Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 165 (2025)

Ideals, Grobner Bases, and PCPs

Prashanth Amireddy* Amik Raj Behera’ Srikanth Srinivasan ¥ Madhu Sudan®
Sophus Valentin Willumsgaard 1

November 5, 2025

Abstract

All known proofs of the PCP theorem rely on multiple “composition” steps, where PCPs
over large alphabets are turned into PCPs over much smaller alphabets at a (relatively) small
price in the soundness error of the PCP. Algebraic proofs, starting with the work of Arora,
Lund, Motwani, Sudan, and Szegedy use at least 2 such composition steps, whereas the “Gap
amplification” proof of Dinur uses ©(logn) such composition steps. In this work, we present the
first PCP construction using just one composition step. The key ingredient, missing in previous
work and finally supplied in this paper, is a basic PCP (of Proximity) of size 27" for any € > 0,
that makes O, (1) queries.

At the core of our new construction is a new class of alternatives to “sum-check” protocols.
As used in past PCPs, these provide a method by which to verify that an m-variate degree d
polynomial P evaluates to zero at every point of some set S < IFj". Previous works had shown
how to check this condition for sets of the form S = H™ using O(mn) queries with alphabet F?
assuming d > |H|. Our work improves this basic protocol in two ways: First we extend it to
broader classes of sets S (ones closer to Hamming balls rather than cubes). Second, it reduces
the number of queries from O(m) to an absolute constant for the settings of S we consider.
Specifically when S = ({0, 1}2{0)0, where T' = {0, 1}%, < F§ denotes the set of Boolean vectors
of Hamming weight at most b in Fy, we give such an alternate to the sum-check protocol with
O(1) queries with alphabet]Fff (C+d), using proofs of size qo(mQ/ ©). Our new protocols use insights
from the powerful theory of Grobner bases to extend previously known protocols to these new
settings with surprising ease. In doing so, they highlight why these theories from algebra may
be of further use in complexity theory.

*School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported in
part by a Simons Investigator Award and NSF Award CCF 2152413 to Madhu Sudan and a Simons Investigator
Award to Salil Vadhan. Email: pamireddy@g.harvard.edu

"Department of Computer Science, University of Copenhagen, Denmark. Supported by Srikanth Srinivasan’s
start-up grant from the University of Copenhagen. Email: ambe@di.ku.dk

tDepartment of Computer Science, University of Copenhagen, Denmark. Supported by the European Research
Council (ERC) under grant agreement no. 101125652 (ALBA). Email: srsre@di.ku.dk

$School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported
in part by a Simons Investigator Award, NSF Award CCF 2152413 and AFOSR award FA9550-25-1-0112. Email:
madhu@cs.harvard.edu

IDepartment of Computer Science, University of Copenhagen, Denmark. Supported by the European Research
Council (ERC) under grant agreement no. 101125652 (ALBA). Email: sophus.willumsgaard@di.ku.dk

ISSN 1433-8092

Contents

1

2 Formal Statement of Our Results
21 PCPs
3 Preliminaries
3.1 Low-degree Testing
3.2 Local Correction of Low-Degree Polynomials
4 Grobner Generating Sets
5 Zero-on-Variety Test
6 Proof of the Main Theorem (Theorem 2.3)
7 The PCP Theorem with One Composition
References

Introduction

1.1 Overview of Our Construction

A Relation between Grobner Bases and Grobner Generating Sets

11

16

21

26

32

33

1 Introduction

In this paper, we give a new general framework for constructing algebraic PCPs that leads to the first
proof of the PCP theorem using only one “composition” step. Starting with the work of Arora and
Safra [AS98], composition of PCPs has been a key ingredient in all previous PCP constructions. The
original proof of the PCP theorem due to Arora, Lund, Motwani, Sudan, and Szegedy [ALMSS98]
used two composition steps, while the novel alternate proof due to Dinur [Din07] uses O(logn)
composition steps. Compositions improve various parameters of the construction at the cost of
making the verifier less transparent. So it is a natural and long-sought goal to try to minimize the
number of composition steps (to one, or even zero!). We achieve the weaker goal here.

The key to our construction is a new class of protocols replacing the “sum-check” protocol in
PCP constructions. The sum-check protocol, due to Lund, Fortnow, Karloff, and Nisan [LFKN92]
(also used in proofs of IP=PSPACE [Sha92] and MIP=NEXPTIME [BFL.91]) has been a central
ingredient in previous PCP constructions. In PCP constructions, the protocol is used to establish
that an m-variate polynomial P over Fy given as an oracle from Fj" — F, is identically zero on
the set {0,1}" < [Fg" or more generally, on some set of the form H™ for H < F;. We refer to this
latter task as “zero-on-variety testing”. (The reason for the use of the term “variety” to describe
the set H™ will become clearer later.) Other than the sum check protocol, the only other direct
protocol for zero-on-variety testing is a protocol due to Ben-Sasson and Sudan [BS08], which also
only works for varieties of the form H™. In this work, we establish a new connection between
the theory of Grobner bases and the zero-on-variety test of [BS08] that allows us to get efficient
zero-on-variety tests for a much broader class of varieties, including some varieties that are close to
Hamming balls of constant radii. This latter setting which had eluded previous works and is key
to our PCP construction.

Armed with this new class of protocols, we show how to significantly simplify the ALMSS PCP
construction. We start by giving a new PCP construction that works relative to any variety V' < Fi*
with performance depending on the “Grébner basis complexity” of the variety, a notion we define.
We then show how to specialize this PCP in two different ways by using two different varieties —
the first giving the usual O(logn) randomness and poly(logn) query PCP for NP, and the second
giving an O(n®) randomness and O.(1) query PCP for NP, for any € > 0. No natural PCP (built
without composition) was known with the latter setting of parameters, and indeed, this has been
the key bottleneck in reducing the number of composition steps in ALMSS. We stress that both
our ingredient PCPs are instantiations of the same protocol — only the choice of the variety is
different (and the analysis of the Grobner basis complexity of the varieties is straightforward)!
And furthermore, our PCPs are already “robust assignment testers” in the sense of Dinur and
Reingold [DRO6] (or equivalently, Robust PCPs of Proximity in the sense of Ben-Sasson, Goldreich,
Harsha, Sudan and Vadhan [BGHSV06]) and thus immediately composable. Putting our two
robust assignment testers together yields our final PCP. The resulting proof thus gives the following
simplifications to the ALMSS protocol: It eliminates one composition step, it eliminates the need for
the “Hadamard PCP” entirely, and it eliminates the need for the “parallelization/robustification”
step in ALMSS [ALMSS98, Section 7).

In what follows, we describe our work in greater detail, starting with the basic notion of interest
in this paper, the zero-on-variety testing problem, and the resulting PCPs.

1.1 Overview of Our Construction

PCPs of Proximity The central objects of interest in this paper are best described by the
umbrella term “PCP of Proximity” (or equivalently “assignment tester”). Here a verifier V is given
oracle access to some oracle f : D — ¥ along with a proof oracle 7 : S — I'" where D, S, ¥ and
I are finite sets. A verifier for a property F < {g : D — X} queries (f,) and renders a verdict
Accept/Reject, with the property that if f € F then there exists a m such V/™ always outputs
Accept, while for f ¢ F we have that for every proof m, V/™ outputs Reject with probability!
Q(0x(f)). The key parameters associated with the verifier are its randomness (usually O(log |S])),
its locality (or query complexity) ¢ which is the total number of queries to f and 7, and the alphabet
size a = max{log |X|,log |T'|}.

A good example of a PCP of Proximity is the low-degree test. Here D = F;" and ¥ = F;. The
property Fi, 44 is the set of evaluations of all m-variate polynomials over I, of total degree at most
d. When d < q the best known low-degree tests achieve randomness of O(mlogq), locality ¢ = 2,
and alphabet size dlogq. (See Theorem 3.5.) The fact that the locality is a constant and d and m
affect only the randomness and alphabet size is important in their use in PCPs.

Zero-on-variety testing The zero-on-variety testing problem is also a PCP of Proximity prob-
lem. It is described by parameters Fy, d, m and a variety V' < F;". Here the verifier is given oracle
access to a function f : Fj" — F, that is promised to be a degree d polynomial, and goal is to
test for the property Fy,4 that is the set of all degree d polynomials that are identically zero on
V, or equivalently if the polynomial f lies in the ideal of polynomials I(V') vanishing on V. (In
this description, we opt to describe this as a promise problem - though in PCP applications, the
non-promised version of this problem is the one used. The two become essentially equivalent thanks
to the existence of low-degree tests.)

Prior to this work, the only natural zero-on-variety tests considered the setting where V = H™ for
some H < F,. The protocol given by [BS08] uses the following identity. f € I(H™) if and only if
there exist polynomials fi, ..., f,, of degree at most d — |H| such that

m

FX) =) (X)) Zu(Xs), (1)

i=1

where Zy(Y) = [[,eg(Y — @) is the canonical univariate polynomial that vanishes on H. The
identity above follows from Alon’s Combinatorial Nullstellensatz [Al099] and leads to a tester as fol-

lows: The zero-on-variety tester for H™ expects oracles for f1,..., f;, as proof. It verifies using the
low-degree test that each of these oracles has degree at most d — |H| and then verifies Equation (1)
for a random choice of X = (ai,...,ay). Modulo further details (involving local correction), this

leads to an O(m) local tester with randomness O(mlogq) and alphabet size O(dlogq).

