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Abstract

We consider a static data structure problem of computing a linear operator under cell-probe
model. Given a linear operator M € F**", the goal is to pre-process a vector X € F} into a
data structure of size s to answer any query (M;, X) in time ¢. We prove that for a random
operator M, any such data structure requires:

t > Q(min{log(m/s),n/log s}).

This result overcomes the well-known logarithmic barrier in static data structures [MNSWOS|
Sie04, [PDO6l, [PTWO0S, P&11, DGWT9] by using a random linear operator. Furthermore, it
provides the first significant progress toward confirming a decades-old folklore conjecture: that
non-linear pre-processing does not substantially help in computing most linear operators.

A straightforward modification of our proof also yields a wire lower bound of Q(n-log'/?(n))
for depth-d circuits with arbitrary gates that compute a specific linear operator M € IFZO (")X",
even against some small constant advantage over random guessing. This bound holds even for
circuits with only a small constant advantage over random guessing, improving upon longstand-
ing results [RS03, [Che08al, [CheO8D, (GHK 13| for a random operator.

Finally, our work partially resolves the communication form of the Multiphase Conjec-
ture [Pat10] and makes progress on Jukna-Schnitger’s Conjecture [JS11l [Tuk12]. We address the

former by considering the Inner Product (mod 2) problem (instead of Set Disjointness) when
the number of queries m is super-polynomial (e.g., 2’”1/3)7 and the total update time is m®%9.

Our result for the latter also applies to cases with super-polynomial m.
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1 Introduction

A fundamental, long-standing question in the theory of computation is:
Can non-linear computation provide an advantage in computing a linear operator?

The intuition that non-linear computation offers no significant help has persisted for over 70
years since the seminal work in circuit design by Shannon [Sha49]. For instance, Lupanov [Lup56]
and later Valiant [Val77, [Val92] drew on this idea to study the complexity of linear operators. This
belief underpins major open problems like matrix rigidity—the search for a linear operator that
cannot be computed by small, shallow circuits with linear gates (See the surveys [Lok09, Ram20]
and references therein). Despite its widespread acceptance, this intuition has remained a folklore
belief. Only recently did Jukna and Schnitger |[JS11l lJuk12] formalize it as an informal conjecture:
non-linear gates do not help in computing a linear operator.

This conjecture extends naturally to the cell-probe model [Yao81], the most powerful model
of computation for data structures. In this model, we only count memory accesses (probes), while
all computation is free. An input is pre-processed into a data structure of s cells (here, we assume
1-bit cells, as we work over Fy). To answer a query, an algorithm can probe up to ¢ cells and
perform arbitrary computation on their contents. Because of its strength, a lower bound in this
model applies to any reasonable data structure.

This raises an analogous question for data structures: for a cell-probe data structure designed
to compute (M;, X) for a linear operator M, can non-linear pre-processing of the input X reduce
the query time? This can be seen as a cell-probe analogue of the Jukna-Schnitger conjecture (See
Section 2 of [DGW19] for detailed discussion).

Assuming this intuition is true has led to fruitful research on restricted models where pre-
processing is linear or from related classes (See [Fre81l [Cha90l Larl4l [Agal7, [DGW19, [AFKT19,
GPRW22] and references therein). These models are also deeply connected to matrix rigidity
[DGW19, NRR20]. However, challenging this intuition, there are cases where highly efficient non-
linear data structures exist for linear problems with no known linear equivalents [KUT11].

Our primary goal is to rigorously establish that for most linear operators, non-linear pre-
processing provides no significant advantage. This, in turn, implies an analogous result for
circuit complexity.

Previous Results Progress on this front has been stalled by technical barriers in the cell-probe
model. The primary tool for static cell-probe lower bounds is essentially a counting argument. A
seminal result by Miltersen [Mil93] shows that for almost all non-linear problems, if the space s is
slightly smaller than the number of possible outputs m (e.g., s = m%9?), then the query time must
be large (t > Q(n%9)). If we assume linear pre-processing is optimal for linear problems, a similar
counting argument yields strong lower bounds.

However, this argument breaks down completely when arbitrary non-linear pre-processing is
allowed. The number of possible functions to compute even a single pre-processed bit is astronomical
(22"), rendering a simple counting argument over all possible data structures useless.

Prior to our work, the best lower bound for an arbitrary linear problem was derived from
techniques used for explicit data structure problems [MNSW9S|, [Sie04, PD06, [PTWO0S8|,[Pall]. These
techniques hit a ceiling known as the logarithmic barrier, yielding bounds of the form:

logg
> n .
t_Q<logfL (1)




where |Q| = m is the number of distinct queries. Breaking this barrier for an explicit data structure
is a holy-grail problem, with connections to major open questions in branching programs and circuit
complexity [MNSWOI8, DGW19, Viol§].

In summary, it was previously unknown if any linear problem was truly hard against non-linear
data structures. For decades, it was not ruled out that highly efficient non-linear data structures
(e.g., with t = O(1) and s = |Q|%!) might exist for all linear problems.

1.1 Further Connections
1.1.1 Multiphase Program: Communication versus Cell-Probe

A more recent motivation for our work is its connection to the communication version of the
Multiphase Conjecture [Pat10, [Thol3, [Bra22], a problem in 3-player Number-on-Forehead (NOF)
communication.

Definition 1.1 (Multiphase Communication Game [Patl0]). The 3-player Number-On-Forehead
(NOF) communication game is defined as follows

o The inputs are distributed as follows: Merlin receives the linear operator M € {0,1}"™*" and
the vector X € {0,1}". For a given query index i € [m|, Alice receives M and i, while Bob
receives T and 1.

o Merlin sends a single-shot message of length m®° to Bob.

o Alice and Bob proceed in standard two-party communication to output (M;, X) E]for any given
i€ [m].

The Multiphase Conjecture (Communication Version) then states that for some m = poly(n),
Alice and Bob then must communicate n® for some constant € > 0. The original motivation in
[Pat10] behind the conjecture is its consequence in dynamic cell-probe lower bound.

Definition 1.2 (Multiphase Problem). Consider the following explicit dynamic data structure
problem

e M is given as a pre-processing input. Pre-process the data structure using |M| - t, time.

e Then X as a sequence is given as updates, updating the data structure using |X| - t, total
time.

e For any i € [m], the data structure must be able to output (M;, X) in t, time.

The key observation in [Pat10] is that a polynomial lower bound for the Multiphase Game would
imply a polynomial lower bound on max{t,,t,} for the Multiphase Problem, which is also known
as the Multiphase Conjecture (Cell-Probe Version). The word “Multiphase Conjecture” has been
used interchangeably to denote either the communication version of the conjecture or the cell-probe
version of the conjecture.

