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Most Juntas Saturate the Hardcore Lemma

Vinayak M. Kumar*

Abstract

Consider a function that is mildly hard for size-s circuits. For sufficiently large s, Im-
pagliazzo’s hardcore lemma guarantees a constant-density subset of inputs on which the same
function is extremely hard for circuits of size s’ < s. Blanc, Hayderi, Koch, and Tan [FOCS
2024] recently showed that the degradation from s to s’ in this lemma is quantitatively tight in
certain parameter regimes. We give a simpler and more general proof of this result in almost
all parameter regimes of interest by showing that a random junta witnesses the tightness of the
hardcore lemma with high probability.

1 Introduction

Let f :{0,1}" — {0,1} be a Boolean function such that every circuit of size s errs on at least
a oO-fraction of inputs. How can we amplify the hardness of this function? One approach is to
restrict the domain: given a fixed size-s circuit, we select a subset of inputs of density at least
2§ in which half the points come from the error region and half are correct. Such a set forms
a hardcore set, because on this region the circuit cannot do better than random guessing. Is it
possible that there exists a single subset of density 20 that is simultaneously hard for all size-s
circuits? Impagliazzo’s hardcore lemma establishes the existence of a Q(d)-density hardcore set for
all circuits of size s’ < s. The version of this lemma with the smallest size degradation from s to
s’ is the following.

Theorem 1 ([Imp95,KS99, BHK09]). Let f:{0,1}" — {0,1} and 6,v,n < s < % Suppose that
for all circuits C' of size at most s,
Pr [C(x) = <1-4.
P 0@ = @) <
Then there exists a subset H C {0,1}" of density Q() such that for all circuits C of size

0O (%), we have

1
Pr(C(e) = f(@)] < 5+

Conceptually, the theorem says that circuit hardness can be explained by a subset of “hard
inputs” H on which the function looks random to small circuits.! This phenomenon has found
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'Holenstein [Hol05] gives a set H of optimal density 2§, but suffers a larger degradation from s to O (#)
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applications throughout computer science, including hardness amplification [O’D02, Tre05], pseu-
dorandomness [STV99, CL21], cryptography [Hol05], algorithmic fairness [CDV24], combinatorics
[RTTV08], and learning theory [BHK09, KS99].
While the hardcore lemma is a remarkable result, a natural question is whether the size degra-
2
dation s — % is necessary. This is formalized by the following conjecture.
Conjecture 1. For any § € (0,1),v € (0, %), n € N large enough, and (%#) <s<O0O (2),

n
there exists an f such that

o for all circuits C' of size < s,

P [C@) = f@)<1-6

o for every subset H C {0,1}" of density > Q(0), there ezists a circuit C' of size O (%)
such that 1
PrC() = f(2)] 2 5+

Such a degradation was shown to be necessary for a certain class of proofs [LTW11], but an
unconditional result remained elusive, as proving this theorem appears to require constructing an
explicit, mildly approximable function that demands large circuits to strongly approximate it. This
felt tantamount to proving breakthrough circuit lower bounds. In a recent work, Blanc, Hayderi,
Koch, and Tan [BHKT24] evaded this barrier by arguing about a nonexplicit function. In fact,
the proof of Theorem 1 first shows the result for H ~ {0,1}" being the weaker notion of a ¢-
smooth distribution (i.e., no string has more than 52% probability of being sampled), and then uses
the distribution to extract a density-0 subset. [BHKT24] proves a tightness result over the more
general d-smooth distributions.

