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Abstract

We present a general framework for derandomizing random linear codes with respect to a broad
class of permutation-invariant properties, known as local properties, which encompass several standard
notions such as distance, list-decoding, list-recovery, and perfect hashing. Our approach extends the
classical Alon–Edmonds–Luby (AEL) construction through a modified formalism of local coordinate-
wise linear (LCL) properties, introduced by Levi, Mosheiff, and Shagrithaya (2025). The main
theorem demonstrates that if random linear codes satisfy the complement of an LCL property P with
high probability, then one can construct explicit codes satisfying the complement of P as well, with
an enlarged yet constant alphabet size. This gives the first explicit constructions for list recovery, as
well as special cases (e.g., list recovery with erasures, zero-error list recovery, perfect hash matrices),
with parameters matching those of random linear codes. More broadly, our constructions realize the
full range of parameters associated with these properties at the same level of optimality as in the
random setting, thereby offering a systematic pathway from probabilistic guarantees to explicit codes
that attain them. Furthermore, our derandomization of random linear codes also admits efficient
(list) decoding via recently developed expander-based decoders.
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1 Introduction

Error-correcting codes play an important role in numerous areas [GRS23]. In addition to their more im-
mediate applications to protect data against errors in transmission and storage, they have found various
uses in diverse fields such as complexity theory [NW94], pseudorandomness [Vad12], and cryptogra-
phy [GL89, YZ24]. The quest for codes approaching optimal parameter trade-offs for a given property
has been a central theme of coding theory. This is typically a two-fold quest. First, one needs to un-
derstand what are the optimal parameter trade-offs. This step is often established via an existential
proof, commonly using randomness and the probabilistic method. This can be far from trivial in some
cases and is established via innovative randomized techniques. Secondly, one proceeds to search for an
explicit construction approaching the ideal parameter trade-offs. There are many reasons why an explicit
construction is desirable or needed in an application over, say, a randomized one. For instance, certifying
the minimum distance and decoding can be computationally hard, making it unfit for use. One then
faces the following natural question.

How to explicitly construct codes having proved an existential result?

A common challenge is that an existential proof may shed little to no light on how to explicitly
construct such codes, and it may take decades, new ideas, and great ingenuity for the discovery of
a corresponding explicit construction. The gulf separating existential and explicit code construction
results has been prevalent throughout the history of coding theory. Shannon’s seminal work [Sha48]
established the existence of capacity-achieving codes through random constructions, but it was only
many decades later that Arıkan introduced his breakthrough explicit construction of polar codes [Ari09].
In the case of list decoding, the capacity theorem of Zyablov and Pinsker [ZP82] was followed, decades
later, by the explicit construction of Guruswami and Rudra [GR06a] (which was inspired by [PV05]).
Recently, the seemingly stronger notion of list-decoding capacity was shown to indeed imply1 Shannon’s
capacity on symmetric channels [PSW25]. Likewise, from the classical existential Gilbert–Varshamov
bound [Gil52, Var57], it took many decades until Ta-Shma [TS17] obtained an explicit construction of
binary (balanced) codes with near-optimal parameters. Despite the gulf between several existential and
explicit results, we can try to remain hopeful and ask the ambitious question,

Is there a general procedure to convert existential code constructions into explicit ones?

Here, we show that this is indeed possible for a vast range of properties of random linear codes
known as local properties, which include list decoding, list recovery, perfect hashing, and average pair-
wise distance, among many others. Random linear codes are widely used as a powerful yardstick for
understanding parameter trade-offs of codes, often achieving the best possible trade-offs for many tasks.
Our results provide a framework to convert existential guarantees on local properties into explicit ones,
while preserving all the parameters attained by random linear codes, at the cost of increased alphabet
size.

Local-to-Global Phenomena. A popular paradigm seen in several pseudorandom constructions is
that of a local-to-global transfer of properties. Generally, this involves the coupling of two entities.
The first is a constant-sized object possessing the property we desire, whose existence is guaranteed by
probabilistic arguments and obtained via a brute-force search. The second is an infinite family of objects
(typically expander graphs) whose construction is known through previous results. The novelty of such
constructions often lies in identifying the appropriate manner of integrating the two objects so that the
resulting construction inherits the desired property from the first object. One of the earliest constructions
employing such techniques is the work of Tanner [Tan81], which details a construction of a family of error-
correcting codes that involves integrating several copies of a single constant-sized code (having good
rate-distance tradeoffs) with a bipartite graph having large girth. Sipser and Spielman [SS96] modified

1Under mild assumptions.
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this construction by substituting the large girth graph for an expander graph, and using its expansion
properties to prove a lower bound on the distance of the final code.

In recent years, there has been a resurgence of constructions utilizing the local-to-global phenomenon.
Examples include quantum LDPC codes [PK22], locally testable codes [DEL+22, PK22], unique neighbor
expanders [AD24, Che25, HMMP24], lossless vertex expanders [Gol24, HLM+25a, HLM+25b], and era-
sure code ensembles [CCS25]. Our framework builds upon the Alon–Edmonds–Luby (AEL) construction,
a classical instance of the local-to-global paradigm. We provide a few details about this construction.

Alon-Edmonds-Luby (AEL) Construction. The Alon-Edmonds-Luby (AEL) construction was first
introduced by Alon, Edmonds, and Luby in [AEL95] to construct codes with constant alphabet size that
approached the Singleton bound. The construction has three components: a constant-sized inner code
having good minimum distance, found by a brute-force search, an explicit outer code having a sub-optimal
rate-distance tradeoff, and a bipartite spectral expander graph. The construction can be described in two
steps: the outer code is first concatenated with the inner one, upon which the symbols of codewords from
the concatenated code are permuted, in a manner prescribed by the expander, to produce codewords in
the final code. The expansion properties of the underlying graph are used to “lift” the minimum distance
property of the inner code onto the final code.

Over the years, the AEL construction has been adapted and applied in numerous subsequent works. A
recurring paradigm in these constructions is to employ a constant-sized inner code with strong parameters,
combined with an outer code that may have weaker parameters, but is fully explicit. We use the term
AEL procedure to refer to such constructions henceforth. In [GI02], Guruswami and Indyk gave explicit,
linear time encodable and decodable codes for unique decoding that approached the Singleton bound,
by utilizing the AEL procedure. In [KMRS17], Kopparty, Meir, Ron-Zewi, and Saraf, utilized it for
constructions of locally testable codes and locally correctable codes. It was also leveraged in the work of
Kopparty, Ron-Zewi, Saraf, and Wootters [KRSW23] to provide list-recoverable and list-decodable codes
that matched the parameters achieved by Folded Reed-Solomon codes, while having constant alphabet
size. Very recently, it was utilized by Jeronimo, Mittal, Srivastava, and Tulsiani in [JMST25] to give
constructions of list-decodable codes that approached the Generalized Singleton bound over constant size
alphabets.

1.1 Our Results

Local Properties. A local property, in the context of codes, is a property for which the existence
of a constant number of codewords suffices as a “witness” to the code satisfying that property. For
example, the complement of (ρ, L)-list-decodability is a local property, as a set of L+1 codewords within
a Hamming ball of relative radius ρ serves as a witness for any code possessing the property. For a
locality parameter L independent of the block length, a local property P can be informally defined by a
collection of (pairwise distinct) vector sets of size L. A code is said to satisfy P if it contains all vectors
in a vector set from the collection corresponding to P. Typically, our objective is to understand codes
that satisfy the complement of local properties, that is, codes that avoid containing any vector set from
the collection defined by P. For instance, a (ρ, L)-list-decodable code must avoid containing all pairwise
distinct vector sets of size L+ 1 that lie entirely within a Hamming ball of relative radius ρ.

The concept of local properties for codes first originated in the work of Mosheiff, Resch, Ron-Zewi,
Silas, and Wootters [MRR+20], where they introduced the framework with the purpose of proving the
existence of LDPC codes achieving list-decoding capacity. The existence follows from a more general
result; the first step consists of proving a threshold result for local properties achieved by random linear
codes, followed by the establishment of a transfer type result, which states that random LDPC codes
achieve the same parameters for all local properties as random linear codes. The threshold result states
that every local property has a threshold rate, above which random linear codes satisfy the property
with exponentially high probability, and below which they do not. The framework was employed by
Guruswami, Li, Mosheiff, Resch, Silas, and Wootters in [GLM+22] to provide lower bounds for list
sizes for list-decoding and list-recovery, and also by Guruswami and Mosheiff in [GM22] to prove that
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punctured low-bias codes achieve the same parameters as random linear codes, with respect to local
properties. Later, Guruswami, Mosheiff, Resch, Silas, and Wootters [GMR+22] gave a local properties
framework for random codes as well.

While providing a powerful framework to investigate list-decoding and list-recovery in the low al-
phabet regime, the precise formulation of local properties in [MRR+20] did not allow one to study local
properties in the large alphabet regime. There are two important random (linear) code families in this
regime: random linear codes whose alphabet size is a large constant that is independent of the block
length (but may depend on other parameters, such as gap to capacity), and random Reed-Solomon codes
(whose alphabet size is at least the block length). As a consequence, these code families could not be
analyzed in the context of local properties. Addressing this limitation required a new formulation tailored
to the large alphabet regime, which was developed by Levi, Mosheiff, and Shagrithaya in [LMS25]. In this
work, the authors establish a threshold result for local coordinate-wise linear (LCL) properties of large
alphabet random linear codes, and leverage it to establish an equivalence between random Reed–Solomon
codes and random linear codes, with respect to LCL properties.

As noted previously, we seek to understand codes that satisfy the complement of local properties.
One approach to do so is through explicit constructions. Our main result demonstrates that it is possible
to explicitly construct codes satisfying the complement of LCL properties, as long as the properties meet
certain requirements.

Theorem 1.1 (Informal, see Corollary 6.1). For any reasonable LCL property P, there exists a suitable
(linear) inner code, a bipartite expander, and an outer code such that the AEL procedure, when instantiated
with these components, yields an explicit linear code CAEL that does not satisfy P, and whose rate is
arbitrarily close to the threshold rate.

We observe that our explicit codes achieve parity with random linear codes in terms of all parameters
associated with the LCL property.

Remark 1.2 (Tradeoffs). Two important tradeoffs arise in our construction: alphabet size and the
underlying field of linearity. First, our construction incurs an exponential increase in alphabet size. This
phenomenon is characteristic of all constructions based on the AEL procedure in the literature, and our
setting is no exception. Second, while our codes are defined over a larger field, they remain linear only
with respect to a subfield—namely, the field over which the inner code is defined. This limitation, however,
does not pose difficulties for most applications.

Remark 1.3 (Local Properties of Random Reed-Solomon Codes). [LMS25] also proved that random
Reed-Solomon codes and random linear codes are equivalent with respect to local properties: that is, they
have the same threshold rates for all reasonable local properties. This implies that our constructions also
match the parameters attained by random Reed-Solomon codes for reasonable local properties, with the
additional property of having constant alphabet size.

List Decoding, List Recovery. We turn to discuss two important local properties studied in the
literature: list-decoding and list-recovery. A code is (ρ, L)-list-decodable if for every vector y, the number
of codewords that have (relative) Hamming distance less than ρ from y is at most L. A code C ⊆ Σn

is (ρ, ℓ, L)-list-recoverable if for input lists S1, . . . , Sn satisfying |Si| ≤ ℓ for all i ∈ [n], we have that the
output list size L is at most

|{c ∈ C | |{i ∈ [n] | c[i] ∈ Si}| ≥ (1− ρ)n}| ≤ L.

Clearly, (ρ, 1, L)-list recoverability is equivalent to (ρ, L)-list-decodability. One can think of these notions
as generalizations of the notion of minimum distance, which requires every pair of distinct codewords to
be far from one another.

List-decodable and list-recoverable codes have found uses in numerous areas of theoretical computer
science, including pseudorandomness [Tre99, GUV09, LP20], compressed sensing [NPR12], and algorithms
[LNNT19, DW22]. Their broad applicability has motivated the development of several explicit construc-
tions spanning a wide range of parameter regimes. For example, list-recoverable codes have been used in
constructions of list-decodable codes [GI03, GR06b, KRSW23], and locally decodable codes [HRW20].
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On the other side of the coin, there has been a significant line of work investigating existential
properties of linear codes through the probabilistic method. The linear structure of such codes means
that the codewords of a random linear code are not mutually independent. This dependence introduced
substantial obstacles in analyzing their list sizes for list decoding. For instance, the probabilistic argument
of Zyablov and Pinsker [ZP82] provided list size upper bounds of 2O(1/ε) and O(1/ε) for random linear
codes and random codes respectively, where ε is the gap to capacity. The exponential gap in list sizes was
closed by Guruswami, Håstad, Sudan, and Zuckerman [GHSZ02], where they showed that random linear
codes indeed achieve a list size of O(1/ε), by means of a clever potential method argument. Their result
only held in expectation, however, and not with very high probability; this was subsequently resolved by
Guruswami, Håstad, and Kopparty [GHK11].

In the large alphabet regime, the works [Sud97, GS98] proved that full length Reed-Solomon codes
are decodable upto the Johnson bound. However, it is known that the Johnson bound is not optimal,
and an exciting line of work [ST20, GLS+24, BGM23, GZ23, AGL24] showed that randomly punctured
Reed-Solomon codes approached the Generalized Singleton Bound [ST20], which is a tight bound on the
radius ρ of list-decodable codes having rate R and list size L. The bound proves that

ρ ≤ L

L+ 1
(1−R).

In [AGL24], Alrabiah, Guruswami, and Li also proved that large alphabet random linear codes (with

alphabet size 2O(1/ε2), where ε is the gap to capacity) approached the Generalized Singleton bound.

In the case of list-recovery, the list-recovery capacity theorem (see [Res20], Proposition 2.4.14 for a
proof) states that there exist codes that are (ρ, ℓ, L)-list-recoverable, with

ρ ≥ 1−R− ε,

and L ≤ O(ℓ/ε), as long as |Σ| ≥ exp(Ω(log ℓ/ε)). However, this result is for random codes, and it was
unclear whether random linear codes could achieve the same output list size. [LMS25] proved that this
is not the case: the output list size is lower bounded by L ≥ ℓΩ(R/ε), and this bound was subsequently
shown to hold for all linear codes by Li and Shagrithaya in [LS25].

A long line of works (e.g., [RW18], [LP20], [GLS+24], [LS25]) have studied list-recovery in the large
alphabet regime. [GLS+24] showed that random Reed-Solomon codes are (1 − R − ε, ℓ, O(ℓ/ε))-list
recoverable codes with rate Ω(ε/(

√
ℓ log(1/ε))). In [LS25], the authors showed for any rate R, random

linear codes are (1−R− ε, ℓ, L)-list recoverable, where L ≤
(

ℓ
ε

)O( ℓ
ε ).