For our purposes, this choice of variety is insufficient. (Furthermore, the dependence of the lo-
cality on m is also problematic, but we’ll address this later.) To remedy this, we use an al-
ternate interpretation of the identity above. In this interpretation the identity holds because
{Zu(X1),...,Zg(Xm)} form a “Grobner basis” of the ideal I(H™) under a “graded monomial

"Here 67(f) = minger{3(f,g)} and 5(f,g9) = Przep[f(z) # g(x)] measure the distance of f from F is the
normalized Hamming metric.

ordering”. We won’t define the exact notion of a Grobner basis under different monomial orderings
here — we don’t need to. The notion that suffices for us is a notion we call a Grobner generating
set G of an ideal I: G is a Grébner generating set for 1 if for all polynomials P € I there exist
polynomials hy, g € G such that P = dea hg - g and deg(hy - g) < deg(P) for every g € G. And
the above identity is the special case where V' = H™ with {Zg(X1),...,Zg(Xm)} as the Grobner
generating set. The zero-on-variety test of [BS08] can now be extended to any variety that has a
“small” Grobner generating set. Indeed, this motivates our notion of the Grobner complexity of a
variety V (see Definition 4.2 for a formal definition) — which is the size of the smallest Grobner
generating set G of I(V). One crucial example for us is the following: The set of polynomials
{(XiX;|1 <i<j<m}u{X?— X;|i€[m]} form a Grobner generating set for the variety {0,1}7,
consisting of Boolean points of Hamming weight at most 1 in F{". (Thus the variety {0,1}7; has
Grobner complexity O(m?).) We also use the following basic property of Grébner generating sets:
If Gx < Fy[X] is a Grobner generating set for variety Vi and Gy < F,[Y] is one for V5 then
Gx u Gy < F,[X,Y] is a Grobner generating set for Vi x V5. In particular this establishes that
the Grébner complexity of ({0, 1}2)¢ € Fy* is O(em?). Applying the [BS08] protocol to Grébner
generating sets now gives us a O(k) query protocol for testing zero-on-V for variety V of Grébner
complexity k.

While this now gives many new varieties that have natural zero-on-variety tests, the locality of
O(k) can be prohibitive. Our second contribution here is to give a new protocol to test this,
that shifts the Grébner complexity into the randomness of the protocol and achieves (a universal)
constant locality. Specifically our verifier now expects an oracle for My (P)(X,Y) = >} . Yyhg(X)
where Y = (Yy|g € G) is a new set of k variables. Specifically performing a low-degree test on
My (P) along with a test that verifies My (P)(X,0) = 0 ensures that My (P) is effectively giving
access to all linear combinations of hy(X) with constant query complexity. Testing the identity
P(X) = > e hg(X)g(X) at a random choice of X now requires only one query to P and one to
My (P)! Modulo some standard use of self-correction, this gives us an O(1) locality protocol for
zero-on-V testing with alphabet size O(dlog¢) and randomness O((k +m)log q) for any variety V'
of Grébner complexity k. (See Section 5.)

PCPs from Zero-on-variety tests It is straightforward to build PCPs for NP-hard problems
from low-degree tests and zero-on-variety tests. (Recall that a PCP verifier for say graph coloring
is given as input a graph G and oracle access to a purported proof m with the feature that if G is
3-colorable that there exists a m such that V always accepts whereas if G is not 3-colorable then
V rejects every proof m w.p. at least 1/2. The parameters of interest to us are the same — the
randomness, the locality, and the alphabet size of the proof.)

For example, the 3-coloring protocol, based on a similar proof from [BS08], goes as follows: Fix
an odd prime power ¢.?> For a variety V < [y let its “extension degree” be the least integer d
such that every function f: V — F, can be extended to a degree d polynomial in F,[X1,..., X,,].
Now, given a variety V < Fj" of Grobner complexity k and extension degree d we consider the
3-coloring problem on the vertex set V' (same V). Note that the graph is given by an edge function
E :V xV — {0,1} which can be shown to be extendable to a degree 2d polynomial E from
Fgm — F4. A proof that E is 3-colorable includes polynomials x : F* — F,, A @ F' — Fy and

2We do this for simplicity here and allow us to assume {—1,0,1} < F, can be used to represent 3 distinct colors.
The protocol easily extends to other fields using some other set of 3 distinct elements of F,.

B : F2™ — F, satisfying (1) A(X) = x(X) - (x(X) = 1) - (x(X) + 1), (2) A is zero-on-V, (3)
B(X,Y) = E(X,Y) [Lieg—2,-11,2y(x(X) = x(Y) —4) and (4) B is zero on V' x V. (Items (1) and
(2) verify that x is a 3-coloring of V' with color set {—1,0,1}, while items (3) and (4) verify that
X is a valid coloring of the edges of E.) The V-verifier performs low-degree tests on all the four
oracles and then tests identities (1) and (3) by picking a random value of the variables, and finally
verifies items (2) and (4) using zero-on-V and zero-on-V? tests. By the aforementioned properties
on Grobner complexity and standard facts about extension degree we get that this PCP verifier
achieves O(1) locality with randomness O((k + m)logq) and alphabet O(dlogq) (matching those
of the zero-on-V tests up to constant factors).

Instantiating the verifier above with V' = H™ where |V| = n, |H| = logn, m = O(logn/loglogn)
and ¢ = O(log®n) gives an O(1) locality PCP verifier for 3-coloring of n vertex graphs with
randomness O(logn) and alphabet size O(polylogn). But a different instantiation of the same
PCP withm =n®, ¢ =1, g=0.(1) and V = ({0,1}%,)¢ gives an O(1) locality PCP verifier with
randomness O(n?¢) and alphabet size O.(1)! We note that even using ¢ = 1 gives a completely
new protocol matching the parameters of the Hadamard PCP in [ALMSS98, Section 5]. And using
larger values of ¢ gives us our new protocols. (See Section 6 for details.)

Furthermore, these PCPs are easily converted to “Robust PCPs of Proximity” (or “Robust assign-
ment testers”) in the sense of [DR06; BGHSV06] of constant robustness — since our PCPs have
constant locality. This allows us to compose the PCPs above in a single composition step to get an
O(1) locality PCP verifier with O(log n) randomness and O(1) alphabet size — and thus the PCP
theorem. (See Section 7 for details.)

2 Formal Statement of Our Results

We first introduce basic definitions needed to state our main result. Throughout this document, V!
means that the algorithm/circuit/verifier has oracle access to the string II, i.e., V can query II[i]
for any 1 < i < |II|. We use the notation V! (x; R) to say that the algorithm V has oracle access
to I1, has input x, and access to a random string R. In this notation, V(z; R) is a deterministic
algorithm and the randomness is in the choice of R.

2.1 PCPs

Definition 2.1 (Standard Verifier). For functions r,{,a : Z2° — 729, define a (r,¢,a)-standard
verifier V as follows:

Let ¥ = {0,1}%("). On input x € {0,1}" of length n, a string® R e {0,1}""™), and oracle access to a
string IL € 257%¢(") (j.e. 11 is a string of length size(n) on alphabet {0,1}*™)), we have:

e V(z; R) outputs a subset Q C [size(n)] of cardinality £(n).

e V(z; R) outputs a Boolean circuit C (depends on x and R) depending on £(n)-a(n) bits. The
circuit C' gets access to entries of I as bits of length a(n).

o V(x; R) returns Accept if C(Ulg) =1 and returns Reject if C(Il|q) = 0.

3 This string R is the random string fed into V.

The mazimum circuit size |C| over every possible choice of (x, R) will be referred to as the size of
the standard verifier V. The running time of the standard verifier V will be poly(n - 27"(”)).

Observe that in the above definition, V makes ¢(n) queries to II using the r(n) coin tosses. In
particular, V can only query a coordinate within range of [0,£(n) - 2" — 1]. So from now on, we
will always assume that the proof size |II| is O(¢(n) - 27(™).

Definition 2.2 (The class PCP). For functions r,{,a € 7Z7° — Z7°, for ¢,s € (0,1), define
PCP.s[r, ¢, a] to be the class of languages L that have a standard (r,¢, a) verifier with completeness
> ¢ and soundness < s, i.e.

e Completeness: For every x € L, there exists a proof II such that Prg[V(x; R) = Accept] >
c.

o Soundness: For every x ¢ L, for every I1, we have Prg[V"(z; R) = Accept] < s.

In this paper, we will usually focus on the language 3-COLOR of 3-colorable graphs.

Our main theorem (proved in Section 6) shows the following:

Theorem 2.3 (Main Theorem). There exist constants ¢, £ such that the following holds for
every q,m,d, k such that q¢ = cd?:

Let Fy be a field of characteristic # 2 and let V < Fg* have extension degree d and Grobner
complezity k. Then 3-COLOR on vertex set V' is in PCPy 1 p[c(k +m)logq, ¢, cdlogq] with

proofs of size gck+m),

Remark 2.4. In Theorem 2.3, the assumption on characteristic # 2 is mostly for clarity in the
proofs. We assign the vertices colors from the set {—1,0,1}, and these are three distinct colors only
if the field is of characteristic # 2. For fields of characteristic 2 and with more than 3 elements,
one could use colors {a,b, c}, where a,b, and c are three distinct elements from the field. The proof
1s essentially the same.

Lemma 2.5. For every n, 3-COLOR on n-vertex graphs is in
PCPy 1/ [O(logn), O(1), O(log® n/(loglogn))| with proofs of size nO),

Proof. In Corollary 4.4 we show that if V' = H™ for some H < F, then it has extension degree
(|H|—1)-m and Grébner complexity m. Taking ¢ = clog®n a power of 3, V = H™ for some subset
H c F, of size logn and m = logn/loglogn, we get the desired bounds. |

Lemma 2.6. For every n, 3-COLOR on n-vertex graphs is in
PCPy 12 [(’)(nZ), O(1), (’)(1)] with proofs of size 20(n?)

Proof. In Example 4.2.2 we show that if V' = {0,1}7, := {(a1,...,am) € {0,1}™ 3", a; < 1} is
the set of Boolean points in Fj" of Hamming weight at most 1, then V' has extension degree 1 and
Grébner complexity O(m?). Picking ¢ to be a large constant, and V' = {0, 1}, we get the desired
bounds. n

Note that the above roughly matches the parameters of the Hadamard PCP of [ALMSS98] with a
completely different proof!

Lemma 2.7. For every ¢ > 0 and every n, 3-COLOR on n-verter graphs is in
PCPy 1/ [O(nf), O(1), O(%log %)] with proofs of size 207

Proof. In Corollary 4.5 we show that if V = ({0, 1}21)0, then V has extension degree ¢ and Grobner
complexity O(em?). Given e > 0 picking ¢ = (’)(%), q = poly(1/e), m = n®E) and V = ({07 1}21)c
we get the desired bounds. |

The above concludes the description of the atomic PCPs we construct. In Section 7 we show that
these PCPs can be strengthened to “Robust assignment testers” (see Definition 7.1), and so can be
composed together (see Lemma 7.3) to get the PCP theorem stated below (proved in Section 7).

