Electronic Colloquium on Computational Complexity, Report No. 162 (2025)

Succinct Zero-knowledge Proofs from One-way Functions:

The Blackbox Way

Eden Florentz — Konopnicki* Ron D. Rothblumf

November 1, 2025

Abstract

Zero-knowledge proofs allow to encode a computation so that it can be verified without
revealing any additional information beyond its correctness. In this work we focus on proofs
that are statistically sound meaning that even an unbounded prover cannot make the verifier
accept a false statement, except with negligible probability, and computationally zero-knowledge.
The seminal result of Goldreich, Micali and Wigderson (CRYPTO 1986) shows that, assuming
the existence of a one-way function, such zero-knowledge proofs exist for all languages in NP.

Some of the early protocols, such as that of GMW, have a large polynomial overhead in
communication compared to the original NP witness. A line of works has shown that in many
cases this communication overhead can be avoided. Most recently, Athamnah et al. (TCC 2024)
constructed zero-knowledge proofs for all bounded-depth NP relations, where the communication
complexity is only larger by an additive factor than the original NP witness. The main caveat
of their result is that the protocol makes a non-blackbox use of the one-way function.

In this work we show that such succinct zero-knowledge proofs exist for the same class of
NP relations, where the protocol makes only a blackbox use of a one-way function. Our protocol
achieves a negligible soundness error, in contrast to recent works which can achieve, at best, an
inverse polynomial error.

*Technion, Taub Faculty of Computer Science. Email: eden.konop@gmail.com
TSuccinct. Email: rothblum@gmail.com

ISSN 1433-8092

eden.konop@gmail.com
rothblum@gmail.com

Contents

1 Introduction

1.1 Results. . . o o o e
1.2 Techniques
1.3 Open Questions Lo e
1.4 Organization e

2 Preliminaries

2.1 Computational Indistinguishably o0
2.2 Multilinear Extension L Lo e
2.3 Commitment Schemes
2.4 Error Correcting Codes L
2.5 Interactive Proofs
2.6 Zero-Knowledge Proofs
2.7 Multi-Party Computation

3 Polynomial Commitment Schemes

4 Basic Polynomial Commitment
4.1 Proof of Lemma 4.1 o

5 Succinct Polynomial Commitment
5.1 Proof of Lemma 5.1

6 Succinct Zero-Knowledge Proofs

6.1 Random Padding of Multilinear Extensions
6.2 Proof of Lemma 6.2
6.3 Using Lemma 6.1 to derive Theorem 1.1

10
10
11
11
13
14
15
16

16

18
18

24
24

1 Introduction

Zero-knowledge proofs, introduced in the pioneering work of Goldwasser, Micali, and Rackoff
[GMR&9], are a fundamental tool in cryptography. These proofs enable a prover to convince
a verifier of the validity of a given computational statement without revealing any additional
information. There exist several different notions of zero-knowledge proofs. In this work, we
focus on constructing computational zero-knowledge proofs with statistical soundness, meaning that
soundness holds against any computationally unbounded malicious prover, while the zero-knowledge
property holds against a computationally bounded (potentially malicious) verifier.

In their seminal work, Goldreich, Micali, and Wigderson [GMWS86| constructed a zero-knowledge
proof for the graph 3-coloring problem. As this problem is NP complete, their result implied that
all NP languages can be proved in zero-knowledge. Their result relies on the existence of a one-way
function (an assumption that is also known to be necessary [OW93, HN24]).

The GMW protocol has a relatively large polynomial overhead in communication. This is due
to a combination of two facts: first, the NP witness needs to be reduced to a 3-coloring of a related
graph, and second, the 3-coloring protocol itself has (at least) a quadratic overhead. An exciting line
of work [IKOS09, KR08, GKR15, GGIT15,NR22, HVW23, AFR24| has asked whether this overhead
is inherent, or can a zero-knowledge proof be as short as the underlying NP witness?

The state-of-the-art is a recent result by Athamnah et al. [AFR24] who constructed zero-
knowledge proof with only additive communication overhead (i.e., (1 + o(1)) - |w| bits) for any NP
relation that can be verified in low-depth or low-space, while relying only on a one-way function.
Gentry et al. [GGIT15] construct such a protocol for all NP relations, but based on the existence
of a fully homomorphic encryption (FHE) scheme — a significantly stronger assumption. As it
is known (under standard complexity assumptions) that statistically sound zero-knowledge proofs
are highly unlikely to be shorter than the witness size [GH98, GVWO01], we refer to zero-knowledge
proofs with such additive communication overhead as succinct zero-knowledge proofs.

The protocols underlying [AFR24, GGI" 15] make a non blackbox use of the underlying cryptographic
primitive (the one-way function in [AFR24| and the FHE in |[GGIT15]). This means that the prover
and verifier algorithms depend explicitly on the code of the underlying primitives, rather than merely
invoking them as a blackbox sub-routine or oracle. Such a non blackbox use introduces significant
overhead and is therefore highly undesirable in practice. Thus, a natural question posed by Hazay et
al. [HVW23] is whether there exist succinct zero-knowledge proofs that make a black-boz use of the
underlying primitives.

Hazay et al. [HVW23| gave an initial positive answer to this question by constructing such
succinct blackbox zero-knowledge proofs, but only achieve a constant soundness error. It is important
to note that the standard approach of soundness amplification via repetition cannot be employed
in this case as it increases the communication multiplicatively. Athamnah et al. [AFR24] slightly
improved their result and reduced the soundness error to 1/poly (for the case of low-depth NP
relations, and assuming only a one-way function). Still, these results fall short of the desired
requirement of a negligible soundness error. We continue the line of work of [HVW23, AFR24| and
ask:

Do there exist succinct zero-knowledge proofs for NP (with a negligible soundness
error) that only make a black-box use of a one-way function?

1.1 Results

Our main result is a positive answer to this question for the case of NP relations that are verifiable
by bounded-depth circuits.

Theorem 1.1. Assume that one-way functions exist and let § > 0 be a parameter. Let R be an NP
relation with input size n and witness size m, that is computable by a (non-uniform) circuit family
C of size S = S(n) and depth D = D(n), and assume that n < poly(m).

Then R has a zero-knowledge proof with perfect completeness, and soundness error § in which
the wverifier, prover and simulator all only make a black-box use of the one-way function. The
communication complexity is

m+ m?/3. poly (D, log(S),log(m), A, log(1/9))

where X\ is the security parameter. The prover and verifier run in polynomial time, the protocol is
public-coin and the number of rounds is poly(D,log(S),log(1/d)).

Theorem 1.1 also implies a zero-knowledge proof for general NP relations with communication
that is only additively larger than the size of the verification circuit and only make a black-box
use of the one-way function. This follows from the fact that any NP relation can be converted into
a new logarithmic-depth relation in which the witness includes the values assigned to all gates in
the evaluation of the verification circuit (via the Cook-Levin theorem). Hence, the witness size is
proportional to the circuit size.

Corollary 1.2. Assume the existence of one-way functions. Let R be an NP relation that can be
verified by a circuit of size S using unbounded fan-in AND, OR, and XOR gates. Then R has a
zero-knowledge proof with soundness error &, in which the verifier, prover and simulator all only
make a black-box use of the one-way function. The communication complexity is

S + §2/3. poly(log(s), A, 10g(1/(5))

where X\ is the security parameter. The prover and verifier Tun in polynomial time, the protocol is
public-coin and the number of rounds is poly(log(S),log(1/9)).

A key component in our protocol is a new construction of a statistically binding polynomial
commitment scheme (PCS) (see Definition 3.1). Such a commitment scheme allows a sender to
commit to a large polynomial P so that later it can prove correctness of evaluations queries of the
form “P(z) = y”. The computationally binding analog of this notion is central in the construction
of succinct argument-systems, but interestingly the statistical counterpart has not been previously
studied. Our main technical contribution is a succinct PCS for multilinear polynomials, over any
sufficiently large field, in which the communication is only additively larger than the description size
of the polynomial. While multilinear polynomials are typically defined over inputs that are a power
of two, to allow encoding witnesses of arbitrary length, we extend the definition by interpreting the
string as a multilinear polynomial after padding with zeroes up to the next power of two (although
importantly, the communication should be proportional to the unpadded length).

Theorem 1.3. Assume the existence of a one-way function. Then, for every 6 > 0 there exists a
polynomial commitment scheme for strings of length m over a finite field F s.t [F| = Q(m?/3/5),
with binding error § and communication complexity

m +m?3 . poly(\, log(1/6))

field elements for the commitment and
k- m?/ . poly(), log(1/6))

field elements for the opening, where k is the number of points to be opened and X is a computational
security parameter.

1.2 Techniques

Recall that our goal is to construct a zero-knowledge proof with two key properties: first, it should be
succincet (meaning that the communication is only additively longer than the witness) and second, all
algorithms should use the underlying one-way function as a blackbox. Following [IKOS09, HVW23,
AFR24| we will do so in two steps. First, we construct a distributed zero-knowledge protocol in
which there is a single prover and a set of verifiers who can communicate both with the prover and
among themselves. For the zero-knowledge property, we require that any subset of ¢ of the verifiers
learn nothing beyond the validity of the statement (i.e., their views can be simulated). We then
show how to compile this distributed protocol into a monolithic (i.e., one with a single verifier) by
having the prover commit to the communication transcript and allow the verifier to open a subset
of the views.

GKR-based Distributed Zero-Knowledge Protocol. For the distributed-verifier zero-knowledge
protocol, we rely on the doubly-efficient GKR protocol for bounded-depth computations [GKR15]
to prove that w € Cy, where Cy = C(z,w) is the circuit C with = hardcoded.

Recall that the GKR protocol is an interactive proof that processes the circuit layer-by-layer,
using the sumcheck protocol to transition from layer to layer. We make the protocol distributed
between the k verifiers by having the prover, in each step of the protocol, send an additive secret
sharing of the relevant GKR messages to the verifier. At the end of the protocol the k-verifiers run
an off-the-shelf MPC protocol to check that the GKR verifier would have accepted.

There is one hiccup with the above strategy. At the end of the protocol the GKR verifier needs
to access the witness. Specifically, it needs to compute the multilinear extension of the witness at a
given point. Unfortunately, incorporating this test into the off-the-shelf MPC protocol would yield
a non-succinct protocol.

Instead, intuitively, we would like for the prover to first commit to the witness w (before the
GKR interaction starts) and then, at the end, to provide a “zero-knowledge” evaluation proof. This
is exactly what a polynomial commitment scheme (PCS) enables. Indeed PCS’s have emerged as a
fundamental component in the construction of computationally-sound proof-systems. Unfortunately,
all existing constructions of PCS’s are only computationally binding — in particular, the computationally
unbounded cheating prover that we consider could easily violate the binding property of such a
commitment. Somewhat surprisingly, the notion of a statistical binding PCS has not been considered
in the literature.

Thus, we introduce and construct a statistically binding multilinear PCS. With this primitive
in hand, our protocol is as follows:

1. The prover commits to the witness using a succinct PCS.

2. The prover and k-verifiers run the GKR protocol. The prover messages are secret-shared
between the k verifiers.

3. The verifiers run an MPC protocol to check that the interactive part of the GKR protocol is
valid (this part does not rely on the witness).

4. The prover gives an evaluation proof for the multilinear evaluation of the witness needed to

conclude GKR.

As our main technical contribution we construct a succinct PCS. Namely, a statisically binding PCS
in which the commitment and evaluation proofs are only larger than the witness by a small additive
factor. We describe the construction in Section 1.2.1 below but first we simply assume that such a
succicnt PCS exists and focus on compiling the protocol into one with a single monolithic verifier.

Compilation to a Monolithic Verifier. To convert the distributed protocol to the standard
monolithic verifier setting, the prover commits to all interactive messages and sends these commitments
to the verifier. The prover then simulates the MPC in its head, committing to all parties’ views.
The verifier randomly chooses a subset of the parties to open and checks for consistency.

A problem that we run into is that when compiling the distributed zero-knowledge protocol into
a monolithic one, the prover provides the opening for some threshold ¢ of the k players. However,
in a usual MPC it suffices for just one of the players to cheat and so the soundness error is at best
1/k.

To reduce this error one could just repeat the entire protocol, but doing so loses the strong notion
of succinctness we target. A different approach to this problem, suggested in [[IKKOS09, Section 4|,
is to rely on a robust MPC protocol.! Unfortunately their approach seems to be limited to offering
only honest-verifier zero-knowledge, or achieves malicious-verifier zero-knowledge but requires using
private-coins.

To achieve a public-coin protocol, that is zero-knowledge against malicious verifiers, we therefore
take a different approach. The idea is to repeat only the distributed GKR protocol A times.
Crucially, we do so without recommitting to w each time. Rather, the prover commits to w once
and then provides evaluation proofs for the A desired locations. This yields a negligible soundness
while keeping communication overhead low. Since the repetition is performed sequentially, and
no information is revealed between repetitions, the setting is essentially the same as sequential
repetition. The simulator therefore has a constant probability of guessing correctly in each repetition,
and the repetitions do not compromise the zero-knowledge property.

Evaluation Point Leakage? The protocol above requires opening some A points of the multilinear
extension of the witness w. These points fully depend on w and so may reveal information about
it. To address this, we pad w with a small amount of randomness and commit to this padded
version. We show that padding with only A field elements makes the A provided evaluations reveal
no information about w, for most sets of evaluation points. Moreover, we show that the “bad”
evaluation points (for which random padding is insufficient) is easy to recognize and so the prover
can refuse to reveal the evaluation points in this rare case. We believe this fact may be of independent
interest and useful in other contexts.

n our context, since the MPC function accepts if the prover lies in just one of the inputs, we would require in
addition to the robust MPC, to utilize a verifiable secret sharing (VSS) scheme to distribute the messages (instead
of the standard additive secret sharing). One can then use the MPC to safely reconstruct, ensuring that no small set
of players can change the output by modifying their input.

1.2.1 Swuccinct PCS

Thus, to enable our GKR based approach we need to construct a succinct polynomial commitment
scheme (PCS). This scheme allows us to commit to a polynomial while later opening selected
evaluations, keeping the rest hidden. We construct a succinct PCS in which the commitment is
only larger than the polynomial’s description by an additive factor, and with a sub-linear evaluation
proof. Interestingly, the construction is heavily inspired by Ligero [AHIV23|, a computationally-
sound proof-system, which, as pointed out by Golovnev et al. [GLST23], can also be interpreted as
a computationally sound PCS.

Let F be a finite field and let f : {0,1}¢ — F be a description of a multilinear polynomial
f:Fi S F (which extends f) to which we want to commit. We first rearrange f as an m, x m,
matrix, where m, - m. = 2%, and the specific choices of these parameters will be determined later.

We pad the matrix with random values as follows. First, we add ¢ additional random columns,
where ¢ is an additional parameter to be determined below, and then also add a single random row.
Note that this increases the size of the matrix to (me + q) - (m, + 1) = 2% + ¢ - m, + m, + ¢ which,
by setting ¢ = o(m,), we can afford.

