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Abstract

Recently, Goos et al. [GHJ"24] showed that Res A uSA = RevRes in the following sense: if
a formula ¢ has refutations of size at most s and width/degree at most w in both Res and uSA,
then there is a refutation for ¢ of size at most poly(s-2%*) in RevRes. Their proof relies on the
TFNP characterization of the aforementioned proof systems.

In our work, we give a direct and simplified proof of this result, simultaneously achieving
better bounds: we show that if for a formula ¢ there are refutations of size at most s in both
Res and uSA, then there is a refutation of ¢ of size at most poly(s) in RevRes. This potentially
allows us to “lift” size lower bounds from RevRes to Res for the formulas for which there are
upper bounds in uSA. This kind of lifting was not possible before because of the exponential
blow-up in size from the width.

Similarly, we improve the bounds in another intersection theorem from [GHJ*24] by giving
a direct proof of Res A uNS = RevResT.

Finally, we generalize those intersection theorems to some proof systems for which we cur-
rently do not have a TFNP characterization. For example, we show that Res(®) A u-wRes(®) =
RevRes(®), which effectively allows us to reduce the problem of proving Pigeonhole Principle
lower bounds in Res(®) to proving Pigeonhole Principle lower bounds in RevRes(®), a poten-
tially weaker proof system.

1 Introduction

Propositional proof systems are used to certify that given Boolean formulas are unsatisfiable. Cook
and Rekhow [CR79] noticed that NP # coNP implies that for every propositional proof system,
there is a family of hard formulas that require superpolynomial proof size. However, currently, we
cannot prove superpolynomial proof-size lower bounds for many particular proof systems.

In this paper, we study a new promising direction in proving proof complexity lower bounds,
which is called intersection theorems. Intersection theorems in proof complexity take their origin
from TFNP intersection theorems. Initially, it was proved by Fearnley et al. [FGHS22] that CLS =
PPAD N PLS. After that, many other TFNP intersections were proved [GHJ 24, LPR24]. Given
those TFNP intersections and the proof complexity characterizations of the corresponding TFNP
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classes, one can naturally get proof complexity intersection theorems. Due to the nature of these
characterizations, all the intersection theorems have the following form: suppose that formula ¢
has a refutation of size s and width (or degree) d in both proof systems P and (. Then there is a
refutation of size poly(s - 2") and width/degree O(d) in some other proof system H.

[GHJ 24, LPR24] showed that those kind of intersection theorems actually make sense by
providing an example of proof systems P,Q and H, where P A QQ = H, but H is strictly weaker
than both P and Q). Now, imagine that for some formula ¢ we were able to prove a superpolynomial
size lower bound in the proof system H and a polynomial size upper bound in the proof system
Q. Ideally, we would like to use both of these facts to prove a size lower bound in the system P.
Unfortunately, the aforementioned intersection theorems only give us a max(w,log s) lower bound
in this case.

In this paper, we address this issue by giving a simplified and direct proof that captures all known
proof complexity intersection theorems, without getting an exponential size blow-up from width.
Moreover, we extend intersection theorems to proof systems without known TFNP characterizations
or even lower bounds.

1.1 Our Results

Blackboard Proofs. In this work, we introduce a new framework for proving intersection theo-
rems, which will use a blackboard as the key element. Informally, this means that we consider proof
systems using some inference rules, and every time we apply the inference rule in our derivation,
we replace the premises with the conclusion. This notion has some similarities with bounded clause
space (see [ABSAWO00, BSG01, ET01]), although they are not directly related.

This framework allows us to define several classes of proof systems:

e Reversible proof systems. These proof systems will be the base of our work. The key property
of these proof systems is that if we can derive a collection of clauses F from G, then we
can also derive G from F. The most natural example of such a proof system is Reversible
Resolution |[GHJ'24].

e Proof systems with the Copy rule. These proof systems allow to replace any clause with two
copies of the clause. Intuitively, this rule serves to remove the blackboard property. Most of
the classical systems such as Resolution and AC-Frege belong to this class.

e Proof systems with catalyst. This is a new class of proof systems, usually with a reversible and
strongly sound set of rules, that allows the initial blackboard state to contain some catalyst,
which is some arbitrary set of clauses. However, to ensure soundness, we require the final state
of the board also to contain the clauses of the catalyst. Reversible Resolution with a catalyst,
which is equivalent to Unary Weighted Resolution [BBL24], serves as a prime example of a
proof system from this class.

Informally, our main Theorem can be stated as follows:

Theorem 1.1 (Informal statement of Theorem 3.1). Let RevP be a proof system formed by a
reasonable set of reversible rules R, P be a proof system formed by R + Copy, and CatP be a
catalytic version of RevP. Then

RevP is p-equivalent to P A CatP.



We also prove this theorem for the case of proof systems with terminals, i.e. proof systems
in which the final state of the blackboard consists of 1 and some weakenings of clauses from the
initial formula ¢.