To avoid any confusion, we will denote the communication conjecture as Multiphase Conjecture
(Communication), the dynamic data structure conjecture as Multiphase Conjecture (Cell-Probe),
and making progress on either one of these conjectures as the Multiphase Program. The main goal
for the rest of the section is the following: (i) group the previous results depending on which conjec-
ture they make a progress on; then (ii) illustrate why the Multiphase Conjecture (Communication)
is a different ball game compared to the Multiphase Conjecture (Cell-Probe).

! Originally, the conjecture was phrased in Merlin sending a message of length o(m), then Alice and Bob proceeding
to output DISJ(M;, X). However, analogous implications hold from this slightly weaker conjecture



Previous Results on the Multiphase Program Despite its significance, the Multiphase Pro-
gram had limited progress for the first 10 years after its inception namely [CEEP12, [CGL15|
BL15]. [CGL15L BL15| tackle the Multiphase Conjecture (Cell-Probe), giving a lower bound of
max{ty,t,} > Q(logn). But it should be noted that their bounds do not carry over to the Multi-
phase Conjecture (Communication) due to the limitation of the technique involved.

There are results on the Multiphase Conjecture (Communication) as well. [CEEP12] first tried
to tackle the Multiphase Conjecture (Communication), but their argument only works for a very
restricted model of communication. Only recently [KW20] developed a tool to tackle the Multiphase
Conjecture (Communication) for two rounds of communication between Alice and Bob. This was
extended to a more general class of functions by [DI1.20].

Separation between Communication and Cell-Probe An intuitive high-level explanation
on why tackling the Multiphase Game is a harder task is the following. Recall that in the reduction
due to [Patl0], Merlin assumes the role of updates, and Alice assumes the role of query algorithm.
But in the Multiphase Game, (a) Merlin only needs to send cells written by the update algorithm,
as Merlin knows both M and X. We do not charge for reading the cells during the update; (b)
Alice is given the linear operator M. Thus, communication is needed for Alice to learn about X to
compute (M;, X). On the other hand, if we were to directly approach the Multiphase Problem and
give a cell-probe lower bound, the counting arguments in [CGL15| BL15] crucially rely on the fact
that (a) the update algorithm has no prior knowledge on M, thus must probe into pre-processed
cells to learn M; (b) the query algorithm has no prior knowledge on both M and X. The query
algorithm must learn about both M and X by probing into the pre-processed and updated cells.

An explicit example of the separation between the two models exists as well. There exists an
explicit function that is easy in the communication model while hard in dynamic cell-probe model,
separating the two models. Consider the setting where each M; has a single non-zero entry. This
is so-called indexing problem, as each M; only asks which coordinate of X to output. [BLI5]
(Theorem 1) shows that if t, < o(m), t; > Q(n) for so-called non-adaptive query. This easily
translates to t, > Q(logn) for general query, by simulating all possible adaptive queries in a single
non-adaptive query.

We will now show why we cannot expect to show such statement for the indexing problem in
the communication model. First of all, Merlin’s message is too long. We cannot show an analogous
statement in the communication model, as n - t,,, which would be the length of Merlin’s message, is
already larger than m. If Merlin is allowed to send a message of length m, Merlin can simply write
the answers for all possible queries. Bob then only needs to a single bit to announce the answer.
Notice that this stems from the difference listed as (a).

Even if we relax the condition on the update to say n - t, < o(m), thereby Merlin sending a
message of length o(m), we still run into separation, as we cannot give ¢, > Q(logn) for indexing
problem. Such a result would contradict [Drul2] which combined with the argument from [Viol8]
gives a communication protocol with O(k®) communication between Alice and Bob while Merlin
only gives an advice of length O(n/k) when m = O(n)[]| This shows that even if we give (a) for
free, (b) is still crucial, separating the two model.

Now that we have established the fact that the Communication model is provably stronger
than its dynamic cell-probe analogue, we would like to discuss evidences on how hard can it be,
which has direct connection to our problem. Ko and Weinstein [KW20] observed that the Multi-
phase Communication Game can simulate a static cell-probe data structure for some random linear
operator M over the input X — the main problem of our interest.

20ne could also obtain O(k?) communication with advice of length O (kﬁ)lgoign)
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Merlin sends all the contents of the pre-processing. Alice then simulates the query using the
two-party communication between Bob. This is possible as Alice knows M, the linear opera-
tor in question. Therefore, resolving the Multiphase Conjecture (Communication) would imply
Jukna-Schnitger Conjecture in its cell-probe analogue. In particular, the Multiphase Conjecture
(Communication) implies a static cell-probe lower bound of the form

t> ('f’) (2)

for some small constant ¢ > 0 against arbitrary linear operators with |Q|-many outputs. Note
that this is a super-exponential improvement over . Therefore, Ko and Weinstein (see Section
5 of [KW20]) phrased the connection as a major setback for the full resolution of Multiphase
Conjecture (Communication), rather than adding the stakes for the Multiphase Conjecture (Com-
munication). We emphasize that no such connection arises for the Multiphase Conjecture for the
Multiphase Conjecture (Cell-Probe).

1.1.2 Other Connections

Our work also connects to index coding with side information [BYBJKI11], the complexity of error-
correcting codes [GHK™13|, and function inversion in cryptography [CGK19]. These diverse con-
nections all stem from the same high-level question: can non-linear computation help compute
linear functions?

1.2 Our Result

Our main contribution is a query time lower bound that breaks the logarithmic barrier for a random

linear operator:

t>0 (log |Q|> (3)

s
This provides the first formal evidence supporting the half-century-old intuition that non-linear pre-
processing offers little advantage for most linear operators. For example, when space s = |Q|%%°
(storing nearly all answers), previous bounds gave only a trivial ¢ > Q(1). Our bound gives a much
stronger t > Q(log |Q]). This affirms the cell-probe version of Jukna-Schnitger’s Conjecture when
the number of queries is super-polynomial.
Formally, we prove the following statement:

Theorem 1.3 (Main). For every t,s,m > w(1) and a collection S C F} such that m > w(s - 25%),
and log|S| > 10* - tlog s, there must exist some m linear functions from S say Q that does not
admit o data structure using s-space and t-probes per query.

When applied to the set of all linear functions S = 4, this theorem yields our main trade-off.

1.2.1 TImplications

Our result has direct implications in three key areas:

Static Data Structures We establish the existence of “hard” linear operators, providing the
first non-trivial lower bounds against arbitrary non-linear pre-processing in the high-space regime
when s is |Q|%%. This is a significant improvement over any existing arguments, which fail in this
setting.



Circuit Complexity Our data structure bounds translate to new circuit lower bounds. Consider
Valiant’s depth-2 circuit with arbitrary gates [Val77] computing a linear operator = — Mz with
M e F3™™, m%9-gates in the middle layer, and at most 7-wires per output gate. Our result
directly implies that if ¢ < o(y/n) and m > 20() | there must exist a linear operator M that requires
7 > Q(t). This partially resolves an open problem of Jukna-Schnitger [JS11| [Juk12] on whether
arbitrary gates can help in computing an arbitrary linear operator for a super-polynomial number
of outputs.