Theorem 2 ([BHKT24, Theorem 2]). Let § € (0,1),7 € [Q (ﬁ) ,%), n € N large enough. For

2
s € [Q(%),O(QJ 2], there exists f : {0,1}™ — {0,1} such that

2t n
o For all circuits C' of size < s,

P [0@) = f@)<1-4.

o for all 6-smooth distributions H ~ {0,1}", there exists a circuit C' of size O (572) such that

1
Pr(C() = f(2)] > 5 + b
The above is a reparametrized version of what appears in [BHKT24], which includes dependen-
cies on § from their proof (where § was assumed to be constant).” Hence, in the regime § = (1),
v > Q(1/y/n) and s = O(27°"/(v*n)), [BHKT24] shows that the v2-factor decay in size is tight.
Structurally, their argument is very analytically involved and is in multiple stages. In what follows,
we say f v-correlates with g over H if Prp g [f(z) = g(z)] > % + 7, and f y-approximates g over

H if Pryoglf(z) = g(x)] > 7.

2[BHKT24, Theorem 2] gives, for any parameters s and v, a tightness result for a function of input length n(s, ).
We have reparametrized to the standard convention of fixing the input length to n, and examining which s, are
possible (in terms of n).




e Let k = 1/42. They first prove that for any d-smooth distribution H, the majority on k bits

is %-correlated with a 1-junta over H, but no 0.01k-junta can %-correlate with it over the

uniform distribution.?

e They then bootstrap this result to show that, for any d-smooth H, the majority of k random

functions on k disjoint 7-bit input blocks is %—correlated with a size-O ( %) circuit over H,
but requires size {2 <k2;2k> to i—correlate with (over the uniform distribution). They accom-

plish this by introducing an analytic relaxation of junta complexity, using Fourier-analytic
noise-stability arguments to equate this relaxation to the original measure (up to constant
factors), and then using coupling arguments, Fourier-analytic calculations, and subgaussian
concentration to analyze the relaxed junta complexity of the random-function ensemble.

We note this junta-to-circuit lifting theorem is interesting in its own right, and towards proving
this, they establish a novel direct sum theorem. These techniques are also used in [BHKT24] to
tightly characterize the sample-complexity overhead of smooth boosting.

In this note, we give a very short proof that a random junta saturates the hardcore lemma in
the regime 0 = (1) over arbitrary distributions.

Theorem 3. Let 6 € (0,0.49),~ € (0, %),n € N large enough, andn < s < O (%) If there exists
a constant € > 0 such that s > 1/v*%¢, there exists a function f such that

e For all circuits C of size s,

P [0@) = f@]<1-6.

e for all distributions H over {0,1}", there exists a circuit C of size O(sy?) such that

1
Pr[C() = [@)] > 5+

Formally, Theorem 2 and Theorem 3 are incomparable: Theorem 2 holds only for
v > Q(1/yn) and s € [Q1/42),0(27°"/(y*n))], while Theorem 3 holds for any 5 and any
5 € [Q(1/4%+%),0(2"/n)]. While incomparable, we note the former region is extremely restrictive,
and does not include the common setting of v = % Meanwhile, the latter region contain almost
all possible (v, s) pairs. The latter region is short of subsuming the former interval only by an
arbitrarily small polynomial factor of v~¢. Removing this e-slack remains open.

When s > 1/72%¢, Theorem 3 improves on Theorem 2 in two ways:

e Theorem 2 constructs circuits with correlation ¢+, while Theorem 3 has correlation « that
does not degrade with 9.

e Theorem 2 requires H to be J-smooth, but Theorem 3 makes no assumption about H.

3A k-junta f : {0,1}™ — {0,1} is a Boolean function depending only on a subset of k¥ < n input variables. The
junta complexity of a function is the smallest k such that the function is a k-junta.



These two points allow our theorem to remain meaningful even for § = o(1).

In summary, our Theorem 3 is stronger in the regime s > 1/92T¢ or v = O(1/4/n), but gives
inferior bounds when 1/4% < s < (1/7)?™ and v = Q(1//n).? We also note that Conjecture 1
remains open. In particular, it would be interesting to pin down the optimal dependence of the
circuit-size decay on §.

Our main technical lemma is the strengthening of a beautiful result of Andreev, Clementi, and
Rolim [ACR97], which shows that arbitrary Boolean functions can be approximated by small-size
circuits.