The rows of the matrix are then each encoded using the Reed-Solomon code. As we will be
committing to all of A, we need to be careful here — for example, we cannot afford to use a
code with rate 1/2 as it would double our communication complexity. Rather, we use a Reed-
Solomon code with rate 1 — e. Thus, ignoring the random padding which is small, the size of A is
my - 2=~ (1+¢)- 24

Denote the encoded matrix by A. The prover then commits to the columns of A. Here we use
a standard cryptographic commitment scheme, that has an additive overhead in the cryptographic
security parameter \. Such a commitment follows easily from the existence of a PRG G (with a
sufficiently large stretch): to commit to a string «, just output a@®G(s) plus a standard commitment
to s, where s is a random seed of the PRG. Thus, the length of a commitment to the columns of A
is:

(my + A)

- %(1—1—5)-(2d—|—)\-mc+q~mr+/\-q).

num-cols x col-commitment-length ~ (m. + ¢q) -

Thus, the commitment to f is just a commitment to the columns of A. Note that since the
column commitment is statistically binding, the overall commitment binds the sender to a particular
matrix A. In a proper commitment the rows of A should all be Reed-Solomon codewords. Before
describing the evaluation proof, lets consider a dishonest commitment in which at least one of the
rows of A is far from being a valid codeword. Following [AHIV23|, we detect this by having the
verifier select a random linear combination of the rows of A that the prover should send back to it.

Using the so-called “proximity gaps” lemma, shown in [AHIV23] (or actually a variant by
Diamond and Posen [DP23]), if one of the rows of A is far from a valid codeword, then so is
the random linear combination. Thus, a cheating prover must send a false combination. This can
then be detected by having the verifier sample sufficiently many columns of A, which the prover
opens. Since the Reed-Solomon code has distance e, we need to sample /e columns to get a 27
error. As each column has size m, the overall communication here is X - m,./e.

Thus the overall communication (for both commitment and evaluation) is approximately:

(1+5)-2d+0()\-mc+(q+>\/5)-mT—I—)\-q).

Beyond the 2¢ factor, the main additive factors are (1) e -2%, (2) X\ -m, and (3) (g + \/e) - m,..
Setting m, = 243, m, = 224/3 ¢ = 274/3 and ¢ = O(2d/3) balances between these and we obtain
overall communication 2¢ + 224/3 . poly (), log(1/4).

In terms of hiding, the additional row makes the result of the random linear combination be
truly random and in particular, not reveal anything about the message. Similarly, the A random
columns that were added, makes the A revealed columns also entirely random (here we use the
secret-sharing property of the Reed-Solomon code).

Thus, the prover is forced to commit to a matrix A whose rows are close to Reed-Solomon
codewords, Let f : {0,1}¢ — F denote the function obtained by correcting the rows of A to the
nearby codewords and viewing the result matrix as a truth table of a function (as in the commitment
process). We show that A acts as a commitment to the function f.

Let us now consider an opening proof and suppose that the prover claims that f (z) = v, where
z € F4 and v € F, even though this is not the case. We interpret z as z = (21, 22) € F4/3 x F2d/3,
In the opening protocol, the prover then commits to the multilinear polynomial g(-) = f (-, 22).
This commitment is itself via a PCS. One approach is to construct it by recursion. However, we
observe that this commitment is only for a message of size 2%/3 and so we can afford to use a simpler
approach — specifically, we construct a “basic” PCS, which has a small super-linear overhead that
we can afford here as the input is sublinear (see Section 4 for details on this basic scheme).

The verifier uses the basic PCS to check that §(z2) = v. Note that in an honest execution this
should be true since:

9(22) =D eq(zs,b) - g(b) =Y eq(22,b) - f(21,0) = f(21,22)
b b

(where eq is the multilinear equality polynomial, see Section 2.2). In contrast, if the prover is
cheating, it must send a wrong g # g.

To catch this, the verifier samples a random evaluation point r € F2¢/3 and asks the prover to
send combo(-) = f(-,r). (The astute reader may notice that this message is similar to the random
linear combination of the rows that we used above, and indeed we can use the same message for
both tests).

If the prover sends the correct combo that corresponds to A, the verifier can detect an inconsistency
by checking that combo(z1) = §(r). Note that in an honest execution this should be true since:

—

combo(z1) = Y _ eq(z1,b1) - combo(by)
= %eq(a,bl) fb1,7)
— be: eq(z1,b1) - eq(r,b) - f(br,bo)
= g:geq(ﬁ ba) - f(21,b2)
= i:eq(ﬁ b2) - g(b2)

=9(r).

Thus, a cheating prover must send the wrong message combo (relative to f). In this case, as
above, the verifier can detect this by sampling A - 2¢/3 random columns of A and asking the prover
to decommit to them.

Handling Padding. The above suffices for a succinct PCS to a function f : {0,1}¢ — F. In
our application however, we need to commit to a witness w whose length may not be a power of
two. Typically, one would just pad w to the next power of two, which at most doubles its length.
However, since we aim for a truly additive overhead, we cannot afford to do so.

Instead, when rearranging f as a matrix, we consider a version that pads the rows and columns
with zeros. Importantly, we cannot afford to encode this padded version, but are still able to make
a variant of the above approach go through, see Section 5 for details.

Can we Generically Compile a Succinct Zero-knowledge IOP? Loosely speaking, our
proof can be viewed as using a zero-knowledge interactive oracle proof (IOP) that is inspired by
Ligero [AHIV23] and then compiling it into a statistically binding zero-knowledge proof using
commitments. Given that, one might wonder if one could just generically compile any succinct
zero-knowledge IOP, in particular the one constructed by Ron-Zewi and Weiss [RW24], which has
appealing parameters — the communication is only additively larger than the witness, and the
query complexity is a constant.

To compile such an IOP, what we need is a succinct statistically binding commitment with
a local opening (aka a vector commitment). As usual, in our context by succinct we mean that
the length of the commitment is only additively larger than the message. One way to construct a
statistically binding commitment with local opening is to commit separately to each symbol — but
this is not succinct as the overall commitment grows multiplicatively with the security parameter.

An alternative approach, implicit in a protocol of Nassar and Rothblum [NR22] is to use a
pseudorandom function (PRF) to mask the IOP oracles. The prover can then reveal the desired
PRF values using an additional zero-knowledge proof. The problem with this approach is that it
seems necessary for this additional zero-knowledge proof to make a non-blackbox use of the PRF.

Thus, our approach is different. At a high-level we utilize the fact that the Ligero based IOP
can be thought of as an IOP with sub-linear length over a large alphabet. Using this perspective
we can afford to separately commit to each of the symbols (i.e., follow the naive approach above),
while retaining succinctness.

1.3 Open Questions

The main open question in this line of research is whether one can construct a succinct zero-
knowledge proof for all NP relations, based solely on one-way functions (recall that such a result
can be obtained assuming FHE [GGIT15]). This question remains unknown even in the non black
box setting. As a matter of fact, such a result is not known even if one allows a poly(m) overhead in
communication, where poly is a fixed polynomial that is independent of the circuit size (and recall
that m is the witness size).

While our protocol achieves communication roughly (140(1))-m, the o(1) factor is roughly m~/3
which seems sub-optimal (in particular it is worse than what is achievable in the non-blackbox setting
[AFR24]). A natural question therefore is whether it is possible to construct an even more succinct
zero-knowledge proof (and PCS), with only poly-logarimmic additive overhead in communication
(i.e., communication m + poly(logm, X, log(1/4))).

Finally, we believe the notion of a statistically binding PCS may be of independent interest.
Due to the important role that their computationally binding counterparts play, it seems possible
that additional applications might be found.

1.4 Organization

We start with preliminaries in Section 2. In Section 3 we define our notion of a statistically binding

PCS. In Section 4 we construct our basic PCS scheme and then in Section 5 we construct the

succinct PCS. Finally, in Section 6 we give our succinct zero-knowledge protocol.

2 Preliminaries

We start with basic notions and facts from probability theory.

Definition 2.1. Let D, D’ be two distributions over a finite domain, their statistical distance is
defined by:

SD(D, D) = 2 3 |Ply) - D).

Proposition 2.2. Let S be a (non-empty) finite set, and let S’ C S. Then, the statistical distance
between the uniform distributions over S and over S’ is 1 — ‘I%Il

Proof. Let D be the uniform distribution over S, and let D’ be the uniform distribution over S’.
Using Definition 2.1,

sp,) =5 | 3 D) - D)+ Y [Pb) - D)

yeS\s’ yeS’
LS\, ’1 1)
= — + 18| - —
2(s T TS T T
19
Bk

O

In this work we will be considering a notion that we refer to as k-wise identical distributions
[BIVW16] — namely, distributions whose projects to any k points is identically distributed (this
relaxes the notion of k-wise independence that requires the distribution to be uniform).

Definition 2.3 (k-wise identical). Let X and Y be distributions over strings of length n. We say
that X and Y are k-wise identical if for any set S C [n] of k indices it holds that Xg and Ys are
rdentically distributed.

2.1 Computational Indistinguishably

Next, we define computational indistinguishibility.

10

Definition 2.4. Let D = {Dy},cn.E = {Ex}yen be two distribution ensembles indeved by a
security parameter . We say that the ensembles are computationally indistinguishable, denoted

D~ E, if for any family of polynomial size circuits {Cy\}xen, the following quantity is a negligible
function in A:

Pr [C\(z)=1]— Pr [Ci(z)=1]].

I(—DA x<—E>\

Fact 2.5 (Computational Data-Processing Inequality). If the distributions D and E are computationally
indistinguishable, and A is a PPT algorithm, then A(D) and A(E) are also computationally indistinguishable.

Fact 2.6. Let n,k € N such that n > k. Let X and Y be two distributions over ([Z]) (i.e., subsets

of [n] of size k), such that X 5 Y, and let D and E be two distributions over X", for some alphabet
Y, s.t D and E are k-wise identical. Then:

(X,Dx) = (Y Ey).

Proof. Consider the hybrid distribution H = (X, Fx). From the definition of k-wise identical
distributions, it follows that H is identical to (X, Dx). The fact that H is identical to (Y, Ey)

follows from the fact that X ~ Y and Fact 2.5. O

2.2 Multilinear Extension

In this work we extensively use the multilinear extension of functions, defined as follows.

Definition 2.7 (Multilinear Extension). Let f : {0,1}% — F be a function. The multilinear
extension f F? — T is the unique function defined as:

fz)=">" eqb,2)- f(b)

be{0,1}4

where eq(b, z) is the multilinear basis function given by:

ﬁ(l—zj bj)+2j'bj)-

Proposition 2.8 ([VSBW13]). Given f : {0, 1}¢ = F and a point x € F?, the multilinear extension
f(@) can be computed by an arithmetic circuit of size O(24).
2.3 Commitment Schemes

Next, we define commitment schemes. We focus on non-interactive statistically binding commitments
in the common random string (CRS) model, which can be constructed from one-way functions.

Definition 2.9 (Commitment scheme). A commitment scheme in the CRS model, with §-binding
error, is a tuple of probabilistic polynomial-time algorithms (Gen,Com,Ver) with the following
semantics:

1. crs < Gen(1*), where crs is referred to as the common reference string.

11

2. For any string m € {0,1}* : (com, dec) < Com(crs, m).
3. For any com,dec,m € {0,1}* : {0,1} < Ver(ers,com, m,dec).
The scheme must satisfy the following requirements:

1. Correctness: Ver always accepts in an honest execution, i.e, for any string m and any
security parameter A,

Pr [Ver(crs, com,m,dec) = 1] =1.
crs«Gen(1*)
(com,dec)+Com(crs,m)

2. Hiding: For any two strings mi,ma € {0,1}* and any common reference string crs, the

distribution of the commitment of mi and ms are computationally indistinguishable, i.e,
if we denote by Com. only the commitment part of Com then: {Come.(crs,mi)}ien &

{Comc(l/\, crs,ma) }ren-

3. Binding: For every A\ € N, with probability at least 1 — § over the common reference string,
any commitment com™ has at most one value m that can be accepted by Ver, i.e,

mo # ma,
Pr R 3my, ma, decy, decy € {0,1}*: Ver(ers, com*,my,dec) = 1,| < 27,
crsGen(1%) Ver(crs,com*, ma, deca) = 1
Fact 2.10. Let com be a commitment scheme, let D be an efficiently samplable distribution, and
let A be a PPT algorithm that outputs strings of length \. Then, the distributions (D, com(A(D)))

and (D, com(0V)) are computationally indistinguishable.

Fact 2.11. Let com be a commitment scheme and let (X,Y) and (X',Y") be efficiently samplable

joint distributions, such that X &X' andY and Y’ are supported over strings of length \. Then,
the distributions (X, com(Y)) and (X',com(Y")) are computationally indistinguishable.

We use the construction of a non-interactive commitment in the CRS model, due to [Nao91|
(building also on [HILL99]).

Theorem 2.12 ([HILL99,Nao91]). Assuming the existence of one-way functions, for any § > 0
there exists a commitment scheme in the CRS model with binding error § such that the size of a
commitment for a message of length £, as well as the verification complexity, are poly (¢, \)-log(1/9).

The above commitment scheme can be extended to have a length that is only additively larger
than the message, as follows.

Proposition 2.13. Assuming the existence of one-way functions, for any § > 0 there exists a
commitment scheme in the CRS model with binding error § such that the size of a commitment for
a message of length £, as well as the verification complezity, are £+ poly(X) -log(1/9).

Proof Sketch. The existence of a one-way function implies the existence of a pseudorandom generator
G (via |[HILL99]) and a non-interactive commitment scheme com (in the CRS model) via Theorem 2.12.
Now, to commit to a message m, generate a seed s and send (com(s),G(s) ®m). Hiding follows
from the hiding property of the commitment scheme and the pseudorandomness of G. Binding
follows from the binding of the commitment. O

12

2.4 Error Correcting Codes

The Hamming distance between two strings s, s’ € F™ is the number of entries on which they differ:
A(s,s") = |{i € [n]: s; # s}}.
The relative Hamming distance is equal to the Hamming distance divided by n.

Definition 2.14 (Linear Code). A linear code over an alphabet F is an injective linear function
C : Fk — Fi).

Definition 2.15 (Minimum Relative Distance). The minimum relative distance of a code C : F* —
FK) | denoted by d is:

min

Theorem 2.16 (Rephrasing of [DP23, Theorem 3.1]). Fiz an arbitrary linear code C : F¥ — F»,
with relative distance d and a prozimity parameter e € {(), cees L"’d_lj} . Suppose that the function

3
u: {0,118 5 B satisfies:

1
Pr [A(a(r),C) < ¢ > 2-log(m) - S,
reFlogm “F‘

where 4 is the multilinear extension of w. Then A((u(i))zr;_ol,cm) < e, where C™ 1is the m-fold

interleaving of the code C.

Definition 2.17 (Reed-Solomon [RS60| code). Let F be a finite field, and let k,n € N with k <
n < |F|. Fiz distinct evaluation points o, ..., o, € F. The Reed Solomon code RS, j, is the linear
code defined by

k—1
RSux(m) = { (plar), ... plan)) [p(X) = > mi- X7},
i=0
Equivalently, each message m € F* is identified with the coefficient vector of a polynomial of degree

less than k, and its encoding is the evaluation of this polynomial on the points aq, ..., Q.