Furthermore, if we turn to a general depth d circuit with arbitrary gates (unbounded fan-in),
we can also replace the inverse Ackermann-type lower bounds due to [GHK™ 13| on linear operators
with poly-logarithmic decay in depth d. Our bound also supersedes the best-known explicit bound,
which are not linear operators, due to [RS03, [Che08a) [Che08b] when d > 4. See Section 4| for
details.

Multiphase Communication Game A general way to phrase our result is a progress in the
Multiphase Conjecture (Communication). While the notation of our proof is used specifically to
handle the static data structure lower bound, a careful examination of our proof shows that our
result indeed resolves the Multiphase Conjecture (Communication) [Patl0] when the number of
possible queries m is super-polynomial.

Since any progress on the Multiphase Conjecture (Communication) implies a corollary for the
Multiphase Conjecture (Cell-Probe), our lower bound then implies the following corollary for the
Multiphase Problem.

Corollary 1.4. For the Multiphase Problem, if the total update time n-t, < O(m°%%) (i.e. slightly
less than writing down answers to all possible queries) then the query time must be t, > Q(nl/Q)

We suspect further reductions to various explicit dynamic data structure problems from Corollary
Note that a trivial data structure exists for the above explicit dynamic data structure instance,
achieving t, = O(n) by simply reading M; and X to compute (M;, X). This is important because
one could have otherwise devised a dynamic data structure problem which selects arbitrary functions
fiyeooy fm 1 {0,1}™" — {0, 1}, and outputs f;(X) at the query phase.

Using Miltersen’s counting argument [Mil93], one can readily demonstrate the existence of
functions fi,..., f, such that, if the total update time n - ¢, = O(m°%%), then t, > Q(n%).
However, mainly due to requiring an arbitrary function f;, which requires 2"-bits to describe per
query, this prohibits any trivial query algorithm of ¢, = O(n), as one needs to read about f;, nor
reduces to any interesting problem in dynamic data structure. [ﬂ

1.2.2 Technical Contribution

The main technical ingredient of our work is the extension of the analysis of Multiphase Game [KW20),
DL20] to exponentially small advantage regimes using average min-entropy introduced in [DORSO0S].
We suspect that our technique to be a critical component in fully resolving the Multiphase Pro-
gram [Patl0, Thol3, Bra22]. Analyzing the small advantage regime is crucial for data structure
lower bounds, as demonstrated in recent breakthroughs in dynamic data structure lower bounds
[LWY20, LY25].

The main technical contribution in [KW20] shows that after Merlin’s message, if Alice and then
Bob each speak once and correctly output DISJ(M;, X') with s = o(m), then Alice and Bob must
communicate Q(y/n) bits. [DL20] extended the result to (M;, X) with Q(n) bits of communication.

3 Another way to view this phenomenon is that our instance requires small linear bits (n-bits) per query, while
Miltersen’s counting argument requires exponential bits per query.



The key open problem posed in [KW20] is to extend the previous result to the setting where
Alice, Bob then Alice speaks (i.e. one extra round compared to [KW20, [DL20]). This has con-
nections to the fundamental question of linear vs. non-linear circuits as remarked in [KW20]. We
reduce the general setting with ¢-rounds of communication to a setting where Alice and then Bob
speak with reduced correctness, via following observation.

Alice does the following: she picks a single random ¢-probe decision tree path. Then Alice sends
the path to Bob. Bob checks if the path is consistent with U, Merlin’s message. If yes, Bob outputs
the same output as the end of the path. Otherwise Bob simply makes a random guess about the
output. The main observation is that Bob would say yes with 27! probability. If Bob says Yes,
then the protocol is correct. Otherwise, we get 0 advantage. Therefore, this would result in Q(27%)
advantage over random guessing.

We then focus on the setting in which Alice and then Bob each speak once, with Bob guessing
the value of (M;, X) with a small advantage over a random guessing. That is, we consider the
small advantage regime. Unfortunately, previous arguments [KW20, DL20] incurred a constant
blowup in error, making them insufficient for any meaningful bound for small advantage regimes.
In fact, as observed in two-party Disjointness [BM13], analyzing small advantage regime often
requires different tools from that of small error regime. Our technical novelty here is to leverage the
average min-entropy framework introduced in [DORS0§| instead of standard information theoretic
arguments using KL-divergence, and carefully choose random variables that fit the framework
of [KW20]. Average min-entropy allows us to naturally bound the fe-norm of the probability
distribution, which then can be then used to argue about the underlying discrepancy.

2 Preliminary

2.1 Information Theory

In this section, we provide the necessary background on information theory and information com-
plexity that are used in this paper. For further reference, we refer the reader to [CT06].

Definition 2.1 (Entropy). The entropy of a random variable X is defined as

H(X):=> Pr[X = a]log Pr[Xlzx].

Similarly, the conditional entropy is defined as

1
Pr[X =z|Y =]

H(X[Y):=Ey | Y _ Pr[X =a|Y =y]log

Fact 2.2 (Conditioning Decreases Entropy). For any random variable X and Y
H(X) > H(X[|Y)

With entropy defined, we can also quantify the correlation between two random variables, or how
much information one random variable conveys about the other.

Definition 2.3 (Mutual Information). Mutual information between X andY (conditioned on Z)
is defined as
I(X;Y|Z) := H(X|Z) — H(X|Y Z).



Similarly, we can also define how much one distribution conveys information about the other dis-
tribution.

Definition 2.4 (KL-Divergence). KL-Divergence between two distributions p and v is defined as

93)

D = )1
rL(pl|v) ZM Og (2)

To bound mutual information, it suffices to bound KL-divergence, due to the following fact.

Fact 2.5 (KL-Divergence and Mutual Information). The following equality between mutual infor-
mation and KL-Divergence holds

I(A; B|C) =Ep ¢ [Drr(A|p=bc=c||Alc=c)] -

Fact 2.6 (Pinsker’s Inequality). For any two distributions P and Q,

1P = Qlirv = 51— Qlh < /55Dl
We also make use of the following facts on Mutual Information throughout the paper.
Fact 2.7 (Chain Rule). For any random variable A, B,C and D
I(AD; B|C) = I(D; B|C) + I(A; B|CD).
Fact 2.8. For any random variable A, B,C and D, if I(B; D|C) =0
I(A; B|C) < I(A; B|CD,).
Proof. By the chain rule and non-negativity of mutual information,

I(A; B|C) < I(AD; B|C) = I(B; D|C) + I(A; BICD) = I(A; B|CD).

