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Abstract

We prove a general translation theorem for converting one-way communication lower bounds
over a product distribution to dynamic cell-probe lower bounds.

Specifically, we consider a class of problems considered in [Pat10] where:

• S1, . . . , Sm ∈ {0, 1}n are given and publicly known.

• T ∈ {0, 1}n is a sequence of updates, each taking tu time.

• For a given Q ∈ [m], we must output f(SQ, T ) in tq time.

Our main result shows that for a “hard” function f , for which it is difficult to obtain a non-trivial
advantage over random guessing with one-way communication under some product distribution
over SQ and T (for example, a uniform distribution), the above explicit dynamic cell-probe

problem must have max{tu, tq} ≥ Ω̃(log3/2(n)) if m = Ω(n0.99). This result extends and unifies
the super-logarithmic dynamic data structure lower bounds from [LWY20] and [LY25] into a
more general framework.

From a technical perspective, our approach merges the cell-sampling and chronogram tech-
niques developed in [LWY20] and [LY25] with the new static data structure lower bound meth-
ods from [KW20] and [Ko25], thereby merging all known state-of-the-art cell-probe lower-bound
techniques into one.

As a direct consequence of our method, we establish a super-logarithmic lower bound against
the Multiphase Problem [Pat10] for the case where the data structure outputs the Inner Product
(mod 2) of SQ and T . We suspect further applications of this general method towards showing
super-logarithmic dynamic cell-probe lower bounds. We list some example applications of our
general method, including a novel technique for a one-way communication lower bound against
small-advantage protocols for a product distribution using average min-entropy, which could be
of independent interest.
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1 Introduction

We consider the following general class of dynamic data structure problems, initiated by the so-
called Multiphase Program [Pat10].

• S1, . . . , Sm ∈ {0, 1}n are given and publicly known.1

• T ∈ {0, 1}n is given as a sequence of updates, using tu time per update.

• For any given i ∈ [m], output f(Si, T ) using tq time.

We analyze this dynamic data structure problem in the cell-probe model [Yao81], the most powerful
model of computation for data structures. An input is pre-processed into a data structure of s cells,
each with a word of size w-bits. In this model, we only charge for memory accesses (probes) of
cells, while all computation on top of the probed cells is free. Because of its unimaginable strength,
a lower bound in this model applies to any reasonable data structure.

The Multiphase Conjecture [Pat10, Tho13] states that if f is two-party Disjointness between
Si and T with m = poly(n), then max{tu, tq} ≥ nδ for some constant δ > 0. The Multiphase
Conjecture then implies polynomial lower bounds for Graph Reachability (for directed graphs),
Dynamic Shortest Path (for undirected graphs), and other interesting dynamic problems.

In this work, we consider a generalized version of the Multiphase Program, considering f to be
any function from a general class of functions. For instance, we consider f to be a “lifted” version
of some function ψ. Suppose we divide n into blocks of size k each, denoted by Si[j], T [j] where
j ∈ [n/k]. Let g be some inner gadget, g : {0, 1}k × {0, 1}k → {0, 1}. Some standard inner gadgets
g include indexing functions (where the first k bits have only one 1) or functions that output the
inner product of the two k-bit strings. Then consider f ’s of the form

f(Si, T ) := ψ(g(Si[1], T [1]), . . . , g(Si[n/k], T [n/k]).

For example, this captures both Disjointness and Inner Product (mod 2), by setting k = 1 and g
as the bitwise-AND function. If we take ψ as

∨
, f is then Disjointness, while if we take ψ as

⊕
, f

is then Inner Product (mod 2). This is the class of functions studied extensively in so-called lifting
theorems (see [RY18, BT22] and references therein).

1.1 Our Result

Our main result is to show a “lifting” type result for the dynamic data structure problem. If f
is “hard” against an n/poly log(n) length message (i.e., a lower bound against one-way commu-
nication) under a product distribution, then the Multiphase Problem for such a function f has
max{tu, tq} ≥ Ω̃(log3/2(n)). Thus we lift f which is hard against one-way communication (a more
tractable task) to hard against dynamic data structures, albeit only up to super-logarithmic hard-
ness. As a corollary, we obtain the state-of-the-art lower bound against the Multiphase Conjecture
[Pat10, CGL15, BL15, KW20, DL20, Ko25] when the function in question is Inner Product (mod
2) instead of Disjointness, improving upon the previously known Ω(log(n)) bound [CGL15, BL15].

Formally, we consider the following set of explicit dynamic data structure problems, which we
denote as the generalized Multiphase Problem:

1In the original Multiphase Problem, these are given as pre-processing inputs and are pre-processed into a data
structure.
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• S1, . . . , Sm ∈ {{0, 1}k}n/k are given, where each SQ is divided into n/k blocks
SQ[1], . . . , SQ[n/k], each of size k.

• T = (T [1], . . . , T [n/k]) ∈ {{0, 1}k}n/k is given as a sequence of updates, using tu time per
update (in the cell-probe model with word size w).

• For any given Q ∈ Q = [m], output

f(SQ, T ) = ψ (g(SQ[1], T [1]), . . . , g(SQ[n/k], T [n/k]))

in tq time.

Problem 1: Generalized Multiphase Problem

Note that the functions f we consider are precisely the set of functions used in the Pattern
Matrix Method [She11], and Lifting Theorems ([RY18, BT22] and references therein). Our main
result is showing super-logarithmic lower bounds (as in [LWY20, LY25]) for a general class of “hard”
f ’s which includes inner product (mod 2).

Before fully stating our main result, we would like to formally describe which f ’s are “hard”
for our proof. As we also use the chronogram method, we will divide the n/k blocks of T into
ℓ epochs, {Ti}ℓi=1, where Ti consists of ni blocks and |Ti| = k · ni ≈ k · γi. γ is a parameter to be
defined within the proof, and

∑
ni = n/k. If we fix all epochs other than i, this results in our

function f becoming
fi(SQ, Ti) := f(SQ, T )

With fixed S−i
Q and T−i, we consider the real-valued matrix Ψi|S−i

Q ,T−i
∈ [−1,+1]2

|Si
Q|×2|Ti| (assum-

ing without loss of generality that PrSi
Q,Ti

[f(SQ, T ) = +1] ≥ PrSi
Q,Ti

[f(SQ, T ) = −1])

Ψi(S
i
Q, Ti) :=

{
1

PrTi [f(SQ,T )=+1] − 1 if f(SQ, T ) = +1

−1 otherwise

Observe that Ψi has been normalized so that for every setting of SiQ, ETi
[
Ψi(S

i
Q, Ti)

]
= 0.

We need two technical components regarding Ψi. First, we cannot have minSi
Q,Ti

∣∣∣Ψi(S
i
Q, Ti)

∣∣∣
be too small, which corresponds to having a lower bound of β (we will set the bound on β later in
the section) on

min

{
PrTi [f(SQ, T ) = −1]

PrTi [f(SQ, T ) = +1]
,
PrTi [f(SQ, T ) = +1]

PrTi [f(SQ, T ) = −1]

}
≥ β

Otherwise, we cannot use the simulation theorem from [LY25]. This is equivalent to having the
function somewhat balanced, i.e., ∣∣ETi [fi(SiQ, Ti)]∣∣ ≤ 1− β

1 + β

As the next component, we would like Ψi to be resilient against a short message. If a short
message dependent only on Ti is sent, we would like the corresponding distribution on Ψi to have
small discrepancy. This results in the following definition.
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Definition 1.1 (One-way Discrepancy). Fix S−i
Q , T−i. We define one-way discrepancy of Ψi under

the distribution µ over Ti as

odiscµ(Ψi) := ESi
Q

∣∣∣∣∣∣
∑
Ti

Ψi(S
i
Q, Ti) · µ(Ti)

∣∣∣∣∣∣
with the parameter C > 0 as follows

odiscC(Ψi) := max
M(Ti):|M |<C

EM
[
odiscTi|M (Ψi)

]
An intuitive interpretation of one-way discrepancy is to use the following communication game.

Suppose Alice is given SiQ and Bob is given Ti, distributed independently (i.e. a product distribu-
tion). Bob generates a message M of length at most C (note that the message is independent of
SiQ). Alice then generates a guess {±1} that maximizes the advantage in [LY25] for the balanced

version of f . 2 Since Bob’s message is independent of Alice’s input, we can simply take the expec-
tation over SiQ to measure the expected advantage. The intuition of a “hard” function is f which
is resilient against a short message by Bob.

The above model is not new. Such a communication model was originally studied in [KNR95],
that is, the lower bound for one-way communication under a product distribution but in the small
constant-error regime.3 Here, we want to consider the low-advantage (high-error) regime.

The aforementioned two conditions can be summarized in the following definition of a hard f :

Definition 1.2. We say f is “hard” if for each i ∈ [ℓ/3, ℓ], with probability ≥ gi ≥ Ω(1) over S−i
Q

and T−i, fi and its corresponding Ψi satisfy both

• (Balanced) PrSi
Q

[∣∣∣ETi [fi(SiQ, Ti)]∣∣∣ ≥ 1−β
1+β

]
≤ n−2 with β ≥ 2−o(

√
logn)

• (Low Discrepancy) odiscC (Ψi) ≤ n−2 for C ≤ ni/poly log(n)

Intuitively, this corresponds to saying that f is “hard” if for any given epoch i ∈ [ℓ/3, ℓ], the
corresponding fi is balanced and resistant against a short one-way message with good probability
over the remaining coordinates S−i

Q and T−i.
Then for such a hard f , we prove the following super-logarithmic lower bound on max{tu, tq}.

Theorem 1.3 (Informal). For the explicit dynamic data structure Problem 1 equipped with a hard
f , the update time tu and query time tq with m = Ω(n0.99) must have

tq ≥ Ω

(
log3/2 n

log2(wtu)

)
.

Therefore, our work essentially reduces proving a super-logarithmic dynamic cell-probe lower
bound to proving a lower bound against one-way communication over a product distribution (i.e.,
showing that the function f is “hard”).

2If the function is a balanced function, Ψi is simply a ±1 matrix (or the usual communication matrix for fi).
3[KNR95] made a connection between the VC-dimension d of fi with fixed Si

Q in the small constant-error regime.
However, their bound does not apply in the low-advantage regime.
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1.1.1 Comparison with Previous Results

Progress on dynamic cell-probe lower bounds has been slow but steady over the past three decades.
The seminal work of Fredman and Saks [FS89] provided the first Ω(log n/ log logn) dynamic cell-
probe lower bound. It took another 15 years to remove the log log n factor from the denominator.
Pătraşcu and Demaine [PD04, PD06] gave an Ω(log n) bound for an explicit dynamic problem. Yet
achieving a super-logarithmic lower bound (i.e., ω(log n) time lower bound on update/query time)
seemed elusive [Tho13].

Larsen [Lar12] gave an Ω((log n/ log log n)2) bound for the 2-dimensional range sum problem,
breaking the logarithmic barrier for dynamic data structure lower bounds. Larsen’s result, however,
has a caveat. The number of output bits per query is Θ(log n). Therefore, max{tu, tq} per output
bit is still Ω̃(log n). It took roughly an extra decade to finally provide a super-logarithmic lower
bound for a Boolean dynamic data structure problem, established in [LWY20], which gave an
Ω̃(log3/2 n) lower bound for the dynamic 2-dimensional range parity sum problem. [LY25] then
further extended the technique to dynamic graph s-t reachability (in a directed acyclic graph).

Multiphase Program On the other hand, the most promising avenue of attack in achieving a
super-logarithmic lower bound (or even a polynomial bound) on max{tu, tq} for the past decades has
been the Multiphase Program [Pat10, Tho13], the holy grail in dynamic cell-probe lower bounds.

Pătraşcu’s original approach for the Multiphase Program was to provide a lower bound for the
following communication game.

• Alice is given all the inputs but T ∈ {0, 1}n. Bob is given all the inputs but S⃗ consisting of
S1, . . . , Sm ∈ {0, 1}n. Merlin is given all the inputs but Q ∈ [m].

• Merlin sends a message of length tu · n ·w to Bob. Alice and Bob then proceed in a standard
two-party communication protocol to output f(SQ, T ) after communicating tqw bits.

Problem 2: Multiphase Communication Game

There are results directly attacking the above communication game (namely, [CEEP12, KW20,
DL20, Ko25]). But we emphasize that attacking the communication game is a much harder problem
than the underlying dynamic data structure problem [KW20, Ko25]. For instance, the Multiphase
Communication Game has connections to a very old circuit lower bound problem [JS10].

Furthermore, there is a known separation between the communication model and the dynamic
data structure problem in question [Ko25]. There exists f (namely indexing) that is easy in the
communication model, but hard under the dynamic cell-probe model.

But even if we turn to a weaker dynamic cell-probe lower bound, only a logarithmic lower bound
is known. When f is Disjointness or Inner Product (mod 2), [BL15, CGL15] showed max{tu, tq} ≥
Ω (log n).4

In summary, even though the Multiphase Problem is conjectured to be harder than problems
considered in [LWY20, LY25], no super-logarithmic lower bounds were known for the Multiphase
Problem prior to our work, due to a technical challenge that we explain in Section 1.2.