Definition 2.18 (A\-Hiding Code). A A-hiding code is a linear code C : F¥ — FXK) with the following
property: for every two messages mg, m1 € F¥, the distributions

(C(mo;7))emr and (C(mi;7)),
are A\-wise identical (see Definition 2.53).

Lemma 2.19. The Reed Solomon code is a A-hiding code.

Proof. Let aq, ..., ay, denote the evaluation points of the RS code. Given a message m = (my, ..., mg_1) €

F*, sample r = (79, ...,rr—1) < F* uniformly, and define

RSn,k(m; r) = <(p(041), e 717(0%)) ’p(x) =ro+rr+---+ 7“,\7136)‘71 + moﬂl?A +-- mkflwar)\il)-

13

This can also be written as,

1 ap o} - ai‘_l 70 a% ai\H e o/f'M_l mo
1 as ol ag‘_l 71 a% aé\ﬂ .- ag‘*'A_l mi
Rsn,k(m;T) = . . + . . = n,)\'r+v
1 a, o? ax 1) \raq a) ot ok Amy
o)
A Vn,k

where V;, \ and VYE?,;) together form the Vandermonde matrix of dimension n x (A+k). Now, fix any
subset S C [n] with |S| = A.

Since any A rows of V,, y form a Vandermonde matrix, by a standard property of Vandermonde
matrices, the submatrix Vg), (where Ag is the restriction of A to the coordinates in S if A is a
vector, and to the rows in S if A is a matrix), has full rank A.

For a given message m € FF the projection of RS, k(m;r) to coordinates in S is equal to
Vsa-r+ Vé;;) -m. Since r < F* is uniform, the distribution Vs a - is uniform over FA.

Consequently, for any two messages m, m’ € F¥, the projected distributions
(RSnk(m;r)s) s and (RSyx(m/;7)s)pum

are identically distributed.

2.5 Interactive Proofs

We first recall the notion of an interactive proof [GMR89.

Definition 2.20 (Interactive Proof). A pair of interactive machines (P, V') is called an interactive
proof system for a language ¢ with soundness error e = (X) > 0, if V is a probabilistic polynomial-
time machine, and the following conditions hold for every security parameter A € N:

e Completeness: For every x € L, the verifier V' accepts with probability 1 when interacting
with P on common input (x,1%).

e Soundness: For every x ¢ L, and every prover P*, the verifier V' accepts with probability at
most (\) when interacting with P* on common input (x,17).

We say that an interactive proof has an efficient prover if P can be implemented in (probabilistic)
polynomial-time. In the context of an interactive proof for an NP relation, the honest prover is
given access to an NP witness as an auxiliary input.

We remark that all interactive proofs that we construct in this work will have an efficient prover.

The Interactive Proof-System of [GKR15]. Our construction will build on the interactive
proof-system of [GKR15]. This protocol relies on the multi-linear extension (see Definition 2.7).
We state their result in a way that will be convenient for our construction.

14

Theorem 2.21 (Follows from [GKR15, Theorem 1.5]). Let ¢ be a language computable by a (non-
uniform) circuit family C of size S = S(n) and depth D = D(n). Let F = TF(n) be a constructible
field ensemble. Then, there exists a three phase public-coin interactive proof (P, Vipteractive, Vposts Veval)
with the following properties

1. In the interactive phase (P, Vinteractive), P gets as input (C,z) and Vipteractive gets only the
parameters S and D. The prover P runs in time poly(S), and the verifier Vipteractive TUNS
in time D - poly(log(S),log(|F|)). Denote by transcript all messages sent between the parties.
The communication complexity of the interactive phase is poly(D,log(S),log(|F|)).

2. From transcript and the circuit C' we can derive z € F¢, o € F and (C) € {0, 1}poly(D-log(9),log([F]))
in time poly(S).

3. Vpost gets as input (transcript, <C>,z)) and either accept or rejects. Vpost performs a test on
(transcript, (C), z) and runs in time poly(D,log(S), log(|F|)

4. Vepar gets as input (o, z) and just checks the claim &(z) = a. Veyq Tuns in time poly (D, log(S), log(|F|).

The interactive protocol obtained by first running the interactive phase, then having the verifier

derive (C),Z(z) and running Vpost, and finally deriving o from the transcript and running Veyq on

(z,z,) has perfect completeness and soundness error O (D}]%%S).

We remark that [GKR15, Theorem 1.5] does not separate the proof-system into three phases as
above. However, such a separation follows easily using the fact that the GKR protocol is holographic,
meaning that the verifier only needs to make a single query to the low degree extension of the input
prior to the interaction, and subsequently runs in poly(D,log(S),log(|F|)) time.

2.6 Zero-Knowledge Proofs
Next, we define (computationally) zero-knowledge proofs [GMR89].

Definition 2.22 (Zero-knowledge proofs). Let (P,V) be an interactive proof system for an NP
relation R with security parameter \. The proof-system (P,V') is computational zero-knowledge if
for every polynomial-time interactive machine V there exists a probabilistic polynomial-time machine
Sim, called the simulator, such that for every ensemble (x,w) = (xx,wy)x, with (xx,wy) € R the
following distribution ensembles are computationally indistinguishable:

° {View‘];(w) (x, 1>\)}>\6N’ and
° {Sim (x, 1)‘) }AeN’

where Viewg(w) (:L’, 1)‘) is the content of the random tape ofV and the messages sent and received

by V in an interaction with P on common input (x,1%).

For simplicity we use here the standalone definition but remark that our results can be extended
to the setting of auziliarly input zero-knowledge.

15

2.7 Multi-Party Computation

We consider the following multi party computation model: n parties wish to evaluate a function
defined jointly on their n private inputs. While there are many variations of this model, we focus on
the one where the output of all of the parties should be the same (aka “secure function evaluation”).
The communication between parties is synchronous and all pairwise communication channels are
secure. Additionally, following [IKOS09], we also allow an OT-channel between every two parties.
In each round, each party can perform local computations on all its view (input and all messages
seen up to that round), send messages to any other party and read all its incoming messages. A
protocol in this setting, is a specification for each of the n parties.

Definition 2.23 (Correctness). Given a deterministic n-party functionality f(ws, ..., wy) (where
input w; belongs to party i), we say that II realizes f with perfect correctness if for all inputs
w1, - .., Wy, the probability that the output of some party is different from the output of f is 0, where
the probability is over the randomness of all of the parties.

Definition 2.24 (¢t-Privacy). Let 1 <t < n. We say that 1l realizes f with perfect t-privacy if there
exists a PPT simulator Sim such that for any inputs w1, ..., wy, and every set of corrupted parties
T C [n], where |T'| < t, the joint views of parties in T (which includes their inputs, randomness and
received messages) is distributed identically to Sim(T, (w;)ier, f(w1, ..., wy)).

We will rely on the classical construction of a secure MPC protocol against ¢ < n—1 corruptions,
which has perfect semi-honest security in the OT-hybrid model, due to Goldreich, Micali and
Wigderson [GMWS7].

Theorem 2.25 ([GMWST7]). For any n-input functionality f, computable by a circuit of size S,
there is an m-party protocol in the OT-hybrid model with perfect correctness and perfect (n — 1)-
privacy. The parties run in time poly(S,n).

3 Polynomial Commitment Schemes

Definition 3.1 (Polynomial Commitment Scheme). A polynomial commitment scheme (PCS) with
d binding error is a tuple (C, P, V'), where C is a probabilistic polynomial time algorithm and (P, V')
are a pair of probabilistic polynomial time interactive machines with the following syntax:

e For any function f : {0,1}¢ — F : (com, dec) < C(1*, f)
e P andV interaction:

— The common input : (com, 7€ (Fd)k, Q€ IFk).
— P gets dec as an additional input.

— At the end of the interaction, the verifier outputs either 0 or 1.

We denote by (V, Paee)(1*, com, 2, @) the output of V. when interacting with P given the input
as above, where X\ is the security parameter.

The scheme must satisfy the following requirements:

16

e Correctness: For any function f : {0,1}¢ — F, any set of k distinct inputs Z = (21, ..., 2,) €
(FH and any security parameter \,

P Pe(:7v 1)\7 7_'7/_» =1 :1;
(Com,dec)iC(NJ) (Paee, V)(17, com, 2, f(2))]

where f(2) = (f(21),... f(zx)) € FX, and f is the multilinear extension of f.

e Binding: For any commitment com*, there exist a multilinear polynomial fepm+ : F¢ — F
such that the following holds. For every prover P* any security parameter A\, and any set of k
input and output values: (z1,...,21) € (FN* (a1,...,ax) € F¥, such that 3i, feom=(2i) # o
it holds that,

Pr [(P*,V)(l’\,com*,zl, ey Py Oy e () = 1} < 4.

o Commitment Hiding: For every distribution F over d-variate functions from {0,1}% to F
it holds that C(F) is a commitment in the sense of Definition 2.9.

e Evaluation Hiding: For a given f : {0,1}% — F, Denote by (C,P,V*)(f)r the view of the
full execution which consist of:

(com, 21, f(21),s -+ 2k, f(21), (V*,Pdec)(l/\,com,zl,...,zk,f(zl), .. ,f(zk)))

generated as follows:

— (dec,com) «+ C(f).

— V* receives com and selects k points z1, ...,z € FE. P receives com, dec and the points
that V* chose and provides the corresponding evaluations f(z1),..., f(zk).

— V* and P then run the (V*, Pyec)(1?, com, 2, f(Z)) protocol .

For every probabilistic polynomial-time machine V* and for every pair of k-wise identical
distributions Fy, Fy over d-variate multilinear functions (i.e., functions defined uniquely by a
function from {0,1}2 to F), it holds that

(C, P,V*)(F1)x = (C, P,V")(Fa)y.

Remark 3.2 (On Padded Polynomials). In this work our focus is on communication complexity
and we care even about very small multiplicative factors. In particular, we will sometimes want
to commit to multilinear polynomials representing data of length that is not a power of 2. The
straightforward solution of padding to the next power of 2 does not work for us, as we would like to
avoid a potential doubling of the communication.

Accordingly, we extend the definition of the polynomial commitment scheme to strings of arbitrary
length m (not necessarily a power of two) by interpreting the string as a multilinear polynomial after
padding with zeroes up to the next power of two. However, we analyze the communication complexity
with respect to original length m (rather than 2M°8™1).

17

4 Basic Polynomial Commitment

In this section, we present a basic polynomial commitment scheme. While the scheme is not
optimized for communication efficiency, it is conceptually simple and will also serve as a building
block for the succinct polynomial commitment that we construct in Section 5. Thus, the main result
that we prove in this section is the following lemma.

Lemma 4.1. Assume the existence of a one-way function. Then, for every 6 = §(d) € (0,1)
there exists a polynomial commitment scheme for d-variate multilinears over a finite field F, with
binding error § and communication complexity 2¢-log(%) - poly () -log(|F|) for the commitment and
O((2¢- poly(\) + k) -log(%) - log(|F|)) for the opening, where k is the number of points to be opened,
and X\ is the security parameter.

The rest of this section is devoted to proving Lemma 4.1.

4.1 Proof of Lemma 4.1

We first describe a protocol with constant binding error (specifically 0.6), and then extend it via
repetition to reduce the binding error to ¢ which then implies the lemma (see Remark 4.3 for details).

By Theorem 2.12, the existence of a one-way function implies the existence of a standard bit-
commitment C'om in the CRS model, with binding error 0.1. We assume that a fixed CRS is
chosen that is indeed statistically binding and the protocol below is relative to this fixed CRS.
The protocol (with binding error 0.6), which establishes Lemma 4.1 (up to the aforementioned
repetitions) is described in Fig. 1. We proceed to the analysis.

Correctness. Let f : {0,1}% — F be a function, z1,...,2; € F% be a sequence of points and
o1, ..., ap € Fst. o = f(z), for every i € [k].

If the prover is honest, the commitment and decommitment pass the verifier’s check in Step 4a of
the evaluation protocol. Since fo, fi are an additive secret sharing of f, it holds that fo(zi) + fl(zz) =

f(z) = «; , for every i € [k], and so the check in Step 4b passes. Since P sends the correct
evaluations of fy and f; in Step 1, the check in Step 4c also passes and so the verifier accepts.

Binding. We first note that with all but 0.1 probabililty, the commitment scheme is perfectly
binding. Let us assume that this is the case.

Let com™ be a (possibly maliciously generated) polynomial commitment. Recall that com*
should consist of commitments to two functions fg, fi : {0,1}¢ — F. By the binding property of
the commitment scheme (see Definition 2.9) there exists at most one such fj and f; that can pass
the verifier’s decommitment check. We assume wlog that fJ and f; indeed exist since otherwise
the verifier will reject with probability at least % in Step 3. We define feom = f§ + f1-

Let z1,..., 2, € (F)¥ and aq, ..., o, € F¥ such that there exists j* € [k] such that Feom» (zj+) #
aj+, and let P* be a malicious prover strategy. For every o € {0,1} and ¢ € [k], let BZ-(U) be the
claimed evaluations sent by P* in Step 1.

If P* sends values ﬁj(.o), B](-l) such that BJ(O) + BJ(-I) # o, then the verifier V' rejects in Step 4b

and so we may assume that B](-O) + ,6’](-1) = ay, for all j € [k].
Since f§(zj+) + fi(zj*) = feom=(2j+) # =, the prover must be dishonest in at least one of the
values: either Bj(.g) # f5(z+) or B](.P # fi(zj+). Therefore, with probability at leasts 1/2, it holds

18

Basic Polynomial Commitment Scheme

C(f,1), where f:{0,1}¢ — F:

1. Generate an additive secret sharing fo, f1 : {0,1}¢ — F of f (that is, fo : {0,1}? — F is chosen
uniformly at random and f; = f — fp).

2. For b € {0,1}, generate:
(comy, decy) < Com(fp).

3. Set com = (comg, com) and dec = (decy, fo, decy, f1).

Basic Polynomial Evaluation Protocol

Common Input: commitment com = (como, coml), points z1,...,z; € F? | evaluation claims
ai,...,o € F and security parameter 17.
Prover’s Additional Input: decommitment dec = (deco, fo,decy, fl).

1. For every o € {0,1} and i € [k], the prover P computes the evaluations BZ(U) = f.(2) and sends
them to V.

2. V randomly chooses b <— {0, 1} and sends it to P.

3. P sends (fy,decy) to V.

4. V checks:
(a) The decommitment decy, is a valid decommitment to fj.
(b) For every i € [k], it holds that Bi(o) + Bi(l) = a;.
(¢) For every i € [k], it holds that fy(z;) = Bi(b).

If all checks pass then V' accepts, otherwise it rejects.

Figure 1: Basic Protocol

19

that V' chooses the index b (in Step 2) on which the prover lied. Then, either P* sends an invalid
decommitment and V rejects in Step 4a, or P* successfully decommits and V rejects in Step 4c due
to an incorrect evaluation.