O]
Fact 2.9. For any random variable A, B,C and D, if I(B; D|AC) =0
I(A; B|C) > I(A; B|ICD,).
Proof. By the chain rule and non-negativity of mutual information,
I(A; B|ICD) < I(AD; B|C) = I(A; B|C) + I(B; D|AC) = I(A; B|C).
O

2.2 /y-norm of a distribution

Another good measure of the randomness of a distribution is its £2-norm. The more “spread out”
a distribution is, the smaller its f>-norm. We introduce the following definitions to argue about the
fo-norm of a distribution.



Definition 2.10. We define the renyi entropy Ha(A) and min-entropy Hoo(A) as

Hy(A) :== —log (Z Pr[A = a}2>
Ho(A) :== —log (mgLXPr[A = a])
Fact 2.11 (Renyi Entropy). Let A be a random variable. Then
H(A) > Hy(A) > Hyo(A)
In particular, for any fired b we have
Hy(A|B =b) > Ho(A|B =b)

We use the following simple claim to argue about {.-norm of a distribution when its KL-
divergence with the uniform distribution is small.

Claim 2.12. Let D be a distribution and U a uniform distribution over some S C {0,1}"™. Then
if D(D||U) < t with t > 1, then for every a > 2 there exists an event E such that

1
DE)>1——
(B)21--

Ho(D|g) > log|S| — 2at
Proof. We partition X depending on D(X). Let E denote the set of X such that

D(X)
UX)

log < at

Since D(D||U) < t, by Markov’s inequality 1 — D(F) < 1/a. With « > 2, for any X that is in the
support of D|g, we have

D‘E(X) <2. D(X) < gat+l U(X) _ 27log\$|+at+1 < 2710g|8\+2at
which then gives Hoo(D|g) > log|S| — 2at. O
We prove the following lemma to bound the ¢5-norm of a distribution.

Lemma 2.13. Let A, B be random variables where B has at most 2* possible values. Then

EyB

> Pr[A=alB= b]2] < 97 Hool)FA
a
We use the following lemma on “average” min-entropy.
Definition 2.14 (Average Min-Entropy).
H..(A|B) = —log (EbNB [maxPr[A =a|lB = b]]) = —log (EbNB [2_H°°(A|B:b)]>
a

This leads to the following proposition



Proposition 2.15.

Epp |y Pr[A=a|B = b]2] < 9~ Hee(AlB)
a

Proof.

ZPr[A =a|B = b]2 — 9~ H2(A|B=b) < 9—Hoo(AIB=b)

a
Therefore,

Epn [Z Pr[A=a|B =b]?| <Ey.p [Q_HOO(A\B=Z7) — 9—Hx(A|B)

a

where the last equality holds from the definition of average min-entropy. n

Lemma 2.16 (Lemma 2.2 of [DORS08]). Let A, B be random variables. Then if B has at most
2* possible values, then

Hoo(A|B) > Hoo(A,B) — A\ > Hyo(A) — M.

We are now ready to prove Lemma [2.13
Proof of Lemma First, observe that Lemma [2.16| implies

~log (EbNB [2—HN<A|B=6>]) > Hoo(A) — A

which is equivalent to (by switching sides and taking as exponents)

9~ Hoo(AHA S |, [THOO(A|B:5)}
Now using Fact you get

Epop |:2—H00(A‘B:b):| > Eyop |:2—H2(A|B=b)} =Epop [Z PI‘[A _ a\B _ b]2] )

which is the desired inequality. ([l
Using the ¢2 norm, the following claim (so-called Lindsey’s Lemma) bounds the discrepancy of
the Hadamard matrix under a product distribution.

Claim 2.17 (Lindsey’s Lemma). Let H be a Hadamard matriz. Let P and Q be distributions.
Then
PTHQ < | P2]|Qllz - 2/

Proof. Recall that the operator norm of the Hadamard matrix is exactly
|H 2 = 2"/
Then by the definition of the operator norm,

PTHQ
1 P]l2]|Ql[2

Rearranging the inequality, we obtain the desired claim. O

< [|H|l2 =2
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3 Main Proof

In this section, we prove the following main theorem.

Theorem 3.1 (Main). For every t,s,m > w(1) and a collection S C F} such that m > w(s - 25%),
and log|S| > 10* - tlog s, there must exist some m linear functions from S say Q that does not
admit a data structure using s-space and t-probes per query.

3.1 Compression and Random Process

We prove this by contradiction. We will start with the following assumption. Suppose for any
My, ...,My, € S C F} (these are fixed and publicly known), there exists a data structure under
the cell-probe model which pre-processes any given X € FJ using s-space and answers ya, (X) =
(—1)MiX) for any given i € [|Q|] = [m] using t-probe. This implies the following procedure exists
in the cell-probe model.

1. The querier is given M = M, ..., Mp,. Given i € [m], the querier makes ¢ queries to U, using
a decision tree 7 of depth ¢.

2. At the leaf node of the deicision tree 7, the querier outputs the final guess in {£1} which is
guaranteed to be xaz, (X).

Protocol 1: Static Data structure with adaptive probes

We now argue that an effective static data structure implies an too-good-to-be true communica-
tion process in the so-called Multiphase Communication Game. While Patragcu [Pat10] considered
computing the Disjointness of M; and X, here we consider computing the inner product over mod
2 between M; and X.

The above data structure implies the existence of the following (¢ + 1)-round communication
process (between 3 players) under the independent uniform distribution for all My,..., M,, € S C
F% and uniform distribution for X € F3 where Merlin sends a single-shot message of length s,
U(Mi,..., My, X) to Bob. Then Alice and Bob proceed in ¢t-round communication to compute
xu; (X). By the correctness of the underlying static data structure, this process correctly outputs
the inner product of M; and X for any values of i € [m].

1. Alice holds M, ..., M,, and ¢ € [m]. Bob holds X and i € [m]. Merlin holds M, ..., M,,, X.
2. Merlin sends U (M, ..., M,,, X) to Bob using s bits.

3. Alice sends a location ¢ € [s| (given in her decision tree 7') using log s-bits to Bob. Bob
replies with the queried bit U,.

4. Repeat the Step 3 for ¢ rounds.

5. Alice announces xaz, (X).

Protocol 2: ¢ + 1-round Communication Process

We denote this as a process, rather than a protocol, to contrast with the usual two-party
communication protocol. Due to the side information U that Bob has on Alice’s input, the usual
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techniques for two-party communication complexity (namely cut-and-paste or rectangular property)
do not hold. Therefore, we call this a communication process instead of a communication protocol.

Compression Overview The hope is to show that if s is sufficiently small then ¢ must be large
for such a (t+ 1)-round communication process. Unfortunately, current techniques are insufficient
to provide a complete lower bound for such a general process. Instead, we would like to “com-
press” the communication between Alice and Bob with a loss in parameters, resulting in a 3-round
communication process between Merlin, Alice, and Bob. We can manage this setting from the
technique developed in [KW20].

The high-level intuition is for Alice to randomly sample a path in her decision tree, along with
the final answer. Bob simply checks whether or not queried bits indeed matches with U. If it
matches, Bob announces the answer as given in Alice’s message. Otherwise, Bob simply makes an
independent random guess. We formally state the compression as following.

