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Abstract

We give versions of Shannon’s coding theorem where the decoder runs in constant time:

1. Let D = (D1, D2, . . . , Dn) be a product distribution where the Di have constant support
and have dyadic probability masses (i.e., of the form a/2b where a, b are integers). Then
D can be sampled in constant time in the bit-probe model (equivalently, in NC0) and
randomness complexity (h(D) + ϵ)n, up to an exponentially small statistical error. The
dyadic requirement is necessary.

2. Every p-biased distribution can be sampled in constant time in the cell-probe model with
randomness complexity h(p)n+

√
n · polylog(n), up to a polynomially small statistical

distance.

3. We determine the tradeoffs between locality and statistical distance for sampling the
1/4-biased distribution using non-trivial randomness complexity (e.g., 1.99n). For 2 bit
probes, essentially no non-trivial approximation is possible; for 3 bit probes, we give a
sampler with 1/ poly(n) statistical distance and show that this is best possible; finally, 4
bit probes suffice for exponentially small distance.

Our constructions use various tools from low-density parity-check codes, and recent results
on succinct and retrieval data structures [HLYZZ, STOC 2025].

*Supported by NSF grant CCF-2430026.
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1 Introduction
Shannon’s source coding theorem, see for example [CT06, Theorem 3.2.1], says that n i.i.d. samples
from a source D can be compressed into about nH(D) bits from which the samples can be
decoded with high probability. In Shannon’s result the decoder is not explicit. A vast literature in
information and computer science theory has developed codes with various guarantees. However,
approaching nH(D) bits with decoders that run in constant time per output symbol has proved
elusive. Surprisingly to us, in this work we achieve that in various settings. For example, in
Theorem 1 below we achieve it in the bit-probe (a.k.a. NC0) model, for any dyadic source, a
requirement which is necessary by previous work. Our results give the stronger guarantee that the
output of the decoder (over uniform input) is close to the distribution of the samples from the source
D. (This is known as source simulation or resolvability in the information-theory literature.) Indeed,
a main motivation for this paper comes from the study of the complexity of distributions. We now
discuss this perspective in greater detail and then present our results.

Recent years have witnessed substantial work and progress on the complexity of sampling
distributions. Let us make the setting precise. Given a distribution D, say supported on {0, 1}n, the
goal is to design a mapping f : {0, 1}m → {0, 1}n such that for a uniformly random x ∈ {0, 1}m the
distribution f(x) is equal (or close) to D. Note that as opposed to the standard setting of computing
a function, in this setting we do not require that f outputs any specific value on a particular input
x, instead only considering the distribution f(x) for a uniformly random x ∈ {0, 1}n. This is
motivated by earlier works which showed that sampling can be easier than computing.

For a concrete example, consider the parity function. While classical results in the 80s [Has86,
Smo87] showed that AC0 circuits have small correlation with the parity function, the works [Bab87,
BL87] showed that the uniform distribution on n-bit strings with the same parity can be sampled
exactly by the 2-local function

(x1, . . . , xn−1) 7→ (x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn).

Other surprising examples include sampling the inner-product mod 2 function [IN96] and random
permutations [MV91, Hag91, Vio12]. For background and more discussion we refer the readers to
[Vio12].

The work [Vio12] initiated a study of the complexity of sampling, with a focus on restricted
computational models and lower bounds. Since then, a large body of works have established many
exciting unconditional results on sampling distributions in several restricted models, including
local functions [Vio12, Vio23, FLRS23, KOW24b, KOW24a], small-depth circuits [LV12, BIL12],
one-way space-bounded computation [CGZ22], and communication protocols [GW20, YZ24].
By now, this line of research has found a wide range of applications in various areas such as
randomness extractors [Vio14a, CZ19, CS16], data structures [Vio12, Vio23, YZ24], low-distortion
embeddings [BCS16, BS23], quantum and classical separation [WP23], and coding theory [SS24].
In fact, jumping ahead, this work will also further develop some of these connections (in particular, to
data structures). We refer the readers to the blog post [Vio24] for more details on these connections.

In this work, we study the complexity of sampling product distributions. The special case of
p-biased distributions on n bits, denoted Ber(p)n and where the bits are i.i.d. with probability of 1
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equal to p is already omnipresent in computer science. For example, the complexity of sampling
p-biased distributions has been studied in a series of recent works including [Vio23, FLRS23,
KOW24b, KOW24a]. Some of the motivation for this line of research comes from a connection with
data structures from [Vio12], discussed more below. Such distributions also arise as noise or random
restrictions in various areas ranging from distributed computing, to Boolean function analysis,
coding theory, randomized algorithms, and learning theory. For example, in cryptography the
Learning Parity with Noise (LPN) problem [BKW03] or its cousin the Learning With Errors (LWE)
problem [Reg05] are considered standard hardness assumptions. Instantiation of cryptographic
primitives based on these assumptions typically requires perturbing a binary vector with p-biased
noise. Hence very efficient (or parallel) implementations typically require correspondingly efficient
ways to sample such noise. In pseudorandomness, recent approaches to constructing generators
involve summing bounded-independence generators with p-biased distributions, see the monograph
[HH23] and the works [DILV24a, DILV24b]. Again, efficient implementations of such generators
require efficient samplers for p-biased distributions.

Our main interest in this work is to understand the tradeoffs between locality, input length
which we also call seed length or randomness complexity, and statistical distance for sampling
product distributions. To illustrate, let us consider the task of sampling the 1/4-biased distribution
on n bits, denoted Ber(1/4)n. On the one hand, the distribution Ber(1/4)n can be sampled with
randomness complexity 2n and locality 2. This trivial construction partitions the 2n input bits into
n pairs, and for each pair computes AND of the two bits. On the other hand, by Shannon’s source
coding theorem, any p-biased distributions on n bits can be sample with randomness complexity
h(p)n, where h(p) := p log2(1/p) + (1− p) log2(1/(1− p)) is the binary entropy function, which
is best possible. However, this coding theorem does not take into account resources such as locality
required in the sampling procedure.

It is natural to ask if one can simultaneously achieve small locality and randomness complexity.
Indeed, this question was explicitly posed in a blog post [Vio14b] about 10 years ago, yet to the
best of our knowledge, the question of understanding these tradeoffs has remained largely open. In
particular, the following basic question has remained open:

Can you sample Ber(1/4)n with constant locality and randomness complexity (h(1/4) + ϵ)n?
Can you even get randomness complexity 1.99n with constant locality?

1.1 Our results
We resolve the aforementioned basic question in the affirmative. Surprisingly to us, we show that
with constant locality we can sample any product distribution (in particular, Ber(1/4)n) with nearly
optimal randomness complexity. For this result we need the distribution to be dyadic, i.e., the
probability masses have to be of the form a/2b where a, b are integers. This dyadic requirement is
necessary, since Ber(1/3)n cannot be sampled locally, not even close. This follows by techniques
in [Vio23], though the result there is stated for the Hamming slice; alternatively see [KOW24b,
Theorem 1.10]. Thus, we illustrate a stark contrast between sampling Ber(p)n for dyadic and
non-dyadic p. We denote statistical distance by dist.
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Theorem 1 (Special case of Theorem 7). Let D = (D1, D2, . . . , Dn) be a product distribution
where each Di is dyadic and supported on ≤ s points. For every ϵ > 0, there is a Os,ϵ(1)-local
f : {0, 1}H(D)+ϵn such that dist(f(U), D) ≤ e−Ωs,ϵ(n).

Increasing the locality to O(log n) we can approximate any distribution by a dyadic one and
sample any arbitrary product distribution to within statistical distance 1/ poly(n) (see Corollary 8).

The above result is in the bit-probe model. The next result is in the cell-probe model: The input
randomness is organized in words of log n bits, and one probe reads an entire word. We show how
to sample Ber(p)n with randomness complexity h(p)n+ Õ(

√
n) to within distance 1/ poly(n), in

constant time.

Theorem 2. The distribution Ber(p)n can be sampled using h(p)n+
√
n · polylog(n) uniform bits

within statistical distance 1/ poly(n) with O(1) word-probes.

Returning to the bit-probe model, recall the trivial sampler of Ber(1/4)n that is 2-local and
uses randomness complexity 2n. We ask ourselves what can be achieved using constant locality
and non-trivial randomness complexity (2− ϵ)n. We determine the tradeoff between locality and
statistical distance: For 2 bit probes, no non-trivial approximation is possible; for 3 bit probes,
we give a sampler with 1/ poly(n) error and show that this is best possible; finally, 4 bit probes
suffice for exponentially small distance. We state these results in two theorems, the first focusing on
negative results, the other on positive.

Theorem 3 (Theorem 21 and Theorem 29). For ϵ > 0 and f : {0, 1}(2−ϵ)n → {0, 1}n be any d-local
function. We have

dist(f(U),Ber(1/4)n) ≥

{
1− e−Ω(n) if d = 2

n−O(1) if d = 3.

Theorem 4 (Theorem 25 and Theorem 32). For d ∈ {3, 4}, there is an ϵ > 0 and a d-local sampler
f : {0, 1}(2−ϵ)n → {0, 1}n such that

dist(f(U),Ber(1/4)n) ≤

{
n−Ω(1) if d = 3

e−Ω(n) if d = 4.

Our constructions are explicit in the following sense. The claimed samplers (viewed, for example,
as circuits) can be constructed by an efficient randomized algorithm, with a small error probability.
Jumping ahead, the error probability arises from the need of constructing certain matrices (cf.
Lemma 10) for which we do not know of a deterministic construction. However, at least in the
cell-probe model we also obtain a deterministic construction of the sampler (Appendix D).

While we have focused on product distributions, we mention that a body of works has established
strong negative results for sampling distributions in NC0 or even AC0 regardless of the input length
of the sampler. For example, [LV12] has shown the existence of linear maps that cannot be sampled
in AC0. Still, there remains some interesting open questions. For example, it would be interesting
to sample random walks on graphs (equivalently, Markov chains), a problem studied in [VWY20].
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1.2 Proof overview
We now give an overview of the proofs. We focus on sampling Ber(1/4)n, which captures all the
key ideas in our arguments.

Overview of the proof of Theorem 1. A building block for the proof is the construction of
a (possibly inefficient) sampler of Ber(1/4)b with expected randomness complexity close to the
optimal h(1/4)b. We call this the block-sampler. To illustrate the basic idea, consider sampling one
bit, i.e., Ber(1/4)1. We can do so as follows. First, read an input bit. If it’s 0, output 0; otherwise,
read another input bit and output it. This samples perfectly Ber(1/4)1. While in the worst case we
use a trivial randomness complexity 2, the expected number of input bits read is only 1.25, which is
much better. This idea can be suitably generalized, and can approach the optimum when taking the
block-size b large enough.

Given such a block sampler, we divide the n output bits in blocks of length b, and consider
sampling each block with an independent copy of the block sampler. By concentration bounds,
we know that with high probability over the randomness of the input bits, the actually number of
random bits used to sample a typical output is close to optimal.

Now in some sense we derandomize this construction. We in turn sample the inputs to the
block samplers pseudorandomly, via a local linear transformation. Specifically, we take a nearly
optimal number of bits, and we multiply them by a sparse matrix that expands these to the larger
number of bits which can be needed by the block samplers in the worst case. The key property
we need from the matrix is that most small subsets of the rows of the matrix (that correspond to
the coordinates read by the block samplers) are linearly independent. We remark that this is a
weaker notion than bounded uniformity, which demands that every small subset of rows of the
matrix be linearly independent. In fact, the Plotkin bound shows that no matrix satisfying the latter
requirement would achieve optimal seed length. So utilizing the weaker condition is crucial in our
construction. The matrix property that we need seems relatively basic, yet we cannot find a result in
the literature that we can use directly, so we give a self-contained analysis that a suitable random
construction works.

We obtain Theorem 1 by dividing the n bits into blocks of constant size.

Overview of the proof of Theorem 2. Theorem 2 is obtained via a new connection between
sampling and succinct data structure. While a link between these two areas was already observed in
[Vio12] (see Claim 6) and used in a number of following works, our connection is different. [Vio12]
pointed out that a succinct data structure is immediately a non-trivial sampler, but the statistical
distance can be quite large and close to 1. This connection can be used to establish data-structure
lower bounds from sampling lower bounds that rule out even such large statistical distance, but it is
not clear how one can use it to obtain useful samplers, even with statistical distance 1/2. Indeed, we
are not aware of any construction of samplers that is based on data structure. Moreover, as our target
distribution is not uniform on a set, it is not clear we can use any existing data structure directly
in a blackbox way. Instead, we leverage and adapt the techniques used in recent exciting progress
on the set membership (and dictionary) data structure problems [HLY+24], in particular the use of
retrieval data structures.
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To explain we begin with a key concept, originating in [Pǎt08] (cf [DPT10]).

Definition 5 (Spillover representation). Given an injective map from a set S to {0, 1}M × [K], the
spillover representation of an element in S is its corresponding element (m, k) ∈ {0, 1}M × [K],
where k is called the spill.

