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Abstract

All known proofs of the PCP theorem rely on multiple “composition” steps, where PCPs
over large alphabets are turned into PCPs over much smaller alphabets at a (relatively) small
price in the soundness error of the PCP. Algebraic proofs, starting with the work of Arora,
Lund, Motwani, Sudan, and Szegedy use at least 2 such composition steps, whereas the “Gap
amplification” proof of Dinur uses Θplog nq such composition steps. In this work, we present the
first PCP construction using just one composition step. The key ingredient, missing in previous
work and finally supplied in this paper, is a basic PCP (of Proximity) of size 2n

ε

, for any ε ą 0,
that makes Oεp1q queries.

At the core of our new construction is a new class of alternatives to “sum-check” protocols.
As used in past PCPs, these provide a method by which to verify that an m-variate degree d
polynomial P evaluates to zero at every point of some set S Ď Fm

q . Previous works had shown

how to check this condition for sets of the form S “ Hm using Opmq queries with alphabet Fd
q

assuming d ě |H|. Our work improves this basic protocol in two ways: First we extend it to
broader classes of sets S (ones closer to Hamming balls rather than cubes). Second, it reduces
the number of queries from Opmq to an absolute constant for the settings of S we consider.

Specifically when S “ pt0, 1u
m{c
ď1 qc, where T “ t0, 1uaďb Ď Fa

q denotes the set of Boolean vectors
of Hamming weight at most b in Fa

q , we give such an alternate to the sum-check protocol with

Op1q queries with alphabet FOpc`dq
q , using proofs of size qOpm2

{cq. Our new protocols use insights
from the powerful theory of Gröbner bases to extend previously known protocols to these new
settings with surprising ease. In doing so, they highlight why these theories from algebra may
be of further use in complexity theory.
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1 Introduction

In this paper, we give a new general framework for constructing algebraic PCPs that leads to the first
proof of the PCP theorem using only one “composition” step. Starting with the work of Arora and
Safra [AS98], composition of PCPs has been a key ingredient in all previous PCP constructions. The
original proof of the PCP theorem due to Arora, Lund, Motwani, Sudan, and Szegedy [ALMSS98]
used two composition steps, while the novel alternate proof due to Dinur [Din07] uses Oplognq

composition steps. Compositions improve various parameters of the construction at the cost of
making the verifier less transparent. So it is a natural and long-sought goal to try to minimize the
number of composition steps (to one, or even zero!). We achieve the weaker goal here.

The key to our construction is a new class of protocols replacing the “sum-check” protocol in
PCP constructions. The sum-check protocol, due to Lund, Fortnow, Karloff, and Nisan [LFKN92]
(also used in proofs of IP=PSPACE [Sha92] and MIP=NEXPTIME [BFL91]) has been a central
ingredient in previous PCP constructions. In PCP constructions, the protocol is used to establish
that an m-variate polynomial P over Fq given as an oracle from Fmq Ñ Fq is identically zero on
the set t0, 1um Ď Fmq or more generally, on some set of the form Hm for H Ď Fq. We refer to this
latter task as “zero-on-variety testing”. (The reason for the use of the term “variety” to describe
the set Hm will become clearer later.) Other than the sum check protocol, the only other direct
protocol for zero-on-variety testing is a protocol due to Ben-Sasson and Sudan [BS08], which also
only works for varieties of the form Hm. In this work, we establish a new connection between
the theory of Gröbner bases and the zero-on-variety test of [BS08] that allows us to get efficient
zero-on-variety tests for a much broader class of varieties, including some varieties that are close to
Hamming balls of constant radii. This latter setting which had eluded previous works and is key
to our PCP construction.

Armed with this new class of protocols, we show how to significantly simplify the ALMSS PCP
construction. We start by giving a new PCP construction that works relative to any variety V Ď Fmq
with performance depending on the “Gröbner basis complexity” of the variety, a notion we define.
We then show how to specialize this PCP in two different ways by using two different varieties —
the first giving the usual Oplognq randomness and polyplog nq query PCP for NP, and the second
giving an Opnεq randomness and Oεp1q query PCP for NP, for any ε ą 0. No natural PCP (built
without composition) was known with the latter setting of parameters, and indeed, this has been
the key bottleneck in reducing the number of composition steps in ALMSS. We stress that both
our ingredient PCPs are instantiations of the same protocol — only the choice of the variety is
different (and the analysis of the Gröbner basis complexity of the varieties is straightforward)!
And furthermore, our PCPs are already “robust assignment testers” in the sense of Dinur and
Reingold [DR06] (or equivalently, Robust PCPs of Proximity in the sense of Ben-Sasson, Goldreich,
Harsha, Sudan and Vadhan [BGHSV06]) and thus immediately composable. Putting our two
robust assignment testers together yields our final PCP. The resulting proof thus gives the following
simplifications to the ALMSS protocol: It eliminates one composition step, it eliminates the need for
the “Hadamard PCP” entirely, and it eliminates the need for the “parallelization/robustification”
step in ALMSS [ALMSS98, Section 7].

In what follows, we describe our work in greater detail, starting with the basic notion of interest
in this paper, the zero-on-variety testing problem, and the resulting PCPs.
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1.1 Overview of Our Construction

PCPs of Proximity The central objects of interest in this paper are best described by the
umbrella term “PCP of Proximity” (or equivalently “assignment tester”). Here a verifier V is given
oracle access to some oracle f : D Ñ Σ along with a proof oracle π : S Ñ Γ where D,S,Σ and
Γ are finite sets. A verifier for a property F Ď tg : D Ñ Σu queries pf, πq and renders a verdict
Accept/Reject, with the property that if f P F then there exists a π such Vf,π always outputs
Accept, while for f R F we have that for every proof π, Vf,π outputs Reject with probability1

ΩpδF pfqq. The key parameters associated with the verifier are its randomness (usually Oplog |S|q),
its locality (or query complexity) ℓ which is the total number of queries to f and π, and the alphabet
size a “ maxtlog |Σ|, log |Γ|u.

A good example of a PCP of Proximity is the low-degree test. Here D “ Fmq and Σ “ Fq. The
property Fm,d,q is the set of evaluations of all m-variate polynomials over Fq of total degree at most
d. When d ď q the best known low-degree tests achieve randomness of Opm log qq, locality ℓ “ 2,
and alphabet size d log q. (See Theorem 3.5.) The fact that the locality is a constant and d and m
affect only the randomness and alphabet size is important in their use in PCPs.

Zero-on-variety testing The zero-on-variety testing problem is also a PCP of Proximity prob-
lem. It is described by parameters Fq, d,m and a variety V Ď Fmq . Here the verifier is given oracle
access to a function f : Fmq Ñ Fq that is promised to be a degree d polynomial, and goal is to
test for the property FV,d that is the set of all degree d polynomials that are identically zero on
V , or equivalently if the polynomial f lies in the ideal of polynomials IpV q vanishing on V . (In
this description, we opt to describe this as a promise problem - though in PCP applications, the
non-promised version of this problem is the one used. The two become essentially equivalent thanks
to the existence of low-degree tests.)

Prior to this work, the only natural zero-on-variety tests considered the setting where V “ Hm for
some H Ď Fq. The protocol given by [BS08] uses the following identity. f P IpHmq if and only if
there exist polynomials f1, . . . , fm of degree at most d´ |H| such that

fpXq “

m
ÿ

i“1

fipXqZHpXiq, (1)

where ZHpY q “
ś

αPHpY ´ αq is the canonical univariate polynomial that vanishes on H. The
identity above follows from Alon’s Combinatorial Nullstellensatz [Alo99] and leads to a tester as fol-
lows: The zero-on-variety tester for Hm expects oracles for f1, . . . , fm as proof. It verifies using the
low-degree test that each of these oracles has degree at most d´ |H| and then verifies Equation (1)
for a random choice of X “ pa1, . . . , amq. Modulo further details (involving local correction), this
leads to an Opmq local tester with randomness Opm log qq and alphabet size Opd log qq.

For our purposes, this choice of variety is insufficient. (Furthermore, the dependence of the lo-
cality on m is also problematic, but we’ll address this later.) To remedy this, we use an al-
ternate interpretation of the identity above. In this interpretation the identity holds because
tZHpX1q, . . . , ZHpXmqu form a “Gröbner basis” of the ideal IpHmq under a “graded monomial

1 Here δF pfq “ mingPFtδpf, gqu and δpf, gq “ PrxPDrfpxq ‰ gpxqs measure the distance of f from F is the
normalized Hamming metric.
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ordering”. We won’t define the exact notion of a Gröbner basis under different monomial orderings
here — we don’t need to. The notion that suffices for us is a notion we call a Gröbner generating
set G of an ideal I: G is a Gröbner generating set for I if for all polynomials P P I there exist
polynomials hg, g P G such that P “

ř

gPG hg ¨ g and degphg ¨ gq ď degpP q for every g P G. And
the above identity is the special case where V “ Hm with tZHpX1q, . . . , ZHpXmqu as the Gröbner
generating set. The zero-on-variety test of [BS08] can now be extended to any variety that has a
“small” Gröbner generating set. Indeed, this motivates our notion of the Gröbner complexity of a
variety V (see Definition 4.2 for a formal definition) — which is the size of the smallest Gröbner
generating set G of IpV q. One crucial example for us is the following: The set of polynomials
tXiXj |1 ď i ă j ď mu Y tX2

i ´ Xi|i P rmsu form a Gröbner generating set for the variety t0, 1umď1

consisting of Boolean points of Hamming weight at most 1 in Fmq . (Thus the variety t0, 1umď1 has
Gröbner complexity Opm2q.) We also use the following basic property of Gröbner generating sets:
If GX Ď FqrXs is a Gröbner generating set for variety V1 and GY Ď FqrY s is one for V2 then
GX Y GY Ď FqrX,Y s is a Gröbner generating set for V1 ˆ V2. In particular this establishes that
the Gröbner complexity of pt0, 1umď1qc Ď Fmcq is Opcm2q. Applying the [BS08] protocol to Gröbner
generating sets now gives us a Opkq query protocol for testing zero-on-V for variety V of Gröbner
complexity k.