Corollaries and parameters Theorem 1.1 immediately implies the following corollaries:
e RevRes is p-equivalent to Res A uSA (Theorem 4.1).
e RevRes(k) is p-equivalent to Res(k) A u-wRes(k) (Theorem 4.5).
e Informally, reversible bounded depth Frege F is p-equivalent to FC°PY o CatF (Theorem 4.6).
e RevRes(®) is p-equivalent to Res(®) A u-wRes(®) (Theorem 4.3).

All these corollaries also have versions with terminals. The first two corollaries can be viewed as
improvements of similar results from [GHJ'24, DR23], achieving better parameters. More precisely,
in Theorem 1.1, we prove p-equivalence in a more general sense compared to the previous works:
we show that if there are refutations of size S in both P and CatP, then there is a refutation of
size poly(S) in RevP, while in previous results there was a 2°(*) blow-up in the size.

The latter two corollaries are novel, and achieving them through TFNP seems unlikely because
we do not have a TFNP characterization for these proof systems.

We use our intersection theorems to reduce the problem of proving lower bounds in stronger
systems to some potentially weaker systems. For example, we can show the following corollary:

Corollary 1.2 (Informal statement of Corollary 4.4). Superpolynomial lower bounds for Pigeonhole
Principle in RevRes(®) imply superpolynomial lower bounds for Pigeonhole Principle in Res(®).

This corollary raises the following natural question:

Question 1.3. Can we prove superpolynomial lower bounds for Pigeonhole Principle in

RevRes(®)?

Pigeonhole principle is one of the most famous examples of an unsatisfiable CNF formula, which
is hard to refute in many classical proof systems (see [Hak85, Raz98, BSWO01]). Although it is not
clear whether RevRes(®) is weaker than Res(@®), it seems to be highly likely due to the fact that
RevRes is exponentially weaker than Resolution (see [GHJ"24]). Given the recent progress on
Res(®) (see [AI25, BCD24, EI25, BC25]), it might be possible that RevRes(®) is a right candidate
for solving the long-standing question of proving Res(®) lower bounds.

Other intersection theorems Although our framework covers most of the known intersection
theorems, there are some theorems from [LPR24] which cannot be expressed in our language.
However, in the proof complexity formulation, the proofs are quite succinct, as we show in Section 5.

1.2 Organization of the paper

In Section 2, we define the framework we work with, provide formal definitions of the proof systems,
and give basic examples of them. In Section 3, we explain the techniques used in the intersection
theorem and provide the proof itself. In Section 4, we explore the direct applications of our main
result. Finally, we give a direct proof of the other intersection theorems in Section 5.



2 Preliminaries

We start by defining a general framework for the proof complexity intersection theorems, which is
slightly different from the one used in both [GHJ"24] and [LPR24] in the sense that it does not
require the size of the resulting refutation to depend on anything besides the sizes of the initial
refutations.

Following Cook and Reckhow [CR79], a propositional proof system for CNF is a polynomial-time
algorithm P: {0,1}* x {0,1}* — {0,1} such that:

o If ¢ € {0,1}* is an encoding of unsatisfiable CNF, then there is a refutation 7 such that

P(p,m) = 1.

e If v is an encoding of a satisfiable CNF or not an encoding of a CNF, then for any refutation
™
P(p,m) = 0.

We say that the size of the refutation 7 is the length of its binary encoding. For an unsatisfiable
CNF formula ¢ we denote by Sizep () the size of the smallest 7 such that P(p,7) = 1.

Definition 2.1 (Proof system intersection). Let P and @ be two propositional proof systems. The
proof system P A @ is defined as follows: for a CNF formula ¢, any refutation in P A @ is a pair
(¢, &), where ( is a valid refutation of ¢ in P and ¢ is a valid refutation of ¢ in Q.

We say that a propositional proof system P p-simulates a propositional proof system @ if there
is a polynomial-time function f: {0,1}* x {0,1}* — {0, 1}* such that

P(p,m) =1 = Q(p, f(p,m)) = 1.

If P p-simulates ) and @ p-simulates P, we say that P and ) are p-equivalent.

2.1 Inference-based proof systems

In this work, we focus on inference-based proof systems. One of the best-studied examples of
inference-based proof systems is the Resolution proof system, which operates using clauses. A
clause is a finite disjunction of literals, meaning Boolean variables x or their negations —x. The
empty clause is represented by L.

The system can be defined as follows.

Definition 2.2 (Resolution). Let ¢ = C1 A Cy A --- A Cy, be an unsatisfiable CNF formula over
variables z1,...,z,. A Resolution refutation of ¢ is a sequence of clauses Py, Ps,..., P., where
P, = 1 and each P; is either equal to one of the C; or is derived by one of the following rules:

Avz AV -z
A

(Cut) (Weakening)

VB v (Excluded Middle).

The size of the Resolution derivation is r (up to a polynomial factor in the sense of Cook and
Reckhow), and the width of the derivation is the maximum width (that is, the number of literals)
among the P;.



Remark 2.3. There are two primary methods for defining Resolution: one involves viewing clauses
as sets, and the other involves viewing clauses as multisets, allowing for the derivation of the
excluded middle. In this paper, we choose the latter method, so clauses such as x V x V y may
potentially appear in the derivation. For example, to derive z V A from = V x V A, we can use
following derivation.