4From a technical perspective, this is under a weaker model, where the query algorithm has no knowledge of S⃗
and therefore must probe for it as well. The setting we consider is slightly stronger as the querier already knows S⃗.
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1.2 Technical Contribution

1.2.1 One way simulation theorem of [LWY20]

One technical ingredient of our work is the one-way simulation theorem from [LWY20, LY25] which
pioneered “a recipe” for super-logarithmic dynamic cell-probe lower bounds. In this section, we
highlight the contributions in [LWY20, LY25] to provide context for our technical contribution.

Consider a fixed dynamic data structure problem f : Q × T → {±1}, where Q is the set of
queries, and T is the sequence of updates. Therefore if T is given as the sequence of updates, when
Q ∈ Q is given as the query, the data structure must output f(Q,T ).

The first building block for the one-way simulation theorem is the seminal chronogram technique
of Fredman and Saks [FS89]. A simple way to interpret chronogram techniques is as follows. As
the dynamic data structure must be ready to handle queries at any point during the sequence of
updates, in contrast to the static data structure, we can divide the update T into epochs of length
n1, . . . , nℓ such that

∑ℓ
i=1 ni = n/k, where each ni = γni−1 for some parameter γ. Therefore, they

are geometrically decreasing. The main observations in the chronogram technique are as follows:
(i) The average number of cells that are probed which were last updated in epoch i is ttot/ℓ; (ii)
The number of cells changed by all subsequent epochs is small, as the number of updates decreases
geometrically over the epochs.

Now we focus on a fixed epoch i to give a lower bound on ttot/ℓ. Such a static data structure
(for a fixed epoch i) has pre-initialized memory (updates performed in previous epochs) and a
cache (updates performed in subsequent epochs). Observe that a data structure in epoch i, with
ni updates, which would generate tuni many updated cells, has

∑
j>i tunj ≤ o(ni) cells in cache,

and
∑

j<i tunj cells in pre-initialized memory.
To prove a lower bound for such a static data structure, [LWY20, LY25] introduce a one-way

communication game which can simulate a static data structure with pre-initialized memory and
a cache, to then argue that no “too-good-to-be-true” one-way protocol can exist.

• Bob is given all the updates {Ti}ℓi=1, but not the desired query Q ∈ Q.

• Alice is given all the updates, except the updates in epoch i (i.e., Ti), and the desired query.

• Bob sends a one-way message M of length C-bits to Alice. Then Alice announces f(Q,T ).

Protocol 1: One-way Communication Simulation Gf

Alice, without Bob’s message, can only generate the pre-initialized memory on her own. In the
extreme case where C ≥ w(tuni+o(ni)), Bob can then send over the entire cache (which is at most
o(ni) cells) and the memory state generated in epoch i. Therefore, Alice will announce the correct
f(Q,T ) every time. In fact, just sending Ti would allow Alice to recover f(Q,T ) for all Q ∈ Q.
The goal is then to analyze the correctness of the protocol when C ≪ ni.

As a measure of correctness of the one-way communication protocol, [LY25] introduces the
following quantity called the advantage of the protocol over the product distribution on the query
set and update set D = DQ ×DT .

−→
adv(Gf ,DQ,DT , C) := max

M
EQ,M

[∣∣ET∼DT |M
[
f(Q,T )|M

]∣∣]
where f : Q×T → [−1,+1] is the normalized version of f so that for everyQ ∈ Q, ET∼DT

[f(Q,T )] =
0. Note that the normalization is only necessary when f is not a balanced function for every Q.
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If f is completely balanced, i.e., the setting for [LWY20], no normalization is necessary, and the
above quantity exactly captures the small advantage over a fair random coin toss.

The remaining high-level argument of both [LWY20, LY25] is as follows: (i) show that a “too-
good-to-be-true” data structure implies a “too-good-to-be-true” one-way communication protocol
with a short one-way message (small C) and good advantage (i.e., the simulation theorem); (ii)
show that such a “too-good-to-be-true” one-way communication protocol cannot exist.

As the main contribution in [LWY20, LY25] is the one-way simulation theorem (i.e., step (i)),
let us focus on obtaining (i). To obtain (i), we would like to generate a short one-way message M
from the static data structure. The key technique to reduce the length of the one-way message
M is the cell-sampling technique [Sie04, PTW10]. A naive attempt is to sample each cell updated
in epoch i with probability 1/(tuw)

Θ(1) independently at random. Bob then sends the sampled
cells to Alice as the single-shot message, along with the cache. If all cells required to be read have
been sampled, then Alice can answer correctly. If not, she just randomly guesses the answer. Since
there is a non-negligible probability of sampling all required cells, this would result in some small
advantage. However, the technical challenge is that Alice cannot distinguish between the above
two cases just from the sampled cells alone. Alice cannot distinguish whether a cell she received
from Bob’s message has been touched during epoch i or not.

The main technical centerpiece to resolve the above issue is the so-called “Peak-to-Average”
lemma [LWY20], which states the existence of a small subset of cells such that knowing their
contents gives a nontrivial advantage. Using the lemma (which can be interpreted as a clever
choice of cells for cell-sampling) and the chronogram technique [FS89], any “too-good-to-be-true”
dynamic data structure yields a static data structure (with pre-initialized memory and a cache)
that achieves a small advantage over random guessing.

The key insights in [Lar12, LWY20, LY25] are to carefully subsample cells updated in epoch i
such that knowing the contents of such cells gives a non-trivial advantage over random guessing.
The cache and sub-sampled cells constitute a short one-way message M that achieves a non-trivial
advantage over random guessing.

All these technical components formally culminate in the following one-way simulation theorem
for a static data structure with pre-initialized memory and a cache.

Theorem 1.4 ([LWY20, LY25]). Let f : Q × T → [−1,+1] be a data structure problem with
weights [−1,+1]. DQ × DT be a (product) distribution over the queries and inputs such that
ET∼DT

[f(Q,T )] = 0 for any Q ∈ Q, and |f(Q,T )| ≥ β for some β > 0. If there exists a data
structure with pre-initialized memory and a cache for f with at most S updated cells, Scac cells in
cache, expected query time ttot, and expected query time into updated cells tq, then for any p ∈ (0, 1),

−→
adv(GP ,DQ,DI , (8pS + Scac)w)

≥ exp

(
−O

(
log(1/p)(tq +

√
ttot(tq log(1/p) + log(1/β)) + log(1/β)

))
− exp (−Ω(pS))

1.2.2 Our technical centerpiece

Our main point of departure from [LWY20, LY25] is (ii): showing that no such one-way communi-
cation protocol can exist.

The one-way communication game Gf used in [LWY20, LY25] is based on an explicit static data
structure lower bound on the Butterfly Graph [Pǎ11]. While this was comparatively straightforward
for [LWY20], the primary technical challenge in [LY25] lies in proving a new static lower bound
on the Butterfly Graph, as this requires establishing a strong explicit static data structure lower
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bound even for a small advantage over random guessing. This approach follows from a standard
encoding-decoding (and therefore a counting) argument, inspired by the static data structure lower
bound from [Pǎ11].

A key distinction of our method is how it overcomes the limitations of the encoding-decoding
(or counting) arguments used in prior work [LWY20, LY25] to establish one-way communication
lower bounds. This approach is effective when the query distribution, M, is uniform over a small
support, as a simple counting argument suffices (see, e.g., Section 5.2 of [LY25]). However, the
encoding-decoding strategy fails when the query set is sub-sampled from a distribution with a
much larger support. In this scenario, the one-way message can depend arbitrarily on the specific
queries chosen, adding a layer of complexity that makes a simple counting argument intractable.
This challenge was the primary bottleneck to applying the simulation lemma from [LWY20] to the
Multiphase Problem and necessitated our different approach.

More specifically, we need a lower bound for the following modified one-way communication
game where both Alice and Bob have access to S⃗.

• Bob is given S⃗ = S1, . . . , Sm and all the updates {Tj}ℓj=1, but not the desired query Q ∈ Q =
[m].

• Alice is given S⃗ = S1, . . . , Sm, all updates except those in epoch i (i.e., Ti), and the desired
query Q.

• Bob sends a one-way message M of length C bits to Alice. Then Alice announces f(SQ, T ).

Protocol 2: Modified One-way Communication Game

The main technical challenge for the encoding-decoding argument is the dependence on S⃗.
Alice and Bob both know S⃗, and M can be interpreted differently depending on the specific S⃗
that is chosen. Thus, we must account for all possible S⃗, which essentially invalidates the counting
argument. The issue is compounded when proving the lower bound in the low-advantage regime,
i.e., where the advantage is n−Ω(1).

Our technical contribution is the use of information-theoretic tools from [KW20, Ko25] to essen-
tially “remove” the dependency on S⃗ when Si and T ’s are generated under a product distribution.
Our work reduces the problem to a lower bound for the following one-way communication game,
which has been studied in various contexts and is far more tractable.

• Bob is given all the updates {Tj}ℓj=1.

• Alice is given ς, chosen from some distribution DQ, and all updates except those in epoch i
(i.e., Ti).

• Bob sends a one-way message M of length C = ni/poly log(n) bits to Alice. Then Alice
announces f(ς, T ).

Protocol 3: Reduced One-way Communication Game

We remark that our definition of “hard” (Definition 1.2) exactly captures the lower bound for
Protocol 3. Hard functions do not have a short protocol with good advantage for Protocol 3. In
Section 4 and Section 5, we list some examples of these hard functions including the usual Inner
Product mod 2. We remark that we need a lower bound of the form C ≥ n/poly log(1/ε) for an
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ε-advantage (under a product distribution). We cannot expect such a lower bound for well-studied
Indexing or Disjointness, as a simple upper bound with n/poly(1/ε) exists. We introduce a new
method of lower bounding Protocol 3 against small advantage under a product distribution using
average min-entropy.

2 Preliminary

2.1 Information Theory

In this section, we provide the necessary background on information theory and information com-
plexity that are used in this paper. For further reference, we refer the reader to [CT06].

Definition 2.1 (Entropy). The entropy of a random variable X is defined as

H(X) :=
∑
x

Pr[X = x] log
1

Pr[X = x]
.

Similarly, the conditional entropy is defined as

H(X|Y ) := EY

[∑
x

Pr[X = x|Y = y] log
1

Pr[X = x|Y = y]

]
.

Fact 2.2 (Conditioning Decreases Entropy). For any random variable X and Y

H(X) ≥ H(X|Y )

With entropy defined, we can also quantify the correlation between two random variables, or how
much information one random variable conveys about the other.

Definition 2.3 (Mutual Information). Mutual information between X and Y (conditioned on Z)
is defined as

I(X;Y |Z) := H(X|Z)−H(X|Y Z).

Similarly, we can also define how much one distribution conveys information about the other dis-
tribution.

Definition 2.4 (KL-Divergence). KL-Divergence between two distributions µ and ν is defined as

DKL(µ||ν) :=
∑
x

µ(x) log
µ(x)

ν(x)
.

To bound mutual information, it suffices to bound KL-divergence, due to the following fact.

Fact 2.5 (KL-Divergence and Mutual Information). The following equality between mutual infor-
mation and KL-Divergence holds

I(A;B|C) = EB,C [DKL(A|B=b,C=c||A|C=c)] .

Fact 2.6 (Pinsker’s Inequality). For any two distributions P and Q,

∥P −Q∥TV =
1

2
∥P −Q∥1 ≤

√
1

2 log e
D(P ||Q)
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We also make use of the following facts on Mutual Information throughout the paper.

Fact 2.7 (Chain Rule). For any random variable A,B,C and D

I(AD;B|C) = I(D;B|C) + I(A;B|CD).

Fact 2.8. For any random variable A,B,C and D, if I(B;D|C) = 0

I(A;B|C) ≤ I(A;B|CD).

Proof. By the chain rule and non-negativity of mutual information,

I(A;B|C) ≤ I(AD;B|C) = I(B;D|C) + I(A;B|CD) = I(A;B|CD).

Fact 2.9. For any random variable A,B,C and D, if I(B;D|AC) = 0

I(A;B|C) ≥ I(A;B|CD).

Proof. By the chain rule and non-negativity of mutual information,

I(A;B|CD) ≤ I(AD;B|C) = I(A;B|C) + I(B;D|AC) = I(A;B|C).

3 Proof of Main Theorem

Recall that the class of explicit dynamic problems that we would like to give a lower bound for is
the following.

• S1, . . . , Sm ∈ {{0, 1}k}n/k are given, each SQ divided into n/k blocks SQ[1], . . . , SQ[n/k], each
of size k.

• T = (T [1], . . . , T [n/k]) ∈ {{0, 1}k}n/k is given as a sequence of updates, using tu time per
update.