While this now gives many new varieties that have natural zero-on-variety tests, the locality of
Opkq can be prohibitive. Our second contribution here is to give a new protocol to test this,
that shifts the Gröbner complexity into the randomness of the protocol and achieves (a universal)
constant locality. Specifically our verifier now expects an oracle for MV pP qpX,Y q “

ř

gPG YghgpXq

where Y “ pYg|g P Gq is a new set of k variables. Specifically performing a low-degree test on
MV pP q along with a test that verifies MV pP qpX, 0q ” 0 ensures that MV pP q is effectively giving
access to all linear combinations of hgpXq with constant query complexity. Testing the identity
P pXq “

ř

gPG hgpXqgpXq at a random choice of X now requires only one query to P and one to
MV pP q! Modulo some standard use of self-correction, this gives us an Op1q locality protocol for
zero-on-V testing with alphabet size Opd log qq and randomness Oppk`mq log qq for any variety V
of Gröbner complexity k. (See Section 5.)

PCPs from Zero-on-variety tests It is straightforward to build PCPs for NP-hard problems
from low-degree tests and zero-on-variety tests. (Recall that a PCP verifier for say graph coloring
is given as input a graph G and oracle access to a purported proof π with the feature that if G is
3-colorable that there exists a π such that V always accepts whereas if G is not 3-colorable then
V rejects every proof π w.p. at least 1{2. The parameters of interest to us are the same — the
randomness, the locality, and the alphabet size of the proof.)

For example, the 3-coloring protocol, based on a similar proof from [BS08], goes as follows: Fix
an odd prime power q.2 For a variety V Ď Fmq let its “extension degree” be the least integer d
such that every function f : V Ñ Fq can be extended to a degree d polynomial in FqrX1, . . . , Xms.
Now, given a variety V Ď Fmq of Gröbner complexity k and extension degree d we consider the
3-coloring problem on the vertex set V (same V ). Note that the graph is given by an edge function
E : V ˆ V Ñ t0, 1u which can be shown to be extendable to a degree 2d polynomial Ê from
F2m
q Ñ Fq. A proof that E is 3-colorable includes polynomials χ : Fmq Ñ Fq, A : Fmq Ñ Fq and

2 We do this for simplicity here and allow us to assume t´1, 0, 1u Ď Fq can be used to represent 3 distinct colors.
The protocol easily extends to other fields using some other set of 3 distinct elements of Fq.

5



B : F2m
q Ñ Fq satisfying (1) ApXq “ χpXq ¨ pχpXq ´ 1q ¨ pχpXq ` 1q, (2) A is zero-on-V , (3)

BpX,Y q “ ÊpX,Y q
ś

iPt´2,´1,1,2upχpXq ´ χpY q ´ iq and (4) B is zero on V ˆ V . (Items (1) and
(2) verify that χ is a 3-coloring of V with color set t´1, 0, 1u, while items (3) and (4) verify that
χ is a valid coloring of the edges of E.) The V -verifier performs low-degree tests on all the four
oracles and then tests identities (1) and (3) by picking a random value of the variables, and finally
verifies items (2) and (4) using zero-on-V and zero-on-V 2 tests. By the aforementioned properties
on Gröbner complexity and standard facts about extension degree we get that this PCP verifier
achieves Op1q locality with randomness Oppk ` mq log qq and alphabet Opd log qq (matching those
of the zero-on-V tests up to constant factors).

Instantiating the verifier above with V “ Hm where |V | “ n, |H| “ logn, m “ Oplog n{ log log nq

and q “ Oplog6 nq gives an Op1q locality PCP verifier for 3-coloring of n vertex graphs with
randomness Oplognq and alphabet size Oppoly lognq. But a different instantiation of the same
PCP with m “ nε, c “ 1

ε , q “ Oεp1q and V “ pt0, 1umď1qc gives an Op1q locality PCP verifier with
randomness Opn2ϵq and alphabet size Oϵp1q! We note that even using c “ 1 gives a completely
new protocol matching the parameters of the Hadamard PCP in [ALMSS98, Section 5]. And using
larger values of c gives us our new protocols. (See Section 6 for details.)

Furthermore, these PCPs are easily converted to “Robust PCPs of Proximity” (or “Robust assign-
ment testers”) in the sense of [DR06; BGHSV06] of constant robustness — since our PCPs have
constant locality. This allows us to compose the PCPs above in a single composition step to get an
Op1q locality PCP verifier with Oplog nq randomness and Op1q alphabet size — and thus the PCP
theorem. (See Section 7 for details.)

2 Formal Statement of Our Results

We first introduce basic definitions needed to state our main result. Throughout this document, VΠ

means that the algorithm/circuit/verifier has oracle access to the string Π, i.e., V can query Πris
for any 1 ď i ď |Π|. We use the notation VΠpx;Rq to say that the algorithm V has oracle access
to Π, has input x, and access to a random string R. In this notation, VΠpx;Rq is a deterministic
algorithm and the randomness is in the choice of R.

2.1 PCPs

Definition 2.1 (Standard Verifier). For functions r, ℓ, a : Zě0 Ñ Zě0, define a pr, ℓ, aq-standard
verifier V as follows:
Let Σ “ t0, 1uapnq. On input x P t0, 1un of length n, a string3 R P t0, 1urpnq, and oracle access to a
string Π P Σsizepnq (i.e. Π is a string of length sizepnq on alphabet t0, 1uapnq), we have:

• VΠpx;Rq outputs a subset Q Ď rsizepnqs of cardinality ℓpnq.

• VΠpx;Rq outputs a Boolean circuit C (depends on x and R) depending on ℓpnq ¨apnq bits. The
circuit C gets access to entries of Π as bits of length apnq.

• VΠpx;Rq returns Accept if CpΠ|Qq “ 1 and returns Reject if CpΠ|Qq “ 0.

3 This string R is the random string fed into V.

6



The maximum circuit size |C| over every possible choice of px,Rq will be referred to as the size of
the standard verifier V. The running time of the standard verifier V will be polypn ¨ 2rpnqq.

Observe that in the above definition, V makes ℓpnq queries to Π using the rpnq coin tosses. In
particular, V can only query a coordinate within range of r0, ℓpnq ¨ 2rpnq ´ 1s. So from now on, we
will always assume that the proof size |Π| is Opℓpnq ¨ 2rpnqq.

Definition 2.2 (The class PCP). For functions r, ℓ, a P Zě0 Ñ Zě0, for c, s P p0, 1q, define
PCPc,srr, ℓ, as to be the class of languages L that have a standard pr, ℓ, aq verifier with completeness
ě c and soundness ď s, i.e.

• Completeness: For every x P L, there exists a proof Π such that PrRrVΠpx;Rq “ Accepts ě

c.

• Soundness: For every x R L, for every Π, we have PrRrVΠpx;Rq “ Accepts ď s.

In this paper, we will usually focus on the language 3-COLOR of 3-colorable graphs.

Our main theorem (proved in Section 6) shows the following:

Theorem 2.3 (Main Theorem). There exist constants c, ℓ such that the following holds for
every q,m, d, k such that q ě cd3:

Let Fq be a field of characteristic ‰ 2 and let V Ď Fmq have extension degree d and Gröbner
complexity k. Then 3-COLOR on vertex set V is in PCP1,1{2rcpk `mq log q, ℓ, cd log qs with

proofs of size qcpk`mq.

Remark 2.4. In Theorem 2.3, the assumption on characteristic ‰ 2 is mostly for clarity in the
proofs. We assign the vertices colors from the set t´1, 0, 1u, and these are three distinct colors only
if the field is of characteristic ‰ 2. For fields of characteristic 2 and with more than 3 elements,
one could use colors ta, b, cu, where a, b, and c are three distinct elements from the field. The proof
is essentially the same.

Lemma 2.5. For every n, 3-COLOR on n-vertex graphs is in
PCP1,1{2

“

Oplognq, Op1q, Oplog2 n{plog lognqq
‰

with proofs of size nOp1q.

Proof. In Corollary 4.4 we show that if V “ Hm for some H Ď Fq then it has extension degree
p|H|´1q ¨m and Gröbner complexity m. Taking q ě c log6 n a power of 3, V “ Hm for some subset
H Ď Fq of size logn and m “ log n{ log log n, we get the desired bounds. ■

7



Lemma 2.6. For every n, 3-COLOR on n-vertex graphs is in
PCP1,1{2

“

Opn2q, Op1q, Op1q
‰

with proofs of size 2Opn2q.

Proof. In Example 4.2.2 we show that if V “ t0, 1umď1 :“ tpa1, . . . , amq P t0, 1um|
řm
i“1 ai ď 1u is

the set of Boolean points in Fmq of Hamming weight at most 1, then V has extension degree 1 and
Gröbner complexity Opm2q. Picking q to be a large constant, and V “ t0, 1umď1 we get the desired
bounds. ■

Note that the above roughly matches the parameters of the Hadamard PCP of [ALMSS98] with a
completely different proof!

Lemma 2.7. For every ε ą 0 and every n, 3-COLOR on n-vertex graphs is in
PCP1,1{2

“

Opnεq, Op1q, O
`

1
ε log

1
ε

˘‰

with proofs of size 2Opnεq.

Proof. In Corollary 4.5 we show that if V “
`

t0, 1umď1

˘c
, then V has extension degree c and Gröbner

complexity Opcm2q. Given ε ą 0 picking c “ Op1ε q, q “ polyp1{εq, m “ nOpεq, and V “
`

t0, 1umď1

˘c

we get the desired bounds. ■

The above concludes the description of the atomic PCPs we construct. In Section 7 we show that
these PCPs can be strengthened to “Robust assignment testers” (see Definition 7.1), and so can be
composed together (see Lemma 7.3) to get the PCP theorem stated below (proved in Section 7).

Theorem 2.8 (PCP Theorem). There exist universal constants ℓ, a, C such that for every n,
3-COLOR on n-vertex graphs is in PCP1,1{2rC log n, ℓ, as.

3 Preliminaries

For a field Fq, we will use Fqrx1, . . . , xms to denote the multivariate polynomial ring in variables
x1, . . . , xm. For a degree parameter d P N, we will use PdpFmq q Ă Fqrx1, . . . , xms to denote the
subspace of degree ď d polynomials. For a polynomial P P Fqrx1, . . . , xms and a set V Ď Fmq , we
denote the restriction of P to V by P |V . We will denote by Fˆ

q the set of invertible elements of Fq,
i.e. Fˆ

q “ Fqz t0u.