Explicit constructions of list-recoverable, list-decodable codes. We discuss results exhibiting
explicit constructions of list-decoding and list-recoverable codes in the large alphabet regime. Parvaresh
and Vardy [PV05] introduced the first family of error-correcting codes that was provably list-decodable
beyond the Johnson bound. This was improved upon by Guruswami and Rudra in [GR06b], where
they showed that Folded Reed-Solomon codes achieved list-decoding capacity, with polynomial list size.
Further improvements in the analysis of the list size in a fruitful line of works [KRSW23, Tam24, Sri25,
CZ25] proved that the list size matches the one implied by the Generalized Singleton bound. For list-
recovery, the works of [KRSW23] and [Tam24] showed that Folded Reed-Solomon codes are (1−R−ε, ℓ, L)-
list-recoverable with output list sizes upper bounded by (ℓ/ε)O(ℓ/ε) and (ℓ/ε)(log ℓ/ε), respectively.

In the constant-alphabet regime, existing works on capacity-achieving list-decodable and list-
recoverable codes fall into two main categories. Both approaches employ the AEL procedure, where
the inner code is a constant-alphabet list-decodable or list-recoverable code obtained via brute force. The
distinction lies in the choice of the outer code. The first category, exemplified by [KRSW23], employs
Folded Reed–Solomon codes, which are known to possess strong list-decoding and list-recovery guaran-
tees. In contrast, the second category relies on outer codes with significantly weaker parameters, requiring
only rate 1− ε and distance ε3. As a result, the analysis in the latter case is more involved, but it yields
improved bounds on the list sizes. Examples of works belonging to the second category are [JMST25]
and [ST25].
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For list-recoverability, [KRSW23] (Theorem 6.7), along with Tamo’s analysis of the output list size of
Folded Reed-Solomon codes [Tam24] (Theorem 4.5) gives explicit constructions of codes over alphabet Σ

that are (1−R−ε, ℓ, L)-list-recoverable, with |Σ| ≤ ℓO(1/ε4), and L ≤ (ℓ/ε)(
ℓ
ε )

2
·log( ℓ

ε ).[ST25] gives (1−R−
ε, ℓ, L)-list-recoverable codes, where |Σ| = L ≤ exp

(

(ℓ/ε)O(log(ℓ/ε))
)

. Our result gives constructions with
smaller output list sizes than either result, at the cost of increased alphabet size. All results mentioned
below follow from Theorem 1.1 by specializing to the appropriate list recovery variant.

Theorem 1.4 (Informal, see Corollary 6.10, Corollary 6.9). There exist explicit constructions of linear
codes of rate R− 2ε that are (1−R− ε, ℓ, L = LR,ε,ℓ)-list recoverable, where LR,ε,ℓ denotes the smallest
output list size attained by random linear codes of rate R−ε that are list recoverable with radius (1−R−ε)
and input list size ℓ. The codes have an alphabet size that is at most exp((L/ε)O(L)).

The nature of our result ensures that the output list sizes of our construction exactly match those
attained by random linear codes. Consequently, any improvement establishing a tighter upper bound
on the list sizes of random linear codes immediately carries over to our construction. In contrast to
[KRSW23], which relies on an outer code with strong list-size guarantees—a potential bottleneck for
future constructions which use this method—our approach requires no such assumption. Indeed, we only
assume that the outer code has rate 1− ε and distance ε3.

Instantiating the codes with the best known upper bound on list sizes from [LS25], we get explicit
(1−R− ε, ℓ, L)-list recoverable codes with rate R− 2ε, and L ≤ (ℓ/ε)O(ℓ/ε), with alphabet size at most

exp
(

(ℓ/ε)(ℓ/ε)
(ℓ/ε))

. The generality of our main result also yields explicit constructions for related notions
such as zero-error list recovery and erasure list recovery. Zero-error list recovery is a special case of list
recovery in which the decoding radius is zero. Such codes have found applications in the design of data
structures for the heavy hitters problem [DW22]. In the case of erasure list recovery, some of the input
lists may contain only the blank symbol, and the objective is to minimize the number of codewords that
remain consistent with the non-blank input lists.

Theorem 1.5 (Informal, see Corollary 6.11). There exist explicit constructions of linear codes of rate
R − 2ε that are (ℓ, L = LR,ε,ℓ)-zero error list-recoverable, where LR,ε,ℓ denotes the smallest output list
size attained by random linear codes of rate R − ε that are zero error list-recoverable with input list size
ℓ.

Theorem 1.6 (Informal, see Corollary 6.12). There exist explicit constructions of linear codes of rate
R− 2ε that are (σ, ℓ, L = LR,σ,ε,ℓ)-erasure list-recoverable, where LR,σ,ε,ℓ denotes the smallest output list
size attained by random linear codes of rate R − ε that are erasure list-recoverable with erasure fraction
σ, and input list size ℓ.

Perfect Hash Matrices. An (n,m, t)-perfect hash matrix is defined as an n × m matrix with the
following property: for every set of t columns, there exists at least one row in which the entries of those t
columns are all distinct. Perfect hash matrices were first introduced by [Meh84] in the context of database
management, and have since found applications in circuit complexity [NW95] and networking [LPB06].
Consequently, there has been significant work on the explicit construction of such matrices, including
[FKS82, AN96, BW98, Bla00]. In particular, Blackburn and Wild [BW98] presented constructions of
optimal linear perfect hash matrices, which are perfect hash matrices where the columns belong to a
vector space. It is straightforward to observe that the set of codewords of a (0, t−1, t−1)-list-recoverable
code of block length n and size m is equivalent to the set of columns of an (n,m, t)-perfect hash matrix.
Thus, constructing linear perfect hash matrices is equivalent to constructing linear (0, t − 1, t − 1)-list-
recoverable codes.

We recover the result of [BW98] by providing an alternate construction, which are close to optimal.

Theorem 1.7 (Informal, see Corollary 6.13). For an integer t ≥ 2, there exist explicit constructions of

linear (n,Q( 1
t−1−ε)n, t)-perfect hash matrices where the entries belong to FQ, where Q = exp(tt).

Lastly, we get a modest improvement in the alphabet size of explicit list-decodable codes approach-
ing the Generalized Singleton Bound. Previously, [JMST25] constructed explicit codes with the same
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parameters, except with alphabet size equal to 2poly(L
L/ε).

Theorem 1.8 (Informal, see Corollary 4.12). There exist explicit constructions of
(

L
L+1 (1−R− ε), L

)

-

list-decodable codes, having rate R− ε and alphabet size at most 2poly(2
L/ε).

The proof in [JMST25] is based on induction, and leverages the expander property of the graph used
in the construction. In contrast, ours is a proof by contradiction, and relies on the sampling property
of the underlying graph, thereby providing an alternative proof of essentially the same result. Although
implied by Theorem 1.1, we include a proof of Theorem 1.8 as it more transparently illustrates the ideas
behind the proof of the former theorem.

Efficient Decoding. Our derandomization of random linear codes from Theorem 1.1 has the added
benefit of admitting efficient decoding algorithms. More precisely, the recently developed efficient (list)
decoding algorithms for AEL using the Sum-of-Squares hierarchy [JMST25] and regularity lemmas [ST25,
JS25] can also be used to decode our AEL based constructions. Those efficient decoding algorithms are
possible thanks to the use of expander graphs in AEL rendering the decoding task tractable. In contrast,
a considerable amount of evidence [DMS03, FM04, BLVW19] seems to point towards the problem of
decoding for random linear codes being computationally inefficient.

1.2 Organization

In Section 2, we provide an overview of the proofs for the list-decoding case (Theorem 1.8) and the gen-
eral result (Theorem 1.1). The detailed proofs appear in Section 4 and Section 5, respectively. Section 5
is independent of Section 4; therefore, readers interested solely in the general theorem’s proof may pro-
ceed directly to it. Finally, the results pertaining to list-recovery variants and perfect hash matrices
(Theorem 1.4, Theorem 1.5, Theorem 1.6, Theorem 1.7) are presented in Section 6.

2 Technical Overview

We begin with an overview of the proof of Theorem 1.8, which addresses the special case of list decoding.
We instantiate the AEL procedure with the following three components: an inner code of constant block
length, found through brute force, an explicit outer code having high rate and distance δout, where δout is
a constant, and an explicit bipartite expander graph G. We note that G can equivalently be interpreted
as a sampler, a viewpoint that has been leveraged in prior works (cf. [KMRS17, KRSW23]) to analyze
AEL-based constructions. This sampling perspective naturally motivates a strategy for the explicit
construction of codes with strong list-decoding parameters: perform a brute-force search to identify a
constant block-length code with good list-decoding parameters, and then use this code as the inner code
in the AEL procedure to obtain CAEL. If CAEL has pairwise distinct codewords c1, . . . , cL+1 close to some
received word y, then the codewords agree with y at a large number of coordinates. The nature of these
agreements can be encoded by an agreement hypergraph on L+1 vertices that contains n hyperedges, one
for each coordinate. The hyperedge for a coordinate is simply the set of indices of codewords agreeing
with y on that coordinate. It follows that if c1, . . . , cL+1 agree with y on many coordinates, then the sum
of the sizes of the hyperedges is large. Let these agreements be described by an agreement hypergraph
denoted by H. Upon invoking the sampling property of the graph G, it is observed that the precise
pattern of these agreements is “ported over” to a significant number of vertices on the left. As a result,
the projections of codewords c1, . . . , cL+1 and y onto several left vertices have agreements that closely
resemble the agreement pattern described by H. Consequently, the codeword projections agree with the
projection of y at a large number of coordinates within the inner code. But as the codeword projections
are also codewords of the inner code, and because the inner code has good list-decoding parameters, its
codewords do not have a lot of agreements with the local projection of y. Therefore, we have seemingly
arrived at a contradiction.
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Figure 1: Several copies of the inner code witness vector sets satisfying the constraints in roughly the
same proportion as the vector set on the right. Each type of constraint has a different color.

However, there is a flaw with this argument: the guarantee of the inner code applies only when the
(inner) codewords are pairwise distinct. Since it cannot be guaranteed that the codeword projections
are pairwise distinct, this argument fails. In order to overcome this obstacle, we use a concept known
as a weakly-partition-connected hypergraph. This object was investigated in the context of list-decoding
in [AGL24], where the authors established that (i) any agreement hypergraph with a sufficiently large
hyperedge size sum contains a weakly-partition-connected hypergraph, and (ii) there exist linear codes
that contain no non-trivial codeword sets satisfying weakly-partition-connected hypergraphs. By non-
trivial codeword sets, we mean sets of codewords that are not all equal.

We now search for a linear code of constant block length satisfying the above property, and use it as
an inner code. The analysis now proceeds in a manner analogous to the first approach. If L+1 codewords
from CAEL have a large number of agreements with some received word y, then the agreement hypergraph
contains a weakly-partition-connected hypergraph H. Consequently, a subset of those codewords satisfy
the constraints as set forth by H. We then use the sampling property of the graph G to port over
information about the nature of the agreements to the left side, with the result that the inner codewords
at several vertices on the left satisfy the constraints described by H. From the parameters that we
eventually set, it is seen that the number of such parts exceeds n(1 − δout) (where δout is the minimum
distance of the outer code). Consequently, at least one set of inner codewords from such a part must be
non-trivial, thereby contradicting our assumption on the inner code.

Before giving a proof sketch for the main result (Theorem 1.1), we present a high-level overview of
LCL properties. The central idea is that the collection of vector sets corresponding to an LCL property P
can be defined by specifying a family of linear constraint sets, known as local profiles. For a block length
n and a locality parameter L, a local profile specifies a set of linear constraints, on vectors of length L,
for each coordinate. The collection of vector sets associated with P is then defined as the column set
of all matrices of dimension n × L whose rows satisfy the linear constraints described by at least one
local profile associated with P. A code is said to satisfy P if it contains a vector set from the collection
associated with P.

Every linear constraint set can be written down as a matrix of dimension L×L. Two linear constraint
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sets S and T are said to be of the same type if there exists a full rank linear transformation that maps the
matrix associated with S to that associated with T . Even though the number of types can be exponential
in L2, it is independent of the block length of CAEL. This fact ensures that if there are L pairwise distinct
codewords in CAEL that satisfy the linear constraints described by some local profile M associated with P,
then upon arranging them in an n×L matrix, a significant fraction of the coordinates can be partitioned
according to the constraint type satisfied by the row whose index is equal to the coordinate. Moreover,
the fractional size of each of these sets will be a constant. Thus, the sampling property of the graph
G can be utilized to port over the proportion of these types onto several projections on the left. The
local projections, which are also codewords belonging to the inner code, consequently have codewords
that satisfy (a close approximation of) the local profile M . If the AEL procedure were instantiated with
an inner code that avoids vector sets satisfying close approximations of the local profiles associated with
P, one might hope to derive a contradiction. However, we encounter the same obstacle as before: the
guarantee for the inner code applies only when the inner codewords are pairwise distinct, and we lack a
mechanism to ensure that this condition is met.

We circumvent this obstacle by employing the concept of implied types, first introduced in [MRRZ+19]
in the context of local properties. Implied types were used in their work for the purpose of pinning
down the exact threshold rates of local properties of random linear codes in the low alphabet regime.
They also appear implicitly in the work of [LMS25]. Informally speaking, implied vector sets can be
thought of as “compressed” representations of the vector sets corresponding to a local property. For
LCL properties, the corresponding notion is that of implied local profiles. Consider the implied local
profile I(M) corresponding to a local profile M . Denote by VI(M), VM the set of matrices associated
with I(M),M respectively. That is, VI(M) (respectively, VM ) is the set of matrices whose rows satisfy the
constraints specified by I(M) (respectively, M). Then, VI(M) can be obtained by applying an appropriate
linear map on the rows of every matrix in VM . Consequently, we see that if a linear code C contains a
vector set that satisfies M , then by linearity, C also contains a vector set that satisfies I(M).