Theorem 2.8 (PCP Theorem). There exist universal constants £, a, C such that for every n,
3-COLOR on n-vertex graphs is in PCPy 1 5[Clogn, ¢, al.

3 Preliminaries

For a field F,, we will use Fy[z1, ..., 2] to denote the multivariate polynomial ring in variables
T1,...,Tm. For a degree parameter d € N, we will use Pd(IF;") c Fy[z1,...,zm] to denote the
subspace of degree < d polynomials. For a polynomial P € F,[z1,..., 2] and a set V < Fy', we
denote the restriction of P to V by P|y. We will denote by F the set of invertible elements of Fy,
ie. Fy =TF,\{0}.

Theorem 3.1 (Polynomial Distance Lemma). [Ore22; DL78; Sch80; Zip79]. Fiz a field Fy. For

every degree parameter d € N with d < q and for every non-zero polynomial P € Fy[z1, ..., zp], we
have:
d
Pr [P(a)=0] < -.
a~Fg” q

An immediate and useful corollary of Theorem 3.1 is the following: If two degree < d polynomials
P and @ agree on strictly more than d/g-fraction of Fi*, then P = Q.

For any ¢,m € N with ¢ < m, we use {0,1}”Z, to denote the set of Boolean strings of Hamming
weight < ¢. We say that two functions f,g: S — T are d-close or é-far if they differ on at most or
at least a d-fraction of their inputs, respectively.

Lines Table For every m € N, field F, and points a,b € F¢*, let £ay : Fy — FJ" (read as “line
passing through a with slope b”) be defined as £, 1,(t) := a + tb.

Definition 3.2 (Lines Table). Fiz a field F,. Let d € N be the degree parameter and m € N be the
number of variables. For every degree < d polynomial f : Fy* — Fy, we define the d* lines table for

f fl(iflls D P2 — (F,)4*L as the function that maps an input (a,b) € F2™ to f(lan(t)), where
t is an indeterminate. We note that f(lan(t)) is indeed a univariate degree d polynomial in t and

can be specified by the d + 1 coefficients of t°, 1, ...t

3-colorability We state the 3-colorability language below. Note that the choice of 3-coloring as
an NP-complete problem instead of one of many others is simply a matter of convenience.

Definition 3.3. The decision problem 3-COLOR is the following problem:
Given a graph G = (V, E) with n vertices, decide whether there exists a proper coloring of G using
3 colors, i.e. for every edge (u,v) € E, the vertices u and v are assigned different colors.

Lemma 3.4. The decision problem 3-COLOR is NP-complete.

3.1 Low-degree Testing

In this subsection, we discuss the standard point-vs-line test for low-degree testing from [ALMSS98].
We start by recalling the test and state its properties in Theorem 3.5. In the following discussion,
we will switch between a function f : Fi* — F, and its evaluation vector f € (F,)?", as both are
equivalent.

Algorithm 1: Low-Degree Test o7V

Input: Degree parameter d, string a,b € F{", element ¢ € F, and oracle access to

(f, f") where f € (F,)?" and f’ e (F&1)e™"

1 Query f’[(a, b)] and query f[a + tb] // Two queries to (f,f’)
2 if f’[(a, b)|(t) # fla + tb] // Running time is poly(m,d)
3 then
4 return Reject else
5 L return Accept

Theorem 3.5 (Low-degree Testing (see for instance [ALNMSS98, Theorem AS5])). There exists
absolute constants 0 < C, &y such that for every § < &y, for every d,q € N with ¢ > Cd>, the
following holds over F:

(d)
1. 1If f € Py(Fy"), then LDT ines (;a, b, t) returns Accept with probability 1 over the random
choice of (a,b,t).

2. For every f:Fy" — Fy and for every f: Fgm — Fy, we have:

P;)rt[EDTg’f/(;a,b,t) returns Reject] < 0 == d(f, Pa(Fy")) < 4.

Furthermore, EDTi;’f/ makes 2 oracle queries, uses O(mlogq) bits of randomness, and runs in
time poly(m, d).

Remark 3.6. For low-degree testing, there has been a long line of work on achieving better param-
eters in terms of field size and soundness guarantee. We refer the interested reader to [HKSS2/,
Section 1] for a detailed overview of the results of low-degree testing and also for the state-of-the-art
parameters (see [HKSS2/, Theorem 1.2]). We use the low-degree testing from [ALNMSS98] because
the algorithm and analysis are done using the lines table.

3.2 Local Correction of Low-Degree Polynomials

In this subsection, we discuss the local correction/self-correction algorithm for degree d polynomials
over IFj" from [ALMSS98]. We first describe the local corrector and then analyze it in Theorem 3.7.
In the following discussion, we will switch between a function f : Fi* — F, and its evaluation vector

f e (F,)?", as both are equivalent.

{ 3

Algorithm 2: Local Corrector ccY
Input: Degree parameter d, evaluation point a € Fy*, string b € Fg*, element ¢ € IF;,
and oracle access to (f, f’) where f € (F,)?" and f’ € (Fg“)qzm

1 Query f'[(a,b)](¢) and query f[a + tb] // Two queries to (f,f')
2 if f’[(a, b)] (t) #* f[éa,b(t)] // Running time is poly(m,d)
3 then

4 L return Reject
return f'[(a,b)](0)

(9]

Theorem 3.7 (Local Correction (see e.g. [ALMSS98], Proposition 7.2.2.1)). There ezists an abso-
lute constant C > 0 such that for every d,q € N satisfying ¢ > Cd, the following holds.

1. If f is a polynomial of degree d, then for every a € F, CCf’fl(iiZes (a;b,t) is equal to f(a) with

10

probability 1 over the random choice of (b,t).

2. Let f :Fg" — Fy be any function with the condition that there exists a degree d polynomial P

such that 6(f, P) < 8. Then for every f': Fgm — Fg“, for every a € Fi", we have:

If ECL(if’f,)(a) does not return Reject, then LCY)(a) computes P(a) exactly with high prob-
ability over the random choice of (b,t), i.e.

) / d
Eg[EC&f’f)(a;b,t) = P(a) OR L'Cglf’f)(a;b,t) returns Reject| = 1—2[—(1_71.

Furthermore, [,Cff’f')

time poly(m, d).

(a) makes 2 oracle queries, uses O(mloggq) bits of randomness, and runs in

4 Grobner Generating Sets

In Section 5, we define a test to check if a polynomial vanishes on a subset V' < Fi". In this section,
we introduce the relevant parameters of such subsets, which we use to describe the efficiency of
such tests. We also show that these are well-behaved under Cartesian products. We first define the
parameters.

Definition 4.1 (Extension degree). For a non-empty set V < Fy', function f :'V — Fy and
polynomial P € Fy[X1, ..., X,,] we say P extends f if for every a € V, we have f(a) = P(a).

We define the extension degree of V' to be the smallest integer d € N such that every function
f:V =T, can be extended to a polynomial f of total degree at most d.

Definition 4.2 (Grébner Complexity). For an ideal I € Fy[z1, ..., 2] we say that a finite set
& c 1 is a Grébner generating set of I, if every polynomial P € 1 can be written as follows:

P = Z hg-g, where hy€Fylz1,...,xn] and deg(hqyg) < deg(P).
ge®

For a set V. < F*, let I(V) denote the ideal of polynomials that vanish on V. We define the
Grobner complexity of V' to be the cardinality of the smallest Grébner generating set of 1(V).

The naming convention comes from the fact that a Grobner basis in a graded ordering is a Grobner
generating set, as we show in Section A.

Example 4.2.1. Let H be a subset of F,. Then any polynomial in Fy[x] which vanishes on H is
divisible by

[J@-h).

heH

Furthermore, for any function f : H — F, we can find a degree |H| — 1 polynomial extending f. It
follows H has Grobner complezity 1, and extension degree |H| — 1.

11

Example 4.2.2. Let {0,1}2; < Fy be the subset of {0,1}" consisting of points with Hamming
weight at most one. Then

2 2
(1‘1 —X1,...,%y — Tn,T122, ... ,xn_lxn)

is a Grobner generating set. To see this, note that any polynomial P can be written on the form

n

P(x) = Z hi(x) - (22 — x;) Z Gij(x) - (xizj) + €(x)

%

where £ is a linear function, and deg(h;), deg(g; ;) < deg(P)—2. The first two summands vanish on
{0,1}2,, so P vanishes on {0,1}2, if £ also vanishes. However, if £ has a non-zero coefficient for
any variable x;, then ¢ takes different values on two points which only differ in the i-th coordinate.
It follows that £ only vanishes when it is the zero polynomial, and so P vanishes on {0,1}%, if and
only if it can be written on the form

n

P(x) = Z hi(x) - (x — ;) Z Gij(x) - (xixj).

%

It follows that {0,1}%, has Grébner complexity at most % and extension degree 1.

The following lemma shows that we can upper-bound both the Grébner complexity and the exten-
sion degree of Cartesian products.

Lemma 4.3 (Subadditivity of Grébner complexity and extension degree). Let Vi < Fg*t and
Vo < IFg‘Q, and consider their product V1 x Vo C]Fg””m?. We then have:

1. if &1, B9 are Grébner generating sets for 1(Vy),1(Va) respectively, then &1 U &4 is a Grobner
generating set for I(Vy x V3).

2. if V1, Vo have extension degrees di,do respectively, then Vi x Vo has extension degree at most
dy + ds.

In particular, both the Grobner complexity and extension degree are subadditive under Cartesian
products.

Proof of Lemma 4.5. Let V' be a subset of Fy". We first note, that we can a find a monomial
basis S < F,[x]| for the space of functions]Fq ,
combination of monomials from S of same or lesser degree.

such that any polynomial is equivalent to a linear

We argue as follows. Since V is finite,]F}l/ is spanned by polynomials and so is also spanned by
monomials. Then we can create S iteratively by degree, by first setting Sy = {1} as a basis of
IE‘X N P<o(Fy'), and S;11 by extending S; to a monomial basis of IE‘X N P<it1(Fy'), and setting

= J; Si- Since any polynomial of degree ¢ is contained in the span of S;, it must then be
equivalent to a sum of monomials of degree at most ¢, showing the desired property.