Theorem 3.1 (Polynomial Distance Lemma). [Ore22; DL78; Sch80; Zip79]. Fix a field Fq. For
every degree parameter d P N with d ď q and for every non-zero polynomial P P Fqrx1, . . . , xms, we
have:

Pr
a„Fm

q

rP paq “ 0s ď
d

q
.

An immediate and useful corollary of Theorem 3.1 is the following: If two degree ď d polynomials
P and Q agree on strictly more than d{q-fraction of Fmq , then P “ Q.

8



For any c,m P N with c ď m, we use t0, 1umďc to denote the set of Boolean strings of Hamming
weight ď c. We say that two functions f, g : S Ñ T are δ-close or δ-far if they differ on at most or
at least a δ-fraction of their inputs, respectively.

Lines Table For every m P N, field Fq, and points a,b P Fmq , let ℓa,b : Fq Ñ Fmq (read as “line
passing through a with slope b”) be defined as ℓa,bptq :“ a ` tb.

Definition 3.2 (Lines Table). Fix a field Fq. Let d P N be the degree parameter and m P N be the
number of variables. For every degree ď d polynomial f : Fmq Ñ Fq, we define the dth lines table for

f f
pdq

lines : F2m
q ÝÑ pFqqd`1 as the function that maps an input pa,bq P F2m

q to fpℓa,bptqq, where
t is an indeterminate. We note that fpℓa,bptqq is indeed a univariate degree d polynomial in t and
can be specified by the d` 1 coefficients of t0, t1, . . . , td.

3-colorability We state the 3-colorability language below. Note that the choice of 3-coloring as
an NP-complete problem instead of one of many others is simply a matter of convenience.

Definition 3.3. The decision problem 3-COLOR is the following problem:
Given a graph G “ pV,Eq with n vertices, decide whether there exists a proper coloring of G using
3 colors, i.e. for every edge pu, vq P E, the vertices u and v are assigned different colors.

Lemma 3.4. The decision problem 3-COLOR is NP-complete.

3.1 Low-degree Testing

In this subsection, we discuss the standard point-vs-line test for low-degree testing from [ALMSS98].
We start by recalling the test and state its properties in Theorem 3.5. In the following discussion,
we will switch between a function f : Fmq Ñ Fq and its evaluation vector f P pFqqq

m
, as both are

equivalent.

Algorithm 1: Low-Degree Test LDT p¨q
¨

Input: Degree parameter d, string a,b P Fmq , element t P Fˆ
q , and oracle access to

pf, f 1q where f P pFqqq
m

and f 1 P pFd`1
q qq

2m

1 Query f 1rpa,bqs and query f ra ` tbs // Two queries to pf, f 1
q

2 if f 1rpa,bqsptq ‰ f ra ` tbs // Running time is polypm, dq

3 then

4 return Reject else
5 return Accept

9



Theorem 3.5 (Low-degree Testing (see for instance [ALMSS98, Theorem A5])). There exists
absolute constants 0 ă C, δ0 such that for every δ ă δ0, for every d, q P N with q ą Cd3, the
following holds over Fq:

1. If f P PdpFmq q, then LDT f,f
pdq

linesp;a,b, tq returns Accept with probability 1 over the random
choice of pa,b, tq.

2. For every f : Fmq Ñ Fq and for every f 1 : F2m
q Ñ Fq, we have:

Pr
a,b,t

rLDT f,f 1

d p;a,b, tq returns Rejects ď δ ùñ δpf, PdpFmq qq ď 4δ.

Furthermore, LDT f,f 1

d makes 2 oracle queries, uses Opm log qq bits of randomness, and runs in
time polypm, dq.

Remark 3.6. For low-degree testing, there has been a long line of work on achieving better param-
eters in terms of field size and soundness guarantee. We refer the interested reader to [HKSS24,
Section 1] for a detailed overview of the results of low-degree testing and also for the state-of-the-art
parameters (see [HKSS24, Theorem 1.2]). We use the low-degree testing from [ALMSS98] because
the algorithm and analysis are done using the lines table.

3.2 Local Correction of Low-Degree Polynomials

In this subsection, we discuss the local correction/self-correction algorithm for degree d polynomials
over Fmq from [ALMSS98]. We first describe the local corrector and then analyze it in Theorem 3.7.
In the following discussion, we will switch between a function f : Fmq Ñ Fq and its evaluation vector

f P pFqqq
m
, as both are equivalent.

Algorithm 2: Local Corrector LCp¨q
¨

Input: Degree parameter d, evaluation point a P Fmq , string b P Fmq , element t P Fˆ
q ,

and oracle access to pf, f 1q where f P pFqqq
m

and f 1 P pFd`1
q qq

2m

1 Query f 1rpa,bqsptq and query f ra ` tbs // Two queries to pf, f 1
q

2 if f 1rpa,bqsptq ‰ f rℓa,bptqs // Running time is polypm, dq

3 then

4 return Reject

5 return f 1rpa,bqsp0q

Theorem 3.7 (Local Correction (see e.g. [ALMSS98], Proposition 7.2.2.1)). There exists an abso-
lute constant C ą 0 such that for every d, q P N satisfying q ą Cd, the following holds.

1. If f is a polynomial of degree d, then for every a P Fmq , LCf,f
pdq

linespa;b, tq is equal to fpaq with
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probability 1 over the random choice of pb, tq.

2. Let f : Fmq Ñ Fq be any function with the condition that there exists a degree d polynomial P

such that δpf, P q ď δ. Then for every f 1 : F2m
q Ñ Fd`1

q , for every a P Fmq , we have:

If LCpf,f 1q

d paq does not return Reject, then LCpf,f 1qpaq computes P paq exactly with high prob-
ability over the random choice of pb, tq, i.e.

Pr
b,t

rLCpf,f 1q

d pa;b, tq “ P paq OR LCpf,f 1q

d pa;b, tq returns Rejects ě 1 ´ 2
?
δ ´

d

q ´ 1
.

Furthermore, LCpf,f 1q

d paq makes 2 oracle queries, uses Opm log qq bits of randomness, and runs in
time polypm, dq.

4 Gröbner Generating Sets

In Section 5, we define a test to check if a polynomial vanishes on a subset V Ď Fmq . In this section,
we introduce the relevant parameters of such subsets, which we use to describe the efficiency of
such tests. We also show that these are well-behaved under Cartesian products. We first define the
parameters.

Definition 4.1 (Extension degree). For a non-empty set V Ď Fmq , function f : V Ñ Fq and
polynomial P P FqrX1, . . . , Xms we say P extends f if for every a P V , we have fpaq “ P paq.
We define the extension degree of V to be the smallest integer d P N such that every function
f : V Ñ Fq can be extended to a polynomial pf of total degree at most d.

Definition 4.2 (Gröbner Complexity). For an ideal I Ď Fqrx1, . . . , xms we say that a finite set
G Ď I is a Gröbner generating set of I, if every polynomial P P I can be written as follows:

P “
ÿ

gPG

hg ¨ g, where hg P Fqrx1, . . . , xms and degphggq ď degpP q.

For a set V Ď Fmq , let IpV q denote the ideal of polynomials that vanish on V . We define the
Gröbner complexity of V to be the cardinality of the smallest Gröbner generating set of IpV q.

The naming convention comes from the fact that a Gröbner basis in a graded ordering is a Gröbner
generating set, as we show in Section A.

Example 4.2.1. Let H be a subset of Fq. Then any polynomial in Fqrxs which vanishes on H is
divisible by

ź

hPH

px´ hq.

Furthermore, for any function f : H Ñ Fq we can find a degree |H| ´ 1 polynomial extending f . It
follows H has Gröbner complexity 1, and extension degree |H| ´ 1.

11



Example 4.2.2. Let t0, 1unď1 Ď Fnq be the subset of t0, 1un consisting of points with Hamming
weight at most one. Then

`

x21 ´ x1, . . . , x
2
n ´ xn, x1x2, . . . , xn´1xn

˘

is a Gröbner generating set. To see this, note that any polynomial P can be written on the form

P pxq “

n
ÿ

i

hipxq ¨ px2i ´ xiq `

n
ÿ

i,j

gi,jpxq ¨ pxixjq ` ℓpxq

where ℓ is a linear function, and degphiq, degpgi,jq ď degpP q´2. The first two summands vanish on
t0, 1unď1, so P vanishes on t0, 1unď1 if ℓ also vanishes. However, if ℓ has a non-zero coefficient for
any variable xi, then ℓ takes different values on two points which only differ in the i-th coordinate.
It follows that ℓ only vanishes when it is the zero polynomial, and so P vanishes on t0, 1unď1 if and
only if it can be written on the form

P pxq “

n
ÿ

i

hipxq ¨ px2i ´ xiq `

n
ÿ

i,j

gi,jpxq ¨ pxixjq.

It follows that t0, 1unď1 has Gröbner complexity at most npn`1q

2 and extension degree 1.

The following lemma shows that we can upper-bound both the Gröbner complexity and the exten-
sion degree of Cartesian products.

Lemma 4.3 (Subadditivity of Gröbner complexity and extension degree). Let V1 Ď Fm1
q and

V2 Ď Fm2
q , and consider their product V1 ˆ V2 Ď Fm1`m2

q . We then have:

1. if G1,G2 are Gröbner generating sets for IpV1q, IpV2q respectively, then G1 YG2 is a Gröbner
generating set for IpV1 ˆ V2q.

2. if V1, V2 have extension degrees d1, d2 respectively, then V1 ˆ V2 has extension degree at most
d1 ` d2.

In particular, both the Gröbner complexity and extension degree are subadditive under Cartesian
products.

Proof of Lemma 4.3. Let V be a subset of Fmq . We first note, that we can a find a monomial

basis S Ď Fqrxs for the space of functions FVq , such that any polynomial is equivalent to a linear
combination of monomials from S of same or lesser degree.

We argue as follows. Since V is finite, FVq is spanned by polynomials and so is also spanned by
monomials. Then we can create S iteratively by degree, by first setting S0 “ t1u as a basis of
FVq X Pď0pFmq q, and Si`1 by extending Si to a monomial basis of FVq X Pďi`1pFmq q, and setting
S “

Ť

i Si. Since any polynomial of degree i is contained in the span of Si, it must then be
equivalent to a sum of monomials of degree at most i, showing the desired property.