The work [Vio12] observed the following connection between sampling the uniform distribution
over a set and membership data structure.

Claim 6. Suppose a set of n keys in a universe U can be represented by a spillover representation
(m, k) ∈ {0, 1}M × [K] with M + log2K ≤ log2

(
U
n

)
+ ϵ. Then a uniform key can be sampled from

{0, 1}M × [K] with error ϵ.

Proof. The error is at most the probability that a uniform element from {0, 1}M × [K] is not a
spillover representation of any keys. Using 1− 1/x ≤ log2 x for x > 0, this probability is

1−
(
U
n

)
2M ·K

≤ log
(2M ·K(

U
n

) )
≤ ϵ.

We again divide the n bits into blocks of B = polylog(n) bits. To sample a block with constant
word-probes, we will now use a succinct membership data structure by Yu [Yu22]. It shows that
one can represent B-bit strings of Hamming weight s by spillover representations in {0, 1}M × [K]
so that each string can be retrieved using O(1) word-probes to the representation. Moreover, the
redundancy M + log2K − log

(
B
s

)
is polynomially small.

A critical point here is that s is not fixed, but a random variable. Consequently, even M and K
are random variables.

To sample Ber(1/4)B, as in [HLY+24] we encode the weight distribution Bin(B, 1/4) into the
first O(1) words in each representation with a 1/ poly(n) increase in redundancy. This gives us a
block sampler for Ber(1/4)B: we first sample (the first) O(1) words to determine the Hamming
weight s distributed according to Bin(B, 1/4), and then sample a uniform spill representation in
{0, 1}M(s) × [K(s)]. One can show that M (s) + log2K

(s) ≤ h(1/4)B + 1/ poly(n) in expectation.
Now we can apply Claim 6 to obtain a O(1)-word-probe sampler for Ber(1/4)B.
Our plan is to use L := n/B independent copies of the sampler to sample the L blocks.

However, as the sizes of the representations depend on s, sampling the L representations (mi,ki) ∼
{0, 1}M(si) × [K(si)] together with small redundancy becomes a challenge. The issue here is what
we alluded to before. The mi and ki are random variables, so we need to put together data structures
of varying length which is not obvious: where are the relevant input bits for a specific output bit?

The work [HLY+24] addressed this challenge using augmented retrieval data structure. We
will not define it here, but the key observation behind their construction is that the random vari-
able Ms typically is at least Mfixed = Ω(log

(
B

pB−B2/3

)
), which is much larger than its deviation

O(B2/3 logB), and log2K
(s) = O(log n).

Based on this observation, [HLY+24] constructs random sparse matrices to concatenate the L
representations with polylog(n) redundancy. Here, we use the same random sparse matrices to
sample the L spillover representations. However, our construction does not achieve polylog(n)
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redundancy as in [HLY+24], because unlike in the data structure setting, we cannot write down the
sizes of each retrieval data structures and point to their starting positions in the memory. So we
instead put an upper bound on the sizes of all retrieval data structures except the last one.

Also, the reconstruction in [HLY+24] requires switching between spillover representations over
symbols with different alphabet sizes with small redundancy. In the sampling setting, we also have
to ensure these transformations also maintain closeness to the uniform distribution (see Lemma 14).

Overview of Theorem 3 and Theorem 4. Our 2-local lower bound is based on a win-win
argument. Given a sampler f : {0, 1}m → {0, 1}n where m = (2− ϵ)n. We consider the bipartite
graph representing the input-output dependency of f .

Suppose there is a subset of m′ inputs which connects to n′ := 100m′ neighbors, then for
every fixing of these input bits, f restricted to the n′ bits is a 1-local, which can be shown to be
exponentially far from Ber(1/4)n′ , and this remains so after summing over all 2m′ fixings of the
inputs.

Therefore, if m′ = Ω(n), then the result follows. Otherwise, by removing these input vertices
and their neighbors, we are left with a 2-local map from (2− Ω(ϵ))n′′ bits to n′′ = Ω(n) bits where
every input has bounded degree. So we can decompose the outputs into Ω(n) groups so that each
group depends on disjoint inputs. We show that each group has some constant distance away from
the 1/4-biased distribution. So the overall distance is at least 1− e−Ω(n).

Our 3-local lower bound (Theorem 29) is shown by finding a set of output coordinates of size
k = O(log(n)) which depend on at most 2k − 1 inputs. Indeed, by granularity it follows that
we see all zeros on these k coordinates with probability either 0 or at least 2−(2k−1) = 2

4k
, while

Ber(1/4)k outputs all zeros with probability 1
4k

. Therefore, the statistical distance of our sampler to
Ber(1/4)n is at least 1

4k
. In order to find such a set, we consider the bipartite graph representing the

input-output dependency of the sampler. Noting that the degree of each output vertex is at most 3,
the problem essentially reduces to finding a cycle of length O(log n) in any graphs whose average
degree is bounded above by 2.

The construction of our 3-local and 4-local samplers (Theorem 4) is inspired by the recent
iterative framework in constructing pseudorandom generators [HH23]. Recall that the output of the
trivial 2-local sampler is the bitwise AND x ∧ y for two independent uniform n-bit strings x and
y. We can think of x as picking a uniformly random subset of the n positions. Then to get close
to Ber(1/4)n, we only require y to be uniform on the subset of positions chosen by x with high
probability.

To generate such y, we assign each yi to two input bits zi, z′i according to a 3-regular expander
graph G, where yi corresponds to the edge (zi, z

′
i). Then we let yi to be zi ⊕ z′i. To analyze the

construction, we show that a random subgraph of G has no cycle with probability 1− 1/ poly(n).
That means the yi’s are uniform when restricted to most subsets chosen by x, and the result follows.

Our 4-local sampler construction follows the same idea. Again, we use n random bits to select
a random subset of [n]. Then to sample y ∈ {0, 1}n we use a 3-local LPDC code instead of an
expander. By analyzing the weight distribution of the code, we show that a random subset of rows
in the corresponding parity-check matrix is full rank with probability 1− e−Ω(n).
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2 Local sampler for product distributions
In this section, we prove Theorem 1.

Theorem 7. Let q be an integer, and D1, . . . , Dn be n distributions on {0, 1}w, where Di(s) is an
integer multiple of 2−q for every i ∈ [n] and s ∈ {0, 1}w. Let D = D1 × · · · × Dn the product
distribution of the Di’s.

For every ϵ > 0, and let m = H(D) + ϵn. There exists a sampler f : {0, 1}m → ({0, 1}w)n

with locality O( q
ϵ
log(1

ϵ
)) such that dist(f(Um), D) < 2

−Ω
(

ϵ3n
q2

)
. The sampler f is adaptive, in the

sense that for each output query, f makes O( q
ϵ
log(1

ϵ
)) sequential queries to the inputs, where each

query may depend on the previous queries.

The following is an almost immediate corollary from Theorem 7.

Corollary 8. Let D1, . . . , Dn be n distributions on {0, 1}w for w = O(log n). For every ϵ ∈
(0, logn

n1/3 ), the product distribution D = D1 × · · · ×Dn can be sampled using H(D) + ϵn bits with
locality O( log(1/ϵ)

ϵ
· log(n)) and error 1/ poly(n).

Proof. We can approximate each Di with a distribution D′
i whose probability masses are integer

multiples of 2−(w+⌈log2(n/γ)⌉) such that |Di(s)−D′
i(s)| ≤

2γ
n·2w for all s ∈ {0, 1}w, and in particular

dist(Di, D
′
i) ≤ γ/n for all i ∈ [n] (cf. [Vio12, Lemma 5.2]). Setting γ = 1/nC for a sufficiently

large constant C, the two distributions D and D′ := D′
1 × · · · ×D′

n are 1/ poly(n)-close in total
variation distance. Note that for each i ∈ [n] we have

H(D′
i)−H(Di) ≤

∑
s∈{0,1}w

∣∣∣D′
i(s) · log2(

1

D′
i(s)

)−Di(s) · log2(
1

Di(s)
)
∣∣∣.

Since |Di(s)−D′
i(s)| ≤

2γ
n·2w , each term in the sum is at most 2γ

n·2w log2

(
n·2w
2γ

)
, and hence

H(D′
i) ≤ H(Di) + 2w × 2γ

n · 2w
log2

(
n · 2w

2γ

)
=

2γ

n
· log2

(
n · 2w

2γ

)
.

Therefore, H(D′) ≤ H(D) + 1/ poly(n), and the corollary follows by applying Theorem 7 on
D′.

We now turn to the proof of Theorem 7.

Lemma 9. Let D be any distribution on {0, 1}w, where there is some q ∈ N such that D(s) is an
integer multiple of 2−q for all s ∈ {0, 1}w. Then D can be sampled by a decision tree with q input
bits, where the expected depth of a leaf is at most H(D) + 3.

Proof. We start with a complete binary tree of height q and 2q leaves. For each s ∈ {0, 1}w, we
label D(s) · 2q consecutive leaves in the tree by s, each leaf having weight 1. To obtain our decision
tree, if two siblings have the same label s, we remove them, label their parent by s, and assign its
weight to be the sum of the weight of the two removed vertices. We repeat this process until no 2
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siblings share the same label. To sample D, we use the q input bits one by one to traverse the tree
until we reach a leaf, in which case we output its label.

For a node v in the tree, denote by d(v) is the depth of v, i.e., the distance of v from the root.
For a label s, denote by d(s) the minimal depth of a leaf in the tree, whose label is s. Note that the
probability of sampling a leaf v is 2−d(v), and the probability of sampling a node labeled s is equal
to
∑

v∈V (s) 2
−d(v), V (s) denote the set of all leaves v labeled with s.

We now bound from above the expected depth of a leaf. Note that at each level of the tree there
can be at most two nodes that share the same label s, for otherwise there must be two siblings who
share the same label. Hence, in order to maximize the depth, we put two nodes labeled s on each
level between d(s) and q. Hence, we have

D(s) ≤
q−d(s)∑
j=0

2 · 1

2q−j
≤ 2−d(s)+2.

Hence, the minimal depth of a nodes labeled s satisfies d(s) ≤ log2(1/D(s)) + 2. Thus, the
expected depth of a leaf in the decision tree is at most

∑
s∈{0,1}w

∑
v∈V (s)

2−d(v) · d(v) ≤
∑

s∈{0,1}w

q−d(s)∑
j=0

2 · 2
j

2q
· (q − j)

= 2−q+1
∑

s∈{0,1}w

q−d(s)∑
j=0

2j · q − 2−q+1
∑

s∈{0,1}w

q−d(s)∑
j=0

2j · j

= 2−q+1 · q
∑

s∈{0,1}w
(2q−d(s)+1 − 1)− 2−q+1

∑
s∈{0,1}w

(q − d(s)− 1) · 2q−d(s)+1 + 2

< q
∑

s∈{0,1}w
2−d(s)+2 −

∑
s∈{0,1}w

(q − d(s)− 1) · 2−d(s)+2

≤
∑
s

2−(d(s) · (d(s) + 1)

≤
∑
s

D(s) ·
(
log2(1/D(s)) + 3

)
= H(D) + 3.

So the expected depth of a leaf in the decision tree is at most H(D) + 3.

For the proof of Theorem 7 we also need a sparse matrix with the following properties.

Lemma 10. Fix k ∈ N and a sufficiently small α > 0. Let m ≥ max{(1 + 2h(α))k, αn}, and
D = ⌈ln(1/α)/α⌉. Let S be any distribution supported on subsets S ⊆ [n] of size |S| = k. There
exists a matrix M ∈ Fn×m

2 with at most D ones in each row, such that if we sample a subset S
according to S , then the corresponding submatrix MS ∈ Fk×m

2 is full rank with probability at least

Pr
S∼S

[MS is full rank] ≥ 1− 2−Ωα(n).
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Remark 11. In Lemma 10 we are looking for a matrix M such that most subsets of k rows are
linearly independent, where most is with respect to the distribution S. We note that with the required
parameters we cannot possibly hope for a matrix where any k rows are linearly independent, as
such matrix would correspond to a party check matrix of a linear error correcting codes with block
length n, distance k, and dimension at least n−m, which is impossible over small alphabet (e.g.,
by Plotkin bound, stating that a linear code of length m with distance k has dimension at most
m− 2k + o(1)).

The proof of Lemma 10 is below in Section 2.1.

Proof of Theorem 7. Divide the Di’s into n/t blocks each of size t = ⌈12/ϵ⌉. Let Dj be the product
of the Di’s in the j-th block. We first use Lemma 9 to sample each Dj independently using qt bits.
Let f : {0, 1}qn → {0, 1}wn be our sampler (which is simply a concatenation of the samplers from
Lemma 9). Then, we sample these qn bits pseudorandomly by applying the sparse matrix from
Lemma 10 to a seed of length m = H(D) + ϵn.