Recall that we are interested in codes that satisfy the complement of an LCL property P. We shall
prove in Section 5 that if random linear codes of rate R satisfy the complement of P, then random
linear codes of rate R also satisfy the following property: with high probability, they do not contain any
non-zero matrices satisfying any implied local profile I(M), where M is any local profile associated with
P. Upon instantiating the AEL procedure with an inner code satisfying the aforementioned property,
the analysis can be carried out in a manner analogous to that of the naive approach detailed above. If
L pairwise distinct codewords in CAEL satisfy a local profile M associated with P, then upon arranging
these codewords in a n×L matrix and applying the appropriate linear map to each of its rows, the matrix
obtained satisfies the constraints set forth by the implied local profile I(M). Upon porting the constraint
types to the left as before, we see that the projected matrices on to several left vertices are codewords
belonging to the inner code, and moreover, they satisfy I(M)2. The parameters are instantiated in a
way so as to ensure that this occurs on more than (1 − δout)n left vertices, and therefore there is one
projected matrix that is non-zero. But because the columns of the projected matrices are codewords of
the inner code, and because the inner code avoids containing all non-zero matrices satisfying I(M) for
any M associated with the LCL property P, we successfully arrive at a contradiction.

3 Preliminaries

Let [n] denote the set {1, . . . , n}. For a vector x ∈ (Σd)n and i ∈ [n], we denote x(i) ∈ Σd as the ith entry
of x. Furthermore, for j ∈ [d], we denote x(i)[j] ∈ Σ as the jth entry of x(i). For two vectors x, y ∈ Σn,
the Hamming distance is defined as d(x, y) := |{i ∈ [n] : x(i) 6= y(i)}|, that is, the number of indices at
which x and y differ. For a set X, we denote 2X to be the power set of X. For a matrix G, we use the
notation G[i][j] to index the entries of G, and use G[i][] and G[][j] to refer to the ith row and jth column
of G, respectively. For a prime power q, let Fq be the finite field of order q. The notation x ∼ X means
that the random variable x is being sampled uniformly from the set X.

2In reality, the projected matrices satisfy a close approximation of I(M), instead of I(M). Nevertheless, the inner codes

we employ are chosen to be sufficiently robust to accommodate this technical subtlety.
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For a vector space V , let L(V ) denote the set of all subspaces of V . Furthermore, if V is an L-
dimensional space, then we define LDist(V ) as

LDist(V ) := {U ∈ L(V ) | ∀1 ≤ i < j ≤ L, ∃u ∈ U such that u[i] 6= u[j]} .

That is, LDist(V ) is the set of all subspaces that for each pair of distinct coordinates, contains at least one
vector whose entries differ at those coordinates. We use kerψ, kerM to denote the kernel of a linear map
ψ and the kernel of the linear map given by matrix M in the standard basis, respectively. The notation
0 is used to denote the all zeroes matrix.

3.1 Error-Correcting Codes

An error-correcting code C over alphabet Σ is a subset of Σn where every pair of distinct vectors in C has
large Hamming distance. We denote by n the block length of the code. We say that a code has (relative)
distance δ if:

min
x,y∈C
x 6=y

d(x, y)

n
≥ δ.

The rate of the code C, usually denoted by R, is defined as:

R :=
logΣ |C|

n
.

In this paper, we concern ourselves with linear codes. For a finite field Fq, a linear code C is a code that
is a linear subspace of Fnq . For linear codes, the dimension of the corresponding subspace and the rate
are related in the following manner:

R =
dim C
n

.

We say that a code C is a [N, δ,R]Σ code if it has block length N , distance δ, rate R, and is over the
alphabet Σ. For constants ρ ∈ [0, 1], L ∈ N, a code C ⊆ Σn is (ρ, L)-list decodable if for every vector
y ∈ Σn, we have

|{c ∈ C | d(c, y) ≤ ρn}| ≤ L.

A random linear code (RLC) C ⊆ F
n
q of rate R is the kernel of a uniformly random matrix in

F
(1−R)n×n
q .

Concatenated Codes. For integers N, d, d < N , let Cout be a [N,Rout, δout]Σout
code and let Cin be a

[d,Rin, δin]Σin
code, satisfying

|Σout| = |Cin| = |Σin|Rin·d . (1)

Note that Eq. (1) allows us to construct an encoding function for Cin that is a bijection from Σout to Cin,
denoted by φ : Σout → Cin. Then the concatenated code Cout ◦ Cin is a [Nd,Rout · Rin, δout · δin]Σin

code
defined as

Cout ◦ Cin =
{

v ∈ Σ
([N ]×[d])
in

| ∃ c ∈ Cout,
(

∀i ∈ [N ], φ(c[i]) ∈ Cin

)

∧ (φ(c[i]))i∈[N ] = v
}

.

That is, for a codeword c ∈ Cout, we encode c[i] for every i ∈ [N ] with the encoding map φ, thus producing
(φ(c[i]))i∈[N ]. This vector is the one obtained by concatenating the codewords of Cin corresponding to
each entry of c. We perform this procedure for every codeword of Cout, and collect them in the set
Cout ◦ Cin.

It is easy to see that the rate and distance of Cout ◦Cin is equal to Rout ·Rin and δout · δin, respectively.
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3.2 Alon-Edmonds-Luby (AEL) Construction

Let G = (VL ∪ VR, E) be a bipartite graph satisfying |VL| = |VR| = N , with both vertex sets having
degree equal to d. For a vertex v ∈ VL∪VR, denote Γ(v) to be the neighborhood of v. For every vertex v,
we will have an arbitrary, but fixed ordering on the edges incident on v. This allows us to define the ith
neighbor of v: for every i ∈ [d], Γi(v) = w if e = (v, w) is the ith edge of v. We will also fix an ordering,
according to [N ], on VL and VR. With a slight abuse of notation, we will use ℓ (respectively, r) to refer
to a vertex in VL (respectively, VR), and also an index in [N ].

Observe that the structure of G implies a bijection ϕG : (VL × [d]) → (VR × [d]). Namely, ϕG(ℓ, i) =
(r, j) for i, j ∈ [d], ℓ ∈ VL and r ∈ VR if Γi(ℓ) = r and Γj(r) = ℓ both hold. For our applications, we
will be dealing with matrices whose rows are indexed by (r, j) where r ∈ [N ] and j ∈ [d]. We shall now
develop some notation that allows us to “project” the rows of these matrices from the right to the left.

Definition 3.1 (Projection Operation). For an integer L and a matrix A ∈ Σ
([N ]×[d])×L
in

, define the

matrix Aproj ∈ Σ
([N ]×[d])×L
in

as follows: ∀ℓ ∈ [N ], ∀i ∈ [d], ∀r ∈ [N ], ∀j ∈ [d],

Aproj[(ℓ, i)][] = A[(r, j)][] ⇐⇒ ϕG(ℓ, i) = (r, j).

We think of A as a matrix that creates a label (from its rows) for each outgoing edge from VR, and
Aproj as “collecting” the labels on the incoming edges into VL. The graph G plays the role of “shuffling”
these edge labelings. Thus, Aproj is created from A by permuting its rows, according to G.

Definition 3.2 (Projection on Vertices). For ℓ ∈ [N ], define the matrix Aproj(ℓ) ∈ Σ
[d]×L
in

to be the
submatrix of Aproj satisfying

∀j ∈ [d], (Aproj(ℓ))[j][] = Aproj[(ℓ, j)][].

Definition 3.3 (Flattening Operation). For an integer n and a vector h ∈ (Σd
in
)n, we define hfl ∈

Σ
([n]×[d])
in

to be the flattened vector corresponding to h: that is, hfl[(i, j)] = h[i](j) for all i ∈ [n], j ∈ [d].

Note that hfl can also be viewed as a matrix having just a single column, and therefore Definition 3.1
applies to hfl as well. For codes Cout, Cin where Cout is a [N,Rout, δout]Σout

code and Cin is a [d,Rin, δin]Σin

code, the code CAEL(Cout, Cin, G) ⊆
(

Σd
in

)N
is defined as follows

CAEL(Cout, Cin, G) :=
{

h ∈
(

Σdin
)N

: hprojfl ∈ Cout ◦ Cin

}

.

In all our constructions, the underlying graph G is obtained from the following result.

Claim 3.4 (Lemma 2.7, [KMRS17]. Also see Claim E.1, [KRSW23].). Let β, η, ζ ∈ [0, 1]. For infinitely
many integers N , there is a d = O(1/ζη2), so that the following holds. There exists a bipartite expander
graph G = (VL, VR, E) that can be constructed in time poly(N), with N vertices on each side, degree d
on both sides, and with the following property: for any set Y ⊆ VR of right-hand vertices with |Y | = βN ,
we have

|{v ∈ VL : |Γ(v) ∩ Y | < (β − η)d}| ≤ ζN.

The expander graph constructed in the preceding claim is a sampler in the sense that, for every
sufficiently large subset of right vertices Y , a substantial fraction of left vertices have neighborhoods
intersecting with Y in a proportion that is roughly equal to the density of Y .

Observation 3.5 (Explicitness of AEL Procedure). We observe that CAEL(Cout, Cin, G) ⊆
(

Σd
in

)N
can be

constructed in time poly(N)—that is, in time polynomial in the block length of the code—provided that
each of the three components, namely, Cin, Cout, and G, can themselves be constructed in time poly(N).

4 Warm Up: Construction of List-Decodable Codes

In this section, we give a proof for Theorem 1.8. We define the required concepts and definitions in
Section 4.1, and state the proof in Section 4.2.
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4.1 Preliminaries

A hypergraph H = (V, E) consists of a vertex set V , and a collection E of subsets of V . The subsets
are known as hyperedges. For every hyperedge e, we define the weight of e as wt(e) := max (|e| − 1, 0).
Furthermore, the weight of the set of hyperedges is defined as the sum of hyperedge weights. That is,
wt(E) := ∑

e∈E wt(e).

Definition 4.1 (Agreement Hypergraph). For an integer n ∈ N and a set of vectors y, c1, . . . , ct ∈ Σn,
we define an agreement hypergraph H(y, c1, . . . , ct) = ([t], E) as follows: For each i ∈ [n], construct
hyperedge εi ⊆ [t] by including the indexes of all vectors that agree with y at the ith coordinate. That is,
ei := {j ∈ [t] : cj [i] = y[i]}.

Definition 4.2 (Weak Partition Connectivity). For an integer n ∈ N, and R ∈ [0, 1], we say that a
hypergraph H = (V, E) is (R,n)-weakly-partition-connected if for every partition P of the vertex set V ,
the following holds:

∑

e∈E

max {|P(e)| − 1, 0} ≥ Rn(|P| − 1), (2)

where |P| denotes the number of parts in P and |P(e)| denotes the number of parts that intersect non-
trivially with e.

From Lemma 2.3 in [AGL24], we see that the agreement hypergraph corresponding to a bad list-
decoding configuration contains a weakly-partition-connected sub-hypergraph.

Lemma 4.3 (Lemma 2.3, [AGL24]). Suppose that for vectors c1, . . . , cL+1 ∈ Σn, the average Hamming
distance of these vectors from a vector y ∈ Σn is at most L

L+1 (1−R)n. Then, for some subset J ⊆ [L+1]
where |J | ≥ 2, the agreement hypergraph corresponding to vectors y and {cj : j ∈ J} is (R,n)-weakly-
partition-connected.

Proof. Let H = ([L+ 1], E) be the agreement hypergraph corresponding to vectors y and c1, . . . , cL+1 ∈
Σn. Since

∑

i∈[n]

(L+ 1)− |ei|
L+ 1

=
∑

j∈[L+1]

∑

i∈[n] 1[cj(i) 6= y(i)]

L+ 1
=

∑

j∈[L+1]

d(y, ci)

L+ 1
≤ L

L+ 1
(1−R)n, (3)

we have
wt(E) =

∑

i∈[n]

wt(ei) ≥ −n+
∑

i∈[n]

|ei| ≥ LRn.

The last inequality follows from Eq. (3).

Let J ⊆ [L+ 1] be an inclusion minimal subset with |J | ≥ 2 such that

∑

i∈[n]

wt(ei ∩ J) ≥ LRn. (4)

The existence of such a J follows from the fact that J = [L+ 1] satisfies Eq. (4). Let H′ = (J, E ′) be the
hypergraph with vertex set J and edge set E ′ := {J ∩ e | e ∈ E}.

We now prove that H′ is (R,n)-weakly-partition-connected. Observe that Eq. (2) follows from Eq. (4)
when P is the trivial partition with a single part. Now, consider a non-trivial partition P = P1⊔ . . .⊔Pp.
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We have

∑

e∈E′

max {|P(e)| − 1, 0} =
∑

e∈E′

e 6=∅

(

−1 +
∑

b∈[p]

1[|e ∩ Pb| > 0]
)

=
∑

e∈E′

e 6=∅

(

(|e| − 1)−
∑

b∈[p]

(|e ∩ Pb| − 1[|e ∩ Pb| > 0])
)

=
∑

e∈E′

e 6=∅

(

max(|e| − 1, 0)−
∑

b∈[p]

max (|e ∩ Pb| − 1, 0)
)

=
∑

e∈E′

wt(e)−
∑

b∈[p]

∑

e∈E′

wt(e ∩ Pb)

≥ (|J | − 1)Rn−
∑

b∈[p]

(|Pb| − 1)Rn

= (p− 1)Rn = (|P| − 1)Rn,

where the last inequality follows from the inclusion minimality of set J , and the fact that every Pb is a
strict subset of J .

Lemma 2.14 of [AGL24] proves the robustness of weakly-partition-connected hypergraphs to hyper-
edge deletions:

Lemma 4.4 (Robustness of weakly-partition-connected hypergraphs (Lemma 2.14, [AGL24])). Let H =
([t], E) be a (R + ε, n)-weakly-partition-connected hypergraph. Then for all sets E ′ ⊆ E, |E ′| ≤ εn, the
hypergraph H′ = ([t], E \ E ′) is (R,n)-weakly-partition-connected.

Proof. Consider any partition P of [t]. We have

∑

e∈E\E′

max (|P(e)| − 1, 0) =
∑

e∈E

(|P(e)| − 1, 0)−
∑

e∈E′

(|P(e)| − 1, 0)

≥ (R+ ε)(|P| − 1)− |E ′| (|P| − 1)

= Rn(|P| − 1).

We now proceed to define another object used in the proofs of [AGL24]: a Reduced Intersection Matrix
(RIM). Although several versions of the RIM appeared in other works such as [ST20, GLS+24, BGM23],
this variant was first introduced in [GZ23].

In order to define the RIM, we need to set up some notation. For any integers k,m with k ≤ m and
a finite field Fq, define the symbolic matrix G ∈ Fq(X1,1, . . . , Xk,n)

k×n as

G :=







X1,1 . . . X1,n

...
. . .

...
X1,k . . . Xk,n






.

The ith column of G is denoted by Gi = [X1,i, . . . , Xk,i].