Now let S be such a basis. Then any polynomial P as a function from V to Fq is equivalent to a
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linear sum

P ”
ÿ

sPS

css

and so

P ´
ÿ

sPS

css ” 0

is a polynomial of degree at most degpP q vanishing on V . It follows that a subset G Ď Fqrxs is a
Gröbner generating set of IpV q if and only if every polynomial P can be written in the form

P “
ÿ

sPS

css`
ÿ

gPG

hgg,

where each summand has degree at most degpP q.

Now, let V1, V2 be subsets with S1,G1 Ď Fqrxs and S2,G2 Ď Fqrys as above, and set

S12 :“ ts1s2 | s1 P S1, s2 P S2u.

Then S12 is a basis for functions V1 ˆ V2 Ñ Fq with the above mentioned property. We will show
that G1 Y G2 is a Gröbner generating set for V1 ˆ V2. Let m1pxqm2pyq be a monomial in Fqrx,ys,
We can apply the above property to each monomial separately to get

m1pxqm2pyq “

˜

ÿ

sPS1

css`
ÿ

gPG1

hgg

¸

¨

˝

ÿ

s1PS2

cs1s1 `
ÿ

g1PG2

hg1g1

˛

‚

“
ÿ

ss1PS12

cscs1ss1 `
ÿ

gPG1

hgg

ďdegpm1q

¨

˚

˚

˚

˝

ÿ

s1PS2

cs1s1

ďdegpm2q

`
ÿ

g1PG2

hg1g1

ďdegpm2q

˛

‹

‹

‹

‚

`
ÿ

g1PG2

hg1g1

ďdegpm2q

˜

ÿ

sPS1

css

¸

ďdegpm1q

.

We see this gives a representation of the monomial as a linear combination of terms from S12 and
G1 Y G2 of degree at most degpm1q ` degpm2q. Since we can write a polynomial as a sum of
monomials, we get that G1 Y G2 is a Gröbner generating set. This proves the first item of the
lemma.

To show the second item of the lemma, note that any function f : V1 ˆ V2 Ñ Fq can be written as
a finite sum

fpx,yq “

n
ÿ

i“1

aipxq ¨ bipyq

where ai, bi are functions from V1, V2 respectively to Fq. Since all the functions ai can be repre-
sented as degree d1-polynomials and likewise for bi, the above sum gives a representation of f as a
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polynomial of degree at most d1 ` d2. ■

Corollary 4.4. For any subset H Ď Fq, Hm Ď Fmq has Gröbner complexity at mostm and extension
degree at most p|H| ´ 1q ¨m.

Proof. Combine Lemma 4.3 and Example 4.2.1. ■

Corollary 4.5. The subset
´

t0, 1u
n{c
ď1

¯c
P Fnq has Gröbner complexity at most pn2`ncq

2c and extension

degree at most c.

Proof. Combine Lemma 4.3 and Example 4.2.2. ■

The following two lemmas show that given a subset V of Fmq , we can efficiently compute its extension
degree, find a polynomial extending a function f : V Ñ Fq, and compute a minimal Gröbner basis.

Lemma 4.6 (Computing extension degree and low-degree extensions). For every q,m P N, there
exists:

1. An algorithm, which takes a set of n points V in Fmq as input and gives the extension degree

d as output in time poly
´

n, log q,
`

m`d
m

˘

¯

.

2. An algorithm, which takes a set of n points V in Fmq and a function f : V Ñ Fq as input and

gives a polynomial which extends f as output in time poly
´

n, log q,
`

m`d`1
m

˘

¯

.

Proof. We first show 1.

Computing extension degree For every i, fix an ordering of the
`

m`i
i

˘

monomials of degree at
most i and also an ordering of the points in V.

Then for every i, we can calculate the evaluation matrix Ei of dimension nˆ
`

m`i
m

˘

where

pEiqpjkq “ mkpvjq,

vj is the jth point of V and mk the kth monomial. Then if the rank of Ei is equal to n, the
monomials of degree at most i span the functions on V , and so the extension degree is i.

We can then find the extension degree by calculating the rank of Ei for every i, until Ei has rank
n. Every Ei is a submatrix of Ei`j so we can reuse the computation for every i. It follows that the

algorithm performs Gaussian elimination on a single nˆ
`

m`d
d

˘

matrix.

Finding extending polynomial We first find the extension degree using the previous step.
Then since Ed has rank n, we can find a right inverse A such that Ed ¨A “ In. If we represent the
function f : V Ñ Fq as a n-dimensional vector y, then A ¨ y gives a vector in the monomial basis,
which represents a polynomial extending y since

Ed ¨ pA ¨ yq “ pEd ¨Aq ¨ y “ y.
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It follows that the algorithm performs one calculation of a right inverse, and one matrix-vector
multiplication. ■

Lemma 4.7 (Computing a smallest Gröbner generating set). For every q,m P N, there exists an
algorithm which takes a set of n points V in Fmq as input and gives a minimal (w.r.t. size) Gröbner

generating set of IpV q as output in the monomial basis in time poly
´

n, log q,
`

m`d`1
m

˘

¯

, where d is

the extension degree of V .

Proof. Given a set of polynomials S, define Si to be the subset of S of polynomials of degree exactly
i, and define Sďi to be the subset of polynomials of degree ď i.

We will then construct the subsets of the minimal Gröbner generating set Gi inductively. We first
define G0 “ H, and then set Gi to be any basis of the quotient space IpV qďi{Li, where

Li “

#

ÿ

j

hj ¨ gj

ˇ

ˇ

ˇ

ˇ

ˇ

hj P Fqrx1, . . . , xms, gj P IpV qďi´1, degpgjhjq ď i

+

.

We repeat this step until i “ d ` 1, so in each step, we check whether or not the the monomials
of degree at most i span all functions on |V |, to know when to stop, as expressed in the following
algorithm:

Algorithm 3: Constructing Gröbner generating set.

Input: Subset V of Fmq of size n
Output: A minimal generating set G of IpV q

1 G,G0,A0,B0 Ð H.
2 for i “ 1, . . . do

3 Compute the evaluation matrix Ei P Fnˆpm`i
i q

q of all monomials of degree at most
i on the points in V

4 Compute a basis Ai of kerpEiq Ă Fpm`i
i q

q

5 Compute a basis Bi of Ai´1 ` span pxia : a P Ai´1, 1 ď i ď mq

6 Compute a minimal basis Gi so that span pGiq ` span pBiq “ span pAiq

7 G Ð G Y Gi

8 if rankEi´1 “ n then
9 break

10 return G

Correctness We will now show any set G is a minimal Gröbner generating set if and only if Gi

is a basis for the quotient space IpV qďi{Li. To see this, if every Gi is a spanning set for IpV qďi{Li,
then any polynomial P P IpV qďi can be written as

P ”
ÿ

gPGi

cg ¨ g mod Li,
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which is equivalent to

P “
ÿ

gPGi

cg ¨ g `
ÿ

gPGďi´1

hg ¨ g

where cg are constants and degphg ¨ gq ď i. This is the condition for G being a Gröbner generating
set, so G is a Gröbner generating set if and only if each Gi spans IpV qďi{Li.

Furthermore, note that in the above characterization, the conditions on each degree i is independent
of each other, so G is minimal if and only if each Gi is minimal, which is equivalent to each of them
being a basis.

From the above, we see that a minimal Gröbner generating set does not contain any degree i
polynomials if

IpV qďi “ Li.

We show this is true for any i ě d ` 2. Since any monomial m of degree i ´ 1, is equivalent to a
polynomial P of degree i ´ 2, as i ´ 2 ě d, it follows that xim ´ xiP is in Li for any variable xi.
In particular, any polynomial of degree i is equal to a polynomial of degree at most i ´ 1 modulo
Li. Together with the fact that IpV qi´1 Ď Li, we have IpV qi “ Li.

Runtime To analyze the runtime, in each step of the loop we perform Gaussian elimination on
matrices of size at most n ˆ

`

m`d`1
m

˘

, so each step takes at most time polypn, log q,
`

m`d`1
m

˘

q, and

so the total runtime must also be polypn, log q,
`

m`d`1
m

˘

q. ■

Claim 4.8. The running times in Lemma 4.6 and Lemma 4.7 are both qOpmq.

Proof. This follows from the fact that n “ |V | ď qm, the extension degree d is at most qpm ´ 1q

(the extension degree of Fmq ) and the following binomial estimate

ˆ

m` d` 1

m

˙

ď

ˆ

mq ` 1

m

˙

ď

ˆ

emq ` e

m

˙m

ď empq ` 1qm.

■

5 Zero-on-Variety Test

In this subsection, we discuss an efficient test to decide whether a given oracle vanishes on a subset
of points/variety. Let V Ă Fmq be a set with a Gröbner generating set GpV q with extension degree
dV and complexity k (see Section 4 for formal definitions). Let P : Fqrx1, . . . , xms Ñ Fq be a
polynomial of degree d and say d ď dV . Informally, the main goal of this section is:

Design an efficient standard verifier to decide whether P is zero at all points of V .

Before we state our standard verifier, let us first discuss what could constitute as proof for the
vanishing of P |V . Suppose P pxq is a degree d polynomial and P |V ” 0. Using the definition of the
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ideal IpV q and GpV q, we have:

P |V ” 0 ðñ P P IpV q

ðñ There exists polynomials hg P Fqrx1, . . . , xms for every g P GpV q such that

P pxq “
ÿ

gPGpV q

hgpxq ¨ gpxq, where for every g, degphgpxq ¨ gpxqq ď d. (2)

We will refer to the ordered tuple phg : g P GpV qq P pFqrx1, . . . , xmsqk in Equation (2) as a vanishing
certificate4 for the polynomial P |V .

Definition 5.1 (Vanishing Certificate Polynomial). Let P , V Ď Fmq and GpV q as defined above.

A vanishing certificate polynomial MV pP q : Fm`k
q Ñ Fq is a polynomial of degree ď d satisfying

the following conditions:

• There exists polynomials hg P Fqrx1, . . . , xms for every g P GpV q such that

MV pP qpx,yq “
ÿ

gPGpV q

hgpxq ¨ yg.

• If we substitute gpxq for yg for every g P GpV q in the polynomial MV pP qpx,yq, it should be
the polynomial P pxq, i.e.

