high probability over S and the randomness of the decision procedure,
the verifier rejects. We think of the view of the protocol as the jointly distributed random variable
(T, S).

The simulation argument. We show that given a canonical proof system where the verifier
accepts with high probability input distributions over domain [M ] that are uniform over M/2
elements, while rejects with high probability any distribution that is σ-far from this property, with
honest prover sample complexity of at most M/4, and verifier sample complexity of s(M,σ), it is
possible to construct a tester for the property of being uniform over half the domain with sample
complexity O(s(M,σ)). This implies immediately that such a proof system must have verifier
sample complexity M2/3 ·poly(σ−1), as this is a lower bound for any such tester. We highlight that
this construction hinges on the assumption that the honest prover sample complexity is at most
M/4. Concretely, we will construct a tester that operates as follows:

Let D be a distribution over domain [N ], such that D is either uniform over N/2 elements, or
ε-far from any such distribution. We define Q to be the distribution over [M ] := [2N ] as follows:

• Q
∣∣
{1,...,M2 } ≡ D

• Q
∣∣
{M

2
+1,...,M} is uniform over

{
M
2 + 1, . . . , 3M4

}
• Q

({
1, . . . , M2

})
= Q

({
M
2 + 1, . . . ,M

})
= 0.5
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Importantly, ifD is uniform overN/2 elements, the distributionQ is uniform overM/2 elements,
and if D is ε-far from uniform over N/2 elements, the distribution Q is Θ(ε)-far from being uniform
over M/2 elements.

Assume existence of a protocol as described above. The tester we construct is given sample
access toD and simulates a run of the protocol over τ(Q), for a randomly chosen random permutation
τ : [M ] → [M ], such that:

• Completeness. If D is uniform over N/2 elements, the distribution τ(Q) is uniform over
M/2 elements, and the tester simulates a run of the protocol with the (canonical) honest
prover strategy, i.e. both the simulated prover’s sample and the simulated verifier’s sample
are i.i.d. samples from τ(Q). By the completeness of the protocol, this produces a view of an
accepting run (with high probability).

• Soundness. If D is ε-far from any uniform distribution over N/2 elements, the distribution
τ(Q) is Θ(ε)-far from uniform over M/2 elements, and the tester simulates a run of the
protocol with some cheating prover strategy. By the soundness of the protocol, this produces
a view of a rejecting run (with high probability).

• Tester sample complexity. The only place in the simulation where samples from D
are required is the simulation of the verifier sample from τ(Q).3 Thus, the tester’s sample
complexity matches the verifier’s sample complexity, and so any lower bound applied to the
tester sample complexity, will also be a lower bound to the verifier’s sample complexity - as
the tester lower bound is N2/3 · poly(σ−1), by the fact that N = M/2 it follows that any such
protocol must satisfy s(M,σ) = M2/3 · poly(σ−1). Importantly, the tester never accesses D
to simulate the prover’s message.

We reiterate the last point above: no samples from D are required in order to simulate the
prover’s sample. This is also true in the case that D is uniform, and the simulated prover’s sample
as well as the simulated verifier’s sample should both be i.i.d. samples from the same distribution
that is uniform over M/2 elements. We proceed to outline and analyze the simulation.

The simulation:

1. Parameter setting. Set M = 2N , σ = ε/2, and choose a random permutation τ : [M ] →
[M ].

2. Simulating the prover’s message. Let t = t(M,σ) be the sample complexity of the honest
prover. Draw a sample of size t from an arbitrary uniform distribution over M/2 elements.
Count how many elements appear once, twice, three times, and so on - we call this the collision
template for the sample. Then, plug in randomly chosen labels from the set

{
M
2 + 1, . . . , 3M4

}
into the collision template. Apply τ to each of the samples.

3. Simulating the verifier’s sample. Let s = s(M,σ) be the verifier’s sample complexity.
Draw s samples from Q (can be done by flipping a fair coin, when it lands on 0, draw from
D, otherwise, draw uniformly from the set

{
M
2 + 1, . . . , 3M4

}
). Apply τ to the sample.

3Note that in order to sample from τ(Q), the verifier first samples from Q, which can be achieved by flipping a fair
coin, and according to its result, sampling from either D or the uniform distribution over

{
M
2
+ 1, . . . , 3M

4

}
. Then,

applying τ to the samples.
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4. Accepting/rejecting the view. Take the simulated prover’s message and the simulated
verifier’s sample, and give them as input to the verifier’s decision predicate - answer accordingly.

The simulation is sound. Assume that D is ε-far from being uniform over N/2 elements. Then,
the distributionQ, and by extension τ(Q), are both Θ(ε)-far from being uniform overM/2 elements.
Note that the prover’s dishonsetly drawn sample is simply one possible cheating prover strategy.
Since the simulated verifier’s sample is just a collection of i.i.d. samples from τ(Q), completely
independent from the simulated prover’s message, by the soundness of the protocol, the verifier’s
predicate will reject with high probability.

The simulation is complete. Showing completeness is a bit more involved. We want to argue
that if D is uniform over N/2 elements, then the simulation produces two i.i.d. sample of sizes t
and s from the same distribution that is uniform over M/2 elements.

Recall that the simulated prover first chose a correct collision pattern for its sample, then
plugged in labels from

{
M
2 + 1, . . . , 3M4

}
, and then applied τ . Focusing on the first step, the choice

of collision pattern, consider an alternative way of achieving this: draw t samples fromQ (which is in
this case, a distribution uniform over M/2 elements), count how many elements appear once, twice,
and so on, and use this as collision pattern. Then, as before, plug in labels from

{
M
2 + 1, . . . , 3M4

}
and apply τ . This process yields the same distribution over the sample as the process described in
the simulation. And so, we imagine a simulated prover that first drew t samples from Q (while the
true simulator avoids this to not incur large sample complexity from Q and by extension from D).

Focusing further on the relabeling process that takes the collision pattern and plugs in elements
from

{
M
2 + 1, . . . , 3M4

}
, we re-contextualize it as a permutation over the domain. After taking t

samples from Q, instead of just looking at the collision pattern, let π : [M ] → [M ] be a permutation
defined with respect to the sample, that swaps every sample from Q that landed in the support of
D with a random element in

{
M
2 + 1, . . . , 3M4

}
(the good part of the domain) that wasn’t drawn

in the Q-sample (this is always possible as long as the honest prover’s sample complexity in the
protocol is smaller than M/4). For any other element x in the domain, π(x) = x.

Note that after applying π to the Q-sample, the number of elements appearing in the sample
once, twice and so on remains the same, but all the labels are now from

{
M
2 + 1, . . . , 3M4

}
, since

any label outside this set (i.e. from the support of D), was replaced with a random label inside
that set (that wasn’t sampled previously). Therefore, drawing t samples from Q, then constructing
π accordingly, and applying π to the samples yields the same distribution over the prover’s sample
as obtained by the simulation (before the application of the random permutation τ).

A key feature of the permutation π is that in the case that Q is uniform, it only swaps elements
with equal probability in the support of Q: it swaps an element in the support of D with probability
2/M under Q, with an element in

{
M
2 + 1, . . . , 3M4

}
, that by definition has probability 2/M under

Q. Bearing this in mind, we analyze the simulated verifier’s sample before the application of the
random permutation τ . The simulated verifier sample is drawn by taking s i.i.d. samples according
to Q. Now, imagine we apply π, defined according to simulated prover’s sample, to the the verifier’s
sample. We argue that this doesn’t change the distribution over the verifier sample, since π only
switches elements with equal probability under Q. Therefore, we can consider the simulated verifier
sample to be a Q sample, to which π, as defined above, was applied, without actually applying
anything to it.