Excluded Middle

_rvor Weakening
zVaVA zV-zVA
Cut

xV A

We consider several extensions and restrictions of Resolution. Some of them operate with more
general entries. We define those first.

Disjunctions of terms We consider more general entities such as disjunctions of XORs, dis-
junctions of k-conjunctions, or even AC%-formulas with a top OR gate. All these entities share a
common feature: a top OR gate.

For the set of variables x1, x2, ..., x, we define a collection of terms T, as a collection of binary
strings, encoding functions fr: {0,1}" — {0, 1}, including functions equal to x; and —x; for all i.
Given T = |,, Tn, we naturally define 7T-clauses as disjunctions of terms from 7,, for some n: each
disjunction of terms D =Ty V Ty V --- V T}, corresponds to a function fp = fr, V fr, V---V fr.
We denote the collection of all T-clauses as D(T). Most of the time, we omit the parameter 7 in
our notation and just write “clauses” instead. By the size of a clause we denote the total length of
all its terms, interpreted as binary strings.

Although we do allow repetitions of terms, we do not distinguish between two disjunctions
if they differ only by a permutation (i.e., 71 V Ty = To V T1). D(T) includes the empty clause
corresponding to the empty disjunction (and equal to the constant 0), which we also denote by L.

If the collection of terms 7 admits a notion of width, we define width of a T-clause as the sum
of widths of terms it contains.! The system of disjunctions of terms Dy, Ds,..., D, € D(T) is
called unsatisfiable if

fDl/\sz/\”-/\kaEO.

Inference rules An inference rule is a pair (F,G), where both F and G are multisets of clauses.
The clauses in F are called premises, and the clauses in G are called conclusions.

Definition 2.4. We say that a set of inference rules R is stable under weakening, if for each rule
(F,G) and term T, if (F,G) € R, then (FVT,GVT) € R, where F VT denotes the collection of
clauses F'V T for all F € F.

Blackboard derivations In this work, we consider blackboard inference-based proof systems,
where each time we apply an inference rule, we replace the premises with the conclusions. So, at
each particular moment of time, we maintain a multiset of clauses.

Definition 2.5 (Soundness). An inference rule F F G is sound if any truth assignment that satisfies
all the terms in F, also satisfies all the terms in G.

1Usually, the width of a term is constant 1.



Definition 2.6 (Blackboard inference-based derivation). Given a set of sound inference rules R,
an initial multiset of clauses £, and a goal multiset of clauses H, a derivation of H from L, using
the rules in R, is a sequence of multisets of clauses L1, Lo, ..., L;, where

L] Elzﬁandﬁt:H.

e For 1 <i <t L;is derived from £;_1 by one of the rules from R in the sense that if this rule
can derive a multiset of clauses G from F, then F is a subset of £;_1 and

L, = (»Ci—l \f) uUg.

The length of this derivation is ¢t and the size is the total size of all clauses appearing in premises
and conclusions of the rules applied in the derivation. The width is the maximum width of a term
appearing in £; (if it is possible to define such a measure for a clause).

Remark 2.7. The size in Definition 2.6 is the same as in the Cook-Reckhow definition. In most
cases, the size and the length of the derivation differ only by a polynomial factor. However, even
in other cases, all of our theorems preserve both size and length, even though we state them only
for size.

Now we are ready to define blackboard proof systems.

Definition 2.8 (Blackboard proof system). We say that the collection of sound inference rules R
forms a blackboard proof system if for any unsatisfiable collection of terms P = {C1,Cs,...,Cy,}
there exist multisets of thems £ and H such that

e If C €L, then C € P.

e | ¢ H and there is a derivation with rules from R of H from L.

2.2 Reversible rules, copy rule, and applications of weakening

Due to the nature of our work, we consider some particular classes of rules.

Definition 2.9 (Strong soundness). An inference rule F = G is strongly sound if for any truth
assignment, the number of falsified clauses in F equals the number of falsified clauses in G.

Definition 2.10 (Reversible rules). We say that a collection of rules R is reversible if
e All the rules in R are strongly sound.
e For any pair (F,G) € R, the pair (G, F) also belongs to R.

Definition 2.11 (Copy rule). By the copy rule, we mean the following rule:

_C
c C
Remark 2.12. The Copy rule is a sound rule, but not strongly sound.



Definition 2.13 (Efficient weakening). Given a sound blackboard proof system P, we say that
clause A is a weakening of clause B if there exists a derivation in P that starts with the single
clause A and obtains a multiset of clauses containing B.

We say that a proof system admits efficient weakening if the system is stable under weakening
and for any clauses C' and D there exists a derivation of C'V D from C of size polynomial in |C|+|D|
and width equal to the width of C' Vv D (if the notion of width is applicable).

Definition 2.14 (Inference with terminals). Given an unsatisfiable formula ¢, its refutation £ in a
blackboard proof system P is called an inference with terminals if the last step Ly of the inference
consists of exactly one copy of the empty clause L and weakenings of (not necessarily distinct)
clauses of .

Examples of proof systems:

e Reversible Resolution (RevRes) is a blackboard proof system with the following two strongly
sound reversible rules.