P pxq “ MV pP qpx, pgpxq : g P GpV qqq,

where the above equality is equality as polynomials.

Whenever the subset V Ď Fmq is clear from the context, we will use Mpdq

P,lines to refer to the dth lines
table for MV pP q (see Definition 3.2 for a formal definition of the lines table).
We record our discussion above using Definition 5.1 in the following observation. We use the same
notation as in Definition 5.1.

Observation 5.2. Let P pxq be a degree d polynomial. Then P |V ” 0 if and only if there exists
a vanishing certificate polynomial MV pP q of degree ď d (see Definition 5.1). We would like to
emphasize that Definition 5.1 has a degree restriction on MV pP q and this will be crucial for us, as
we will see soon.

Observation 5.2 says that if a verifier wants to test whether P vanishes on V , a valid proof Π
is:

Π “

´

MV pP q, Mpdq

P,lines

¯

. (3)

In other words, our verifier for the Zero-on-Variety test will accept the above Π with probability

4 There could be multiple vanishing certificates for P |V satisfying Equation (2). We only use the fact that there
always exists a vanishing certificate where each polynomial hg has degree ď degpP q. We are guaranteed of the
existence of such a vanishing certificate due to GpV q.
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1. For a degree d polynomial P where P |V ı 0, no vanishing certificate polynomial exists, and we
require our verifier to reject every “claimed” proof Π1 with high probability.

We next describe a standard verifier ZERO (recall the definition of standard verifier in Defini-
tion 2.1) with oracle access to a function f and an arbitrary string Π to decide whether f |V ” 0,
in Algorithm 4. For convenience in writing, we define the following map:

φ : Fmq Ñ Fkq
pz1, . . . , zmq ÞÑ pgpzq : g P GpV qq

Algorithm 4: Zero-on-Variety Test for V : ZEROp¨q
¨

Input: Degree parameter d, subset V Ď Fmq , Gröbner generating set GpV q,

string a,b P Fm`k
q , α P Fmq , element t P Fˆ

q ,

and oracle access to pf,M,M1q where f P pFqqq
m
, M P pFqqq

m`k
, and

M1 P pFdqqq
2pm`kq

.

1 Run LDT M,M1

d p;a,b, tq (see Algorithm 1) // Two queries to pM,M1
q

2 if LDT M,M1

d p;a,b, tq returns Reject then

3 return Reject

4 Run LCM,M1

d ppα,0q;a, tq (see Algorithm 2) // Two queries to pM,M1
q

5 if LCM,M1

d ppα,0q;a, tq ‰ 0 then

6 return Reject

7 Run LCM,M1

d ppα, φpαqq;a, tq // Two queries to pM,M1
q and time to evaluate φpαq is

Opk ¨ qOpmq
q

8 Query f rαs // One query to f

9 if LCM,M1

d ppα, φpαqq;a, tq ‰ f rαs then

10 return Reject else
11 return Accept
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Lemma 5.3 (Zero-on-Variety Test). There exists an absolute constant C ą 0 such that
for every d, q P N satisfying q ą Cd3, for every subset V Ă Fmq with extension degree ď d
and Gröbner complexity k, the following holds. The standard verifier ZERO satisfies the
following properties:

Let r “ pa,b, t,αq. Then,

1. Completeness: For every degree d polynomial f : Fmq Ñ Fq with f |V ” 0, there exists

a proof Π over alphabet Fd`1
q and size Opq2pm`kqq such that the following holds:

Pr
r

rZEROpf,Πq

d p; rq returns Accepts “ 1.

2. Soundness: Let f : Fmq Ñ Fq be any function for which there exists a unique degree d
polynomial P pxq such that δpf, P q “ δ ă 0.01 and P |V ı 0. Then for every string Π,
the following holds:

Pr
r

rZEROpf,Πq

d p; rq returns Rejects ě 0.04.

3. Efficiency: ZERO uses Oppm` kq log qq bits of randomness, makes 7 oracle queries
to pf,Πq, and runs in time Opk ¨ qOpmqq.

Proof of Lemma 5.3. We first note that the efficiency immediately follows from the comments in
Algorithm 4. We discuss completeness next.

Completeness Suppose f is a polynomial of degree at most d and f |V ” 0. As observed in
Observation 5.2, we know there exists a vanishing certificate polynomial MV pfq of degree d,
and let Π be as stated in Equation (3). From the first item of Theorem 3.5, we know that

LDT MV pfq,Mpdq

f,lines returns Accept with probability 1. From the first item of Theorem 3.7, we

know that LCMV pfq,Mpdq

f,linespα,0q is equal to 0 for every α P Fmq with probability 1. Similarly, we

know that LCMV pfq,Mpdq

f,linespα, φpαqq is equal to fpαq for every α P Fmq with probability 1. It is not
difficult to see that Algorithm 4 accepts Π with probability 1. This finishes the completeness part
of Lemma 5.3.

Soundness Let f be any function for which there exists a degree d polynomial P pxq such that
δpf, P q ď δ and P |V ı 0. Consider the following events from Algorithm 4:

1. E1 denotes the event that LDT M,M1

d p;a,b, tq returns Reject. It depends on the choice of
pa,b, tq.

2. E2 denotes the event that LCM,M1

d ppα,0q;a, tq ‰ 0. It depends on the choice of pα,a, tq.

3. E3 denotes the event that LCM,M1

d ppα, φpαqq;a, tq ‰ f rαs. It depends on the choice of
pα,a, tq.
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In the proof below, to avoid cumbersome writing, we will avoid repeatedly mentioning the random
bits that each event depends on.

If either of the events E1 or E2 happens with probability greater than 0.04, then we have the
desired soundness. Assume that is not the case, i.e.,

Pr
a,b,t

rE1s ď 0.04 and Pr
α,a,t

rE2s ď 0.04.

We now want to argue that E3 happens with probability at least 0.04.

Since E1 happens with probability at most 0.04, from Theorem 3.5, we know that there exists a
degree d polynomial Rpx,yq such that δpM,Rq ď 0.16. We will show the following claim.

Claim 5.4. Let Rpx,yq : Fm`k
q Ñ Fq be the degree d polynomial such that δpM,Rq ď 0.16. Then,

Rpx,0q ” 0.

Proof of Claim 5.4. As mentioned above, we know that δpM,Rq ď 0.16. Using Theorem 3.7, we
get:

Pr
a,t

rLCM,M1

d ppα,0q;a, tq “ Rpα,0qs ě 1 ´ 2
?
0.16 ´

d

q ´ 1
, for every α P Fmq

ñ Pr
α,a,t

rLCM,M1

d ppα,0q;a, tq ‰ Rpα,0qs ď 0.08 `
d

q ´ 1
. (4)

Since the event E2 happens with probability ď 0.04, we have,

Pr
α,a,t

rLCM,M1

d ppα,0q;a, tq ‰ 0s ď 0.04. (5)

Using union bound on Equation (4) and Equation (5), we get,

Pr
α,a,t

rRpα,0q ‰ 0s ď 0.12 `
d

q ´ 1

ðñ Pr
α,a,t

rRpα,0q “ 0s ě 0.88 ´
d

q ´ 1
.

Since the event pRpα,0q “ 0q does not depend on the random choice of pa, tq, we get,

Pr
α

rRpα,0q “ 0s ě 0.88 ´
d

q ´ 1
.

We choose C in the statement of Lemma 5.3 large enough such that 0.88´ d
q´1 ą d

q . The polynomial
distance lemma (Theorem 3.1) then implies that Rpx,0q ” 0. This finishes the proof of Claim 5.4.

■
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Claim 5.4 implies that Rpx,yq belongs to the ideal Ipy1, . . . , ykq. This implies the existence of
polynomials R1, . . . , Rk P Fqrx,ys such that Rpx,yq can be expressed as follows:

Rpx,yq “
ÿ

gPGpHq

Rgpx,yq ¨ yg.

Define the polynomial R : Fmq Ñ Fq as follow, Rpxq :“ Rpx, φpxqq. Observe that P pxq and Rpxq

are distinct polynomials, otherwise P |V ” 0.

Since for every g P GpV q, we know that degpgq ď d and we also have that degpRpx,yqq ď d, we get
degpRpxqq ď d2. Since δpM,Rq ď 0.16, we have

Pr
a,t

rLCM,M1

d ppα, φpαqq;a, tq “ Rpα, φpαqqs ě 1 ´ 2
?
0.16 ´

d

q ´ 1
, for every α P Fmq

ñ Pr
α,a,t

rLCM,M1

d ppα, φpαqq;a, tq “ Rpα, φpαqqs ě 0.92 ´
d

q ´ 1

ñ Pr
α,a,t

rLCM,M1

d ppα, φpαqq;a, tq ‰ Rpαqs ď 0.08 `
d

q ´ 1
. (6)

Recall that P ‰ R and from the polynomial distance lemma (Theorem 3.1), we have:

Pr
α

rRpαq “ P pαqs ď
d2

q
ùñ Pr

α
rRpαq “ f rαss ď δ `

d2

q
. (7)

Using Equation (6) and Equation (7) and applying union bound, we get,

Pr
α,a,t

rLCM,M1

d ppα, φpαqq;a, tq “ f rαss

ď Pr
α,a,t

rLCM,M1

d ppα, φpαqq;a, tq ‰ Rpαqs ` Pr
α

rRpαq “ f rαss ď 0.08 `
2d2

q ´ 1
` δ.

By choosing C appropriately in the statement of Lemma 5.3, we can set 2d2{pq ´ 1q ď 0.01. Thus,

Pr
α,a,t

rLCM,M1

d2
ppα, φpαqq;a, tq ‰ f rαss ě 0.91 ´ δ ě 0.04,

where we are using δ ď 0.01. Thus E3 happens with probability ě 0.04. Hence we have showed
that either E1 or E2 happens with probability ě 0.04, otherwise E3 happens with probability ě 0.04.
This finishes the soundness of Lemma 5.3 and also the proof of Lemma 5.3. ■

6 Proof of the Main Theorem (Theorem 2.3)

In this section, we give the proof of Theorem 2.3, which we recall below.

Theorem 2.3 (Main Theorem). There exist constants c, ℓ such that the following holds for every
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q,m, d, k such that q ě cd3:

Let Fq be a field of characteristic ‰ 2 and let V Ď Fmq have extension degree d and Gröbner com-
plexity k. Then 3-COLOR on vertex set V is in PCP1,1{2rcpk ` mq log q, ℓ, cd log qs with proofs of

size qcpk`mq.