Now let S be such a basis. Then any polynomial P as a function from V' to F, is equivalent to a

12

linear sum
P = Z CsS
seS
and so
P — Z css =0
seS

is a polynomial of degree at most deg(P) vanishing on V. It follows that a subset & < F,[x] is a
Grobner generating set of I(V) if and only if every polynomial P can be written in the form

P:ECSs—i-Zhgg,

seS geB

where each summand has degree at most deg(P).

Now, let V1, Vi be subsets with S7, ®; < Fy[x] and Sz, &3 < F,[y] as above, and set
512 = {8182 ’ S1 € Sl, S € SQ}

Then S12 is a basis for functions Vi x Vo — FF, with the above mentioned property. We will show
that &; U B4 is a Grobner generating set for Vi x Va. Let mq(x)m2(y) be a monomial in Fy[x,y],
We can apply the above property to each monomial separately to get

m1(x)ma(y) = (Z) hgg) Moews' + > hyg

seST geB s'eSy g'e®y

= Z CsCyr58' + Z hgg Z cy's + Z hgrg' + Z hg/g’ (Z css>.
ss’eS12 ge®, s'eSo g'eBy g'e®y s€ST
<deg(m1) <deg(mz2) <deg(m2) <deg(ms) <deg(mi)

We see this gives a representation of the monomial as a linear combination of terms from S12 and
&1 U By of degree at most deg(m;) + deg(msg). Since we can write a polynomial as a sum of
monomials, we get that &1 U B2 is a Grobner generating set. This proves the first item of the
lemma.

To show the second item of the lemma, note that any function f : V4 x Vo — I, can be written as
a finite sum

Fo6y) =) aix) - bily)
i=1

where a;, b; are functions from V7,V respectively to F,. Since all the functions a; can be repre-
sented as degree di-polynomials and likewise for b;, the above sum gives a representation of f as a

13

polynomial of degree at most d; + ds. |
Corollary 4.4. For any subset H < Fy, H™ < Fi" has Grobner complexity at most m and extension

degree at most (|H| — 1) - m.

Proof. Combine Lemma 4.3 and Example 4.2.1. |

C
Corollary 4.5. The subset ({0, I}Z/f) € Fy has Grébner complezity at most % and extension

degree at most c.
Proof. Combine Lemma 4.3 and Example 4.2.2. |

The following two lemmas show that given a subset V' of F", we can efficiently compute its extension
degree, find a polynomial extending a function f : V' — F,, and compute a minimal Grébner basis.

Lemma 4.6 (Computing extension degree and low-degree extensions). For every q,m € N, there
exists:

1. An algorithm, which takes a set of n points V in F" as inpul and gives the extension degree
d as output in time poly (n, log q, (m;;d)>
2. An algorithm, which takes a set of n points V in Fy* and a function f:V — F, as input and

gives a polynomial which extends f as output in time poly (n, log q, (mtfllﬂ)).

Proof. We first show 1.

Computing extension degree For every i, fix an ordering of the (m:”)

most ¢ and also an ordering of the points in V.

monomials of degree at

Then for every i, we can calculate the evaluation matrix F; of dimension n x (m;l”) where

(E3)jry = mr(v;),

v; is the jth point of V' and my the kth monomial. Then if the rank of E; is equal to n, the
monomials of degree at most ¢ span the functions on V', and so the extension degree is i.

We can then find the extension degree by calculating the rank of F; for every ¢, until E; has rank
n. Every E; is a submatrix of F;,; so we can reuse the computation for every 7. It follows that the

algorithm performs Gaussian elimination on a single n x (m;rd) matrix.

Finding extending polynomial We first find the extension degree using the previous step.
Then since Ey4 has rank n, we can find a right inverse A such that E;- A = I,,. If we represent the
function f : V — F, as a n-dimensional vector y, then A -y gives a vector in the monomial basis,
which represents a polynomial extending y since

Eq-(A-y)=(Eq-A)-y=y.

14

It follows that the algorithm performs one calculation of a right inverse, and one matrix-vector
multiplication. [}

Lemma 4.7 (Computing a smallest Grobner generating set). For every q,m € N, there exists an
algorithm which takes a set of n points V in Fy' as input and gives a minimal (w.r.t. size) Grobner

generating set of I(V') as output in the monomial basis in time poly (n, log q, (mtfllﬂ)), where d is

the extension degree of V.
Proof. Given a set of polynomials S, define S; to be the subset of S of polynomials of degree exactly
i, and define S¢; to be the subset of polynomials of degree < .

We will then construct the subsets of the minimal Grobner generating set &; inductively. We first
define By = ¢J, and then set &; to be any basis of the quotient space I(V')<;/L;, where

Li:{Zhj'gj

J

hj € Fq[xl, oo ,xm],gj € H(V)gi_l,deg(gjhj) < Z} .

We repeat this step until ¢ = d + 1, so in each step, we check whether or not the the monomials
of degree at most 4 span all functions on |V, to know when to stop, as expressed in the following
algorithm:

a)

Algorithm 3: Constructing Grébner generating set.
Input: Subset V' of F" of size n
Output: A minimal generating set & of I(V)

[y

67607440780 N @

fori=1,...do

N

m+i
3 Compute the evaluation matrix E; € IFZX() of all monomials of degree at most

i on the points in V'
m+i)

Compute a basis A; of ker(E;) < F(g ‘

4

5 Compute a basis B; of A;_1 + span (z;a: a€ Ai—1, 1 <i<m)

6 Compute a minimal basis ®; so that span (&;) + span (B;) = span (A;)
7 G —Bu;

8 if rank F;_1 = n then

9 L break

10 return &

Correctness We will now show any set & is a minimal Grobner generating set if and only if &;
is a basis for the quotient space I(V)<;/L;. To see this, if every &; is a spanning set for I(V')<;/L;,
then any polynomial P € [(V')<; can be written as

P= Z cg+g mod Ly,
g€,

15

which is equivalent to

P = ch'g—k Z hg-g

gE@i 966@-_1

where ¢, are constants and deg(hg - g) < i. This is the condition for & being a Grobner generating
set, so & is a Grobner generating set if and only if each &; spans [(V)<;/L;.

Furthermore, note that in the above characterization, the conditions on each degree 7 is independent
of each other, so & is minimal if and only if each &; is minimal, which is equivalent to each of them
being a basis.

From the above, we see that a minimal Grobner generating set does not contain any degree i
polynomials if

I(V)<; = L;.

We show this is true for any ¢ > d + 2. Since any monomial m of degree i — 1, is equivalent to a
polynomial P of degree ¢ — 2, as i — 2 > d, it follows that x;m — x; P is in L; for any variable x;.
In particular, any polynomial of degree i is equal to a polynomial of degree at most ¢ — 1 modulo
L;. Together with the fact that I(V');—1 < L;, we have I(V); = L;.

Runtime To analyze the runtime, in each step of the loop we perform Gaussian elimination on
matrices of size at most n x (m+d+1), so each step takes at most time poly(n,log g, (mtgﬂ)), and

so the total runtime must also be poly(n,log g, (m+7g+1))_ |

Claim 4.8. The running times in Lemma 4.6 and Lemma 4.7 are both ¢°(™).

Proof. This follows from the fact that n = |V| < ¢'", the extension degree d is at most g(m — 1)
(the extension degree of F") and the following binomial estimate

<m+d+1> < <mq+1> < <emq+e> <em(g+ 1),

m m m

5 Zero-on-Variety Test

In this subsection, we discuss an efficient test to decide whether a given oracle vanishes on a subset
of points/variety. Let V' < Fy" be a set with a Grobner generating set & (V) with extension degree
dy and complexity k (see Section 4 for formal definitions). Let P : Fy[z1,...,zp] — F, be a
polynomial of degree d and say d < dy. Informally, the main goal of this section is:

Design an efficient standard verifier to decide whether P is zero at all points of V.

Before we state our standard verifier, let us first discuss what could constitute as proof for the
vanishing of Py . Suppose P(x) is a degree d polynomial and P|y = 0. Using the definition of the

16

ideal I(V') and &(V'), we have:

Ply=0 <= Pel(V)

<= There exists polynomials hg € Fg[z1,..., 2] for every ge &(V) such that

P(x) = 2 hg(x) - g(x), where for every g, deg(hy(x) - g(x)) < d. (2)
ged (V)

We will refer to the ordered tuple (hy : g € &(V)) € (Fy[z1,...,2m])* in Equation (2) as a vanishing
certificate* for the polynomial Py .

Definition 5.1 (Vanishing Certificate Polynomial). Let P, V < F;* and &(V) as defined above.
A vanishing certificate polynomial My (P) :]F;”Jrk — [Fy is a polynomial of degree < d satisfying
the following conditions:

o There exists polynomials hg € Fy[z1, ..., zp] for every g € &(V) such that

My(P)(x,y) = Y, he(x) -y,

ged(V)

o If we substitute g(x) for y, for every g € (V) in the polynomial My (P)(x,y), it should be
the polynomial P(x), i.e.

P(x) = My(P)(x, (9(x) : ge &(V))),
where the above equality is equality as polynomials.

Whenever the subset V' < F* is clear from the context, we will use Mg%ines to refer to the d* lines
table for My (P) (see Definition 3.2 for a formal definition of the lines table).
We record our discussion above using Definition 5.1 in the following observation. We use the same

notation as in Definition 5.1.

Observation 5.2. Let P(x) be a degree d polynomial. Then Ply = 0 if and only if there exists
a vanishing certificate polynomial My (P) of degree < d (see Definition 5.1). We would like to
emphasize that Definition 5.1 has a degree restriction on My (P) and this will be crucial for us, as
we will see soon.

Observation 5.2 says that if a verifier wants to test whether P vanishes on V, a valid proof 11
is:

= (MV(P), M) (3)

P,lines

In other words, our verifier for the Zero-on-Variety test will accept the above II with probability

* There could be multiple vanishing certificates for P|y satisfying Equation (2). We only use the fact that there
always exists a vanishing certificate where each polynomial hy has degree < deg(P). We are guaranteed of the
existence of such a vanishing certificate due to & (V).

17

1. For a degree d polynomial P where P|y = 0, no vanishing certificate polynomial exists, and we
require our verifier to reject every “claimed” proof II’ with high probability.