¢ (Reversible Weakening) Cvae CV-x (

(Excluded Middle) VT Reversed Excluded Middle)

Reversible Cut)

xV —x

e Resolution (Res) has the same rules as RevRes with the addition of the copy rule. One can
easily observe that this definition is equivalent to Definition 2.2.

e Reversible Resolution with Terminals (RevResT) has the same rules as RevRes, but has a
restriction from Definition 2.14 of the last configuration of the board.

Note that all of the aforementioned proof systems admit efficient weakening in the sense of Defini-
tion 2.13.
2.3 Catalytic proof systems

We also need another generalization of strongly sound blackboard proof systems: catalytic proof
systems.

Definition 2.15. A proof system @ is a catalytic version of a strongly sound blackboard proof
system P if its proofs have the following form. Given an unsatisfiable formula ¢, the proof starts

with a collection £ of possibly repeated clauses of ¢ and arbitrary catalytic clauses D1, Ds, ..., Dg.
Then, it proceeds with a blackboard derivation in P that ends in a state £; that consists of the
empty clause L, all catalytic clauses D1, Ds, ..., Dy, and possibly some other clauses.

Remark 2.16. The strong soundness of P ensures that the number of falsified clauses is the same
across all states £; for any substitution. Therefore, since L is falsified by any substitution and
catalytic clauses appear both in £ and L;, the refutation exists only for unsatisfiable formulas.
Thus, catalytic proof systems are sound and complete.

Similarly to blackboard proof systems, we can also define a version of the derivation with
terminals for catalytic proof systems.



Definition 2.17 (Catalytic derivation with terminals). Similarly to Definition 2.14, we say that
a derivation in a catalytic proof system is a catalytic derivation with terminals if the last step
L; consists of exactly one copy of the empty clause L, all catalytic clauses Dy, Do, ..., Dy, and
weakenings of clauses of the formula ¢.

Examples of catalytic proof systems:

e (Clatalytic Reversible Resolution is the catalytic version of the RevRes proof system. We show
in Appendix A that this system is equivalent to unary weighted Resolution from [GHJ'24]
(u-wRes), which is also equivalent to uSA (see [BBL24]).

o Catalytic Reversible Resolution with Terminals is the catalytic version of the RevRes proof
system with terminals. This proof system is equivalent to unary weighted Resolution with
Terminals from [GHJ'24] (u-wResT) (see Appendix A), which is also equivalent to uNS
(see [BBL24)).

3 Main intersection theorem

In this section, we prove the following theorem:

Theorem 3.1. Suppose that the set of rules R over D(T) is reversible and admits efficient weak-
ening. Let RevP be the proof system formed by R, P be the proof system formed by R + Copy, and
CatP be the catalytic version of RevP. Then

RevP is p-equivalent to P A CatP.

Moreover, if CatPT is the catalytic version of RevP with terminals and RevPT is RevP with
terminals, then
RevP? is p-equivalent to P A CatP™.

More precisely, for any CNF ¢ if there are proofs of size at most S and width at most w in both P
and CatP (or CatPT), then there is a proof of size O(poly(S)) and width at most O(w) in RevP
(RevP™, respectively).

First, we prove the statement without the terminals, and after that, we show how to extend the
proof for the version with terminals. Here is a high-level idea of the proof without terminals:

e We want to directly simulate a P derivation in RevP step by step. We cannot do it directly
since there is no way to simulate the Copy rule.

e To overcome this issue, instead of deriving one copy of each clause in the P derivation, we
derive S copies of the clause at a time.

e Given S copies of an arbitrary clause C' and a catalytic refutation of ¢ of size .S, we will show
that we can derive S + 1 copies of C' with an additional use of clauses from . Formally, this
statement is proved in Lemma 3.2. This allows us to efficiently simulate the Copy rule.



Proof. We begin by proving the version of Theorem 3.1 without terminals. Throughout the proof,
we will use the following notation: by k- A we denote k copies of the clause A. For a multiset of
clauses £ = {Ay,..., Ay}, we define

kE-L=k-AiUk-AyU---Uk- A,

For a formula ¢ = C; VCy V- -+ V Oy, we have a P derivation Ny, N, ..., N; of size at most S
and width at most w, where Ny consists of the clauses of ¢ and L € N;. Our goal is to simulate
each step of this derivation in RevP. We will show that, given a blackboard state M; such that

we can derive with a poly(.S) size derivation, given unlimited access to clauses from ¢, a state M,
such that
S - Nit1 € Miq.

Equivalently, this means that we can derive with a poly(S) size derivation a state M,;y; from
M; UG;, where all the G; C poly(S) - {C1,Co,...,Cy}. Having this derivation, we can construct a
RevP-derivation where we add all G; to the initial state, and carry each G; until we get to the state
M, where we use it to derive M.

We start with Mg =S - Ny. We have two cases at each step of simulation:

e N1 was derived from N; by an application of any rule from R, then we just apply this rule
S times to M; to derive M.

e N1 was derived from N; by an application of the Copy rule. In this case we use the fact
that there is a CatP derivation of size S and width w and apply the following lemma S times
to derive M; 1 from M.