Proof of Theorem 2.3. We will consider the NP-complete problem 3-COLOR for graphs (see Defi-
nition 3.3 for a formal definition of 3-COLOR). We will use VPCP to denote the standard verifier
with parameters as stated in Theorem 2.3.

From Lemma 4.7 and Claim 4.8, we know that VPCP can compute the Gröbner generating set
of complexity k in time qOpmq. Let E : V ˆ V Ñ t0, 1u Ă Fq be the edge function for the input

graph G “ pV,Eq, defined as Epu, vq “ 1 if and only if pu, vq P E. Let pE : Fmq ˆ Fmq Ñ Fq
denote an extension of E and from the second item of Lemma 4.3, we know that degp pEq ď 2d. By
Lemma 4.6 and Claim 4.8, the standard verifier VPCP can compute both, the extension degree d
and the extension pE in time qOpmq.

For simplicity, we will describe a standard verifier V for 3-COLOR and then VPCP will be repeating
V for Op1q times. More particularly, the standard verifier V will have soundness γ for some absolute
constant γ P p0, 1q, i.e. V rejects with probability at least γ. The standard verifier VPCP will repeat
V for Op1{γq times and return Reject if any one of the iterations return Reject. As Op1{γq “ Op1q,
the number of random bits, queries, and running time of VPCP are a constant factor multiple of
the number of random bits, queries, and running time of V respectively. So for rest of the proof, it
will be sufficient to describe a standard verifier V which uses c1pk `mq log q random bits, makes ℓ1

queries to proofs over alphabets of size c1 ¨ pd log qq, have soundness guarantee of γ, and has running
time qOpm`kq, for some constants c1, ℓ1, and γ P p0, 1q. From the previous paragraph, we know that
VPCP can compute the Gröbner generating set, extension degree d, and extension pE, all in time
qOpmq. So we will assume that our standard verifier V has access to all of them.

Oracles We now describe oracles that the standard verifier V expects in a proof Π. In particular,
if G P 3-COLOR, then our standard verifier always returns Accept. Our oracles will be evaluation
tables of polynomials and their corresponding lines table. In the following, we also mention the
size of each oracle that appears in the proof.

1. Let χ : V Ñ t´1, 0, 1u Ă Fq be a coloring assignment to every vertex in the input G “ pV,Eq.
Here we use t´1, 0, 1u to denote three distinct colors.

Let pχ : Fmq Ñ Fq denote an extension of χ of degree d. Let pχ
pdq

lines be the dth lines table for pχ.

Size of ppχ, pχ
pdq

linesq is 2Opm log qq over alphabet of size Opd log qq.
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2. Define the polynomial A : Fmq Ñ Fq as follows:

Apxq :“ pχpxq ¨ ppχpxq ´ 1q ¨ ppχpxq ` 1q.

We have degpAq ď 3 ¨ degppχq ď 3d. Let A
p3dq

lines be the p3dqth lines table for A.

Size of pA,A
p3dq

linesq is 2Opm log qq over alphabet of size Opd log qq.

Observation 6.1. For a vertex u P V , Apuq “ 0 if and only if pχpuq P t´1, 0, 1u. This
implies that A|V ” 0 if and only if for every vertex u P V , we have pχpuq P t´1, 0, 1u.

Let5 MA : Fm`k
q Ñ Fq denote a vanishing certificate polynomial for A|V (see Definition 5.1

for a formal definition). Let d1 :“ degpMAq ď degpAq ď 3d. Let Mp3dq

A,lines be the p3dqth lines
table for MA.
Size of pMA,Mp3dq

A,linesq is 2Opm log q`k log qq over alphabet of size Opd log qq.

3. Define the polynomial B : Fmq ˆ Fmq Ñ Fq as follows:

Bpx,yq :“ pEpx,yq ¨
ź

aPt˘1,˘2u

ppχpxq ´ pχpyq ´ aq¨

We have degpBq ď degp pEq ` 4 degppχq ď 6d. Let B
p6dq

lines be the p6dqth lines table for B.

Size of pB,B
p6dq

linesq is 2Opm log qq over alphabet of size Opd log qq.

Observation 6.2. Suppose pχpuq P t´1, 0, 1u for every u P V . For any two vertices u and v,
Bpu,vq “ 0 if and only if either pu,vq R E or pχpuq ‰ pχpvq.

Let MB denote a vanishing certificate polynomial for B|V . Let d2 :“ degpMBq ď degpBq ď

6d. Let Mp6dq

B,lines be the p6dqth lines table for MB.

Size of pMB,Mp6dq

B,linesq is 2Opm log q`k log qq over alphabet of size Opd log qq.

The proof Π consists of the following oracles:

Π “

´

pχ, pχ
pdq

lines, A, A
p3dq

lines, MA, Mp3dq

A,lines, B, B
p6dq

lines, MB, Mp6dq

B,lines

¯

(8)

As we have mentioned, the size of each of the components in Π, we get that the size of the proof
Π is 2Opm log q`k log qq “ qOpm`kq over an alphabet of size Opd log qq.

Description of the standard verifier V We are now ready to describe the standard verifier
V to test whether a graph G is 3-colorable or not. In the following description, we interpret that
the proof Π consists of the oracles as stated in Equation (8), i.e., V will interpret the proof Π as
a long string with sub-strings forming the structure in Equation (8). We will show that V is a

5 Recall k is the Gröbner complexity of GpV q.
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standard verifier which uses Opm ` kq random bits, makes Op1q queries to proofs over alphabets
of size Opd log qq, have soundness guarantee of γ, and has running time qOpm`kq, for some constant
γ P p0, 1q.

Algorithm 5: Test by the Verifier V
Input: Degree parameter d, subset V , Gröbner generating set for V , polynomial pE,

strings a,b P Fmq , α,β P F2m
q , γ1,γ2 P Fm`k

q , µ1,µ2 P F2pm`kq
q , t P Fˆ

q ,

and oracle access to Π “ prχ, rχ1, rA, rA1, ĂMA, ĂM1
A,

rB, rB1, ĂMB, ĂM1
Bq

1 Query rχras, rχrbs, rAras, rBra,bs // 4 queries to Π

2 Run LDT rχ,rχ1

d p;a,b, tq, LDT rA, rA1

3d p;a,b, tq, and LDT rB, rB1

6d p;α,β, tq (see Algorithm 1)
// 6 queries to Π and runs in time polypm, dq

3 if either of the above three LDT test returns Reject then
4 return Reject

5 if rAras ‰ rχras ¨ prχras ´ 1q ¨ prχras ` 1q OR
rBra,bs ‰ pEpa,bq ¨

ś

iPt˘1,˘2uprχras ´ rχrbs ´ iq // Runs in time polypn, qOpmq
q

6 then
7 return Reject

8 Run ZERO
rA, ĂMA, ĂM1

A
3d p;γ1,γ2,a, tq and ZERO

rB, ĂMB , ĂM1
B

6d p;µ1,µ2,α, tq (see
Algorithm 4) // 14 queries to Π and running time polypn, qOpm`kq

q

9 if either of the above two ZERO tests return Reject then
10 return Reject

11 return Accept

Efficiency The random string used by V is the tuple pa,b,α,β,γ1,γ2,µ1,µ2, tq. It is clear from
here that these are Oppm ` kq log qq random bits. From the comments in Algorithm 5, it is clear
that V makes Op1q queries to the string Π, which is over an alphabet of size Opd log qq. From the
comments in Algorithm 5, it is also clear that the running time of V is qOpm`kq.

Completeness Let G “ pV,Eq P 3-COLOR. This means there exists a coloring χ : V Ñ t´1, 0, 1u

such that for every edge pu,vq P E, we have χpuq ‰ χpvq. Let Π be as stated in Equation (8).
From the first item of Theorem 3.5, we know that all three low-degree tests LDT return Accept

with probability 1. From the definition of pE, pχ,A, and B, we know that V never returns Reject in
Line 6 of Algorithm 5. Using Observation 6.1 and Observation 6.2, we know that both A|V ” 0 and

B|VˆV ” 0. From the completeness part of Lemma 5.3, we know that both ZEROA,MA,M
p3dq

A,lines

and ZEROB,MB ,M
p6dq

B,lines return Accept with probability 1. Hence VΠpGq always return Accept
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and thus has completeness 1.

Soundness Instead of the basic soundness claim, we prove a stronger claim that will also be
useful in Section 7.

Claim 6.3 (Soundness). For any constant ε ą 0 there is a constant γ ą 0 such that the following
holds. Suppose there exists no proper 3-coloring ψ : V Ñ t´1, 0, 1u of G such that δprχ, pψq ď ε,
where pψ is a degree d extension of ψ. Then V returns Reject with probability at least γ. In
particular, if G is not 3-colorable, then V rejects with some constant probability.

Proof of Claim 6.3. Consider the following events:

• E1 denotes the event that at least one of the three LDT test returns Reject. This event
depends on the choice of pa,b,α,β, tq.

• E2 denotes the event that

rAras ‰ rχras ¨ prχras ´ 1q ¨ prχras ` 1q OR rBra,bs ‰ pEpa,bq ¨
ź

iPt˘1,˘2u

prχras ´ rχrbs ´ iq.

This event depends on the choice of pa,bq.

• E3 denotes the event that ZERO
rA, ĂMA, ĂM1

A
3d returns Reject. This event depends on the choice

of pγ1,γ2,a, tq.

• E4 denotes the event that ZERO
rB, ĂMB , ĂM1

B
6d returns Reject. This event depends on the choice

of pµ1,µ2,α, tq.

Let 0 ă γ ă 0.01 be an appropriate constant that we will choose later. If either of events E1, E2,
or E3 happens with probability ą γ, then we are done. Assume each of the events E1, E2, and E3
happens with probability ď γ. We will show that E4 happens with probability ą γ.

Since E1 happens with probability ď γ, Theorem 3.5 implies:

• There exists degree d polynomial P
rχpxq such that δpP

rχ, rχq ď 4γ.

• There exists degree p3dq polynomial P
rA
pxq such that δpP

rA
, rAq ď 4γ.