For each z ∈ {0, 1}qn, let Sz ⊆ [qn] denote the subset of positions read (adaptively) by f to
evaluate f(z). We emphasize that Sz are the only positions read by f to evaluate f(z). Let S be
the distribution of Sz induced by choosing a uniformly random z ∈ {0, 1}m. Note that Sz can
be written as Sz = S1 ∪ . . . Sn/t with Sj ⊆ {(j − 1)t + 1, (j − 1)t + 2, . . . , jt}, where Sj’s are
distributed independently, and E[|Sj

z |] ≤ H(Dj) + 3. Therefore,

Ez[|Sz|] ≤
n/t∑
i=1

H(Dj) + 3 · (t/n) ≤ H(D) + (ϵ/4)n.

Let k = H(D) + (ϵ/3)n. Note that Ez[|Sz|] + ϵn/12 ≤ k ≤ (1− ϵ/2)m for all ϵ < 1/3.
Let M be the qn × m matrix obtained by applying Lemma 10 with the distribution S. Our

sampler will take the input x ∈ {0, 1}m=H(D)+ϵn and output f(Mx).
Clearly the input length of f is m = H(D) + ϵn. The locality of the sampler is at most

qt ·D = O( q
ϵ
log
(
1
ϵ

)
), where D is the bound on the sparsity of M from Lemma 10.

Below we show that

dist(f(Um),Ber(1/4)n) ≤ Pr[|Sz| ≥ k] + 2−Ω(ϵn).

By Hoeffding’s inequality, we have

Pr[|Sz| ≤ k] ≥ Pr [|Sz| ≤ Ez[|Sz|+ ϵn/12]] ≥ 1− e
−Ω

(
(ϵn)2

(n/t)·(qt)2

)
≥ 1− e

−Ω( ϵ3

q2
n)
.

For a uniformly random z ∈ {0, 1}m

Pr
z
[MSz is full rank||Sz| ≤ k] ≥ 1− 2−Ω(ϵn).

Let us condition on the event that |Sz| ≤ k and MSz is full rank. Then for a uniformly random
input x ∈ {0, 1}m to our sampler, the ≤ k bits in (Mx)Sz are uniformly random, and thus in each
of the (n/t) blocks the output is distributed according to Dj . Therefore,

dist(f(Um),Ber(1/4)n) ≤ Pr[|Sz| ≥ k] + 2−Ω(ϵn) ≤ e
−Ω( ϵ3

q2
n)
,

as required.
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2.1 Proof of Lemma 10
We prove the lemma by considering a random n×m matrix M , where each row of M is sampled
independently according to the following distribution: Select D indices i1, i2, . . . , iD ∈ [m]
uniformly and independently, and define the row of M to be ei1 + ei2 + · · ·+ eiD . Clearly, each
row of M has at most D ones.

For an integer 1 ≤ ℓ ≤ k, let pℓ := Pr[zM = 0], where z ∈ Fn
2 is a vector of Hamming weight

ℓ. We start with the following expression for the probability that z is a null vector of M .

Claim 12. For all 1 ≤ ℓ ≤ m we have

pℓ =
1

2m

∑
S⊆[m]

(
1− 2|S|

m

)Dℓ

=
1

2m

m∑
i=0

(
m

i

)(
1− 2i

m

)Dℓ

.

In particular,

pℓ ≤


2
(
2Dℓ
m

log( m
Dℓ
)
)Dℓ

2 if 1 ≤ ℓ ≤ m
4D

2 · 2−m
4 if m

4D
≤ ℓ ≤ αm

m · 2−(1−h(α))m if αm ≤ ℓ.

Let us see how the claim above proves Lemma 10.

Proof of Lemma 10. Consider the random matrix M with at most D ones in each row as described
above. Denote by L the event that any αm rows of M are linearly independent. Then, using the
assumption about α being sufficiently small, Claim 12 implies that

Pr[L] ≤
αm∑
ℓ=1

(
n

ℓ

)
pℓ

≤
m
4D∑
ℓ=1

(
n

ℓ

)
2

(
2Dℓ

m
log

(
m

Dℓ

))Dℓ
2

+
αm∑

ℓ= m
4D

+1

(
n

ℓ

)
2 · 2−

m
4

≤ 2

m
4D∑
ℓ=1

(
en

ℓ
·
(
2Dℓ

m
log
( m

Dℓ

))D
2
)ℓ

+ 2 · 2h(
αm
n

)n · 2−
m
4

≤ n−Ω(D). (1)

Fix a subset of the rows S ⊆ [n] of size k. Then by Claim 12 and using (1− ϵ)(1 + 2ϵ) ≥ 1 + ϵ/2
for ϵ ∈ [0, 1/4].

Pr
M

[
there exists a subset of rows T ⊆ S with T ≥ αm whose sum is 0

]
≤

k∑
ℓ=αm

(
k

ℓ

)
pℓ ≤ 2k ·m · 2−(1−h(α))m ≤ O(k) · 2k · 2−(1+

h(α)
2

)k ≤ 2−Ω(h(α)k).

11



Note that if we consider the random matrix M conditioned on L, then for any S ⊆ [n] of size k we
have

Pr
M

[
there exists a subset of rows T ⊆ S with T ≥ αm whose sum is 0 | L

]
≤ 2−Ω(αn)

Pr[L]
≤ 2−Ω(αn).

Therefore, by the averaging argument, there exists a matrix M such that

Pr
S∼S

[MS is full rank] ≥ 1− 2−Ω(αn).

This completes the proof of Lemma 10.

We now return to the proof of Claim 12.

Proof of Claim 12. Let f : {0, 1}m → {0, 1} be the indicator function of the all zeros vector. We
can write f in its Fourier expansion

f(x) =
m∏
i=1

1 + (−1)xi

2
=

1

2m

∑
S⊆[m]

(−1)
∑

i∈S xi .

Observe that for a uniform random index i ∼ [m], we have E[(−1)
∑

j∈S(ei)j ] = 1− 2|S|
m

. As the D
indices ij’s in each row of M are sampled independently, for a vector z ∈ Fn

2 of Hamming weight
ℓ, we have

pℓ = Pr[f(zM) = 1] = 2−m ·
∑
S⊆[m]

E
[
(−1)

∑
i∈S(zM)i

]
= 2−m ·

∑
S⊆[m]

(
1− 2|S|

m

)Dℓ

= 2−m ·
m∑
i=0

(
m

i

)(
1− 2i

m

)Dℓ

. (2)

Next, we prove the “in particular” part of the claim. We will consider 3 cases depending on the
values of 1 ≤ ℓ ≤ m; in each case, we will decompose the sum in Eq. (2) into two parts according
to some threshold t that depends on ℓ, and bound each part separately.

The case of 1 ≤ ℓ ≤ m
4D

: Let t = m
2
(1−

√
h(Dℓ/m)). Note that we have 2−m

∑m
i=t+1

(
m
i

)
(1−

2i
m
)Dℓ ≤ (1− 2t

m
)Dℓ, and so

pℓ ≤ 2−m

t∑
i=0

(
m

i

)(
1− 2i

m

)
+
(
1− 2t

m

)Dℓ

≤ 2−(1−h( t
m
))m + h

(Dℓ

m

)Dℓ
2
.

The first term can be upper bounded as follows. Using the fact that h(1/2−
√
x) < 1− 2x with

x = h(Dℓ/m), we have h(t/m) = h(1/2−
√
h(Dℓ/m)/2) ≤ 1− h(Dℓ/m)

2
. So,

2−(1−h( t
m
))m ≤ 2−

1
2
h(Dℓ

m
)m ≤ 1(

m
Dℓ

)1/2 ≤
(Dℓ

m

)Dℓ
2
.

12



For the second term we use the fact that h(x) ≤ 2x log2(1/x) for x ∈ [0, 1/2], which gives us

h
(Dℓ

m

)Dℓ
2 ≤

(2Dℓ

m
log
( m

Dℓ

))Dℓ
2
.

Therefore,

pℓ ≤
(
Dℓ

m

)Dℓ
2

+

(
2Dℓ

m
log
( m

Dℓ

))Dℓ
2

≤ 2

(
2Dℓ

m
log
( m

Dℓ

))Dℓ
2

.

The case of m
4D

≤ ℓ ≤ αm: Let t = m/4. Then

pℓ ≤ 2−m

t∑
i=0

(
m

i

)(
1− 2i

m

)
+

(
1− 2t

m

)Dℓ

≤ 2−(1−h(1/4))m + 2−Dℓ < 2 · 2−
m
4 ,

where the last inequality follows because 1− h(1/4) ≥ 1/4 and Dℓ ≥ m/4 by our assumption.

The case of ℓ ≥ αm: We first show that for every 0 ≤ i ≤ m, it holds that(
m

i

)(
1− 2i

m

)Dℓ

≤ 2h(α)m.

When 0 ≤ i ≤ αm, this simply follows from
(
m
i

)
≤ 2h(

i
m
)m ≤ 2h(α)m. Now, suppose i ∈

[αm,m/2]. Using ℓ ≥ αm and our choice of D ≥ ln(1/α)/α, together with the fact that h(x) ≤
2x log2(1/x) for x ∈ [0, 1/2], we have(

1− 2i

m

)Dℓ

≤ e−
2i
m
Dℓ ≤ e−2i ln( 1

α
) ≤ e−2i ln(m

i
) ≤ 2−h( i

m
)m ≤ 1(

m
i

) .
Thus,

(
m
i

)
(1 − 2i

m
)Dℓ ≤ 1. Finally, for i ≥ m/2, note that

(
m
i

)
(1 − 2i

m
)Dℓ ≤

(
m

m−i

)
(1 − 2(m−i)

m
)Dℓ

and so we can apply the previous bounds.
Therefore,

pℓ = 2−m

m∑
i=0

(
m

j

)(
1− 2i

m

)Dℓ

≤ m · 2−(1−h(α))m.

This completes the proof of Claim 12.

3 Sampling p-biased distributions from static dictionary
In this section we prove Theorem 2.

Theorem 2. The distribution Ber(p)n can be sampled using h(p)n+
√
n · polylog(n) uniform bits

within statistical distance 1/ poly(n) with O(1) word-probes.
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3.1 Changing bases
In this subsection, we prove local transformations between uniform distributions on sequences over
different domains with little overheads and errors.

Claim 13. The uniform distribution over [K] can be sampled by m elements in [q] with error K/qm.

Proof. We think of [p]m as {0, . . . , pm − 1}. Given a uniform u ∼ {0, . . . , pm − 1}, we output
⌊ u
K
⌋. The statistical distance is at most the probability that u lies in the last pm mod K elements,

which is at most K/pm.

Lemma 14. Given p, q ≤ poly(n), there is a function f : [q]m → [p]n such that

• m ≤ n logq p+O(logq n);

• each output coordinate depends on O(logq n) many input coordinates;

• for every subset S ⊆ [n], if the coordinates f(U)S depends on are ϵ-close to uniform, then
f(U)S is (ϵ+ 1/ poly(n))-close to uniform over [p]S .

Proof. We modify the proof in [DPT10, Section 4] as follows. They showed that one can represent
xp ∈ [p]n by a spillover representation (xq, y) ∈ [q]m

′ × [K] where K = poly(n) and

m′ log2 q + log2K ≤ n log2 p+
1

poly(n)
.

Moreover, each element of [p]n only depends on O(logq n) coordinates of [q]m′ × [K]. It follow
from Claim 6 that the uniform distribution on [p]n can be sampled from the uniform distribution on
[q]m

′ × [K] with error 1/ poly(n), with each output coordinate depending on at most O(logq n) of
the input coordinates. Finally, we use Claim 13 to sample the uniform distribution over [K] using
O(logq n) elements of [q] with error 1/ poly(n).

3.2 Sampling p-biased distributions on polylog bits
In this subsection, we show how to sample polylog(n) many p-biased bits with O(1)-word probes.

Theorem 15. Let B = polylog(n) and C > 0 be any constant. The distribution Ber(p)B can
be sampled adaptively from {0, 1}M × [K] with error 1/ poly(n), where K ≤ poly(n), with the
following properties:

• A random variable s ∼ [pB − B2/3, pB + B2/3] that is n−Ω(C)-close to Bin(B, p) can be
sampled using the first t := C log2 n bits of {0, 1}M .

• Given s = s, the lengths M = M (s) and K = K(s) are fixed and

Es

[
M (s) + log2K

(s)
]
≤ h(p)B +

1

nC
.
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• Given both s and K(s), each output coordinate of a sample can be computed from O(1) many
words of m ∼ {0, 1}M .

The proof of Theorem 15 follows [HLY+24], where we encode information of s into the succinct
data structure in [Yu22] with a small increase in redundancy.

Lemma 16 (Lemma 28 in [Yu22]). Let B = polylog(n), and C > 0 be any constant. A size-s
subset S ⊆ [B] can be represented by a spillover representation (m′, k′) ∈ {0, 1}M ′ × [K ′] such
that

• K ′ = poly(n),

• M ′ + logK ′ ≤ log
(
B
s

)
+O(1/nC),

• each query can be answered with O(1) word probes to m′ and k′.