To summarize, before the application of the random permutation τ , the simulation based tester
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produced a simulated prover sample and a simulated verifier sample that are distributed as if they
were drawn by the following process:

• Prover’s sample. Draw t samples from Q, let π be the relabeling permutation with respect
to the sample as defined above, apply π to the Q-samples.

• Verifier’s sample. Draw s samples from Q. Apply the same π as above to the samples.

This is almost what we set to achieve, we wanted both samples to be i.i.d. from the same distribution
uniform over M/2 elements. The verifier’s sample is indeed distributed as (π(Q))s (equivalently,
as Qs), however, the prover’s sample isn’t distributed as a sample from π(Q) (equivalently, from
Q), despite being a sample from Q to which π was applied. This is because π is dependent on the
prover’s Q sample, and defined only after the sample was taken. To illustarte why the prover’s
sample isn’t distributed like a sample from π(Q), note that since π(Q) ≡ Q, as they assign the
same probability to every element in the domain, the simulated prover’s sample to always land
in
{
M
2 + 1, . . . ,M

}
, while any sample from π(Q) (and Q equivalently) will have roughly half its

entries land in
{
1, . . . , M2

}
. And so, the distribution over prover’s sample is far from (π(Q))t.

This is where the random permutation τ : [M ] → [M ] comes into play. Recall that the simulator
applies τ to the samples obtained as above, and ends up with (t+ s) samples from τ ′ := τ ◦ π(Q).
Since τ is distributed uniformly at random among all possible permutations, it also holds that τ ′

is a uniformly distributed random permutation over the domain. Therefore, what the verifier’s
predicate receives at the end of the simulation is equivalent to two samples of sizes t and s drawn
according to Q, which is a distribution uniform over M/2 elements, to which a random permutation
τ ′ was applied. This is essentially like drawing a the samples i.i.d. from τ ′(Q) (which is equivalent
to τ(Q), as it assigns the same probability to every element in the domain), and by the completeness
of the protocol, the verifier’s predicate accepts with high probability.

2.1 Generalizing the Lower Bound to More Properties

The construction of the simulation in the previous section allowed us to bound the verifier and
honest prover sample complexity in a protocol for the property of being uniform over half domain
by the sample complexity of the optimal tester for the same property over a smaller domain size
(half the size). This construction can be translated to other properties, beyond uniformity over
half the domain. In this section we highlight the features of a distribution property that permit
our simulation, and review some properties for which the lower bound holds.

There are several features of a distribution Π = (ΠN )N∈N sufficient for our simulation to work.
The first and foremost is the following: for every N ∈ N, we need ΠN to be composed of just one
distribution, permuted by all possible permutations of the domain. Moreover, we need that every
Q ∈ Π2N can be thought of as composed by mixing two distributions from ΠN , in the same sense
that a distribution over [N ] that’s uniform over N/2 elements can be thought of as a mix of two
distribution over N/2 elements that are uniform over N/4 elements, as in the construction of Q in
the previous section. This assumption would allow us to take an input distribution D over domain
[N ] and some fixed distribution DYES ∈ ΠN , and mix them to obtain a distribution Q over domain
[2N ], in the same vein as Q is defined in the previous section. If D ∈ ΠN , we get that Q ∈ Π2N

and D is ε-far from ΠN , we’d get that Q is Θ(ε)-far from Π2N . We then test the membership of
D in ΠN by simulating a run of a protocol for verifying the membership of Q in Π2N . We refer to
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Q as composed of a fixed part (the one containing DYES), and an unknown part, which contains the
input distribution D.

The other feature necessary for our simulation has to do with the simulation of the prover’s
sample - the simulation process first requires us to draw samples from some arbitrary Q′ ∈ Π2N ,
then relabel the sample with labels from the fixed part of the support of Q. Importantly, it is crucial
that for every element sampled from Q′, we relabel it with an element in the support of Q of equal
probability - imagine we relabel a heavy element that appeared several times in the support of Q′

with a much lighter element in the support of Q, that we don’t expect to appear often in the sample
- this will cause the simulated prover sample to look very different from what it should be.

We guarantee that such probability-preserving relabeling exists by requiring that the property
Π admits another condition: for every N , the maximum probability a distribution in ΠN assigns
is at most C

N for some constant C ∈ R+. We omit further details regarding why this condition is
sufficient for our construction to work, and refer the reader to Section 4 for further detail.

Any property satisfying the conditions above will admit a lower bound construction similar to
the one depicted in the previous section. We now turn to explain how we extend our lower bound
to the property of being uniform over some subset of the domain (Theorem 1.1), or the property of
having k-collision probability at most α

N1− 1
k
(Theorem 1.2), despite the fact that these properties

don’t satisfy the above conditions.
In order to apply the lower bound to these properties, we show that each of them contains a

sub-property that does satisfy all the above conditions, while at the same time, this sub-property is
as hard as the general property, in the sense that a tester for distinguishing between a distribution
from the sub-property and a distribution that is far from the general property requires at least as
many samples as a tester for testing the general property.

Considering the property of being uniform over some subset of the domain, we can take the
sub-property to be the set of distributions uniform over half the domain: we know that it admits
all the necessary conditions for our construction as demonstrated in the previous section. However,
it might be the case that distinguishing between a distribution that’s uniform over half the domain
from a distribution that’s ε-far from any uniform distribution over any subdomain is considerably
easier and requires less than Ω(N2/3) samples. It turns out that this isn’t the case, and there exist
distributions that are Ω(1)-far from any uniform distributions, and require a tester at least Ω(N2/3)
samples to tell them apart from distributions uniform over half the domain.4 This tells us that the
property of being uniform over half the domain is as hard as generalized uniformity, and so the
lower bound transfers to the general property.

Moving on to the property of having collision probability at most α

N1− 1
k
, the existence of such

sub-property stems from the construction in Raskhodnikova et al. [RRSS09], which we extend to
our setting. Concretely, using their construction we show that for every N and α > 1 there exist
two distribution DN

0 and DN
1 over domain [N ] such that:

• ∥DN
0 ∥k = α

N1− 1
k
, ∥DN

1 ∥k > α

N1− 1
k
.

• DN
1 is εk,α = Ω(1) far from any distribution with k-collision probability at most α

N1− 1
k
.

4Take for example a distribution over [N ] that assigns N/2 elements the probability 1/N , and assign N/6 elements
the probability 3/N . This distribution has the same 2-collision probability as a distribution uniform over half the
domain, and so we require the estimate the 3-collision probability to tell it apart from any distribution uniform over
N/2 element. At the same time, it is Ω(1)-far from any distribution uniform over any subset of the domain.
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• For every x ∈ [N ], DN
0 (x) ≤ O(1)

N .

• Any label-oblivious tester for distinguishing between DN
0 and DN

1 requires Ω(N1− 1
k )poly(ε−1

k,α)
samples.

• D2N
0 is composed as mix of two instances of DN

0 (see Definition 4.1, for more details).

