
CHS-alike 1/O(log log n)-rate tree codes from
elementary binary shifts

Tal Yankovitz∗

Abstract

In a breakthrough in the long-going attempt to construct good explicit
tree codes, Cohen, Haeupler and Schulman (CHS) (STOC 2018) constructed
constant-distance tree codes with rate 1/O(log log n). In their construction
a large-alphabet tree code is used as a core element - and they were able
to utilize polynomials over the Newton-basis to construct one, relying on a
sparsity lemma for such polynomials (or alternatively, by using a construction
of Pudlák). Here we simplify the proof of their result by replacing this ele-
ment with an alternative construction, which consists of shifting input binary
vectors and taking their binary sum. As an artifact of that, we note that
the obtained rate-1/O(log log n) tree code is linear (a property which to our
knowledge was not previously known).

1 Introduction
Definition 1.1. A tree code of length n, rate 1/r and distance δ is an online function

T C : {0, 1}n → ({0, 1}r)n

such that for every distinct (x1, . . . , xn), (x
′
1, . . . , x

′
n) ∈ {0, 1}n the relative-Hamming dis-

tance, of every continuous same-length two substrings of T C(x1, . . . , xn), T C(x′
1, . . . , x

′
n)

which start from the first index where x and x′ differ, is at least δ. By online we mean that
for every t ∈ [n] the function T C(x1, . . . , xn)t, denoted T Ct, depends only on x1, . . . , xt.
We say that the tree code is explicit if it can be computed in time poly(n). We say that
T C is linear if for every t ∈ [n] T Ct is an (F2-)linear map.

∗UT Austin. talyanko@utexas.edu. Supported by NSF Grant CCF-2312573.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 167 (2025)

Tree codes were introduced in the seminal work of Schulman [Sch93] who showed that
they yield interactive-schemes for achieving error-resilient two-party protocols, and the
problem of constructing them has attracted significant attention [Sch94, Bra12, MS14,
Pud16b, GHK+16, CHS18, NW20, BH20, BYCN21, Pud22, BYCY22, MRR25, CSS25].
Schulman [Sch93, Sch96] raised the question of whether explicit constructions of tree codes
having constant distance and constant rate are possible, which has been open since. In an
important breakthrough, Cohen, Haeupler and Schulman were able to show the following.

Theorem 1.2 ([CHS18]). For every n ∈ N there is an explicit tree code

T C : {0, 1}n → ({0, 1}r)n

with r = O(log log n) and distance δ = Ω(1).1

That is, they obtained explicit constant-distance tree codes with rate 1/O(log log n).
This consisted an exponential improvement (in the rate) over what was previously known [Sch94].

1.1 [CHS18] construction details and our contribution

As no constant-distance 1/o(log log n)-rate explicit tree code construction has been dis-
covered following [CHS18] we see importance in simplifying or finding alternatives to
the elements upon which the present state-of-the-art can be established. Let us briefly
overview of the CHS construction before describing our suggested alternative.

1.1.1 On the CHS construction

In their proof, [CHS18] rely on a construction of a tree code over a large input-alphabet,
which they show can be constructed by encoding a given message as a polynomial p ∈ R[x]
over the Newton-basis, which is {

(
x
i

)
}i∈N∪{0} rather than the standard basis {xi}i∈N∪{0}

usually used in polynomial-based error correcting codes. [CHS18] show that in the case
of polynomials expressed in the Newton-basis over the reals, the Gessel-Viennot Lemma
can be employed in order to bound the number of integral roots in terms of the number
of non-zero coefficients (i.e., the sparsity). This establishes that their mentioned large
input-alphabet tree code has constant distance.

The second part of their proof consists of showing that such a large-alphabet tree
code can be used in order to obtain tree codes over a binary-input alphabet (as in Defini-
tion 1.1). Besides the large-alphabet tree code, the building blocks2 used in this part of

1In fact [CHS18] showed that this holds for any constant δ < 1.
2See Section 6 in [CHS18].

2

their proof are (plain) error codes and tree codes for a very small message length which
can be found by brute-force. The encoding then boils down to outputting in parallel (bits
of) the large-alphabet tree codes concatenated with an error correcting code, applied to
different length substrings of the message. Their idea behind this reduction is that is
that each of the different parallel tree codes assures distance after a different lag, and
conjointly they imply tree code distance overall.