We next describe a standard verifier ZERO (recall the definition of standard verifier in Defini-
tion 2.1) with oracle access to a function f and an arbitrary string II to decide whether f|y =0,
in Algorithm 4. For convenience in writing, we define the following map:
p:F' — IF];
(Zlu e 7Zm) — (g(Z) g€ ®(V))

Algorithm 4: Zero-on-Variety Test for V: ZEROV
Input: Degree parameter d, subset V' < F*, Grébner generating set &(V),
string a,b € IF;"JF]"’, a e Fy', element t € T,

and oracle access to (f, M, M’) where f € (F,)?", M e (F,)?""" and
M’ e EHTT
; .
MvM, o 3 . /
1 Run LDT (;a,b,t) (see Algorithm 1) // Two queries to (M, M’)
2 if EDTQ/I’MI(;a,b,t) returns Reject then
3 return Reject
MvM, o 3 . /
4 Run LC; ((er,0);a,t) (see Algorithm 2) // Two queries to (M, M’)

5 if £¢}"M ((a,0);a,) # 0 then

6 return Reject

7 Run ECQA’M/((a,cp(a));a, t) // Two queries to (M, M’) and time to evaluate p(a) is
O(k’ . qO('m,))

0]

Query f[a] // One query to f

if £ (o, ¢(@));a,t) # fla] then

©

10 return Reject else
11 L return Accept

18

Lemma 5.3 (Zero-on-Variety Test). There exists an absolute constant C > 0 such that
for every d,q € N satisfying ¢ > Cd®, for every subset V c Fy" with extension degree < d
and Grobner complexity k, the following holds. The standard verifier ZERQO satisfies the
following properties:

Let r = (a,b,t,). Then,

1. Completeness: For every degree d polynomial f : Fy* — Fy with flv =0, there exists
a proof Il over alphabet Fg“ and size O(qz("”k)) such that the following holds:

Pr[ZER(’)((if’H)(;r) returns Accept| = 1.
2. Soundness: Let f: Fj' — F, be any function for which there exists a unique degree d
polynomial P(x) such that 6(f,P) = < 0.01 and P|y # 0. Then for every string II,
the following holds:

Pr[Zé‘ROéf’H)(;T) returns Reject] = 0.04.
T

3. Efficiency: ZERO uses O((m + k)logq) bits of randomness, makes 7 oracle queries
to (f,II), and runs in time O(k - ™).

Proof of Lemma 5.3. We first note that the efficiency immediately follows from the comments in
Algorithm 4. We discuss completeness next.

Completeness Suppose f is a polynomial of degree at most d and f|y = 0. As observed in
Observation 5.2, we know there exists a vanishing certificate polynomial My (f) of degree d,

and let IT be as stated in Equation (3). From the first item of Theorem 3.5, we know that
(d)

d
LDTMV D Miines returns Accept with probability 1. From the first item of Theorem 3.7, we
(d)
know that £C™MV My iines (,0) is equal to 0 for every o € Fy* with probability 1. Similarly, we
(d)
know that LCMV(f)’MfJineS(a, ¢(a)) is equal to f(a) for every a € F* with probability 1. It is not
difficult to see that Algorithm 4 accepts II with probability 1. This finishes the completeness part
of Lemma 5.3.

Soundness Let f be any function for which there exists a degree d polynomial P(x) such that
d(f,P) <9 and P|y # 0. Consider the following events from Algorithm 4:

1. &1 denotes the event that EDTQA’MI(;a,b,t) returns Reject. It depends on the choice of

(a,b,t).
2. & denotes the event that EC’;M’M/(((X, 0);a,t) # 0. It depends on the choice of (v, a,).

3. &3 denotes the event that ECQM’MI((a,go(a));a, t) # fla]. It depends on the choice of
(av,a,t).

19

In the proof below, to avoid cumbersome writing, we will avoid repeatedly mentioning the random
bits that each event depends on.

If either of the events & or & happens with probability greater than 0.04, then we have the
desired soundness. Assume that is not the case, i.e.,

Pri&i] < 0.04 and Pr[&] < 0.04
a7 b

a,a,t

We now want to argue that £3 happens with probability at least 0.04.

Since & happens with probability at most 0.04, from Theorem 3.5, we know that there exists a
degree d polynomial R(x,y) such that (M, R) < 0.16. We will show the following claim.

Claim 5.4. Let R(x,y) : Fg”*k — F, be the degree d polynomial such that 6(M,R) < 0.16. Then,
R(x,0) = 0.

Proof of Claim 5.4. As mentioned above, we know that §(M,R) < 0.16. Using Theorem 3.7, we
get:

/ d
Pg[ﬁC(/i\/"M ((e,0);a,t) = R(e,0)] = 1—2+/0.16 — 1 for every a € Fy*
/ d
a,a, —

Since the event & happens with probability < 0.04, we have,

Pr [£C)"M (@, 0);a,t) # 0] < 0.04. (5)

a,a,t

Using union bound on Equation (4) and Equation (5), we get,

d
Pr [R(e,0) #0] < 012+ —

«,a,l q—

d
— Pr[R(a,0)=0] > 088 — ——.
«,a,t q— 1

Since the event (R(a,0) = 0) does not depend on the random choice of (a,t), we get,

d
Pr[R(e,0) =0] > 0.88 — ——.
[e% q— 1
We choose C in the statement of Lemma 5.3 large enough such that 0.88 — q% > g. The polynomial
distance lemma (Theorem 3.1) then implies that R(x,0) = 0. This finishes the proof of Claim 5.4.
|

20

Claim 5.4 implies that R(x,y) belongs to the ideal I(y1,...,yx). This implies the existence of
polynomials Ry, ..., Ry € Fy[x,y] such that R(x,y) can be expressed as follows:

R(xy) = Y. Ry(x,¥) y,
ge6(H)

Define the polynomial R : F* — F, as follow, R(x) := R(x,®(x)). Observe that P(x) and R(x)
are distinct polynomials, otherwise P|y, = 0.

Since for every g € &(V'), we know that deg(g) < d and we also have that deg(R(x,y)) < d, we get
deg(R(x)) < d?. Since §(M,R) < 0.16, we have

/ d
Pg[ﬁC(/i‘/‘aM (g, p(@));a,t) = R(a,p(a))] = 1—2v0.16 — g for every av € Fy!
a, —

= PrlLe (o, pla))iat) = Rl p(@)] > 092 -
= Pr[£CHM (o pla))ia, 1) # Rle)] < 0.08+qi‘l1. (6)

Recall that P # R and from the polynomial distance lemma (Theorem 3.1), we have:

d? d?
» < v P;r[R(a)zf[a]] < (5—1—;. (7)

Using Equation (6) and Equation (7) and applying union bound, we get,

Pr [£CY"M (e, p(a));a,t) = fle]]

a,a,t

, 2
< Pr[LCy"M (e, p(@));at) # R(a)] + Pr[R(a) = fla]] < 0.08+ 2d

a,a,t a qg—1 +0.
By choosing C' appropriately in the statement of Lemma 5.3, we can set 2d?/(q — 1) < 0.01. Thus,

Pr [L’Cﬁ;"MI((a,go(a));a, t) # fla]] = 091 -6 > 0.04,

a,a,t

where we are using § < 0.01. Thus &3 happens with probability > 0.04. Hence we have showed
that either & or & happens with probability > 0.04, otherwise £5 happens with probability > 0.04.
This finishes the soundness of Lemma 5.3 and also the proof of Lemma 5.3. |

6 Proof of the Main Theorem (Theorem 2.3)

In this section, we give the proof of Theorem 2.3, which we recall below.

Theorem 2.3 (Main Theorem). There exist constants c, £ such that the following holds for every

21

q,m,d, k such that ¢ = cd>:

Let Fy be a field of characteristic # 2 and let V' < Fy" have extension degree d and Grobner com-
plexity k. Then 3-COLOR on verter set V' is in PCPy 1 5[c(k +m)loggq, £, cdlogq] with proofs of

size qcktm),

Proof of Theorem 2.3. We will consider the NP-complete problem 3-COLOR for graphs (see Defi-
nition 3.3 for a formal definition of 3-COLOR). We will use Vpcp to denote the standard verifier
with parameters as stated in Theorem 2.3.

From Lemma 4.7 and Claim 4.8, we know that Vpcp can compute the Grobner generating set
of complexity k in time ¢®™). Let E: V x V — {0,1} < F, be the edge function for the input
graph G = (V,E), defined as E(u,v) = 1 if and only if (u,v) € E. Let E : L
denote an extension of F and from the second item of Lemma 4.3, we know that deg(E) < 2d. By
Lemma 4.6 and Claim 4.8, the standard verifier Vpcp can compute both, the extension degree d
and the extension E in time @M.

For simplicity, we will describe a standard verifier V for 3-COLOR and then Vpcp will be repeating
V for O(1) times. More particularly, the standard verifier V will have soundness v for some absolute
constant v € (0,1), i.e. V rejects with probability at least . The standard verifier Vpcp will repeat
V for O(1/7v) times and return Reject if any one of the iterations return Reject. As O(1/y) = O(1),
the number of random bits, queries, and running time of Vpcp are a constant factor multiple of
the number of random bits, queries, and running time of V respectively. So for rest of the proof, it
will be sufficient to describe a standard verifier V which uses ¢/ (k + m) log ¢ random bits, makes ¢’
queries to proofs over alphabets of size ¢’ - (dlog ¢), have soundness guarantee of v, and has running
time @k for some constants ¢, ¢, and v € (0,1). From the previous paragraph, we know that
Vpcp can compute the Grobner generating set, extension degree d, and extension E’, all in time
¢®™) . So we will assume that our standard verifier V has access to all of them.

Oracles We now describe oracles that the standard verifier V expects in a proof II. In particular,
if G € 3-COLOR, then our standard verifier always returns Accept. Our oracles will be evaluation
tables of polynomials and their corresponding lines table. In the following, we also mention the
size of each oracle that appears in the proof.