Overall, the verifier accepts here with probability at most % Accounting also for the probability
that the commitment is not binding, we get a binding error of 0.6.

Commitment Hiding. The commitment hiding property follows immediately from the fact that
the polynomial commitment C'(F) just consists of a pair of standard commitments.

Evaluation Hiding. Let F1, F5 be k-wise identical distributions over d-variate multilinears and
let V* be a probabilistic polynomial time verifier. We show that

(C> P, V*)(Fl) R (Ca P, V*)(FQ)a

where we recall that (see Definition 3.1)

(€ PV (F) = (€U, 2 12, fo(2) 11(2),budecy,) = ((comyy,comy,), 2, £(2), fo(2), f1(2), b decy,)
and where,

e f~ F and fy, fi are a random secret sharing of f as in Step 1.

e 2= (z1,...,2;) are the k points chosen by V* (which may depend on the commitment) and
b is the selection bit chosen by V* (which may depend both on the commitment and the
evaluation sent by P in Step 1).

e comy, and comy, are the (standard) commitments to the secret sharing components fo and fi,
respectively, as defined in Step 1, and decy, and decy, are the corresponding decommitments.

The proof loosely follows the structure of the zero knowledge proof for the 3-coloring protocol
in |Gol01, Section 4.4.2.3|.

Assume, toward a contradiction, that the ensembles (C, P, V*)(F1), and (C, P,V*)(Fy); are
distinguishable. Let Z;, Zy € (F%)* be the opening points chosen by V*, and let By, By € {0,1}
be the bit chosen by V* in Step 2, both with respect to the interaction over C(F}) and C(Fy),
respectively. Note that these random variables may depend on the commitment and previous
messages during the interaction. For every fixed (Z,b) € (F%)* x {0,1}, let:

o (iz(F;) denote the output of the full interaction given F; as input, conditioned on V*’s query
being (Z,b); and

e pzp(F;) denote the probability that V* selects (Z,b) during the interaction with P given F; as
input.

Proposition 4.2. For every pair (Z,b) € (F%)*x {0, 1} it holds that |pz,(F1) —pz(F2)| is negligible.

Proof. Assume towards a contradiction that there exists a pair (Z,b) such that ‘ pzp(F1) — pgyb(Fg)}
is non-negligible. Denote by PrC(Fi)[Z] the probability that V* queries 2’ given C(F;), and by
Pro(r,)[b | Z] the probability that V* queries b when interacting over C(F;), conditioned on having
already chosen 7.

20

Suppose first that Pro(p,[Z] = 0 for some i € {0,1}. By assumption they cannot both be zero,
so wlog assume that Pro(p) [Zﬂ = 0 and Prg(g,)[Z] > 0. Then

2o(F1) —pzo(EFo)| = pzp(Fy) = Pr [Z]- Pr [b| 2] < Pr |Z],
[p=a(F1) = pas(Fa)| = palF2) = Pr [4- Pr |4 < Pr [4

so if the left-hand side were non-negligible, then Pr¢(f,)[Z] would also be non-negligible. However,
the hiding property of the commitment together with Fact 2.5 implies that

P - P
C(f%)[z] C(I*Ez)[z_1

is negligible so we get a contradiction.
Thus, we may assume that Pro(g,)[2] > 0 for both i € {0,1}. Observe that:

Z, E =P * - _’7 =P P
pzp(Fi) s [V* queries (Z,b)] = s 2] - C(r[| 2].

Now consider,

Pr [2]- Pr[b|‘1— Pr[é] Pr b],?]’— Pré’] Pr [b| Z]— Pr [7]- Pr[b|2’]

C(F1) C(F C(F1) C(F1) C(F
+ P[4 |2 - Pr(d- Prpd)
<[pr i (fr b7~ Pr [bra)\

+‘Prbz <Prz—Prz)‘

14 (P = P 12
where the last step follows from the triangle inequality. Since the left-hand side is assumed to be
non-negligible, at least one of the terms on the right hand side must also be non-negligible. However,
from the hiding property of the commitment and Fact 2.5, we know that

P - P
ot iy
is negligible. Hence,
Zl — Pr bz
Pr 14~ Prlb| 2

must be non-negligible, which we will contradict next.

Claim 4.2.1. Let f ~ Fy and g ~ Fb, it holds that

((COme,comfl),Z,f(2), fo(2), f1(Z)) ~ ((Comgmcomm)v579(5)790(5)791(2))
where fo and f1 (resp. go and g1) form an additive secret sharing of f (resp. g).
Proof. Since f and g are k-wise identical, it follows that,
(2. 1(9) = (5,9(9)).
Moreover, since fo, f1 and gg, g1 are random secret sharings of f and g, respectively, we have,

(2, £(2), fo(2), 1(2)) = (Z,9(2), 90(2), 91(2)).

21

From the hiding property of the commitment, we conclude that,

((Comfovcomf1)727 f(Z),fO(E),fl(Z)) é ((ComgovComgl)>579(5)790(5)791(5))'

Now, we could construct a (non-uniform) distinguisher between the distributions

((Comfovcomﬁ)?g:f(g)vf0(5)7fl(5)) and ((comgo,comgl),Z,g(é’),go(f),gl(é')).

The distinguisher (which has z and b hardcoded) simply runs V* on its input and outputs 1 if V*
selects b, and 0 otherwise. This contradicts Claim 4.2.1, completing the proof of Proposition 4.2. O

Recall that we assumed that the ensembles (C, P, V*)(F})i and (C, P, V*)(F») are distinguishable.
Next, we show that there exists a fixed (2,b) € (F%)* x {0,1} such that a distinguisher can
distinguish (C, P, V*)(F1); and (C, P,V*)(F») even conditioned on this choice, despite the fact
that pzp(F1) = pzp(Fo).

Using the distinguisher between (C, P, V*)(F})g and (C, P, V*)(F»), and an averaging argument,
we obtain that there exists a probabilistic polynomial-time algorithm A, a polynomial ¢(-), and an
infinite sequence of integers d such that, for each d in the sequence, and Fi, F5 being k-wise identical
distributions over d-bit functions from {0,1}% to I, there exist a choice (Z,b) such that

pzp(F1) - PrlA(pzp(F1)) = 1] — pzp(F2) - PrlA(pzp(F2)) = 1]| >

This further implies, the following:

L pzp(F1) > g.ql(,\)-

2. |pzs(F1) = pzap(F2)| < 8-q(1/\)2'

3. | Pr{A(uzp(F1)) = 1] - Pr{A(pzp(F)) = 1| > 5k

To see this, note that Item 2 follows immediately from Proposition 4.2. Given Item 2 we conclude
that |pzy(F1) - PrlA(pzy(F1))] — pzp(F1) - PI‘[A(M;J,(FQ))]‘ > #(A) and Items 1 and 3 follow.
We now show that this contradicts the following claim:

Claim 4.2.2. Let (z,b) € (FY)* x {0,1} be a fived query from V*. Denote

f(_‘)a fO(Z)v f1(2)7 b, fv dec]cb),
g

Hy = ((comy,,comy,) Z
(2), 90(2), 91(2), b, g, decy,),

) Z)
Hy = ((comyg,, comy,), Z,
where f ~ Fy and g ~ Iy, then Hy ~ Hy.

Proof. We show that the two distributions are indistinguishable in a step-by-step manner, as follows:

1. Since f and g are k-wise identical, we have that:

(7, f(2)) = (7,9(2))-

22

2. Since fy, f1 and gg, g1 are random secret sharings of f and g, respectively, together with the
previous item, we obtain::

(2, (%), fo(2), 11(2),) = (Z,9(2), 90(2), 91(2),).

3. Because each share f;, and g is individually uniform, except where constrained by the shared
evaluations (f(2) or g(2), respectively), it follows that:

(2, F(2), fo(2), 1(2), b, fo) = (2,9(2), 90(2), 91(2), b, v).

4. Finally, by the commitment hiding property of the commitment scheme and Fact 2.5, we
conclude:

((Comfo,comfl),f%f(?), fo(2), f1(2), b, fb,dGCfb) ~ ((comgo»Comgl),579(5)790(5),91(5),b,gb,d669b>-

O

Now define A’ as the algorithm that runs the full interaction and checks whether (Z,b) was
selected by V*. If so, it runs A; otherwise, it outputs 0. Then we have:

PrA'(Ho)| — Pr[A'(H)]] -

W(F1) - PrlA(uzy(F1)] = p2y(Fy) - PrlA(uz,(F))|

B(F2))] - [A(B(F))]

(pz,

> pzp(F1) - ‘PF Apz

— Pr[A(pzp(F2))] - [pzp(Fa) —)|
(nz

> pep(F1) - | Pr{A(uzs(F2))] - [A(WFO)| = [p20(Fs) = pza(F)|
- 1 ‘ 1 1
2900 240N 840V
1
BERCIOE

which contradicts Claim 4.2.2. Therefore, we reach a contradiction and conclude that
(C, P,V*)(F1)i = (C, P,V*)(F2)x.

Communication Complexity: The prover first commits to two d-variate multilinears, sending a
message of length 2 poly(\) -log(|F|). The verifier then sends k values, and the prover responds by
sending 2k evaluations, requiring a message of length 2k - log(|F|). Finally, the prover decommits to
one of the functions as requested by the verifier, requiring a message of length 24 - poly()) - log(|F|).
Overall, taking into consideration also the repetitions, the total communication complexity is:

Commitment: 2% poly(\) - log(|F|), Opening: O((2¢- poly(\) + k) - log(|F|)).

Remark 4.3 (Amplification). As shown above, the protocol described in Fig. 1 has a binding error
of 0.6. To reduce this error to 6 > 0, we repeat each of the commitment and evaluations phases
O(log(1/9)) times in parallel.

23

Note that the hiding property of the commitment is indistinguishibility based (rather than a
stmulation based one). Therefore, by the evaluation hiding property and a standard hybrid argument,
the opening proofs can be done simultaneously.

As for the binding property, since for each repetition the probability that P can convince V of a
wrong opening is at most 0.6, and the secret sharings are independent, we obtain the desired binding
bound.

5 Succinct Polynomial Commitment

In this section, we prove Theorem 1.3 by constructing a succinct polynomial commitment scheme
for strings of length m. The commitment communication complexity is only slightly more than m
field elements and the evaluation proof is sublinear in m.

To prove Theorem 1.3 we construct a PCS that uses a base PCS as a blackbox. Theorem 1.3
then follows immediately from the following lemma by combining it with the base PCS given in
Lemma 4.1.

Lemma 5.1. Assume there exist a polynomial commitment for d-variate multilinears over a finite

field F, such that |F| = Q(% : (m2/3 + log(1/9) -log(m))), with binding error g and communication

complexity Ceom(22), Copen (2%, k) where k is the number of openings.
Then, there exist a polynomial commitment scheme for any string of length m with binding error
6 and communication complexity at most

m +m?/3 - poly(\,log(1/5))
field elements for the commitment and
O(m*3 -10g(1/8)) + k - (Ceom(m?) + Copen(m*/3,2)) + poly(N)

field elements for the opening, where k is the number of points to be opened and X\ is a security
parameter.

5.1 Proof of Lemma 5.1

Let (Chases Poases Voase) be the base polynomial commitment scheme and let Com be a standard bit-
commitment scheme with additive overhead? (see Proposition 2.13). We set both commitments to
have a binding error %. The succinct polynomial commitment scheme and the opening protocol that
establish Lemma 5.1 are presented in Fig. 2 and Fig. 3, respectively. We proceed to the analysis.

Correctness. Let s € {0,1}™ be a string, let zy,..., 2, € F? be points. For every i € [k], let
a; = §(z;), where § denotes the multilinear extension of s (see Definition 2.7), padded with zeros to
have length that is a power of 2.

If the prover is honest, then the commitment and decommitment are valid, and the test in Step
7 of the evaluation protocol passes.

20ur assumption that a basic PCS exists implies also the existence of a standard commitment scheme which in
turn implies the existence of a one-way function. A commitment with additive overhead can then be obtained using
Proposition 2.13.

24

Succinct Polynomial Commitment Scheme
Ingredients:
e A)-hiding code (see Definition 2.18) F : F¥ — F¢*) with blocklength £(F).

e A standard bit-commitment scheme Com with additive overhead (as in Proposition 2.13).

Commitment: C(s,1%), where s € {0,1}™:

1. Let m,,m. € [m] such that m, - m. = m.“ View the input s as a matrix S € F™ >« in the
natural way. That is, by setting

S[Zv.]] = S(i—1)-me+j
for all i € [m,] and j € [m¢].
2. (Random Padding:) Sample uniformly at random a matrix R € F™*? and a vector R’ € F".

Construct the extended matrix 4 € F(mrtDx(meta) a9 A = [RL?T I(ﬂ .

3. (Encode Rows:) Let Gp € F(meta)x(meta) denote the generator matrix of the code E, for
messages of length m,. + ¢q. Compute

A=A-(Gp)T.
(In other words, use E to encode the rows of A.)

4. (Commit to Columns:) For each j € [¢(m. + q)], compute
(comj,dec;) < Com (fl(j)> ,

where A denotes the j-th column of A.
5. Output:

com = (coml, ey comg(mc+q))7 dec = (A(l), decy, ..., Atmeta) dec@(mcﬂ)).

“We assume such a factorization exists; otherwise we can pad s with at most /m zeroes.

Figure 2: Succinct PCS

25

Succinct Polynomial Evaluation Protocol

Common Input: commitment com = |(comq,...,comyi,. oints z1,...,2; € F¢ evaluations
P ’ ’ Lme+q))» P ’ ’ ’

aq, .

..,ai € F and security parameter 1*.

Prover’s Additional Input: decommitment dec = (A(l), decy,. .. ,Ae(mcﬂ)7 dng(mc+q)).

1.

® NS ¢ wN

Let d, = [log(m,)] and d. = [log(m.)]. We extend S, R, R into functions as follows:

o Let S:{0,1}% x {0,1}% — F such that S(i,j) = S;; if i,j (viewed as integers) are within
the index range of S, and S(4,) = 0 otherwise.

o Let R:{0,1}% x {0,1}% — F (resp. R :{0,1}% x {0,1}% — F) as R; ; (resp. (R'T);;) ,
if (i, 7) is within the index range of R (resp. R'") and 0 otherwise.

e Define v : {0, 1}1Hdrtltde 4 T a5
(b1, i, b2, 5) = (1—b1) - (1= ba) - S(i,5) + (1 — b1) - bo - R(i,) + by - (1 — ba) - R'(3,).

e For every i € [k], define the function g; : {0, 1}!*% — F as g;(by,z) = 9(by, ,0, zi(r)), where
zy) € Fée are the last d. bits of z; and ¢ is the multilinear extension of v.
(2)

For every i € [k], the prover P computes (¢, dl()fl)se

) < Chase(g:) and sends D toV.

base

V chooses a random evaluation point p < F1*4-\0F?" | and sends it to P.

P computes and sends h : {0,1}17% — F defined as h(ba, z) = 9(p, b2, x) to V.

V chooses j1, ... jq € [¢(m. + ¢)] at random and sends them to P.

For every t € [q], the prover P sends (AUt), dec;,) to V.