Consider family of distributions
{
π(DN

0 ) : π : [N ] → [N ] is a permutation
}
. By construction, this

is a sub-property of having k-collision probability at most α

N1− 1
k
, this sub-property admits all the

conditions required by our simulation, and distinguishing between distributions from this sub-
property, and permutations of DN

1 , which are all εk,α-far from the general property, is hard, i.e.

requires Ω(N1− 1
k )poly(ε−1

k,α) samples. We then take the set of all permutations of DN
0 to be the said

sub-property, and conclude from it the lower bound for the property of having k-collision probability
at most α

N1− 1
k
. Therefore, we conclude that any lower bound for it, applies to the general property,

proving Theorem 1.2. For further details and discussion over the construction of DN
0 and DN

1 , see
Section 4.1 and Appendix A.

Proving Theorem 1.3. For any c ∈ (0, 1), we take k ∈ N such that 1 − 1
k > c, and note that

DN
0 and DN

1 constructed with parameter k as described above differ not only by their k-collision
probability, but also by their support size and distance from the uniform distribution: DN

0 has
support size roughly 0.9N , while DN

1 support size smaller than N/2, and since both distribution
assign probability of at least 1

N , it follows that if we set δTV(D
N
0 , U[N ]) = δ, and η =

∣∣Supp(DN
0 )
∣∣ /N ,

the set
{
π(DN

0 ) : π : [N ] → [N ]
}
is a simulatable sub-property for both the properties discussed in

Theorem 1.3, while
{
π(DN

1 ) : π : [N ] → [N ]
}
is Ω(1) far from either either property. The proof of

the lower bound follows from the existence of this sub-property, as in the proof for Theorem 1.2.

About [VV10] and the lower bound construction. As claimed above, we used the construction
of [RRSS09]to establish our lower bound for the approximation of k-collision probability. However,
there is a similar construction by Valiant and Valiant [VV10] who construct two distributions D0

and D1 over any given domain [N ] that are indistinguishable to label-oblivious testers that take
o(N/ logN) samples. The reason we couldn’t use their construction for our lower bound is that the

distributions D0 and D1 they produce assign probabilities as high as Ω
(
log2 N

N

)
, which prevents

using our simulation.

3 Preliminaries

For an integer n ∈ N, we use [n] to denote the set {1, . . . , n}.

Definition 3.1. The total variation distance (alt. statistical distance) between distributions P and
Q over a finite domain X is defined as:

δTV(P,Q) =
1

2

∑
x∈X

|P (x)−Q(x)|

Definition 3.2 (Distribution property). We say the P = (PN )N∈N is a distribution property if
PN ⊆ ∆N , where ∆N is the set of all distributions over domain [N ].

11



Definition 3.3 (Distribution tester for property P). Let δ be some distance measure between
distributions, P a distribution property. A tester T of property Π is a probabilistic oracle machine,
that on input parameters N and ε, and oracle access to a sampling device for a distribution D over
a domain of size [N ], outputs a binary verdict that satisfies the following two conditions:

1. If D ∈ PN , then Pr(TD(N, ε) = 1) ≥ 2/3.

2. If δTV(D,PN ) > ε, then Pr(TD(N, ε) = 0) ≥ 2/3.

In the context of this work, the relevant distance measure is statistical distance as defined above.

Definition 3.4 (Proof system for distribution property). A proof system for a distribution property
P = (PN )N∈N with parameter ε ∈ (0, 1) is a two-party game, between a verifier executing a
probabilistic polynomial time strategy V , and a prover that executes a strategy P . Given that both
V and P have black-box sample access to distribution D over the domain [N ], are given N and ε,
and the interaction should satisfy the following conditions:

• Completeness: If D ∈ PN , the verifier V , after interacting with the prover P , accepts with
probability at least 2/3.

• Soundness: If δTV(D,PN ) ≥ ε, for every cheating prover strategy P ∗, the verifier V , after
interacting with the prover P ∗, rejects with probability at least 2/3.

The complexity measures associated with the protocol are: the sample complexity of the verifier as
well as the honest prover (strategy P), the communication complexity, the runtime of both agents,
and the round complexity (how many messages were exchanged).

Definition 3.5 (Label invariant distribution property). A distribution property P is called label
invariant if for all N ∈ N, it holds that any permutation σ over N elements satisfies that D ∈ PN

if and only if σ(D) ∈ PN .

4 Formal Proof: Sample Lower Bound for Simulatable Properties

In this section we provide the full formal proof outlined in broad strokes in the previous section.
First, in order to capture the precise family of distribution properties to which our lower bound
applies, consider the following definitions:

Definition 4.1. For every two distribution D,D′ over domain [N ], we say that a distribution Q
over domain [2N ] is a mix of D and D′, and denote Q = MIX(D,D′) if:

• Q ({1, . . . , N}) = Q ({N + 1, . . . , 2N}) = 0.5.

• Q
∣∣
{1,...,N} ≡ D.

• Q
∣∣
{N+1,...,2N} ≡ (D′ +N), where (D′+N) denotes the distribution over {N + 1, . . . , 2N} that

for every x in the domain assigns (D′ +N)(x) = D′(x−N).

Definition 4.2. We call a property Π = (ΠN )N simulatable if it admits the following features for
every N ∈ N:

12



1. Uniqueness up to relabeling. For every two D,D′ ∈ ΠN , there exists a permutation
π : [M ] → [M ] such that D ≡ π(D′).

2. Decomposability. There exist DN ∈ ΠN and D2N ∈ Π2N such that D2N = MIX(DN ,DN ).
See Definition 4.1.

3. Bounded probability. There exists a constant C ∈ N such that for every D ∈ ΠN and every
x ∈ [N ], D(x) ≤ C

N .

4. Multiplicative granularity. There exists constant τ < 1
100 such that for every D ∈ ΠN ,

and all x ∈ Supp(D), there exists j ∈ N such that D(x) = τ ·(1+τ)j

N .

5. Minimal bucket size. For every D ∈ ΠN and every j ∈ N, let Bj =
{
x ∈ [N ] : D(x) = τ(1+τ)j

N

}
be the j’th probability bucket of D. If Bj ⊆ Supp(D), it holds that5: |Bj | > log

(
logN
τ

)
.

Theorem 4.3. [Main theorem, formal statement.] Any proof system for a property Π = (ΠM )M∈N
that satisfies the features in Definition 4.2,where the vierifier receives parameter M and sample
access to a distribution Q over domain [M ]; accepts with high probability if Q ∈ ΠM ; and rejects
with high probability if Q is σ-far from ΠM , must satisfy at least one of the following conditions:

• The honest prover’s sample complexity is Ω(M).

• The verifier’s sample complexity is at least s′(M/2, 2σ), where s′(N, ε) : N× (0, 1] → N is the
optimal sample complexity of the tester for testing if a samplable distribution D over domain
[N ] is in ΠN or ε-far from it.

In other words, we show that a lower bound for testing ΠM implies lower bound for verifying
Π2M . First, we argue that since we only care about sample complexity (of either the verifier or
the honest prover), we can reduce any protocol to a protocol for the same problem with the same
sample complexity for both parties, but with only one message, from the prover to the verifier.
This new protocol will have (potentially) higher communication complexity, and higher runtime for
the verifier. Formally:

Claim 4.4. If there exists a protocol (P0, V0) for verifying problem Π, with verifier sample complexity
s and prover sample complexity t then, there exists an MA protocol (P1, V1) for verifying the same
problem with verifier sample complexity s and prover sample complexity t, where the honest prover
just sends all its samples to the verifier.

Proof. Fix protocol (P0, V0) for the promise problem (YES, NO). Define (P1, V1) as follows:

• The honest prover draws t0 samples and sends them all to the verifier.