Theorem 4. For an arbitrary function f :{0,1}"™ — {0, 1}, 2,252 <v< %, and any distribution H

over {0,1}", there exists a circuit C' of size O <10g7(277227;n) + n) such that

1
P = > — .
Pr(0) = f@)] 2 5 +9

This result was proven by Andreev, Clementi, and Rolim [ACR97] in the case where H is
uniform over {0, 1}". A short probabilistic argument proves that the circuit size cannot be improved
[ACR97, Theorem 4.1].

1.1 Proof Overview

Assume s = 2%/ for some integer k, and let H ~ {0,1}" be an arbitrary distribution. Intuitively,
our proof of Theorem 3 will first use the classic Shannon argument to show that, with high prob-
ability, a random function on the first k bits cannot be (1 — §)-approximated by circuits of size s.
Letting H' be the induced distribution of H on the first k bits, we can use Theorem 4 to see that

i + k) = O(s7%) that 7-correlate with f over H' whenever

s > 1/4?%¢. The combination of both of these claims implies Theorem 3.
In the main body of the paper, we will actually show a slightly weaker version of Theorem 4

there exist circuits of size O (

22n

with circuit size O( 7 + nz). The proof of this claim is drastically simpler than that of

log(v%2™)
Theorem 4, but still recovers Theorem 3.

Although the weaker version of Theorem 4 suffices, it is our impression that the result of [ACR97]
is not as well known to the community as it should be. It is a complete resolution to a very natural
question in circuit complexity (it is the “approximate version” of Lupanov’s theorem [Lup71]), and
the ideas behind the construction are quite useful (e.g., they appear to have been rediscovered
in the construction of covering codes of Rabani and Shpilka [RS10]). This is potentially due to
the paper being quite technical and terse, as well as evading search engines. For this reason, we
hope to bring attention to this result by giving an exposition and simpler, self-contained proof of
Theorem 4 in the appendix, assuming a basic consequence of the fourth-moment method [Ber97]
and the existence of asymptotically good codes encodable by linear-size circuits [Spi96]. We now
provide a proof overview below.

1.1.1 Overview of Theorem 4

For ease of exposition, we give an overview of Theorem 4 when H is fixed to be uniform over
{0,1}". Extending the given arguments to arbitrary distributions H just requires a couple of extra

“For general s = Q(1/~?%), we get approximating circuits of size O (572 . 10;%552)). See Remark 1.
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modifications. This overview is morally the same as one provided by Trevisan [Tre09], but perhaps
with a slightly different point of view in the latter half.

The initial observation is that a random function can actually be efficiently approximated. By
standard anticoncentration results, the bias of a random function will be at least Q(27"/2) with
constant probability, in which case either the constant 0 or 1 function will give a (% +Q@2 2))—
approximation of f (we will henceforth refer to this as square-root anticoncentration). For a
size-approximation trade-off, we can split the truth table of f into 2* subcubes according to the
first k bits of the input, and then approximate each subcube by its majority bit. This is a function
depending only on the first k& bits of input and can therefore be implemented by a size-O(2* /k)
circuit. Since each subcube will have 27~ bits, it follows that for a random function, the majority

bit will give a (% + O 2*(”*k)))-approximation of the subcube with constant probability. Hence,
with high probability, a constant fraction of subcubes will be (% + Q 2*(”*k))>-approximated
(say, by Chernoff), and thus this circuit will have overall approximation % +Q ( 2*("*’“)) with f.

Setting k = log(y22") gives the result for a random function.

Does this argument work for an arbitrary (rather than a random) f? Clearly not: one can pick
any f that is unbiased on each of these 2* subcubes (e.g., the parity function), and the constructed
circuit will have no correlation with f.

What if we could “reduce to the random case” by artificially adding random noise to the truth
table of f, and then approximating this noisy function with a circuit on the first k bits? To be
more precise, say we had a distribution C over size-s circuits such that the truth table of C' ~ C
was a random string. Then we know f & C will be a random function, and consequently can be
(% + 7)—approximated by a function g on the first k£ bits with high probability. We can then fix
such a C € C, and deduce that C @ g is a good approximator for f with size O(2F/k + s).