Proof Sketch of Theorem 15. As in [HLY+24, Lemma 4.2], we first instantiate Lemma 16 to rep-
resent a size-s subset of [B] with a spillover representation (m′, k′) ∈ {0, 1}M ′ × [K ′]. Then we
encode s and D(s) into (m′, k′), for some distribution D that is n−Ω(C)-close to Bin(B, p) into the
first t bits of m′.

We think of a t-bit string as the set T := {0, . . . , 2t − 1}. Let D′ be Bin(B, p) conditioned on
its value lies in [pB − B2/3, pB + B2/3]. Note that D′ is n−ω(1) close to Bin(B, p). For each s in
the support of D′, we assign an interval Ts ⊆ T of ⌊D′(s) · 2t⌋ elements. For any point x ∈ T that
is not in any Ts, we assign it to an arbitrary Ts. Defining the distribution D(s) = |Ts|

|T | , one can verify
that D is n−Ω(C)-close to Bin(B, p).

To encode s, we take the first 2t bits m0 of m′, and view m0 as a number in {0, . . . , 22t − 1}.
We can write m0 as

m0 =

⌊
m0

|Ts|

⌋
· |Ts|+m0 mod |Ts|.

We replace the first t bits of m′ with the (m0 mod |Ts|)-th value in the interval Ts in binary. Then we
remove the second block of t bits of m′, and encode

⌊
m0

|Ts|

⌋
along with k′ as the spill, which increases

K ′ to K ′ · ⌈ 22t

|Ts|⌉. A similar calculation as in [HLY+24] shows that the redundancy increases by
1/ poly(n).

To sample (m,k), our sampler will sample the first t bits of m to sample s ∼ D. This lets us
determine s, m0 mod |Ts|, and (M (s), K(s)). Given the sizes, we can sample the rest of (m,k).
From k, we can recover m0. This lets us recover (m′,k′).

We have obtained a spillover representation (m,k) ∈ {0, 1}M × [K] of a set S ⊆ [B] of size
s, with s encoded in the first t bits of m with redundancy 1/ poly(n). Let X be the resulting
distribution. By Lemma 16, we have

Es∼D[M + log2K
′] ≤ Es∼D

[
log

1

D(s)
+ log

(
B

s

)]
+O

( 1

nC

)
= H(X) +O

( 1

nC

)
.

Since D is n−Ω(C)-close to Bin(B, p), X is 1/n−Ω(C)-close to Ber(p)B, and therefore H(X) ≤
h(p)B + 1/nΩ(C). The theorem then follows from Claim 6.
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3.3 Concatenation
We now show to sample the L copies of the sampler in Theorem 15. Specifically, we will sample L
i.i.d. copies of (mi,ki) ∈ {0, 1}M(si) × [K(si)].

Recall that D is a distribution supported on [pB − B2/3, pB + B2/3], and each (m, k) ∈
{0, 1}M(s) × [K(s)] is a spill representation of a size-s subset in [B]. Thus, for every s in its support
of D, we have M (s) ∈ [Mmin,Mmax] for some Mmin ≥ log

(
B

pB−B2/3

)
/2 and Mmax := log

(
B

pB+B2/3

)
.

Moreover, as s ∈ [pB −B3/2, pB +B3/2], there are S ≤ 2B3/2 + 1 many possible different values
K1, . . . , KS for K(s). Let pj := Pr[K(s) = Kj] =

∑
s:K(s)=Kj

D(s). The number of K(si)’s that
are equal to Kj is distributed according to Bin(L, pj), and thus is at most pjL+O(

√
L log n) with

probability 1/ poly(n).

For each i ∈ [L], we partition mi into (mi,1,mi,2,m
′
i), where

• mi,1 has length t := C log2 n,

• mi,2 has length Mmin − t,

• m′
i is the remaining of mi.

(Recall that M (si) ≥ Mmin.) We will assume the lengths |mi,2| and |m′
i| are integer multiples of

the word size w, and K(si) ≥ nC for a large enough c. These can be achieved by moving some bits
in mi,2 and m′

i to the spill if necessary, which only change the spill size K(si) by poly(n).
Let mfixed denote the concatenation of the mi,2 : i ∈ [L], which has length at least L · (Mmin −

t) ≥ LMmin/2. We partition mfixed into S + 1 blocks(
mfixed,1, . . . ,mfixed,S,m

′
fixed

)
,

where |mfixed,j| = LMmin

4S
for j ∈ [S] and m′

fixed contains the remaining ≥ LMmin

4
bits.

First, for each i ∈ [L], we sample si using each mi,1. Then, we will sample different portions
of mfixed together with m′

i and the spills ki’s. For each j ∈ [S], we sample ki : i ∈ Rj together
with mfixed,j using Lemma 18. Finally, we sample m′

1, . . . ,m
′
L together with mfixed,S+1 using

Lemma 19.
The proofs of both lemmas use the following sparse matrix for the augmented retrieval data

structure in [HLY+24].

Lemma 17. Let F be a finite field of size at least nC . Let S be a random subset of [U ] of size at
most r. Suppose Mfixed ≥ U log n. Then there exists a (U +Mfixed)× (r +Mfixed) matrix G over
F with O(1) nonzeros in every row such that

Pr
[
GS∪{U+1,...,U+Mfixed} is full rank

]
≥ 1− 1

nC/2
.

We sketch its proof in Appendix C.
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Sampling the spills. We first show how to sample the spills. We will use the following lemma
whose proof is deferred to Section 3.3.1.

Lemma 18 (Concatenating Spills). Let nC ≤ K ≤ poly(n), and w = Θ(log n). Let S ⊆ [L]
be a random subset of size at most r, and M = Ω(wL logL). There is a function f : {0, 1}m →
[K]L × {0, 1}M with

m ≤ M + r log2K +O(log2 n),

such that each element of f(U) only depends on O(1) words of size w of the input. Moreover, letting
(k,m) ∈ [K]L × {0, 1}M be the output distribution, and using kS to denote ki : i ∈ S, we have

Pr
S

[
(kS,m) is 1/ poly(n)-close to uniform

]
≥ 1− 1/ poly(n).

Fix a j ∈ [S]. Our goal is to sample the ki’s where Ksi = Kj together with mfixed,j . We apply
Lemma 18 with

rj := pjL+O(
√
L log n), and

M := |mfixed,j| = Θ(n/B2/3) ≥ Ω(wL logL)

to obtain a sampler that uses a seed of length

mj = M + r log2K +O(log2 n) ≤ |mfixed,j|+ pjL log2K +O
(√

L · log3/22 n
)
.

We now calculate the total number of bits used to sample mfixed,j and all the ki’s. Note that

S∑
j=1

(pjL) log2Kj = L
S∑

j=1

( ∑
s:Ksi=Kj

D(s)
)
log2K

(s)

= L
∑
s

D(s) log2K
(s)

= LEs

[
log2K

s
]
.

Therefore, overall the sampler uses a seed of length

S∑
j=1

|mfixed,j|+ LE[log2Ks] +O
(√

L · log3/22 n
)
. (3)

Sampling the variable length part. We will use the following lemma to concatenate the m′
i’s.

Lemma 19 (Concatenating variable-length part). Let S ⊆ [Q] be a random subset of size at most
r, and M = Ω(Q logQ). There is a function f : {0, 1}m → ({0, 1}w)Q+M with m ≤ w(r +M)
such that each word of f(U) only depends on O(1) words of the input. Moreover, letting (x,y) ∈
({0, 1}w)r × ({0, 1}w)M be the output distribution, we have

Pr
S

[
(xS,y) is uniform

]
≥ 1− 1/ poly(n).
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Proof. Let G be the (Q + M) × (r + M) matrix over F = GF (2w) given by Lemma 17. Let
(x,y) ∈ ({0, 1}w)Q × ({0, 1}w)M be the output of G on an uniform input. We have

Pr
S

[
(xS,y) is uniform

]
≥ 1− 1/ poly(n).

We can sample the uniform distribution over ({0, 1}w)r+M using w(r +M) bits.

Let
∆ := Mmax −Mmin = O(B2/3 logB).

Note that m′
1, . . . ,m

′
L all together consist of r :=

∑L
i=1

(M(si)−Mmin)
w

≤ L∆
w

words. Moreover, we
have

O
(L∆

w
log(L∆)

)
= O(LB2/3 log n) = O

( n

B1/3
log n

)
≤ LMmin

4w
≤ |m′

fixed|
w

.

So we can apply Lemma 19 with r to sample m′
1, . . . ,m

′
L together with m′

fixed using a seed of
length

L∑
i=1

|m′
i|+ |m′

fixed|. (4)

The error is 1/ poly(n).

Putting everything together. We first argue correctness. Observe that our choice of rj is fixed
when we sample the spills ki’s. Thus, to sample the spills ki’s uniformly, we need to ensure that
the number of blocks i with Ksi is at most rj = pjL+O(

√
L log n) with high probability. Let Rj

be the set of i where K(si) = Kj . Note that E[|Rj|] = pjL, and thus by the Chernoff bound and a
union bound, we have that for each j ∈ [S],

Pr
[
|Rj| ≥ pjL+ 10

√
B log n

]
≤ 1

n100
.

So with probability 1− 1/ poly(n), |Rj| ≤ pjL+ 10
√
B log n for every j ∈ [S], and the spills are

sampled uniformly.

The overall seed length is the sum of the lengths of mi,1 : i ∈ [L], Eqs. (3) and (4). This is

L∑
i=1

(
|mi,1|+ |m′

i|
)
+ |m′

fixed|+
S∑

j=1

|mfixed,j|+ LE
[
log2K

s
]
+O

(√
L log

3/2
2 n

)
=

L∑
i=1

M (si) + LE
[
log2K

s
]
+O(

√
L log

3/2
2 n). (5)

By Theorem 15, we have

E
[
M (si) + log2K

(si)
]
≤ h(p)B +

1

poly(n)
.
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As M (s) ≤ B for every s, by Hoeffding’s inequality, we have that with probability 1− 1/ poly(n),

L∑
i=1

M (si) ≤ L · E[Ms] +O(B
√
L log n),

and so

Eq. (5) ≤ LE
[
M (si) + log2K

(si)
]
+O(

√
L log

3/2
2 n)

≤ h(p)n+
√
n · polylog(n).

3.3.1 Proof of Lemma 18

We now prove Lemma 18. The proofs are similar to the ones in [HLY+24], except we maintain the
closeness to the uniform distribution when using Lemma 14 to change base.

We will need the following result from number theory [BHP01].

Lemma 20. For every sufficiently large n, there is a prime between n and n+ n0.525.

Proof of Lemma 18. We embed elements in [K] into [p] using Claim 13, where p is the smallest
prime that is at least K, which, by Lemma 20, is at most K + K0.525. Thus, the total variation
distance between the uniform distributions over [K]L and [p]L is at most

L · K0.525

K +K7/11
≤ 2 · L ·K−0.475 ≤ 1/ poly(n). (6)

We apply Lemma 14 to ({0, 1}w)M to obtain a sampler f1 : [p]Mp → {0, 1}M with Mp ≤ M
log2 p

+

O(logp n) and error 1/ poly(n) Note that Mp ≥ Ω(L logL). We sample [p]Mp+L using Lemma 17.
Specifically, let G be the (L+Mp)× (r +Mp) matrix over Fp given by Lemma 17 with respect
to S. This matrix has O(1) many nonzeros in each row. Moreover, letting (k1, . . . ,kL,m) be the
output of G(U), we have

Pr
S

[
(kS,m) is uniform

]
≥ 1− 1/nC . (7)

Finally, we use Lemma 14 to sample the uniform distribution over [p]r+Mp from {0, 1}m with error
1/ poly(n).

Therefore, we have

m ≤ (r +Mp) log2 p+O(log2 n)

≤
(
r +

M

log2 p

)
log2 p+O(log2 n)

= r log2 p+M +O(log2 n)

= r log2K +O(log2 n).

Closeness to uniform follows from Lemma 14, and locality follows since each sampler is O(1)
word-local, and thus their composition is also O(1) word-local.
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4 A lower bound for a 2-local construction with m = (2− ϵ)n

In this section, we prove Theorem 21 to show that for any 2-local mapping with seed length is
(2− ϵ)n its distance to Ber(1/4)n approaches 1 as n increases.

Theorem 21. Let n ∈ N be sufficiently large. Fix ϵ > 0, and let m = (2− ϵ)n. Let f : {0, 1}m →
{0, 1}n be a 2-local mapping. Then

dist(f(Um,Ber(1/4)n) ≥ 1− exp(−cϵn),

for some c > 0 is some absolute constant.

Before proving the theorem, we will prove several claims that will be needed later.