Definition 4.5 (Reduced Intersection Matrix). The Reduced Intersection Matrix RIMH associated with a
hypergraph H = ([t], E = (e1, . . . , en)) is a wt(E)×(t−1)k matrix with entries from Fq(X1,1, . . . , Xk,n)

k×n.
We construct RIMH as follows: for every hyperedge ei ∈ E containing vertices j1 < j2 < . . . < j|ei|, add
wt(ei) = |ei| − 1 rows for each ℓ = 2, . . . , |ei|. Each row has (t − 1) segments, each of length k, of the
form ri,ℓ = (r(1), . . . , r(t−1)). The segments are defined as follows:
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- If j = j1, then r(j) = G⊤
i = [X1,i, . . . , Xk,i].

- If j = jℓ, and jℓ 6= t, then r(j) = G⊤
i = −[X1,i, . . . , Xk,i].

- Otherwise, r(j) = 0k.

Definition 4.6. (Substituted RIM) For any matrix G ∈ F
k×n
q and a RIMH associated with the hypergraph

H = ([t], E), the substituted Reduced Intersection Matrix, denoted by RIMH(G) is defined to be the matrix

in F
wt(E)×(t−1)k
q obtained by substituting every indeterminate symbol in RIMH with the corresponding entry

from G. That is, we obtain RIMH(G) from RIMH by replacing, for every i ∈ [k], j ∈ [n], Xi,j with G[i][j].

Lemma 4.7 (Column Rank of Reduced Intersection Matrices (Lemma 4.2, [AGL24])). Let H be the
agreement hypergraph For a vector y ∈ F

n
q , and a matrix G ∈ F

k×n
q , suppose that the corresponding

agreement hypergraph for y and codewords c1, . . . , ct generated by G is equal to H. Moreover, let c1, . . . , ct
satisfy the property that they are not all equal. Then, the substituted reduced intersection matrix RIMH(G)
does not have full column rank.

Proof. Let m1, . . . ,mt be the message vectors for codewords c1, . . . , ct. That is, ci = mi ·G for all i ∈ [t].
Then, we see that

RIMH(G) ·







m1 −mt

...
mt−1 −mt






= 0. (5)

Because c1, . . . , ct were not all equal, the same applies for m1, . . . ,mt. Therefore the vector multiplied to
RIMH(G) in Eq. (5) is non-zero. Because the agreement hypergraph corresponding to y and codewords
c1, . . . , ct is the same as H, every constraint in RIMH(G) is satisfied, and hence, RIMH(G) does not have
full column rank.

The following lemma, which is the crux of the main result of [AGL24], states that for a uniformly
random matrix G ∈ F

k×n
q , the corresponding substituted reduced intersection matrices associated with

all weakly partition-connected agreement hypergraphs have full column rank.

Lemma 4.8 (Existence of Linear Codes whose RIMs have Full Column Rank (Theorem 1.3, Lemma 4.6,
[AGL24])). For integers n,L, where L is a constant independent of n, rate R ∈ [0, 1] and a sufficiently
small ε > 0, alphabet size q ≥ 210L/ε, with probability at least 1 − 2−Ln, a uniformly random matrix
G ∈ F

Rn×n
q has the following property: for every agreement hypergraph H on a vertex set of size ≤ L+1

that is (R + ε/2, n)-weakly-partition-connected, the substituted reduced intersection matrix RIMH(G) has
full column rank.

The proof of Lemma 4.8 follows from the proof of Theorem 1.3 in [AGL24]. We record an important
corollary of the lemma.

Corollary 4.9. For integers n,L such that n > 1/L, rate R ∈ [0, 1] and a sufficiently small ε > 0,
there exist Fq-linear codes C ⊆ F

n
q , where q = 210L/ε, with the following property: for every agreement

hypergraph H on a vertex set of size ≤ L+ 1 that is (R+ ε/2, n)-weakly-partition-connected, the only set
of codewords in C that satisfy every agreement in H is the trivial set of codewords that are all equal.

Proof. By Lemma 4.8, we see that with a non-zero probability, a uniformly random matrix G ∈ F
Rn×n
q

has the property of having full column rank on every RIMH(G), for all agreement hypergraphs H that
are (R+ ε/2, n)-weakly-partition-connected. Thus, there exists at least one matrix G ∈ F

Rn×n
q satisfying

the property. The contrapositive of Lemma 4.7 then implies that the only set of codewords in G that
simultaneously satisfy every agreement in H is the set of codewords that are all equal. The corollary
follows by considering the code C generated by the rows of G.
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4.2 Proof for List-Decoding

Recall that the bipartite graph G from Claim 3.4 has N vertices on each side. For the sake of simplifying
the exposition, we omit floor and ceiling notation in the proof. In order to utilize the results listed in
Section 4.1, we require the inner code to be defined over a finite field Fq, and so we take Σin = Fq.

Consequently, we may interpret CAEL ⊆
(

F
d
q

)N
as a code over the extension field FQ, where Q = qd.

Fix a list size parameter L, rate R, and slack ε > 0. Let q = 210L/ε. Recall that δout is defined
to be the distance of the outer code Cout, and take η = ε/2(L+3) and ζ < δout/2

(L+1). Take d =
max(O(1/ζη2), 1/L). We take Cin ⊆ F

d
q to be a Fq-linear code having rate Rin = R. Let G be the bipartite

graph from Claim 3.4 having N vertices on each side, and every vertex having degree d ≥ O(1/ζη2). Let
Cout ⊆ (FRind

q )N be the outer code. Note that by our definition, φ is now a map of the form φ : FRind
q → Cin.

We require Cout to be an Fq-linear code and φ to be a Fq-linear map.

We now prove the following result:

Theorem 4.10. Let Cin, Cout, G be as defined above. Furthermore, if Cin is a code satisfying the property

in Corollary 4.9, then CAEL ⊆
(

F
d
q

)N
is an Fq-linear code that is

(

L
L+1 (1−R− ε), L

)

average-radius

list-decodable.

Since both Cout and the map φ are Fq-linear, it follows that CAEL is itself an Fq-linear code.

For the sake of contradiction, assume there is a vector y ∈ (Fdq)
N and pairwise distinct codewords

c1, . . . , cL+1 ∈ CAEL such that their average Hamming distance from y is less than L
L+1 (1 − R − ε)N .

That is
∑

i∈[L+1]

d(y, ci)

L+ 1
<

L

L+ 1
(1−R− ε)N.

Then, Lemma 4.3 implies that there is a subset J ⊆ [L+1], |J | ≥ 2 such that the agreement hypergraph
corresponding to vectors y and {cj : j ∈ J} is (R + ε, n)-weakly-partition-connected. We state a lemma
which proves that the local projections of the vectors y and {cj : j ∈ J} onto many left vertices also

yields a weakly-partition-connected hypergraph. Let yproj := yprojfl and cprojj := (cj)
proj
fl for every j ∈ J

denote the flattened projections of y and the codewords {cj : j ∈ J}, respectively. These vectors are
obtained by performing a flattening operation (see Definition 3.3), followed by a projection operation
(see Definition 3.1).

Lemma 4.11 (Local Projections are Weakly-Partition-Connected). If the agreement hypergraph corre-
sponding to a vector y ∈ (Fdq)

N and codewords c1, . . . , ct ∈ CAEL is (R+ ε,N)-weakly-partition-connected,
there exists a set L∗ ⊆ VL satisfying |L∗| > (1 − δout)N such that for every ℓ ∈ L∗, the agreement

hypergraph corresponding to the local projections yproj(ℓ) ∈ F
d
q , c

proj
1 (ℓ), . . . , cprojt (ℓ) ∈ Cin is (R + ε

2 , d)-
weakly-partition-connected.

We first prove Theorem 4.10 using this lemma.

Proof of Theorem 4.10 using Lemma 4.11. Fix a pair of codewords ci, cj , such that i, j ∈ J , and i, j are
distinct (such a pair of indices exist since |J | ≥ 2). Define

S :=
{

ℓ ∈ VL : cproji (ℓ) 6= cprojj (ℓ)
}

.

Because ci and cj are distinct codewords belonging to CAEL, we know that by construction, |S| ≥ δoutN .

This is because cproji (ℓ) 6= cprojj (ℓ) if and only if φ−1(cproji (ℓ)) 6= φ−1(cprojj (ℓ)), and this holds for exactly
those vertices on which the codewords in Cout corresponding to ci, cj differ. Upon applying Lemma 4.11 to
the agreement hypergraph corresponding to vectors y and {cj : j ∈ J}, there exists at least one left vertex

ℓ ∈ S ∩L∗. Because ℓ ∈ S, cproji (ℓ) 6= cprojj (ℓ), and therefore, the local codewords
{

cprojj (ℓ) : j ∈ J
}

are not

all equal. Since ℓ ∈ L∗, the agreement hypergraph corresponding to the local projections yproj(ℓ) ∈ F
d
q ,

cproj1 (ℓ), . . . , cprojT (ℓ) ∈ Cin is (R+ ε
2 , d)-weakly-partition-connected. This contradicts the property of Cin as

described in Corollary 4.9.
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Proof of Lemma 4.11. We will associate a subset of [t] with every r ∈ VR, which we shall refer to as the
type of r. We say that r is of type T for some subset T ⊆ [t] if the set of indices of all codewords agreeing
with y at r is equal to T . More formally, define type : VR → 2[t], with

type(r) := {i ∈ [t] : ci(r) = y(r)} .

For β ∈ [0, 1], we say that a type T ⊆ [t] is β-dense if type(r) = T for more than βN vertices r ∈ VR. We
shall only consider types that are β-dense for β := ε/2(t+2). Define Dβ ⊆ 2[t] to be the set of all subsets
of [t] that are β-dense. Then the number of right vertices whose type is not β-dense is at most

|{r ∈ VR : type(r) 6∈ Dβ}| ≤ |2[t] \Dβ | · βN ≤ εN

4
.

By the robustness of weakly-partitioned-hypergraphs (c.f. Lemma 4.4), we see that the agreement hyper-
graph created by deleting all hyperedges corresponding to types that are not β-dense is still (R+ 3ε

4 , N)-
weakly-partition-connected. Denote this agreement hypergraph by H′. Combining the fact that (i) H′

is (R + 3ε/4, N)-weakly-partition-connected and (ii) all hyperedges in EH′ are associated with vertices
whose type belongs to Dβ , we see that for every partition P of [t],

∑

T∈Dβ

∑

r∈VR

type(r)=T

max {|P(T )| − 1, 0} =
∑

e∈EH′

max {|P(e)| − 1, 0} ≥
(

R+
3ε

4

)

N(|P| − 1).

Denote the set of all vertices of type T by ST ⊆ VR, and denote its density by µ(ST ) := |ST | /|VR| =
|ST | /N ≥ β. Then,

∑

T∈Dβ

µ(ST ) ·max {|P(T )| − 1, 0} ≥
(

R+
3ε

4

)

(|P| − 1). (6)

Fix some β-dense type T ⊆ [t]. Using the sampling property of the graph G, we now show that for a
large number of left vertices ℓ ∈ VL, the fraction of edges entering ℓ that arise from right vertices of type
T is roughly the same as the fraction of type T vertices on the right side. Quantitatively, by Claim 3.4,
we see that

|{ℓ ∈ VL : |Γ(ℓ) ∩ ST |/d ≤ µ(ST )− η}| ≤ ζN.

By applying a simple union bound argument over all β-dense types, the following holds

|{ℓ ∈ VL : ∃T ∈ Dβ : |Γ(ℓ) ∩ ST |/d ≤ µ(ST )− η}| ≤ |Dβ | ζN.

Thus for at least (1− |Dβ | ζ)N > (1− δout)N left vertices ℓ ∈ VL,

∀T ∈ Dβ : |Γ(ℓ) ∩ ST | > (µ(ST )− η)d. (7)

Denote this set by L∗ ⊆ VL. For a vertex ℓ ∈ L∗ and a type T ∈ Dβ , observe that for all indices i ∈ [d] for

which type(Γi(ℓ)) belongs to T , the local codewords
{

cprojj (ℓ) : j ∈ T
}

agree with yproj(ℓ) at coordinate i.

Therefore, we can speak of types for local coordinates as well, and by a slight abuse of notation, define
type(i) := type(Γi(ℓ)).

Additionally, the proportion of those coordinates is roughly equal to the proportion of right vertices
on which the codewords {cj : j ∈ T} agree with y. Thus, we see that the agreements corresponding to all
hyperedges that occur on more than β fraction of the right vertices are “ported over” to the vertices in
L∗. Informally, this says that the agreement hypergraph corresponding to the local projections at every
ℓ ∈ L∗ is roughly equivalent to H′. We will now prove this in a formal manner, in order to conclude that
these local agreement hypergraphs are weakly-partition-connected.
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Turning our attention over to a fixed ℓ ∈ L∗ and denoting the set of hyperedges in the local agreement
hypergraph of ℓ by Hℓ = ([t], Eℓ), we see by Eq. (7) that for every partition P of [t],

∑

e∈Eℓ

max {|P(e)| − 1, 0} ≥
∑

T∈Dβ

∑

i∈[d]
type(i)=T

max {|P(T )| − 1, 0}

>
∑

T∈Dβ

(µ(ST )− η)d ·max {|P(T )| − 1, 0} .

The last term can be expanded as

∑

T∈Dβ

µ(ST )d ·max {|P(T )| − 1, 0} −
∑

T∈Dβ

ηd ·max {|P(T )| − 1, 0} .

The first term is at least (R + 3ε/4)d(|P| − 1) by virtue of Eq. (6), and the second term is at most
ε
4d(|P| − 1), as |Dβ | ≤ 2L+1 and η = ε/2(L+3). Putting everything together, we get

∑

e∈Eℓ

max {|P(e)| − 1, 0} ≥ (R+ ε/2)d(|P| − 1).

Thus, Hℓ is (R+ ε/2, d)-weakly-partition-connected.

Corollary 4.12. Let Cin, Cout, G be as defined in Theorem 4.10. Furthermore, let Cout be a code with
rate Rout = 1− ε and distance δout ≥ ε3. Denote Q := qd. Then CAEL ⊆ (FQ)

N
is an Fq-linear code that

is
(

L
L+1 (1−R− ε), L

)

average-radius list-decodable, with rate RAEL ≥ R− ε, where d satisfies

d ≤ O(23L/ε5).

Thus, Q = exp(2O(L)/ε5). Moreover, CAEL is constructible in time poly(N).

Proof. The Fq-linearity of CAEL its list-decodability parameters are proven in Theorem 4.10. The rate is
given by

RAEL =
logQ(|CAEL|)

N
.