For every t € [g], the verifier V' checks that dec;, is a valid decommitment for Al

Denote by Ej, = E((h(i))ie{l _____ g.2de 1, dc+q}) i.e., the encoding of the non-zero padded entries
of h, where i denotes the binary encoding of the corresponding integer.

The verifier then checks that

En(it) =Y eqli.p) - AV +eq(2™,p) - AG, .

ie[mr]

where the integer argument of eq (see Definition 2.7) is understood as its binary encoding and
flg“)is the 4-th entry of AUY).

For every i € [k], the verifier V and prover P emulate the base PCS evaluation protocol
(Pyase, Vbase) with respect to: (1) the commitment Y (2) the points OZZ.(Z) and p, (3) the claimed

base?’
evaluations «; and h(0, zi(r)), which serve as common input, and with dl()fl)se as the prover’s auxiliary
input. If all tests pass (Step 8 and Step 9) then V accepts. Otherwise it rejects.

Figure 3: Succinct Polynomial Evaluation Protocol

26

Let V € F27x2"% 16 the matrix obtained by arranging the values v(i, j) (see Step 1) in a
matrix in the natural way. Thus, V' has the form

s
0
(”)T
0

V=

o O O O

R
0
0
0

o O O O

where S, R, and R’ are defined in Step 2 of Fig. 2 and the zeros represent all-zero matrices of the
appropriate sizes.

The matrix A (from Step 2 of Fig. 2) can be obtained from V' (by removing the padding blocks)
and vice versa. These adjustments yield the equality in Step 8, details follow.

From the definition of h and Definition 2.7, in an honest execution we have

h(‘r) = 'ﬁ(pvx) = Z Z 6q(i,p) ’ QQ(jvx) ’ U(l,]) - ZGQ(i7p)) 'l)(i,.'lf).

i€{0,1}1+dr je{0,1}1+de
Equivalently, in vector notation, h defined over {0,1}!*% can be written as,
h = qu -V,

where eq, € F2'"" denotes the vector eqy(b) = eq(p,b) for every b € {0,1}1+% (where we view
b simultaneously as a bit vector and an integer in the natural way). In Step 8 only the nonzero
columns of V' are encoded, i.e. the (inherently) zero coordinates of h are omitted. Thus

S R\\
0 ST 0 R 0
Eh = GE eqz : (R/)T 0 = GE <<RT 0 0 0) ' eqp) :
0 0

By Definition 2.7 we have R
Eh(jt) = €q;l; : Eh7

where eg;, € F{m<+a) denotes the vector eqj,(b) = eq(j,b) for every b € {0, 1}°8l(meta) - Now

T /
5 0 It 0) are inherently zero (due

since, some of the columns of the resulting matrix G - < (BT 0 0 0

to the zero columns), we obtain:

Ey(ji) = eqj, - G <<(f%)TT RS,) .e_qp) ’

where €q, € F+1 denotes the entries of eq, after omitting the zeros. That is,

eq(0, p)
€q, = ‘
* | ea(m, —1,p)
eq(2%, p).

27

T /
Since AT = (S R) and j; € {0, 1}1+9 it follows from the definition of eq(-,) that,

RT 0

~

EnL(j) = eq;‘-'; -Gp- AT €q,
— (A(]t))T . e_qp
= 3" eqli,p) - AV 4 eq(2%, p) - AU,

i€ [m7]

where AUt is the jy-th column of A = A- (Gg)T as defined in Step 4 of Fig. 2. Hence, the check in
Step 8 passes.
For Step 9, we have:
9i(0, zz-(g)) = @(O,z@,o, zy))

)

— Z eq(b,0, zy), 0, zi(T)) ~v(x)

z€{0,1}1+dr+1+dc

= > eq(b1,0) - eq(x1,2."”) - eq(b2,0) - eq(aa,) - v(by, w1, bz, 22)

b1€{0,1},1€{0,1}%r
b2€{0,1},22€{0,1}%

= Z Z eq(xbzi(e)) ' €Q(5E2>Z§T)) ',U(valaoaxQ)

z1€{0,1}4r z2€{0,1}de
(r)

= Z Z eq(x1, zy)) ceq(ze,2;”) - S(z1,32)

$1€{0,1}dT $2€{0,1}d6

1 r
DS S eglen =) - eqlwa 27) - st 1ot

xr1€ [m'r] x2€ [mc]

= §(Z,) = Oy,

where (1) follows from the definition of S (Step 1 in Fig. 3) and S (Step 1 in Fig. 2). Also, by
definition, H(O, zi(r)) = 6(p,0,zi(r)) = gi(p). Hence, by the completeness of the base polynomial
commitment protocol, the check in Step 9 passes, and the verifier accepts.

Binding. Note that in Step 3 of the evaluation proof protocol, the verifier samples p from the
set F'*+d \ OF% . In the binding proof, however, we consider a variant of the protocol in which
the verifier instead samples p uniformly from F't¢ . This is sufficient since, by Proposition 2.2,
the statistical distance between the two distributions is ITII' Therefore, any adversary that breaks
binding with probability € in the real protocol would also succeed in the modified protocol with
probability at least € — Ifll'

Let com™* be a polynomial commitment generated by a possibly malicious prover. Recall that
com”™ is supposed to consist of a set of valid commitments com* = (comy, ..., comy(y, +q))- By the
binding property of the commitment scheme® (see Definition 2.9) there exists at most one value m;
that can pass the verifier’s decommitment check for com;. Let m; € F™+1 be the unique message
in case it exists, and set m; = 0 otherwise (i.e., if no such mssage exists).

3Since we are using a commitment scheme in the CRS model, the commitment is binding with probability at least
1 — 27> over the choice of the common reference string.

28

Let e = W (where d is the relative distance of the code) be a proximity parameter. Define

B :{0,1}+dr — Flmet+a) 1y,

(M1jr1s - Mip(motg)j+1) je€{0,...m, — 1},
B(j) = (ml,mr+1, e 7m€(mc+q)7mr+1)v j =2,
0, otherwise.

where m; ; denotes the j-th entry of m;, and j is interpreted as a binary string when used as input
to B, and as an integer when used as an index.

If the Hamming distance A ((B(j))iiﬂglil, EQdT“) > e, by Theorem 2.16, we obtain:
. e+1
P [A(B ,E)<}<2-d 1) .
pE]Fd£+1 (p) e = (T +) |IF‘

Assume that the event in the above equation does not hold — that is, A(B(p), E) > e. Let h*
be the function sent by P* in Step 4. Then there are more than e columns of B(p) that disagree
with F(h*). The probability that the verifier does not select any of these columns when opening ¢
columns in Step 5, and therefore fails to detect the error and reject, is at most

(W))

2dr+1_q

Overall we get that in case A ((B(j))j:o

1)- % +(1- m)q probability.
Thus, we may assume that A ((B(j))jzo aEQdTH) < e. For every j € [2¢7+1] define s; €

F¢(met9) t0 be the message whose codeword under E is closest to B(j), i.e., s; = arg ming A(E(S),B(j)).
Define v : Fltdrtitde T

,E2dr+l) > e the verifier rejects with all but 2 - (d, +

2dr+1_q

Siz if £ < me
v(iyba,) = {8, 4 gac if 20 <@ < 20t (1)
0 otherwise

where s; , denotes the z-th coordinate of s;. We treat ¢ and x as binary strings when given as inputs
to v, and as integers when used as indices.
Finally, define s € F""™e = F™ by

Smc-(x171)+mz = 'U(O, Ty, 07 CCQ),

where 1 € [m,| and xo € [m,| are interpreted as binary strings when used as inputs to v, and s;
denoted the i-th value of s.

Let 21,...,2x € (FY)* and ay, ..., a € F¥ such that there exists j* € [k] such that §(zj+) # o
(where § is defined over s padded with zeroes), and let P* be a malicious prover strategy. We
assume wlog that P* is deterministic. Denote by g and h* the functions committed to and sent by
P* in Steps 2 and 4, respectively.

Consider the following cheating strategies:

29

1. P* sends in Step 2 a commitment to g7. (b, z) = 9(b, z, 0, zj(:)) (when v is as defined in Eq. (1)).
In this case,
Ak 4
35 (0,247) # a,

since , ,

3(0,289) = 9(0,200,0,257)) = 3(20) # .
By the binding property of the base polynomial commitment, the verifier rejects in Step 9
with probability at least 1 — g

2. P* sends in Step 2 a commitment to g}. (b, z) # 9(b, z, 0, z](:)) and in Step 4 it sends h*(z) =
0(p, x), where p is chosen by V in Step 3:

e By the Schwartz-Zippel lemma, since g.(z) # v(b, z,0, zj(-:)),

. B (r) d.+1
Pr [g7.(p) = v(p, 0,2,)] < o
e Otherwise, if g7. (p) # v(p, 0, zj(.:)), then from the binding property of the base polynomial
commitment, with probability at least 1 — g the verifier rejects in Step 9.

Overall, in this case V rejects with probability 1 — dlrﬁ L_ %.

3. P*sends in Step 2 a commitment to g7. (b, x) # 0(b, x,0, zj(:)) and in Step 4 it sends h*(be, z) #
v(p, be, x). Since v # h, the relative distance between their encoding is at least d. However,
since v is defined as the closest message consistent with the commitment, and the commitment
is at most e far from any encoding, the encoding of v is at most e far from the commitment.
Therefore, the relative distance between the encoding of A and the commitment is at least d —

m. Thus, the probability that the verifier accepts in Step 8 is exactly the probability that
q
none of the g checks reveal a column on which the two encodings disagree, (1 — <d — m)) .

Overall we get that V accepts with probability at most

5 (-)+ (- (- i) o ()

Commitment Hiding. Recall that C(F) consist of a set of standard commitments. Commitment
hiding now follows from the hiding property of the commitment (together with a standard hybrid
argument).

Evaluation Hiding. Let 51,52 be k-wise identical distributions over strings of length m. We
show that for every probabilistic polynomial time verifier V*,

(C, P,V")(51) =c (C, P,V")(S2).
Recall that (see Definition 3.1)
(QRWN$=

30

where,
e ('(s) is the polynomial commitment as defined in Fig. 2.

e check-h = (jt)te[q],{fl(j’f),decjt}te[q}, where (jt);c[q denotes the g openings chosen by V* in
Step 5, and {AU?), decj, }1elq are the data and decommitments sent by P in Step 6.

° Interact(gi7 (Ozy),p), (é(zz), fl(Ozl(r)))) is the base PCS evaluation proof (Ppgse, Voase) relative

to the commitment to g; sent in Step 2, the points (Oz@)

., p) and the claimed evaluations
(3(=0), (02",

Similarly to the evaluation hiding proof in the basic polynomial commitment scheme (see
Section 4.1) this proof follows loosely the structure of the zero knowledge proof for the 3-coloring
protocol in [Gol01, Section 4.4.2.3].

Assume toward a contradiction that the two ensembles (C, P,V*)(S1) and (C, P,V*)(S2) are
distinguishable. Let Z;, 725 € (Fd)k be the opening points chosen by V*, and let p;, p, € F&+1
and J1,J2 == (jt)ie[q Where ji € [((mc + q) be the strings sent in Steps 3 and 6 chosen by V*,
both with respect to the interaction over C(S7) and C(S3), respectively. Note that these random
variables may depend on the commitment and previous messages during the interaction. For every
fixed (Z, p,]), we define two random variables:

1. Let pz,;(S;) denote the output of the full interaction given S;, conditioned on V*’s request
being (Z, p,).

2. Let pz,;(S;) denote the probability that V* selects (Z, p,j) when interacting with P given S;
as input.

Proposition 5.2. For every tuple 7 € (F%)*,p € F&"\OF", and j € [((mc + q)]? it holds that
|pg,p,j(51) _pg,p,j(SQ)‘ 1s negligible.

Proof. Assume towards contradiction that there exists a tuple (Z,p,]j) s.t ’pg7p7j(51) — psz,j(Sg)}
is not negligible. We first argue that the interaction up to those choices is computationally
indistinguishable. This is captured by the following claim:

Claim 5.2.1. It holds that:

1. Let sV ~ S; and s ~ Sy, then,

(C(s™M),2,50(2), (Chase (0)icpy) = (C(s?)), 2,8P(2), (Crase (0™))iei),

(b)

where g, is defined with respect to s®) as in Step 2.

2. Let sV ~ Sy, s ~ Sy, it holds that,

C

(C(S(l))a 27 A(l)(g)a (Cbase(ggl)))ie[k]a P h(l)) ~ (0(8(2))a Z) 3(2)(2)7 (Cbase(gf)))ie[k] s Ps h(2))>

where h®) is defined with respect to s and p as defined in Step /.

31

Proof. We prove the two parts of the claim:

1. Let s ~ S and s ~ Sy, since s and s are k-wise identical, it follows that:

(z,50(2) = (7,5?(2),

—~
Q
—
V)
—
—
N
2
>
=
—~
Ry
~—~
~—
Qo
—~
Q
—~
»
S
~
N
»>
—
x
—~
Ny
~—
~—

Q
—
v

—
=
=
SN—
Ny
>
RN
Nt
—
~—
—
Q
S
v
Q)
—
=
S~—
SN—
S
m
=
SN—
Xo
Q
—
v
—
®
>
S~—
B!
>
=
®
N/
—
Ny
N—
—
Q
S
v
(4]
—
Q
S
SN—
S~—
S
m
=
N—"

2. Recall
WO () = o(p,)
= Z eQ(p7i) -eq(w,j) U(Z7])

i€{0,1}1+dr je{0,1}1+de

Z Z eq(p,0i) - eq(x, j) - v(0i, 7) Z Z eq(p, 1i) - eq(z, j) -

ie{0,1}9r je{0,1}1+de ie{0,1}4r je{0,1}1+dc

(1)

i€{0,1}dr je{0,1}1+de i€{0,1}dr je{0,1}1+de
2 — .
@ S > eqlp,0i)-eqla,) - v(0i,5) + Y eq(p,10%) - eq(w,) - R'(0%, 5)
i€{0,1}4r je{0,1}1+de jeme]

where (1) follows from the definition of v (see Step 1) and (2) from the definition of R'.

Now since we chose p € F1*+d \ 0F% we have eq(p, 10%) # 0, and since R'(0%",j) = R is
uniformly random for j € [m,] (see Step 2 in Fig. 2), it follows that h is uniformly random.

Therefore, by the previous item, we conclude that,

(C(sM),2,5D(2), (Chase(9{)ics 1, 1Y) & (C(5P), 2,52 (2), (Crase (9.))icpy 0.).

O

Now, denote by Prc(g,)[z] the probability that V* queries 2’ given C(S;), by Pre(g,)lp | 2] the
probability that V* querles p when interacting over C'(.S;), conditioned on having already chosen Z,
and by Prg(s,)li | 2, p] the probability that V* queries j when interacting over C'(S;), conditioned
on having already chosen Z and p.