• For any given Q ∈ Q = [m], output

f(SQ, T ) = ψ (g(SQ[1], T [1]), . . . , g(SQ[n/k], T [n/k]))

in tq time.

which we denote as the generalized Multiphase Problem. The original Multiphase Problem can
be easily represented as k = 1 with g being the standard bit-wise AND, ψ being

∨
, or

⊕
if f is

computing inner product over F2.
We formally prove the following result for the generalized Multiphase Problem.

Theorem 3.1. Suppose f is hard (as in Definition 1.2) and m = Ω(n0.99). Then it must be the
case that

tq ≥ Ω

(
log3/2 n

log2(wtu)

)
.

The main intuition behind phrasing our result in a generalized manner is that our result “lifts”
some hard function ψ (in a restricted model) to a super-logarithmic data structure lower bound.
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Epochs To give a super-logarithmic lower bound, the first main technical component is the
chronogram technique [FS89], where we divide the sequence of n/k updates into epochs, each
containing ni := γi blocks (of k bits each), and

∑ℓ
i=1 ni = n/k. We denote the epochs of updates

as {Ti}ℓi=1, and we process the updates in reverse order.
Then we also consider the associated coordinates in SQ. In particular, we denote SiQ as the

part of SQ associated with the i-th epoch Ti. This notation can be further extended to work with

multiple indices in [m] and [ℓ]. S−i
Q denotes SQ except SiQ, analogously T−i. We use S⃗ to denote

the bundle over all Q’s. Similarly, if we use a subset of [m] in the subscript, that denotes SQ’s in
the subscript.

Notations and Hard Distribution We will use τtot as the random variable for the number of
cells (total, across all epochs) probed in the query algorithm. τq is used as the random variable for
the number of cells updated in epoch i that are probed.

We assume each SQ[i] is distributed i.i.d. for all i ∈ [n/k] and Q ∈ [m], as well as all the
coordinates in T . This implies that SQ[i]’s and Ti’s are all independent.

We will use the overline notation to denote the normalized version of f . That is, with fixed
S−i
Q , T−i assuming without loss of generality that PrSi

Q,Ti
[f(SQ, T ) = +1] ≥ PrSi

Q,Ti
[f(SQ, T ) = −1],

f i(S
i
Q, Ti) :=

{
1

PrTi [f(SQ,T )=+1] − 1 if f(SQ, T ) = +1

−1 otherwise

and vice-versa if PrSi
Q,Ti

[f(SQ, T ) = +1] ≤ PrSi
Q,Ti

[f(SQ, T ) = −1].

High Level Proof Strategy Before delving into the technical part, we would like to give an
overview of our overall proof strategy.

1. First, we want to select a “good” epoch i ∈ [ℓ/3, 5ℓ/6]. We show that there exists some epoch
i of the updates, and an associated event Ei and query set Q′

i ⊂ Q which yield a “good” data
structure problem with pre-initialized memory and a cache.

2. Such a “good” data structure then yields a “too-good-to-be-true” protocol for the following
communication model from [LWY20, LY25]. Bob sends a one-way message M to Alice. Then

Figure 1: Communication Model

Alice guesses the value of f(SQ, T ) = fi(S
i
Q, Ti). The performance of the protocol is then

measured by the advantage of the protocol.

3. We show that a “too-good-to-be-true” dynamic data structure implies a “too-good-to-be-
true” one-way simulation in Section 3.1. Then in Section 3.2, we show that hard f ’s cannot
have a “too-good-to-be-true” one-way simulation using information-theoretic tools, thereby
resulting in a contradiction.
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3.1 One-way simulation Theorem

In this section, we will prove the following simulation theorem (an analog of Theorem 1.4 from
[LWY20, LY25]) which converts a “too-good-to-be-true” dynamic data structure for f to a one-way
communication protocol with a high advantage. Recall that our f in question satisfies the following
property.

Definition 1.2. We say f is “hard” if for each i ∈ [ℓ/3, ℓ], with probability ≥ gi ≥ Ω(1) over S−i
Q

and T−i, fi and its corresponding Ψi satisfy both

• (Balanced) PrSi
Q

[∣∣∣ETi [fi(SiQ, Ti)]∣∣∣ ≥ 1−β
1+β

]
≤ n−2 with log(1/β) ≤ o(log1/2(n)).

• (Low Discrepancy) odiscC (Ψi) ≤ n−2 with C ≤ ni/poly log(n).

For such f , we prove the following simulation theorem.

Theorem 3.2. Suppose for any S⃗, there exists a dynamic data structure for Problem 1 with f with

update time tu = poly log(n), average query time EQ,T [τtot] = ttot ≤ o
(

log3/2(n)
(log logn)2

)
. Then there

exists an epoch i ∈ [ℓ/3, 5ℓ/6], an event E1
i and a query set Qi ⊂ Q that depend only on S⃗−i, T−i

with PrS⃗−i,T−i
[E1

i ] ≥ Ω(gi) such that

|Qi| ≥ gim/2

∀Q ∈ Qi, Pr
Si
Q

[
|ETi [f(SQ, T )]| ≥

1− β

1 + β

]
≤ n−2, odiscC(Ψi) ≤ n−2.

Furthermore, there exists a sub-event E2
i ⊂ E1

i with Pr[E2
i |E1

i ] ≥ 9/10, and a query set Q′
i ⊂ Qi

with |Q′
i| ≥

(
1− 10

n2

)
|Qi| depending only on S⃗, T−i, conditioned on which there exists a one-way

communication protocol that obtains

−→
adv(Gf i

,DQ′
i
,DTi , ni/poly log(n)) ≥ n−o(1).

We will use Theorem 1.4 as our main ingredient, which we reiterate below.

Theorem 1.4 ([LY25]). Let P : Q× T → [−1,+1] be a data structure problem with weights, and
DQ × DT be a distribution over the queries and inputs such that ET [P(Q,T )] = 0 for all Q ∈ Q
and |P(Q,T )| ≥ β for some β > 0. If there is a data structure D with pre-initialized memory and
a cache for P such that D has at most S updated cells, Scac cells in cache, expected query time
ttot, and expected query time into updated cells tq, then for any p ∈ (0, 1), there exists a one-way
communication protocol GPi such that

−→
adv(GP ,DQ,DT , (8pS + Scac)w)

≥ exp

(
−O

(
log(1/p)(tq +

√
ttot(tq log(1/p) + log(1/β)) + log(1/β)

))
− exp (−Ω(pS))

Remark 3.3. Note that the β in the simulation is the same β in the definition of hard f . Recall
that we normalize fi(S

i
Q, Ti) so that the expectation is zero. We leave it to the reader to verify

that the balanced condition
∣∣∣ETi [fi(SiQ, Ti)]∣∣∣, is exactly the condition required to lower bound the

normalized absolute value.
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Proof of Theorem 3.2. Before directly applying Theorem 1.4, we need to filter through a sequence
of events and query sets towards the final lower bound.

First, we prove the following claim, which gives a fixed epoch i ∈ [ℓ/3, 5ℓ/6], an event E1
i and

query set Qi from S⃗−i, T−i that are “good.”

Claim 3.4. There exists an epoch i ∈ [ℓ/3, 5ℓ/6], an event E1
i , and a query set Qi ⊂ Q depending

only on S⃗−i and T−i such that:

Pr
S⃗−i,T−i

[E1
i ] ≥ Ω(gi), |Qi| ≥

gim

2

∀Q ∈ Qi, odiscC(Ψi) ≤ n−2, Pr
Si
Q

[
|ETi [f(SQ, T )]| ≥

1− β

1 + β

]
≤ n−2

EQ,Ti|E1
i
[τQ] ≤

8 · ttot
g2i · ℓ

, EQ,Ti|E1
i
[τtot] ≤

4 · ttot
g2i

Proof. First, a simple Markov argument shows that there must exist an epoch i ∈ [ℓ/3, 5ℓ/6] such
that

EQ,S⃗,T [τq] ≤ 2 · ttot/ℓ. (1)

Furthermore, due to our assumption on the underlying function f , we have that for each Q ∈ Q,

Pr
S−i
Q ,T−i

[(
Pr
Si
Q

[
|ETi [f(SQ, T )]| ≥

1− β

1 + β

]
≥ n−2

)
∨
(
odiscC(Ψi) ≥ n−2

)]
≤ 1− gi. (2)

By Markov’s inequality, with probability at least 1− 1−gi
1−(gi/2)

= gi
2−gi ≥

gi
2 over S⃗−i and T−i, there

exists Qi ⊂ Q with |Qi| ≥ gim
2 such that for all Q ∈ Qi

Pr
Si
Q

[
|ETi [f(SQ, T )]| ≥

1− β

1 + β

]
≤ n−2

odiscC(Ψi) ≤ n−2

Denote the event corresponding to this choice of S⃗−i, T−i as E
1
i . Then as Pr[E1

i ] ≥
gi
2 and |Qi| ≥

gim
2 , this implies that

E
Q∈Qi,S⃗i,Ti|E1

i
[τq] ≤

(
2

gi

)2

· 2 · ttot/ℓ

E
Q∈Qi,S⃗i,Ti|E1

i
[τtot] ≤

(
2

gi

)2

ttot.

which completes the proof of the claim.

Next, we proceed to the second filter, where we condition on S⃗i as well. Conditioned on E1
i , we

would like to have a sub-event E2
i ⊂ E1

i , and query subset Q′
i further conditioned on S⃗i.

Claim 3.5. There exists an event E2
i , query set Q′

i ⊂ Qi with |Q′
i| ≥

(
1− 10

n2

)
|Qi| (depending only

on S⃗ and T−i) such that

Pr
S⃗,T−i

[E2
i |E1

i ] ≥ 9/10

∀Q ∈ Q′
i, odiscC(Ψi) ≤ n−2, |ETi [f(SQ, T )]| ≤

1− β

1 + β

EQ,Ti|E2
i
[τq] ≤

10 · ttot
g2i · ℓ

, EQ,Ti|E2
i
[τtot] ≤

5 · ttot
g2i

13



Proof. Now, we switch our attention to choosing S⃗i and the respective Q′
i ⊂ Qi assuming E1

i . Then

there exists an event E2
i depending on the additional S⃗i such that

Pr
Q∼Qi

[
|ETi [f(SQ, T )]| ≤

1− β

1 + β

]
≥
(
1− 10

n2

)
,

that is, a choice of S⃗i such that at most 10
n2 of the resulting f(SQ, T )’s are not well-balanced. Then

by Markov’s inequality,

1− Pr
S⃗i,S⃗−i,T−i

[E2
i |E1

i ] ≤
n−2

10
n2

= 1/10.

Assuming E2
i , S⃗

i yields a set Q′
i ⊂ Qi such that for every Q ∈ Q′

i,

odiscC(Ψi) ≤ n−2, |ETi [f(SQ, T )]| ≤
1− β

1 + β

Note that the first condition only depends on S⃗−i, T−i, while the second condition depends on
S⃗, T−i. Then over Q ∈ Q′

i, conditioned on E2
i , by a simple Markov argument,

EQ∈Q′
i,Ti|E2

i
[τq] ≤

10

9
· 1

1− 10
n2

(
2

gi

)2

· 2 · ttot/ℓ ≤
10 · ttot
g2i ℓ

EQ∈Q′
i,Ti|E2

i
[τtot] ≤

10

9
· 1

1− 10
n2

· 4 · ttot
g2i

≤ 5 · ttot
g2i

Now we have the required definition of event E2
i and Q′

i. We proceed to apply Theorem 1.4
conditioned on E2

i and over the query set Q′
i. Given Claim 3.5, we zoom into the event E2

i . Given

E2
i , which is determined by S⃗, T−i, there exists a data structure with updated cells S ≤ tuni

and cache Scac ≤
∑

i′′<i tuni′′ = tu
ni−1
γ−1 ≤ 2tuni

γ ≤ ni

(tuw)Θ(1) , with expected query time 5·ttot
g2i

and

expected query time into updated cells 10·ttot
g2i ℓ

over some query set Q′
i ⊂ Qi, where the bound on Scac

holds from setting γ = (tuw)
Θ(1). Theorem 1.4 then implies a one-way communication protocol for

fi(S
i
Q, Ti) for any p ∈ (0, 1) with advantage

−→
adv(Gf i

,DQ′
i
,DTi , (8pS + Scac)w)

≥ exp

(
−O

(
log(1/p)

(
tq +

√
ttot(tq log(1/p) + log(1/β))

)
+ log(1/β)

))
− exp (−Ω(pS)) (3)

We set p := 1
(tuw)Θ(1) . Then observe that ℓ = Ω(logγ(n)) = Ω

(
logn

log logn

)
. Plugging in the bounds,

we get

β−O(1) · 2
−O
(
log(tuw)

(
ttot

g2
i
logγ (n)

+

√
t2tot log(tuw)

g4
i
logγ (n)

+
ttot log(1/β)

g2
i

))
− exp

(
− ni

(tuw)Θ(1)

)
. (4)

Assuming tu = poly log(n), w = O(log n), ni ≥ Ω(n1/3) due to the epoch being i ∈ [ℓ/3, 5ℓ/6], if

we assume log(1/β) ≤ o(log1/2(n)), and ttot ≤ o
(
g2i ·log

3/2(n)

(log log(n))2

)
, (4) simplifies to

(4) ≥ β−O(1) · n−o(1) ≥ n−o(1).