Indeed, it is easy to see that |CAEL| = |Cout| = qRinRoutdN . Because Q = qd, a simple calculation
gives RAEL = Rin · Rout = R · (1 − ε) > R − ε. The value for d is obtained by recalling that d =
max(O(1/ζη2), 1/L), η = ε/(2L+3), ζ = δout/2

(L+1), and plugging in the value for δout in ζ. The value
for Q is obtained by recalling the fact that q = 210L/ε from Corollary 4.9.

We note that explicit constructions of Fq-linear codes having rate 1 − ε and distance ε3 that are
constructible in time poly(N) can be obtained by using Tanner codes (see Corollary 11.4.8 in [GRS23]).
Moreover, the graph G can be constructed in time poly(N), by Claim 3.4. By Corollary 4.9, Cin exists
and has a block length independent of N , therefore it can be found through brute force in constant time.
Upon invoking Observation 3.5, we see that CAEL(Cin, Cout, G) can be constructed in time poly(N).

5 Constructions for Local Properties

A code property P can informally be defined as a family of codes sharing some common characteristics.
We focus on code properties that are

(i) local,

(ii) monotone-increasing, and

(iii) independent of coordinate permutations.
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A local code property, informally speaking, is defined by the inclusion of bad sets of vectors. A monotone-
increasing code property is one for which the following is true: if C is in P, then every C′ for which C′ ⊇ C
holds, also lies in P. We say that a property P is independent of coordinate permutations if for every
code C ∈ P, C′ also lies in P, where C′ is obtained by applying a permutation on the coordinates to
every codeword in C. An example of local, monotone-increasing code property that is independent of
coordinate permutations is the complement of (ρ, L)-list-decodability.

Before we give a formal definition of local properties studied in this paper, we discuss aspects of similar
definitions in previous works. Local properties were first defined in [MRR+20] in order to prove threshold
type results for random linear codes, and to prove that LDPC codes achieve the same parameters as
random linear codes. Their work focused on proving results for the small alphabet regime, and given
their definition of local properties, it was not possible to extend the results to the large alphabet regime.
This was accomplished in [LMS25], where the authors provided a new definition suitable for the large
alphabet regime.

Since our work studies codes in the latter regime, we choose to adapt the definition in [LMS25], and
give a brief overview of the same before discussing our modifications. For a locality parameter L ∈ N

and block length n, a L-local coordinate wise linear (L-LCL) property P is defined as a collection of local
profiles. A local profile is an ordered tuple of subspaces V = (V1, . . . ,Vn), where Vi ∈ L(FLq ) for each

i ∈ [n]. A matrix A ∈ F
n×L
q is said to be contained in V if the ith row of A belongs to Vi, for all i. We

say that a code satisfies property P if there exists a matrix A ∈ F
n×L
q such that the columns of A are

pairwise distinct codewords in C, and A is contained in some local profile belonging to the collection of
local profiles associated with P.

We now state our modifications, and the justifications for introducing them. In a nutshell, our
modifications are concerned with reconciling the (seemingly) different definitions of LCL properties for
codes having differing field sizes and block lengths. The modifications are necessary in order to talk
about the LCL properties being satisfied by the constant-sized inner code, while also being satisfied by
the infinite code family produced by the AEL construction. Recall that in addition to having differing
block lengths, these two codes also have different alphabet (field) sizes.

Our first modification is to define local profiles as tuples of matrices, instead of subspaces. We then
require that in order for a matrix A to be contained in a local profile, each row of A should lie in the
kernel of the matrix corresponding to the row index. This is necessary in order to address the problem of
differing field sizes. Recall that the alphabet of CAEL is Σd

in
, where Σin is the alphabet of the inner code.

Thus, if our inner code is over a field Fq, one can view the alphabet of CAEL as being equal to F
d
q . Note

that one can naturally view the vectors in F
d
q as elements in the extension field FQ, where Q = qd. This

fact ensures that the rows of matrices in F
L×L
q , when viewed as linear constraints, will be applicable to

vectors in F
L
q and F

L
Q simultaneously, as FQ is an extension field of Fq.

Our second modification is to construct local profiles using a list of fractions, each corresponding
to a matrix in F

L×L
q and denoting the fraction of coordinates on which that matrix appears. This

representation enables us to describe local properties in a manner that is independent of the block length
of the codes. We remark that this modification is similar in spirit to the definition of local properties in
[MRR+20], where the forbidden matrices were described by specifying the frequency of each vector from
F
L
q in such matrices. In the sequel, we refer to this representation as a local profile description, and note

that each such description defines a collection of local profiles rather than a single one.

5.1 Preliminaries

Fix a locality parameter L ∈ N, and a finite field Fq. Throughout this section, we restrict attention to
Fq-linear codes. Accordingly, the term “linear” will henceforth always refer to Fq-linear.

Definition 5.1 (Local Profile Description). An L-local profile description is an unordered tuple of tuples
of the form

V =
(

(f1,M1), . . . , (fT ,MT )
)

,
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where for each t ∈ [T ], we have ft ∈ [0, 1] and
∑

t∈[T ] ft = 1. The matrices Mt are not required to be
pairwise distinct.

Definition 5.2 (Local Profile). Fix a block length n ∈ N, and a L-local profile description V such that
every ft in V is a multiple of 1/n. We define an L-local profile Mn(V) created according to V as an
ordered tuple of matrices

Mn(V) = (M1, . . . ,Mn),

where Mi ∈ F
L×L
q for each i ∈ [n]. Moreover, as prescribed by V, for each t ∈ [T ], the matrix Mt appears

in exactly ft · n coordinates in Mn(V).

We emphasize that Mn(V) is not unique given a local profile description V. In fact, it is easily seen
that all permutations of the entries of Mn(V) are valid local profiles that can be created using V. We
will denote the set of all local profiles that can be created from V (for a block length n) by Vn.

For the rest of this subsection, fix a block length n, and an L-local profile description V =
((f1,M1), . . . , (ft,MT )), where every fraction ft is a multiple of 1/n.

Definition 5.3 (Satisfying Local Profile Descriptions). For a matrix A ∈ F
n×L
q , if there exists a local

profile Mn(V) = (M1, . . . ,Mn) ∈ Vn such that A[i][] ∈ kerMi for all i, then we say that A satisfies V,
and that Mn(V) is a witness for A satisfying V.

Definition 5.4 (Containing Matrices). We say that a matrix A is contained in a code C ⊆ F
n
q if the

columns of A are codewords of C. Equivalently, we will use the shorthand A ⊆ C.

Definition 5.5 (Containing Local Profiles). A code C ⊆ F
n
q is said to contain V if there exists a matrix

A ∈ F
n×L
q such that

1. A ⊆ C,

2. A satisfies V, and

3. A has pairwise distinct columns.

Definition 5.6 (Local Coordinate wise Linear (LCL) Property). We define a L-local coordinate wise
linear (L-LCL) property P to be a set of L-local profile descriptions V.

By abuse of notation, we will use the term P to refer to both the property itself, as well as the set of
local profile descriptions that specify it.

Definition 5.7 (Satisfying LCL Properties). We say that a code C ⊆ F
n
q satisfies P if there is a V ∈ P

such that C contains V.

Definition 5.8 (Code contains (V, U)). For a subspace U ∈ L(FLq ), we say that a code C ⊆ F
n
q contains

(V, U) if there is a matrix A ∈ F
n×L
q such that

1. A ⊆ C,

2. A satisfies V, and

3. the row span of A is equal to U .

Furthermore, if Mn(V) ∈ Vn is a witness for A satisfying V, then we say that Mn(V) is a witness for C
containing (V, U).

Observation 5.9. A code C ∈ F
n
q contains V if and only if C contains (V, U) for some U ∈ LDist(F

L
q ).

We now state a simple fact regarding the inclusion of matrices in a random linear code.

Fact 5.10. For a matrix A ∈ F
n×L
q , the probability that A is contained in rate R RLC C ⊆ F

n
q is equal to

Pr
C
[A ⊆ C] = q−(1−R)n rankA.
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Proof. Since C by our definition is the kernel of a uniformly random matrix K ∈ F
(1−R)n×n
q , we can write

Pr
C
[A ⊆ C] = Pr

K∼F
(1−R)n×n
q

[K ·A = 0] =
∏

i∈[(1−R)n]

Pr
K∼F

(1−R)n×n
q

[K[i][] ·A = 0] = q−(1−R)n rankA.

Definition 5.11 (Potential). For R ∈ [0, 1], and a subspace U ∈ L(FLq ), define the potential Φ(V, U,R)
as

Φ(V, U,R) :=
∑

t∈[T ]

ft · dim(ker(Mt) ∩ U)− (1−R) dimU.

The following lemma provides some motivation as to why we require the definition.

Lemma 5.12. For an L-local profile Mn(V) created according to V and a subspace U ∈ F
L
q , the probability

that an RLC C ⊆ F
n
q of rate R contains (V, U) with Mn(V) as a witness is at most qΦ(V,U,R)n.

Proof. The proof is given in section 4 of [LMS25], but we include it here for completeness. Define the set

M(Mn(V),U) :=
{

A ∈ F
n×L
q | ∀i ∈ [n], A[i][] ∈ ker(Mi) ∧ row-span(A) = U

}

.

This is the set of all matrices that satisfy V by “complying” with the constraints specified by Mn(V),
while also having row-span(A) = U . We now define a set similar to the one above, except we now require
row-span(A) ⊆ U .

M∗
(Mn(V),U) :=

{

A ∈ F
n×L
q | ∀i ∈ [n], A[i][] ∈ ker(Mi) ∧ row-span(A) ⊆ U

}

.

It is easy to see that M(Mn(V),U) ⊆ M∗
(Mn(V),U).

By a union bound, the probability that a rate R RLC C ⊆ F
n
q contains (V, U) with Mn(V) as a

witness is at most:
∑

A∈M(Mn(V),U)

q−(1−R)n·rank(A) =
∣

∣M(Mn(V),U)

∣

∣ · q−(1−R)n·rank(A) ≤
∣

∣

∣
M∗

(Mn(V),U)

∣

∣

∣
· q−(1−R)n·dimU . (8)

We now proceed to estimate
∣

∣

∣
M∗

(Mn(V),U)

∣

∣

∣
. Upon observing that this set is a linear subspace of Fn×Lq ,

we see that

logq

(∣

∣

∣M∗
(Mn(V),U)

∣

∣

∣

)

=
∑

i∈[n]

dim(kerMi ∩ U) =
∑

t∈[T ]

ft · n · dim(ker(Mt) ∩ U).

By plugging the value of |M∗
(Mn(V),U)| in Eq. (8) we see that the probability of C containing (V, U) with

Mn(V) as a witness is at most qΦ(V,U,R)n.

Definition 5.13. We define RV,U to be

RV,U = min {R ∈ [0, 1] | Φ(V, U,R) ≥ Φ(V,W,R) for every linear subspace W ⊆ U} .

Note that the minimum exists, as Φ(V, U, 0) ≥ Φ(V,W, 0) for every subspace W ⊆ U , by the definition
of the potential Φ.

Let us provide some motivation for the definition. We first state Proposition 4.3 from [LMS25].

Proposition 5.14 (RLC thresholds for local profiles (Proposition 4.3, [LMS25])). Let C ⊆ F
n
q be a RLC

of rate R ∈ [0, 1]. Fix some Mn(V) ∈ Vn, and a U ∈ L(FLq ) \ {{0}}. Let

γ := min
W∈L(FL

q )

W(U

{Φ(V, U,R)− Φ(V,W,R)} .

The following then holds.
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1. If γ < 0, then PrC [C contains (V, U) with Mn(V) as a witness] ≤ qγn.

2. If γ > 0, then PrC [C contains (V, U) with Mn(V) as a witness] ≥ 1− q−γn+L
2

.

Observe that the value of γ depends on the rate R, the local profile description V, and subspace U ,
but is independent of the local profile Mn(V). From Proposition 5.14, we see that upon union bounding
over all local profiles Mn(V) ∈ Vn, we get:

Corollary 5.15. Let C ⊆ F
n
q be a RLC of rate R ∈ [0, 1]. For a U ∈ L(FLq ) \ {{0}}, let γ be as defined

in Proposition 5.14. Then the following holds.

1. If γ < 0, then PrC [C contains (V, U)] ≤ |Vn| · qγn.

2. If γ > 0, then PrC [C contains (V, U)] ≥ 1− q−γn+L
2

.

Thus, Corollary 5.15 implies that for R = RV,U − ε, where 0 < ε < RV,U is a constant, a rate R
RLC contains (V, U) with exponentially low probability (provided that |Vn| is sufficiently small), while
for R = RV,U + ε, a rate R RLC contains (V, U) with probability exponentially close to 1.

We now define a threshold rate with respect to an RLC containing V. Invoking Observation 5.9, we
define the threshold rate corresponding to V as

RV := min
U∈LDist(FL

q )
RV,U .

For an L-LCL property P, recall that a code C satisfies P if C contains some V ∈ P. We thus define:

Definition 5.16. The threshold rate of an L-LCL property P is defined to be

RP := min
V∈P

RV = min
V∈P

U∈LDist(F
L
q )

RV,U . (9)

Theorem 4.4 from [LMS25] proves that RP as defined above is indeed a threshold rate.

Theorem 5.17 (Theorem 4.4, [LMS25]). Let P be an L-LCL property. Let C ⊆ F
n
q be an RLC of rate

R, and let RP be as defined in Definition 5.16. Let ε > 0 be a sufficiently small constant. The following
now holds

1. If R ≥ RP + ε, then PrC [C satisfies P] ≥ 1− q−εn+L
2

.

2. If R ≤ RP − ε, then PrC [C satisfies P] ≤ ∑

V∈P |Vn| · q−εn+L
2

.

At this point we provide a brief discussion about the LCL properties P considered henceforth. In
general, we allow the fractions f1, . . . , fT to range over sub-intervals of [0, 1], and regard all local profile
descriptions with such fractions as belonging to P. Consequently, P is uncountably infinite. This,
however, does not pose a difficulty, because for a block length n, the set of local profile descriptions
satisfying |Vn| > 0 is itself finite, as by definition, each fraction in such local profile descriptions must be
an exact multiple of 1/n. Furthermore, for any such local profile description, the corresponding set of
local profiles Vn is also finite. Specifically, |Vn| is equal to the number of ways we can arrange n objects
in a row, where we have ft · n objects of type t, for t ∈ T . It follows, therefore, that

∑

V∈P

|Vn|

is finite.

Definition 5.18. We say an L-LCL property P is reasonable if for every block length n, the total number
of associated local profiles is at most

∑

V∈P

|Vn| ≤ qκq(P)·n,

where the term κq(P) approaches 0 as q → ∞.
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We note that κq(P) is allowed to depend on L in an arbitrary fashion, although a worse dependence
would result in q being large (with respect to L) as well. Most local properties considered in the literature,
such as list-decoding, list-recovery and perfect hash matrices are reasonable local properties.