1. Let x : V — {-1,0,1} < F, be a coloring assignment to every vertex in the input G = (V, E).
Here we use {—1,0, 1} to denote three distinct colors.

et x : — enote an extension or x of degree d. Let X e the mes table for Y.
Let X :F —F, d ion of y of degree d. Let X\ be the d" lines table for ¥

lines

Size of (X,)2((1)) is 200mlo2d) oyer alphabet of size O(dlogq).

lines

22

2. Define the polynomial A : Fi* — F, as follows:
Ax) = X(x) - (X(x) = 1) - (X(%) + 1).

We have deg(A) < 3 - deg(R) < 3d. Let AP? be the (3d)!" lines table for A.
Size of (AAI(;?S) is 200mlogd) oyer alphabet of size O(dlogq).

Observation 6.1. For a vertez u € V, A(u) = 0 if and only if X(u) € {—1,0,1}. This
implies that Aly = 0 if and only if for every vertex u €V, we have X(u) € {—1,0,1}.

Let® My : Fi**% — F, denote a vanishing certificate polynomial for Aly (see Definition 5.1

for a formal definition). Let d; := deg(M4) < deg(A) < 3d. Let Mfi)nes be the (3d)" lines
table for M 4.

Size of (M4, MY

Alines

) is 20(mlogat+klogd) oyer alphabet of size O(dloggq).

3. Define the polynomial B : Fy* x Fg* — Fy as follows:

Bxy) = Exy)- [[RE)-R)-a)
ae{+1,+2}

We have deg(B) < deg(E) + 4deg(R) < 6d. Let Bl(i?:?s be the (6d)"" lines table for B.
Size of (B, Bﬁiﬁ) is 200mlogd) oyer alphabet of size O(dlogq).

Observation 6.2. Suppose x(u) € {—1,0,1} for every ue V. For any two vertices u and v,
B(u,v) =0 if and only if either (u,v) ¢ E or xX(u) # X(v).

Let Mp denote a vanishing certificate polynomial for B|y. Let da := deg(Mp) < deg(B) <
6d. Let MY e the (6d)*" lines table for Mp.

B,lines
Size of (MB,Mggjli)nes) is 20(mloga+klogd) oyer alphabet of size O(dlogq).

The proof II consists of the following oracles:

lines’ lines’ A lines’ lines’ B,lines

= (%, R A Afpers Ma, MG By BS, M, M) (8)

As we have mentioned, the size of each of the components in II, we get that the size of the proof
IT is 20(mlogatklogq) — (O(m+k) oyer an alphabet of size O(dlogq).

Description of the standard verifier V We are now ready to describe the standard verifier
V to test whether a graph G is 3-colorable or not. In the following description, we interpret that
the proof II consists of the oracles as stated in Equation (8), i.e., V will interpret the proof II as
a long string with sub-strings forming the structure in Equation (8). We will show that V is a

®Recall k is the Grobner complexity of &(V).

23

standard verifier which uses O(m + k) random bits, makes O(1) queries to proofs over alphabets
of size O(dlog q), have soundness guarantee of +, and has running time ¢®(™**), for some constant
€ (0,1).

Algorithm 5: Test by the Verifier V

Input: Degree parameter d, subset V', Grobner generating set for V', polynomial E,
strings a,b e F", o, B € IF , V1,772 € Fm”“, ul,ug € FQ(erk) tf Fx,
and oracle access to II = (N %, A, A ./\/lA, "0 B, B ,MB,M’B)

Query X[a], X[b], A[a], B[a, b] // 4 queries to II

[y

Run £DT§’%/(; a,b,t), EDT?JA/(; a,b,t), and [,D'ng’B/(; a, 3,t) (see Algorithm 1)

// 6 queries to Il and runs in time poly(m,d)

N

3 if either of the above three LDT test returns Reject then
4 L return Reject
5 if Ala] # X[a] - (x[a] = 1) - (X[a] + 1) OR
[a b] E(b) H {41, }([a] =)?[b] = Z) // Runs in time poly(n,q®™)
6 then
7 L return Reject
8 Run ZER(’)A MA’MA(Yi,72,a,t) and ZEROB M M B(; 1, po, a,t) (see
Algorithm 4) // 14 queries to Il and running time poly(n,¢®™ "))
9 if either of the above two ZERQO tests return Reject then

10 L return Reject

11 return Accept

. 7

Efficiency The random string used by V is the tuple (a, b, a, 8, v1, ¥2, g1, t2,). It is clear from
here that these are O((m + k)logq) random bits. From the comments in Algorithm 5, it is clear
that ¥V makes O(1) queries to the string II, which is over an alphabet of size O(dlogq). From the
comments in Algorithm 5, it is also clear that the running time of V is ¢@(m+#)

Completeness Let G = (V, E) € 3-COLOR. This means there exists a coloring x : V' — {—1,0, 1}
such that for every edge (u,v) € E, we have x(u) # x(v). Let II be as stated in Equation (8).
From the first item of Theorem 3.5, we know that all three low-degree tests LDT return Accept
with probability 1. From the definition of E’, X, A, and B, we know that V never returns Reject in
Line 6 of Algorithm 5. Using Observation 6.1 and Observation 6.2, we know that both Al = 0 and

(3d)
Blyxy = 0. From the completeness part of Lemma 5.3, we know that both ZEROAMAM ines

and ZEROP MM s return Accept with probability 1. Hence V''(G) always return Accept

24

and thus has completeness 1.

Soundness Instead of the basic soundness claim, we prove a stronger claim that will also be
useful in Section 7.

Claim 6.3 (Soundness). For any constant ¢ > 0 there is a constant v > 0 such that the following
holds. Suppose there exists no proper 3-coloring 1 : V. — {—1,0,1} of G such that §(X,7) < e,
where ¥ is a degree d extension of 1. Then V returns Reject with probability at least v. In
particular, if G is not 3-colorable, then V rejects with some constant probability.

Proof of Claim 6.3. Consider the following events:

e & denotes the event that at least one of the three LD7T test returns Reject. This event
depends on the choice of (a,b, a, 3,1).

o &5 denotes the event that

Ala] # %[a] - (X[a] = 1) - (Rla] + 1) OR Bla,b] # E(a,b)- [] (X[a] - X[b]).
e{t1,£2}

This event depends on the choice of (a, b).
AMa,M, . . .
e &3 denotes the event that ZERO,, returns Reject. This event depends on the choice
of (’Yla Y2, 4, t)

B,Mg,M : .
e &4 denotes the event that ZERO CQMB’MB returns Reject. This event depends on the choice

of (l’l’lv M2, avt)

Let 0 < v < 0.01 be an appropriate constant that we will choose later. If either of events &1, &,
or & happens with probability > -, then we are done. Assume each of the events &£1,&5, and &3
happens with probability < +. We will show that £4 happens with probability > ~.

Since £ happens with probability < «, Theorem 3.5 implies:
e There exists degree d polynomial Py(x) such that §(Py, X) < 47.

e There exists degree (3d) polynomial P;(x) such that §(Pj, A) < 4.
e There exists degree (6d) polynomial Py(x) such that 6(Pg, B) < 4.

We show the following claim on the relation between Py, Py, and Pg.

Claim 6.4. Let the polynomials Py, Py, and Py be as mentioned above. Then for every x,y € F{’,

Py(x) = Py(x)- (Py(x) = 1) - (Py(x) +1). (9)
and
Py(x,y) = E(xy)- H (Py[x] — Pyly] —9). (10)
ie{+1,+2}

25

Proof of Claim 6.4. The idea is to show that each pair of polynomials in either Equation (9) or
Equation (10) agree on a large fraction of their respective domains. Since these are all low-degree
polynomials, the polynomial distance lemma will imply that they are, in fact, equal.

Since the event £ happens with probability < v, we have the following two inequalities:

af%m [ﬁ[a] # xla] - (x[a] — 1) - (X[a] + 1)] < 5 (11)
and also
a7bP~1£F2n E[a, b] # E(a,b) . H (R[a] = Xb] -9 | < . 12)

ie{+1,£2}
Using 6(Pg, X) < 4y, 0(P3, E) < 47, and Equation (11) together, via triangle inequality, we get:

Pr [Ps(a) # Py(a) - (Py(a) — 1) - (Px(a) + 1)] < 9v

~JFm
a]Fq

Since both the polynomials in the above inequality have degree < (3d) and because 3d/q < 9, the
polynomial distance lemma (Theorem 3.1) implies Equation (9). An analogous argument shows
Equation (10). This finishes the proof of Claim 6.4. [

We assumed that event £5 happens with probability < . Recall that v < 0.01 < 0.04. From
Lemma 5.3, we can infer that P|; vanishes on V. In other words, using Equation (9), we know
that Py is an extension of a valid vertex coloring X (i.e. X assigns each vertex a color from the set
{—1,0,1}). We will now show that event £ happens with probability > ~.

Recall that ¥ is e-far from any degree d extension of a proper 3-coloring of G. In particular, for
v < €/4, we know that Py is not an extension of a proper 3-coloring. In particular, there exists
vertices u,v such that (u,v) € £ and Py(u) = Py(v). In other words, Py does not vanish on
V x V. From Lemma 5.3, we know that event & happens with probability > (0.04 — 4v) > ~.
Hence we have shown that either one of &£1,&>, or £ happens with probability > ~, otherwise &
happens with probability > . This finishes the proof of Claim 6.3.

Hence we have shown that the standard verifier V has completeness 1, soundness v for some constant
v € (0,1), uses O((m + k)log q) random bits, makes O(1) queries to a proof of size ¢°™+k) over
an alphabet of size O(dlogq), and runs in time ¢@Umtk) - Ag we discussed earlier, Vpcp repeats V
for O(1/v) = O(1) times to achieve soundness of 1/2, and the other parameters remain the same
upto O(1) factor. This finishes the proof of Theorem 2.3.]

7 The PCP Theorem with One Composition

In this section, we use the main theorem (Theorem 2.3) to give a proof of the PCP theorem with
a single composition, composing two different instantiations of our basic PCP.

26

More precisely, we need an extension of our PCP to a Robust Assignment-Tester (or equivalently a
Robust PCP of Prozimity [BGHSV06]). The definition below is due to Dinur and Reingold [DR06].
We will assume throughout this section that there is a single growing parameter n and all other
parameters (R, q,¢,...) are (possibly constant) functions of n.