Formal Compression Here is the formal description of our compressed 3-round communication
process.

1. Merlin sends U (M, ..., My,, X) to Bob using s bits.

2. Let P, € ([s],{0,1})! x {£1}, namely query i’s (i) the sequence of the addresses probed by
the probing algorithm; (ii) the probed result and; (iii) the final answer (i.e. the contents of
a path in the decision tree used by Alice) Note that there are at most 2/ many possible P;.
Alice picks a P; = p; such that

p; i= arg max I}r[Pi = pz“\_j = m)|
then sends to Bob using tlogs +t 4+ 1 bits.

3. Bob checks if P; agrees with U. If yes, set B; as 1. Output Z;, which is the notation for Bob’s
guess of xaz,(X), as the final output value in P;. Otherwise, set B; as 0. Output Z; as £1
each with probability 1/2 independently at random.

Protocol 3: Communication Process between Alice and Bob for Adaptive Probe

Remark 3.2. Observe that our argument works against even a general three party communica-
tion, where after Merlin’s message, Alice and Bob proceed to communicate t bits using t-rounds
of communication (i.e. a single bit per round). As long as Alice’s bits are a function of previous
transcript, and her input (M, ..., My, 1); and Bob’s bits are a function of previous transcript, his
input (X,1) and Merlin’s message, the above compression scheme works. Bob simply needs to check
if the response chosen by the path is consistent with his actual response.

Due to Remark the rest of proof also works against arbitrary Number-On-Forehead three
party communication, thereby attacking the Multiphase Conjecture (Communication). However,
for conciseness, we stick to above notations against static data structure lower bound.

Random Process from Protocol Here is the plan for the remainder of the proof. Given a
too-good-to-be true compressed communication process (Protocol , we would like to “extract” a
random process Z from our compressed communication process which would violate some combina-
torial property. We will show that some choice of Z (after some conditioning E which is introduced
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due to technical reasons) satisfies three properties simultaneously: conditioned on Z, large average
Min-Entropy on M; and X, low correlation between M; and X, while achieving a good advantage
over randomly guessing Xz, (X). Then in Section we will then show that such a choice of Z
cannot exist, resulting in a contradiction.

Given the formal description of our compression, we formally state our random process Z. Pick
a sequence of random distinct numbers P of length ¢ < m/100 in [m], an instance of which we will
denote as (p1,...,p¢), and random J € [¢], an instance of which we will denote as j. Then we write

Z = Pa Jv PP<J7MP<J7PPJ7B'PJ7273J

which is the set of random “path” of coordinates along with Alice’s compressed messages and S5;’s
along the path. We also include Bob’s output (whether or not Pp, agrees with U) for the particular
J of our choosing. For brevity, we write Z 4;;ce for

ZAlice = P; Ja PP<J’ MP<J’ PPJ

that is Z without Bp, (i.e. Bob’s message) and the final guess Zp, due to Bob’s message. We
emphasize here that Z 4. is completely determined by M,..., M,, = M and independent ran-
domness P, J, and has no dependence on X (Bob’s input) which is a crucial property of Z 4. and
why the variable is named so.

3.1.1 Large Average Min-Entropy

In this section, using the communication process Z, first, we argue on large average Min-Entropy
for Mp, and X conditioned on Z. As a comparison, we remark that [KW20, [DL20] extract Z = z
with a small KL-divergence which is directly implied by small mutual information between Z and
respective Mp, and X.

We start with the following lemma which directly follows from the technique used in [KW20].

Lemma 3.3. If |P| = ¢ =|Q|/100 then
I(MPJ; ZAlice) = EZAlice [D(MPJ ‘ZAlice:ZAlice ‘ |M7DJ)} < 3tlogs

We attach the proof of Lemma [3.3]in the appendix for completeness, as it is exactly the same
as in [KW20]. What Lemma guarantees is Z 4y such that conditioning on which has low
divergence with original uniform distribution on Mp,.

The following is the main lemma of this section, which combined with Lemma [3.3] we can
extract large average Min-Entropy part for Mp, and X.

Lemma 3.4 (Large Average Min-Entropy). For any setting of fized Z ajice = ZAtice Such that
D(MPJ ’ZAlice:ZAlice ’ ‘MPJ) S B
with B > 2, there exists an associated event E with

Pr[E|Z Atice = ZAtice) > 3/4

H(E|Z gtice, Mp,) = 0

gOO(ij’ijBppE =1, ZAlice = ZAlice) + ﬁoo(X’ijBpj,E =1, ZAlice = ZAlice)
>n+log|S|— 105

Towards proving the lemma, we first prove the following two propositions.
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Proposition 3.5. Suppose
D(MPJ ‘ZAlice:ZAl'Lce ‘ |M7)J) S /8
Then there exists an event E with Pr[E|Z Ajice = ZAtice) = 3/4 such that

H(E|ZAlicea MPJ) =0
Hoo(ij|ZAlice = ZAlice> E= 1) > 10g ’S| - 8/6

Proof. Recall that Claim gives an event F where if the underlying distribution has low KL-
divergence with the uniform distribution over S, conditioned on F, the distribution has large H...
As

D(ij ‘ZAliCE:ZAlice ‘ ‘ij) S B

with Mp, being the uniform distribution over S, we can apply Claim to give an event E which
is completely determined by Z4jice and Mp, (as E is determined by Mp, under fixed Z 44ice) such
that

Hoo(ij’ZAlice = ZAlice; B = 1) > log ’S| -85

with
Pr[E|ZAlice = ZAlice] > 3/4
by setting the appropriate parameter (o = 4 in Claim [2.12)). O

The next proposition is Hy, bound for X.
Proposition 3.6. For any setting of Z Aice = ZAlice, and E =1, we have
Hoo (X‘ZAlice = ZAlice> E= 1) =n.

Proof. First, by our setting of Z4;. and E, which depends only on M = My, ..., My, (Alice’s
input),
I(Z Atice, E; X) < I(M; X) = 0.

Therefore, for any setting of Z4j.c and E = 1, we get

Ho (X‘ZAlice = ZAlice, X = 1) =n.

We are now ready for the proof of Lemma [3.4

Proof of Lemma Due to Proposition there exists an event FE, that is completely
determined by corresponding S,; such that

H(E|ZAlicea MPJ) =0
Pr(E|Z gtice = ZAlice) > 3/4
HOO(ij|ZAlice = ZAlice, & = 1) > log |S| -85

which further implies that, due to Lemma as Zp, By, is 2-bit,
]:Ioo(ij|ijBpja ZAlice = ZAlice; E= 1) > log ‘S| - 86 - 2. (4)
Due to Proposition and Lemma for any setting of Z4jce we have

Ij[oo (X|ijBpj7 Z Alice = ZAlice; £ = 1) >n—2 (5)
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Then adding and , we obtain our desired lemma as

Hoo (X’Bpjv ZAlice = ZAlice; E= 1) + goo<ij’Bpj7 ZAlice = ZAlice; E= 1)
>n+log|S| — 88 —4>n+log|S| —108.

where the last inequality holds from our assumption 5 > 2. O

3.1.2 Low Correlation

Finally, we show that the correlation between Mp, and X is small in expectation over random Z
and conditioned on E, which essentially follows the analogous argument in [KW20] using the Chain
Rule in Mutual Information (Fact [2.9).