Suppose Prg(g,)[2] = 0 or Prgg,)[2, p] = 0 for some i € {0,1}. By assumption it cannot be for
both S7 and Ss, 50 Wlog let Pres;)[2] = 0, Pre(g,)[2] > 0 and Preg,)[2, p] > 0. Then

2,0 (S1) = Dz, (S2)| = Pz, (S2) = CFSI 2] - CF;)[P | 2] - Pr [| p, 2] < ?f)[q],

32

v(14, j)

eq(p,0i) - eq(a,§) - v(0i,)+ > Y eqlp,1d) - eq(x,5) - R'(i, §)

so if the left-hand side were non-negligible, then Pr¢g,)[Z] would also be non-negligible. However,
the hiding property of the commitment together with Fact 2.5 implies that

P — P
orr A= Pr

is negligible so we get a contradiction.
Therefore, Pre(g,)[2] > 0 and Prg(g,)[p | 2] > 0 for both i € {0,1}. By the definition of joint
probability, Observe that for every i € {0,1},

pzp(Si) = Pr [Z]- Pr [p|2]- Pr [j|Z p.

C(S:) C(S:) C(S:)
Consider now,
P2j(S1) = Pz,j(S2) !—(Pr @ Prleld: PrlilZpl= PrE- Priel: Prlil]
<(Pra m[|a(Pr 512,01 = Pr i1 7]
+ Pr Z Pr Z Pr Zl— Pr Z
Pr - [\M(awmw L)

+£Mﬂﬂ¢gpum(§gm—Pwm1

<| Priilzo= PrilZel|+| Pripld= Prlo|d|+] Pr 4~ Pr],
(where the last step follows from the triangle inequality) is not negligible. Thus one of the terms
must also be non-negligible. However, from the hiding property of the commitment and Fact 2.5,
we know that Pre(g,)[2] —Pre(s,)[2] is negligible. If Pro(g,)[p | 2] —Pres,)lp | 2] is not negligible we
get a contradiction to Claim 5.2.1 (item 1) and if Pres,)[j | 25 p] — Pro(sy)li | 2, p] is not negligible
we get a contradiction to Claim 5.2.1(item 2). This concludes the proof of Proposition 5.2 O

We assumed that the ensembles (C, P, V*)(S1) and (C, P, V*)(S2) are distinguishable. Similarly
to the PCS base evaluation hiding proof (see Section 4.1) by an averaging argument, there exists a
probabilistic polynomial-time algorithm A, a polynomial £(-), and an infinite sequence of integers d
such that, for each d in the sequence, and S7, S3 being k-wise identical distributions over strings of
length d, there exist a choice (2, p,]j) such that

Pzj(S1) - PrlA(pz,;(S1)) = 1] — pz,;(S2) - Pr[A(pz,j(S2)) = 1]| > —-

This further implies, the following:

L. pzi(81) > 3r3-
2. |pzpi(S1) — pzpi(S2)| < ‘s‘g(lx)z'

3. | Pr[A(pz,5(51)) = 1] = PrA(nz,4(52)) = 1]| > zi-

33

Item 2 follows immediately from Proposition 5.2. Given Item 2 we conclude that |pz,;(S1) -

Pr[A(pz,j(51))] = pz,j(S1) - Pr[A(pz,,;(S2))]| > 26(y and Items 1 and 3 follow.
We now show that this contradicts the following claim:

Claim 5.2.2. Let Z,p,j be a fized choice of V*, denote:

Ho = (C (1), 25D (2), {compase (91 Viepwy, oI, check-h, ~ {Iinteract (g, (021, p), (50 (=), AV (0
Hy = (C(52), 252 (2), {compase (91 Vietry, o, P check-h, {interact (9, (021, p), (52 (), h®) (0

where st ~ Sy and s?) ~ Sy then, Hy ~ H.
Proof. We first recall,

e ((s) is the polynomial commitment as defined in Fig. 2 consisting of a set of standard
commitments.

o check-h = j, {AU) dec;}jcj, where {AVU) dec;} i are the data and the decommitment sent by
P in Step 6.

° Interact(gi, (OZf,p), (§(zl),ﬁ(0zl(r)))) is the base PCS evaluation proof (Pyuse, Viase) relative
to the commitment to g; the points (()zi(f), p) and the claimed evaluation (5(z;), ﬁ(OzZ(T))).

From the definition of ¢ for b € {0,1} (Step 2) since s(!) and s are k-wise identical we have
that g™ and ¢(? are also k-wise identical. Thus from the evaluation hiding property of the basic
commitment and an hybrid argument we have,

(250(2), {eompase (9" biem, o, h(02), {Interact (g, (047, p), (1) (2:), AN (07)) Yiepy)

C
~
~

= A r 2 4 7
(259 (2), {compase 9™ biepss 2. hP (7)), {Interact (g7, (0207, p). (52 (20), AP (07) bicye)
Next, since h(®) for b € {0, 1} is distributed as a uniformly random function consistent with A (0z(")
(see the explanation in 2 within the proof of Claim 5.2.1) we have

(2,50(2), {comase (9 Yicp, o, bV, interact (9, (0207, p), (5 (z0), AV (0=")) bicpy)

c
~

~

(2522, {comuase 9 iep. 0,2 {Interact (g, (027, p). (87 (). A (02(7)) Yiep)

From the definition of A-hiding code(see Definition 2.18) we obtain,

(2592, {compase(9i) icpg . bV, 5, LA g, Linteract (g, (027, p), (59 (20), A (02")) bieg)

c
~

34

(T)))}ie[k])
z(r)))}ie[k]>

(2:52(2), {comase (9™ iy, .15, {AF sy, {Interact (97, (021,), (52 (), AP (047) bicpy)

where flz(»j) is the j-th column of the matrix A;, as defined in Step 4 of Fig. 2, given s,
Finally, by combining the above and applying Fact 2.5 to perform the commitment and decommitment
on the columns in order to generate check-h, and Fact 2.10 to add the commitments for the remaining

columns, we obtain exactly the distributions Hy and H;, thus establishing Hy ~ Hi. O

Now define A’ as the algorithm that runs the full interaction and checks whether (2, p,]j) was
selected by V*. If so, it runs A; otherwise, it outputs 0. Then we have:

PT[A/(HO)] PI“[A Hl ‘— pzp,J(Sl) Pl"[(/‘z,p,)(sl))] pz,p,J(SQ) [A(:ué’,p,j(SQ))]‘

> pzpg(S1) - | PrlA(uzp5(52))] = PrlA(uz,5(51)]]
- Pr[A(:uz p,j(SQ : |pz,p1(52) pz,p,](sl)’
(S1) | PrlA(iz,5(52))] = PrlA(nz,5(S0)]| = [P24(2) = p2pi(S1)]

J
I S
732 £(A) 2-6(0) 8-¢(V)?

8-5(8- £

which contradicts Claim 5.2.2. Therefore, we reach a contradiction and conclude that

(07 P, V*)(Sl) é (Cv P, V*)(S2)

Communication Complexity. The commitment consists of £(m.+¢)) commitments for messages
of length m, + 1. Thus, the overall size of the commitment is: (m, + poly(\)) - (¢(m¢ + q).

For the opening protocol, the prover P first sends for every i € [k] a base PCS commitment
for a multilinear polynomial on d, 4 1-variables, which has length Cepp, (2% 11). Then, V chooses
p and P sends the description of h, which has length 29c*1 . log(|F|). The prover P then opens g
columns by sending the decommitments of total size ¢ - (m, + poly(\)). For the last step we apply
k openings of length Cppen(297+1,2). Overall we get:

e Commitment: (m, + poly(X)log(1/6)) - £(mc + gq).
o Opening: 2%+ 4 m, - g+ k- (Ceom (2% 1) + Copen(2dr + 1,2)) + poly(A).

Remark 5.3. By choosing m. = m?/® and m, = m'/3 and utilizing the linear code of Reed-Solomon
1/3

(Definition 2.17) with £(k) = (1 +m~ Y3k and fizing q = 0(1:1"_1;/3)log(%) we obtain Lemma 5.1

6 Succinct Zero-Knowledge Proofs

In this section we prove Theorem 1.1 by constructing a succinct zero-knowledge proof for bounded-
depth NP relations.

We first consider the case of arithmetic circuits over a sufficiently large finite field and then show
how the case of Boolean circuits follows easily (by packing bits of the witness and emulating the
Boolean circuit using an arithmetic one).

35

Lemma 6.1. Assume that one-way functions exist and let § > 0 be a parameter. Let R be an
NP relation with input size n and witness size m, that is computable by a (non-uniform) arithmetic

circuit family C' of size S = S(n) and depth D = D(n) over a finite field F s.t. |F| = Q(%D log(S)-

log(m) - log(l/&)), and assume that n < poly(m).

Then R has a zero-knowledge proof with perfect completeness, and soundness error § in which
the wverifier, prover and simulator all only make a black-box use of the one-way function. The
communication complexity is

m +m*3 . poly (), log(1/8)) +log(1/8) - poly (X, D,log(S), log(|F|))

field elements where X is the security parameter. The prover and verifier run in polynomial time,
the protocol is public-coin and the number of rounds is log(1/9) - poly(D,log(5)).

Lemma 6.1 follows immediately from the next lemma combined with the succinct PCS from
Theorem 1.3.

Lemma 6.2. Assume that one-way functions exist, and assume there exists a polynomial commitment
for strings of length m with binding g and communication complezity Ceom(m), Copen(m, k) for k
openings.

Let R be an NP relation with input size n and witness size m, that is computable by a (non-
uniform) circuit family C of size S = S(n) and depth D = D(n) and assume n < poly(m).
Then the relation R has a zero-knowledge proof with perfect completeness, and soundness error
%‘5 + O(Dlog(s)ﬂog(m?og(l/é))log(l/é)), in which the verifier, prover and simulator all only make a
black-box use of the one-way function. The communication complezity is

Ceom(m +10g(1/8)) + Copen(m +10g(1/6),log(1/6)) +log(1/6) - poly (A, D, log(5), log(|F1)).

where A is the security parameter and F a finite field.

Section Organization. In Section 6.1 we show that a short random padding of a string suffices
to make its multilinear evaluations at a set of points look random. Using this fact, in Section 6.2
we prove Lemma 6.2. Finally, in Section 6.3 we show how to derive Theorem 1.1 from Lemma 6.1.

6.1 Random Padding of Multilinear Extensions

Let d, A € N be parameters. We use y; € {0,1}¢ to denote the i-th binary vector in lexicographic
order.
For a sequence of points Z = (21,...,2y) € (FH)*, let Mz € F*** be a matrix defined as:

Mf[inj] = QQ(yj’ Zi)’
for all 7,7 € [A].
Definition 6.3. We say that 2’ is good if Mz has full rank.

Lemma 6.4. With probability 1 — % over Z € (FHA, it holds that My has full rank.

36

Proof. Each entry of Mz is a polynomial of total degree at most d (since the (7,j)-th entry is
eq(yj,2;)). Thus, that the determinant of Mz can be expressed as the polynomial:

A

det(Mz) = > sign(o) - [[ea(Wo, 2)-

ogES) i=1

Each term is a product of A\ polynomials, each with total degree at most d, so the total degree of
the polynomial det(M(2)) is at most dA.

Next, we show that this polynomial is not identically zero. Indeed, taking z; = y; for every
j € [A], the matrix M becomes the identity matrix, whose determinant is equal to 1. Hence,
det(M(2)) is not identically zero.

Since det(M (Z)) is a non-zero multivariate polynomial of total degree at most A - d, and each z;
is chosen uniformly from F¢, by the Schwartz-Zippel lemma we have:

A-d
Pr |[det(Mz) =0] < ——,
ze(Fd)A[(M) = 0] < ||
and the lemma follows O
Lemma 6.5. Let € {0,1}™, and define 2’ = r|z, where 2’ € {0,1}2" and r € F* is chosen
uniformly at random. Let f be the multilinear extension of ' and let 7 € (F)* be a good sequence

of points (as per Definition 6.3). Then f(z) = (f(z1),..., f(2))) is distributed identically to the
uniform distribution over FX.

Proof. Let 7 € (F%)* be the good set of points and recall that this means that M3 has full rank.
We now observe that for each j € [A],

2d A+m A A+m)
Fz) = eqinzg) 2= > eqi,) mioa+ > _eqlyiz) - ri= Y eq(yi,2) - ix+ (MY, r),
i=1 i=At1 i=1 =21

(2)

where Mzgj) denotes the j-th row of Mz Let Ez € F*? be a matrix whose j-th row is equal to
(eq(y,\+1,zj), ... eq(yd,zj)). Thus, we can use Eq. (2) to write f(Z) as:

f(E):Eg-a:—i—Mg-r.

Since M (Z) has full rank, we have that M(Z) - r is uniformly distributed over F* and therefore,
sois Fz-x+ Mz-r.
O

6.2 Proof of Lemma 6.2

Let R be an NP-relation, let (Cpes, Ppes, Vpes) be a polynomial commitment scheme and Com be

a standard bit-commitment scheme with additive overhead (see Proposition 2.13).* We set both

commitments to have a binding error %.

The interactive protocol for R that establishes Lemma 6.2 is presented in Fig. 4.
We proceed to show that the protocol satisfies the desired properties.

4For sake of readability we omit the CRS from the notation.

37

Succinct Zero Knowledge Protocol

Common Input: = € {0,1}" and security parameter 1*.
Prover’s Additional Input: witness w € {0,1}™, such that (z,w) € R.

1. P samples a uniformly random string € {0,1}*. Denote by w = r|jw the concatenation
of r and w, and let @ be the multilinear extension of w.

2. P computes (¢pes, dpes) ¢ Cpes(w) and sends cpes to V.
3. Fort=1,... ¢

(a) P and V emulate the interactive phase of the GKR protocol (see (P, Vinteractive) in
Theorem 2.21) on input (Cy,w) (where C, denotes the circuit that computes the
relation R with = hardcoded, extended to accept £ additional input bits, which do
not affect the output) as follows: in every round i € [r], the prover does not send the

®)

message m,; ~ directly, but rather generates an additive secret sharing of the message
s.t mgq O P m(tll = m(t), and sends to V' commitments to mg?, .. .,mz(.tli. We

(t)

denote the coins sent from V' to P in the t-th repetition of this stage as coinsy,

(b) i. P derives z; € F? and (C) (by Theorem 2.21 it can do so from Step 3a).
ii. P executes (“in its head”) the following k-party MPC protocol:

e Player j input: (comsi/),b() zt,w(2¢)), where bg.t) = (mg,t])')ie[r]-

e Functionality: (1) verify that @(z;) can be correctly derived from bg-t)
JEIK]

and (2) that V}mt<(comsv ay, b) (C), 2) accepts.
JE[K]

iii. P sends commitments to the views of the k parties in the MPC protocol.

(c) V randomly chooses a party ¢; € [k] and sends it to P.
4. If 7= (z1,...,2¢) is not good (see Definition 6.3) V accepts and halts.

5. For every t € [¢] and j € [k]\{q:}, the prover P decommits to everything related to j in
iteration ¢, namely (mgfj).)iem, and the view of party j, in the ¢-th iteration.

6. V checks that for every ¢ € [¢]: (1) all inputs of the parties are correct, (2) all their views
are consistent (3) all parties properly followed the specification of the MPC protocol, and
(4) all of the parties accepted. If any test fails then V rejects.