• The verifier uses the t0 alongside sampling an additional s0, simulates a run of (P0, V0), and
answers according to V0.

5This is a very light assumption, since the total mass of a bucket that doesn’t satisfy this condition would be
polylog(N/τ) · C

N
= Õ

(
1
N

)
, and thus it is negligible.
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If D ∈ YES and the prover follows P1 as described above, V1 simulates a run of (P0, V0), and by
the completeness of that protocol, V0 accepts with high probability, and so does V1.

If D ∈ NO, then no matter what message a cheating prover provides, using it to simulate a run
of the protocol (P0, V0) yields a run with some (cheating) prover strategy, and by soundness of
(P0, V0), the verifier V0 rejects with high probability, and so does V1.

We now turn to construct the simulation based tester and prove Theorem 4.3. Assume there
exists an interactive proof (PM , VM ) for verifying memebership in distribution property Π = (ΠM ),
while rejecting any distribution over domain [M ] that’s σ-far from the property, with verifier sample
complexity s(M,σ) and honest prover sample complexity t(M,σ). Assume further that t(M) =
o(M), we will use the protocol to construct a tester for property ΠN with sample complexity
s(2N, σ/2). We show the tester defined in Figure 4.4.1 satisfies the conditions Theorem 4.3.

Tester 4.4.1: Simulation Based Tester for Property Π Satisfying Definition 4.2

Input: parameters N ∈ N, ε ∈ (0, 0.01), sample access to distribution D over domain [N ].
Assumption: there exists an interactive proof (PM , VM ) for verifying ΠM , with verifier sample complexity
s(M,σ), and honest prover sample complexity t(M,σ) = o(M).
Goal: accept with high probability if D ∈ ΠN , and reject with high probability if D is ε-far from ΠN ,
using sample complexity O(s(2N, ε/2)).

1. Parameter setting. Set M = 2N , σ = ε/2, and choose a random permutation τ : [M ] → [M ].

2. Simulating the prover’s message:

(a) Fix some distribution DYES
N ∈ ΠN . Draw a sample of size t := t(M,σ) from MIX := MIX(DYES

N ,DYES
N )

(see Definition 4.1). Denote the tuple obtained T = (Ti)i∈[t].

(b) Construct a relabeling function f : {1, . . . , 2N} → {N + 1, . . . , 2N} by going over x ∈ [2N ] in
order and:

i. If x ∈ {N + 1, . . . , 2N} or ∀i ∈ [t], Ti ̸= x, set f(x) = x.

ii. For every x ∈ {1, . . . , N} such that there exists i ∈ [t] for which x = Ti, set:

f(x) = min {y ∈ {N + 1, . . . , 2N} : MIX(x) = MIX(y), ∀i y ̸= Ti, ∀x′ < x, y ̸= f(x′)}

If at any point this process fails to find an image, the tester terminates and rejects.

(c) Set T ′ = (τ ◦ f (Ti))i∈[t].

3. Simulating the verifier’s sample. For i ∈ [s(M,σ)], draw Si as follows: flip a fair coin, if it
landed on 0, draw Si ∼ D, otherwise, draw z ∼ DYES

N and set Si = z + N . This is equivalent to
drawing Si ∼ MIX(D,DYES

N ). Set S
′ = (τ(Si))i∈[s].

4. Accepting/rejecting the view. Denote by Vpred the decision predicate of the simulated verifier
VM . Answer according to Vpred (T

′, S′).

First, we argue that for every property Π that satisfies Definition 4.2, with high probability, the
simulation-based tester doesn’t terminate while attempting to simulate the prover’s answer:

Claim 4.5. Assuming Π admits the features in Definition 4.2, for large enough N ∈ N and every
ε ∈ (0, 1), if t = t(2N, ε/2) = o(N), with probability at least 0.99 over the choice of T , the process
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described in Tester 4.4.1 for constructing f doesn’t terminate with rejection.

Proof. Fix some bucket index k, and denote Bk =
{
x ∈ [N ] : DYES

N (x) = τ(1+τ)k

N

}
. The probability

that a single sample x ∼ MIX satisfies either x ∈ Bk or x−N ∈ Bk is, by definition, |Bk| · τ(1+τ)k

N .

Denote by T k = |{i ∈ [t] : Ti ∈ Bk}|. Note that ET

[
T k
]
= t · |Bk| · τ(1+τ)k

N , and so, by the Chernoff
bound, with probability at least 1− 100τ

logN , it holds that:

T k ≤ E
[
T k
]
+

√
log

(
logN

100τ

)
· E [T k]

Plugging in the value of E[T k], this implies:

T k ≤ t · |Bk| ·
τ(1 + τ)k

N
+

√
log

(
logN

100τ

)
· t · |Bk| ·

τ(1 + τ)k

N

Since by assumption |Bk| ≥ log
(
logN
100τ

)
, it holds that:

T k ≤ |Bk|

(
t · τ(1 + τ)k

N
+

√
t · τ(1 + τ)k

N

)
≤ |Bk|

(
t · C

N
+

√
t · C

N

)
< |Bk| (1)

Where the last inequality holds for large enough N , assuming that C is constant and t = o(N).
In any case, with probability at least 1 − 100τ

logN it holds that the T i < |Bi|. Taking the union
over all possible bucket, we conclude that with probability at least 0.99, for every bucket k in the
support of D, the number of elements x sampled such that x ∈ Bi or x−N ∈ Bi is less than |Bi|,
and so the process that constructs f will not terminate in rejection.

Claim 4.6. Let D be a distribution over [N ]. Assume δTV (D,ΠN ) ≥ ε, then for every DYES
N ∈ ΠN ,

and every permutation π : [M ] → [M ], such that M = 2N :

δTV

(
MIX(D,DYES

N ), π
(
MIX(DYES

N ,DYES
N )

))
≥ ε

2

Proof. Let the permutation π : [M ] → [M ] be the permutation that minimizes δTV

(
MIX(D,DYES

N ), π
(
MIX(DYES

N ,DYES
N )

))
.

If for all y ∈
{
1, . . . , M2

}
, π−1(y) ∈

{
1, . . . , M2

}
(or, equivalently, for all y ∈

{
1, . . . , M2

}
, π−1(y) ∈{

M
2 + 1, . . . ,M

}
), then, the permutation π maps one instance of DYES

N onto D and another instance
of DYES

N onto DYES
N . Thus, by the assumption that D is at least ε/2 far from any distribution in ΠN ,

and since MIX(D,DYES
N )
({

1, . . . , M2
})

= 0.5, it implies that:

δTV

(
MIX(D,DYES

N ), π
(
MIX(DYES

N ,DYES
N )

))
≥ ε

2

We prove that this type of permutation that maps full copies of the component distributions
onto one another, is indeed the minimizer of the distance.

Assume that the minimizer π maps elements from
{
1, . . . , M2

}
and from all across the domain

(note that this also implies that π maps
{
M
2 + 1, . . . ,M

}
across the entire domain). we will

construct π′ that also minimizes the distance, but maps
{
1, . . . , M2

}
onto

{
1, . . . , M2

}
.