Therefore, there exists a message of length ni
poly log(n) with n−o(1) = n

−o(1)
i advantage for Gf i

□
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3.2 Combinatorial Lower Bound

Next, we would like to show that no such one-way protocol exists. Before we delve into the proof
of impossibility, we briefly summarize the properties we attained in Section 3.1.

Recap of Previous Section In the previous section, we showed that a “too-good-to-be-true”
dynamic data structure yields a “too-good-to-be-true” one-way communication protocol, which had
the following property:

• Qi ⊂ Q which depends only on S⃗−i and T−i, with size ≥ gim/2 such that all Q ∈ Qi have:

Pr
Si
Q

[
|ETi [f(SQ, T )]| ≥

1− β

1 + β

]
≤ n−2

odiscC(Ψi) ≤ n−2;

• An event E2
i with probability PrS⃗,T−i

[E2
i |E1

i ] ≥ 9/10 and a set of good queries Q′
i ⊂ Qi with

|Q′
i| ≥

(
1− 10

n2

)
|Qi| depending only on S⃗, T−i where conditioned on E2

i

−→
adv(Gf i

,DQ′
i
,DTi , ni/poly log(n)) ≥ n−o(1).

We will first pick “good” S⃗−i, T−i satisfying E
1
i as part of public randomness (i.e., we will assume

the event E1
i ). Note that S⃗−i, T−i reveals zero information about S⃗i and Ti due to our hard

distribution being independent. Thus, conditioning on the event will not affect the distribution
over S⃗i and Ti.

Main Lower Bound We would like to show that these properties cannot be satisfied simulta-
neously. To that end, we prove the following combinatorial black-box theorem, which can be used
to derive the contradiction.

Theorem 3.6. If |M | ≤ C = ni
poly logn , the maximum advantage Bob can attain, conditioned on an

event Ei determined by S⃗, T−i is

−→
adv(Gf i

,DQ′
i
,DTi , C) ≤ n−Ω(1)

Before delving into the main proof, we would like to give a brief overview of the proof, and what
combinatorial properties are necessary to derive a contradiction. Our main proof strategy roughly
follows the technique pioneered in [KW20] and subsequently [Ko25]. We show that a “too-good-to-
be-true” one-way message M achieving a large advantage leads to a “too-good-to-be-true” random
process Z which achieves (i) small information on Ti; (ii) small information on SiQ; and (iii) little

correlation between SiQ and Ti, while such Z cannot exist, as the underlying f is hard.
We define our “too-good-to-be-true” random process Z as follows (which would be guaranteed

by setting Ei = 1). Let P be a non-overlapping random sequence of numbers in Qi of length l,
where l is a parameter we will decide in the final part of the proof. Note that Qi is completely
determined by S⃗−i, T−i. Therefore, P reveals zero information about S⃗i. We denote the number at
position j as ρj . Then we also take a random number J ∈ [l] uniformly at random. Let BQ denote
Bob’s response for query Q ∈ [m], and a Boolean random variable GQ whether Q ∈ Q′

i. Our Z is
then defined as

Z :=M,P<J , Gρ<J , Bρ<J , S
i
ρ<J

, J

Then we attach Z along with ρJ , GρJ , BρJ and conditioning on Ei = 1 to derive the contradiction.
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3.2.1 Technical Lemmas

Towards the proof of Theorem 3.6, we prove the necessary technical claims first. The main technical
deviation from previous works is on how to deal with the information on SiρJ . Just as in [KW20],
Z reveals little information about SiρJ in terms of mutual information or KL divergence.

Claim 3.7 (Low information on SiρJ ).

EZ,ρJ |Ei=1

[
D(SiρJ |Z,ρJ ,Ei=1||SiρJ )

]
≤ 5(C + l)

m

Proof. Suppose we condition on the event E1
i . Then we use the analogous direct sum technique

from [KW20]. First observe that

I(SiρJ ;Z, ρJ , E
2
i |E1

i = 1) ≤ I(SiρJ ;M,P, Bρ<J , Gρ<J , S
i
ρ<J

, E2
i , J |E1

i = 1)

= I(SiρJ ;M,E2
i , Bρ<J |P, S

i
ρ<J

, J, E1
i = 1)

For any fixed J = j, note that

I(SiρJ ;M,E2
i , Bρ<j , Gρ<j |P, Siρ<J

, J = j, E1
i = 1) ≤ 1

m− j
I(Si−ρ<j

;M,E2
i , Bρ<jGρ<j |Siρ<j

, E1
i = 1)

≤ C + 2j + 1

m− j
≤ C + 2l + 1

m− l
≤ 3(C + l)

m
.

Then note that since Pr[E2
i |E1

i ] ≥ 9/10, and

EZ,ρJ ,E2
i |E1

i =1

[
D(SiρJ |Z,E2

i
||SiρJ )

]
= I(SiρJ ;Z, ρJ , E

2
i |E1

i = 1),

this completes the proof of the claim, by writing Ei = E1
i ∧ E2

i .

We will need to translate the bound on SiρJ from Claim 3.7 using the following claim.

Claim 3.8.

EZ,ρJ |GρJ
=1,Ei=1

[
∥SiρJ |Z,ρJ ,GρJ

=1,Ei=1 − SiρJ∥1
]
≤ 5

√
(C + l)

m
+

200

n2

Proof. We will upper bound ∥SiρJ |Z,ρJ ,GρJ
=1,Ei=1 − SiρJ∥1 using the triangle inequality, namely

∥SiρJ |Z,ρJ ,GρJ
=1,Ei=1 − SiρJ∥1 ≤ ∥SiρJ |Z,ρJ ,GρJ

=1,Ei=1 − SiρJ |Z,ρJ ,Ei=1∥1 (5)

+ ∥SiρJ |Z,ρJ ,Ei=1 − SiρJ∥1 (6)

First, we bound (5). If we consider any fixed Z, ρJ ,

∥SiρJ |Z,ρJ ,GρJ
=1,Ei=1 − SiρJ |Z,ρJ ,Ei=1∥1 ≤ 2 · Pr[GρJ = 0|Z, ρJ , Ei = 1].

Then taking expectation over Z, ρJ

EZ,ρJ |GρJ
=1,Ei=1 [(5)] ≤ 2 · EZ,ρJ |GρJ

=1,Ei=1 [Pr[GρJ = 0|Z, ρJ , Ei = 1]]

≤ 2 ·
(
EZ,ρJ |Ei=1 [Pr[GρJ = 0|Z, ρJ , Ei = 1]] + 2Pr[GρJ = 0|Ei = 1]

)
= 6 · Pr[GρJ = 0|Ei = 1] ≤ 60

n2
.
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If we take expectation over (6),

EZ,ρJ |GρJ
=1,Ei=1 [(6)] ≤ EZ,ρJ |Ei=1 [(6)] + 4Pr[GρJ = 0|Ei = 1]

≤ EZ,ρJ |Ei=1

[
∥SiρJ |Z,ρJ ,Ei=1 − SiρJ∥1

]
+

40

n2
.

The bound on EZ,ρJ |Ei=1

[
∥SiρJ |Z,ρJ ,Ei=1 − SiρJ∥1

]
can be attained immediately from Claim 3.7 due

to Pinsker’s inequality (Fact 2.6) and Jensen’s inequality.

EZ,ρJ |Ei=1

[
∥SiρJ |Z,ρJ ,Ei=1 − SiρJ∥1

]
≤ 2
√

EZ,ρJ |Ei=1

[
D(SiρJ |Z,ρJ ,Ei=1||SiρJ )

]
≤ 2

√
5(C + l)

m

Combining all the bounds, we obtain

EZ,ρJ |GρJ
=1,Ei=1

[
∥SiρJ |Z,ρJ ,GρJ

=1,Ei=1 − SiρJ∥1
]
≤ 5 ·

√
(C + l)

m
+

100

n2

completing the proof of the claim.

We need the following claim as well to translate the advantage of the protocol to one-way
discrepancy of the underlying function,

Claim 3.9. Let A and B be some random variable which satisfies

∥SiρJ |A=a − SiρJ∥1 ≤ δ1

ESi
ρJ

[∣∣∣ETi|A=a,B=b

[
f i(S

i
ρJ
, Ti)

]∣∣∣] ≤ δ2

then

ESi
ρJ

|A=a,B=b

[∣∣∣ETi|A=a,B=b

[
f i(S

i
ρJ
, Ti)

]∣∣∣] ≤ δ2 + δ1
Pr[B = b|A = a]

Proof. As
∣∣∣ETi|A=a,B=b

[
f i(S

i
ρJ
, Ti)

]∣∣∣ ≤ 1 for any setting of SiρJ ,

ESi
ρJ

|A=a

[∣∣∣ETi|A=a,B=b

[
f i(S

i
ρJ
, Ti)

]∣∣∣] ≤ ESi
ρJ

[∣∣∣ETi|A=a,B=b

[
f i(S

i
ρJ
, Ti)

]∣∣∣]+ ∥SiρJ |A=a − SiρJ∥1

≤ δ2 + δ1

Finally, since Pr[B = b|A = a] > 0, and
∣∣∣ETi|A=a,B=b

[
f i(S

i
ρJ
, Ti)

]∣∣∣ ≥ 0, due to a simple Markov

argument, we get

ESi
ρJ

|A=a,B=b

[∣∣∣ETi|A=a,B=b

[
f i(S

i
ρJ
, Ti)

]∣∣∣] ≤ δ2 + δ1
Pr[B = b|A = a]

which completes the proof of the claim.

We prove the final claim of this section, where we argue that Z,BρJ , GρJ , CρJ , Ei introduce
little correlation between SiρJ and Ti.

Claim 3.10 (Low Correlation).

I(SiρJ ;Ti|Z, ρJ , BρJ , GρJ = 1, Ei = 1) ≤ 4C

l
+

25

n
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Proof. Towards the proof, we introduce an auxiliary event, CρJ for the analysis, which is true if a
setting of Z, ρJ is picked such that

1− Pr[GρJ |Z, ρJ , Ei = 1] <
1

2
.

Then recall that due to our definition of E2
i (from Claim 3.5),

EZ,ρJ |Ei=1 [1− Pr[GρJ |Z, ρJ , Ei = 1]] ≤ 10

n2
.

Due to a simple Markov argument

1− Pr
Z,ρJ |Ei=1

[CρJ |Ei = 1] <
20

n2
(7)

With CρJ defined, the bound on I(SiρJ ;Ti|Z, ρJ , BρJ , GρJ = 1, Ei = 1) can be decomposed as

I(SiρJ ;Ti|Z, ρJ , BρJ , GρJ = 1, Ei = 1) ≤ I(SiρJBρJ ;Ti|Z, ρJ , GρJ = 1, Ei = 1)

= Pr[CρJ = 1|GρJ = 1, Ei = 1] · I(SiρJBρJ ;Ti|Z, ρJ , GρJ = 1, CρJ = 1, Ei = 1) (8)

+ Pr[CρJ = 0|GρJ = 1, Ei = 1] · I(SiρJBρJ ;Ti|Z, ρJ , GρJ = 1, CρJ = 0, Ei = 1) (9)

Then we bound (8) and (9) separately. For (9), observe that for any fixed Z, ρJ

I(SiρJBρJ ;Ti|Z, ρJ , GρJ = 1, CρJ = 0, Ei = 1) ≤ ni

while from a simple application of Bayes’s rule,

Pr[CρJ = 0|GρJ = 1, Ei = 1] =
Pr[CρJ = 0 ∧GρJ = 1|Ei = 1]

Pr[GρJ = 1|Ei = 1]
≤

20
n2 · 1

2

1− 10
n2

≤ 20

n2

which therefore leads to a bound of

(9) ≤ 20n

n2
=

20

n
. (10)

On the other hand, (8) can be bounded by

I(SiρJBρJ ;Ti|Z, ρJ , GρJ = 1, CρJ = 1, Ei = 1)

≤
I(SiρJBρJ ;Ti|Z, ρJ , GρJ , CρJ = 1, Ei = 1)

Pr[GρJ = 1|Z, ρJ , CρJ = 1, Ei = 1]
≤ 2 · I(SiρJBρJ ;Ti|Z, ρJ , GρJ , CρJ = 1, Ei = 1)

where the bound on Pr[GρJ = 1|Z, ρJ , CρJ = 1, Ei = 1] follows from our definition of CρJ . Then
I(SiρJBρJ ;Ti|Z, ρJ , GρJ , CρJ = 1, Ei = 1) can be bounded as

I(SiρJBρJ ;Ti|Z, ρJ , GρJ , CρJ = 1, Ei = 1)

≤ I(SiρJBρJ ;Ti|Z, ρJ , CρJ = 1, Ei = 1) +H(GρJ |Z, ρJ , CρJ = 1, Ei = 1)︸ ︷︷ ︸
≤n−1

≤
I(SiρJBρJ ;Ti|Z, ρJ , Ei = 1)

Pr[CρJ = 1|Ei = 1]
+

1

n
≤ 2 · I(SiρJBρJ ;Ti|Z, ρJ , Ei = 1) +

1

n

where the second inequality follows from

Pr[CρJ = 1|Ei = 1] · I(SiρJBρJ ;Ti|Z, ρJ , CρJ = 1, Ei = 1) ≤ I(SiρJBρJ ;Ti|Z, ρJ , Ei = 1).
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Then we bound the I(SiρJBρJ ;Ti|Z, ρJ , Ei = 1) term.