Lemma 3.2. Suppose that there is a RevP derivation of size S and width w from L to L', where
k<S5 and

{Dl,DQ,...,Dk}Ual-C'1Ua2'CQU---Uam-Cm:£,
(D1, Ds,..., Dy, L} C L.

Then for any clause A there are some parameters By, B, ..., Bm such that 8; < a; - S and there is
a RevP derivation of size poly(S) and width w + wreyp(A) from P to P’, where

k-AUBL-CLUBy-CoU---UpBp - Chp =P,
(k+1)-ACP.

Given Lemma 3.2 we get a RevP derivation of size poly(S) and width O(w) that starts with
clauses from ¢ and ends with M; O 1, which is enough for us.

Proof of Lemma 3.2. Consider a state Py such that
k-AUap-CiUag-CoU---Uay, - Cn = Po,

By using RevP weakening derivation (see Definition 2.13), we can derive some multiset Q from
k - A such that
{Dl\/A,DQ\/A,...,Dk\/A} c Q.



Note that we can also derive k- A from Q, since all the rules in RevP are reversible.
Now, by using the weakening derivation, we can derive from

a1 - CitUag-CoU---Uay, - Cn
a multiset H such that
041‘(Cl\/A)UCMQ'(CQ\/A)U"‘UOém'(Cm\/A)g?‘[.

Altogether, this allows us to derive a blackboard state Q U H from P with size O(S) and width
w + | A| derivation in RevP. Now, observe that the derivation of £’ from £ can be transformed into
a derivation of £’V A from £V A (see Definition 2.4). Note that this derivation has size poly(.5)
and width w + |A|.

So, we have a derivation in RevP

from QUH to (QUH)\ (LV A)U (L' Vv A).

Observe that £V A and L'V A both contain {D1V A, Dy V A, ..., D,V A}. Also, we know we did
not use clauses from Q\ ((D1V A)U(DaVA)U---U(DgV A)) to derive (L' V A). Finally, we know
that A € £’V A. All together, this gives us

(QUH)\(LV A UL VA D{A}UQ.
Finally, as mentioned before, from Q we can derive k- A. By doing so, we get a state P’, such that

(k+1)-ACP. O

Proof with terminals. From the proofs without the terminals, we know that we can construct
some RevP-derivation starting in Hg, consisting of clauses from ¢ only, and ending in H,,, in which
we have S copies of 1. Now the main idea is the following: we want to copy L and revert the
clauses from H,, back into Hg by using the property of reversibility. To do so, we need the following
generalization of Lemma 3.2.

Lemma 3.3. Suppose that there is a RevP derivation of size S and width w from L to L', where
k <S and G consists of weakening of clauses from ¢ and
{Dl,DQ,...,Dk}UOq'ClUOzQ'CQU"-UOém'szﬁ,
{Dl,DQ,...,Dk,J_}Ug =L
Then for any clause A there are some parameters 1, 8o, ..., Bm such that B; < «; - S and there
is a RevP derivation of size poly(S) and width w + wreyp(A) from P to P', where G' consists of
weakenings of clauses from ¢ and
k-AUBL-CLUBy-CoU---UpBp - Cp =P,
(k+1)-Aug =7P.

Let P and P’ be the states of the blackboard from Lemma 3.3, where we take A = 1 and £
and £ are the initial and final states of the CatPT refutation of . Now, given a derivation of H,,

10



from Hy, we transform it into a RevP derivation of H,, U (P \ (S - L)) from HoU (P \ (S - 1)) by
adding clauses from (P \ (S - L)) to all states in the derivation.

Now, from H,, U(P\ (S-L)) we derive H,, U(P’\ (S-L)) with Lemma 3.3. And here comes the
main trick: we revert this derivation in the sense that we take the H,, part of our blackboard state
and derive Ho from it. So, in the end, we get a RevP-proof, which starts with Ho U (P \ (S - L))
and ends with Ho U (P’ \ (S - L)). The last state in this proof consists only of one copy of L and
weakenings of clauses from .

The only thing that remains is to prove Lemma 3.3. We only give a sketch of the proof since it
is just a slight modification of the proof of Lemma 3.2.

Sketch of proof of Lemma 3.3. We use exactly the same construction as in Lemma 3.2. This allows
us to produce the blackboard state P’ = (k+ 1) - AUG’. We want to show that G’ consists only of
weakenings from .

Indeed, all the clauses in G’ may emerge from two sources:

e These clauses may result as a byproduct of the first step of the proof, which in our case
derives C; V A from Cj;. This step produces only weakenings of clause C; by the definition of
weakening (see Section 2.2).

e These clauses also emerge from the conclusion of the original catalytic derivation. P’ does
not contain any clauses from the catalyst; therefore, these clauses are weakenings of ¢, as a
refutation with terminals was used.

4 Direct applications of the intersection theorem

4.1 Res A u-wRes = RevRes

In Sections 2.2 and 2.3 we defined Resolution, Reversible Resolution, Reversible Resolution with
Terminals, Unary Weighted Resolution (Catalytic Reversible Resolution in our notation), and
Unary Weighted Resolution with Terminals.