It is important to note that [CHS18] also observe that by using a construction of
Pudlák [Pud16a] one can obtain a large-alphabet tree code which can be used instead
of the one based on the Newton-basis. The [Pud16a] construction goes by devising3 a
lower triangular matrix such that every square submatrix, with a diagonal entirely in the
lower triangle, is nonsingular - from which a construction of tree code readily follows.
[Pud16a]’s proof that his matrix is such relies on the underlying field being large enough
and on an inductive argument which uses the Leibniz formula for determinant.

1.1.2 Our contribution

Our contribution is to replace the mentioned large input-alphabet with an alternative one
- which we fully describe in the (short) Section 2. We briefly overview the idea of this
simple alternative and then discuss two artifacts.

We suggest a construction which works as follows. The input is some (x1, . . . , xm) ∈
({0, 1}n)m, that is, a sequence of m binary vectors of length n (thus the “large alphabet”
tree code has input alphabet {0, 1}n), and we need to set an output yt for each time
t ∈ [m]. As [CHS18] note, it is enough to achieve {yt}t∈[m] such that the number of zeroes
among them (that is, 0̄) starting from the first index i where xi ̸= 0̄ – is bounded by the
number non-zero xi’s. Then, the output at time t can be redefined to y′t = (xt, yt), and it
would readily follow that this is a tree code with distance (larger than) 1/2.

We need to define y1, . . . , yt as an online function, i.e., to have that yt is dependent
only on x1, . . . , xt – but for simplicity let us start by describing a construction which isn’t
online (and then say what should be adjusted).

For the (non-online) output y1 at the first time t = 1, we arrange x1, . . . , xm as rows
of a matrix, and output their sum (each entry summed modulo 2), which is a length-n
binary vector. For the output y2 at the second time t = 2, we leave the first row of the
matrix as is, but shift the second row one place the left, the third row two places to the
left, and so on – we add zeroes in places where there are now blank entries, and again
sum up the all the rows and output the result, which is a binary vector of length n+m.
At the next time, we again so shift each row (row i further shifts by i− 1 spots) and our

3See lemma 6.1 in [Pud16a].

3

output is of length n+2m. At the last point in time, ym is of length n+m2 (and we can
see that if one sets m =

√
n, this is manageable in terms of rate).

Clearly, only shifting vectors and taking binary sums, each bit in the output consists
a linear map of the bits of the message. We argue that the number of zeroes among
y1, . . . , ym is bounded by the number of non-zeros among x1, . . . , xm (assuming they are
not all zero). One way to see that is by induction on the number of non-zeroes among
x1, . . . , xm. Consider the first point t in time where the summation resulted in a zero
vector. Further consider the left-most column of the shifted matrix at that time which
has a non-zero at any row, and consider the smallest row index i on which it is non-zero.
Since the result of the summation is the zero vector, there is at least one more row j which
is non-zero on that column. Since j > i, at every time t′ > t, row j would be shifted
further to the left compared to row i (compared to what it was at time t), and thus row i

can never again be relevant to making the sum of the left-most (shifted) non-zero column
equal to 0. Thus, since xi is “out of the game”, there is one less non-zero row at play, and
the induction hypothesis can be employed. A more exact formal account can be found in
Section 2.

To make this construction online a simple modification is made: instead of summing
all the rows at each time, at time t = 1 we only set y1 to be the sum the first 1 rows (that
is, the first row), and the output y2 is set to be the shifted sum of only the first 2 rows,
and so on, the output yt only sums up the shifted rows that correspond to x1, . . . , xt. It
is not hard to see that this does not change the correctness of the described argument
(but we now only need to consider zeroes among y1, . . . , ym following the first time where
xt is non-zero4). From this, a length m, constant rate, distance 1/2, tree code over input
alphabet {0, 1}n follows.

1.1.3 Remarks regarding linearity and decoding

To our knowledge an explicit linear tree code matching the parameters of [CHS18] has
not been observed. This has been noted as a hurdle to some applications as noted, for
example in [MRR25] (see there Remark 1.1). However by considering the binary-shifts
large-alphabet tree code we can amend that.

Proposition 1.3. For every n ∈ N there is an explicit linear tree code

T C : {0, 1}n → ({0, 1}r)n

with r = O(log log n) and distance δ = Ω(1).
4And the “left-most non-zero (shifted) column” should be defined only by rows of index at most t.