I(SiρJBρJ ;Ti|Z, ρJ , Ei = 1) = I(SiρJBρJ ;Ti|M,ρ<J , ρJ , Bρ<J , S
i
ρ<J

, J, Ei = 1)

≤ I(SiρJBρJ ;Ti|M,P, Bρ<J , S
i
ρ<J

, J, Ei = 1)

=
1

l

l∑
j=1

I(SiρjBρj ;Ti|M,Ei = 1,P, Bρ<j , S
i
ρ<j

)

=
1

l
I(SiPBP ;Ti|M,Ei = 1,P) ≤ I(S⃗i, BP ;Ti|M,Ei = 1,P)

l

where the first inequality holds as P is chosen independently at random, thus conditioning on ρ>J
increases mutual information from Fact 2.8. Then the I(S⃗i, BP ;Ti|M,Ei = 1,P) term can be
bounded by

I(S⃗i, BP ;Ti|M,Ei = 1,P) = I(S⃗i;Ti|M,Ei = 1,P)︸ ︷︷ ︸
≤C

+ I(BP ;Ti|M, S⃗i, Ei = 1,P)︸ ︷︷ ︸
=0

≤ C

where I(BP ;Ti|M,Ei = 1, S⃗i,P) = 0 as M, S⃗i fully determine Bi, Gi’s for all i ∈ [m], and

I(S⃗i;Ti|M,Ei = 1,P) ≤ I(S⃗i;M,Ti|Ei = 1,P) = I(S⃗i;Ti|Ei = 1,P)︸ ︷︷ ︸
=0

+I(S⃗i;M |Ti, Ei = 1,P) ≤ C.

as Ei is determined by S⃗, T−i, and the distribution over Ti remains unchanged. Therefore, we get
that

I(SiρJBρJ ;Ti|Z, ρJ , GρJ , CρJ = 1, Ei = 1) ≤ 2C

l
+

1

n

which then implies the bound on (8) as

(8) ≤ 2

(
2C

l
+

1

n

)
=

4C

l
+

2

n
.

This completes the proof of the claim as

I(SiρJBρJ ;Ti|Z, ρJ , GρJ = 1, Ei = 1) ≤ 4C

l
+

2

n
+

20

n
≤ 4C

l
+

25

n

3.2.2 Proof of Theorem 3.6

With all the technical ingredients in place, we are now ready to prove Theorem 3.6, which then
contradicts Theorem 3.2.

Theorem 3.6. If |M | ≤ C = ni
poly logn , the maximum advantage Bob can attain, conditioned on an

event Ei determined by S⃗, T−i is

−→
adv(Gf i

,DQ′
i
,DTi , C) ≤ n−Ω(1)

Proof. Suppose for every setting of S⃗, conditioned on the event Ei, there exists a one-way message
M and guessed value BQ (depending on M and Q) such that

EM,Q∈Q′
i

[∣∣ETi [BQ · f i(SQ, Ti)
]∣∣] ≥ n−o(1)
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which then implies
ES⃗,M,Q∈Q′

i|Ei

[∣∣ETi [BQ · f i(SQ, Ti)
]∣∣] ≥ n−o(1).

As our setting of random process Z is fully determined by the above S⃗,M,Q (modulo independent
randomness),

EZ,BρJ
,Si

ρJ
|Ei,GρJ

,ρJ

[∣∣ETi [BρJ · f i(SiρJ , Ti)
]∣∣] ≥ n−o(1). (11)

For the rest of the proof, we will show that (11) cannot be the case. Without loss of generality,
we will assume the following for any fixed ρJ and Z = z

Pr[BQ|Z = z, ρJ = ρj , GρJ , Ei] ≥ n−0.1 (12)

by incurring a cost of only n−0.1 in the advantage due to the following observation: With probability
n−0.1, flip the guessed value. The loss in the advantage then is at most n−0.1, which is polynomially
small (compared to n−o(1)).

Recall that we can write the advantage over random guessing as

EZ,ρJ ,BρJ
,Si

ρJ
|GρJ

,Ei

[∣∣∣ETi|Z,BρJ
,ρJ ,Si

ρJ
,GρJ

,Ei

[
BρJ · f i(SiρJ , Ti)

]∣∣∣] . (13)

Then we can upper bound (13) as

(13) ≤ EZ,ρJ ,BρJ
,Si

ρJ
|GρJ

,Ei

[∣∣∣ETi|Z,BρJ
,ρJ ,Si

ρJ
,GρJ

,Ei

[
f i(S

i
ρJ
, Ti)

]∣∣∣]
= EZ,ρJ ,BρJ

|GρJ
,Ei

[
ESi

ρJ
|Z,BρJ

,ρJ ,GρJ
,Ei

[∣∣∣ETi|Si
ρJ
,Z,BρJ

,ρJ ,GρJ
,Ei

[
f i(S

i
ρJ
, Ti)

]∣∣∣]]
≤ EZ,ρJ ,BρJ

|GρJ
,Ei

[
ESi

ρJ
|Z,BρJ

,ρJ ,GρJ
,Ei

[∣∣∣ETi|Z,BρJ
,ρJ ,GρJ

,Ei

[
f i(S

i
ρJ
, Ti)

]∣∣∣]] (14)

+ EZ,ρJ ,BρJ
|GρJ

,Ei

[
ESi

ρJ
|Z,BρJ

,ρJ ,GρJ
,Ei

[
∥Ti|Z,BρJ

,ρJ ,Si
ρJ
,GρJ

,Ei
− Ti|Z,BρJ

,ρJ ,GρJ
,Ei∥1

]]
(15)

Now if we focus on the (15) term, we get

(15) = EZ,ρJ ,BρJ
|GρJ

,Ei

[
∥SiρJ |Z,BρJ

,ρJ ,GρJ
,Ei × Ti|Z,BρJ

,ρJ ,GρJ
,Ei − (SiρJ , Ti)|Z,BρJ

,ρJ ,GρJ
,Ei∥1

]
≤
√
2 · I(SiρJ ;Ti|Z, ρJ , BρJ , GρJ = 1, Ei = 1) ≤ 20

√
C

l
+

1

n
(16)

due to Claim 3.10 and Pinsker’s inequality (Fact 2.6).
Next, we proceed to bound (14) using Claim 3.7, and Claim 3.9. We first consider a fixed Z = z

ρJ and BρJ = b conditioned on Ei, GρJ . That is,

ESi
ρJ

|Z=z,BρJ
=b,ρJ ,GρJ

,Ei

[∣∣∣ETi|Z=z,BρJ
=b,ρJ ,GρJ

,Ei

[
f i(S

i
ρJ
, Ti)

]∣∣∣] (17)

Now we are ready to use Claim 3.9 to bound (17). Claim 3.9 implies that for any fixed setting of
Z, ρJ and BρJ = b,

ESi
ρJ

|Z=z,ρJ ,BρJ
=b,GρJ

,Ei

[∣∣∣ETi|Z=z,ρJ ,BρJ
=b,GρJ

,Ei

[
f i(S

i
ρJ
, Ti)

]∣∣∣]
≤

∥SiρJ |Z=z,ρJ ,Ei,GρJ
− SiρJ∥1 + ESi

ρJ

[∣∣∣ETi|Z=z,ρJ ,BρJ
=b,GρJ

,Ei

[
f i(S

i
ρJ
, Ti)

]∣∣∣]
Pr[BρJ = b|Z = z, ρJ , GρJ , Ei]
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Now we would like to take expectation over Z and BρJ and ρJ conditioned on the event GρJ
and Ei. Decomposing the upper bound for (14), we obtain

(14) ≤ EZ,ρJ ,BρJ
|GρJ

,Ei

[
∥SiρJ |Z=z,ρJ ,Ei,GρJ

− SiρJ∥1
Pr[BρJ = b|Z = z, ρJ , GρJ = 1, Ei]

]
(18)

+ EZ,ρJ ,BρJ
|GρJ

,Ei

ESi
ρJ

[∣∣∣ETi|Z=z,ρJ ,BρJ
=b,GρJ

,Ei

[
f i(S

i
ρJ
, Ti)

]∣∣∣]
Pr[BρJ = b|Z = z, ρJ , GρJ = 1, Ei]

 (19)

The bound on (18) follows immediately from Claim 3.8.

(18) ≤ 5 ·
√

(C + l)

m
+

100

n2

While for (19), rewriting the expectation and applying (12), we get

(19) ≤ n0.1 · EZ,ρJ ,BρJ
|GρJ

,Ei

[
ESi

ρJ

[∣∣∣ETi|Z=z,ρJ ,BρJ
,GρJ

,Ei

[
f i(S

i
ρJ
, Ti)

]∣∣∣]] .
Now we would like to use the assumption about fi to upper bound:

EZ,ρJ ,BρJ
|GρJ

,Ei

[
ESi

ρJ

[∣∣∣ETi|Z=z,ρJ ,BρJ
,GρJ

,Ei

[
f i(S

i
ρJ
, Ti)

]∣∣∣]]
= ESi

ρJ

[
EZ,ρJ ,BρJ

|GρJ
,Ei

[∣∣∣ETi|Z=z,ρJ ,BρJ
,GρJ

,Ei

[
f i(S

i
ρJ
, Ti)

]∣∣∣]] (20)

Recall that due to our assumption on fi, in particular, the low discrepancy condition, we have that
for any S⃗, T−i, Q ∈ Q′, message M which is at most C bits,

EςiρJ∼U

[
EM |S⃗,T−i

[∣∣ETi|M [Ψi(ς
i
ρJ
, Ti)

]∣∣]] ≤ n−2. (21)

Recall that
Z :=M,P<J , Gρ<J , Bρ<J , S

i
ρ<J

, J.

(21) then implies (by taking the expectation over S⃗i), as M and S⃗i fully determine all the random

variables, that for any fixed ς iρJ (chosen independently, thus no relationship to S⃗i)

EZ,ρJ ,BρJ
|GρJ

,Ei

[∣∣∣ETi|Z=z,ρJ ,BρJ
=b,GρJ

,Ei

[
f i(ς

i
ρJ
, Ti)

]∣∣∣]
= EM,P<J ,Gρ<J

,Bρ<J
,Si

ρ<J
,J,ρJ ,BρJ

|GρJ
,Ei

[∣∣∣ETi|Z=z,ρJ ,BρJ
=b,GρJ

,Ei

[
f i(ς

i
ρJ
, Ti)

]∣∣∣]
≤ E

M,S⃗i,J,ρJ |GρJ
,Ei

[∣∣∣E
Ti|M,S⃗i,J,ρJ ,GρJ

,Ei

[
f i(ς

i
ρJ
, Ti)

]∣∣∣]
= E

S⃗i,J,ρJ |GρJ
,Ei

E
M |S⃗i,J,ρJ ,GρJ

,Ei

[∣∣∣E
Ti|M,S⃗i,J,ρJ ,GρJ

,Ei

[
f i(ς

i
ρJ
, Ti)

]∣∣∣] .
We remark that S⃗i, J, ρJ , GρJ , Ei are all independent of Ti, therefore M |S⃗i, J, ρJ , GρJ , Ei is a C-bit
message about Ti. Then taking expectation over ς iρJ ∼ U , we get

EςiρJ∼U

[
E
S⃗i,J,ρJ |GρJ

,Ei
E
M |S⃗i,J,ρJ ,GρJ

,Ei

[∣∣∣E
Ti|M,S⃗i,J,ρJ ,GρJ

,Ei

[
f i(ς

i
ρJ
, Ti)

]∣∣∣]]

= E
S⃗i,J,ρJ |GρJ

,Ei

EςiρJ∼U

[
E
M |S⃗i,J,ρJ ,GρJ

,Ei

[∣∣∣E
Ti|M,S⃗i,J,ρJ ,GρJ

,Ei

[
f i(ς

i
ρJ
, Ti)

]∣∣∣]]︸ ︷︷ ︸
≤n−2 via (21)

 ≤ n−2
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This in turn implies a bound on (19),

(19) ≤ n0.1 · n−2 = n−1.9.

Finally we get the bound on (14) assuming (C+l)
m , Cl = n−Ω(1), which is true as m = Ω(n0.99) and

by choosing l = n0.9, as ni ≤ n0.8 (since the number of blocks ni ≤ n/k and i ≤ 5ℓ/6). This results
in

(14) ≤ n−1.9 + 5 ·
√

(C + l)

m
+

100

n2
≤ n−Ω(1)

which then implies our main bound on (13) as

(13) ≤ n−Ω(1) + 20

√
C

l
+

1

n
≤ n−Ω(1).

a contradiction.