• There exists degree p6dq polynomial P
rB
pxq such that δpP

rB
, rBq ď 4γ.

We show the following claim on the relation between P
rχ, P rA

, and P
rB
.

Claim 6.4. Let the polynomials P
rχ, P rA

, and P
rB
be as mentioned above. Then for every x,y P Fmq ,

P
rA
pxq “ P

rχpxq ¨ pP
rχpxq ´ 1q ¨ pP

rχpxq ` 1q. (9)

and
P

rB
px,yq “ pEpx,yq ¨

ź

iPt˘1,˘2u

pP
rχrxs ´ P

rχrys ´ iq. (10)
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Proof of Claim 6.4. The idea is to show that each pair of polynomials in either Equation (9) or
Equation (10) agree on a large fraction of their respective domains. Since these are all low-degree
polynomials, the polynomial distance lemma will imply that they are, in fact, equal.

Since the event E2 happens with probability ď γ, we have the following two inequalities:

Pr
a„Fm

q

”

rAras ‰ rχras ¨ prχras ´ 1q ¨ prχras ` 1q

ı

ď γ (11)

and also

Pr
a,b„Fm

q

»

–
rBra,bs ‰ pEpa,bq ¨

ź

iPt˘1,˘2u

prχras ´ rχrbs ´ iq

fi

fl ď γ. (12)

Using δpP
rχ, rχq ď 4γ, δpP

rA
, rAq ď 4γ, and Equation (11) together, via triangle inequality, we get:

Pr
a„Fm

q

“

P
rA
paq ‰ P

rχpaq ¨ pP
rχpaq ´ 1q ¨ pP

rχpaq ` 1q
‰

ď 9γ

Since both the polynomials in the above inequality have degree ď p3dq and because 3d{q ă 9γ, the
polynomial distance lemma (Theorem 3.1) implies Equation (9). An analogous argument shows
Equation (10). This finishes the proof of Claim 6.4. ■

We assumed that event E3 happens with probability ď γ. Recall that γ ă 0.01 ă 0.04. From
Lemma 5.3, we can infer that P |

rA
vanishes on V . In other words, using Equation (9), we know

that P
rχ is an extension of a valid vertex coloring rχ (i.e. rχ assigns each vertex a color from the set

t´1, 0, 1u). We will now show that event E4 happens with probability ą γ.

Recall that rχ is ε-far from any degree d extension of a proper 3-coloring of G. In particular, for
γ ă ε{4, we know that P

rχ is not an extension of a proper 3-coloring. In particular, there exists
vertices u,v such that pu,vq P E and P

rχpuq “ P
rχpvq. In other words, P

rB
does not vanish on

V ˆ V . From Lemma 5.3, we know that event E4 happens with probability ě p0.04 ´ 4γq ą γ.
Hence we have shown that either one of E1, E2, or E3 happens with probability ą γ, otherwise E4
happens with probability ą γ. This finishes the proof of Claim 6.3.

■

Hence we have shown that the standard verifier V has completeness 1, soundness γ for some constant
γ P p0, 1q, uses Oppm ` kq log qq random bits, makes Op1q queries to a proof of size qOpm`kq over
an alphabet of size Opd log qq, and runs in time qOpm`kq. As we discussed earlier, VPCP repeats V
for Op1{γq “ Op1q times to achieve soundness of 1{2, and the other parameters remain the same
upto Op1q factor. This finishes the proof of Theorem 2.3. ■

7 The PCP Theorem with One Composition

In this section, we use the main theorem (Theorem 2.3) to give a proof of the PCP theorem with
a single composition, composing two different instantiations of our basic PCP.

26



More precisely, we need an extension of our PCP to a Robust Assignment-Tester (or equivalently a
Robust PCP of Proximity [BGHSV06]). The definition below is due to Dinur and Reingold [DR06].
We will assume throughout this section that there is a single growing parameter n and all other
parameters (R, q, ε, . . .) are (possibly constant) functions of n.

Notation. Recall that two functions f, g : S Ñ T are said to be δ-close if they differ on at most
a δ-fraction of their inputs and δ-far if they differ on at least a δ-fraction of their inputs.

Definition 7.1 (Robust Assignment-Testers, combining Definitions 3.1 and 3.4 from [DR06]). A
Robust Assignment-Tester with parameters pR, s, ℓ, δ, ε, w, ρq is a reduction whose input is a Boolean
circuit φ of size n over Boolean variables X. The reduction runs in time polypn,Rq and outputs
a system of Rpnq Boolean circuits ψ “ tψ1, ..., ψRu, each ψi of size at most spnq over Boolean
variables X and auxiliary variables Y such that the following conditions hold.

• Each ψi depends on a set of ℓ variables from XYY , which we denote Varspψiq. The variables
in Y take values in an alphabet Σ, and are accessible to ψi as a tuple of w “ rlog2p|Σ|qs bits.

• For every Boolean assignment σ : X Ñ t0, 1u,

1. Completeness: If σ satisfies the input circuit φ, then there exists an assignment τ : Y Ñ

Σ such that σ Y τ satisfies all of ψ1, . . . , ψR.

2. Robust Soundness: If σ is δ-far from any satisfying assignment of the input circuit φ,
then for any assignment τ : Y Ñ Σ and for any p1´εq-fraction of the ψi’s, the restricted
assignment pσ Y τq|Varspψiq

is ρ-far from any satisfying assignment of ψi.

A (not necessarily robust) Assignment-Tester with parameters pR, s, ℓ, δ, ε, wq is defined as above,
except that we replace the Robust Soundness condition with the following weaker Soundness condi-
tion.

• Soundness: If σ is δ-far from any satisfying assignment of φ, then for any assignment τ :
Y Ñ Σ and for a p1 ´ εq fraction of the ψi’s, the restricted assignment pσ Y τq|ψi

is not a
satisfying assignment of ψi.

[DR06] showed that the existence of one assignment-tester with specific parameters is enough to
prove the PCP theorem. We state the observation formally below.

Observation 7.2 (Section 3.1 in [DR06]). To prove the PCP theorem i.e.,

NP Ď PCP1,1´Ωp1qrOplognq, Op1q, Op1qs,

it suffices to show that there is an assignment-tester with parameters Rpnq “ polypnq, s, ℓ, w P Op1q

and δ, p1 ´ εq P Ωp1q.

We will prove the existence of such an assignment-tester by composing two robust assignment-testers
with suitable parameters. The process of composition starts with two robust assignment-testers
A1 and A2 and produces a robust assignment-tester A3 with many parameters (e.g. s, ℓ, w) that
are dictated by the parameters of A2. The robust assignment-tester A3 tests assignments to the
Boolean circuit φ that is an input to A1.
The construction is simple: The tester A3 first runs A1 with input φ and then runs A2 on each
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of the circuits produced by A1. The high-level idea behind it is that we test an assignment to the
input circuit φ to A1 by testing that each of the ‘local views’ of the various circuits produced by A1

is close to a satisfying assignment, where the latter process is carried out by the circuits produced
by reduction A2. This leads us to the following observation of Dinur and Reingold [DR06, Lemma
3.5], which we need only as a black box.

Lemma 7.3 (Composing robust assignment-testers: Lemma 3.5 in [DR06]). Assume that there ex-
ist A1 and A2 are robust assignment-testers with parameters pR1, s1, ℓ1, δ1, ε1, w1, ρ1q and
pR2, s2, ℓ2, δ2, ε2, w2, ρ2q respectively. If ρ1 ě δ2, then there also exists a robust assignment-tester
A3 with parameters pR3, s3, ℓ3, δ3, ε3, w3, ρ3q where

• R3pnq “ R1pnq ¨R2ps1pnqq,

• s3pnq “ s2ps1pnqq,

• ℓ3pnq “ ℓ2ps1pnqq,

• δ3pnq “ δ1pnq,

• ε3pnq “ ε1pnq ` ε2ps1pnqq ´ ε1pnq ¨ ε2ps1pnqq,

• w3pnq “ w2pnq,6

• ρ3pnq “ ρ2pnq.

Turning our PCPs into robust assignment-testers. To use the above lemma, we instantiate
our main theorem with the two different choices of varieties used in Lemma 2.5 and Lemma 2.7.
While these statements only yield PCPs (a weaker object than assignment-testers) for the 3-COLOR
problem, we show that they easily yield assignment-testers for Boolean circuits using two basic in-
gredients: basic properties of standard reductions showing 3-COLOR is NP-hard and the local cor-
rectability of the polynomial witnesses in the PCP proof of Theorem 2.3 using Theorem 3.7.

The following is a basic property of standard reductions form Circuit-SAT to 3-COLOR. One can
prove it e.g. by using the standard Tseitin transformation (reducing Circuit-SAT to 3-SAT) fol-
lowed by the reduction from 3-SAT to 3-COLOR in [GJS76, Theorem 2.1].

Lemma 7.4. There is a polynomial-time reduction from Circuit-SAT to 3-coloring that satisfies
the following. On input a Boolean circuit φ, the graph G “ pV,Eq produced by the reduction has
the property that for any satisfying assignment σ : X Ñ t0, 1u of φ, there is a proper 3-coloring
χ : V Ñ t´1, 0, 1u such that |V | “ Op|φ|q, χ restricts to σ on a fixed subset V0 of V (here V0 is
in 1-1 correspondence with X) and χpv0q “ ´1 for some fixed v0 P V zV0. Furthermore, any proper
3-coloring χ : V Ñ t´1, 0, 1u satisfying χpv0q “ ´1, upon restriction to V0, yields a satisfying
assignment σ1 : X Ñ t0, 1u of the circuit φ.

Given the above, we can easily modify the PCPs from the proofs of Theorem 2.3 to yield assignment-
testers for CircuitSAT. We will show how to do this below.

Moreover, we will use an idea of Dinur and Reingold to make these assignment-testers robust using
the simple process of encoding the input symbols by an explicit asymptotically good error-correcting

6 This is not explicitly stated in [DR06] but it follows trivially from the proof.
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code. More precisely, we use the following lemma.
Lemma 7.5 (Robustization: Lemma 3.6 in [DR06]). There is an absolute constant c1 such that
if there is an assignment-tester A with parameters pR, s, ℓ, δ, ε, wq, then there is also a robust
assignment-tester A1 with parameters pR1 “ R, s1 “ c1 ¨ s, ℓ1 “ ℓ, δ1 “ δ, ε1 “ ε, w1 “ polypwq, ρ1 “

1{pc1 ¨ ℓqq.