Unfortunately, a fully random truth table can only be generated by maximally sized circuits.
However, we could hope to use a pseudorandom string instead. The only property used about the
randomness of f was that its truth table had square-root anticoncentration on subcubes. It turns
out 4-wise uniform strings have square-root anticoncentration with constant probability [Ber97],
motivating us to look at this primitive. Implementing the usual 4-wise uniform-generator construc-
tion naively in a circuit immediately gives a distribution C over circuits of size O(n?) such that the
truth table of C' ~ C is a 4-wise independent string. With more effort, one can get a distribution
over O(n)-size circuits, which is optimal. By the fourth-moment method [Ber97], we can argue that
the average number of subcubes of f & C with square-root anticoncentration is at least a constant
proportion. Fixing C' € C that achieves this average, it follows that there is a function g on the
first k£ bits that approximates f @ C well by our previous analysis. Consequently, C'@® g is a circuit
of size O(2¥/k + n) that approximates f well, as desired.

2 Preliminaries

All logarithms are in base 2. [n] := {1,...,n}. Fon denotes the finite field of 2" elements, and
each element will be identified by either a string in {0,1}2" or integer in [2"] in the natural way.
For a distribution D, d ~ D is an element sampled from D. If S is a set, we denote s ~ S to be
a uniformly random element from S. o denotes string concatenation. We consider circuits with
arbitrary gates of fan-in 2 and arbitrary depth. A Boolean function f : {0,1}"™ — {0,1} is a k-junta
if f(x) = g(xg) for some subset S C [n] of size k. For z,y € {0, 1}", we denote the distance between



x and y to be the quantity |{i € [n] : x; # y; }|-

For f,g:{0,1}" — {0,1}, we say f ~y-correlates with g over H if Pr,p[f(z) = g(z)] > 3 +7,
and f ~y-approximates g over H if Pryg[f(x) = g(z)] > ~. If no H is specified, it is assumed to
be the uniform distribution over {0,1}".

We now define k-wise uniformity.

Definition 1 (k-wise uniformity [HH24]). A distribution D over {0,1}" is a k-wise uniform dis-
tribution if, for all subsets T C [n] of size k, the marginal distribution (z7)z~p is uniform over
{0,1}*. A function G : S — {0,1}" is a k-wise uniform generator if (G(s))sws is a k-wise uniform
distribution.

A crucial property of 4-wise uniform strings is that they enjoy square-root anticoncentration
with constant probability, just like a fully random string.

Theorem 5 ([Ber97, Corollary 3.1]). Let X be a 4-wise uniform distribution over {—1,1}", and
let v e R". We have
> D1 V] 2 ‘

> 2
- 3 - 11

n

§ VT4

=1

Pr [
r~X

We will want 4-wise generators such that, for a fixed seed, each output bit can be locally
computed in small circuit size. The standard construction of 4-wise uniform generators serves this
purpose for us.

Theorem 6. There exists a 4-wise uniform generator G : S — {0,1}%" such that, for each s € S
and x € [2"], there exists a circuit Cs of size O(n?) with Cy(z) = G(5).

Proof. Define ¢ : Fon — {0,1} to map = € Fan to the first bit of the binary encoding of z. Let
G : F3. — F%" be defined by the evaluation map

4
G(s) = (L <Z sixi_1>> :
i=1 z€Fon

This is a 4-wise uniform generator (see [HH24, Theorem 2.2]). Notice that, as a function of =z,
G(s), is an evaluation of a degree-3 polynomial, which can be done in a circuit of size O(n?) by
grade-school multiplication (better multiplication algorithms are known, but this suffices). O

This theorem suffices to prove Theorem 3. A technical contribution of [ACR97], and a key
ingredient behind Theorem 4, is a 4-wise uniform generator that can be locally computed in linear
circuit size, which is the best one could hope for.