4 Applications

In this section, we list some applications of our black-box theorem. Note that we only need to show
that some particular function f is “hard.” We introduce some additional preliminaries towards that
goal.

4.1 Preliminaries for Min-Entropy

We will need the following properties of min-entropy for the proof of one-way communication lower
bounds.

Definition 4.1. We define the renyi entropy H2(A) and min-entropy H∞(A) as

H2(A) := − log

(∑
a

Pr[A = a]2

)
H∞(A) := − log

(
max
a

Pr[A = a]
)

Fact 4.2 (Renyi Entropy). Let A be a random variable. Then

H(A) ≥ H2(A) ≥ H∞(A)

In particular, for any fixed b we have

H2(A|B = b) ≥ H∞(A|B = b)

We use the following lemma on “average” min-entropy.

Definition 4.3 (Average Min-Entropy).

H̃∞(A|B) = − log
(
Eb∼B

[
max
a

Pr[A = a|B = b]
])

= − log
(
Eb∼B

[
2−H∞(A|B=b)

])
Lemma 4.4 (Lemma 2.2 of [DORS08]). Let A,B be random variables. Then if B has at most 2λ

possible values, then
H̃∞(A|B) ≥ H̃∞(A,B)− λ ≥ H∞(A)− λ.
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Claim 4.5.
H̃∞(A|B,C) ≤ H̃∞(A|B)

Proof. We first proceed with showing the following inequality,

Ec∼C|B=b

[
max
a

Pr[A = a|B = b, C = c]
]
≥ max

a
Pr[A = a|B = b]. (22)

Let a∗ := argmaxa Pr[A = a|B = b]. Then

Pr[A = a∗|B = b] = Ec∼C|B=b
[Pr[A = a∗|B = b, C = c]] ≤ Ec∼C|B=b

[
max
a

Pr[A = a|B = b, C = c]
]

With (22) established, we are ready to prove the claim. Recall that

H̃∞(A|B,C) := − log
(
Eb,c∼B,C

[
max
a

Pr[A = a|B = b, C = c]
])

Taking expectation over B on both side of (22), we have

Eb,c∼B,C
[
max
a

Pr[A = a|B = b, C = c]
]
≥ Eb∼B

[
max
a

Pr[A = a|B = b]
]

Therefore, we get

H̃∞(A|B,C) = − log
(
Eb,c∼B,C

[
max
a

Pr[A = a|B = b, C = c]
])

≤ − log
(
Eb∼B

[
max
a

Pr[A = a|B = b]
])

= H̃∞(A|B)

We can also bound the support size of the distribution using the min-entropy.

Claim 4.6. Let the distribution on a random variable X ∈ {0, 1}n conditioned on some random
variable M = m be supported over the set Tm ⊂ {0, 1}n. Then |Tm| ≥ 2H∞(X|M=m)

Proof. Recall that
H∞(X|M = m) := − logmax

x
(Pr[X = x|M = m]) .

Therefore, we have

2−H∞(X|M=m) · |Tm| ≥
∑
x∈Tm

Pr[X = x|M = m] = 1,

which completes the proof of the claim.

The main technical issue with using min-entropy instead of KL-divergence is that chain-rule
does not hold for min-entropy. Nevertheless, we have the following strong chain-rule if we are
willing to “spoil” a few bits.

Theorem 4.7 ([Sko19]). Let X be a fixed alphabet, and X = (X1, . . . , Xt) be a sequence of (possibly
correlated) random variables each over X , equipped with a distribution µ. Then for any ε ∈ (0, 1)
and δ > 0, there exists a collection B of disjoint sets on X t such that

• B can be indexed by a small number of bits, namely

log |B| = t ·O
(
log log |X |+ log log ε−1 + log(t/δ)

)
23



• B almost covers the domain ∑
B∈B

µ(B) ≥ 1− ε

• Conditioned on B, block distributions Xi|X<i are nearly flat. That is

∀x, x′ ∈ B, 2−O(δ) ≤ µ(xi|x<i)
µ(x′i|x′<i)

≤ 2O(δ)

• For every B ∈ B, for every index i ∈ [t], and for every set I ⊂ [i− 1], we have

1. The chain-rule for min-entropy

H∞(Xi|XI , B) +H∞(XI |B) = H∞(Xi, XI |B)±O(δ)

2. The average and worst-case min-entropy almost match

H̃∞(Xi|XI , B) = H∞(Xi|XI , B)±O(δ)

The corollary of Theorem 4.7 that we will need is the following

Corollary 4.8. For any fixed B ∈ B

t∑
i=1

H̃∞(Xi|X<i, B) = H∞(X|B)± t ·O(δ).

In other words, if we take a uniform distribution over [t],

Ei∈[t]
[
H̃∞(Xi|X<i, B)

]
=
H∞(X|B)

t
±O(δ)

Proof. We prove by induction on the number of summands. Consider the base case. If there is a
single summand,

H̃∞(X1|B) = H∞(X1|B)

thus this is trivially true. Now assume (as inductive hypothesis) that

j−1∑
i=1

H̃∞(Xi|X<i, B) = H∞(X1, . . . , Xj−1|B)± (j − 1) ·O(δ).

Then for H∞(X1, . . . , Xj |B), Theorem 4.7 implies that

H∞(X1, . . . , Xj |B) = H̃∞(Xj |X<j , B) +H∞(X<j |B)±O(δ)

= H̃∞(Xj |X<j , B) +

j−1∑
i=1

H̃∞(Xi|X<i, B)± j ·O(δ)

where the second equality holds by the inductive hypothesis. This then completes the proof.

For our application, we will take ε = n−Ω(1). By setting ε as such, even if we condition on being
inside the support of B, the advantage of the one-way protocol is not affected.

We will use the following corollary/variant of KKL Theorem. We follow the standard notations
from [O’D14], to which we refer the reader for Fourier Analysis on Boolean functions.
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Lemma 4.9 (KKL-Theorem). Let T ⊂ {0, 1}n, and δ ∈ [0, 1]. Let f be a function supported on T

such that for all x ∈ T , |f(x)| ≤ 1 + ε. Suppose we write f̃(S) := f̂(S)2n

|T | . Then

∑
S⊂[n]

δ|S|f̃(S)2 ≤ (1 + ε)2
(
2n

|T |

)2δ

Proof. Follows from the usual proof of KKL-Theorem using Hypercontractivity. Let p = 1+ δ, and
ρ =

√
p− 1. Then

∥f∥2p =

(∑
x∈T

f(x)p

)2/p

≤
(
(1 + ε)p · |T |

2n

)2/p

= (1 + ε)2 ·
(
|T |
2n

)2/p

∥Tρ(f)∥22 =
∑
S⊂[n]

δ|S|f̂(S)2

Dividing both sides by (|T |/2n)2, and using the well-known Hypercontractivity which states ∥Tρ(f)∥22 ≤
∥f∥2p, we obtain ∑

S⊂[n]

δ|S|f̃(S)2 ≤
(
|T |
2n

)−2δ

which completes the proof.

4.2 Super-Logarithmic Lower Bound for the Multiphase Problem

We simply need to show that inner product (mod 2) is “hard” as in Definition 1.2.

Lemma 4.10. IP satisfies Definition 1.2.

Proof. For any fixing of S−i
Q , T−i, indeed the function is balanced with high probability. As long as

SiQ is not all zero string. The function is perfectly balanced. The probability of such event is at

most 2−ni ≤ 2−n
1/4

, thereby satisfying the balanced condition.
It remains to show that fi has low discrepancy. fi also has low discrepancy due to the following

observation. The corresponding Ψi is the Hadamard matrix. Then we can use the following well-
known lemma to bound the discrepancy.

Fact 4.11 (Lindsey’s Lemma). Let H be a Hadamard matrix. Let P and Q be distributions. Then

P THQ ≤ ∥P∥2∥Q∥2 · 2n/2

Fact 4.11 then implies that Ti under the distribution Ti|M=m (the prior on Ti conditioned on
the message M = m) has

odiscTi|M=m
(Ψi) = vTm ·Hni · Ti|M=m ≤ 2ni/2 · ∥vm∥2︸ ︷︷ ︸

=2−ni/2

· ∥Ti|M=m∥2︸ ︷︷ ︸
≤2−

H∞(Ti|M=m)
2

≤ 2−
H∞(Ti|M=m)

2

where vm ∈ {±2−ni}2ni is a vector that matches the sign per coordinate of Hni ·Ti|M=m, justifying
the norm of such vector.

Since M is of length at most c = ni
poly log(n) and recall that we have defined

odiscc(Ψi) := max
M :|M |<c

EM
[
odiscTi|M (Ψi)

]
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EM
[
odiscTi|M (Ψi)

]
≤ EM

[
2−

H∞(Ti|M=m)

2

]
≤
√
EM

[
2−H∞(Ti|M=m)

]
= 2−

H̃∞(Ti|M)

2

where the second inequality holds from Jensen’s inequality (on
√
x) and the equality holds from

the definition of average min-entropy. Lemma 4.4 then implies that H̃∞(Ti|M) ≥ ni − c, which in
turn implies

odiscc(Ψi) ≤ 2−Ω(ni),

thereby satisfying the low discrepancy if c = ni
poly log(n) .

Remark 4.12. Note that the inner product is way stronger than what is necessary for our proof.
Nevertheless, this gives the state-of-the-art bound for the Multiphase Problem [Pat10].

4.3 A Simple Lifting Theorem

Lifting technique refers to translating a lower bound for a weaker model to a lower bound for
a stronger general model. A classic example of the lifting theorem is Sherstov’s Pattern Matrix
method [She11] which translates approximate degree lower bounds (a structural lower bound for a
weaker model) into approximate-rank and communication lower bounds.

Unfortunately, we cannot make a full translation, as we require the underlying hard distribution
to be a product distribution, instead of a general distribution. In order to completely trans-
late between the some algebraic properties of ψ such as its approximate degree (See [BT22] and
references therein), to its communication complexity, we need to consider all possible distribution,
instead of just product distribution.

Nevertheless, the following lemma from [She11] can be used to create hard functions. We would
like to lift the function using the following composition, f = ψ ◦ gnk where g (the so-called inner
gadget) is

g((j, b), (xi+1, . . . , xi+k)) = b⊕ xi+j .

Now the task in our one-way communication is the following. Alice is given ς ∈ ([k]× {±1})n,
Bob is given (X1, . . . , Xn) ∈

(
{±1}k

)n
. Bob sends a one-way message for Alice to compute

f(ς,X) = ψ(g(ς1, X1), . . . , g(ςn, Xn)).

We consider the composition, ψ = φ(ψ1, . . . , ψℓ). The only property we need about φ is that when
ψ−i’s are fixed, ψ value is still undetermined. That is ψ′

i := ψ|ψ−i
satisfies the “hard” condition.

For example, it is relatively straightforward to see that if ψi is balanced, then
⊕ℓ

i=1 ψi is also

balanced. For
∨ℓ
i=1 ψi, we need to have ψi biased to say min{Pr[ψi = +1],Pr[ψi = −1]} ≥ ℓ−1, the

trick introduced in [LY25].
A straightforward connection can be achieved using the following lemma, which can be viewed

as a generalization of Fact 4.11.

Lemma 4.13 ([She11]).

∥Ψi∥ =
√

2kn(2k)n max
S⊂[n]

(∣∣∣ψ̂(S)∣∣∣ · k−|S|/2
)

Directly applying the bound by [She11] and the argument introduced in Section 4 to a uniform
distribution over ς, we get

odiscc(Ψi) ≤ 2c/2 · max
S⊂[n]

(∣∣∣ψ̂(S)∣∣∣ · k−|S|/2
)
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connecting the spectral property of the underlying ψ to its odisc. Note that this is matching (i.e.
with Section 4) when ψ is a parity function.

Remark 4.14. In standard communication complexity setting, Lemma 4.13 can be used to obtain
a close relation between algebraic properties of ψ and the communication complexity of f (i.e.
so-called lifting technique). Unfortunately, this is not the case for our application. We need a
lower bound against a product distribution between Alice’s input and Bob’s input. But the lower
bound achieved through connections to algebraic properties of ψ is not necessarily for a product
distribution.

5 Generalization of 0-XOR

As a further illustration of our method, we consider a generalization of a hard function (so-called
0-XOR) used in [LY25].

0-XOR Function Fix an epoch i ∈ [ℓ]. We have the following function. If ni, the size of epoch
i, is small (say less than log2(n)), we have fi := 0. For any other epochs, we consider the following
function. We divide the updates to say log ℓ columns and R = O(log n)-rows. For fixed column d,
we select one entry per row, denoted as ςi[d]. Then we take AND over the columns. Therefore our
function in question becomes

fi(ςi, Ti) := ANDDd=1 (⟨ςi[d], Ti⟩) .