4

Indeed, in the [CHS18] framework the only non-linear operation in the encoding was
that of the Newton-basis large-alphabet tree code5. Since in the binary-shifts case every
bit of the output is a linear map of bits of the input, and [CHS18] proceeds by applying
plain error correcting codes or very small tree codes – both of which can be assumed
linear, the proposition follows.

Secondly, we address the question of efficient decoding. While no efficient algorithm is
known that corrects a constant fraction of errors for the codes of Theorem 1.2, Narayanan
and Weidner [NW19] gave a randomized Las Vegas algorithm running in expected poly-
nomial time that corrects a Ω̃(1

n1/4)-fraction of errors.
We do not know an efficient decoding algorithm for the binary-shifts large-alphabet

tree code, however we note that one can (very simply) decode it from a polynomial num-
bers of bitwise errors. While this suffices in order to decode the final resulted binary tree
code from some polynomial number of errors, as [NW19] observe that in the [CHS18]
framework a decoding algorithm for the large-alphabet tree code implies a decoding algo-
rithm for the final resulted code, there are other ways to get such a decoding guarantee.6

We shortly explain the very simple way to decode the binary-shifts tree code from a
weak guarantee of polynomial amount of bitwise errors. Note that the outputs y1, . . . , ym ∈
{0, 1}n+m2 described in the previous part - in fact consist the parity bits of different lines
in the grid in which x1, . . . , xm are arranged as rows of a matrix: each yt contains the
parity bits of the lines with slope t. Since the lines passing through each point are disjoint,
if only a small fraction of bits in x1, . . . , xm and y1, . . . , ym has been changed, for each bit
within a certain xi most of the lines passing through it will have both their parity bit, and
the other bits on the line - both uncorrupted. Thus, each bit can be decoded by taking a
majority vote between its different lines.

2 Reproof of Theorem 1.2 with a “binary shifts” al-
ternative

We set a few preliminaries.

Preliminaries. N = {1, 2, . . . , } is the set of natural numbers. For two vectors or
strings u, v ∈ Σn we use Dist(u, v) to denote their absolute Hamming distance, and u ◦ v

5It is not linear because its output consists of truncated integers based on an input of smaller integers.
6One can construct a tree code with rate 1/O(log log n) that can decode from a higher number of

errors for example by appending to the output of the constant-distance tree code, a low-distance tree
code - say that of [GHK+16], which can be seen to admit efficient decoding within its lower-distance.

5

to denote their concatenation. Given u ∈ Σn and i ≤ j we use ui,...,j to denote the
substring (ui, . . . , uj).

We start by noting that Theorem 1.2 is proven in [CHS18] by invoking their important
following proposition.

Proposition 2.1 ([CHS18]). Assume that for some constants c > 0 and 0 < δ < 1, for
every ℓ ∈ N there exists an explicit tree code

T Cℓ : ({0, 1}ℓ
c

)ℓ → ({0, 1}O(ℓc))ℓ.

with distance δ. That is, that as in Definition 1.1, it is online, and the distance property
described in Definition 1.1 is met for every distinct (x1, . . . , xℓ), (x

′
1, . . . , x

′
ℓ) ∈ ({0, 1}ℓc)ℓ

considering T Cℓ(x1, . . . , xℓ) and T Cℓ(x
′
1, . . . , x

′
ℓ)

7. Then, for every n ∈ N there exists an
explicit tree code

T C : {0, 1}n → ({0, 1}O(log log n))n

with distance Ω(1).

Different than [CHS18] who use a large-alphabet tree-code arising from a sparsity
lemma for polynomials over the Newton basis, which they prove by making use of the
Gessel-Viennot Lemma, we will instantiate the above proposition with an alternative
simpler construction yielding the following.

Lemma 2.2. For every ℓ ∈ N there exists an explicit tree code

T Cℓ : ({0, 1}ℓ
2

)ℓ → ({0, 1}2ℓ2+(ℓ−1)2)ℓ

with distance (larger than) 1/2.

We note that Proposition 2.1 with Lemma 2.2 immediately implies Theorem 1.2.
Before we present the construction yielding Lemma 2.2 we turn to define two operations
which it relies upon, and following them, we state a related lemma to be used in the proof
of distance.