Theorem 7 ([ACRI7)). There exists a 4-wise uniform generator G : S — {0,1}2" such that, for
each s € S and x € [2"], there exists a circuit Cy of size O(n) with Cs(x) = G(8),.

We give a self-contained proof of this in the appendix.



3 Tightness of Impagliazzo’s Hardcore Lemma

We will now prove a lemma that shows how to construct small circuit approximators for arbitrary
functions using 4-wise uniform generators.

Lemma 1. Let f:{0,1}" be an arbitrary Boolean function, let H be any distribution over {0,1}",
and let v € (2n/2, ). Let G : {0,1}™ — {0,1}*" be a 4-wise uniform generator such that, for each
s € {0,1}™, there exists a circuit Cs of size r with Cs(x) = G(s),. Then there exists a circuit C' of

size O (1g(2722”) + 7“) such that

Pr[C@) = ()] 2 5+

Proof. Denote £ := |log(1/36372)], and note n — £ > 1. Let H' be the distribution over {0,1}"*
defined by the probability mass function

H'(c) = xg%[x € cx{0,1}1.

This is the induced distribution of H on the subcubes defined by the first n — £ bits of the input.
For each ¢, define the conditional distribution over the subcube ¢ x {0,1}¢ by the function

o Pro.mlr = coy]
Hc(y)._$lz%[x—coy\x€cx{0 1}] (o)

Let G be the 4-wise uniform generator guaranteed by the hypothesis. For a subcube ¢, denote the
indicator variable

H 2
L) =1(| 3 Huly)(—1)f G0 2\/ Zye{“’lf; W)

ye{0,1}¢

AV
=
o
D
=
@)
(D

By Theorem 5, we have that for each ¢ and random s, Pr, qo1ym[Ic(s) = 1]

ZH’ 5] _HZH’

and by an averaging argument there exists a choice of s such that Pr.opg/[l.(s) = 1] > 2/11. Fix
such an s. Now for any ¢ with I.(s) = 1, we can use Cauchy-Schwarz to lower bound

Z Hc(y)(—l)f(coy)+0(s)ﬂoy > Zye{o71}£ Hc(y)Q . \/(1/2€> ZyE{O,l}Z Hc(y) - 1

Eoog01ym [Ecvm [Le

3 3 V203
ye{0,1}¢

Now define & : {0,1}"=¢ — {0,1} by the map



which encodes whether the subcube is positively or negatively correlated with the 4-wise uniform
string. We now set our approximator g : {0,1}" — {0,1} to be g(coy) = h(c) ® G(S)coy-
We can now write the correlation between f and g (with respect to H) as

EZNH[(_l)f(x)-Fg(a:)] =Feopp Z Hc(y)(_l)f(coy)—l-g(coy)

=Eoupr | (=19 Y0 Hely)(—1)/ om0

=E.om Z H.(y)(—1)/ (o) +C(s)y
Llye{o,1}¢

> Prlle(s)] Bourp || D Hely) (=100 1o(s) =1
ye{0,1}¢

S22 sy
=11 Var g ="

Epop[(—1)/@+9@] 411 1

Pr[f(x) = glx)] = 5 > 2+

Hence,

Since h depends only on the first n — £ bits, it can be constructed in circuit size O (2:__; ) =

(@) (%) By construction, G(s), can be computed by some size-r circuit Cs. Therefore, g
~-correlates with f and can be computed by a circuit of size O (10;(2722;1) + T), as desired. O

We are now ready to prove Theorem 3.

Proof of Theorem 3. We will first prove the first item. Pick a function g : {0, 1}* — {0, 1} uniformly
at random, and define f(x) := g(x<y) to be g on the first k bits of the input. By a Chernoff bound,
we know that for a fixed circuit C : {0,1}* — {0,1} of size < s and § < 0.49,

l;r Prig(z) =C(z)] >1—-0| < 202"

Set 2% = Q(slog s). Taking a union bound over all circuits of size s (of which there are s90)) we note
that, with probability at most s0(£)2-92") < 1, g can be (1 — d)-approximated by a size-s circuit.
Fix a g that cannot. We now show f cannot be approximated by any circuit C' : {0,1}" — {0,1}
of size s. Restricting the last n — k bits of C' will result in a circuit on the first k£ bits of size at

most s. Hence, we can deduce

J
=
~
—~
8
~—
I
2
&
Il

Eooi | Prig(z<i) = Clock, v55)]| <1-6

T Tk -

as desired.