Fix x ∈
{
1, . . . , M2

}
such that π(x) = y ∈

{
M
2 + 1, . . . ,M

}
, and denote

∣∣∣MIXD,DYES
N
(y)− MIXDYES

N ,DYES
N
(x)
∣∣∣ =

δ, the distance contributed by the pair (x, y). Consider the following cases:
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• Case I. Assume there exists x′ ∈
{
M
2 + 1, . . . ,M

}
such that π(x′) = y′ ∈

{
1, . . . , M2

}
and

MIX(DYES
N ,DYES

N )(y) = MIX(DYES
N ,DYES

N )(x
′). Denote the contribution of x′ and y′ to the distance by

δ′. We correct π by setting π′(x) = y′, and π′(x′) = y (and leaving the rest untouched). Note
that x, y′ ∈

{
1, . . . , M2

}
as well as x′, y ∈

{
M
2 + 1, . . . ,M

}
. Moreover, the contribution to the

distance of x′, y is 0 by assumption, and by the trianle inequality, the contribution of x, y′ is
at most δ + δ′, which implies that π′ is at least as good as π.

• Case II.Assume that for all x′ ∈
{
M
2 + 1, . . . ,M

}
such that MIX(DYES

N ,DYES
N )(y) = MIX(DYES

N ,DYES
N )(x

′) =

p it holds that π(x′) = y′ ∈
{
M
2 , . . . ,M

}
. Then, since by definition, the number of elements

with probability p in
{
M
2 + 1, . . . ,M

}
is the same for both distributions MIX(D,DYES

N ) and

MIX(DYES
N ,DYES

N ), and since we know π−1(y) ∈
{
1, . . . , M2

}
, it must be that there exists an

element x′ ∈
{
M
2 , . . . ,M

}
such that MIX(DYES

N ,DYES
N )(x

′) = p, π(x′) = y′ ∈
{
M
2 + 1, . . . ,M

}
and

MIX(D,DYES
N )(y

′) ̸= p. At this point, there are two possible options:

– Option I. There exists an element x′′ ∈
{
M
2 + 1, . . . ,M

}
such that MIX(DYES

N ,DYES
N )(x

′′) =

MIX(D,DYES
N )(y

′) and π(x′′) = y′′ ∈
{
1, . . . , M2

}
. Then, setting π′(x) = y′′, π′(x′) =

y, π(x′′) = y′, corrects the permutation setting elements in the same side of the domain
with elements in their respective side, while not incurring higher distance.

– Option II. For every element x′′ ∈
{
M
2 + 1, . . . ,M

}
such that MIX(DYES

N ,DYES
N )(x

′′) =

MIX(D,DYES
N )(y

′) it holds that π(x′′) = y′′ ∈
{
M
2 + 1, . . . ,M

}
. We repeat the same

process as above, moving to an element x′′ mapped onto an element y′′ with a different
probability (the existence of which is justified as in Case II above). Then, look at all
the x′′′ in

{
M
2 + 1, . . . ,M

}
with same probability as y′′. If one of them is mapped to

y′′′ ∈
{
M
2 + 1, . . . ,M

}
, we can set π′(x) = y′′′, mapping all other x′, x′′, x′′′ to y, y′, y′′

respectively. The contribution to the distance of the new pairs is at least as large as
before, as required. Otherwise, if no x′′′ exists, we repeat the process above until we
land on one.

We repeat this for every x ∈
{
1, . . . , M2

}
mapped to

{
M
2 + 1, . . . ,M

}
, and obtain π′ that minimizes

the distance, and at the same time, only maps elements in
{
1, . . . , M2

}
to elements in

{
1, . . . , M2

}
,

as required.

Claim 4.7 (The Simulation Tester is Sound). If D is ε-far from ΠN , then, there exists a distribution
Q over domain [M ] = [2N ], that is σ = ε/2 far from ΠM , and a cheating prover strategy P ∗ such
that (T ′, S′) produced by the simulator are distributed identically to the the view of the protocol with
the verifier VM (ε/2), cheating prover strategy P ∗, and with input distribution Q.

Proof Claim 4.7. Let D be a distribution over domain [N ] that is ε-far from ΠN . Observe that
since the protocol is sound, a view of the protocol over an input that is far from the property should
be rejected with high probability, no matter the cheating prover’s strategy. Since the simulated
verifier sample doesn’t depend on the prover’s message, we can consider the simulated prover as
simply one possible cheating behavior, and we are only left to show that the verifier simulates a
sample of size s = (M,σ) from a distribution Q over domain [M ] = [2N ] that is σ = ε/2 far from
ΠM .
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Assume that in the first step of the simulation, the tester fixed a permutation τ : [M ] → [M ].

Denote Q = τ
(
MIX(D,DYES

N )

)
. Recall that MIX(D,DYES

N ) is the distribution over [2N ] which is the mix

distributions D and DYES
N (see Definition 4.1).

Note that S, the verifier’s simulated sample, is distributed exactly like a sample of size s =
(M,σ) from Q. And so, since by Claim 4.6, δTV(Q,ΠM ) ≥ σ = ε/2, we get the simulated view is
with high probability a rejecting one.

Claim 4.8 (The Simulation Tester is Complete). If D ∈ ΠN , and the simulation didn’t terminate
while constructing f , then with high probability over (T ′, S′), the verifier’s predicate Vpred accepts
(T ′, S′).

In order to prove Claim 4.8, we will require the following claim:

Claim 4.9. For every distribution P ∈ ΠM , if T and S are samples of sizes t and s drawn according
to P , with high probability, if τ : [M ] → [M ] is a random permutation, then Vpred accepts the input
(τ(T ), τ(S)) with high probability.

Proof. Consider the distribution τ(P ). Since P ∈ ΠM , and ΠM is closed to permutation, it follows
that τ(P ) ∈ ΠM as well. Next, assume T and S were sampled by P . Then, τ(T ) and τ(S) are
distributed like i.i.d. samples from τ(P ). Therefore, by the completeness of the protocol, with high
probability over the samples from P , it holds that the predicate accepts (τ(T ), τ(S)) with high
probability.

Proof of Claim 4.8. We need to show that if D ∈ ΠN , then, if the simulator didn’t terminate early,
then (T ′, S′) are i.i.d. samples from the same distribution Q satisfying the property.

Let τ be the permutation chosen by the simulator at the beginning of its run. Let f : [M ] →
{N + 1, . . . , 2N} be the function obtained through the simulation of the prover’s message.

We present an alternative process for producing the same collection (f(Ti))i∈[t]:

1. Draw t samples from MIX(D,DYES
N ).

2. Define a permutation π : [M ] → [M ] similarly to f . Go over x ∈ [2N ] in order:

(a) If ∀i ∈ [t] Ti ̸= x or x ≥ N + 1, set π(x) = x.

(b) Otherwise, x ∈ Supp(D) and exists i ∈ [t] such that Ti = x. Then, let y be the
minimal label element in {N + 1, . . . , 2N} such that ∀i ∈ [t] Ti ̸= y, MIX(D,DYES

N )(x) =

MIX(D,DYES
N )(y), and for all x′ < x, f(x′) ̸= y.

(c) Set π(x) = y and π(y) = x.

IfD ∈ ΠN , then MIX(D,DYES
N ) and MIX(DYES

N ,DYES
N ) are equivalent up to permutation of the set {1, . . . , N}.

Since the functions f and π relabel elements that fell in {1, . . . , N} in the same way, we conclude
that the process of sampling from MIX(D,DYES

N ), then defining π accordingly and applying π to the
samples is equivalent to the process outlined in the simulator.

Moreover, since π only swaps elements with equivalent mass according to Q, taking s i.i.d.
samples from Q produces the same distribution over the sample as taking s i.i.d. samples from Q,
then applying π.
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Therefore, we can think of both the verifier’s simulated sample and the prover’s simulated sample
to be both samples from MIX(D,DYES

N ) to which the permutation π, that was defined according to the
T sample, was applied.