Definition 2.3. Given v = (v1, . . . , vn) ∈ {0, 1}n, i ≥ 0 and r ≥ n + i we define
shiftr(v, i) ∈ {0, 1}r to be (0, . . . , 0︸ ︷︷ ︸

r−n−i times

, v1, . . . , vn, 0, . . . , 0︸ ︷︷ ︸
i times

), that is, the shift of v i places to

left, and adding zeroes on the left and right so that it is of length r.
Secondly, for m ∈ N, t ∈ [m] and r ≥ n + (t − 1)2, we define the function Evalt :

({0, 1}n)m → {0, 1}r by

Evalt(x1, . . . , xm) =
t∑

i=1

shiftr(xi, (i− 1)(t− 1)),

7We are being explicit since Definition 1.1 was for binary inputs.

6

the summation identifying {0, 1}n with Fn
2 (that is, done entry-wise modulo 2).

The proof of distance of the to-be constructed tree code is based on the following
lemma.

Lemma 2.4. Let x1, . . . , xm ∈ {0, 1}n be such that |{i | xi ̸= 0̄}| = ℓ > 0. Then

|{t ∈ [m] | t ≥ min{i | xi ̸= 0̄} ∧ Evalt(x1, . . . , xm) = 0̄}| < ℓ.

Before turning to prove Lemma 2.4, we conclude from it the construction which yields
Lemma 2.2.

Proof for Lemma 2.2 (construction of T Cℓ). Let ℓ ∈ N. Set n = ℓ2, m = ℓ and r =

ℓ2+(ℓ− 1)2 and we will invoke the definition of Evalt from Definition 2.3 with these n,m

and r. On input x1, . . . , xm ∈ {0, 1}n we define for every t ∈ [ℓ]

T Cℓ(x1, . . . , xm)t = (xt,Evalt(x1, . . . , xm)).

Since Eval is online, so is T Cℓ. At each time t the length of T Cℓ(x1, . . . , xm)t is n + r =

2ℓ2 + (ℓ − 1)2. The fact that T Cℓ has distance more than 1/2 follows from Lemma 2.4.
Indeed, assume towards contradiction that there are (x1, . . . , xm) and (x′

1, . . . , x
′
m) such

that i ∈ [m] is the smallest such that xi ̸= x′
i and there is h ∈ [m − i + 1] such that

T Cℓ(x1, . . . , xm) and T Cℓ(x
′
1, . . . , x

′
m) agree on at least h/2 locations in [i, i+h−1]. Then

Eval1(x′
1−x1), . . . ,Evali+h−1(x

′
i+h−1−xi+h−1) contradict Lemma 2.4 since there are at most

h/2 indices j ∈ [i+h−1] such that x′
j−xj ̸= 0̄ while (Evali(x′

i−xi), . . . ,Evali+h−1(x
′
i+h−1−

xi+h−1)) has at least h/2 zeroes. Finally, clearly T Cℓ is explicit.

It thus only remains to prove Lemma 2.4. We will give a simple proof by induction,
of a strictly stronger lemma, Lemma 2.7. To describe it easily we make two definitions.

Definition 2.5. For every x ∈ {0, 1}r such that x ̸= 0̄ we define Left-Most-Nonzero(x) =
min{i ∈ [r] | xi ̸= 0}.

Note that Left-Most-Nonzero gets vectors of length r because in the next definition it
is applied to shifted vectors.

Definition 2.6. For every not-all-zero x1, . . . , xm ∈ {0, 1}n and t ≥ min{i ∈ [m] | xi ̸= 0̄}
we define

Left-Most-Nonzero-Columnt(x1, . . . , xm) = min
i≤t|xi ̸=0̄

Left-Most-Nonzero(shiftr(xi, (i−1)(t−1))).

With that we can state and prove the stronger lemma.

7

Lemma 2.7. The following holds for every ℓ ∈ N. Let x1, . . . , xm ∈ {0, 1}n be such that
the set I(x1, . . . , xm) = {i | xi ̸= 0̄} is of size ℓ. Then the set

T (x1, . . . , xm) = {t ∈ [m] | t ≥ min I(x1, . . . , xm)∧Evalt(x1, . . . , xm)Left-Most-Nonzero-Columnt(x1,...,xm) = 0}

is of size less than ℓ.

Proof. The proof is by induction on ℓ. In the base case ℓ = 1, there is only one xi∗ which
is non-zero and it trivially cannot be that for some t ≥ i∗,

Evalt(x1, . . . , xm)Left-Most-Nonzero-Columnt(x1,...,xm) = 0.