We require Lemma 4.5 from [LMS25]:

Lemma 5.19 (Lemma 4.5, part (3), [LMS25]). For R ∈ [0, 1], denote

argmax {Φ(V, ∗, R)} :=

{

W ∈ L(FLq ) | Φ(V, U,R) = max
U∈L(FL

q )
Φ(V, U,R))

}

.

Then, argmaxΦ(V, ∗, RV) contains at least one element from L(FLq ) \LDist(F
L
q ), and at least one element

from LDist(F
L
q ).

Claim 5.20. There is a canonical WV ∈ L(FLq ) \ LDist(F
L
q ) such that for all R ≤ RV and for every

U ∈ L(FLq ) satisfying dimU ≥ dimWV , the inequality

Φ(V, U,R) ≤ Φ(V,WV , R)

is true.

Proof. By Lemma 5.19, the set

argmaxΦ(V, ∗, RV) ∩
(

L(FLq ) \ LDist(F
L
q )
)

is non-empty. Fix an arbitrary total ordering on the subspaces of L(FLq ), and select the first subspace in
this ordering from the above set. Denote this subspace by WV .

Fix a subspace U ∈ L(FLq ) satisfying dimU ≥ dimWV , and some R ≤ RV . Then,

Φ(V, U,R)− Φ(V,WV , R) =
∑

t∈[T ]

ft · (dim(ker(Mt) ∩ U)− dim(ker(Mt) ∩WV))

− (1−R)(dimU − dimWV)

≤
∑

t∈[T ]

ft · (dim(ker(Mt) ∩ U)− dim(ker(Mt) ∩WV))

− (1−RV)(dimU − dimWV)

= Φ(V, U,RV)− Φ(V,WV , RV)

≤ 0,

where the last inequality holds because WV ∈ argmaxΦ(V, ∗, RV), and the first one holds because R ≤ RV

and dimU ≥ dimWV .

5.2 Implied Local Profile Descriptions

Fix an L-local profile description V = ((f1,M1), . . . , (fT ,MT )).

Definition 5.21 (Implied Local Profile Description). Let ψ be a linear map ψ : FLq → F
L−K
q for some

integer K ≤ L. Then, the (L −K)-implied local profile description of V with respect to ψ, denoted by
Vψ, is an (L−K)-local profile description defined as

Vψ := ((f1,M
ψ
1 ), . . . , (fT ,M

ψ
T )).

Here, for each t ∈ [T ], Mψ
t is a matrix satisfying kerMψ

t = ψ(kerMt).

We now give some intuition for Definition 5.21.
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Observation 5.22. For a linear map ψ : FLq → F
L−K
q , let Vψ be the corresponding (L−K)-implied local

profile description of V. If a linear code C ⊆ F
n
q contains V, then there is a matrix B ∈ F

n×(L−K)
q (with

possibly non-distinct columns) such that

1. B ⊆ C, and

2. B satisfies Vψ.

Proof. By Definition 5.5, if C contains V, then there is a matrix A ∈ F
n×L
q that (i) has pairwise distinct

columns, (ii) is contained in C, and (iii) satisfies V. Now consider the matrix B ∈ F
n×(L−K)
q constructed

row by row, such that B[i][] := ψ(A[i][]). By the linearity of C, A ⊆ C implies B ⊆ C, and moreover, it is
easy to verify that B satisfies Vψ.

Let WV be the canonical subspace guaranteed by Claim 5.20 for V. Recall that for all R ≤ RV and
for every U ∈ L(FLq ) satisfying dimU ≥ dimWV , WV satisfies

Φ(V, U,R) ≤ Φ(V,WV , R).

Fix a full rank linear map ψV : FLq → F
L−dimWV

q such that kerψV =WV .

Definition 5.23 (Canonical Implied Local Profile Description). Let ψV be as defined above. The (L −
dimWV)-canonical implied local profile description of V, denoted by V imp, is an (L−dimWV)-local profile
description defined as

V imp := ((f1,M
imp
1 ), . . . , (fT ,M

imp
T )).

Here, Mimp
t is a matrix satisfying kerMimp

t = ψV(kerMt) for each t ∈ [T ].

Robust Local Profile Descriptions. We will now describe a general method to create robust coun-
terparts to local profile descriptions.

Definition 5.24 (Robust Local Profile Description). Let ∆ ∈ [0, 1] be a constant, and V =
((f1,M1), . . . , (fT ,MT )) be an L-local profile description. Consider the set of all L-local profile de-
scriptions of the form

(

(f1 −∆1, M1), . . . , (fT −∆T , MT ),
(
∑

t∈[T ] ∆t, 0
)

)

where for every t ∈ [T ], we have 0 ≤ ∆t ≤ ft and
∑

t∈[T ] ∆t ≤ ∆. Recall that 0 is the all zeroes

matrix. We denote this set by Rob∆(V), and an element from this set is known as a ∆-robust local profile
description of V.

Informally speaking, any code C that avoids containing matrices that satisfy local profile descriptions
from Rob∆(V) will consequently avoid containing matrices that only satisfy a (1 − ∆) fraction of the
constraints set forth by V.

Observation 5.25. For every constant ∆ ∈ [0, 1], a matrix satisfying V also satisfies every local profile
description from Rob∆(V).

We now state and prove a lemma asserting that if the rate R is bounded away from the threshold
rate RV by ε, then the potential of the robust counterparts of V imp is bounded above by −ε, up to a small
additive factor.

Lemma 5.26. For ε > 0, let R ≤ RV − ε. Let V imp
∆ ∈ Rob∆(V imp) be some ∆-robust local profile

description of V imp. Then for every U ′ ∈ L(F(L−dimWV)
q ), U ′ 6= {0}, we have

Φ(V imp
∆ , U ′, R) ≤ −ε+∆ · L.
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Proof. By the guarantee for WV (see Claim 5.20), we have for all subspaces U ∈ L(FLq ) satisfying dimU ≥
dimWV ,

Φ(V, U,R)− Φ(V,WV , R) = Φ(V, U,RV)− Φ(V,WV , RV)− ε(dimU − dimWV)

≤ −ε(dimU − dimWV). (10)

Let U ′ ∈ L(F(L−dimWV)
q ) be such that U ′ 6= {0}, and let U ∈ L(FLq ) be such that WV ⊂ U and

ψV(U) = U ′, that is, U = ψ−1
V (U ′) =

{

u ∈ F
L
q | ψV(u) ∈ U ′

}

. By the rank-nullity theorem, dimU ′ =
dimU − dimWV .

Consequently,

Φ(V imp
∆ , U ′, R) =

(

∑

t∈[T ]

(ft −∆t) · dim(ker(Mimp
t ) ∩ U ′)

)

+
∑

t∈[T ]

∆t · dim(ker0imp)− (1−R) dimU ′

=
(

∑

t∈[T ]

(ft −∆t) · dim(ψV(ker(Mt) ∩ U))
)

(11)

+
∑

t∈[T ]

∆t · dim(ψV(ker0))− (1−R)(dimU − dimWV)

=
(

∑

t∈[T ]

(ft −∆t) · (dim(ker(Mt) ∩ U)− dim(ker(Mt) ∩WV))
)

(12)

+
∑

t∈[T ]

∆t · dim(ψV(ker0))− (1−R)(dimU − dimWV)

≤ Φ(V, U,R)− Φ(V,WV , R) + ∆ · L
≤ −ε+∆ · L,

where Eq. (11) follows from Claim 5.27, stated and proved below. Moreover, Eq. (12) follows from an
application of the rank-nullity theorem. The final inequality follows from Eq. (10), owing to the fact that
U ⊃WV , given that U ′ is a non-trivial subspace.

Claim 5.27. Let WV , ψV , U
′ and U be as defined in Lemma 5.26. Then, for every subspace K in F

L
q , we

have
ψV(K) ∩ U ′ = ψV(K) ∩ ψV(U) = ψV(K ∩ U).

Proof. First, ψV(K∩U) ⊆ ψV(K)∩ψV(U) is immediate: if x ∈ ψV(K∩U), then there is a x′ ∈ K∩U such
that ψV(x

′) = x. Then, x′ ∈ K implies x = ψV(x
′) ∈ ψV(K), and x′ ∈ U implies x = ψV(x

′) ∈ ψV(U).

For the other inclusion, take y ∈ ψV(K) ∩ ψV(U). Then, there exist k ∈ K and u ∈ U such that
ψV(u) = y = ψV(k). Hence

k − u ∈ kerψV =WV .

But recall that WV ⊂ U , and thus every element of kerψV lies in U . Therefore, k = u + (k − u) ∈ U .
Since k ∈ K as well, k ∈ K ∩ U , and so y = ψV(k) ∈ ψV(K ∩ U). Thus, ψV(K) ∩ ψV(U) ⊆ ψV(K ∩ U).

Lemma 5.28. For 0 ≤ ∆ ≤ 1, consider some V imp
∆ ∈ Rob∆(V imp). For a block length n, the number of

local profiles associated with V imp
∆ is at most 2n |Vn|.

Proof. Let V imp
∆ be of the form

V imp
∆ =

(

(f1 −∆1, M1), . . . , (fT −∆T , MT ),
(
∑

t∈[T ] ∆t, 0
)

)

,

where for every t ∈ [T ], we have 0 ≤ ∆t ≤ ft and
∑

t∈[T ] ∆t ≤ ∆. Each local profile associated with V imp
∆

can be created by following this recipe: fix some local profile Mn(V) created according to V. Then,
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(i) For each coordinate, change the associated matrix from Mt to M
imp
t .

(ii) for each t ∈ [T ], select some ∆t · n coordinates whose associated matrix is Mt and change the
associated matrix to 0.

The first step does not cause an increase in the number of local profiles. The number of ways to perform
the second step is upper bounded by

(

n
≤∆·n

)

≤ 2n.

We now state and prove a lemma that establishes an upper bound on the probability with which
an RLC of rate below the rate threshold RP contains non-zero matrices satisfying a robust local profile
description of V imp.

Lemma 5.29. Let P be an L-LCL property. Let R = RP − ε for a constant ε ∈ [0, RP), and let ∆
be a constant in [0, 1]. Then the probability that an RLC C ⊆ F

n
q of rate R contains a non-zero matrix

satisfying a local profile description from the set

⋃

V∈P

Rob∆(V imp)

is at most
∑

V∈P |Vn| · 2n · qL2−εn+∆·Ln.

Proof. By Lemma 5.28, we see that for an L-LCL property P, the total number of local profiles that can
be created according to local profile descriptions from the set

⋃

V∈P Rob∆(V imp) is at most

∑

V∈P

|Vn| · 2n.

For some V ∈ P, consider a local profile Mn(V imp
∆ ) created according to V imp

∆ ∈ Rob∆(V imp). Recall

that V imp
∆ is a (L − dimWV)-canonical implied local profile description. Fix a non-zero subspace U ∈

F
(L−dimWV)
q . From Lemma 5.12, and the fact that

R ≤ RP − ε ≤ RV − ε ≤ RV,U − ε,

which follows from Eq. (9), we see that the probability that there is a non-zero matrix A ∈ F
n×(L−dimWV)
q

such that A ⊆ C, and A satisfies (V imp
∆ , U) with Mn(V imp

∆ ) as a witness is at most

qΦ(V imp

∆ ,U,R)n ≤ q(−ε+∆·L)n,

where the inequality follows from Lemma 5.26. The result follows by union bounding over all non-
zero subspaces U , and all local profiles created according to local profile descriptions from the set
⋃

V∈P Rob∆(V imp).

We now turn to analyze the upper bound on the probability in Lemma 5.29. The bound is non-trivial
if and only if

∑

V∈P |Vn| · 2n · qL
2−εn · q∆·Ln < 1. For reasonable L-LCL properties, this is achieved when

κq(P) + logq 2 +
L2

n
− ε+∆ · L < 0.

Upon restricting ∆ to be at most ε/2L and n to be at least 4L2/ε, it suffices to have

κq(P) + logq 2−
ε

4
< 0. (13)

Here, we are interested in the smallest prime power q that satisfies the above inequality. Such a q exists,
since limq→∞(κq(P) + logq 2) = 0.

We summarize the above discussion as the following fact:
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Fact 5.30. For a reasonable L-LCL property P and R ≤ RP − ε, there exists a minimum prime power q
that is solely a function of ε, L, and κq(P), such that the following holds: There exists a linear code C ⊆ F

n
q

for every block length n ≥ 4L2/ε that contains no non-zero matrices satisfying local profile descriptions
from the set

⋃

V∈P Rob∆(V imp).

Lemma 5.31. For a block length n ≥ 4L2/ε and a reasonable L-LCL property P, let C be a linear code
C as described in Fact 5.30. Then,

1. the code C can be found in time qpoly(n,L), and

2. C does not satisfy P.

Proof. We first prove that C can be found in time qpoly(n,L). By our definition of random linear codes, a
non-zero probability is placed on at most q(1−R)n linear subspaces of Fnq . For each such code, we perform
a check of the following form: determine whether it contains a non-zero matrix satisfying a local profile
description from the set

⋃

V∈P Rob∆(V imp). We return the first code C that does not contain any matrices
of the described form. Such a code is guaranteed to exist by Fact 5.30. Let us analyze the runtime of
this algorithm.

The number of non-zero matrices satisfying local profile descriptions from the set
⋃

V∈P Rob∆(V imp)
is at most the total number of matrices of dimensions n × L, which is equal to qnL. Given the parity
check matrix of a linear code C ⊆ F

n
q , we can check whether every column of a matrix A ∈ F

n×L
q lies in C

in time at most n2L. Therefore, for each linear code, we can perform the aforementioned check in time
at most n2L · qnL. Consequently, the total runtime is at most

q(1−R)n · n2L · qnL ≤ qpoly(n,L).

We now prove that C does not satisfy P. Assume for contradiction that it does. Then, there is a
V ∈ P such that C contains V. By Observation 5.22, C contains a matrix B that satisfies V imp. The
matrix B was obtained from some matrix A ⊆ C having pairwise distinct columns, by applying a map
ψ to every row of A. By the definition of V imp, there exist i, j ∈ [L], where i 6= j, such that the kernel
of ψ consists of a subspace whose vectors agree at coordinates i, j. This implies that B is non-zero.
Furthermore, by Observation 5.25, B also satisfies every V imp

∆ ∈ Rob∆(V). This contradicts the fact that
C is of the form as specified in Fact 5.30.