Lemma 3.7 (Low Correlation).

20Ul 2s
IMp,: X|ZF=1)< — = —
('PJa |7 )_|P| /

Proof. We use an analogous technique from [KW20]. First, note that
IMp,; X|Z,E=1)<I(Mp,;UX|Z,E=1)

Now we plug in the definition of Z as the concatenation of Z 4jice, Zp; Bp; along with £ = 1. Then,
for any fixed ZApice = ZAlice, We get

I(M’PJ; UX|ZAlice = ZAlz'ceyE =1, ijBpj) < I(M’PJ; UX|ZAlice = ZAlz'ceyE =1, Bpj)

As I(Z,;;UX|By,, Zatice = ZAtice; E =1, Mp,) = 0. If B,. =1, Z, is completely determined from
ZAlice- Otherwise it is an independent random variable. Then

I(MPJ; UX|ZAlz'ce = ZAlice; & =1, BPJ') < I(MPJ; UX‘ZAlice = ZAlice, B = 1)
< 1

PI‘[E = I‘ZAlice = ZAlice]
< 2-I(Mp,; UX|Z gtice = ZAlice)

I(MPJ; UX‘ZAlice = ZAlice> E) < 2- I(MPJ; UX‘ZAlice = ZAliCE7E)

where the inequalities hold by Fact 2.9 along with
I(Mp,; By, | Zatice = ZAtice; E = 1,UX) < H(By,|Zatice = 2Atice; £ =1,UX) =0
and the properties of E' guaranteed by Lemma namely Pr[E = 1|Z gjice = ZAtice] > 3/4 and
I(E;UX|Z ptice = ZAlice, Mp,) < H(E|Z Atice = ZAtice; Mp,) = 0.
Next, we bound I(Mp,; UT|Z ajice) term. Note that I(Mp,; X|Zajice) = 0 as
I(Mp,; X1 Ztice) < I(Mp, Zatice; X) < I(M; X) =0
Next, we consider I(Mp,;U|Z gjice, X ) then plugging in the definition of Z4jice,
I(Mp,;U|Zatice, X) = I(Mp,; U|P, J, Pp,, Pp_,, Mp_,, X)

< I(PPJa M’PJ; U’,P’ J, PP<J’ MP<J’X)'
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Then taking the expectation over the random coordinate J (by standard direct-sum technique), as
all other variables are chosen independently of J, we get

I(PPJ’MPJ; U|P7J, PP<J’MP<J?X)

l
1 .
= ZZI(P’PJWMPJ;UW)vJ:.]7P'P<]‘7M'P<J7T)
7j=1
1 ¢
:zZI(PPJ,MPJ;U|7D,P7J<j,M7D<J,T)
7j=1
N 14 4

This completes the proof of the lemma. O

<

| »

3.1.3 Good Advantage

We also have the following simple observation on the advantage of Protocol [3| over a random
guessing.

Lemma 3.8 (Advantage). Fiz any M. For any i € [m], the probability of Pmtocol@ outputting
X, (X) correctly over X is at least HTW

Proof. If we fix M , first observe that X is independently at random. As M completely determines
Alice’s message, P;, the only remaining part of the protocol is B; and Z;. There are two possible
scenarios for B;. If U agrees with P;, or not, that is if B; = 1 or not. If B; = 1, this implies that the
last bit in P; is indeed x s, (X) due to the correctness of the original ¢ + 1-round Communication
Process Protocol If B; = 0, the process takes a random guess. Therefore, the probability of
being correct can be written exactly as

B 1 B 1 14 Prx[B=1]
f)’(lr[BZ =1]+ E’(r[B, =0]- 5= li(r[BZ =1]+(1- I)’(r[BZ =1])- 5= 5
Therefore it suffices to bound Prx[B; = 1]. Observe that we choose P; as the maximum likelihood

path. Therefore Prx[P;] > 2—1t, as there are at most 2! many possible P;. Denote P! as the true

decision tree path given by fixed M and T. Then Prx[B; = 1] = Prx[P, = P!] = Prx[P;], that is
the probability of path P; over possible T’s. Then, we get
1
Therefore, the probability of outputting xas, (X) correctly is at least
1 —I—PI‘)([BZ‘ = 1] > 14271
2 - 2

O]

This immediately implies the following corollary, which we will use towards our final contradic-
tion.

Corollary 3.9. For any setting of ZAjice = ZAlice; Mp;, and E =1 (which are all completely
determined by M, P, J)

1427
2

Pr[ij = Xij (X)‘Mp Z Alice = Z Alices E= 1] >

)
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3.2 Combinatorial Lemma

The main corresponding combinatorial lemma to the [KW20, [DL20] is the following. This shows
that no random process that achieves even the slightest advantage over random guessing with low
correlation and large average min-entropy can exist.

Lemma 3.10. No setting of a random process Z = z and C, which contains zou: can simultaneously
satisfy all three of the following inequalities for any v > 3

Borzes [[Batxio s, ot (X) - 20alC = 0,2 = 3] 2 2772 0
I(M; X|C,Z =2) < 9—27 )

Proof. For the sake of contradiction, suppose such z and C exists. First as z,, is =1, we can write

‘]EMZ'7X‘C:C,Z:Z [XMZ (X) ’ Zout‘c = C, Z = Z]‘ = ‘EMthC:c,Z:z [XMZ (X)|C = C’ Z = Z] (9)
Then we can use the ¢; bound to have

‘EMZ-,X\C:QZ;Z X, (X)|C =¢,Z = Z]‘ < |Milc=c,z=- - H - X|c=c,z=-] (10)
+ ||Mi‘C=c,Z:z X X‘C:c,Z:z - (MivX)|C=C,Z=Z||1 (11)

We bound the expectation of . Our KL-divergence term is then equal to the mutual in-
formation between M; and X conditioned on Z = z. Namely, using the chain rule for the KL
divergence,

D(M;, X|z=2||Mi| z=- x X|z=2) = D(X|z=:(|X|z=2) +Eyrx),_. [D(Mi|x=0,2=:||Mi| z=2)]
-
=I(M;X\|Z = z)

Then, due to Pinsker’s inequality (Fact , we have

| Mi|c=c.z=2 X X|o=c.z=2 — (Mi, X)|c=e.z=2|1 < 2V/I(Mi; X|C = ¢,Z = z)