7. Finally, V and P emulate the PCS evaluation protocol (Ppes, Vpes) with respect to the
commitment cpcs, the points (z;)ycfq and the claimed evaluations w(z) (that V' received
from the MPC). If Vs accepts then V' accepts. Otherwise it rejects.

Figure 4: Succinct Zero-Knowledge Proof for R

38

6.2.1 Completeness

Let (z,w) € R. If (P,V) follow the protocol, then for each iteration ¢ € [¢] the GKR interactive
phase is executed correctly, and the input to each player j is

(coinsg), b;t), 2, W(2t), <C>)7

(t)

where z; can be easily derived from coins;, .
The MPC protocol performs two checks:

e Viost accepts: The input to Vpest in Step 3(b)ii is

(coinsg), @ bg.t)),
JE[K]
(t)

where, by construction, @ bg.t) = (m,)ie[r}

interaction between Porr and Vipteractive- Therefore, Vp,g’s input in each iteration of Step 3
corresponds to a valid run of the GKR protocol, and V), accepts.

. Hence, the input is the transcript of a valid

® W(z) is derived correctly: @(z) can be correctly obtained from €B ¢y bg.t), i.e., from the
transcript of the interactive phase. In a valid GKR execution, the prover outputs @(z;), which
is then derived from the transcript.

Thus, both checks pass, and by the perfect completeness of the MPC protocol, the players
accept. Since P follows the protocol, it can open all commitments correctly, so all checks in Step 6
pass. Additionally, in the (unlikely event) that z is not good, in Step 4 the verifier also accepts.

Finally, by the perfect completeness of the polynomial commitment scheme, the verifier accepts
the openings.

6.2.2 Soundness

Let © ¢ Li and let P* be a cheating prover strategy. Without loss of generality, we assume that
P* is deterministic.

We first note that by Lemma 6.5, the probability that 2z’ is not good is at most w.
Thus, we may assume that Z' is good (and in particular the verifier does not accept in Step 4).

Our commitment is defined with respect to a CRS and is binding with probability 1 — g . We
assume that it is indeed binding.

Consider the following possible behaviors of P*:

1. It cheats in all the rounds of Step 3 (distributed GKR and MPC). This happens either when the
behavior of one of the parties in the MPC protocol transcript, as defined by the commitment,
does not follow the protocol specification. Or a pair of views is inconsistent, i.e., messages
sent by one party are not received correctly by the other parties.

2. It produces an invalid decommitment in Step 5.

3. It runs in at least one round of Step 3 (the MPC) correctly and sends a valid decommitment
to all the required views and messages, and then attempts to cheat in the evaluation proof
interactive protocol of the PCS.

39

In the first case, if one of the parties in the MPC protocol deviates from the specification in a
given iteration, the verifier V selects that party and rejects with probability % Otherwise, if a pair
of views is inconsistent, the inconsistent pair of parties is selected with probability % Therefore,
the overall probability that P* misbehaves in all ¢ iterations of Step 3 while V' does not reject is at
least (1 — %)e, since the verifier’s choices in different iterations are independent.

In the second case, the verifier will reject when checking the decommitments in Step 6.

In the third case, assume that all commitments can be opened in exactly one way, and that
P* simulates the MPC protocol correctly in at least one iteration ¢t* on the inputs derived from
the opening of the commitments, as defined in the protocol. Since = ¢ Lg, for any w* it holds
that (z,w*) ¢ R, and therefore the circuit C, does not accept w*. Let w* be the function that
P* committed to in Step 2, and let a;= be the value derived from the transcript of the interactive
phase of the GKR protocol in the ¢*-th iteration, as defined in Theorem 2.21 (in a correct run,
Qpx = Qﬂ*(zt*))

We distinguish two cases:

1. ag= = Ww*(z+). By Theorem 2.21, this implies that V., accepts. For a false statement, this

happens with probability at most O (D}%fs).

(17) oy # W*(zf). In this case, acceptance can only occur if the polynomial commitment opens
inconsistently, by the binding property of the PCS, this happens with probability at most g.

Overall, the probability that V accepts is at most g +(1- %)K + O(DIT]Fg‘(S)) + O(logfﬁ+£))g.

6.2.3 Zero-knowledge

Let V* be a probabilistic polynomial-time (potentially malicious) verifier. Without loss of generality
we assume that V* is deterministic. We construct a simulator S for V* in Fig. 5 and proceed to
the analysis.

Note that the simulator S is allowed to rewind, and it does so in Step 2d. The analysis proceeds
in two main steps:

e We show that rewinding rarely fails. The probability that S fails in Step 2d after x rewind
attempts is negligible (see Corollary 6.7).

e We show that conditioned on the rewinding not failing, the output of the simulator is computationally
indistinguishable from the verifier’s view in a real execution of the protocol (see Proposition 6.8).

Since the probability of rewinding failure is negligible, the statistical distance between the unconditional
output of the simulator and its output conditioned on success is also negligible. Therefore, once
we prove that the simulator’s output conditioned on success (i.e., g = q for every t € [{]) is
computationally indistinguishable from the real view, it follows that the (unconditioned) simulator
and the real view are themselves computationally indistinguishable.

Proposition 6.6. Let k be the number of rewind attempts per round and let t € [¢] be a fized round.
The probability that S ever fails its rewinding in round t (i.e., ¢ # q= in Step 2d in all k rewind
attempts) is at most

The Simulator for V*
Input: main input z € L and security parameter 1*.

1. S computes (cpes, dpes) < Cpes(w*), where w* € {0, l}m“ is random and sends cpes to
V.

2. Fort=1,...¢

(a) S emulates with V* the interactive phase of the GKR protocol (see (P, Vipteractive) in

Theorem 2.21) on input (Cy,w*) as follows: In every round i € [r], the simulator S

randomly chooses mﬁ?, ey ﬁzl(tlz and sends to V* commitments to them. We denote

the coins sent from V* to .S during this stage by comsgl, and the entire interaction

(the commitments to all shares as well as the verifier’s coins) by t/ra(/R(t)
(b) Repeat these steps at most x times:
i. S derives z; € F¢ and the circuit (C) (see Item 2) of Theorem 2.21).
ii. S chooses a random player g; uniformly from [k].

iii. S runs the MPC simulator Syrpeo (see Definition 2.24) for all parties except g,
wrt the functionality described in Step 3(b)ii of the protocol. We denote Sy;pc’s

output for party ¢ € [k] \ {¢:} by Q%q.

iv. S sets the view of the remaining party /@Jto a default value @Tuqt — (lview],
and sends to V* the commitments to (view;);cr). Denote these commitments
by Com(%i)ie[k]~

(c) V* responds with a party ¢;.
(d) e If ¢ # g/, then S rewinds V* to Step 2b.
o If ¢ = ¢/, then S continues to the next step.

3. If = (21,...,2¢) is not good (see Definition 6.3) S halts and outputs:

zZ
(w, Cpes(0*), (tTG\r&a {Com(%i)}ie[k]aT%)te[ﬂ])'

4. S sends, for every t € [¢], the decommitments {czgcfi)(i), cigcit)(i)}ie[k]\{qt}, where affgci,? (7)

(®)

—~ (¢
and decf))(i) are the decommitments to the message m,

the t-th iteration, respectively.

and to party i’s view, sent in
5. S and V* run the evaluation protocol (Ppcs, Vpes) for the polynomial commitment ¢,c at
the points {2 }eg-
6. S outputs
(96, Cpess (trGKRr, {com(view:) i) @t) e ({decm (i), decu (i) biep\ (g eera X) 7
where x = (Ppes, Vies) (Cpes, Z, w*(Z)) is the interactive opening protocol for the polynomial

commitment, Z' is computed from coinsy~, and w*(2) is given from the MPC protocol in
Step 2(b)iii.

e~
H=

Figure 5: The Simulator

Proof. Let m; be the message transcript prior to round ¢, let ¢; € [k] be the choice of party of the
simulator in one attempt in the ¢-th round, and let p; denote the randomness used by the simulator
to commit in that attempt. Let u’{mt’qt’pt) denote the choice made by V* in this attempt, given the
previous transcript m; and the simulator’s choices and randomness ¢; and py.

Since the commitment scheme is computationally hiding, the verifier’s choice cannot significantly
depend on the simulator’s choice and randomness g, p;, or on the values hidden inside the commitments.
Thus, for any two choices and randomness values (¢, p') and (¢”, p”’) used in the commitments, and

any fixed message prefix m, we have for every ¢ and every polynomial p:
1

* I — - * = < .
Pr[u(mﬂ,p) q] — Prlu q] < o)

(m,q",p")

That is, the choice of V* is nearly independent of the committed values and the simulator choice.
It follows that, conditioning on success in all previous rounds (that is some previous transcript),
the success probability for one attempt in round ¢ is close to % — ﬁ. That is:

Pr[one rewind fails in step t] = E [Pr[u?mt’ gipr)) F at]]

qt,pPt
< Priu d
< q}%)t [q;]t I‘[U(mt,q,P) q H

1

_ P " ok _—

qEJt [qgﬁ;lt (Mg 0.0) = 01+ p(”))}
:E{ > Prlug, o0 ZQ*]] e

qt q*#qt ety p(n)
zg [Z Prlug,, 00) = 4]} * p(n)

e
* % k—1 k—1 k-1

and by choosing p(n) = 2k? we get that the probability to fail one attempt of rewind is at most
1-— ﬁ , Since the rewinding only changes (g, pt), every rewinding iteration is independent. Hence,
the probability that the simulator fails to succeed in iteration i after x independent rewind attempts

is at most
1 K
1-—— .
(1-2)

From the union bound and Corollary 6.7, we obtain the following corollary:

Corollary 6.7. The probability that the simulator succeeds in all £ rounds is at least

1 K
o1)

By choosing k = O(k - X — log({)) this probability of failure is made negligible in \.

42

Denote by S(z) the distribution of S(z) conditioned on the rewinding in Step 2d succeeding
(i.e., conditioned on g, = ¢ for all ¢t € [{]).

Proposition 6.8. The ensembles S(z) and {View‘i(w) (x, A) }wer are computationally indistinguishable.

Proof. The proof loosely follows the structure of the zero knowledge proof for the 3-coloring protocol

in [Gol01, Section 4.4.2.3]. Let cy+ = (coins%}z, . .,coins%) denote the coins chosen by V* in

Step 3a in Fig. 4 or 2a in Fig. 5 (for P and S, respectively), and let T = (qi,...,q) denote the

set of parties selected by the verifier. Note that both coinsg)* and ¢; may depend on the previous

interaction. For z € L, both S(z) and {View‘lj*w) (x,A) }zer are sequences of one of the following
two forms, depending on z (see Step 4 of 4 and Step 3 of Fig. 5).
(a:, ref, Cpes(w), {distributedgkr,, gi, open-post i g, Hele)s (Ppes, Vpes) (2, @(2’))),
(x, ref, Cpes(w), {distributedgkr, Qt}te[ﬁ]>-
e distributedgkr; is the t-th iteration of Step 3 :
distributedgkr; = (trGKRt, {com(viewgt))},;e[k]).

® open-postgy g, is the opening of the commitment for T, = [k]\{g;} in Step 5:

open-postg i, = ({decgz) (4), decq(;t) (i)}iEqu)'

o Z=(z1,...,2) € (F¥)" are the values from the distributed GKR execution that can be derived
from coinsy+ = (coinsg}z, e ,coinsgﬁ) (see Item 2 in Theorem 2.21).
o O(2) = (&(z1),...,@(2)) € F* are the evaluations of & on these values, computed and checked

in the MPC in Step 3(b)ii.

o (Ppes, Vpes)(Z,w(Z)) denotes the opening protocol of the polynomial commitment. Here, Vs
is run by V*, and Py, is run by either P or S.

Assume toward a contradiction that the ensembles {S(7)} ez, and {View‘%w) (x) }zer are distinguishable.

Define:

. MCV*7T(:L')Z the output of the simulator S(x) conditioned on V* requesting cy«, T.
® p.,.7(z): the probability that V* requests cy+, T when interacting with S(z);

P(w) -

o v (x): the real view View,,.. ' (x) conditioned on V* requesting cy~«,T.

Cy* ,T
e f. . 7(z): the probability that V* requests cy«, T in the real execution with P(x,w).

Lemma 6.9. For every cy« and T € [k]* it holds that ey (@) = fo 7(2)] is megligible.

43

Proof. Assume toward contradiction, that the difference is non-negligible. Then there exists an
index i* € [¢] such that one of the following holds (conditioning on the interaction history up to
round *):

1. The probability that V* requests ¢;« in the real execution with P(z,w) differs non-negligibly
from the probability that V* requests ¢;+ when interacting with S(x).

2. The probability that V* requests coinsgz) in the real execution with P(x,w) differs non-

negligibly from the probability that V* requests coinsgi) when interacting with S(z).

Either case would contradict the following claim.

Claim 6.9.1. For every i € [{], and every fized sequence coinsgz,ql, e Qi1 coinsg)*, denote:

Hy = (33, ref, Cpcs (w), {distributedGKRt, Qt}te[z’—l]a distributedGKRi)

Hy = (;U re f, Cpes(w*), {distributedekr, ¢ }refi1), distributedckg,

then, HO é Hl.

Proof. Recall distributedgkr; = (trGKRt,{com(viewgt))}ie[k]) is the t-th iteration of Step 3 and
—~— (t)

distributedgkr; = <tr/(.;\K_|;,{com(&'\eTUi)}ie[ko, the ¢-th iteration of Step 2.
From the commitment hiding property of the PCS,

(l‘, ref, Cpcs (w), {distributedGKRt, qt}te[i—l]a distributedGKRi>

C
~
~

(a:, ref, Cpes(w™), {distributedckr,, ¢t }refi—1]; distributedGKRi))

Now recall that distributedgkgr; (resp. distributedggkgr;) consist of commitments to secret shares
computed by P (resp., S), followed by commitments to the parties’ views in the MPC. Therefore, by

the hiding property of the commitment and a standard hybrid argument, we conclude the claim. [J

If case 1 holds, then we can build a (non-uniform) distinguisher that, given the distribution up
to round ¢*, outputs 1 if g;= is chosen and 0 otherwise.

If case 2 holds, then by Fact 2.5 we may add to the distribution at the ¢*-th iteration the
commitments to the messages in Step 3a of Fig. 4 or 2a of Fig. 5(for P or S, respectively)
up to the point where the chosen coins in round ¢* diverge. The resulting distribution remains
indistinguishable. Once again, we can construct a (non-uniform) distinguisher that feeds V* with the
distribution up to round ¢* and outputs 1 if the verifier’s coins match, and 0 otherwise contradicting
Claim 6.9.1.