We will now prove this f satisfies the second item. Consider an arbitrary distribution H over
{0,1}". The marginal distribution of H on the first k bits will be some distribution H’ over
{0,1}F. As vy > s~Y2 > 27.27k/2 for large enough n, Lemma 1 and Theorem 6 give a circuit

C {0,1}* — {0,1} of size O (W + k2> such that Pr,p/[g(z) = C(z)] > 1 + 7. Letting
":{0,1}™ — {0, 1} be the circuit that applies C' to the first k bits, we note that

. 1
P [f(z) =C(x)] = Prlg(a) =Cla)] 2 5 +7.

As C’ has the same size as C, and

log(’yg2k) +k =0 (8’Y2' (1();(7 5)) + log? s) = O(s7?) when
s > 1/4%7¢ C" is a size-O-(s7?) circuit that y-correlates with f over H. Consequently, f is a
k-junta that cannot be (1 — §)-approximated by a size-s circuit, but, over any H, y-correlates with
a size-O.(sv?) circuit, as desired. O

Remark 1. If Lemma 1 and Theorem 7 is used, rather than Lemma 1 and Theorem 6, we instead

get vy-correlating circuits of size O (372 . (k)gzigs)) + log s) =0 (s*yQ . 10{};&782)) for all s = Q(1/+?).

Remark 2. Upon seeing the above proof, one might notice that it suffices to prove that a random
function has small approximating circuits over arbitrary H, rather than an arbitrary function.
Section 1.1.1 gives a very simple argument to efficiently approrimate a random function, so one
might wonder why arbitrary functions are considered. The arbitrariness of H seems to force us to
consider arbitrary f (but this is not a rigorous claim). For example, can construct H that renders
the approximating circuit for the random function discussed in Section 1.1.1 useless.
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A Optimal Approximating Circuits: Proofs of Theorem 7 and
Theorem 4

In this section, we give motivation and a proof of the fundamental result of Andreev, Clementi,
and Rolim [ACR97]. The exposition here has nontrivial overlap with that of Trevisan [Tre09].

A.1 Motivation

A classical probabilistic argument of Shannon says that there exists functions mapping n bits to
one bit that have circuit complexity (2" /n). What is remarkable is that this argument is tight;
Lupanov’s theorem states that any function f : {0,1}" — {0,1} can be computed in circuit size
O(2"/n) [LupT7l].

Upon studying Shannon’s argument, it is not hard to see that this lower-bound argument
extends to circuits that only approzximate rather than compute. Let f : {0,1}" — {0,1} be a
uniformly random function, and let v € (0, %) be such that 22" > 2. For a fixed circuit C, we
have by the Chernoff bound that

+9] < 2*9(W22n)‘

1
Pr [PriC@) = )] > 5

O(s)

Setting s = © (ﬂ) and taking a union bound over all s circuits C' of size s tells us that

log(v?2™)
the probability f is vy-correlated with a size-s circuit is at most sO(£)2=20*2") < .1,
It is now natural to ask whether this is tight: for any Boolean function, is there a size-

(@) (%) circuit that y-approximates f? This is not true by considering the parity function.