The next two theorems are immediate corollaries of Theorem 3.1:

Theorem 4.1. Res A u-wRes is p-equivalent to RevRes. More precisely, for any CNF formula
p, if there is a refutation of size S and width w in both Res and u-wRes, then there is a RevRes
refutation of ¢ of size poly(S) and width O(w).

Theorem 4.2. Res A u-wResT is p-equivalent to RevResT. More precisely, for any CNF formula
p, if there is a refutation of size S and width w in both Res and u-wResT, then there is a RevResT
refutation of ¢ of size poly(S) and width O(w).

Both Theorem 4.1 and 4.2 are improvements of similar intersection theorems from [GHJ"24],
in the sense that the resulting size is poly(S) rather than poly(S) - 20(%),

11



4.2 Res(®) A u-wRes(®) = RevRes(®)

Resolution over parities operates with the disjunctions of linear equations. In our notation, this
means that the set of terms is the set of all linear equations. We define the set of rules of RevRes(®)
as the following rules, together with their reversed versions:

(Excluded Middle)

Av(=1) Av(=0)
A

% if =A and —B define the same linear subspace (Reversible Equivalence)

(Reversible Cut)

The width of a clause A is then the number of linear equations in it.

If we add the Copy rule to this list, we get the Res(®) proof system. By u-wRes(®) we denote
the catalytic version of RevRes(®). Similarly, we can define versions of these proof systems with
terminals.

Note that currently it is not clear whether there is a TFNP formulation for the Res(®) proof
system. The following theorem is an immediate corollary of Theorem 3.1:

Theorem 4.3. Res(®) A u-wRes(®) is p-equivalent to RevRes(®) and Res(®) A u-wResT(®) is
p-equivalent to RevResT ().

The Pigeonhole Principle (PHP” ™!, for short) is the following unsatisfiable formula:

n
\/pm for i € [n+ 1],
j=1

—p;j V opg,; for i,k € [n+1],5 € [n].
Theorem 4.3 implies the following surprising corollary:

Corollary 4.4. Suppose that PHP™ ! has a size S refutation in RevRes(®). Then PHP™™! has a
Res(®)-refutation of the size poly(S,n).

Proof. Clearly, u-wRes(®) p-simulates u-wRes, which is equiavlent to uSA, which admits polyno-
mial size refuations of PHP" ™! (see [BBL24], for example). O

We conjecture that it might be easier to prove lower bounds for PHP in RevRes(®) for the
following reason: RevRes is strictly weaker than Res, so it is highly likely that RevRes(®) is
strictly weaker than Res().

4.3 Res(k) A u-wRes(k) = RevRes(k)

The set of terms in the proof system RevRes(k) is the set of conjunctions of at most k literals. The
width of a term is defined as the number of literals it contains. The rules of RevRes(k) are the
following (together with their reverse):

12
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A
cvlh - CVl

OV Niy i
(Excluded Middle)

(Cut)

(A-Introduction)

Nili V'Vl

Similarly to Res and Res(®), Res(k) is defined as RevRes(k) with the addition of the Copy
rule. The catalytic version of RevRes(k) (which we call u-wRes(k)) and the versions of these proof
systems with terminals are defined straightforwardly.

Again, the following theorem is an immediate corollary of Theorem 3.1:

Theorem 4.5. Res(k) A u-wRes(k) is p-equivalent to RevRes(k) and Res(k) A u-wResT(k) is
p-equivalent to RevResT (k).

Substituting k& = polylog(n), we obtain the intersection theorem from [DR23] with better
parameters.

4.4 Fragments of Frege

In a more general setting, we can apply Theorem 3.1 to any fragment of the Frege system with
reversible rules and supporting V-gates. This applies to systems like constant-depth Frege with
V-gate on the top.

Formally, we can prove the following theorem:

Theorem 4.6. Let F be a blackboard proof system that has a complete and reversible set of rules
over bounded-depth circuits with a top V-gate. Then FCPY A CatF is p-equivalent to F.

Given a Frege system with a set of sound inference rules R, we can construct a reversible system
using the following transformation for all rules (for simplicity, we show the case of two premises
only).

C1 G C1 Oy
- s
D D Ey Ej

where formulas E7 and Fs should encode the following Boolean functions:
Ey :{_|01+_|02—_|D2 1} EQZ{—|01+—|CQ——|DZ2}

This encoding can increase the size of the derivation only polynomially, and the depth of the
derivation by at most a constant.

Remark 4.7. In the case of unbounded depth Frege systems, Theorem 4.6 becomes trivial since
both F and FCPY are equivalent to the tree-like version of F.

13



5 Other intersection theorems

Li, Pires, and Robere [LPR24] proved the following TENP intersection theorems:

SOL, = PPA, N PPADS, (1)
EOPL, = PPA, N SOPL, (2)
MaxOdd = PPA N PLS. (3)

These theorems imply the weaker versions of the following proof complexity intersection theorems:
1. SA, is p-equivalent to NS7 A uSA.
2. RevResT Ry is p-equivalent to RevResTg, A RevRes.
3. ReVReSTRSOPy is p-equivalent to RevResTr, A Res.