For the induction step, let ℓ > 1, and assume towards contradiction that there is
x1, . . . , xm such that I(x1, . . . , xm) = ℓ, while T (x1, . . . , xm) is of size at least ℓ. Let
t∗ = minT (x1, . . . , xm) and

S = {i ∈ [m] | (shiftr(xi, (i− 1)(t∗ − 1)))Left-Most-Nonzero-Columnt∗ (x1,...,xm) ̸= 0}.

Notice that Left-Most-Nonzero-Columnt∗(x1, . . . , xm) is well defined as t∗ ∈ T (x1, . . . , xm)

and that by its definition S is non-empty. Further let i∗ = minS and notice that t∗ ≥ i∗

since i∗ ∈ I(x1, . . . , xm) and t∗ ∈ T (x1, . . . , xm). Further, as t∗ ∈ T (x1, . . . , xm) we have
the following equalizes which hold modulo 2

0 = Evalt∗(x1, . . . , xm)Left-Most-Nonzero-Columnt∗ (x1,...,xm)

=
∑

i∈S|i≤t∗

shiftr(xi, (i− 1)(t∗ − 1))Left-Most-Nonzero-Columnt∗ (x1,...,xm)

= 1 +
∑

i∈S\{i∗}|i≤t∗

shiftr(xi, (i− 1)(t∗ − 1))Left-Most-Nonzero-Columnt∗ (x1,...,xm)

and thus S \ {i∗} is also non-empty, and i∗∗ := minS \ {i∗} ≤ t∗. By the definition of
Left-Most-Nonzero-Columnt∗(x1, . . . , xm) and as

shiftr(xi∗ , (i
∗ − 1)(t∗ − 1))Left-Most-Nonzero-Columnt∗ (x1,...,xm) = 1,

shiftr(xi∗∗ , (i
∗∗ − 1)(t∗ − 1))Left-Most-Nonzero-Columnt∗ (x1,...,xm) = 1,

and it must be that

Left-Most-Nonzero(shiftr(xi∗ , (i
∗ − 1)(t∗ − 1))) = Left-Most-Nonzero(shiftr(xi∗∗ , (i

∗∗ − 1)(t∗ − 1)))

= Left-Most-Nonzero-Columnt∗(x1, . . . , xm)

since i∗ < i∗∗ ≤ t∗. It follows that for every t > t∗,

Left-Most-Nonzero(shiftr(xi∗ , (i
∗ − 1)(t− 1))) > Left-Most-Nonzero(shiftr(xi∗∗ , (i

∗∗ − 1)(t− 1)))

≥ Left-Most-Nonzero-Columnt(x1, . . . , xm)

8

since (i∗ − 1)(t − 1) − (i∗ − 1)(t∗ − 1) < (i∗∗ − 1)(t − 1) − (i∗∗ − 1)(t∗ − 1) and by the
definition of shift. In particular for every t > t∗

Left-Most-Nonzero-Columnt(x1, . . . , xm) ̸= Left-Most-Nonzero(shiftr(xi∗ , (i
∗−1)(t−1))).

(2.1)
Now, consider x′

1, x
′
2, . . . , x

′
m where x′

i = xi if i ̸= i∗ and x′
i∗ = 0̄. The set I(x′

1, . . . , x
′
m) =

{i | x′
i ̸= 0̄} is of size ℓ − 1 > 0, and i∗∗ ∈ I ′(x′

1, . . . , x
′
m). Furthermore, for every

t ∈ T (x1, . . . , xm) \ {t∗} we have that

Evalt(x′
1, . . . , x

′
m)Left-Most-Nonzero-Columnt(x′

1,...,x
′
m)

=
∑
i≤t

shiftr(x′
i, (i− 1)(t− 1))Left-Most-Nonzero-Columnt(x′

1,...,x
′
m)

=
∑
i≤t

shiftr(xi, (i− 1)(t− 1))Left-Most-Nonzero-Columnt(x1,...,xm) = 0

where the last equality is by t ∈ T (x1, . . . , xm), and the penultimate equality is as for any
t > t∗, since xi ̸= x′

i only for i = i∗, by Equation (2.1)

Left-Most-Nonzero-Columnt(x
′
1, . . . , x

′
m) = Left-Most-Nonzero-Columnt(x1, . . . , xm).