We are now ready to state the main lemma of this section, which says that the PCPs from the
previous section can be turned into robust assignment-testers with suitable parameters.
Lemma 7.6. There exist absolute constants c, c1 such that the following holds. Assume that for
every n ě 1, there exist q “ qpnq,m “ mpnq, d “ dpnq, k “ kpnq such that q ě cd3 and a variety
Vn Ď Fmq of size ωpnq constructible in time polypnq with extension degree d and Gröbner complexity
k. Then, for any δ “ δpnq ą 0, there is a robust assignment-tester with parameters

ˆ

qOpk`pm{δqq, polyppd log qq{δq, ℓ “ Op1{δq, δ, 1{4, qOpdq,
1

c1 ¨ ℓ

˙

Proof. The constants c and c1 are chosen from Theorem 2.3 and Lemma 7.5 respectively. We can
assume without loss of generality that c ě 100.

We can now describe the reduction A behind the assignment-tester (we will make it robust below).
The reduction first reduces the given instance φ of CircuitSAT to an instance G “ pV,Eq of 3-
COLOR using the polynomial-time reduction described in Lemma 7.4 (so |V | “ Opnq). Fix V0 Ď V
(which is 1-1 correspondence with the set of variables X of φ) and v0 P V zV0 as mentioned above.

The reduction A now constructs a variety Vn as in the hypothesis of the lemma. Note that |Vn| “

ωpnq ě |V |. After adding some isolated vertices to G if required, we can identify V with Vn.

We now consider the algorithm Tester specified in Algorithm 6 with c2 and c3 being absolute
constants that we will choose below. For any choice of these constants, the algorithm uses r “

Oppk ` pm{δqq log qq many random bits, makes Op1{δq queries to its input oracles σ and τ where
the former is defined over the Boolean alphabet and the latter is defined over an alphabet of
size Opd log qq. The reduction A iterates over all sequences b of r random coin tosses used by the
algorithm and for each it produces a Boolean circuit ψb that performs the checks specified in the
algorithm.
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Algorithm 6: Tester

Input: Degree parameter d and oracle access to pσ, τq where σ : X Ñ t0, 1u,
τ : Y Ñ Σ, where Σ is the alphabet of the PCP verifier from Theorem 2.3
and |Y | “ qOpk`mq is the length of the proof.

1 Run the PCP verifier from Theorem 2.3 on τ independently c2 times. If the PCP
verifier rejects even once, then return Reject // Random bits r1

“ Opc2pk ` mq log qq,

number of queries ℓ1
“ Op1q, alphabet size Opd log qq.

2 Run LCχ̂,χ̂
1

d pv0q and if the algorithm rejects or returns anything other than ´1, then
return Reject // Random bits Opm log qq, number of queries Op1q.

3 Repeat c3{δ times: Sample random v P V0 and run LCχ̂,χ̂
1

d pvq. If the algorithm
rejects or returns anything other than σpvq, then return Reject // Random bits

Oppc3{δq ¨ m log qq, number of queries Opc3{δq.

4 return Accept

The number of circuits produced is 2r “ qOpk`pm{δqq, each of which queries ℓ “ Op1{δq locations
in the string σ Y τ. The computations performed by ψb are all efficiently computable functions of
the queried bits, and hence the circuit ψb has size that is polynomial in the number of bits queried,
which is Oppd log qq{δq. The alphabet Σ is the same as that of the PCP verifier and hence has
cardinality qOpdq.

To show that this is an assignment tester, it suffices to argue the completeness and soundness
criteria. Completeness is trivial from the definition of the PCP and the properties of the NP-
completeness reduction argued above.

For soundness, let us assume that σ : X Ñ t0, 1u is δ-far from any satisfying assignment to φ. We
need to show that the probability that Algorithm 6 rejects is at least 3{4, since this also means
that at least 3{4 of the circuits ψb reject.

By the soundness of the PCP verifier Claim 6.3 we know that it rejects with constant probability
unless χ̂ is at distance at most η “ 0.01 from a degree d polynomial P : Fmq Ñ Fq that is a low-
degree extension of a proper 3-coloring of G. Since we repeat the tests of the PCP verifier c2 many
times, the acceptance probability in case this does not hold is expp´Ωpc2qq ď 1{4 as long as c2 is
large enough.

So from now on, we assume that χ̂ is η-close to a degree d polynomial P which is a low-degree
extension of a proper 3-coloring χ : V Ñ t´1, 0, 1u. If χpv0q ‰ ´1, then by Theorem 3.7, the next
step rejects with probability at least

1 ´ 2
?
η ´

d

q ´ 1
ě 1 ´ 2

?
η ´

1

c
ě

3

4
.

Thus, we can assume that χpv0q “ ´1.

Finally, since χ is a proper 3-coloring of G and χpv0q “ ´1, it follows that the restriction of χ to V0
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defines a satisfying assignment of φ. Since σ is δ-far from any satisfying assignment of φ, it follows
that for each v P V0 chosen in the next step, the probability that σ and χ differ at v is at least δ.

Further, by Theorem 3.7, the probability that LCχ̂,χ̂
1

d pvq returns χpvq or rejects is at least 3{4 (as
in the previous paragraph). Thus, the chance that this step does not reject is bounded by

ˆ

1 ´
3δ

4

˙c3{δ

ď 1{4

as long as c3 is a large enough constant. This concludes the proof of the soundness of A.

We have thus shown that A is an assignment-tester with parameters

pqOpk`pm{δqq, polyppk ` pm{δqq log qq, ℓ “ Op1{δq, δ, 1{4, qOpdqq.

In order to make the assignment-tester robust, we simply apply the Robustization lemma Lemma 7.5.
This concludes the proof of Lemma 7.6. ■

Proving the PCP theorem. To conclude the proof of the PCP theorem, we apply the above
lemma to the PCPs given by specific instantiations of V already seen above.
Lemma 7.7 (Outer robust assignment-tester). For any δ1 “ δ1pnq ą 0, we have a robust assignment-
tester with parameters

pR1 “ nOp1{δ1q, s1 “ polypplog nq{δ1q, ℓ1 “ Op1{δ1q, δ1, ε1 “ 1{4, w1 “ polypnq, ρ1 “ 1{pc1 ¨ ℓ1qq.

Proof. Set q “ polyplognq a power of 3, V “ Hm forH Ď Fq of size logn, andm “ Oplogn{ log lognq.
The lemma follows from Lemma 7.6 and Corollary 4.4. ■

Lemma 7.8 (Inner robust assignment-tester). For any c “ cpnq, δ2 “ δ2pnq ą 0, we have a robust
assignment-tester with parameters

pR2 “ cOpcn2{c{δ2q, s2 “ polypc{δ2q, ℓ2 “ Op1{δ2q, δ2, ε2 “ 1{4, w2 “ cOpcq, ρ2 “ 1{pc1 ¨ ℓ2qq.

Proof. Set V “ pt0, 1u
m{c
ď1 qc Ď Fmq for a suitably large q “ polypcq and m “ Opn1{cq. The lemma

follows from Lemma 7.6 and Corollary 4.5. ■

We can now prove the PCP theorem.

Proof of Theorem 2.8. We compose the robust assignment-testers from Lemma 7.7 and Lemma 7.8
above.

Choosing δ1 to be any absolute constant in p0, 1q, c to be a large enough absolute constant such
that R2ps1pnqq “ polypnq, and δ2 ď ρ1 another absolute constant, we obtain two robust assignment
testers that can be composed using Lemma 7.3. This leads to a robust assignment-tester with
parameters R3 “ polypnq, s3, ℓ3, w3 P Op1q and δ3, 1 ´ ε3 P Ωp1q, which by Observation 7.2 implies
the PCP theorem. ■
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A Relation between Gröbner Bases and Gröbner Generating Sets

In Section 4 we introduced Gröbner generating sets. We here show that Gröbner bases are Gröbner
generating sets, and that Gröbner bases are also well-behaved under Cartesian products.
Definition A.1. An ordering of monomials in krxs is called admissible, if every monomials
M,N,L P krxs satisfies

1. M ď N implies ML ď NL.

2. M ď ML.

if an admissible ordering further satisfies

3. degpMq ă degpNq implies M ă N

we call it a graded ordering. For a polynomial P , we define LMpP q as the monomial in P of
maximal order.
Example A.1.1. For the lexicographic ordering we have M ă N if there exist i such that the
exponent of xj in M is equal to the exponent of xj in N for j ă i and the exponent of xi in M is
strictly smaller than the exponent of xi in N .

For the graded lexicographic, we have M ă N if degpMq ă degpNq or if degpMq “ degpNq and
M ă N in the lexicographic ordering.
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Definition A.2. fix an admissible ordering of monomials in krxs. A generating set G of an
ideal I Ď krxs is a Gröbner basis with respect to that ordering, if the leading monomial of every
polynomial in I is a multiple of a leading monomial of a polynomial in G.

If the ordering is graded, we say that G is a graded Gröbner basis.
Lemma A.3. Let G be a Gröbner basis for a graded ordering. Then G is a Gröbner generating
set.

Proof. If G is a Gröbner basis for I, then a polynomial f is in I if every complete lead reduction of
f results in the zero polynomial. Every step of the reduction will be of the form

f 1 ´
LMpf 1q

LMpgq
g

for some g P G and f 1 being an intermediate result in the reduction.

For a graded ordering we have by definition degpLMpfqq “ degpfq for every f , so

deg

ˆ

LMpf 1q

LMpgq
g

˙

“ degpf 1q ď degpfq

■

Remark A.4. If G is a Gröbner basis of smallest size, then is not necessarily a Gröbner generating
set of smallest size. For example, the two polynomials spanning the ideal

`

x21, x1x2 ´ x22
˘

form a Gröbner generating set, as they both are homogeneous of degree 2. However, we also have

x32 “ x2 ¨ x21 ´ px1 ` x2q ¨
`

x1x2 ´ x22
˘

so x32 P
`

x21, x1x2 ´ x22
˘

, and so in the graded lexicographic ordering x21, x1x2, x
3
2 are all leading

monomials. Since no monomials of degree 2 can divide two of these monomials, a Gröbner basis
must contain at least 3 elements.

34

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