The proof of the first intersection theorem is the most succinct in the algebraic formulation.
Since this formulation does not fit our framework, we postpone it to the Appendix B.

To define the proof systems appearing in the second and the third intersection theorems, we
need to introduce the following rules:

c...C

(Fg-Elim) (Fg-Intro)

c...C

where the two rules above allow us to remove ¢ copies of an arbitrary clause C' from a blackboard
or add them, respectively. Also, we need the following rule:

¢
c C C

The set of rules R, can be defined as

(F2-Copy).

R4 = {Rev-Cut, Rev-Weaken, F-Elim, Fy-Intro},
where the Rev-Cut and Rev-Weaken are taken from the definition of RevRes in Section 2.2. Then
R, =Ry \ {Fs-Intro} and RgOpy = Ra U {F2-Copy} \ {F,-Intro}.
Now, the proof systems can be defined in the following way:

e RevResTg, is the blackboard system with terminals based on R, where the final blackboard
state contains ezactly c copies of L for some 1 < ¢ < ¢ (there might be some other clauses,
which are weakenings of clauses from ¢).

. RevResTRq— is the blackboard system with terminals based on R, where the final blackboard
state contains exactly c copies of L for some 1 < ¢ < gq.

'Rgop}’

e RevResT pcopy is the blackboard system with terminals based on , where the final

2
blackboard state contains only one copy of L.

Remark 5.1. These definitions slightly differ from the ones presented in [LPR24]. However, these
variants are p-equivalent to the ones from [LPR24].
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To prove the second intersection theorem, one can do the following: copy ¢-S times the RevRes-
proof, eliminate everything, except for the copies of 1, then use the weakening rule on the copies
of L together with F,-Elim to simulate F,-Intro.

First, given a Resolution refutation, we simulate it directly by replacing all the applications of
the usual Copy rule with the Fo-Copy rule. In the end, this will produce us 1 copy of L and some
other “garbage” clauses G. Then we isolate ourselves on this one copy of L, and will emulate the
RevResTpg, refutation directly: every time we would like to do the Fa-Intro of two copies of clause
C, we do the following instead:

L
L oL L
L C C

[Fo-Copy
Rev-Weaken + Fy-Elim

In the end, we get a separate derivation of exactly one copy of L. Then, we revert back the
derivation of GU{ L} to the initial clauses, since all the rules in RevResT ,copy. This will effectively
2

provide us a RevResT ,copy derivation with exactly one copy of L at the end and some weakenings
2
of the clauses from ¢.
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A u-wRes and catalytic RevRes are equivalent

To prove our intersection theorems, we consider a more convenient reformulation of the unary
Sherali-Adams proof system, which is called Unary Weighted Resolution. Informally, this proof
system can be viewed as a generalization of Reversible Resolution, where all the clauses are marked
with “4+” and “—” signs. Unary Weighted Resolution uses the same derivation rules as Reversible
Resolution (with respect to the sign of the clause); however, it also uses introduction and elimination
rules for pairs of clauses with opposite signs. We define a general notion of weighted systems and
show that this notion is equivalent to their catalytic counterparts.

Definition A.1 (Unary Weighted Systems [BL20]). Let R be a collection of strongly sound re-
versible rules. Let RevP be a blackboard proof system based on R. Lines in the proof system u-wP
are multisets of clauses of RevP with signs, i.e., they can be positive or negative. For any CNF
formula ¢ = C1 ACy A --- A Cyy, a sequence of multisets of clauses with signs L1, ..., Ly is the u-wP
refutation of ¢ if:

e Every clause in £ occurs in ¢, possibly with multiplicity.
e The multiset £; contains the empty clause (L, +).
e All clauses in £; are positive (that is, have “+” sign).

e For each i = 1,2,...,t — 1, the multiset £;;1 is obtained from £; with one of the following
derivation rules:

— For any rule (F,G) from R, one can derive (G, +) from (F,+) and (G, —) from (F, —),
where by (F,+) we denote the multiset of clauses {(C;,+)|C; € F}.

— We can introduce new clauses with the following rules:

(C’ _) (Cv +)

(Sign introduction) (Sign elimination)

(C, _) (Ca +)

We define u-wRes as a unary weighted version of RevRes. Following [BBL24|, we know that
u-wRes is p-equivalent to Unary Sherali-Adams.