It follows that T (x1, . . . , xm) \ {t∗} ⊆ T (x′
1, . . . , x

′
m) (note that min I(x′

1, . . . , x
′
m) ≤ i∗∗ ≤

t∗ and for every t ∈ T (x1, . . . , xm) \ {t∗}, t > t∗, by the definition of t∗). Thus x′
1, . . . , x

′
m,

since |T (x′
1, . . . , x

′
m)| ≥ ℓ− 1, contradict the induction hypothesis, as desired.

2.1 Decoding from a weak guarantee of polynomial-fraction of
errors

We start by saying what we mean be decoding a tree code T C : {0, 1}n → ({0, 1}r)n from
a γ-fraction of errors. Note that as a tree code is not a code per se8, a different than usual
notion of decoding is the right one.

Definition 2.8 (See also Definition 3.2 in [NW19]). We say that a tree code T C : {0, 1}n →
({0, 1}r)n can be efficiently decoded from a γ-fraction of errors if there exists an algorithm
which runs in time poly(n) and for every t ∈ [n], given input y1, . . . , yt ∈ {0, 1}r such
that:

• There is (x1, . . . , xt) ∈ {0, 1}t such that for every suffix (yi, . . . , yt),

Dist(T C(x1, . . . , xt)i,...,t, yi, . . . , yt) ≤ γ(t− i+ 1),
8Indeed it suffices to change only the last output of the tree code and obtain a valid code word.

9

outputs x1, . . . , xt.

We claim that the binary shifts large-alphabet tree code can be efficiently decoded
from a polynomial number of errors. We need however to consider a slightly different
notion of decoding, one that measures errors in bits of every suffix, rather than blocks.
We remark that in [NW19] (Theorem 3.1) it is proven that the problem of decoding the
[CHS18]-framework reduces to the problem of decoding the large-alphabet tree code.

Claim 2.9. Let T Cℓ : ({0, 1}ℓ2)ℓ → ({0, 1}2ℓ2+(ℓ−1)2)ℓ be the large-alphabet tree code
defined in Section 2. Set γ = 1

16ℓ2
. Assume that ỹ′1, . . . , ỹ′t ∈ {0, 1}2ℓ2+(ℓ−1)2 are such that:

• There is (x1, . . . , xt) ∈ ({0, 1}ℓ2)t such that for every suffix (y′i, . . . , y
′
t),

Dist ((T C(x1, . . . , xt)i ◦ · · · ◦ T C(x1, . . . , xt)t), (ỹ
′
i ◦ · · · ◦ ỹ′t)) ≤ γ·(t−i+1)·(2ℓ2+(ℓ−1)2),

that is, the relative distance of the bits of every suffix is at most γ.

Then, there is a procedure which gets as input ỹ′1, . . . , ỹ
′
t and outputs (x1, . . . , xt), which

runs in time poly(ℓ).

Proof. Write ỹ′i = (x̃i, ỹi) for every i ∈ [t]. That is, we split each possibly corrupted
output to the alleged systematic part x̃i, and the alleged shifted-vectors sum part, ỹi.

We not first that we can immediately decode xt, since it must by that x̃t = xt. Indeed,
if we consider just the length-1 suffix x̃t, then Dist(x̃t, xt) ≤ γ · 3ℓ2 < 1.

We proceed to show, by induction on i ∈ {0, . . . , t − 1}, that we can decode the
sequence of rows x1, . . . , xi (in the case i = 0, this sequence is empty, and thus the base
case of the induction is trivial). Let, therefore i ≥ 1, and we assume that the hypothesis
holds for i − 1; thus we can assume that we have decoded x1, . . . , xi−1, and we need to
show that we can decode xi. Towards that, we show that we can decode every bit j ∈ [ℓ2]

of xi, that is (xi)j. Fix j ∈ [ℓ2]. We will use only the suffix (x̃i+1, ỹi+1), . . . , (x̃t, ỹt) part
of the input in order to decode (xi)j.

As said in the introduction, for every h ∈ {i+ 1, . . . , t}, yh contains (at some column
of yh), the parity bit of a sum that involves (xi)j – the sum of the coordinates which fall
on a line of the t×ℓ2 grid which passes through (i, j). The slopes of these line are growing
with h, and therefore all these slopes are distinct, and thus the lines are disjoint except
for the point (i, j). For every h ∈ {i + 1, . . . , t} let jh denote the index of the column of
yh which contains the parity bit of the line which passes through (i, j).