Recall that the code produced by the AEL construction, CAEL, has alphabet Σd
in

, where Σin is the
alphabet of the inner code. We take the inner code to be over Fq, and therefore interpret CAEL as a code
over the extension field FQ, where Q = qd. Furthermore, by inspection, the definitions of containment
and satisfiability (Definition 5.3, Definition 5.4, Definition 5.5, Definition 5.7) also apply to matrices and
codes over FQ. In particular, they apply to CAEL ⊆ F

N
Q .

5.3 Main Result

We now state and prove the central theorem of this section. Fix a reasonable L-LCL property P, and
Rin ≤ RP −ε for some ε > 0. Let ∆ = ε/2L be as defined above. Let TP denote the maximum number of
distinct matrices appearing in any local profile description V ∈ P. Let G be the bipartite graph obtained
from Claim 3.4 by setting

η =
∆

4TP
,

and

ζ =
δout

2TP
,

having degree

d = O

(

1

ζη2

)

= O

(

T 3
P

∆2 · δout

)

.
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For any integer N satisfying N > TP/δout, take G to have N vertices on both sides. Let Cin ⊆ F
d
q be

an Fq-linear code of rate Rin, where q is the minimum prime power guaranteed by Fact 5.30, and let
Cout ⊆ (FRind

q )N be an Fq-linear code having distance δout. By definition, φ is now an Fq-linear map of

the form φ : FRind
q → Cin.

Theorem 5.32. Let Cin, Cout, and G be as defined above. Furthermore, assume that Cin is a linear code
whose existence is guaranteed by Fact 5.30. Then, CAEL(Cin, Cout, G) ⊆ F

N
Q is an Fq-linear code that does

not satisfy P.

Proof. Since both Cout and the map φ are Fq-linear, it follows that CAEL is itself an Fq-linear code.

Assume for contradiction that CAEL satisfies P. Then, there is a V = (f1,M1), . . . , (fT ,MT )) ∈ P
such that CAEL contains V, which implies the existence of a matrix A ∈ F

N×L
Q , such that

1. A ⊆ CAEL,

2. A satisfies V, and

3. A has pairwise distinct columns.

Let the columns of A be pairwise distinct codewords c1, . . . , cL ∈ CAEL ⊆ F
N
Q . Note that we can

reinterpret these codewords as vectors in (Fdq)
N , and we choose to do so. We now perform three operations.

Firstly, we create Afl ∈ F
([N ]×[d])×L
q from A by flattening every column of A (see Definition 3.3) and then

collecting them in a matrix Afl. Therefore, for every i ∈ [L], Afl[][i] = (A[][i])fl. Secondly, we create

Aproj
fl ∈ F

([N ]×[d])×L
q by performing the projection operation on Afl (see Definition 3.1).

We now instantiate the objects required to perform the third operation. As R ≤ RP − ε ≤ RV − ε,
by Claim 5.20 there exists a (canonical) subspace WV for V. In particular, because

WV ∈ (L(FLq ) \ LDist(F
L
q )),

dimWV 6= L holds, as the only subspace of dimension L, F
L
q , lies in LDist(F

L
q ). Define a linear map

ψ : FLq → F
(L−dimWV)
q satisfying kerψ = WV . Note that because dimWV < L, this map is well-defined.

The third operation consists of applying ψ on each row of Aproj
fl . We denote the resultant matrix by

Aproj
ψ ∈ F

([N ]×[d])×(L−dimWV)
q . That is, Aproj

ψ satisfies

Aproj
ψ [(ℓ, i)][] = ψ(Aproj

fl [(ℓ, i)][])

for all ℓ ∈ [N ] and i ∈ [d].

We recall Definition 3.2, and note that Aproj
ψ (ℓ) denotes the submatrix of Aproj

ψ consisting of rows

indexed by vertex-edge pairs corresponding to the vertex ℓ ∈ [N ]. This submatrix lives in F
[d]×(L−dimWV)
q .

We now prove a claim stating that the submatrices Aproj
ψ (ℓ) corresponding to most left vertices in fact

satisfy V imp
∆ , for some V imp

∆ ∈ Rob∆(V imp).

Claim 5.33. There exists a set of indices L∗ ⊆ [N ] satisfying |L∗| > (1 − δout)N such that for every

ℓ ∈ L∗, there exists a V imp
∆ ∈ Rob∆(V imp) such that the matrix Aproj

ψ (ℓ) satisfies V imp
∆ .

We state the rest of the proof assuming Claim 5.33, whose proof is given below.

We now prove that because the columns of A are pairwise distinct, Aproj
ψ contains at least one non-

zero row. This is seen as follows: A ∈ (Fdq)
N×L has pairwise distinct columns, which implies that Afl

has pairwise distinct columns as well. Because Aproj
fl is obtained by applying a permutation on the rows

of Afl, the same applies for Aproj
fl . Therefore, for every i1, i2 ∈ [L], there is at least one row in Aproj

fl that
has differing entries on i1 and i2. In particular, this is true for a pair of indices of [L] on which every
vector in WV has identical entries, and such a pair of indices exists by virtue of WV ∈ (L(FLq )\LDist(F

L
q )).
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This implies that there exists a ℓ ∈ [N ] and a j ∈ [d] such that Aproj
fl [(ℓ, j)][] 6∈ WV . Thus, it is seen that

Aproj
ψ [(ℓ, j)][] 6= 0

L−dimWV .

This immediately implies that one of the columns of Aproj
ψ is non-zero. Denote the index of this

column by e ∈ [L− dimWV ]. Observe that the columns of Aproj
ψ are codewords in Cout ◦ Cin. Indeed, the

columns of Afl are (flattened) codewords of CAEL, and so the columns of Aproj
fl are codewords in Cout ◦ Cin.

It follows directly from the Fq-linearity of Cout and Cin that Cout ◦ Cin is also Fq-linear. Moreover, since

Aproj
ψ is obtained by applying an Fq-linear map to the rows of Aproj

fl , the columns of Aproj
ψ are Fq-linear

combinations of columns of Aproj
fl , and therefore are also codewords of Cout ◦ Cin. In particular, this holds

for the non-zero column Aproj
ψ [][e], and therefore is of the following form

(φ(c[1]), . . . , φ(c[N ]))⊤

where c is a codeword in Cout. This in turn implies that at least δoutN submatrices of the form Aproj
ψ (ℓ)

are non-zero, because the column indexed by e is non-zero for all such submatrices. Denote this set of
indices by S ⊆ [N ].

By Claim 5.33, and the fact that |S| ≥ δoutN , there is at least one index ℓ∗ ∈ (S ∩ L∗). Since the

columns of Aproj
ψ are codewords of Cout ◦ Cin, it follows that every column of the submatrix Aproj

ψ (ℓ∗) is a

codeword of Cin. Therefore, Aproj
ψ (ℓ∗) has the following properties:

1. Aproj
ψ (ℓ∗) ⊆ Cin,

2. there exists a V imp
∆ ∈ Rob∆(V imp) such that Aproj

ψ (ℓ∗) satisfies V imp
∆ (by Claim 5.33 and the fact that

ℓ∗ ∈ L∗), and

3. Aproj
ψ (ℓ∗) is non-zero (as ℓ∗ ∈ S).

This contradicts the fact that Cin is a code satisfying the guarantee mentioned in Fact 5.30.

Proof of Claim 5.33. Since A satisfies V = (f1,M1), . . . , (fT ,MT )), there is a witness MN (V) ∈ VN such
that

∀r ∈ [N ], A[r][] ∈ kerMr. (14)

For every t ∈ [T ], define
St := {r ∈ [N ] |Mr = Mt} .

This is the set of right vertices whose corresponding matrix in MN (V) is equal to Mt. By definition of
V, |St| = ftN for every t ∈ [T ]. Denote

Tβ := {t ∈ [T ] | ft > β} .

We now set β := ∆/(2TP), and restrict our attention to elements in Tβ . This is possible because the ft
corresponding to t 6∈ Tβ contribute only a small amount of mass. Precisely,

∑

t∈[T ]\Tβ

ft ≤ |[T ] \ Tβ | ·
∆

2TP
≤ ∆

2
, (15)

where the first inequality holds because |[T ] \ Tβ | ≤ T , and T ≤ TP by definition.

Fix some t ∈ Tβ . By the guarantee on graph G from Claim 3.4, we see that

|{ℓ ∈ VL | |Γ(ℓ) ∩ St| < (ft − η)d}| ≤ ζN =
δout

2TP
·N <

δout

T
·N.
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By applying a union bound argument over all t ∈ Tβ ,

|{ℓ ∈ VL | ∀t ∈ Tβ , |Γ(ℓ) ∩ St| ≥ (ft − η) d}| > (1− δout)N. (16)

Denote this set by L∗ ⊆ [N ], and note that |L∗| > (1− δout)N .

We now argue that for every ℓ ∈ L∗, the matrix Aproj
ψ (ℓ) satisfies some V imp

∆ ∈ Rob∆(V imp). Informally,
this can be seen as follows: fix some part ℓ ∈ L∗. Then, the proportion of incoming edges that are
adjacent to some right vertex set St is roughly equal to the fractional size of St, which is equal to
ft. This implies that the proportion of rows in Aproj(ℓ) that lie in kerMt is also roughly ft. Since

(Aproj(ℓ))[j][] ∈ kerMt ⇒ (Aproj
ψ (ℓ))[j][] ∈ kerMimp

t , we see that for all t, roughly ft fraction of rows of

Aproj
ψ (ℓ) lie in kerMimp

t . Because we need to account for the fact that these fractions may not be exact,

we see that the matrix satisfies a robust local profile description of V imp.

We now formalize this argument. Firstly, note that Eq. (14) implies the following

∀r ∈ [N ], ∀j ∈ [d], Afl[(r, j)][] ∈ kerMr. (17)

This can be seen by applying the following simple fact to each row of A.

Fact 5.34. If for vectors u ∈ F
L
Q and v ∈ F

L
q , 〈u, v〉 = 0 holds, then ufl · v⊤ = 0

d holds as well.

Observe that Eq. (17), along with the definition of ϕG now implies

∀ℓ, r ∈ [N ], ∀i, j ∈ [d], (ϕG(ℓ, i) = (r, j) ∧Afl[(r, j)][] ∈ kerMr) ⇐⇒ Aproj[(ℓ, i)][] ∈ kerMr. (18)

Fix an ℓ ∈ L∗. From Eqs. (16) and (18), we see that

∀t ∈ Tβ ,
∣

∣{i ∈ [d] | (Aproj(ℓ))[i][] ∈ kerMt}
∣

∣ ≥ (ft − η) d.

From the definition of Aproj
ψ ,

∀t ∈ Tβ ,
∣

∣

∣{i ∈ [d] | (Aproj
ψ (ℓ))[i][] ∈ kerMimp

t }
∣

∣

∣ ≥ (ft − η) d. (19)

Furthermore, we will denote the set

Zt :=
{

i ∈ [d] | Aproj
ψ (ℓ)[i][] ∈ kerMimp

t

}

.

Observe that Zt ⊆ [d], and moreover,
|Zt| ≥ ⌊(ft − η) d⌋ . (20)

Because ft > ∆/(2TP) and d ≥ 4TP/∆, we see that Eq. (19) implies |Zt| ≥ 1 for all t ∈ Tβ .

Now consider

V imp
∆ :=

(

(ft − (∆/(4TP)),M
imp
t )t∈Tβ

, (0,Mimp
t )t 6∈Tβ

, (|Tβ | ·∆)/4TP +
∑

t 6∈Tβ
ft,0)

)

.

As we have
|Tβ | ·∆
4TP

+
∑

t 6∈Tβ

ft ≤
∆

4
+

∆

2
≤ ∆,

where the first inequality follows from Eq. (15), we see that V imp
∆ belongs to Rob∆(V imp). We now prove

that Aproj
ψ (ℓ) satisfies V imp

∆ . We do so by creating a local profile Md(V imp
∆ ) ∈ (V imp

∆ )d and then showing

that Aproj
ψ (ℓ) satisfies V imp

∆ with Md(V imp
∆ ) as a witness. The local profile Md(V imp

∆ ) is created as follows:

(i) For every t ∈ Tβ , define M
imp
t to be the corresponding matrix for some

⌊(

ft −
∆

4TP

)

d

⌋

rows indexed by i ∈ Zt. These rows are guaranteed to exist by Eq. (20), and the fact that η =
∆/4TP .
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(ii) For the rest of the at most

d−
∑

t∈Tβ

⌊(

ft −
∆

4TP

)

d

⌋

≤ d−
∑

t∈Tβ

((

ft −
∆

4TP

)

d− 1

)

= d−
∑

t∈Tβ

ft · d+
|Tβ | ·∆ · d

4TP
+ |Tβ |

≤



1−
∑

t∈Tβ

ft



 · d+ ∆ · d
4

+ TP

≤
∑

t 6∈Tβ

ft · d+
∆ · d
2

≤ ∆ · d

rows, let the corresponding matrix be 0. Note that the last inequality follows from Eq. (15).

It is now seen that Aproj
ψ (V pL ) satisfies V imp

∆ , with M(V imp
∆ )d as a witness. Indeed, this is seen to follow

from Eq. (19) for the rows corresponding to item (i). For the other rows, note that every row in Aproj
ψ (ℓ)

belongs to ψ(FLq ) ⊆ F
(L−dimWV)
q = ker0(L−dimWV).

Thus, we see that for each ℓ ∈ L∗, Aproj
ψ (ℓ) satisfies V imp

∆ .

6 Consequences

We state an important corollary of Theorem 5.32.

Corollary 6.1. For a reasonable L-LCL property P, let Rin = RP − ε for some ε > 0. Let Cin, Cout,
and G be as defined in Theorem 5.32. Furthermore, let Cout ⊆ (FRind

q )N be an Fq-linear code with rate

Rout = 1− ε and distance δout ≥ ε3. Then, CAEL(Cin, Cout, G) ⊆ F
N
Q is an Fq-linear code that does not

satisfy P, has rate RAEL > RP − 2ε, and

d = O

(

L2 · T 3
P

ε5

)

. (21)

Additionally, CAEL(Cin, Cout, G) can be constructed in time poly(N).

Proof. The Fq-linearity of CAEL, and the fact that it does not satisfy P are established in Theorem 5.32.
The rate is given by

RAEL =
logQ(|CAEL|)

N
.

Indeed, it is easy to see that |CAEL| = |Cout| = qRinRoutNd. Recalling that Q = qd, a simple calculation
gives RAEL = Rin · Rout = (RP − ε)(1 − ε) > RP − 2ε. The value for d is obtained by recalling that
d = O(1/ζη2), η = ∆/(4TP), ζ = δout/2TP ,∆ = ε/2L, and plugging in the value for δout in ζ.