Definition A.2 (Unary Sherali-Adams). Unary Sherali-Adams refutes unsatisfiable sets of poly-
nomial equations {a;(x) = 0: ¢ € [m]} with integer coefficients a; € Z[x|, written in unary nota-
tion. A CNF contradiction F' can be translated into this language by encoding each clause, say,
C = (x1V -2V x3), as the equation T;x9T3 = 0, and by enforcing each variable z; to take boolean
values with the equation 27 — x; = 0. A uSA refutation of {a;(z) = 0} is a polynomial identity of
the form

sz(a:) +Zq] x —xj) —i—er Wz +Z;— 1)+ J(x) =c,

i€[m] j€n)] J€ln]

where ¢ € N is a positive constant, p;,q;j,7; € Z[z] are polynomials, and J is a conical junta: a
nonnegative linear combination of terms, that is, J(x) = >_, ¢;(x), where each ¢; is a conjunction of
literals; for example, t;(x) = x1Tax3. The size of the uSA refutation is the sum of the magnitudes
of all coefficients of the monomials appearing in p;, a;, ¢;,7; and t;.
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CatP and u-wP are p-equivalent To simplify the proofs and give an additional intuition about
the nature of u-wP, we prove the following fact:

Lemma A.3. The following are equivalent for any unsatisfiable CNF ¢ = C1 ANCa A --- AN Cy, and
fixed S and w:

1. There exists a refutation of size S and width w for ¢ in u-wP.

2. There exists a sequence of (not necessarily distinct) clauses D1, ..., Dy, such that there is a
RevP derivation of size ©(S) and width w, which starts with D1, Da, ..., Dg,Cqay,Casy,...,Ca,
and ends in a state L such that

D1,Ds,..., Dy, L C L.

This lemma in fact shows that u-wP and CatP are p-equivalent.

Proof of Lemma A.3. First, we show that 2 = 1. To construct a u-wP derivation of size O(S5), we
first introduce the clauses D; with the minus sign:

(Di,—) (D1,+) (Da,=) (Da,+)  (Dgy—) (Dp,+)

Now, using the clauses (D;,+) with positive signs and the clauses Ca;, we repeat the RevP-
derivation to obtain the sequence of states

where L£; are the states of RevP refutation, interpreted as clauses with positive signs and
(Dlv +)7 <D27 +)7 ceey (Dka +)’ (J-v +) € ‘Ct'

Thus, we can contract (D;,—) and (D;,+) in £ for each ¢ € [k]. This operation will generate a
state £” such that (L, +) € £” and the rest of the clauses from £” have are positive.

Next, we show 1 = 2. First, observe that we can transform u-wP refutation to one of size ©(.5),
in which the following holds:

(i) We introduce all negative clauses at the very beginning of the refutation.
(ii) We apply cut and weakening rules only to positive clauses.

Indeed, to get the second property, we consider the application of any rule (F,G) € R for negative
clauses, and show that we can replace it with an application of the reversed rule for positive clauses
in the following way:

(Sign introduction)
(G, F)-rule

(Sign elimination)

—~

g+ (G,-)
("T_}*) ("rv +) (gv*)
(gv_)
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This operation allows us to get rid of one application of this rule to the cut rule for the minus
clauses.

After getting rid of all applications of derivation rules for minus clauses, we only apply intro-
duction/elimination rules for minus clauses. Thus, we can apply all the introduction rules in the
beginning, and postpone all the applications of elimination rules to the very end.

By considering all negative clauses as catalyst Dq,...,Dp, and all positive clauses
as regular clauses, we get a RevRes derivation of size ©O(S), which starts with
Dy, Dy, ..., Dy, (C1,a1),...,(Ck,ar) and ends with a state £ such that

D1, Ds,..., D, L C L. O

B Algebraic intersection theorem

We start with the definitions of proof systems from [LPR24].

Definition B.1 (Nullstellensatz over Fy). Let ¢ > 2 be a positive integer (not necessarily prime)

and consider the ring Z;. Given a CNF ¢ = C; A ... A Cy, over variables z1,...,2,, a generalized
Nullstellensatz refutation of ¢ over Z, is given by a list of polynomials p;,q;,7; € Zglx1,. .., Tp)
such that:

> pi@)Ci@) + > qj(@) - (f —x) + D> ri(a)(z;+F — 1) =c  (mod g),

Jjelm] Jj€ln] Jj€ln]

where 6]- is the natural translation of clauses from ¢, c is a constant from Z,, which is not equal
to 0. We denote this proof system as NSj. The size of a NS} refutation is the total number of
monomials in p;, g;, ;.

Definition B.2 (F,-Sherali-Adams). Let ¢ = C; A ... A Cy, be a CNF over variables z1,. .., zy.
A g-Sherali-Adams (SA,) refutation of ¢ is a unary Sherali-Adams refutation, with the further
constraints that 1 < ¢ < ¢ — 1 and the conical junta J can be written as ¢ - J'.

We want to prove the following intersection theorem:
Theorem B.3. NS, A uSA is p-equivalent to SA,.

Proof. To show that NS, A uSA is p-equivalent to SA,, we observe the following. Let
ijhj =c¢p (mod q)
be a NS, refutation of {h; = 0} where 1 < ¢y < ¢—1 and

> fihy=c+J(x)

be a uSA refutation of the same system. Then the NS, refutation can be naturally transformed
into the following equation of poly(S) size in the unary encoding of the following form:

> phhj=co+q- R(x),
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where p;, R € Z[z]. Now, for each monomial ¢ in the RHS with a negative sign, we add to both
sides of the equation the following polynomial:

q-t-ijhj:q‘t-(c+J(x)).

This operation will give us an equation of size poly(S) of the form
// /
> pihj=co+q- R (x),

where all the monomials in R'(x) have a positive sign. This is a SA, refutation since 1 < ¢y <
q—1. O
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