Then we take OR over the epochs i ∈ [ℓ]. Note that regardless of which ςi we select, if Ti’s are
distributed i.i.d. all bits being B1/2, fi is 1 with probability 2−ℓ = 1

ℓ . This ensures that our
function OR(f1, . . . fi−1, fi+1, fℓ) is 1 with probability at most 1/2 for any i ∈ [ℓ/2, ℓ]. In particular,
the function is indeed balanced as from Definition 1.2.

5.1 Reinterpretation of [LY25]

[LY25] uses a distribution over ςi[j]’s which are highly correlated one another, stemming from the
fact that the choice of ςi derives from a distribution on the underlying graph (the butterfly graph).

This leads to the distribution over ςi used in [LY25] not having a small odisc, as shown in Section
5.2 of [LY25]. This occurs due to odisc-quantity highly depending on the distribution over ς, while
they need a specific distribution over ς due to their dependence on the underlying Butterfly Graph
and the reduction to Graph Connectivity.

Instead, they show k-XOR version of the underlying problem is hard. In fact, one could then
phrase their technical communication lower bound (on so-called Meta-queries) in Section 5.2 as the
following in our notation.

Lemma 5.1 (Lemma 5.4 of [LY25]). There exists a distribution M (which is a uniform distribution
over its support of size nΩ(k)) on k-tuples (ς1i , . . . , ς

k
i ) with k = n/poly log(n) such that if |M | <

o(n/poly log(n)), then the advantage for outputting ⊕k
j=1fi(ς

j
i , Ti) is at most 2−Ω(k logn).

Observe that ⊕k
j=1fi(ς

j
i , Ti) is hard (as in Definition 1.2) with the parameter n−Ω(k) instead of

n−2. Since a too-good-to-be true dynamic data structure (with query time ttot and update time
tu = poly log(n)) for 0-XOR implies a data structure with query time k · ttot, this implies a one-way
message M of length |M | < o(n/poly log(n)) with advantage n−o(k), a contradiction.

Though we omit the details as this is simply a reinterpretation, and do not imply any new result,
our argument can further be extended to the settings where we select some subset of k-tuples (of
size nΩ(k)) from the support of M, instead of selecting all elements of M as the query set.
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5.2 Independent Instances of 0-XOR

Our goal in this section to exhibit another useful example of our method and show that a general-
ization of 0-XOR when the queries are independently formed is “hard.”

The main technical challenge here is that other than IP considered in Lemma 4.10, which more-
or-less follows from the quasi-random property of the underlying Hadamard matrix (Fact 4.11),
there does not seem to be a general technique for bounding the ε-advantage one-way protocols with
the lower bound of the form Ω(n/poly log(1/ε)) under a product distribution as far as we are
aware of (See [Wat20] and references therein). And such a bound is what is necessary to satisfy
Definition 1.2.

In this section, we develop novel technical tools to show 0-XOR function is “hard” using the
average min-entropy and its relation to KKL Theorem, which can be of independent interest. We
suspect connections to lower bounds in other models of computation such as streaming (See Chapter
2 of [Rou16]).

Theorem 5.2. Suppose ςi[j]’s are selected independently at random. There exists some D =
Ω(log n) such that f =

∨ℓ
i=1 fi with fi := ANDDd=1 (⟨ςi[d], Ti⟩) is hard as in Definition 1.2.

Observe that balancedness of Definition 1.2 is given for free due to the choice of ςi’s. All it
remains to show is that for any M of length < ni/poly log(n),

EM
[
odiscTi|M=m

(Ψi)
]
≤ n−2.

Here is the rough outline of the proof.

1. By increasing the length of the message by attaching a message from B, “spoiling” few bits,
that is giving up on some 2−n

1/3
fraction of the input, and dividing the updates into blocks

of size K = logk(n), we can make the distribution easy for min-entropy (i.e. Theorem 4.7).
This allows us to use (i) near chain-rule; (ii) KKL Theorem when conditioned on the message,
two crucial components of the proof. We consider a set of “good” messages M and B, which
again constitute all but exponential fraction of the input. (See Lemma 5.4)

2. For every choice of d ∈ [D], using the chain-rule, we argue that since the min-entropy on
parts of the input must be large, the min-entropy (over a random choice of blocks) must be
large. We show a stronger statement which states that with all but n−Ω(1) choice of blocks,
the min-entropy must be large. (See Lemma 5.5)

3. Using a variant of KKL Theorem in our context, we show that a large min-entropy over some
small set of coordinates translates to small average bias. (See Lemma 5.7)

4. Iteratively apply step 2 and step 3 per d ∈ [D]. Via union bound over d ∈ [D], this shows
that for all but n−Ω(1) choice of ςi[d]’s, the advantage must be n−Ω(1) when conditioned on
M and B.

Notations We introduce the following notations for the proof. As we will divide the updates
into blocks of size K each, these blocks will be arranged so that D columns and R rows will have
integer number of blocks. Recall that ςi[d] corresponds to a vector which chooses exactly one entry

per row. Denote T
(d,r,j)
i as j-th block of K := logk(n) updates associated with the column d, row

r. There will be D rows, R columns. So there are ni
DRK many possible blocks for the index j. We

denote T
(d,r)
i as all the blocks in column d, row r. Then we denote T

(d)
i as all the blocks in column

d.
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5.2.1 Constructing B for min-entropy

Without loss of generality, we can assume that our message M is “good,” in a following sense.

Proposition 5.3. Write Ti :=
{
T
(d,r,j)
i

}
d∈[D],r∈[R],j∈[ ni

DRK
]
. Then there exists partitioning of

Ti|M=m, say B of size log |B| = O(ni logn
K + kni log logn

K ) such that

•
∑

B∈B Pr[B|M = m] ≥ 1− exp(n−Ω(1)), that is the partition covers most of Ti.

• Conditioned on B ∈ B, block distributions T ji |T
<j
i are nearly flat. That is

∀Ti, T ′
i ∈ B, 2−O(n−1) ≤

Pr[T ji |T
<j
i ,M = m,B]

Pr[T ′j
i |T

′<j
i ,M = m,B]

≤ 2O(n−1)

• Suppose we give lexicographic ordering to (d, r, j)’s. For every B ∈ B, for every index (d, r, j),
and for every set J whose elements are all less than (d, r, j), we have

1. The chain-rule for min-entropy

min
t
{H∞(T

(d,r,j)
i |T Ji = t, B,M = m)}+H∞(T Ji |B,M = m)

= H∞(T
(d,r,j)
i , T Ji |B,M = m)± n−1

2. The average and worst-case min-entropy almost match

H̃∞(T
(d,r,j)
i |T Ji , B,M = m) = min

t
{H∞(T

(d,r,j)
i |T Ji = t, B,M = m)} ± n−1

Proof. This is a direct corollary of Theorem 4.7 in our setting. By setting δ = n−1, ε = n−Ω(1),
and log |X | = logk(n) on the distribution of Ti conditioned on M = m, Theorem 4.7 implies the
existence of such B with the claimed parameters.

Note that we can also make log |B| = ni/poly log(n) via adjusting the block size parameter K
to match with the length of the message M . Thereby, we can attach the partitioning B along with
the message M = m as our one-way message from Bob. Without loss of generality, we will denote
B0 as the “spoiled” part, that is a set of Ti not covered by B.

This implies the following lemma in our context, which states that the average min-entropy
must be large when conditioned on M = m and B.

Lemma 5.4. Recall that |M |+ |B| = O(ni log n/K).

Pr
M,B

[
∃d ∈ [D], H̃∞

(
T
(d)
i |T (<d)

i ,M = m,B
)
≤ ni
D

− 2(|M |+ |B|)
]
≤ 2−n

1/3

Proof. Due to Lemma 4.4, and the independence of T
(d)
i and T

(<d)
i (without conditioning on M

and B) we know that for any fixed T
(<d)
i = t

(<d)
i

H̃∞

(
T
(d)
i |T (<d)

i = t
(<d)
i ,M,B

)
= − logE

M,B,T (<d)
i =t

(<d)
i

[
2−H∞(T

(d)
i |T (<d)

i =t
(<d)
i ,M=m,B)

]
≥ ni
D

− (|M |+ |B|)
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which in turn implies

E
M,B,T (<d)

i

[
2−H∞(T

(d)
i |T (<d)

i =t
(<d)
i ,M=m,B)

]
≤ 2−

ni
D

+(|M |+|B|)

Due to a simple Markov’s inequality, for a fixed d ∈ [D]

Pr
M,B

[
E
T

(<d)
i |M=m,B=B

[
2−H∞(T

(d)
i |T (<d)

i =t
(<d)
i ,M=m,B)

]
≥ 2−

ni
D

+2(|M |+|B|)
]
≤ 2−(|M |+|B|) (23)

Then applying union bound over d ∈ [D] with (23),

Pr
M,B

[
∃d ∈ [D], H̃∞

(
T
(d)
i |T (<d)

i ,M = m,B
)
≤ ni
D

− 2(|M |+ |B|)
]
≤ D · 2−(|M |+|B|) ≤ 2−n

1/3

We will denote the set of message and partition pair M = m,B induced from Lemma 5.4 as
Gm,B. That is define

Gm,B :=
{
(m,B)|∀d ∈ [D], H̃∞

(
T
(d)
i |T (<d)

i ,M = m,B
)
≥ ni
D

− 2(|M |+ |B|)
}
. (24)

For the rest of the inductive arguments, we will only consider (m,B) pairs from Gm,B.

5.2.2 Large Min-Entropy per random choice of Blocks

For brevity denote Od as the event ANDd−1
j=1 (⟨ςi[j], Ti⟩) = 1. As inductive hypothesis, we assume

that we have chosen ςi[j]’s for j ∈ [d− 1] such that

Pr[Od|M = m,B] ∈

(1− n−Ω(1)

2

)d−1

,

(
1 + n−Ω(1)

2

)d−1
 (25)

Note that as a base case, when d = 1, the statement is trivially true, by assuming AND over null
arguments to be 1.

Lemma 5.5. Suppose (m,B) ∈ Gm,B and as inductive hypothesis, assume (25) holds for d ∈ [D].

Pr
j1,...,jR∈U [

ni
DRK ]

[
H̃∞

({
T
(d,r,jr)
i

}R
r=1

|T (<d)
i ,M = m,B,Od

)
≤ (1− γ)KR

]
≤ exp(−Ω(γ2R))

Proof. We consider the following random variables (over the random choice of jr’s) to apply Mc-
Diarmid’s Inequality by considering the real-valued function

h(j1, . . . , jR) := H̃∞

({
T
(d,r,jr)
i

}R
r=1

|T (<d)
i ,M = m,B,Od

)
.

For completeness, we state the McDiarmid’s Inequality here.

Fact 5.6 (McDiarmid’s Inequality). Let f : X1× . . .×Xn → R satisfy the following property: there
exists c1, . . . , cn such that for all x1 ∈ X1, . . . , xn ∈ Xn

sup
x′i∈Xi

∣∣f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)

∣∣ ≤ ci

Then if X1, . . . , Xn are chosen independently at random from X1, . . . ,Xn respectively,

Pr [f(X1, . . . , Xn)− EX1,...,Xn [f(X1, . . . , Xn)] ≤ −ε] ≤ exp

(
2ε2∑n
i=1 c

2
i

)
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Note that due to the chain rule property, replacing a single coordinate can only lead to a
difference of at most K ± n−1 in h. Therefore Fact 5.6 directly implies

Pr
j1,...,jR∈U

[h(j1, . . . , jr) ≤ E[h]− α] ≤ exp

(
− 2α2

R(K + n−1)2

)
. (26)

To transform (26) to a desired form, we calculate the expected value of h. Observe that we can
decompose h (upto n−1 error) as

h(j1, . . . , jR) =
R∑
r=1

H̃∞

(
T
(d,r,jr)
i |T (d,<r,j<r)

i , T
(<d)
i ,M = m,B,Od

)
︸ ︷︷ ︸

:=hr(j1,...,jR)

± 1

n

 (27)

Observe that hr only depends on j1, . . . , jr. Consider a fixed r. For any choice of j1, . . . , jr−1,

Ejr [hr] =
DRK

ni

∑
jr

H̃∞

(
T
(d,r,jr)
i |T (d,<r,j<r)

i , T
(<d)
i ,M = m,B,Od

)
≥ DRK

ni
H̃∞

(
T
(d,r)
i |T (d,<r,j<r)

i , T
(<d)
i ,M = m,B,Od

)
± 1

n

≥ DRK

ni
H̃∞

(
T
(d,r)
i |T (d,<r)

i , T
(<d)
i ,M = m,B,Od

)
± 1

n

where the first inequality follows from Claim 4.5 and the chain-rule property induced by B. The
second inequality follows from Claim 4.5.