Next, consider the random permutation τ . Since τ is a random permutation, the permutation
τ ′ := τ ◦ π is also distributed as a uniform permutation over the domain. Therefore, taking the
simulated prover’s sample and the simulated verifier’s sample to be distributed as samples from Q
to which π and τ were applied, can be equivalently thought of as drawing both samples according
to Q, then applying the random permutation τ ′ to the resulting samples.

By Claim 4.9, it holds that with high probability, the verifier’s predicate accepts (τ ′(T ), τ ′(S)),
as required.

4.1 Families of Simulatable Properties

In this section we show that our lower bound applies to the property of having k-collision probability.

Definition 4.10 (ℓk-norm threshold property). For every k ∈ N and α > 1, define the property:

Lk(N,α) :=

{
D ∈ ∆N : ∥D∥k ≤ α

N1− 1
k

}
We show that for every constant k ∈ N and any constant α > 1, there exists εk,α ∈ (0, 1) such

that for every ε ≤ εk,α, every protocol for distributions for verifying membership in Lk(N,α) while

rejecting distributiond ε far from Lk(N,α) require that either the verifier draws Ω(N1− 1
k )poly(ε−1

k,α)
samples, or the honest prover draws Ω(N) samples, as stated in Theorem 1.2.

We do so by showing the existence of a promise problem (YES(N,α), NO(N,α)) satisfying the
following conditions:

• YES(N,α) is simulatable, i.e. satisfies all the conditions of Definition 4.2, and YES ⊆ Lk(N,α).

• NO(N,α) contains only distribution that are εk,α-far from Lk(N,α), for some εk,α ∈ (0, 1)
independent of N .

• Any tester for distinguishing between YES(N,α) and NO(N,α) requires Ω(N1− 1
k )poly(ε−1

k,α)
samples.

We thus conclude that our lower bound applies to every protocol for distinguishing between
YES(N,α) and NO(N,α), and since every protocol for Lk(N,α) with ε ≤ εk,α is also in particular a
protocol for the promise problem, the lower bound applies to Lk(N,α)with distance parameter ε
as well.

In order to define the promise problem (YES(N,α), NO(N,α)) for any constants k and α, we first
require the following theorem, from [RRSS09]:

Theorem 4.11 (see [RRSS09]). For every constant k ∈ N and for large enough N ∈ N, there exist
two distributions D0 := D0(N) and D1 := D1(N) over [N ] such that:

1. For every j ∈ {2, . . . , k − 1}, ∥D0∥j = ∥D1∥j.

2. There exist a constant α0, independent of N such that ∥D0∥ = α0

N1− 1
k
. There exists a constant

εk ∈ (0, 1) independent of N , such that for every ε ≤ εk, and every distribution Q such that
∥Q∥k ≤ α0

N1− 1
k
, it follows that δTV(D1, Q) ≥ ε.
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3. There exists integers 1 ≤ a0 < a1 < · · · < ak−1 independent of N such that ∀x ∈ Supp(D0),
D0(x) ∈

{
a0
N , a1N , . . . ,

ak−1

N

}
. Moreover, the sets Bi =

{
x ∈ [N ] : D0(x) =

ai
N

}
are either empty

or of size at least log log(N/100).

4. For every N ∈ N, there exists a permutation π : [2N ] → [2N ] such that distribution
π (D0(2N)) ≡ MIX(D0(N),D0(N)) .

This theorem is implicit in [RRSS09]. In Appendix A we review how the results in that work
imply the theorem as stated here. The reader is referred to the appendix and to [RRSS09] for
further detail on the proof of this theorem.

We present a corollary that generalizes this theorem:

Corollary 4.12. For every constant k ∈ N, constant α > 1, and every large enough N ∈ N, there
exist two distributions Dα

0 := Dα
0 (N) and Dα

1 := Dα
1 (N) over [N ] such that:

1. For every j ∈ {2, . . . , k − 1}, ∥Dα
0 ∥j = ∥Dα

1 ∥j.

2. ∥Dα
0 ∥ = α

N1− 1
k
. There exists a constant εk,α ∈ (0, 1) independent of N , such that for every

ε ≤ εk,α, and every distribution Q such that ∥Q∥k ≤ α

N1− 1
k
, it follows that δTV(D

α
1 , Q) ≥ ε.

3. There exists positive numbers 0 < a0 < a1 < · · · < ak−1 independent of N such that ∀x ∈
Supp(Dα

0 ), D0(x) ∈
{
a0
N , a1N , . . . ,

ak−1

N

}
. Moreover, the sets Bi =

{
x ∈ [N ] : Dα

0 (x) =
ai
N

}
are

either empty or of size at least Ω(log log(N/100)).

4. For every N ∈ N, there exists a permutation π : [2N ] → [2N ] such that distribution
π (Dα

0 (2N)) ≡ MIX(Dα
0 (N),Dα

0 (N)) .

We show how the above corollary stems from Theorem 4.11:

Proof. Fix k and α > 1. Let α0 be as defined in Theorem 4.11. Assume first that α ≥ α0. For

every N sufficiently large, define N ′ =
⌊
N ·

(
α0
α

) k
k−1

⌋
. Set Dα

0 := D0(N
′) and Dα

1 := D1(N
′). Since

[N ′] ⊆ [N ], think of the distributions over [N ′] as distribution over domain [N ]. We argue that Dα
0

and Dα
1 satisfy the desired conditions:

• Conditions (1), (3), and (4) hold immediately, from the fact that they hold for D0(N) and
D1(N), as well as the fact that since k and α are constants (with respect to N), so is
(α0/α)

k/(k−1), and so the probabilities assigned by Dα
b for b ∈ {0, 1} are from the form

ai
N = ai

N ·(α0/α)k/(k−1) =
a′i
N , where a′i is independent of N .

• Concerning condition (2), observe that:

∥Dα
0 (N)∥k = ∥Dα

0 (N
′)∥k =

α0

(N ′)1−
1
k

=
α0((

α0
α

)k/(k−1) ·N
)1− 1

k

=
α

N1− 1
k

Moreover, setting εk,α = εk as in Theorem 4.11 yields the desired distance condition over Dα
1 .

We thus turn our attention to α such that α < α0. Fix sufficiently large N , and set a = 1 −(
2

α+1

)k/(k−1)
. Note that since α > 1, a ∈ (0, 1). Set N ′ = a · N . Consider the domain [N ] as

divided to two subdomains, [N ′] and [N ] \ [N ′]. For b ∈ {0, 1}, define Dα
b as follows:
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• Dα
b

∣∣
[N ′]

= Db(N
′).

• Dα
b

∣∣
[N ]\[N ′]

is uniform.

• Denote Dα
b ([N

′]) = p, Dα
b ([N ] \ [N ′]) = 1− p, for p to be decided later.