Proposition 22. Let f : {0, 1}m → {0, 1}n be a 1-local mapping. Then

dist(f(U),Ber(1/4)n) ≥ 1− 2 · e−n/128.

Note that since f is 1-local, we may assume without loss of generality that m ≤ n.

Proof. For each i ∈ [m] corresponding to the input bit xi, let N(i) be the output bits that depend
on xi. Note that we may assume without loss of generality that |N(i)| ≥ 1 for all i ∈ [m], as
otherwise it we can remove the i’th coordinate. Since f is 1-local, the sets N(i) and N(i′) are
disjoint for i ̸= i′, and the distributions f(xi)|N(i) and f(xi′)|N(i′) are independent. Next we consider
the following two cases:

• If m > n/2, we may pick for each i ∈ [m] one output coordinate ji ∈ N(i). Note that the
corresponding output bit has distribution Ber(1/2), and the joint distribution f(Um)(ji)i∈[m]

is
Ber(1/2)m. Thus

dist(f(U),Ber(1/4)n) ≥ dist(Ber(1/2)m,Ber(1/4)m))
≥ Pr[Bin(m, 1/2) ≥ 3m/8]− Pr[Bin(m, 1/4) ≥ 3m/8]

≥ (1− e−m/64)− e−m/36 ≥ 1− 2 · e−m/64 ≥ 1− 2 · e−n/128.

• If m ≤ n/2, then |supp(f(Um)| ≤ 2m ≤ 2n/2. On the other hand for any subset A ⊆ {0, 1}n
of size at most 2m it holds that Pr[Ber(1/4)n ∈ A] ≤ Pr[Bin(n, 1/4) ≤ n/8], as Ber(1/4)n

assigns higher probability to the elements of lower weight and
(

n
≤n/8

)
≥ 1√

n
· 2h(1/8)n ≥

2n/2 ≥ 2m. Therefore, by Claim 41 we have

dist(Ber(1/4)n, f(U)) ≥ 1− Pr[Bin(n, 1/4) ≤ n/8] ≥ 1− e−n/64.

This completes the proof of Proposition 22.

Claim 23. Let f : {0, 1}m → {0, 1}2 be a 2-local mapping. Let i ∈ [m] be a coordinates of the
input, and let N(i) be the output bits that are influenced by the i’th input bit. If |N(i)| ≥ 2, then
dist(f(Um)|N(i),Ber(1/4)|N(i)|) ≥ 1/8.
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Proof. Take any two distinct coordinates j, j′ ∈ N(i). These two coordinates depend on at most
three input bits, and hence all probabilities of f(Um){j,j′} are integer multiples of 1/8. On the other
hand, the distribution Ber(1/4)2 has probabilities (1/16, 3/16, 3/16, 9/16), and thus, each possible
2-bit string contributes at least 1

8
to each term of the summation in the definition of the distance.

Therefore dist(f(Um)|N(i),Ber(1/4)|N(i)|) ≥ 1
2
· (4 · 1

16
) = 1/8.

We are now ready to prove Theorem 21.

Proof of Theorem 21. Given a 2-local mapping f : {0, 1}m → {0, 1}n with m = (2− ϵ)n, define
a bipartite graph G = (I ∪ O,E), where the vertices in I correspond to the m coordinates of the
input, O corresponds to the n coordinates of the output, and (i, o) ∈ E if the o’th output bit depends
on the i’th input coordinate. That is, |I| = m, |O| = n, and |E| = 2n since f is 2-local.

We fix two large constants C = 99, and D = 4(C + 1)/ϵ = 400/ϵ. Let I∗ ⊆ I be a maximal
subset of I such that |N(I∗)| ≥ C|I∗|, and consider the following two cases.

• |N(I∗)| > n/D: In this case, for any fixing of the inputs (xi)i∈I∗ , the mapping (fj)j∈N(I∗)

is 1-local. Therefore, conditioning on (xi)i∈I∗ being fixed, by Proposition 22 the 1-local
mapping satisfies

dist(f(Um),Ber(1/4)n) ≥ dist(f(UI∗),Ber(1/4)|N(I∗)|) ≥ 1− 2 · e−|N(I∗)|/128.

Applying Claim 38 with all 2|I∗| assignments to the input bits in I∗ we get

dist(f(Um),Ber(1/4)n) ≥ 1− 2
∑

s∈{0,1}|I∗|
2 · e−|N(I∗)|/128 ≥ 1− 4 · 2|I∗| · e−(|N(I∗)|/128.

Next, we use the assumption that |I∗| ≤ |N(I∗)|/C and |N(I∗)| ≥ n/D together with our
choice of C = 99 and D = 4(C + 1)/ϵ = 400/ϵ to get

dist(f(Um),Ber(1/4)n) ≥ 1− 4 · 2|N(I∗)|/C · e−|N(I∗)|/128

≥ 1− 4 · e−
1/128−ln(2)/C

D
n

≥ 1− exp(−Ω(ϵn)).

This proves Theorem 21 in case of |N(I∗)| ≥ n/D.

• |N(I∗)| ≤ n/D: In this case our strategy is the following. We will remove N(I∗) from the
output coordinates. The remaining mapping f ′ : {0, 1}m → {0, 1}n′ will satisfy the property
that m < (2− ϵ/2)n′ and each input coordinate influences at most C output nodes. This will
allow us to find a collection O of Ω(ϵn) disjoint subsets of output coordinates (Oi)i∈O such
that

1. dist(f(Um′)|Oi
,Ber(1/4)|Oi|) ≥ 1/8 for all Oi ∈ O,

2.
(
f(Um′)|Oi

)
Oi∈O

are jointly independent.
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Then, by applying Claim 40 we conclude that dist(f(Um),Ber(1/4)n) ≥ 1− exp(−Ω(ϵn)).
We describe the details below.

Note that by maximality of I∗ we have |N(i) \N(I∗)| ≤ C for all i ∈ I \ I∗. Therefore, by
removing N(I∗) from the set of outputs, we get a graph G′ = (I ′ = I, O′, E ′) such that the
degree of each i ∈ I ′ is at most C.

Since we removed at most n/D = ϵn/400 output vertices, the new graph has m′ = (2− ϵ)n
inputs and n′ ≥ (1− ϵ/400)n outputs. Therefore, m′ ≤ (2− ϵ′)n′ for

ϵ′ = 2− m′

n′ = 2− 2− ϵ

1− ϵ/400
> ϵ/2.

Therefore, we now have a 2-local mapping f ′ : {0, 1}m=(2−ϵ′)n′ → {0, 1}n′ with ϵ′ > ϵ/2
such that each input coordinate of f influences at most C output bits, and f ′ has the same
distribution as f on the remaining output coordinates.

Let J = {i ∈ I ′ : degG′(i) ≥ 2}.

Claim 24. |J | ≥ ϵ′

2C
n′.

Proof. The proof is a simple application of Markov’s inequality. Since deg(v) ≤ C for all
i ∈ I ′, we have

2n′

(2− ϵ′)n′ = Ei∈I′ [deg(i)] ≤ Pr[deg(i) ≤ 1] +C · Pr[deg(i) > 1] ≤ 1 +C Pr[deg(i) > 1].

Since deg(i) is an integer, we get Pr[deg(i) ≥ 2] = Pr[deg(i) > 1] ≥ ϵ′

(2−ϵ′)C
> ϵ′

2C
, as

required.

Now, since each input coordinate in J has degree at most C, we can find a subset K ⊆ J of
size |K| ≥ |K|/(C + 1) such that N(i) and N(i′) do not have common neighbours for all
distinct i, i′ ∈ K. Indeed, this is achieved by taking any i ∈ J , adding it to K and removing
from J all neighbours of N(i).

This gives us a collection of input coordinates K ⊆ I ′ of size |K| ≥ |J |/(C+1) ≥ ϵ′

2C(C+1)
n′,

such that each i ∈ K has deg(i) ≥ 2 and
(
f(Um)|N(i)

)
i∈K are jointly independent.

By Claim 23 we have dist(f(Um)|N(i),Ber(1/4)|N(i)|) ≥ 1/8 for all i ∈ K. Therefore,
applying Claim 40 on

(
f(Um)|N(i)

)
i∈K we get

dist(f(Um),Ber(1/4)n) ≥ dist(f ′(Um),Ber(1/4)n
′
)

≥ 1− 2e−
(1/8)2|K|

12

≥ 1− 2e
− ϵ′n′

82·12·2C(C+1)

≥ 1− exp(−Ω(ϵn)).

This completes the proof of Theorem 21.

22



5 A 3-local construction with m = 1.99n that is 1/ poly(n)-close
to Ber(1/4)n

In this section, we show that in contrast to Theorem 21, if we allow the sampler to be 3-local, we
can approximate the distribution Ber(1/4)n within distance of 1/ poly(n), and this is optimal up to
constant factor in the exponent.

Theorem 25. Fix an integer t ≥ 3 and let ϵ = 1/3t. Let n ∈ N be sufficiently large and let
m = (2− ϵ)n. Then, there is a 3-local mapping f : {0, 1}m → {0, 1}n such that

dist(f(Um),Ber(1/4)n) ≤ (
1

2ϵn
)

2
9ϵ

− 5
3 .

In particular, for m = (2− 1/9)n there is a 3-local mapping f : {0, 1}m → {0, 1}n such that

dist(f(Um),Ber(1/4)n) ≤ 2

n1/3
.

Proof. Let G′ = (V ′, E ′) be a 3-regular graph with k vertices and 1.5k edges such that the girth of
G′ is ≥ 2

3
log2(|V ′|) = 2

3
log2(k). Indeed, such graphs exists [Mor94, Theorem 5.13].

Claim 26. Let p = 2−t for some t ≥ 3, and let G′
p = (V,Ep) be a random subgraph of G′ obtained

by keeping each edge in E with probability p independently. Then Pr[G′
p has a cycle] < k− 2t−5

3 .

Proof. By the assumption about G′, it has no cycles of length < 2
3
log2(k). For any ℓ ≥ 2

3
log2(k)

the number of cycles of length ℓ is at most k · 3 · 2ℓ−2. Therefore,

Pr[G′
p has a cycle of length ℓ] ≤ k · 3 · 2ℓ−2 · pℓ = 3k

4
(2p)ℓ.

Taking the union bound over all lengths ℓ > 2
3
log2(k), we get

Pr[G′
p has a cycle] <

3k

4
·

∞∑
ℓ= 2

3
log2(k)

(2p)ℓ =
3k

4
· (2p)

2
3
log2(k)

1− 2p
<

1

k
2t−5

3

, (8)

as required.

Given the graph G′ above, we define a graph G = (V,E) by subdividing each edge of G′

into t ≥ 3 edges. The number of vertices in G is |V | = |V ′| + (t − 1)|E ′| = k + 1.5(t − 1)k =
(1.5t− 0.5)k, and the number of edges is |E| = 1.5tk.

Let n = |E| = 1.5tk and m = |V |+ |E| = (3t− 0.5)k = (2− 1/3t)n = (2− ϵ)n, and define
the mapping f : {0, 1}m → {0, 1}n as follows. Treat the input to f as x ◦ y ∈ {0, 1}m, where
x ∈ {0, 1}n, and y ∈ {0, 1}m−n. It will be convenient to think of xi as an assignment to the i’th
edge of G, and yj as an assignment to the j’th vertex of G. Define g : {0, 1}m−n → {0, 1}n by
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letting gi(y) = yui
⊕ yvi , where (ui, vi) are the endpoints of the i’th edge in G. Finally, we define f

as the bitwise AND of x and g(y), that is,

f(x ◦ y) = x ∧n g(y).

We show below that

dist(f(Um),Ber(1/4)n) ≤ Pr[G1/2 has a cycle], (9)

where G1/2 is a random subgraph of G obtained by keeping each edge with probability 1/2. This
proves Theorem 25 by combining Claim 26 with the observation that Pr[G1/2 has a cycle] =
Pr[G′

2−t has a cycle].
For Eq. (9) recall that the input to our sampler f consists of x ∈ {0, 1}n and y ∈ {0, 1}m−n,

where x is the 0/1 assignment to the edges, and y is the 0/1 assignment to the vertices. For
x ∈ {0, 1}n let Ex = {i ∈ [n] : xi = 1}, and observe that for all i ∈ [n] \ Ex it holds that
fi(x ◦ y) = 0 for any choice of y.

Denote by F ⊆ {0, 1}n the event that the edges in G corresponding to the set Ex induce a forest,
i.e., the subgraph (V,Ex) does not contain a cycle. Observe that if x ∈ F , then (yui

⊕ yvi)i∈Ex is
distributed as Ber(1/2)Ex .