Notation. Recall that two functions f, g : S — T are said to be d-close if they differ on at most
a d-fraction of their inputs and J-far if they differ on at least a d-fraction of their inputs.

Definition 7.1 (Robust Assignment-Testers, combining Definitions 3.1 and 3.4 from [DR06]). A
Robust Assignment-Tester with parameters (R, s, ¥, d,e,w, p) is a reduction whose input is a Boolean
circuit ¢ of size n over Boolean variables X. The reduction runs in time poly(n, R) and outputs
a system of R(n) Boolean circuits v = {i1,...,r}, each 1; of size at most s(n) over Boolean
variables X and auziliary variables Y such that the following conditions hold.

e FEach 1; depends on a set of £ variables from X 0Y, which we denote Vars(y;). The variables
in Y take values in an alphabet ¥, and are accessible to v; as a tuple of w = [logy(|X])] bits.

e For every Boolean assignment o : X — {0, 1},

1. Completeness: If o satisfies the input circuit p, then there exists an assignment 7:Y —
> such that o U T satisfies all of Y1, ..., YR.

2. Robust Soundness: If o is -far from any satisfying assignment of the input circuit o,
then for any assignment T : Y — X and for any (1 —¢)-fraction of the ¢;’s, the restricted
assignment (0 U T)|vars(y,) 8 p-far from any satisfying assignment of ;.

A (not necessarily robust) Assignment-Tester with parameters (R, s,,d,e,w) is defined as above,
except that we replace the Robust Soundness condition with the following weaker Soundness condi-
tion.

o Soundness: If o is d-far from any satisfying assignment of p, then for any assignment T :
Y — ¥ and for a (1 —€) fraction of the 1;’s, the restricted assignment (o U T)|y, is not a
satisfying assignment of ;.

[DRO6] showed that the existence of one assignment-tester with specific parameters is enough to
prove the PCP theorem. We state the observation formally below.

Observation 7.2 (Section 3.1 in [DRO6]). To prove the PCP theorem i.e.,
NP < PCPy1_g1)[O(logn), O(1), O(1)],

it suffices to show that there is an assignment-tester with parameters R(n) = poly(n), s,¢,w € O(1)
and 9, (1 —¢) € Q(1).

We will prove the existence of such an assignment-tester by composing two robust assignment-testers
with suitable parameters. The process of composition starts with two robust assignment-testers
A; and Ay and produces a robust assignment-tester A3 with many parameters (e.g. s,¢,w) that
are dictated by the parameters of Ay. The robust assignment-tester A3 tests assignments to the
Boolean circuit ¢ that is an input to A;.

The construction is simple: The tester Ajz first runs A; with input ¢ and then runs As on each

27

of the circuits produced by A;. The high-level idea behind it is that we test an assignment to the
input circuit ¢ to A; by testing that each of the ‘local views’ of the various circuits produced by .41
is close to a satisfying assignment, where the latter process is carried out by the circuits produced
by reduction Ay. This leads us to the following observation of Dinur and Reingold [DR06, Lemma
3.5], which we need only as a black box.

Lemma 7.3 (Composing robust assignment-testers: Lemma 3.5 in [DR06]). Assume that there ex-
ist Ay and Ay are robust assignment-testers with parameters (Ri,si,l1,01,€1,w1,p1) and
(Ra, s2, {2, 02,2, w2, p2) respectively. If p1 = da, then there also exists a robust assignment-tester
As with parameters (Rs, s3, (3,03, €3, w3, p3) where

e R3(n) = Ri(n) - Ra(s1(n)),

° 33(n) = 32(81(n))7

Turning our PCPs into robust assignment-testers. To use the above lemma, we instantiate
our main theorem with the two different choices of varieties used in Lemma 2.5 and Lemma 2.7.
While these statements only yield PCPs (a weaker object than assignment-testers) for the 3-COLOR
problem, we show that they easily yield assignment-testers for Boolean circuits using two basic in-
gredients: basic properties of standard reductions showing 3-COLOR is NP-hard and the local cor-
rectability of the polynomial witnesses in the PCP proof of Theorem 2.3 using Theorem 3.7.

The following is a basic property of standard reductions form Circuit-SAT to 3-COLOR. One can
prove it e.g. by using the standard Tseitin transformation (reducing Circuit-SAT to 3-SAT) fol-
lowed by the reduction from 3-SAT to 3-COLOR in [GJS76, Theorem 2.1].

Lemma 7.4. There is a polynomial-time reduction from Circuit-SAT to 3-coloring that satisfies
the following. On input a Boolean circuit ¢, the graph G = (V, E) produced by the reduction has
the property that for any satisfying assignment o : X — {0,1} of ¢, there is a proper 3-coloring
XV — {—=1,0,1} such that |V| = O(|p]), x restricts to o on a fized subset Vo of V' (here Vj is
in 1-1 correspondence with X) and x(vo) = —1 for some fized vg € V\Vy. Furthermore, any proper
3-coloring x : V. — {—1,0,1} satisfying x(vo) = —1, upon restriction to Vy, yields a satisfying
assignment o’ : X — {0,1} of the circuit ¢.

Given the above, we can easily modify the PCPs from the proofs of Theorem 2.3 to yield assignment-
testers for CircuitSAT. We will show how to do this below.

Moreover, we will use an idea of Dinur and Reingold to make these assignment-testers robust using
the simple process of encoding the input symbols by an explicit asymptotically good error-correcting

6 This is not explicitly stated in [DR06] but it follows trivially from the proof.

28

code. More precisely, we use the following lemma.

Lemma 7.5 (Robustization: Lemma 3.6 in [DR06]). There is an absolute constant ¢ such that
if there is an assignment-tester A with parameters (R, s,¢,d,e,w), then there is also a robust
assignment-tester A’ with parameters (R’ = R,s' = ¢1-s,0' = (,§ = §,¢' = ¢,w' = poly(w),p =

1/(c1-4)).

We are now ready to state the main lemma of this section, which says that the PCPs from the
previous section can be turned into robust assignment-testers with suitable parameters.

Lemma 7.6. There exist absolute constants c,c1 such that the following holds. Assume that for
every n = 1, there exist ¢ = q(n),m = m(n),d = d(n),k = k(n) such that ¢ = cd® and a variety
Vi S By of size w(n) constructible in time poly(n) with extension degree d and Grébner complexity
k. Then, for any 6 = 6(n) > 0, there is a robust assignment-tester with parameters

1
(49400, poly(a1og.)/), = O(1/8).0.1/4,80,)

Proof. The constants ¢ and ¢; are chosen from Theorem 2.3 and Lemma 7.5 respectively. We can
assume without loss of generality that ¢ = 100.

We can now describe the reduction A behind the assignment-tester (we will make it robust below).
The reduction first reduces the given instance ¢ of CircuitSAT to an instance G = (V, E) of 3-
COLOR using the polynomial-time reduction described in Lemma 7.4 (so |V| = O(n)). Fix V € V
(which is 1-1 correspondence with the set of variables X of ¢) and vy € V\Vj as mentioned above.

The reduction A now constructs a variety V,, as in the hypothesis of the lemma. Note that |V,,| =
w(n) = |V|. After adding some isolated vertices to G if required, we can identify V with V,.

We now consider the algorithm Tester specified in Algorithm 6 with co and c3 being absolute
constants that we will choose below. For any choice of these constants, the algorithm uses r =
O((k + (m/d))log q¢) many random bits, makes O(1/0) queries to its input oracles o and 7 where
the former is defined over the Boolean alphabet and the latter is defined over an alphabet of
size O(dlog q). The reduction A iterates over all sequences b of r random coin tosses used by the
algorithm and for each it produces a Boolean circuit 1 that performs the checks specified in the
algorithm.

29

Algorithm 6: Tester
Input: Degree parameter d and oracle access to (o,7) where o : X — {0, 1},
7:Y — %, where X is the alphabet of the PCP verifier from Theorem 2.3
and |Y| = ¢°%+™) is the length of the proof.

1 Run the PCP verifier from Theorem 2.3 on 7 independently ¢y times. If the PCP
verifier rejects even once, then return Reject // Random bits 7’ = O(c2(k +m)logq),
number of queries ¢ = O(1), alphabet size O(dlogq).

2 Run ECﬁ’X/(vo) and if the algorithm rejects or returns anything other than —1, then
return Reject // Random bits O(mloggq), number of queries O(1).

3 Repeat c3/0 times: Sample random v € V) and run £C§’X/(v). If the algorithm
rejects or returns anything other than o(v), then return Reject // Random bits
O((c3/d) -mlogq), number of queries O(c3/d).

4 return Accept

\ J

(k+(m/5))

The number of circuits produced is 2" = ¢© , each of which queries ¢ = O(1/6) locations
in the string o u 7. The computations performed by) are all efficiently computable functions of
the queried bits, and hence the circuit v, has size that is polynomial in the number of bits queried,
which is O((dlogq)/d). The alphabet ¥ is the same as that of the PCP verifier and hence has

cardinality ¢@@.

To show that this is an assignment tester, it suffices to argue the completeness and soundness
criteria. Completeness is trivial from the definition of the PCP and the properties of the NP-
completeness reduction argued above.

For soundness, let us assume that o : X — {0, 1} is §-far from any satisfying assignment to ¢. We
need to show that the probability that Algorithm 6 rejects is at least 3/4, since this also means
that at least 3/4 of the circuits v, reject.

By the soundness of the PCP verifier Claim 6.3 we know that it rejects with constant probability
unless y is at distance at most = 0.01 from a degree d polynomial P : F;" — F, that is a low-
degree extension of a proper 3-coloring of G. Since we repeat the tests of the PCP verifier ¢ many
times, the acceptance probability in case this does not hold is exp(—(c2)) < 1/4 as long as ¢ is
large enough.

So from now on, we assume that y is n-close to a degree d polynomial P which is a low-degree
extension of a proper 3-coloring x : V- — {—1,0, 1}. If x(vg) # —1, then by Theorem 3.7, the next
step rejects with probability at least

>~ w

d 1
1-2 ——2>=1-2 - ==
\F q—1 \/> c

Thus, we can assume that y(vg) = —1.