Any function that does not depend on all n bits will be correct on the parity function on exactly
half the inputs. Hence, an approximating circuit for parity must depend on all input bits and thus

have circuit size at least n. We can then update our hypothesis and ask whether, for any Boolean
72277,

log(y22™)

A natural first approach is to try to use Lupanov’s Theorem. In particular, we can construct

a circuit that exactly computes f inside a subcube of volume 22", and then otherwise outputs a

fixed bit, whichever matches f better. This is guaranteed to exactly match f within the subcube

and match on at least half the inputs outside the subcube, giving a ~-correlating circuit. However,

this will be a circuit of size O (%)

Andreev, Clementi, and Rolim give a circuit construction matching the probabilistic bound,
effectively establishing the approximation analog of Lupanov’s theorem. We believe this result to
be fundamental, but unfortunately, it appears to be relatively unknown to the community. Hence,
we give a modern and simplified presentation of a slightly stronger result here (Theorem 4).

Notice that Lemma 1 instantiated with Theorem 7 gives Theorem 4. Lemma 1 was proven in
Section 3, so we now focus on the proof of Theorem 7. This was implicitly proven in [ACR97], but
we give a shorter proof using asymptotically good codes encodable in linear time [GDP73,Spi96].

function, there is a size-O ( + n) circuit that v-correlates with it.

A.2 Overview of Theorem 7

The starting point of the construction is to consider the simpler task of a 2-wise uniform generator.
There is a classic 2-wise uniform generator mapping a nonzero seed of length n to a string of

11



size 2" — 1, which is to simply output all nonempty Fa-linear combinations of the seed; that is,
G(s) = ({(s;7))rerp\{0}- Notice that, for a fixed s, the output of the rth bit as a function of r is
simply some parity of a subset of bits in 7, which is trivially a circuit of size O(n), as desired.

Why is this generator not a 4-wise uniform generator? It is because of linear dependence. In
particular, for nonzero vectors z,y, we have G(s); + G(s)y = G(5)z4y. Hence, we do not even
have 3-wise uniformity, as the bits in indices x,y, and = + y are correlated. This motivates the
following idea: what if we only focused on a subset of indices Y C {0,1}" such that all distinct
x1,%2,23,24 € Y are linearly independent? Can we show that (G(s)y)yey is a 4-wise independent
string? Yes.

Lemma 2. Let Y C F5 be a subset such that, for all subsets X C Y of size 4, X is linearly
independent. Then G :{0,1}" — {0,1}Y defined by G(s), = (y, s) is a 4-wise uniform generator.

Proof. Consider arbitrary X C Y of size 4. We will show that over a uniform s, the string
((s,x))sex is uniform. Notice this string is simply M - s, where M is an F3*™ matrix whose rows
are the elements of X. Hence, every preimage of this map has the same size, namely that of the
kernel of M. It remains to show that the image of M is F§. But this is clear, as X consists of
linearly independent vectors, implying that the rank of M is 4. O

In light of this, we will try to construct a linear-size circuit h : {0,1}" — {0,1}%" such that,
for all distinct x1, ..., x4, the vectors h(z1), h(x2), h(x3), h(x4) are linearly independent. Then our
4-wise generator G : {0,1}'6" — {0,1}%" would be G(s), = (h(z),s), which will be a linear-size
circuit. How do we construct such an h?

Perhaps a natural approach is to make h randomly scatter the x’s randomly among {0, 1}6".
This actually works, because for a fixed a < 4 and xy,...,z, € Fy, the probability h(x1) +--- +
h(zg) = 0 is 27167, Taking a union bound over all tuples of size at most 4 gets the desired result.
Of course, the issue is that this is not a linear-size circuit: a random h will have maximal circuit
complexity. What if we let each bit of h be a random function on only constantly many bits of x?

More concretely, say we pick subsets S1,...,S16, C [n] of constant size uniformly at random,
and then let g; : {0,1}% — {0,1} be a random function. Define h : {0,1}* — {0,1}'%" by
h(z) = (g1(xs,),---,916n(Ts,,))- This is of linear circuit size, and we are hoping the randomness