Then taking expectation over C' and applying Jensen’s inequality,

IE‘:’C’|Z:Z [HMZ'|C’:6,Z:z X X|C:c,Z:z - (MuX)’C:c,Z:zHl] < 2\/—[(M’L7X’07 Z = Z) < 277+1 (12)

where the last bound holds from .
Next, we bound . Due to Claim and Cauchy-Schwarz Inequality,

]EC‘Z:Z [|M’L"C:C,Z:Z -H- X|C:C,Z:Z|] S EC‘Z:Z [Qn/Q : HMi|C:c,Z:z||2 : ||X|C:C,Z:z||2

< 2n/2 . \/EC|Z:Z [||Mi|C=C,Z=z||%} 'EC|Z:Z “|X|C:C’Z:ZH%]

Proposition [2.15] implies

Eo,_. [IMilo=c,z=:|3] < 27 H=(HlC7=2)

Ecy,_. [ Xlc=cz=:[3] < 27 XI0Z=2)
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which would in turn imply

\/EC\Z:Z [”Mi|0:c,Z:zH%] 'EC|Z:Z [||X|C:67Z=z||%] < 9~ (Hoo (M;|C,Z=2)+Hoo (X|C,Z2=2)) /2

n+2~y

<2 Tz =2 2.9

which then implies is upper bounded by
([0) <2227 . 277 =277 (13)

Therefore, we get

Ec\z=- [ (14)

EMi7X|C’:c,Z:z [XMi (X) : Zout|C =c 4= Z]H <

which contradicts @ O

3.3 Combining the lemmas

Finally, we combine the lemmas from the previous two sections to prove the main theorem via
contradiction. Recall the statement of our main theorem.

Theorem (Main). Let t,s,m > 100 be parameters such that m = |Q| > w(s - 23!),1log|S| >
40 - tlogs. Consider any data structure which answers m many linear functions from a collection
S CFy say Q. There must exist some Q such that there is no data structure for Q using s-space,
t probes per query.

Proof. We will prove via contradiction. Suppose otherwise. Then we know that Protocol [3| must
exist as well with the provided definitions of Z gjce, £, and Z. Our goal is to show that there exists
a setting of Zajice = ZAlice, £ = 1 and Zp; By, that would violate Lemma thus leading to a
contradiction.

First, we will fix Zajice = ZAalice, ©# = 1 which satisfies large average Min-Entropy and low
correlation simultaneously. That is, we will fix ZApce = ZAlice, £ = 1 such that

6s

I(MPJ; X‘ZAlz'ce = ZAlice> E = ]-7 ZﬂjBl’j) < 7 (15)
I:Ioo(Mp]- ’ijBp]wE =1, ZAlice = ZAlice) + f{oo(X’ijBpij =1, Z Alice = ZAlice)
> n + log |S| — 300t log s (16)

Over the random choice of Z4j;ce = Zalice, Lemma [3.3 and Lemma m implies that
ﬂoo(ij ’ijBprE =1, Zatice = ZAlice)+E[oo(X’ijBpjaE =1, Zatice = ZAlice) > n+log ’S|_30t log s

Lemma implies that over the random choice of Z 4jice = Zatice,

2s
I(M’PJ;X|ZAlice = ZAlice, & =1, ijBpj) < ?

Due to Markov argument, there exists Zajice = zalice Which simultaneously satisfy both and

().
On the other hand, Corollary implies that for any setting of Zajice = 2atice, £ =1 and S,

1427
2

Pr[ij = Xij (X)‘Mp Z Alice = Z Alicey E= 1] >

)
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or equivalently

—t
j BpjrZAlice=%Alice B=1 HXij (X)- ij } =2 (17)

Then consider (15), and (I7). To obtain a desired contradiction with Lemma setting
v =t + 2 in the lemma, it suffices to have

EMP]' ’X|Zp

n + log|S| — 30tlogs > n+2(t +2)
6s

05 ~ 9—2(t+2)

7 S

which is implied by

40t log s < log |S|
652242 < 5. 2% < ¢ =|Q|/100

These conditions are implied by the choice of parameters given in the statement of the theorem.
This would contradict Lemma [3.10, completing the proof of the theorem. 0

4 Wire Lower Bound for Circuits with Arbitrary Gates

In this section, we show that a random linear operator satisfies one of the conditions laid out by
[Vio1§] to obtain a breakthrough for lower bounds in circuits with arbitrary gates. This shows that
a random linear operator does beat the state-of-the-art lower bounds given in [Che08al [(CheO8b),

GHKT13).

4.1 Circuit with Arbitrary Gates

In this section, we formally define a circuit with arbitrary gates. (See Chapter 13 of [Juk12] and
[Drul2] for further references) We would like to compute a Boolean operator f : {0,1}" — {0,1}"™
using a circuit where a gate can compute any function with unbounded fan-in. Note that this is the
strongest possible model of circuit as computations are given for free. Therefore, its lower bound
should apply to all possible models of circuit. Furthermore, it is meaningless to count the number
of gates, as any f can be computed with m gates. What we measure instead is information transfer,
quantified by the number of wires. Then a trivial upper-bound is n - m, while a trivial lower bound
is max{n,m}. Assuming m > n, a non-trivial lower bound on the number of wires would be of the
form w(m).

In this unrealistically powerful model, we want to study the trade-off between the number of
wires required for f as a function of the depth of the circuit d, output size m and input size n.
Here we consider the setting where m = O(n).

4.1.1 Previous Results

In order to describe the previous results, we need the following definition.

Definition 4.1. \i(n) = [/n], A2(n) = [logn]. Ford >3, A\q(n) := Xj_,(n) where * denotes the
number of times the function must be applied to n to reach a value < 1.

Due to a simple counting argument, most arbitrary operators require (n2)-wires [JS10]. How-
ever, if we turn to finding an explicit (or even semi-explicit) operator with w(n)-wires, the best
explicit bound known (an improvement over [RS03]) is due to Cherukhin’s Bound Qg4(n - Ag_1(n))
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[Che08b), [Che08al, [Drul2]. However, the operator in consideration is not (and cannot be) a lin-
ear operator, though explicit. On the other hand, if we turn to finding some hard linear operator,
|GHK™ 13| shows that computing any “good” linear error correcting codeﬂ requires (n-Ag.|q/2)(n))-
many wires.