We note that explicit constructions of Fq-linear codes having rate 1 − ε and distance ε3 that are
constructible in time poly(N) can be obtained by using Tanner codes (see Corollary 11.4.8 in [GRS23]).
Moreover, the graph G can be constructed in time poly(N), by Claim 3.4. By Lemma 5.31, Cin can be
constructed in time qpoly(d,L) ≤ poly(N). Upon invoking Observation 3.5, we see that CAEL(Cin, Cout, G)
can be constructed in time poly(N).

We now present a general definition of list-recovery, from which the special cases of interest can be
derived.
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Definition 6.2 (List Recovery with Erasures). For integers ℓ, L, where ℓ ≤ L, and constants 0 ≤ σ ≤ ρ ≤
1, we say that a code C ⊆ Σn is (ρ, σ, ℓ, L)-average radius list-recoverable with erasures if the following
holds. For every collection of sets S1, . . . , Sn ⊆ (Σ ∪ ⊥) satisfying

1. ∀i ∈ [n], |Si| ≤ ℓ, and

2. ∃J ⊆ [n] satisfying |J | ≤ σn, such that Sj = {⊥} for all j ∈ J ,

we have for all pairwise distinct codewords c1, . . . , cL+1 ∈ C:
∑

k∈[L+1]

∑

i∈[n]\J 1[ck[i] ∈ Si]

L+ 1
≤ (1− ρ− σ)n. (22)

We say that C is (ρ, σ, ℓ, L)-list-recoverable with erasures if

min
k∈[L+1]

|{i ∈ ([n] \ J) | ck[i] ∈ Si}| ≤ (1− ρ− σ)n.

Clearly, a code that is (ρ, σ, ℓ, L)-average radius list-recoverable with erasures is also (ρ, σ, ℓ, L)-list-
recoverable with erasures.

Definition 6.3 (List Recoverability). For integers ℓ, L, where ℓ ≤ L, and constant 0 ≤ ρ ≤ 1, we say that
C is (ρ, ℓ, L)-average radius list-recoverable if C is (ρ, 0, ℓ, L)-average radius list-recoverable with erasures.

Definition 6.4 (List Decodability). For an integer L and constants 0 ≤ σ ≤ ρ ≤ 1, we say that a code
C ⊆ Σn is (ρ, σ, L)-average radius erasure list-decodable if C is (ρ, σ, 1, L)-average radius list-recoverable
with erasures.

We say that C is (ρ, L)-average radius list-decodable if C is (ρ, 1, L)-average radius list-recoverable.

Definition 6.5 (Zero Error List Recoverability). For integers ℓ, L, where ℓ ≤ L, we say that a code
C ⊆ Σn is (ℓ, L)-zero error list-recoverable if C is (0, ℓ, L)-average radius list-recoverable.

Definition 6.6 (List Recovery from Erasures). For integers ℓ, L, where ℓ ≤ L, and a constant 0 ≤ σ ≤ 1,
we say that a code C ⊆ Σn is (σ, ℓ, L)-erasure list-recoverable if C is (0, σ, ℓ, L)-list recoverable with
erasures.

Definition 6.7 (Perfect Hash Matrix). For integer t ≥ 2, a code C ⊆ Σn of rate R is defined to be a

(n, |Σ|Rn , t)-perfect hash matrix if it is (0, t− 1, t− 1)-list-recoverable.

For integers ℓ, L, where ℓ ≤ L, and constants 0 ≤ σ ≤ ρ ≤ 1, let P(ρ, σ, ℓ, L) be the property of not
being (ρ, σ, ℓ, L)-average radius list-recoverable with erasures.

Claim 6.8. Property P(ρ, σ, ℓ, L) is a reasonable (L+ 1)-LCL property. In particular, we have

κq(P(ρ, σ, ℓ, L)) = logq(ℓ+ 1)(L+1).

Furthermore, TP(ρ,σ,ℓ,L) ≤ (ℓ+ 1)(L+1).

Proof. For convenience, we use the shorthand P to denote P(ρ, σ, ℓ, L) throughout this proof. In order
to prove this claim, we need to construct a set P of (L+ 1)-local profile descriptions such that a code C
is not (ρ, σ, ℓ, L)-average radius list-recoverable with erasures if and only if it contains some local profile
description from P. Note that the local profile descriptions we create will depend on the characteristic
of the field over which the codes exist, and we will denote that characteristic by p.

For every subset K ⊆ [L+ 1], denote the set of partitions of K consisting of at most ℓ parts by PK .
For every subset K ∈ (2[L+1] \ ∅) and partition P ∈ PK , create the matrix M(K,P ), whose rows belong
to F

L+1
p , and are linear constraints that, for any prime power q of p, are satisfied by exactly the vectors

in the following set:
{

v ∈ F
L+1
q | ∀i, j ∈ K, i, j belong to the same part of P ⇒ v[i] = v[j]

}

. (23)
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Next, create the matrix 0, whose kernel is all of FL+1
q , and associate with it a fraction f0.

We denote the fraction associated with the matrix M(K,P ) by fK,P . Create a local profile description
for every set of associated fractions that satisfy

∀K ∈
(

2[L+1] \ ∅
)

, ∀P ∈ PK , 0 ≤ fK,P ≤ 1, (24)

f0 ≥ σ, (25)
∑

K∈(2[L+1]\∅)

∑

P∈PK

|K| · fK,P > (1− ρ− σ)(L+ 1), (26)

and
f0 +

∑

K∈(2[L+1]\∅)

∑

P∈PK

fK,P = 1. (27)

Lastly, we collect these local profile descriptions in a set P.

We first prove that if a code C ⊆ F
n
q contains some

V =
(

(fK,PK
,M(K,PK))K∈(2[L+1]\∅),P∈PK

, (f0,0)
)

∈ P,

then it is not (ρ, σ, ℓ, L)-average radius list-recoverable with erasures. The code C containing a V ∈ P
implies the existence of a matrix A ∈ F

n×(L+1)
q such that

1. A ⊆ C,

2. A satisfies V, and

3. A has pairwise distinct columns.

By (1) and (3), the columns of A are pairwise distinct codewords in C. By (2), we know that for every non-
empty K and partition P ∈ PK , there are a fK,PK

fraction of rows in A whose entries agree according
to the constraints set forth by M(K,PK). The constraints say that the number of distinct elements
appearing in the entries specified by K is at most ℓ. Thus for each coordinate i ∈ [n] corresponding to
the matrix M(K,PK), we can create a subset Si ⊆ Fq such that |Si| ≤ ℓ, and for all k ∈ K, we have
A[i][k] ∈ Si. According to Eq. (27), such a subset Si can be created for (1 − f0)n coordinates. For the
remaining f0n coordinates, we create the set {⊥}. Denote this set of coordinates by J . According to
Eq. (26),

∑

i∈[n]\J

∑

k∈[L+1]

1[A[i][k] ∈ Si] ≥
∑

K∈(2[L+1]\∅)

∑

P∈PK

|K| · fK,P · n > (1− ρ− σ)(L+ 1)n.

Therefore, we see that for a set of L+ 1 pairwise distinct codewords in C, Eq. (22) is not satisfied, hence
C is not (ρ, σ, ℓ, L)-average radius list-recoverable with erasures.

We now prove the other direction. Suppose that the code C ⊆ F
n
q is not (ρ, σ, ℓ, L)-average radius

list-recoverable with erasures. Then, there exists a collection of sets S1, . . . , Sn ⊆ (Fq ∪ ⊥) satisfying

1. ∀i ∈ [n], |Si| ≤ ℓ, and

2. ∃J ⊆ [n], satisfying |J | ≤ σn, such that Sj = {⊥} for all j ∈ J .

Furthermore, there exists a matrix A ∈ F
n×(L+1)
q satisfying

1. A ⊆ C,

2. A has pairwise distinct columns, and

3.
∑

i∈[n]\J

∑

k∈[L+1] 1[A[i][k] ∈ Si] > (1− ρ− σ)(L+ 1)n.
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For every coordinate i ∈ [n] \ J , we can assign i a type (K,P ), where K is a subset of [L + 1] and P
is some partition in PK . The type assigned to i will be (K = {k ∈ [L+ 1] | A[i][k] ∈ Si} , P ), where P
is a partition of K such that for every k1, k2 belonging to the same part, A[i][k1] = A[i][k2] holds. We
now create a matrix M(K,P ) for each type (K,P ), whose entries belong to Fp and whose rows consist
of linear constraints that are satisfied by vectors in F

L+1
q that belong to the set described in Eq. (23).

Clearly, row A[i][] satisfies the constraints of M(K,P ) if its type is (K,P ). The fraction of rows having
type (K,P ) is denoted by fK,P . Therefore, from (3), we see that

∑

K∈(2[L+1]\∅)

∑

i∈[n]\J

K · 1[{k ∈ [L+ 1] | A[i][k] ∈ Si} = K] > (1− ρ− σ)(L+ 1)n. (28)

We also see that if the equality {k ∈ [L+ 1] | A[i][k] ∈ Si} = K is satisfied for some coordinate i and K,
then there is a matrix M(K,P ) for some P ∈ PK such that row A[i][] satisfies the constraints set by
M(K,P ). Thus, we see that Eq. (28), upon being divided by the block length n, is exactly the same as
Eq. (26).

For those coordinates that are present in J , and also those coordinates for which K = ∅, we assign
the matrix 0, and note that f0 is at least σ. We then see that Eq. (24), Eq. (25), and Eq. (27) are also
satisfied, and thus A satisfies a local profile description that belongs to P.

Lastly, we prove that P is a reasonable (L + 1)-LCL property. This is seen by observing that the
number of matrices of the form M(K,P ), as constructed above, is at most (ℓ + 1)(L+1), which is an
upper bound on the number of partitions consisting of at most ℓ parts, of every subset of [L+ 1]. Thus,
TP ≤ (ℓ+ 1)(L+1), and the number of local profiles associated with this property is at most

(ℓ+ 1)(L+1)n = qlogq(ℓ+1)(L+1)·n,

and we see that κq(P) = logq(ℓ+ 1)(L+1) goes to zero as q → ∞.

We then obtain the following corollary.

Corollary 6.9. For P(ρ, σ, ℓ, L), let Cin, Cout, G be as defined in Theorem 5.32. Furthermore, let Cout ⊆
(FRind
q )N be a code with rate Rout = 1 − ε and distance δout ≥ ε3. Then, CAEL(Cin, Cout, G) ⊆ F

N
Q is a

Fq-linear code that is (ρ, σ, ℓ, L)-average radius list-recoverable with erasures, has rate RAEL > RP − 2ε,

and can be constructed in time poly(N). Additionally, we have q ≤ (ℓ+ 1)(L+1)· 8ε , and Q = qd, where

d = O

(

L2 · (ℓ+ 1)3(L+1)

ε5

)

.

Proof. By Claim 6.8, P(ρ, σ, ℓ, L) is a reasonable property. We now turn to set a value for q so that

Eq. (13) is satisfied. For q = (ℓ+ 1)(L+1)· 8ε , we see

logq(ℓ+ 1)(L+1) + logq 2−
ε

4
=
ε

8
+

1

log2 q
− ε

4
< 0

Therefore, Corollary 6.1 implies that CAEL does not satisfy P(ρ, σ, ℓ, L), and thus, is (ρ, σ, ℓ, L)-average
radius list-recoverable with erasures.

Finally, Eq. (21) from Corollary 6.1, along with the value of TP(ρ,σ,ℓ,L) from Claim 6.8 implies

d = O

(

L2 · (ℓ+ 1)3(L+1)

ε5

)

.

Plugging the value into Q = qd gives us the final alphabet size.

We now record several results, corresponding to the special cases defined above. The proofs for them
follow from Corollary 6.9. The first details parameters for list recovery at capacity.
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Corollary 6.10 (Explicitly Achieving Capacity for List Recovery). For a fixed input list size ℓ, and a
fixed radius ρ > 0, let Lρ,ℓ be the smallest output list size such that RP(ρ,0,ℓ,Lρ,ℓ) ≥ 1− ρ. For ε > 0, let
R := 1−ρ− ε ≤ RP(ρ,0,ℓ,Lρ,ℓ)− ε. The code CAEL as in Corollary 6.9 is (1−R− ε, ℓ, Lρ,ℓ)-average radius

list-recoverable, with rate RAEL > RP(ρ,0,ℓ,Lρ,ℓ) − 2ε, and alphabet size at most exp
(

(Lρ,ℓ/ε)
O(Lρ,ℓ)

)

.

Corollary 6.11 (Explicit Zero Error List Recovery). For ε > 0 and a fixed input list size ℓ and rate
R, let LR,ℓ be the smallest output list size such that RP(0,0,ℓ,LR,ℓ) − ε ≥ R. Then, the code CAEL as in
Corollary 6.9 is (ℓ, LR,ℓ)-zero error list recoverable, with rate RAEL > RP(0,0,ℓ,LR,ℓ) − 2ε, and alphabet

size at most exp
(

(LR,ℓ/ε)
O(LR,ℓ)

)

.

Corollary 6.12 (Explicit List Recovery from Erasures). For constants ε > 0, 0 ≤ σ ≤ 1, a fixed input list
size ℓ and rate R, let Lσ,R,ℓ be the smallest output list size such that RP(0,σ,ℓ,Lσ,R,ℓ)−ε ≥ R. Then, the code
CAEL as in Corollary 6.9 is (σ, ℓ, Lσ,R,ℓ)-erasure list recoverable, with rate RAEL > RP(0,σ,ℓ,Lσ,R,ℓ) − 2ε,

and alphabet size at most exp
(

(Lσ,R,ℓ/ε)
O(Lσ,R,ℓ)

)

.

Corollary 6.13 (Explicit Perfect Hash matrices). For an integer t ≥ 2, let CAEL be the code as in
Corollary 6.9 for the property P(0, 0, t− 1, t− 1). Then, CAEL is a code of rate R = RP(0,0,t−1,t−1) − 2ε

that is (0, t − 1, t − 1)-list recoverable. The alphabet size is at most exp((t/ε)O(t)) and moreover, the
codewords of CAEL, when arranged as columns in a N ×QRN matrix, form a perfect hash matrix.

Proof. The list-recoverability of CAEL follows from Corollary 6.9. We prove that the set of codewords of
a (0, t − 1, t − 1)-list-recoverable code can be arranged as columns in a matrix to form a perfect hash
matrix. Indeed, (0, t− 1, t− 1)-list recoverability implies that the number of pairwise distinct codewords
having at most t − 1 distinct entries in every row is at most t − 1. This implies that for any set of t
codewords, there exists at least one index on which the t codewords have pairwise distinct entries.
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