Finally, since y is a proper 3-coloring of G and x(vg) = —1, it follows that the restriction of x to Vj

30

defines a satisfying assignment of ¢. Since o is d-far from any satisfying assignment of ¢, it follows
that for each v € V chosen in the next step, the probability that o and x differ at v is at least ¢.
Further, by Theorem 3.7, the probability that EC?’A‘/(U) returns x(v) or rejects is at least 3/4 (as
in the previous paragraph). Thus, the chance that this step does not reject is bounded by

c3/d
<1— 35) <1/4
4

as long as c3 is a large enough constant. This concludes the proof of the soundness of A.

We have thus shown that A is an assignment-tester with parameters

(O F+9) poly((k + (m/5))logq), £ = O(1/8),5,1/4,¢°@D).

In order to make the assignment-tester robust, we simply apply the Robustization lemma Lemma 7.5.
This concludes the proof of Lemma 7.6. |

Proving the PCP theorem. To conclude the proof of the PCP theorem, we apply the above
lemma to the PCPs given by specific instantiations of V' already seen above.

Lemma 7.7 (Outer robust assignment-tester). For any 61 = d1(n) > 0, we have a robust assignment-
tester with parameters

(R = no(l/‘sl),sl = poly((logn)/d1),41 = O(1/1),01,e1 = 1/4,w1 = poly(n), p1 = 1/(c1 - £1)).
Proof. Set ¢ = poly(logn) a power of 3, V = H™ for H < [F,, of size logn, and m = O(log n/loglogn).
The lemma follows from Lemma 7.6 and Corollary 4.4. |

Lemma 7.8 (Inner robust assignment-tester). For any ¢ = ¢(n),d2 = d2(n) > 0, we have a robust
assignment-tester with parameters

(Ry = cPen™/52) g, — poly(c/s), la = O(1/82), 89,60 = 1/d,ws = P, py = 1/(c1 -).

Proof. Set V' = ({0, 1}2{0)8 c " for a suitably large ¢ = poly(c) and m = O(n'/¢). The lemma
follows from Lemma 7.6 and Corollary 4.5. |

We can now prove the PCP theorem.

Proof of Theorem 2.8. We compose the robust assignment-testers from Lemma 7.7 and Lemma 7.8
above.

Choosing 01 to be any absolute constant in (0,1), ¢ to be a large enough absolute constant such
that Ra(s1(n)) = poly(n), and d2 < p; another absolute constant, we obtain two robust assignment
testers that can be composed using Lemma 7.3. This leads to a robust assignment-tester with
parameters R3 = poly(n), s3,f3, w3 € O(1) and 03,1 — e3 € (1), which by Observation 7.2 implies
the PCP theorem. |

31

References

[Alo99]

[ALMSS98]

[ASO8]

[BFL91]

[BGHSV06]

[BSOS]

[DL78]

[Din07]

[DRO6]

[GJST6]

Noga Alon. “Combinatorial Nullstellensatz”. In: Combinatorics, Probability and Com-
puting 8.1-2 (1999), pp. 7-29. DOI: 10.1017/S0963548398003411 (cit. on p. 4).

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
“Proof Verification and the Hardness of Approximation Problems”. In: J. ACM 45.3
(1998), pp. 501-555. DOI: 10.1145/278298.278306. URL: https://doi.org/10.
1145/278298.278306 (cit. on pp. 3, 6, 8-10).

Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs: A New Char-
acterization of NP”. In: J. ACM 45.1 (1998), pp. 70-122. pOI: 10.1145/273865.
273901. URL: https://doi.org/10.1145/273865.273901 (cit. on p. 3).

Laszl6 Babai, Lance Fortnow, and Carsten Lund. “Non-Deterministic Exponential
Time has Two-Prover Interactive Protocols”. In: Comput. Complezx. 1 (1991), pp. 3—
40. por: 10.1007/BF01200056. URL: https://doi.org/10.1007/BF01200056 (cit.
on p. 3).

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. “Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding”. In:
SIAM J. Comput. 36.4 (2006), pp. 889-974. DOI: 10.1137/30097539705446810. URL:
https://doi.org/10.1137/S0097539705446810 (cit. on pp. 3, 6, 27).

Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”.
In: SIAM J. Comput. 38.2 (2008), pp. 551-607. DOI: 10 . 1137 /050646445. URL:
https://doi.org/10.1137/050646445 (cit. on pp. 3-5).

Richard A. DeMillo and Richard J. Lipton. “A probabilistic remark on algebraic
program testing”. In: Information Processing Letters 7.4 (1978), pp. 193-195. poI:
10.1016/0020-0190(78)90067-4 (cit. on p. 8).

Irit Dinur. “The PCP theorem by gap amplification”. In: J. ACM 54.3 (2007), p. 12.
DOI: 10.1145/1236457 . 1236459. URL: https://doi.org/10.1145/1236457 .
1236459 (cit. on p. 3).

Irit Dinur and Omer Reingold. “Assignment Testers: Towards a Combinatorial Proof
of the PCP Theorem”. In: SIAM J. Comput. 36.4 (2006), pp. 975-1024. pDOI: 10.
1137/S0097539705446962. URL: https://doi.org/10.1137/S0097539705446962
(cit. on pp. 3, 6, 27-29).

M.R. Garey, D.S. Johnson, and L. Stockmeyer. “Some simplified NP-complete graph
problems”. In: Theoretical Computer Science 1.3 (1976), pp. 237-267. 1SsN: 0304-
3975. DOI: https://doi.org/10.1016/0304-3975(76) 900569~ 1. URL: https:
//www . sciencedirect . com/science/article/pii/0304397576900591 (cit. on
p. 28).

32

https://doi.org/10.1017/S0963548398003411
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1007/BF01200056
https://doi.org/10.1007/BF01200056
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1137/050646445
https://doi.org/10.1137/050646445
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1137/S0097539705446962
https://doi.org/10.1137/S0097539705446962
https://doi.org/10.1137/S0097539705446962
https://doi.org/https://doi.org/10.1016/0304-3975(76)90059-1
https://www.sciencedirect.com/science/article/pii/0304397576900591
https://www.sciencedirect.com/science/article/pii/0304397576900591

[HKSS24] Prahladh Harsha, Mrinal Kumar, Ramprasad Saptharishi, and Madhu Sudan. “An
Improved Line-Point Low-Degree Test”. In: 65th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024.
IEEE, 2024, pp. 1883-1892. DOI: 10.1109/F0CS61266.2024 .00113. URL: https :
//doi.org/10.1109/F0CS61266.2024.00113 (cit. on p. 10).

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. “Algebraic Meth-
ods for Interactive Proof Systems”. In: J. ACM 39.4 (1992), pp. 859-868. DOI: 10.
1145/146585.146605. URL: https://doi.org/10.1145/146585. 146605 (cit. on

p. 3).

[Ore22] QOystein Ore. “Uber hohere kongruenzen”. In: Norsk Mat. Forenings Skrifter 1.7
(1922), p. 15 (cit. on p. 8).

[Sch8&0)] Jacob T. Schwartz. “Fast Probabilistic Algorithms for Verification of Polynomial
Identities”. In: J. ACM 27.4 (1980), pp. 701-717. DOL: 10.1145/322217 . 322225
(cit. on p. 8).

[Sha92] Adi Shamir. “IP = PSPACE”. In: J. ACM 39.4 (1992), pp. 869-877. pOI: 10.1145/

146585.146609. URL: https://doi.org/10.1145/146585.146609 (cit. on p. 3).

[ZipT9] Richard Zippel. “Probabilistic algorithms for sparse polynomials”. In: Symbolic and
Algebraic Computation. Springer Berlin Heidelberg, 1979, pp. 216—226. DO1: 10.1007/
3-540-09519-5_73 (cit. on p. 8).

A Relation between Grobner Bases and Grobner Generating Sets

In Section 4 we introduced Grébner generating sets. We here show that Grobner bases are Grobner
generating sets, and that Grobner bases are also well-behaved under Cartesian products.
Definition A.1. An ordering of monomials in k[x] is called admissible, if every monomials
M, N, L € k[x] satisfies

1. M < N implies ML < NL.
2. M < ML.

if an admissible ordering further satisfies
3. deg(M) < deg(N) implies M < N

we call it a graded ordering. For a polynomial P, we define LM(P) as the monomial in P of
maximal order.

Example A.1.1. For the lexicographic ordering we have M < N if there exist i such that the
exponent of x; in M is equal to the exponent of xj in N for j <i and the exponent of x; in M is
strictly smaller than the exponent of x; in N.

For the graded lexicographic, we have M < N if deg(M) < deg(N) or if deg(M) = deg(N) and
M < N in the lexicographic ordering.

33

https://doi.org/10.1109/FOCS61266.2024.00113
https://doi.org/10.1109/FOCS61266.2024.00113
https://doi.org/10.1109/FOCS61266.2024.00113
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1007/3-540-09519-5_73
https://doi.org/10.1007/3-540-09519-5_73

Definition A.2. fix an admissible ordering of monomials in k[x]. A generating set G of an
ideal I < k[x] is a Grébner basis with respect to that ordering, if the leading monomial of every
polynomial in I is a multiple of a leading monomial of a polynomial in G.

If the ordering is graded, we say that G is a graded Grobner basis.
Lemma A.3. Let & be a Grobner basis for a graded ordering. Then & is a Grobner generating
set.

Proof. If & is a Grobner basis for I, then a polynomial f is in I if every complete lead reduction of
f results in the zero polynomial. Every step of the reduction will be of the form

LM(/")

I~ i) ?

for some g € & and f’ being an intermediate result in the reduction.

For a graded ordering we have by definition deg(LM(f)) = deg(f) for every f, so

deg (T)a) = dee() < degt)

|
Remark A.4. If & is a Grobner basis of smallest size, then is not necessarily o Grébner generating
set of smallest size. For example, the two polynomials spanning the ideal
(l‘%, 1T — .’L‘%)
form a Grébner generating set, as they both are homogeneous of degree 2. However, we also have

xg = x5 - :c% — (z1 + 2) - (xlxg — x%)

s0 73 € (:E%,ﬂ:l:zg —x%), and so in the graded lezicographic ordering z3,x179, 5 are all leading
monomials. Since no monomials of degree 2 can divide two of these monomials, a Grébner basis
must contain at least 3 elements.

34

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