First, we argue that for more than t−i
4

of these lines h ∈ {i+1, . . . , t}, (ỹh)jh = (yh)jh .
Indeed, per the hypothesis of the claim and considering the i+1, . . . , t suffix of the input

|{h ∈ {i+ 1, . . . , t} | (ỹh)jh ̸= (yh)jh}| ≤ γ · (t− i) · 3ℓ2 < t− i

4
,

10

as γ = 1
16ℓ2

.
Second, among the lines h ∈ {i + 1, . . . , t}, call a line “bad” if for there is a point

(i′, j ′) which lies in a row i + 1, . . . , t of the t × ℓ2 grid, such that (x̃i′)j′ ̸= (xi′)j′ . Since
the lines all disjoint on rows i + 1, . . . , t, the number of bad lines is at most the number
of corruptions of x̃i+1, . . . , x̃t. Thus,

|{h ∈ {i+ 1, . . . , t} | h is bad}| ≤ γ · (t− i) · 3ℓ2 < t− i

4
.

Combining the two bounds, less than 2 · t−i
4

= t−i
2

of the lines either have their parity
bit incorrect, or have any corruption on them on x̃i+1, . . . , x̃t. Thus, a majority of the t− i

lines have both their parity bit correct and all of the points of x̃i+1, . . . , x̃t. For any such
good line, the sum of the parity bit, its points on x̃i+1, . . . , x̃t, and all of the points of the
line which fall on x1, . . . , xi−1 (which, recall, we have) – is equal to (xi)j. Thus, doing this
computation for each line, and taking the majority, decodes (xi)j. We conclude that the
induction step holds.

References
[BH20] Siddharth Bhandari and Prahladh Harsha. A note on the explicit con-

structions of tree codes over polylogarithmic-sized alphabet. arXiv preprint
arXiv:2002.08231, 2020.

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In Proceed-
ings of the 3rd Innovations in Theoretical Computer Science Conference, pages
161–167. ACM, New York, 2012.

[BYCN21] Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan. Candidate
Tree Codes via Pascal Determinant Cubes. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2021), volume 207, pages 54:1–54:22. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021.

[BYCY22] Inbar Ben Yaacov, Gil Cohen, and Tal Yankovitz. Explicit binary tree codes
with sub-logarithmic size alphabet. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pages 595–608, 2022.

[CHS18] Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman. Explicit binary
tree codes with polylogarithmic size alphabet. In STOC’18—Proceedings of

11

the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
535–544. ACM, New York, 2018.

[CSS25] Gil Cohen, Leonard J Schulman, and Piyush Srivastava. The rate-immediacy
barrier in explicit tree code constructions. arXiv preprint arXiv:2504.09388,
2025.

[GHK+16] R. Gelles, B. Haeupler, G. Kol, N. Ron-Zewi, and A. Wigderson. Towards
optimal deterministic coding for interactive communication. In Proc. ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1922–1936, 2016.

[MRR25] Tamer Mour, Alon Rosen, and Ron Rothblum. Locally testable tree codes.
In Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 5523–5559. SIAM, 2025.

[MS14] Cristopher Moore and Leonard J. Schulman. Tree codes and a conjecture
on exponential sums. In ITCS’14—Proceedings of the 2014 Conference on
Innovations in Theoretical Computer Science, pages 145–153. ACM, New York,
2014.

[NW19] A. K. Narayanan and M. Weidner. On decoding cohen-haeupler-schulman tree
codes. arXiv preprint arXiv:1909.07413, 2019.

[NW20] Anand Kumar Narayanan and Matthew Weidner. On decoding Cohen-
Haeupler-Schulman tree codes. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1337–1356. SIAM, 2020.

[Pud16a] P. Pudlák. Linear tree codes and the problem of explicit constructions. Linear
Algebra and its Applications, 490:124–144, 2016.

[Pud16b] Pavel Pudlák. Linear tree codes and the problem of explicit constructions.
Linear Algebra Appl., 490:124–144, 2016.

[Pud22] Pavel Pudlák. On matrices potentially useful for tree codes. Information
Processing Letters, 174:106180, 2022.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In
Proceedings of the 25th annual ACM Symposium on Theory of Computing,
pages 747–756, 1993.

[Sch94] Leonard J. Schulman. Postscript of 21 september 2003 to coding for interactive
communication, 1994.

12

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Trans.
Inform. Theory, 42(6, part 1):1745–1756, 1996. Codes and complexity.

13

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