Note that by construction:

∥Dα
0 ∥kk = pk · αk

0

(N ′)k−1
+

(1− p)k

(N −N ′)k−1
= pk · αk

0

(a ·N)k−1
+

(1− p)k

((1− a)N)k−1

Plugging in the value of a we get:

∥Dα
0 ∥kk =

pkαk
0

Nk−1
·

 1

1−
(

2
1+α

)k/(k−1)


k−1

+
(1− p)k

Nk−1
·

 1(
2

1+α

)k/(k−1)


k−1

(2)

=
1

Nk−1

pkαk
0 ·

 1

1−
(

2
1+α

)k/(k−1)


k−1

+ (1− p)k ·

 1(
2

1+α

)k/(k−1)


k−1 (3)

We want to choose p ∈ (0, 1) such that ∥Dα
0 ∥kk = αk

Nk−1 . Note that the value of ∥Dα
0 ∥ is dependent

only on p (the rest of the parameters are set). We argue that there exists a value of p that achieves
the desired k-collision probability for Dα

0 . Indeed, note that if we set:

f(p) = pkαk
0 ·

 1

1−
(

2
1+α

)k/(k−1)


k−1

+ (1− p)k ·

 1(
2

1+α

)k/(k−1)


k−1

We need to find a value of p for which f(p) = αk. Note that f is continuous in p, and satisfies:

f(0) =

 1(
2

1+α

)k/(k−1)


k−1

=

(
1 + α

2

)k

< αk

Where the last inequality stems from the fact that α > 1.

f(1) =
αk
0(

1−
(

2
1+α

)k/(k−1)
)k−1

≥ αk
0 > αk

Where the first inequality stems from the fact that α > 1, and so

(
1−

(
2

1+α

)k/(k−1)
)k−1

∈ (0, 1).

From the intermediate value theorem, we get that there exist p ∈ (0, 1), which is a function of α, k

for which ∥Dα
0 ∥k = αN1− 1

k . Moreover, note that if we define Dα
1 similarly, we get ∥Dα

1 ∥k > α

N1− 1
k
,

and since Dα
1 and Dα

0 agree on[N ] \ [N ′], we get that δTV(D
α
1 , D

α
0 ) = δα,k > 0. From the same

argument as presented in Appendix A, this implies that there exists εk,α ∈ (0, 1) such that every
distribution Q over [N ] with ∥Q∥k = α

N1− 1
k
satisfies δTV(Q,Dα

1 ) ≥ εk,α.
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We fix k and α > 1 and proceed to define the promise problem (YES(N,α), NO(N,α)):

YES(N,α) = {π(Dα
0 (N)) : π : [N ] → [N ] is a permutation}

NO(N,α) = {π(Dα
1 (N)) : π : [N ] → [N ] is a permutation}

We note that immediately from Corollary 4.12, and Definition 4.2, we get that YES(N,α) is
simulatable, and also that any protocol for Lk(N,α) is in particular also a tester for the promise
problem (YES(N,α), NO(N,α)). We thus conclude that any lower bound for a protocol to (YES(N,α), NO(N,α))
is a lower bound for Lk(N,α), as required.

Proving Theorem 1.3. The proof follows in the same vein as the proof of Theorem 1.2. We
show that for every N and c < 1, there are two distributions Dc

0(N) and Dc
1(N) over domain [N ],

such that:

• {π(Dc
0(N)) : π : [N ] → [N ] is a permutation} is simulatable.

• Any tester for distinguishing between {π(Dc
0(N)) : π : [N ] → [N ] is a permutation} and {π(Dc

1(N)) : π : [N ] → [N ] is a permutation}
requires Ω(N1−c) samples.

• There exist a constants δc < δ′c ∈ (0, 1) such that for every N , Dc
0(N) is at distance at most δ

from U[N ], the uniform distribution over the entire domain, while Dc
1(N) is at distance δ′ from

U[N ]. In particular, any distribution at distance smaller than δc from U[N ] is (δ′c − δc)-from
Dc

1(N).

• There exists a constant η ∈ (0, 1) such that |Supp(D0)| ≥ η · N , while |Supp(D1)| < η · N .
Any distribution with support size at least η ·N is at distance...

Then, given such Dc
0 and Dc

1 the lower bound immediately follows, as shown in the proof for
Theorem 1.2 above.

We thus turn to prove the existence of such Dc
0 and Dc

1. For any c ∈ (0, 1), choose k ∈ N
such that 1 − 1

k > 1 − c. And let Dc
0 and Dc

1 be the two distributions produced with parameters
N , k, and B = 10 via Theorem A.1. As shown in [RRSS09], it follows that δTV(D

c
0, U[N ]) = δ

which is independent of N , while δTV(D
c
1, U[N ]) > δ. At the same time, |Supp(Dc

1)| ≤ N
10 , while

|Supp(Dc
0)| ≤ N

1.1 . It also follows that Dc
1 is Ω(1)-far from any 1

N -granular distribution that has
support size at least η ·N .
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A Revisiting the Lower Bound Construction of [RRSS09]

The following theorem is implicit in [RRSS09], and completely follows their contruction.

Theorem A.1 (see [RRSS09]). For every constant k ∈ N and for large enough N ∈ N, there exists
two distributions D0 and D1 over [N ] such that:

1. For every j ∈ {2, . . . , k − 1}, ∥D0∥j = ∥D1∥j.

2. ∥D1∥k − ∥D0∥k = γk

N1− 1
k
> 0, such that γk is a positive constant independent of N .

3. For every permutation π : [M ] → [M ], δTV(D0, π(D1)) = Ω(1).

4. There exists integers 1 ≤ a0 < a1 < · · · < ak−1 independent of N such that ∀x ∈ Supp(D),
D(x) = 1

N , or D(x) ∈
{
a0
N , a1N , . . . ,

ak−1

N

}
. Moreover, the sets Bi =

{
x ∈ [N ] : D(x) = ai

N

}
and B′ =

{
x ∈ [N ] : D(x) = 1

N

}
are either empty or of size at least log log(N/100).

For sake of completeness of our argument, we highlight exactly how all clauses of the theorem
apply, by reviewing parts of [RRSS09] and highlighting specific points either explicit or implicit in
their construction. First, consider the following theorem, appearing explicitly in their work:

Theorem A.2 (Theorem 4.5 in [RRSS09]). For all integers k > 1 and B > 1 there exist random
variables X̂ and X̃ over positive integers a0 < a1 < · · · < ak−1 that satisfy the following condition:

E
[
X̃
]

E
[
X̂
] =

E
[
X̃2
]

E
[
X̂2
] = · · · =

E
[
X̃k−1

]
E
[
X̂k−1

] ≥ B (4)

Moreover, this holds for this choice of variables ai = (B + 3)i, and it follows that E
[
X̃
]
> B and

E
[
X̂
]
< 1 + 1

B .

The random variables X̂ and X̃ can then be used to construct distributions in the following
way:

Definition A.3 ( Definition 5.4 in [RRSS09] rephrased). Let a0 < a1 < · · · < ak−1 be integers,
and let X be a random variable defined over these integers where Pr[X = ai] = pi. Consider the

distribution DX over [N ], defined as follows: for every i ∈ {0, . . . , k − 1}, set Bi
X =

⌊
Npi
E[X]

⌋
. DX

contains Bi
X elements with probability ai

N . Then normalize so that the probabilities sum to 1.
The names and order of the labels in DX are unimportant. For concreteness, assign labels in

increasing order according to probability.

For sake of simplicity we assume
⌊

Npi
E[X]

⌋
is an integer for every i and every random variable X

we consinder. In actuality, this will likely not be the case, however, since k is independent of N ,
rounding down will at most delete k elements, and total mass of O( k

N ), and since k is independent of
N , this mass is arbitrarily small as N tends to infinity, and so we disregard it for sake of simplicity.