Next, we fix any A ⊆ {0, 1}n, and show that |Pr[f(Um) ∈ A]− Pr[Ber(1/4)n ∈ A]| ≤ Pr[x /∈
F ]. Using the natural correspondence between Ex and G1/2, this clearly implies Eq. (9). Indeed,∣∣Pr[f(Um) ∈ A]− Pr[Ber(1/4)n ∈ A]

∣∣
=
∣∣∣ Pr

x∈{0,1}n
y∈{0,1}m−n

[x ∧n g(y) ∈ A]− Pr
x∈{0,1}n
z∈{0,1}n

[x ∧n z ∈ A]
∣∣∣

≤
∣∣∣Pr[(x ∧n g(y) ∈ A) ∧ x ∈ F ]− Pr[(x ∧n z ∈ A) ∧ x ∈ F ]

∣∣∣
+
∣∣∣Pr[(x ∧n g(y) ∈ A) ∧ x /∈ F ]− Pr[(x ∧n z ∈ A) ∧ x /∈ F ]

∣∣∣
≤ 0 + Pr[x /∈ F ] <

1

k
2t−5

3

.

This concludes the proof of Theorem 25.

5.1 Theorem 25 is tight
Below we show that the analysis of the construction presented in the proof of Theorem 25 is tight
up to the exponent of the polynomial. Specifically, we prove the following proposition.

Proposition 27. Fix ϵ > 0, and let n ≥ 1/ϵ be an integer. Consider the sampler f : {0, 1}(2−ϵ)n →
{0, 1}n from Theorem 25. Then

dist(f(U),Ber(1/4)n) ≥ (2ϵn)−4ϵ/3.

The proposition relies on the following claim.
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Claim 28. Let G be the graph in the proof of Theorem 25. If G contains a cycle of length ℓ then,
dist(f(U),Ber(1/4)n) ≥ (1/4)ℓ.

Proof. Let b = b1, . . . , bℓ be the output bits of our cycle, further let x1, . . . , xℓ be the input bits
associated with the edges of our cycle, and let y1, ..., yℓ be the input bits associated with the nodes.
That is for i < ℓ, bi = xi ∧ (yi ⊕ yi+1), and bℓ = xℓ ∧ (yℓ ⊕ y1).

It’s clear that Pr[Ber(1/4)ℓ = 1] = (1/4)ℓ. Now, let’s examine Pr[b = 1]. We consider two
cases.

• ℓ is odd: In this case Pr[b = 1] = 0 because in order for this to occur all xi must be
1, and the yi’s must alternate on the cycle, which is impossible of a cycle of odd length.
Thus, Pr[b = 1] = 0 and dist(f(U),Ber(1/4)n) = |Pr[b = 1] − Pr[Ber(1/4)ℓ = 1]| ≥
|0− (1/4)ℓ| = (1/4)ℓ.

• ℓ is even: Here b = 1 happens if and only if all x1, . . . , xℓ are 1, which happens with proba-
bility (1/2)ℓ, and y′is alternate, so y1 = 0, y2 = 1, . . . , yℓ = 1 or y1 = 1, y2 = 0, . . . , yℓ = 0,
which happens with probability 2 · (1/2)ℓ. Thus Pr[b = 1] = 0 and dist(f(U),Ber(1/4)n) =
|Pr[b = 1]− Pr[Ber(1/4)ℓ = 1]| ≥ |2(1/4)ℓ − (1/4)ℓ| = (1/4)ℓ.

In both cases we have dist(f(U),Ber(1/4)n) ≥ (1/4)ℓ.

We now prove Proposition 27.

Proof of Proposition 27. We consider G′ = (V ′, E ′) as in the proof of Theorem 25. Recall that G′

has k vertices, 1.5k edges and is 3-regular. We first show there exists a cycle in G′ of length at most
ℓ = O(log2(k))

Let’s run a Breadth First Search algorithm starting at any arbitrary node s ∈ V , and stop once
the BFS tree reaches a cycle in G′. This cycle has length at most 2d+ 1, where d is the height of
the tree.

Since G′ is 3-regular, we add exactly 2 vertices (3 for the first node) into our visited queue on
each iteration of BFS. This means k = |V ′| ≥ 1+3

∑d−1
i=0 2

i = 3 ·2d−2, and hence we have a cycle
of length 2 log2(

k+2
3
) + 1 Recalling that n = 1.5tk = k/2ϵ and that each edge in G′ corresponds to

a path of length t = 1/3ϵ in G, we conclude that G has a cycle of length

ℓ ≤
2 log2(

2ϵn+2
3

) + 1

3ϵ
≤ 2 log2(2ϵn)

3ϵ
.

Hence, by Claim 28, we get that dist(f(U),Ber(1/4)n) ≥ (1/4)ℓ ≥ (2ϵn)−4ϵ/3.

6 A lower bound on 3-local constructions with m = (2− ϵ)n

In this section we prove a lower bound on the distance for all 3-local constructions with m = 1.99n.
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Theorem 29. Let n ∈ N be sufficiently large. Fix ϵ > 0, and let m = (2 − ϵ)n. Then, for any
3-local mapping f : {0, 1}m → {0, 1}n it holds that

dist(f(Um),Ber(1/4)n) ≥ n−O(1/ϵ).

Proof. Let G = (V = I ∪ O,E) be a bipartite graph, where |I| = m = (2 − ϵ)n represents the
input bits of f , |O| = n represents the output bits, and (i, o) ∈ E if and only if the o’th output bit of
f depends on the i’th input bit.

We prove Theorem 29 by finding a small set of outputs S ⊂ O such that its neighbourhood N(S)
(i.e., the input bits of S) is small. Specifically, we will find a set S ⊆ O of size |S| = k = O(log(n))
such that |N(S)| ≤ 2k− 1. This indeed suffices, as for the distribution Ber(1/4)k the probability of
sampling all zeros in S is exactly 4−k, while the granularity of the inputs to S implies that f outputs
all zeros in S with probability either 0 or at least 2−|N(S)| = 2 · 4−k. Therefore,

|Pr[f(Um)|S ≡ 0]− Pr[(Ber(1/4)n)|S ≡ 0]| ≥ 4−k.

In order to find such set S, note that the graph G has |V | = (3 − ϵ)n vertices and |E| = 3n
edges. Therefore, |E| = (1 + ϵ′)|V | for ϵ′ = ϵ/(3− ϵ).

We use the following lemma, saying that any sufficiently dense graph contains a set of vertices
S that span at least |S|+ 1 edges, such that |S| = O(log(n)).

Lemma 30 (Theorem 2 in [GGS23]). Let G = (V,E) be a multigraph with |V | ≥ 2 vertices and
|E| = m ≥ (1 + ϵ)|V | edges for some ϵ = ϵ(|V |) ∈ (0, 1]. There exists a set of vertices S ⊆ V of
size |S| ≤ 8 log(|V |) · ⌈1/ϵ⌉ spanning at least |S|+ 1 edges.

Applying Lemma 30 to G, we get a subset of the vertices C ⊂ V of size |C| ≤ 8 log(|V |)·⌈1/ϵ′⌉
that spans at least |C|+ 1 edges. By taking the minimal such subset C, we may assume1 that all
vertices v ∈ C have at least two neighbours in C.

The key step of the proof is summarized in the following claim.

Claim 31. Let G′ = (V ′ = I ′∪O′, E ′) be the bipartite subgraph of G induced by C with I ′ = I∩C
and O′ = O ∩ C, and let k = |O′|. Then |NG(O

′)| ≤ 2k − 1.

Proof. Since |E ′| ≥ |V ′|+ 1, there must be at least one vertex in G′ of degree ≥ 3. Recall that all
vertices in O′ have degree either 2 or 3, and denote by t the number of vertices in O′ of degree 3.
Consider the following two cases.

• t = 0: Since all vertices in O′ have degree 2, the set I ′ must have a vertex of degree ≥ 3 in
G′. Furthermore, |E ′| = 2 · |O′| = 2k, and hence by counting degrees of the vertices in I ′,
we have |I ′| ≤ k − 1. Finally, note that each v ∈ O′ has at most one neighbour outside C,
and thus |NG(O

′)| ≤ |I ′|+ |O′| ≤ (k − 1) + k = 2k − 1.

1Otherwise, if C has a vertex with degC(v) ≤ 1, we can remove v from C, and the remaining subset C ′ will also
satisfy the property that |C ′| ≤ 8 log(|V |) · ⌈1/ϵ′⌉ and it spans at least |C ′|+ 1 edges.
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• t ≥ 1: By counting the degrees of O′ in G′ note that |E ′| = 2(k− t)+ 3t = 2k+ t. Similarly,
by counting the degrees of I ′ in G′, we have |E ′| ≥ 2|I ′|. Finally, there are exactly k − t
nodes v ∈ O′ with one neighbour outside C, and t nodes v ∈ O′ with no neighbours outside
C. Therefore,

|NG(O
′)| ≤ |I ′|+ (k − t) ≤ |E ′|/2 + (k − t) ≤ (k + t/2) + (k − t) ≤ 2k − t/2.

Since |NG(O
′)| is an integer and t ≥ 1, it follows that |NG(O

′)| ≤ 2k − 1.

In both cases we showed that |NG(O
′)| ≤ 2k − 1, as required.

Therefore, letting S = C ∩ O, we get a set of size k = |S| ≤ |C| ≤ 8 log(|V |) · ⌈1/ϵ′⌉ ≤
8 log(3n) · 3/ϵ such that |N(S)| ≤ 2k − 1. By the discussion above this implies that

dist(f(U),Ber(1/4)n) ≥ |Pr[f(Um)|S ≡ 0]− Pr[(Ber(1/4)n)|S ≡ 0]| ≥ 4−k ≥ (3n)−48/ϵ.

This completes the proof of Theorem 29.

7 A 4-local construction with m = 1.75n that is exp(−cn)-close
to Ber(1/4)n

In this section we prove that 4-local samplers can approximate the distribution Ber(1/4)n within
exponentially small distance.

Theorem 32. Let n ∈ N be sufficiently large, and let m = (2− 1/4)n. Then, there exists a 4-local
mapping f : {0, 1}m → {0, 1}n such that

dist(f(Um),Ber(1/4)n) ≤ 2−cn,

for some absolute constant c > 0.

The proof of Theorem 32 relies on the following lemma and its corollary below.

Lemma 33. Let m,n be parameters such that n ≤ m ≤ 2n, and let M ∈ Fn×(m−n)
2 be a

matrix such that every row of M has exactly D ones. Then, there exists a (D + 1)-local sampler
f : {0, 1}m → {0, 1}n satisfying

dist(f(Um),Ber(1/4)n) ≤ Pr
S⊆[n]

[the rows of MS are linearly dependent], (10)

where MS is the submatrix of M obtained by taking only the rows of M with indices in S.

Corollary 34. Let m,n be parameters such that n ≤ m ≤ 2n, and let M ∈ Fn×(m−n)
2 be a matrix

such that every row of M has exactly D ones, and let C = {x ∈ {0, 1}n : xM = 0}.
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1. There exists a (D + 1)-local sampler f : {0, 1}m → {0, 1}n satisfying

dist(f(Um),Ber(1/4)n) ≤
n∑

ℓ=1

wℓ

2ℓ
,

where wℓ = |{x ∈ C : |x| = ℓ}| for all 1 ≤ ℓ ≤ n.

2. There exists a (D + 1)-local sampler f : {0, 1}m → {0, 1}n satisfying

dist(f(Um),Ber(1/4)n) ≤ 2n−rank(M)

2δn
,

where δ = min{|x| : x ∈ C} is the minimum weight of a vector in C.

Next we state a result about the existence of a sparse matrix satisfying the conditions in
Corollary 34. We show the existence of such matrix by adapting Gallager’s result on random sparse
matrices [Gal62]. The proof of Theorem 35 can be found in Appendix B.

Theorem 35. For a sufficiently large n ∈ N there exists a matrix M ∈ Fn×0.75n
2 such that every row

of M has exactly 3 ones and
n∑

ℓ=1

wℓ

2ℓ
< 2−0.05n,

where wℓ = |{x ∈ Fn
2 : xM = 0, |x| = ℓ}| for ℓ = 1, . . . , n.

Let us now show how Theorem 32 follows from Corollary 34.

Proof of Theorem 32. Let M ∈ Fn×0.75n
2 be the matrix from Theorem 35. The matrix has 3 ones

in each row and satisfies
∑n

ℓ=1
wℓ

2ℓ
< 2−0.05n. Using the first part of Corollary 34 we get a 4-local

sampler f : {0, 1}1.75n → {0, 1}n such that dist(f(Um),Ber(1/4)n) ≤ 2−0.05n, as required.

We now return to proving Lemma 33 and Corollary 34.

Proof of Lemma 33. Given a matrix M ∈ Fn×(m−n)
2 as in the assumption of the lemma, define

the (D + 1)-local sampler f : {0, 1}m → {0, 1}n as follows. Treat the input to f as x ◦ y, where
x ∈ {0, 1}n and y ∈ {0, 1}m−n, and define

f(x ◦ y) = x ∧n My, (11)

where My is the matrix-vector multiplication modulo 2, and ∧n is the coordinate-wise AND
operation.