of the g; keeps vectors linearly independent. Fix x1,...,z, for a < 4. We want the probability that
gi((z1)s,)+- -+ gi((za)s;) = 0 for all i to be at most 1/(2) Unfortunately, this need not be true.
Say x1,...,x4 are within distance 2 of each other. Then the probability that a random constant-
sized S; satisfies (x1)s, = -+ = (x4)g, will be high. In this case, ¢;((z;)s,) will be guaranteed to
all be the same for every j < 4, and so g;((x1)s,) + -+ + gi((z4)s,) = 0. The key issue is that a
randomly picked local view, S;, might interpret x1,...,x4 as the same. This motivates the final
trick of first encoding x using an asymptotically good error-correcting code before picking our sets
S;. This will force different x’s to have very different encodings, and then a random set .S; will
indeed detect a difference. This will allow the randomness of g; to prevent linear dependencies from
happening.

But are there asymptotically good codes encodable in linear circuit size? Indeed, non-explicit
constructions of such codes were known to exist since 1974, thanks to Gelfand, Dobrushin, and
Pinsker [GDP73]. Non-explicit constructions suffice for our application, but we mention that Spiel-
man codes are explicit constructions of such a code [Spi96].

Theorem 8 ([GDP73,Spi96)). For any n there exists a small enough constant §,m < 4n, and an
O(n)-sized circuit C : {0,1}"™ — {0, 1} such that for x #y, C(z) and C(y) have distance > dm.
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With this primitive, we can construct our 4-wise independence generator.

A.3 Proofs of Theorem 7 and Theorem 4

Proof of Theorem 7. Let Enc: {0,1}" — {0,1}™ be an O(n)-sized circuit implied by Theorem 8.
We will show that there exist sets Si,...,S16n C [m], each of size < [10/d], and functions
iy -5 916n, With g; : {O, 1}Si — {0, 1}, such that

G(S)Z = <(gl(Enc(x)S1)7 s 7gl6TL(EnC($)SIGn))7 5>

is a 4-wise uniform generator. Once we have this, the desired result follows, as for a fixed s, Enc(z)
can be computed in linear circuit size, each g; can be computed in constant circuit size, and the
parity of any subset of the 16n bits can be done in linear circuit size.

By Lemma 2, it suffices to show the existence of {S;},{g;} such that for any X C Fy \ {0}
of size < 4, there exists ¢ € [16n] such that )y gi(Enc(z)s,) # 0. This will be done by the
probabilistic method. In particular, we will pick each S; by selecting [10/d] elements uniformly
and independently from [m], and pick each g; : {0,1}% — {0,1} uniformly at random. Consider
arbitrary X C {0,1}™\ {0"} of cardinality at most 4.

First assume 2 < | X| < 4. By construction of Enc(+), the strings {Enc(x) },ex will have pairwise
distance > dm. Therefore, for a fixed i € [16n] and x # 2’ € X, the probability that a random S;
satisfies Enc(z)s, = Enc(a’)s, is at most (1—0). Hence, the probability that Enc(x)g, # Enc(z’)s,
for some = # 2’/ € X is at least

4 99
1— 1—0)¥l=1—-6e10> ==
<2>( ) b = 700

by a union bound. Conditioned on this event, » .y gi(Enc(z)s,) is a uniform bit for a random
gi- Thus, for a fixed i, ) . x gi(Enc(z)s,) # 0 with probability at least 3—090 3> % Since each
coordinate is independent, the probability that Y-, v gi(Enc(z)g,) = 0 for all 7 is at most (2/3)1%".
Now assume X = {x}. For any fixing of {S;} and for random {g;}, (g:(Enc(%)s,))ic[16n] is @
uniformly random string in {0, 1}!6", and is consequently 0 with probability 27167 < (2/3)16,
Thus, by a union bound, all subsets X of size at most 4 satisfy > gi(Enc(x)s,) # 0 for some
i € [16n] with probability at least

- <§2n4) (2/3)16n >1— 24n(2/3)16n >0,

implying the existence of such {S;} and {g;}, and thereby yielding the result. O
With the help of Lemma 1, Theorem 4 is now immediate.

Proof of Theorem 4. Simply use the 4-wise uniform generator of Theorem 7 in Lemma 1. O
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