We proceed by explaining why the distributions DX̃ and DX̂ obtained by applying Construction
A.3 to the random variables from Theorem A.2 yields D0 and D1 as in Theorem A.1.
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Bounded probability and lower-bound buckets size. For any random variable X, the
distribution DX over domain [N ] assigns probabilities from the set

{
a
N : a ∈ Supp(X)

}
. Thus,

since for both X̃ and X̂ the support is bounded by ak−1, which is a positive integer independent
of N , we think of it as a constant (dependent only on k). Moreover, if we denote every for i
Pr(X̃ = ai) = p̃i (respectively, p̂i for X̂), then since p̃i is independent of N , we take N to be

sufficiently large so that for every i, Npi
E[X] = log log(N/100), i.e. pi ≥ E[X] log log(N/100)

N . It follows

that for all such N , the size of each bucket is at least log log(N/100).

Decomposability. Consider DN
X over domain [N ], and D2N

X over domain [N ]. By definition, if

we consider the i’th bucket in DN
X we get that it is composed of Npi

E[X] of probability
ai
N , while the

i’th bucket of D2N
X is composed of 2Npi

E[X] elements (twice as large), of probability ai
2N each (twice

as small). Implying that D2N
X can be thought of as composed of two copies of DN

X , each assigned
probability 0.5.

Moment matching: indistinguishability of DX̂ and DX̃ with o
(
N1− 1

k

)
samples. We

argue that for every j ∈ {2, . . . , k − 1}, ∥DX̂∥j = ∥DX̃∥j . Let X be a random variable that assigns
probability pi to ai. Then, summing over all buckets:

∥DX∥j =
k−1∑
i=0

Npi
E[X]

·
(ai
N

)j
=

1

N j−1
· 1

E[X]
·
k−1∑
i=0

pia
j
i =

1

N j−1
· E[X

j ]

E[X]

From Equation (4), for every j ∈ {2, . . . , k − 1},
E
[
X̃j

]
E[X̃]

=
E[X̂j]
E[X̂]

, and so we get ∥DX̂∥j = ∥DX̃∥j .
From the fact that ak−1 constant with respect to N , [RRSS09] conclude that since the moments
match, any algorithm that only examines the fingerprint of its sample (i.e. how many elements

appear once, twice, three times...) must draw at least Ω
(
N1− 1

k

)
to distinguish between DX̂ and

DX̃ .

Distinguishing between DX̂ and DX̃ using O
(
N1− 1

k

)
samples. In order to show this we

need to dive deeper into the proof of Theorem A.2 as appearing in [RRSS09], and highlight some
artifacts of the construction, that the authors didn’t mention explicitly, as they didn’t serve the
main point they sought to prove.

In very broad strokes, The existence of X̃ and X̂ is proved as follows: denote by V the
(k − 1) × k Vandermonde matrix satisfying Vi,j = (aj)

i. Then, for the random variable X that
assigns probability pi to ai (and 0 to any other value), represented by p = (p1, . . . , pk) the vector(
E[X],E[X2], . . . ,E[Xk−1]

)
can be thought of as V · p. Denote by p̂ and p̃ the probability vectors

for X̂ and X̃ respectively. Equation (4) can be thought of as V (Cp̂ − p̃) = 0 for some constant
C ≥ B. Note that the kernel of V is of dimension 1, and in particular not trivial. The authors take
u to be a non-zero vector in the kernel, and decompose it as u = Cp̂− p̃, by separating u to positive
and negative values, taking the positive to be part of Cp̂ and the negative to be part of −p̃, we
omit further detail (a reader who seeks further detail as to how this accomplished is referred to the
full paper). They then use clever arguments to show that if we choose ai = ai for some constant a,
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which is a function of B (which is a parameter appearing in Theorem A.2), then X̃ and X̂ defined
through this process satisfy the conditions of the theorem.

Consider next what would happen if we were to take the k× k Vandermonde matrix V ′ defined
by V ′

i,j = (aj)
i. We get that for every assignment of probabilities p = (p0, . . . , pk−1) defined as

above, V ′ · p =
(
E [X] ,E

[
X2
]
, . . . ,E

[
Xk
])
. Since this matrix is of full rank, its kernel is trivial.

Therefore, the vector u from before must satisfy V ′ ·u = (0, 0, . . . , 0, γ) for some γ ̸= 0. Note that γ
is a function of k and a (recall that they chose some constant a, dependent on the parameter B such

that ai = aj). Since as argued above uk = C · E
[
X̂k
]
− E

[
X̃k
]
= γ, but also E

[
X̃
]
= C · E

[
X̂
]
,

we get:

E
[
X̃k
]

E
[
X̃
] =

C · E
[
X̂k
]
− γ

C · E
[
X̂
] =

E
[
X̂k
]

E
[
X̂
] − γ

C · E
[
X̂
]

From which we conclude that:

E
[
X̂k
]

E
[
X̂
] −

E
[
X̃k
]

E
[
X̃
] =

γ

C · E
[
X̂
]

As showed above:

∥DX̃∥k − ∥DX̂∥k =
1

Nk−1
·

E
[
X̃k
]

E
[
X̃
] −

E
[
X̂k
]

E
[
X̂
]


Therefore:

∥DX̃∥k − ∥DX̂∥k =
1

Nk−1
· γ

C · E
[
X̂
] > 0

Note that the quantity γ

C·E[X̂]
is independent of N . This implies that by drawing s = Θ(N1− 1

k )

samples the number of k-collisions in DX̂ will be significantly larger than in DX̃ , and an algorithm
that only looks at the fingerprint of a sample of size s will be able to distinguish between the two
distributions.

Statistical distance. Note that by construction, taking X ∈
{
X̂, X̃

}
, DX satisfies the following:

• Supp (DX) = N
E[X] < N .

• For all x ∈ Supp (DX), D(x) ≥ a0
N ≥ 1

N , as we assumed that a0 ≥ 1.

Since by Theorem A.2, for any choice of B in the construction, E
[
X̂
]
< 1+ 1

B and E
[
X̃
]
> B, we

get that the distance between the distributions is at least:

1

N

(∣∣Supp(DX̂)
∣∣− ∣∣Supp(DX̃)

∣∣) ≥ 1

N
·

(
N

1 + 1
B

− N

B

)
=

B − 1− 1
B

B + 1
≥ 0.5

Combined with the previous point, we conclude that for every ε ≤ 0.5, the set of distributions that
are at least ε-far distributions from DX̃ contains DX̂ , which requires Ω(N1− 1

k ) to be distinguished
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from DX̃ (for an algorithm that only looks at the fingerprint of the distributions). Moreover,
we argue that DX̃ , for sufficiently small constant ε, is ε-far from the property Lk(N,α0), where

α0 = N1− 1
k · ∥DX̂∥. Recall that ∥DX̃∥k−α0 =

1
Nk−1 · γ

C·E[X̂]
. And so, any distribution at ε-distance

from DX̃ must have ℓk norm that’s smaller than ∥DX̃∥ be at most:

ε

ak−1/N
·
(ak−1

N

)k
=

1

Nk−1
· ε · ak−1

k−1

For every ε such that this quantity is smaller than 1
Nk−1 · γ

C·E[X̂]
, we get that DX̃ is at ε-distance

from Lk(N,α0). Concretely, this means that:

ε ≤ γ

C · E[X̂] · ak−1
k−1

(5)

Since γ, C, and ak−1 are all functions of B and k, setting B = 3, we denote:

εk =
γ

C · E[X̂] · ak−1
k−1

(6)
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