Next we prove that f satisfies the guarantees of the lemma. For any x ∈ {0, 1}n let Sx = {i ∈
[n] : xi = 1}, and define

Good = {x ∈ {0, 1}n\{0} : the rows of MSx are linearly independent} and Bad = {0, 1}n\Good.
(12)
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Given the natural correspondence between the sets S ⊆ [n] and vectors x ∈ {0, 1}n, we need to
prove that

Pr[dist(f(Um),Ber(1/4)n)] ≤ Pr[x ∈ Bad].

We observe first that for any fixed x ∈ Good the distributions x ∧n My and x ∧n z are identical.
That is, for any a ∈ {0, 1}n it holds that

Pr
y∼Ber(1/2)m−n

[x ∧n My = a] = Pr
z∼Ber(1/2)n

[x ∧n z = a]. (13)

Indeed, note first that if Sa ̸⊆ Sx, then both sides of Eq. (13) are equal to zero. Next assume that
Sa ⊆ Sx.

• For z ∼ Ber(1/2)n we have

Pr[x ∧ z = a] = Pr[x|Sx ∧ z|Sx = a|Sx ] = Pr[z|Sx = a|Sx ] =
1

2|Sx|
.

• For y ∼ Ber(1/2)m−n we have

Pr[x ∧My = a] = Pr[x|Sx ∧My|Sx = a|Sx ] = Pr[(M |Sx)y = a|Sx ] =
1

2|Sx|
,

where the last equality uses the assumption that the rows of M |Sx are linearly independent,
and hence for each b ∈ {0, 1}Sx the equation (M |Sx)y = b has exactly 2m−n−|Sx| solutions.
This proves Eq. (13).

Using Eq. (13), we can complete our proof. Indeed, let A ⊆ {0, 1}n be any event on n bit strings.

|Pr[x ∧n My ∈ A]− Pr[x ∧ z ∈ A]| =|Pr[(x ∧n My ∈ A) ∧ x ∈ Good] + Pr[(x ∧n My ∈ A) ∧ x ∈ Bad]

− Pr[(x ∧n z ∈ A) ∧ x ∈ Good]− Pr[(x ∧n z ∈ A) ∧ x ∈ Bad]|
≤ |Pr[(x ∧n My ∈ A) ∧ x ∈ Good]− Pr[(x ∧n z ∈ A) ∧ x ∈ Good]|
+ |Pr[(x ∧n My ∈ A) ∧ x ∈ Bad]− Pr[(x ∧n z ∈ A) ∧ x ∈ Bad]| .

By Eq. (13) we have

|Pr[(x ∧n My ∈ A) ∧ x ∈ Good]− Pr[(x ∧n z ∈ A) ∧ x ∈ Good]| = 0,

and

|Pr[(x ∧n My ∈ A) ∧ x ∈ Bad]− Pr[(x ∧n z ∈ A) ∧ x ∈ Bad]| ≤ Pr[x ∈ Bad].

Therefore |Pr[dist(f(Um),Ber(1/4)n)] ≤ Pr[x ∈ Bad], as required.

Proof of Corollary 34. Using the definition of Bad in Eq. (12), it suffices to show that

Pr
x∈Fn

2

[x ∈ Bad] ≤
n∑

s=1

ws

2s
.
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Indeed, note that x ∈ Bad if and only if there exists some y ∈ C \ {0} such that Sy ⊆ Sx.
Furthermore, if y ∈ C has weight |y| = s, then there there are exactly 2n−s many x’s satisfying
Sy ⊆ Sx. Therefore,

|Bad| ≤
∑
x∈C

2n−|x| =
n∑

s=1

ws · 2n−s.

This implies

Pr
x∈Fn

2

[x ∈ Bad] =
|Bad|
2n

≤
n∑

s=1

ws

2s
,

as required.
For the second item note that ws = 0 for all s ≤ δn, and hence

Pr
x∈Fn

2

[x ∈ Bad] ≤
n∑

s=1

ws

2s
≤

n∑
s=δn

ws

2δn
=

1

2δn
·

(
n∑

s=1

ws

)
=

1

2δn
· |C| = 2n−rank(M)

2δn
.

This completes the proof of Corollary 34.
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A Background facts
In this section for completeness we state and prove several basic facts that are used in deriving our
main results.

A.1 On the total variation distance between two distributions
Definition 36. Given two distribution µ, ν over a finite set X , the total variation distance between µ
and ν is defined as

dist(µ, ν) =
1

2

∑
x∈X

|µ(x)− ν(x)|.

We will also refer to it as the statistical distance between µ and ν.

The following is a standard fact about the total variation distance between two distributions.

Fact 37. Given two distribution µ, ν over a finite set X , we have

dist(µ, ν) = max
A⊆X

|µ(A)− ν(A)| = µ(A∗)− ν(A∗),

where A∗ = {x ∈ X : µ(x) > ν(x)}.

We will need the following claims. Similar claims have been shown, e.g., in [Vio12, Vio23,
KOW24b]. We prove them here for completeness.

Claim 38. Let µ, ν be two distributions over a finite domain X . Let ν1, . . . , νk be k distributions
over X , such that ν = 1

k

∑k
i=1 νi, and suppose that dist(µ, νi) = 1− ϵi for some ϵi ∈ [0, 1/2]. Then

1− 2
k∑

i=1

ϵi ≤ dist(µ, ν) ≤ 1− 1

k

k∑
i=1

ϵi.

Proof. For the upper bound let A ⊆ X be such that dist(µ, ν) = µ(A)− ν(A). Then

dist(µ, ν) = µ(A)− ν(A) =
1

k

k∑
i=1

(
µ(A)− νi(A)

)
≤ 1

k

k∑
i=1

(1− ϵi) = 1− 1

k

k∑
i=1

ϵi.

For the lower bound, let Ai = {x ∈ X : µ(x) > νi(x)}. Then we have dist(µ, νi) =
µ(Ai)− νi(Ai). In particular µ(Ai) ≥ 1− ϵi and νi(Ai) ≤ ϵi. Consider the set A = ∩k

i=1Ai, and
note that µ(A) ≥ 1−

∑k
i=1 µ(X \Ai) ≥ 1−

∑k
i=1 ϵi. On the other hand ν(A) = 1

k

∑k
i=1 νi(A) ≤

1
k

∑k
i=1 νi(Ai) ≤ 1

k

∑k
i=1 ϵi. Therefore,

µ(A)− ν(A) ≥
(
1−

k∑
i=1

ϵi

)
− 1

k

k∑
i=1

ϵi = 1−
(
1 +

1

k

)
·

k∑
i=1

ϵi,

as required.
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Claim 39. Let µX , νX be two distributions over X , and let µY , νY two distributions over Y .
Consider the product distributions µX × µY and νX × νY . Then

dist(µX × µY , νX × νY ) ≤ dist(µX , νX) + dist(µY , νY ).

Proof. For each x ∈ X define δX(x) = µX(x)− νX(x). Similarly, for each y ∈ Y define δY (y) =
µY (y) − νY (y). Note that dist(µX , νX) = 1

2

∑
x∈X |δX(x)| and dist(µY , νY ) = 1

2

∑
y∈Y |δY (y)|.

Then

dist(µX × µY , νX × νY ) =
1

2

∑
x∈X

∑
y∈Y

|µX(x) · µY (y)− νX(x) · νY (y)|

=
1

2

∑
x∈X

∑
y∈Y

|νX(x)δY (y) + µY (y)δX(x)|

≤ 1

2

∑
x∈X

∑
y∈Y

|νX(x) · δY (y)|+
1

2

∑
x∈X

∑
y∈Y

|µY (y) · δX(x)|

=
1

2

(∑
x∈X

νX(x)
)(∑

y∈Y

|δY (y)|
)
+

1

2

(∑
x∈X

|δX(x)|
)(∑

y∈Y

µY (y)
)

= dist(µX , νX) + dist(µY , νY ),

as required.

Claim 40. Let n ∈ N and for each i ∈ [n] let µi and νi be two distributions over a domain
Xi. Suppose that for each i ∈ [n] it holds that dist(µi, νi) ≥ ϵ. Define the product distributions
µ = µ1 × µ2 × · · · × νn and ν = ν1 × ν2 × · · · × νn over the domain X = X1 ×X2 × · · · ×Xn.

dist(µ, ν) ≥ 1− 2e−
ϵ2n
12 .

Proof. For each i ∈ [k] let Bi ⊆ Xi be such that µi(Bi) ≥ νi(Bi) + ϵ. Define pi = (µi(Bi) +
νi(Bi))/2. Given a random x = (x1, . . . , xn) ∈ X1 ×X2 × · · · ×Xn, define Sx = |{i ∈ [n] : xi ∈
Bi}|. Define A = {Sx ≥

∑n
i=1 pi}. Then using Chernoff bound we have

dist(µ, ν)

≥ µ(A)− ν(A)

= Pr
µ

[
Sx ≥

(
1− ϵ

2 · 1
n

∑
µi(Bi)

)∑
µi(Bi)

]
− Pr

ν

[
Sx ≥

(
1 +

ϵ

2 · 1
n

∑
νi(Bi)

)∑
νi(Bi)

]
≥
(
1− e

− ϵ2n

8 1
n

∑
µi(Bi)

)
− e

− ϵ2n

12 1
n

∑
νi(Bi)

≥ 1− 2e−
ϵ2n
12 .

This proves Claim 40.

Claim 41. Let µ be a distribution over X such that for any subset X ′ ⊆ X of size |X ′| = k it holds
that µ(X ′) ≤ ϵ. Let ν be a distribution over X such that supp(ν) ≤ k. Then dist(µ, ν) ≥ 1− ϵ.

Proof. Let A = supp(ν). Then by Fact 37 we have dist(µ, ν) ≥ ν(A)− µ(A) ≥ 1− ϵ.
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A.2 Entropy, binomial coefficients, concentration inequalities, etc
We start with the definition of the entropy of a distribution.

Definition 42. Given a distribution D over a finite domain X , we define the entropy of D as
H(D) =

∑
x∈X D(x) log2(

1
D(x)

).

Next we define the binary entropy function, which corresponds to the entropy of a Bernoulli
random variable with the appropriate parameter.

Definition 43. The binary entropy function is defined as h(x) = x log2(
1
x
) + (1− x) log2(

1
1−x

).

Fact 44. For all 1 ≤ k ≤ n− 1 it holds that√
n

8k(n− k)
· 2h(

k
n
)n ≤

(
n

k

)
≤

k∑
i=0

(
n

i

)
≤ 2h(

k
n
)n.

Theorem 45 (Chernoff bound). Let X1, . . . , Xn be independent random variables with Pr[Xi =
1] = pi and Pr[Xi = 0] = 1− pi for each i. Let X =

∑n
i=1Xi, and let µ = E[X] =

∑n
i=1 pi. Then

1. Pr[X ≥ (1 + ϵ)µ] ≤ e−
ϵ2µ
3 for all ϵ > 0.

2. Pr[X ≤ (1− ϵ)µ] ≤ e−
ϵ2µ
2 for all ϵ ∈ (0, 1).

Theorem 46 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables such that
a ≤ Xi ≤ b for each i. Let X =

∑n
i=1Xi, and let µ = E[X]. Then

1. Pr[X ≥ µ+ t] ≤ e−
2t2

(b−a)n for all t > 0.

2. Pr[|X − µ| ≥ t] ≤ 2e−
2t2

(b−a)n for all t > 0.

B Proof of Theorem 35
For a parameter n ∈ N define B to be the uniform distribution over matrices in Fn×n/4

2 with exactly
one entry equal to 1 in each row and exactly four 1’s in each column. Define a random matrix
M = [B1, B2, B3] ∈ Fn×3n/4

2 , where each Bi ∈ Fn×n/4
2 is distributed according to B independently.

Theorem 35 is proved using the following lemma.

Lemma 47. For a sufficiently large n, let M ∈ Fn×3n/4
2 be a random matrix from the distribution

described above, and let δ = 0.03. For C = {x ∈ Fn
2 : xM = 0} let wℓ = |{x ∈ C : |x| = ℓ}| be

the weight distribution of C. Then

• Pr[
∑δn

ℓ=1wℓ = 0] > 0.1 and

• Pr[
∑n

ℓ=δn
wℓ

2ℓ
< 0.96n] > 0.98.
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In particular, there exists a matrix M ∈ Fn×3n/4
2 such that

∑n
ℓ=1

wℓ

2ℓ
< 0.96n < 2−0.05n.

The key idea in the proof of Lemma 47 is to understand E[wℓ], the expected number of vectors
x ∈ Fn

2 of weight ℓ satisfying xM = 0. In order to do it, define

g(s) = 1 +

(
4

2

)
· 22s + 24s. (14)

Note that the coefficient of 2ℓs is equal to the size of the set {x ∈ F4
2 : |x| = ℓ∧x1+x2+x3+x4 = 0}.