E[h] =
R∑
r=1

E[hr] ≥
DRK

ni

R∑
r=1

(
H̃∞

(
T
(d,r)
i |T (d,<r)

i , T
(<d)
i ,M = m,B,Od

)
− 2n−1

)
≥ DRK

ni

(
H̃∞

(
T
(d)
i |T (<d)

i ,M = m,B,Od

)
− 4Rn−1

)
≥ DRK

ni

(
H̃∞

(
T
(d)
i |T (<d)

i ,M = m,B
)
− 4Rn−1 − log

1

Pr[Od|M = m,B]

)
(28)

where the last bound holds due to the definition of Od and average min-entropy, which implies

Pr[Od|M = m,B] · 2−H̃∞
(
T

(d)
i |T (<d)

i ,M=m,B,Od

)
≤ 2

−H̃∞
(
T

(d)
i |T (<d)

i ,M=m,B
)
.

Recall that due to our assumption that (m,B) ∈ Gm,B,

H̃∞

(
T
(d)
i |T (<d)

i ,M = m,B
)
=
ni
D

− 2(|M |+ |B|) ≥ ni
D

−O(ni log n/K)

as well, then

E[h] ≥ RK −O(DR log n)− 4DR2K

n · ni
− DRK

ni
· log 1

Pr[Od|M = m,B]︸ ︷︷ ︸
−o(RK)

.

This implies that

Pr
j1,...,jR∈U

[h(j1, . . . , jr) < RK − γRK]

≤ Pr
j1,...,jR∈U

[h(j1, . . . , jr) < E[h]− (γ + o(1))RK] ≤ exp

(
−3

2
γ2R

)
completing the proof of the lemma.
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5.2.3 Large Min-Entropy Implies Small Average Bias

We would like to then show that assuming M = m,B,Od, the “average” bias over chosen coordi-
nates are small using Lemma 4.9.

Suppose we take the set ςi[d] as those induced by selecting one coordinate per row r, but
restricted to be in jr block of the input. Then there are KR possible choices of such ςi[d]. Consider
a uniform distribution over such ςi[d] as Uj1,...,jR . A simple observation here is that the original
uniform distribution U over ςi[d] (i.e. uniformly selecting one entry per row at random) can be
decomposed as

Ej1,...,jR∈U [
ni

DRK ] [Uj1,...,jR ] = U

Now suppose we consider (j1, . . . , jR) that satisfies Lemma 5.5. Denote such (j1, . . . , jR) as Jd.
That is

Jd :=
{
(j1, . . . , jR)|H̃∞

({
T
(d,r,jr)
i

}R
r=1

|T (<d)
i ,M = m,B,Od

)
≥ (1− γ)KR

}
(29)

We can show the following lemma for (j1, . . . , jR) ∈ Jd using Lemma 4.9.

Lemma 5.7. Assume the premise of Lemma 5.5. Suppose (j1, . . . , jR) ∈ Jd. Then

Eςi[d]∼Uj1,...,jR

[
E
[
χS(
{
T
(d,r,jr)
i

}R
r=1

)|M = m,B,Od

]2]
≤ 2R log(4γ)

Proof. By the property guaranteed by Theorem 4.7, Proposition 5.3, we know that

∀t, t′ ∈ supp(
{
T
(d,r,jr)
i

}R
r=1

|M=m,B,Od
),

Pr

[{
T
(d,r,jr)
i

}R
r=1

= t|M = m,B,Od

]
Pr

[{
T
(d,r,jr)
i

}R
r=1

= t′|M = m,B,Od

] ∈ 1±O(Rn−1)

(30)

Thus, if we simply consider the function g :
{
T
(d,r,jr)
i

}R
r=1

→ R≥0 as

g(x) := Pr

[{
T
(d,r,jr)
i

}R
r=1

= x|M = m,B,Od

]
·
∣∣∣∣supp({T (d,r,jr)

i

}R
r=1

|M=m,B,Od
)

∣∣∣∣ ,
as (30) implies that

Pr

[{
T
(d,r,jr)
i

}R
r=1

= x|M = m,B,Od

]
≤ 1 +O(Rn−1)∣∣∣∣supp({T (d,r,jr)

i

}R
r=1

|M=m,B,Od
)

∣∣∣∣
we have the guarantee that for any x in the support of g,

g(x) ≤ 1 +O(Rn−1).

Then Lemma 4.9 implies that for any δ > 0,

∑
S⊂[RK]

δ|S| · g̃(S)2 ≤ (1 +O(Rn−1))2

 2RK∣∣∣∣supp({T (d,r,jr)
i

}R
r=1

|M=m,B,Od
)

∣∣∣∣


2δ

. (31)
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Observe that g̃(S) term is exactly

g̃(S) =
1

2RK

∑
x∈{0,1}RK

g(x) · χS(x)
2RK∣∣∣∣supp({T (d,r,jr)

i

}R
r=1

|M=m,B,Od
)

∣∣∣∣
= E

[
χS(
{
T
(d,r,jr)
i

}R
r=1

)|M = m,B,Od

]
,

while we can bound

2RK∣∣∣∣supp({T (d,r,jr)
i

}R
r=1

|M=m,B,Od
)

∣∣∣∣ ≤ 2
(RK−H∞(

{
T

(d,r,jr)
i

}R

r=1
|M=m,B,Od))

due to Claim 4.6. As (j1, . . . , jR) ∈ Jd, and due to Claim 4.5, we can rewrite (31) as

∑
S⊂[RK]

δ|S|E
[
χS(
{
T
(d,r,jr)
i

}R
r=1

)|M = m,B,Od

]2
≤ (1 +O(Rn−1))222δ·γRK

Select δ as 1
2γK . Then by considering ςi[d] ∼ Uj1,...,jR ,

Eςi[d]∼Uj1,...,jR

[
E
[
χςi[d](

{
T
(d,r,jr)
i

}R
r=1

)|M = m,B,Od

]2]
≤ 21+R+R log(2γK)−R logK = 21+R log(4γ).

A simple Markov’s inequality implies the following corollary, which we will use towards our
main proof.

Corollary 5.8. Assume the premise of Lemma 5.5 and (j1, . . . , jR) ∈ Jd. Then

Pr
ςi[d]∼Uj1,...,jR

[
|2Pr [Od+1|M = m,B,Od]− 1| ≥ 2

R log(8γ)
2

]
≤ 21−2R

Proof. Observe that

|2Pr [Od+1|M = m,B,Od]− 1| =
∣∣∣∣E [χςi[d]({T (d,r,jr)

i

}R
r=1

)|M = m,B,Od

]∣∣∣∣
and that Lemma 5.7 along with Markov’s inequality implies

Pr
ςi[d]∼Uj1,...,jR

[
E
[
χςi[d](

{
T
(d,r,jr)
i

}R
r=1

)|M = m,B,Od

]2
≥ 2R log(8γ)

]
≤ 21+R log(4γ)

2R log(8γ)
= 21−2R

Taking γ to be a sufficiently small constant, while taking large enough R = Θ(log n) , we obtain
the bounds for Lemma 5.5 and Corollary 5.8 with

exp(−1.5γ2R) ≤ n−100, 2
R log(8γ)

2 ≤ o(n−2), 21−2R ≤ n−100.
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5.2.4 Combining All

Applying Lemma 5.5 and Lemma 5.7 iteratively leads to the following lemma.

Lemma 5.9.

Pr
ςi[1],...,ςi[D]∼UD

[
Pr

Ti|M=m,B
[OD|M = m,B] /∈

[(
1− n−2

2

)D
,

(
1 + n−2

2

)D]]
≤ n−99

Proof. Let

Fd :=
{
ςi[d] : Pr

Ti|M=m,B
[Od+1|M = m,B,Od] ∈

[(
1− n−2

2

)
,

(
1 + n−2

2

)]}
If we choose ςi[1] ∈ F1, . . . , ςi[d− 1] ∈ Fd−1,

Pr
Ti|M=m,B

[Od|M = m,B] ∈

[(
1− n−2

2

)d−1

,

(
1 + n−2

2

)d−1
]
.

Then for such choice of ςi[1], . . . , ςi[d− 1], Lemma 5.5 and Corollary 5.8 implies that

1− Pr
ςi[d]

[Fd] ≤ 2n−100

and furthermore, choosing ςi[d] from Fd would further give

Pr
Ti|M=m,B

[Od+1|M = m,B] ∈

[(
1− n−2

2

)d
,

(
1 + n−2

2

)d]
.

Iteratively applying the argument, if ∀d ∈ [D], ςi[d] ∈ Fd,

Pr
Ti|M=m,B

[OD|M = m,B] ∈

[(
1− n−2

2

)D
,

(
1 + n−2

2

)D]
.

As each ςi[d]’s are chosen independently at random, the probability of

Pr
ςi[1],...,ςi[D]

[∀d ∈ [D], ςi[d] ∈ Fd] ≥ 1− 2Dn−100 ≥ 1− n−99

as D is some linear factor of log n, which completes the proof of the lemma.

Now we are ready to complete the proof of Theorem 5.2 with Lemma 5.9.

Proof of Theorem 5.2.
We would like to show that Ψi induced by fi and underlying f satisfies Definition 1.2. For any

setting of ςi’s over i ∈ [ℓ],

Pr
T
[OR(f1(T1), . . . fi−1(Ti−1), fi+1(Ti+1), fℓ(Tℓ)) = +1] = 1−

(
1− 2−D

)ℓ
.

The choice of D was ensured to guarantee that the above quantity is Ω(1), that is with probability
gi ≥ Ω(1), fi(Ti) matters. Furthermore, for any setting of ςi,

Pr
Ti

[fi(Ti) = +1] = 2−D = Θ(ℓ−1),
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making the function balanced with the balanced parameter β = Θ(ℓ−1). This is good enough as
β ≥ 2−o(

√
logn). Therefore, our f satisfies the first condition of Definition 1.2.

Now observe that due to normalization

Ψi(ςi, Ti) =

{
+1 if fi(ςi, Ti) = +1

− 1
1−2−D + 1 = − 2−D

1−2−D otherwise

We would like to show that the above matrix Ψi has small odisc for |M | = c ≤ n/poly log(n)
where

odiscTi|M=m
(Ψi) := Eςi

∣∣∣∣∣∣
∑
Ti

Ψi(ςi, Ti) · Pr[Ti|M = m]

∣∣∣∣∣∣
odiscc(Ψi) := max

|M |≤c
EM

[
odiscTi|M=m

(Ψi)
]

Recall that for any M , we can create a further partitioning B, which would then

EB∈B

[
odiscTi|M=m,B

(Ψi)
]
= EB∈B

Eςi
∣∣∣∣∣∣
∑
Ti

Ψi(ςi, Ti) · Pr[Ti|M = m,B]

∣∣∣∣∣∣


≥ Eςi

∣∣∣∣∣∣EB∈B

∑
Ti

Ψi(ςi, Ti) · Pr[Ti|M = m,B]

∣∣∣∣∣∣ ≥ odiscTi|M=m
(Ψi)− exp(n−Ω(1))

where the last bound follows from∑
Ti

|EB∈B [Pr[Ti|M = m,B]]− Pr[Ti|M = m]| ≤ exp(n−Ω(1))

due to the property of B.
Our goal is then to bound EM

[
EB∈B

[
odiscTi|M=m,B

(Ψi)
]]

as

EM
[
odiscTi|M=m

(Ψi)
]
≤ EM

[
EB∈B

[
odiscTi|M=m,B

(Ψi)
]]

+ exp(n−Ω(1))

We consider odiscTi|M=m,B
(Ψi) for some fixed M = m,B. Suppose M = m,B satisfies

∀d ∈ [D], H̃∞

(
T
(d)
i |T (<d)

i ,M = m,B
)
≤ ni
D

− 2(|M |+ |B|). (32)

Lemma 5.9 implies that for such choice of M = m,B,

Pr
ςi[1],...,ςi[D]

[
Pr

Ti|M=m,B
[OD|M = m,B] /∈

[(
1− n−2

2

)D
,

(
1 + n−2

2

)D]]
≤ n−99 (33)

As per choice of ςi[1], . . . , ςi[D], the advantage can be written as∣∣∣∣ Pr
Ti|M=m,B

[OD|M = m,B]− 2−D

1− 2−D
(1− Pr

Ti|M=m,B
[OD|M = m,B])

∣∣∣∣
=

1

1− 2−D

∣∣∣∣ Pr
Ti|M=m,B

[OD|M = m,B]− 2−D
∣∣∣∣ (34)
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(33) implies that with probability all but n−99 over ςi[1], . . . , ςi[D], (34) is then at most

(34) ≤ 2−D

1− 2−D

((
1 + n−2

)D − 1
)
≤ o(n−2)

which then concludes that if M = m,B satisfies (32),

odiscTi|M=m,B
(Ψi) ≤ o(n−2)

Lemma 5.4 then implies that the fraction of M = m,B that does not satisfy (32) is at most 2−n
1/3

.
Therefore,

EM
[
odiscTi|M=m

(Ψi)
]
≤ EM

[
EB∈B

[
odiscTi|M=m,B

(Ψi)
]]

+ exp(n−Ω(1)) ≤ o(n−2)

□
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