Depth | [Che08bl [Che08a] | [GHK™13] Our Result

d=2 | Qn-+/n) Q(n - (log(n)/loglog(n))?) | Q(n -log'/*(n))
d=3 | Qn-log(n)) Q(n - loglog(n)) Q(n - log'/3(n))
d=4 | Q(n-loglog(n)) | Q(n-log*(n)) Q(n - log*(n))
d Qi(n-Ag—1(n)) | Qn- Ao a2 (1)) Q(n - log"//(n))

Table 1: Wire lower bounds for Circuits with Arbitrary Gates

The primary technical reason for the rapid decay of wire lower bounds with increasing depth is
the reliance on the so-called superconcentrator technique [Val75l, [Pip77, IDDPWS3| [Pud94, [PR94,
RTS00, \GHK™13| or more refined Strong Multiscale Entropy (SME) approach [RS03| [CheO8D,
Che08al, [Juk12]. These are the only previously known methods—aside from naive counting—for
establishing lower bounds on circuits with arbitrary gates. Moreover, the limitations of these
techniques are well-documented. For instance, [DDPWRS3|, [Pud94, RTS00, GHK™13] exhibited
superconcentrators with small circuits. [Drul2] demonstrated that neither the SME approach nor
a generalization of [GHK™13| can yield further improvements.

4.1.2 Our Result

We show a wire lower bound which only suffers a polynomial decay per depth d compared to the
inverse Ackermann function type bound in previous works at the cost of using a random linear
operator. In particular, we show the following theorem.

Theorem 4.2. For most linear operators M : {0,1}" — {0,1}°()  when computed by a circuit of
depth d requires
w > Qn - log'/?(n))

For depth-2 circuit, our bound is weaker than that of [GHK™13|. But we get a super-exponential
improvement for d > 3. We also beat Cherukhin’s Bound [Che08bl, [Che08a] for d > 4. This also
implies a superlinear wire lower bound as long as d = o(loglogn). The result is summarized in
Table [l

We remark that such lower bound is only possible with an approach that is drastically different
from superconcentrator or SME due to known limitations of these techniques [DDPW83| [Pud94,
RTS00L, Drul2].

Separation between Representing a Linear Operator This also gives an exponentially
stronger separation between “representing” a linear operator |[Juk10, Drul2, [Juk12] and “comput-
ing” a linear operator under circuits with arbitrary gates. A circuit C' represents a linear operator
f if there exists some basis B C F§ such that for every b € B, f(b) = C(b). Note that if a circuit
is a linear circuit, representing and computing are equivalent tasks. But for non-linear circuits,
they are not necessarily equivalent. Drucker [Drul2] showed that most linear operators can be rep-
resented by a circuit with O(n) wires in depth-3, while [GHK™ 13| shows Q(n log log n)-wire lower

Ymost linear operators are “good” linear error correcting codes due to Gilbert-Varshamov bound holding for
random linear operators [GRS22]. And there are explicit constructions of “good” linear error correcting codes.

20



bound for computing a linear operator, giving a separation for two tasks for non-linear circuits.
Our result implies Q(n log'/? n) lower bound.

4.2 Proof of Theorem [4.2]

We use the following theorem to translate the cell-probe lower bound to circuit wire lower bound.

Theorem 4.3 (Theorem 2.3 of [Viol§|). Suppose the operator f : {0,1}" — {0,1}™ has a circuit of
depth d with w wires, consisting of unbounded fan-in, arbitrary gates. Then f has a data structure
with space s =n +1r and time (w/r)? for any r.

We show the following lemma which follows from modifying the proof of Theorem 3.1} Note that
this is stronger than what is necessary as we show a lower bound against small constant advantage
over random guessing.

Lemma 4.4. For random linear operator M : {0,1}" — {0,1}™ with m = 10° - n, any cell-
probe data structure which correctly outputs f;(x) with probability at least 2/3 for all i € [m] using
s = 1.01n-space must have t > Q(logn).

Note that Lemma [£.4) and Theorem [4.3] directly imply Theorem 4.2}

Proof Sketch. Here we sketch and highlight the required modification to the main proof. Suppose
there exists a cell-probe data structure for most random linear operator f : {0,1}" — {0, 1} using
s = 1.01n-space with ¢t < 0.1logn.

We replace Protocol 3] We redefine P; to represent the entire decision tree rather than a single
path within it. Instead of sending a single path in the decision tree, as ¢t < 0.1logn, we can afford
to send the whole decision tree using 2! - log s = 0(n%2)-bits. Then Bob can compute the whole
outcome of the decision tree using U. Furthermore, the correctness of the cell-probe data structure
guarantees Alice and Bob correctly output the answer with probability > 2/3. Therefore, the
random variable B; is unnecessary and we can have Z; as the output.

With this change, we leave the reader to verify that we can replace and in Theorem
B0 as

6s 1
I(MPJ;T|ZAliC€ = ZAlice, & =1, ij) < ? < W (18)
ﬁoo(ij ’ij7E =1, ZAlice = ZAlice) + f{oo(X|ija E =1, Zatice = ZAlice)
> 2n — n02 (19)

while ’ij FXM,, (X)| is > 1/3 in expectation. This then violates Lemma |3.10| by taking v as the

appropriate constant. O

Remark 4.5. The simple modification can also be adapted to a carefully manipulated version of
the original argument in [KW20, [DL20], thereby giving the same t > Q(logn) bound when the data
structure is guaranteed to output the correct answer all the time. However, as noted from the sketch
of the proof, the new argument works against circuits obtaining some Q(1) advantage over random
guessing. That is our proof works against the circuit C’s such that for every i € [m]

PriCi@) = i) > L

where C; denotes the i-th output of the circuit C. The argument from [KW20, [DL20] cannot be
used to handle such small advantage regime.
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A Omitted Proof
We restate the lemma.
Lemma If|P|=t= % = {pg then
I(Mp; Zatice) = Ezppice [DIMP,| Zasice=2n1ice || Mp,;)] < 3 - tlog s
Proof. We plug in the definition of Z gp;ce.

I(Mp,; Zatice) = I(Mp,; P, J, Pp_,, Mp_,, Pp,,)

= I(Mp,:P,J,Pp_,,Mp_,) + I(Mp,: Pp,|P, J, Pp_,, Mp_,)
<tlog s+t+1

<I(Mp,;P,J,Pp_,,Mp_,) +tlogs+t+1

Now we upper bound I(Mp,;P,J, Pp_,, Mp_,) term. We first know that due to J and P being
chosen independently at random

I(Mp,;PJ, Pp_,;, Mp_,) = I(Mp,; P, Pp_,, Mp_,|P,J)
Now consider a fixed J = j.
I(M'PJ; P, PP<]"MP<J|7D7 J = ]) = I(MPJ7 PP<]'> MP<J|P) = I(MPJ7 Pp<j‘MP<J7,P)

Now consider fixed P.; = p<j. Then the above term becomes

1
I(Mp,; Pp ;| My, Pej = p<j, Pj) = m—(j—1) > (M Py M)
i¢p<;j
1 J
~ mI(S[m]*p<j;Pp<j|Mp<j) S m(tlogs+t+ 1) S Oltlogs

due to Fact and the last inequality holds due to our choice of ¢
As the inequality holds for any fixed j and P<; = p<;,

I(Mp,; Zajice) < tlogs+t+1+0.1tlogs < 3-tlogs

completing the proof of our lemma.
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