Claim 48. Let 0 ≤ ℓ ≤ n, and denote by NB[ℓ] the expected number of vectors x ∈ Fn
2 of weight ℓ

satisfying xB = 0. Then, NB[ℓ] ≤ g(s)n/4

2sℓ
for any s ∈ R.

Proof. Consider the function g(s)n/4, and write it as

(g(s))n/4 =
n∑

ℓ=0

Q(ℓ)2ℓs, (15)

and observe that by definition of g(s) we have Q(ℓ) = |{x ∈ Fn
2 : xB = 0 ∧ |x| = ℓ]}|. Now since

Q(ℓ) ≥ 0 and 2ℓs ≥ 0, it follows that g(s)n/4 ≥ Q(ℓ) · 2ℓs for all ℓ ≥ 0 and any s ∈ R. Therefore,

NB[ℓ] = Q(ℓ) ≤ g(s)n/4

2sℓ
,

as required.

Define a function f : [0, 1] → R as

f(λ) =
(1 + 6 · 22s + 24s)3/4

23sλ · 22h(λ)
, (16)

for any parameter s ∈ R.

Claim 49. For ℓ = 1, . . . , n let λ = ℓ/n. Then E[wℓ] ≤ 8λnf(λ)n for all values of s in the
definition of f .

Proof. Since in the definition of M = [B1, B2, B3] the Bi’s are independent, it follows that

E[wℓ] =

(
n

ℓ

)
·

(
NB[ℓ](

n
ℓ

) )3

=
(NB[ℓ])

3(
n
ℓ

)2 ≤ 8ℓ(n− ℓ)

n
· g(s)3n/4

23sℓ · 22h(ℓ/n)n
≤ 8λ(1− λ)n · f(λ)n,

for λ = ℓ/n, where the first inequality uses the fact that
(
n
λn

)
≥ 1√

8λ(1−λ)n
2h(λ)n.

Claim 50. Let δ = 0.03 as in Lemma 47. For any λ ∈ (0, δ] there exists s = s(λ) such that
f(λ) < 0.75λ.
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Claim 51. Let δ = 0.03 as in Lemma 47. For all λ ∈ [δ, 1] there exists s = s(λ) such that
f(λ)
2λ

< 0.95.

We postpone the proof of the claims until later, and show below how the two claims above imply
Lemma 47.

Proof of Lemma 47. Observe that since each row of M has an odd number of 1’s, it follows that
wℓ = 0 for all odd values of ℓ. Note also that for any constant even k it holds that Pr[wk > 0] =
Ok(n

−k/2).

Claim 52. For any constant even k it holds that Pr[wk > 0] ≤ (6k)3k

nk/2

Proof. Note that if wk > 0, then there are k rows and at most 3k/2 columns of M such that the
ones of the k rows are all contained in these 3k/2 columns. Therefore

Pr[wk > 0] ≤
(
n

k

)
·
(
3n/4

3k/2

)
×
(
3k/2

n/4

)3k

≤ nk · n1.5k × (6k)3k

n3k
=

(6k)3k

nk/2
,

as required.

In particular, for a sufficiently large n we have

Pr[
20∑
ℓ=1

wℓ = 0] > 1−O(1/n) > 0.99. (17)

Next we use Claim 49 and Claim 50 to bound E[
∑δn

ℓ=22wℓ]. Let p = 0.75 be the base of the
exponent in Claim 50. Then

E[
δn∑

ℓ=22

wℓ] ≤
∞∑

ℓ=22
ℓ even

8ℓ(n− ℓ)

n
· pℓ <

∞∑
ℓ=22
ℓ even

8ℓ · pℓ

≤ 16 ·
∞∑

j=11

j · p2j

= 16 ·

(
p2

(1− p2)2
−

10∑
j=1

j · p2j
)

= 16 ·
(

p2

(1− p2)2
− p2(1 + 10p22 − 11p20)

(1− p2)2

)
= 16 · p

2(11p20 − 10p22)

(1− p2)2
< 0.89,

where the last inequality holds for all p < 0.75. Hence, by Markov’s inequality

Pr[
δn∑

ℓ=22

wℓ = 0] = Pr[
δn∑

ℓ=22

wℓ < 1] > 1− 0.89 = 0.11. (18)
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Combining Eqs. (17) and (18) we get

Pr[
δn∑
ℓ=1

wℓ = 0] > 0.1, (19)

assuming that n is sufficiently large.
Then, by Claim 49 and Claim 51 we have

E

[
n∑

ℓ=δn

wℓ

2ℓ

]
≤

n∑
ℓ=δn

8ℓ(n− ℓ)

n

(
f(ℓ/n)

2ℓ/n

)n

< 2n2 · 0.95n.

Hence, by Markov’s inequality, we have

Pr

[
n∑

ℓ=δn

wℓ

2ℓ
≥ 0.96n

]
≤ 2n2 · 0.95n

0.96n
< 0.02, (20)

assuming that n is sufficiently large. By combining Eqs. (19) and (20) we get that
∑n

ℓ=1
wℓ

2ℓ
< 0.96n

with probability at least 0.08. This completes the proof of Lemma 47.

We now return to proving Claim 50 and Claim 51.

Proof of Claim 50. For 0 < λ ≤ δ define s(λ) = 2 log2(λ)
3

. Then

f(λ) =
(1 + 6 · 22s + 24s)3/4

23λs · 22h(λ)
=

(1 + 6 · λ4/3 + λ8/3)3/4

22λ log2(λ) · 22h(λ)
≤ 1 + 1.5λ

22(1−λ) log2( 1
1−λ)

,

where last inequality holds for all λ ≤ δ, which is easy to verify by comparing the polynomials in
the denominators.

Next, we let F (λ) = 1+1.5λ

2
2(1−λ) log2( 1

1−λ)
, and show that

F (λ) < 0.75λ

for λ ∈ [0, δ]. Letting G(λ) = 0.75λ, we show below that F (0) = G(0) and F ′(0) < G′(0).
Indeed F (0) = 1 = G(0). We show below that F ′(0) = −0.5 < −0.29 < ln(0.75) = G′(0).

Indeed,

F ′(λ) =
1.5− (1 + 1.5λ)× ln(2)

(
2 log2(λ) +

2
ln(2)

− 2 log2(
λ

1−λ
)
)

22(1−λ) log2( 1
1−λ)

=
1.5− (1 + 1.5λ)×

(
2 ln(λ) + 2− 2 ln( λ

1−λ
)
)

22(1−λ) log2( 1
1−λ)

=
1.5− (1 + 1.5λ)× (2 + 2 ln(1− λ))

22(1−λ) log2( 1
1−λ)

,

39



and hence F ′(0) = −0.5. For the derivative of G, we have G′(0) = ln(0.75) · (0.75λ)|λ=0 =
ln(0.75) > −0.29.

We have F (0) = G(0) and F ′(0) < G′(0), and hence by continuity, F (λ) < 0.75λ in some
small neighborhood of 0. Numerical calculations show that F ′(λ) < G′(λ) for λ ∈ (0, 0.2]. In
particular, f(λ) ≤ F (λ) < 0.75λ for all λ ∈ (0, δ], as required.

Proof of Claim 51. We break the proof into two painful (but tolerable) cases depending on the value
of λ ∈ [δ, 1].

• For λ ∈ [δ, 0.6] let s(λ) = 2 log2(λ)
3

. Then

f(λ)

2λ
=

(1 + 6 · 22s + 24s)3/4

23sλ · 22h(λ)+λ
=

(1 + 6 · λ4/3 + λ8/3)3/4

22λ log2(λ) · 22h(λ)+λ
=

(1 + 6 · λ4/3 + λ8/3)3/4

22(1−λ) log2( 1
1−λ)+λ

.

By computing the derivative of f(λ)
2λ

, it is straightforward to check that the function has a
unique minimum in the interval [δ, 0.6] and obtains its maximum at the boundaries of the
interval. Verifying that F (δ) < 0.95 and F (0.6) < 0.95, it follows that f(λ) ≤ F (λ) < 0.95
for all λ ∈ [δ, 0.6].

• For λ ∈ [0.6, 1] let s(λ) =
2 log2(

1
1−0.75λ

)

3
. Then

f(λ)

2λ
=

(1 + 6 · 22s + 24s)3/4

23sλ · 22h(λ)+λ

=

(
1 + 6 ·

(
1

1−0.75λ

)4/3
+
(

1
1−0.75λ

)8/3)3/4
22λ log2(

1
1−0.75λ

) · 22h(λ)+λ

≤
1 + 5

(
1

1−0.75λ

)1.2
22λ log2(

1
1−0.75λ

) · 22h(λ)+λ
.

The last inequality can be verified by letting y = 1
(1−0.75λ)1/3

∈ [1.2, 1.6], and checking that
(1 + 6y4 + y8)3/4 ≤ 1 + 5y3.6.

Denote F (λ) =
1+5( 1

1−0.75λ)
1.2

2
2λ log2(

1
1−0.75λ

)·22h(λ)+λ
. Then, by computing the derivative of F , it is not

difficult to check that F has a unique minimum in the interval [0.6, 1] and obtains its maximum
at the boundaries of the interval. Verifying that F (0.6) < 0.95 and F (1) < 0.86, it follows
that f(λ)

2λ
≤ F (λ) < 0.95 for all λ ∈ [0.6, 1].

This completes the proof of Claim 51.

C Proof of Lemma 17
We start with stating the fact that a random matrix over a large enough finite field with O(log n)
non-zeros in each row is full rank with high probability.
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Claim 53. Let F be a finite field of size nC . Let M be a random n× n matrix obtained by picking
t := C log n random positions (with repetition) in each row and set them to uniform random. Then
M is full rank with probability 1− 1/nC/2.

Proof. The only difference from [HLY+24, Lemma 3.3] is the success probability. One can verify
this can be improved to 1/nC/2 by replacing the field size |F| from 2n to nC and t from 10 log n to
C log n.

Proof of Lemma 17. We first construct the block matrix

G =

[
G1 0
0 IMfixed

]
,

where G1 is a U × r random matrix obtained by picking t := C log n random positions (with
repetition) in each row and set them to uniform. By Claim 53, we have

Pr
G

Pr
S

[
GS∪{U+1,...,U+Mfixed} is full rank

]
= Pr

S
Pr
G

[
GS∪{U+1,...,U+Mfixed} is full rank

]
≥ 1− 1/nC .

So we can fix a choice of G with the desired property. The lemma follows from sparsifying G using
elementary operations as in [HLY+24, Section 3].

D Determinisitc sampler in the cell-probe model
In this section, we provide a sketch of a deterministic construction of the random matrix in Lemma 17
in the cell-probe model. Our construction uses O(n2/3+0.02) random bits, and thus increases the
redundancy in Theorem 2 to this amount.

In the proof of Lemma 17, we generate a random U × n matrix A, such that:

1. Fixing a set of n rows of A, with high probability in n, these rows are linearly independent;

2. Every row of A has at most C log n nonzero elements.

Instead of generating this matrix directly, which costs more than Ω(U) random field elements,
we do the following to generate a random matrix B with a similar guarantee.

We first create n1/3 buckets, and use a O(1)-wise independent hash function to map each row
i ∈ [U ] to a random bucket. With high probability in n, each bucket contains at most n2/3 · n1/3+0.01

valid rows. Note that to simulate such a hash function, we only need access to O(1) random field
elements.

We let the matrix B have n1/3 · (n2/3 + n1/3+0.01) = n+ n2/3+0.01 columns, which is slightly
more than n columns. These columns are partitioned into groups each of which has n2/3 + n1/3+0.01

columns. Each bucket occupies a group of columns. If row i is hashed to bucket j, then it can
only have nonzero entries in the j-th column group. This structure will cause n2/3+0.01+o(1) of
redundancy.

Next, we sample an Õ(n2/3)-wise independent hash function h, which maps every row i to the
positions and values of the O(log n) nonzero entries in the column group it hashes to. This part
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is similar to the original construction. Again, to simulate this hash function, we need access to a
sequence of random cells of length Õ(n2/3). We take part of the input bits to do this.

Fixing a set of n valid rows, the submatrix of B formed by these rows is a block matrix, where
the j-th block consists of all valid rows hashed to the j-th bucket and all columns in the j-th group.
We only need to prove that each of these blocks has full row-rank with high probability. In each
group j, there are at most n2/3 + n1/3+0.01 such rows, which is less than the independence of the
hash function h. Therefore, the positions and values of the nonzero entries in this block are fully
independent from each other. As such, the original analysis of the matrix A applies, implying that
this block has full row-rank with high probability.

This construction has redundancy n2/3+0.02 bits, where the 0.02 can be replaced with an arbitrary
small constant, which comes from two sources: one is that we need to spend n2/3+0.01+o(1) cells
from the input tape to simulate a high-independence hash function. The other is that the matrix B
now use more than n columns, which causes some waste.

After the matrix B is constructed, we can do the same analysis as before, using elementary
operations to sparsify B as in [HLY+24, Section 3].
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