Thus we conclude the proof of Lemma 6.9. O

44

By an averaging argument, there exists a probabilistic polynomial time algorithm A, a polynomial
h(-), infinitely many n, and inputs = and a request pair ¢y =T such that:

1
Jeyo (@) - PrlA(pe,. 7(2)] = pe,. 7(2) - PrlA(v,, . 7(2))]]| = hn)
This further implies, the following:
fope (@) > s, 3)
ey 7(@) = Fop 7(@)] < g @)
| PrA(tg, . (@) = 1] = Pr{A(v,, . 7(2) = 1] > g (5)

Eq. (4) follows from Lemma 6.9 using a suitably large polynomial. We conclude that |f, . #(z) -
Pr{A(pe,. 7(2))] = fo. (@) - Pr[A(ve,. 7(2))]] = 575 and Egs. (3) and (5) follow.
We now show that this contradicts the following two claim:

Claim 6.9.2. Let coinsy~ and (qu,...,q) € [k]* be a fived randomness choice of the verifier s.t
Z=(21,...,2) € (FH" (uniquely derived from coinsy~) is good (see Definition 6.3), denote:

Hy = (w, ref, Cpes(w), {distributedgkr, ¢, open-posta i g, Yl (Ppes, Vpes) (2, Ew)(f))

H, = (fE,Tef, Cpes(w™), {distributedgkr, ¢, open-postg i g, teelg), (Ppess Vpes) (7, ZW*)(5)>

then, Hg ~ Hi.

Proof. We first show that the messages sent in the clear, together with the decommitted message, are

computationally indistinguishable in the two cases: when V* interacts with P, and when it interacts

with the simulator. We then add the commitments to the remaining messages and conclude the

proof. For simplicity of notation, we use T; to denote the selected set, namely T3 = {1,...,k} \ ¢.
Thus, first denote,

. - . —— (1) o owy
Ao = (Cpes(@"), (L ieri, coins(L, (view; i) seiqs (Press Vies) (5 07(2)))

A5 = ((Cpes@), ((miers, coins(, wiew)icim)) seqs Poes: Vies) (2 0(2)))
where recall that:

e m; is the share for party ¢ of the GKR message in the real interaction (Fig. 4, Step 3a),
and m; is the corresponding share of a random message in the simulation (Fig. 5, Step 2a).
((mﬁ“)ig, coins&) and ((mgt))iegp, coinsgl) are the transcripts of the interaction phase of
the GKR protocol in the ¢-st step (without the commitment) in the simulator and in the real
interaction, respectively.

——(t

° viewz(-) consists of the input for party i followed by the output of Sy;pc for the party i.
. viewl(t) the input for party i followed by the view of that party in the MPC protocol (all in
the real interaction).

45

The proof is via a hybrid argument. Consider the following hybrid distributions:

——(t)

)iG[Tt])te[g]ﬂ(Pp687‘/;)68)(w* (2))>

——() o ko
)iETwSMPC((ZnPUti)iETt))tema](Ppcsa V;)cs)(sz (z)))

A = <Cpcs(fu§*), ((m@)ieTt, coz‘nsg)*, (view,

t
= (Cpcs(w*), ((Thgt))zeTt, comsg)*, (mputf)

. (t) - . . . S . : :
where input, = (mi(t), 21, W* (2¢)), is the input to party ¢ in iteration ¢ derived by the simulator.

Ay 1= (Cpesl@), (0 yiem, coims(., @mputyier,, Snpc(TputyYien,)) seqys (Poes: Voes) (5,2(2))
where (inputy) = ((f), cb(z))

As 1= (Cpesl@), ()i, coins(., (imputier,, Snpc((input?)ien,)) seqys (Poes: Voes) (2,2(2))
) _

where input;’ = (m) 2, 0*(2¢)),1s the input to party ¢ in iteration ¢ derived by the prover.

AS 3:< pcs() ((m;)zETtacoznsgla(W/ew(t))ie[Tt}) Sk (Ppc&vpcs)(‘2)(5)))

Note that Ag is the output of the simulator. In A;, we change the commitment and all related
components (namely, the input to the simulator and the PCS) from w* to w. Ajg is defined similarly
to Ay, but with m; instead of m;. Finally, A3 is the view in a real interaction with P that is with
a real execution of the MPC instead of the simulator.

Ag ~ Aj: since z is good and from the proof of Lemma 6.5, it holds that @(Z) is uniformly
distributed. Thus, since @w* is a random multilinear low degree polynomial @*(Z) is also uniform
and w*(2) = ©(2) and the two distributions are k-wise independent. Thus from the binding property
of the polynomial commitment,

(Cres (%), 2,10 (2), (Ppcss Voes) (2,07 (2))) % (Cies (@), 2,0(2), (Ppess Vi) (:5(2)))

Since coinsy~ is fixed , and (fngt))iem] is a secret sharing, and the restriction of an additive secret
sharing to any set of k£ — 1 shares is uniformly random, it follows that:

(Coes @), (7 i, coinsifL) s 20 (2), (Pres, Vypes) (2,07 (2))
(Coes(@), (e, coimsif)) e s 20(2), (Ppess Vies) (5, 0(2)))

From Fact 2.5 (applying Syspc) we conclude that Ay ~ Ay

Ay = Az: Recall (m;);ep is the distribution of the additive secret sharing of the GKR messages
as in Fig. 4, Step 3a, whereas (1m;);c[y) is the distribution of a secret sharing of a random message
in Fig. 5, Step 2a.

Since the restriction of an additive secret sharing to any set of k — 1 shares is uniformly random,
it follows that (mgt))ieTt is distributed identically to (mgt))ien.

Thus, since the rest of the distributions are simply computed in the same manner for both
distributions similarly to the previous case, we conclude A; = A,.

46

Ay = Az By the (k—1)-privacy of the MPC protocol (see Definition 2.24), it holds that {(mew)}ze[Tt]

is distributed identically to Sjs pC((ZTLp'LLtZ(-))ieTt)' Thus, since the input and the rest of the hybrids
are identical in the two cases, we have that Ay = As.

Thus, we conclude that Ag ~ As. Denote:
s - . ——(t) —(t o ok
Cp := (Cpcs(w), ((com(ml(.t)))ieTt,coznsgl, {com(view;)}ie[Tt]’deC())te[é]’ (Ppes, Vipes) (Z, W (z)))

¢y = (cpcs(w), ((com(m{)ien coins\(., {com(view")}), dec®) . (Ppess Vies) (5, 0(2))).

—~
~+
=

where dec”) = {dec(t)(), dec(t)() ier, and decfn)(), decl})() are the decommitments to m;
party 7’s view, in the t-st repetition respectively.
Cy and C are computed from Ay and A3 by the same procedure — committing to (Tﬁz)zeT , and

(m%e% or to (m;);er) and (view;);er . Thus, by Fact 2.5, we conclude that Cy ~ C.
Finally, from the hiding of the commitment and Fact 2.10 we can add the commitment to the
remaining parties in each repetition ¢ € [¢] and the claim follows. O

Claim 6.9.3. Let (coinsy=, (q1,...,qe¢) be a fized randomness choice of the verifier s.t Z = (z1,. .., z¢)
(uniquely derived from coinsy~), is good (see Definition 6.3) denote:

Hy = (m, ref, Cpes(w), {distributedgkr, T%}te[é])
H, = (m ref, Cpes(w *),{distributedGKR,TQt}te[e])

then, HO é Hl.

Proof. The argument follows the proof of Claim 6.9.2, with the final part of the distribution omitted.
Hence, the claim concerning 7 is unnecessary here. O

We now construct the distinguisher A’, that is given as input a sample corresponding either
to the interaction of V* with the simulator or with P, i.e., an instance of Hy or H; as defined in
Claims 6.9.2 and 6.9.3, depending on the coins chosen by V*. The distinguisher A’ then checks
whether the transcript is consistent with ¢y« and T. If so, A’ feeds the corresponding conditioned
view to A; otherwise, it outputs 0.

Then,

|Hmum:u—mwwn:m:mmﬂ>mmmmﬂ>wnrmwﬂmmmmwﬂw:u
> oo #(@) - [Pr{A(ie,. 7(@))] = PrA(Ve,.. (@)
= PrAey . ()] [Pey (3) = fuy ()]
> foye (@) - | PrlA(Hg, . 1(2)]

—P¢40WT<m\ mmT@ﬂ—ﬂwaH

S 1 . 1 _ 1

~ 2h(n) 2h(n) 8h(n)?
1

~ 8h(n)?’

47

which is non-negligible, contradicting either Claim 6.9.2 or Claim 6.9.3, depending on the coins
chosen by V*. This concludes the proof. O

6.2.4 Communication Complexity

The prover first commits to w padded with a uniformly random string of length ¢, sending a message
of length Ciom(m +).

Next, the prover and verifier execute the interactive phase £ times. This phase has communication
complexity poly(D,log(S),log(|F|)), and since the protocol is secret-shared among k parties and
then committed, the communication per round is k - poly(\, D,log(S),log(|F|)). Afterwards, P
sends commitments to the views of all k£ parties in the MPC. The input for each party consists
of (coinsg),b(t),zt,d)(zt), (C)) (where bj = (my;)icp), the messages from Step 3a), each of size
poly(D,log(S),log(|F|)). The circuit computed by the MPC has size poly(D,log(S),log(|F|)), as
derived from the complexity of Vjost in Theorem 2.21.

Since each party runs in time polynomial in the input size and the circuit size, the resulting view
has size at most poly(k, D,log(S),log(|F|)). The corresponding commitment and decommitments,
each of size poly (A, D, log(S),log(|F|)). Finally, P and V execute (Ppcs, Vpes) on £ points, contributing
Copen(m + ¢, £) communication.

Overall, the total communication complexity is

Ceom(m +€) + Copen(m +£,£) + £ - poly(\, k, D, log(S), log(|F|)).

By setting ¢ = log(4/d) and k = 3 we achieve Lemma 6.2.

6.3 Using Lemma 6.1 to derive Theorem 1.1

Recall that we are given a Boolean circuit C : {0,1}" x {0,1} — {0,1}. Let F be finite field,
n' = n/log(|F|) and m’ = m/log(|F|). Consider the arithmetic circuit ¢’ : F* x F™ that operates
as follows:

1. Compute from the input z € F” and witness w € F” a redundant representation 2/ € F"
and w’ € F™ by unpacking the individual bits of each field element into log(F) field elements.

2. Output C'(2',w"), where the Boolean operations are replaced with the corresponding field
operations.

Applying Lemma 6.1 to C’ we obtain Theorem 1.3.

Acknowledgements

Eden Florentz — Konopnicki is funded by the European Union (ERC, FASTPROOF, 101041208).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Research Council.

48

References

|AFR24|

[AHIV23]

[BIVW16]

[DP23]

[GGIT15]

[GHYS]

|GKR15]

[GLS*23]

[GMRS9)]

[GMWS6|

Noor Athamnah, Eden Florentz-Konopnicki, and Ron D. Rothblum. Rate-1 zero-
knowledge proofs from one-way functions. In Elette Boyle and Mohammad Mahmoody,
editors, Theory of Cryptography - 22nd International Conference, TCC 2024, Milan,
Italy, December 2-6, 2024, Proceedings, Part I, volume 15364 of Lecture Notes in
Computer Science, pages 319-350. Springer, 2024. 3, 5, 9

Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: lightweight sublinear arguments without a trusted setup. Des. Codes Cryptogr.,
91(11):3379-3424, 2023. 7, 9

Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson. Bounded
indistinguishability and the complexity of recovering secrets. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part I, volume 9816 of Lecture Notes in Computer Science, pages 593~
618. Springer, 2016. 10

Benjamin E Diamond and Jim Posen. Proximity testing with logarithmic randomness.
Cryptology ePrint Archive, 2023. 7, 13

Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D. Smith.
Using fully homomorphic hybrid encryption to minimize non-interactive zero-knowledge
proofs. J. Cryptol., 28(4):820-843, 2015. 3, 9

Oded Goldreich and Johan Héastad. On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett., 67(4):205-214, 1998. 3

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for Muggles. J. ACM, 62(4):27:1-27:64, 2015. 3, 5, 14, 15

Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S.
Wahby. Brakedown: Linear-time and field-agnostic snarks for R1CS. In Helena
Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023
- 48rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,
CA, USA, August 20-24, 2023, Proceedings, Part II, volume 14082 of Lecture Notes in
Computer Science, pages 193-226. Springer, 2023. 7

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186-208, 1989. 3, 14, 15

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in
zero-knowledge, and a methodology of cryptographic protocol design. In Andrew M.
Odlyzko, editor, Advances in Cryptology - CRYPTO °86, Santa Barbara, California,
USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer Science, pages 171—
185. Springer, 1986. 3

49

[GMWS87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or

[Gol01]

[GVWO1]

[HILLYY]

[HN24]

[HVW23]

[IKOS09)

[KROS]

[Nao91|

[NR22]

A completeness theorem for protocols with honest majority. In Alfred V. Aho, editor,
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, pages 218-229. ACM, 1987. 16

Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001. 20, 31, 43

Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,
Automata, Languages and Programming, 28th International Colloquium, ICALP 2001,
Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer
Science, pages 334-345. Springer, 2001. 3

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM J. Comput., 28(4):1364—
1396, 1999. 12

Shuichi Hirahara and Mikito Nanashima. One-way functions and zero knowledge, 2024.

3

Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. Beyond
MPC-in-the-head: Black-box constructions of short zero-knowledge proofs. In Guy N.
Rothblum and Hoeteck Wee, editors, Theory of Cryptography - 21st International
Conference, TCC 2023, Taipei, Taiwan, November 29 - December 2, 2023, Proceedings,
Part I, volume 14369 of Lecture Notes in Computer Science, pages 3—33. Springer, 2023.
3,5

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput., 39(3):1121-1152, 2009. 3, 5, 6,
16

Yael Tauman Kalai and Ran Raz. Interactive PCP. In Luca Aceto, Ivan Damgard,
Leslie Ann Goldberg, Magnus M. Halldorsson, Anna Ingélfsdottir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryptography
Foundations, volume 5126 of Lecture Notes in Computer Science, pages 536-547.
Springer, 2008. 3

Moni Naor. Bit commitment using pseudorandomness. J. Cryptol., 4(2):151-158, 1991.
12

Shafik Nassar and Ron D. Rothblum. Succinct interactive oracle proofs: Applications
and limitations. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in
Cryptology - CRYPTO 2022 - /2nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part I,
volume 13507 of Lecture Notes in Computer Science, pages 504-532. Springer, 2022. 3,
9

50

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial
zero-knowledge. In Second Israel Symposium on Theory of Computing Systems, ISTCS
1993, Natanya, Israel, June 7-9, 1993, Proceedings, pages 3—17. IEEE Computer Society,
1993. 3

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal
of the society for industrial and applied mathematics, 8(2):300-304, 1960. 13

[RW24] Noga Ron-Zewi and Mor Weiss. Zero-knowledge iops approaching witness length. In
Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology - CRYPTO 202
- 44th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2024, Proceedings, Part X, volume 14929 of Lecture Notes in Computer Science,
pages 105-137. Springer, 2024. 9

[VSBW13| Victor Vu, Srinath Setty, Andrew J Blumberg, and Michael Walfish. A hybrid
architecture for interactive verifiable computation. In 2018 IEEE Symposium on Security
and Privacy, pages 223-237. IEEE, 2013. 11

o1

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

