Electronic Colloquium on Computational Complexity, Report No. 168 (2025)

Asymptotically good large-alphabet LDCs with
polylogarithmic query complexity

Tal Yankovitz*

Abstract

A large alphabet Locally Decodable Code (LDC) C : % — ¥/ where Y/
may be large, is a code where each symbol of z can be decoded by making
few queries to a noisy version of C(z). The rate of C' is its information rate,
:fggg((g,")). We construct the first constant-rate large alphabet LDC C
making a polylogarithmic number of queries (in k and n), while satisfying

namely

log || < k¢ for any chosen constant ¢ < 1. We add that in fact we show
a code with a property stronger than being a large alphabet LDC, which we
dub block-wise Locally Correctable Code (block-wise LCC), implying LDC.

Our construction is a variant of multivariate Multiplicity codes which were
introduced in the seminal work of Kopparty, Saraf and Yekhanin (STOC ’11).
However we remark that our definition of the code and its analysis are taking
a somewhat different approach, considering specific linear relations that are
required for our purposes. While the resulting rate is akin to the one obtained
through standard multiplicity codes analysis, this dual-based analysis extends
to other families of linear-constraint codes of the same flavor and may be of
independent technical interest.

To get the polylogarithmic query complexity we observe a correction pro-
cess for which very few random lines suffice in order to correct an element, as
opposed to an exponential number of lines as is usually required in decoding
Multiplicity codes. This seems to be the first non-trivial case where the lower-
bound for LDC due to Katz and Trevisan (STOC ’00), which in particular
implies that for constant rate the number of queries is at least logarithmic in

the code’s length, is close to tight.

*UT Austin. talyanko@utexas.edu. Supported by NSF Grant CCF-2312573.

ISSN 1433-8092

Contents

1 Introduction 1
1.1 Our main contribution 2
1.2 Technical overview, and second contribution 3

1.2.1 Setting the ground: a naive attempt 3
1.2.2 The line-constraints subspace 4

1.2.3 Our second contribution - bounding the dimension of the line-

constraints subspaceo)

1.2.4 On bounding the dimension of the line-constraints subspace 6

1.2.5 From the line-constraints subspace to Theorem 1.4 7

2 Preliminaries 10
2.1 Notation. e 10
2.2 Facts. e 10

3 The line constraints subspace 11
3.1 The desired functions and the bound on their dimension 11
3.2 Expressing the desired functions o000 12
3.3 From a span of functions in ¢, x, H to a span of polynomials in a,b 13
3.4 Bounding the span of polynomials over the Reals 15
3.5 Concluding Theorem 3.2 18

4 Good blockwise LCCs with polylog query complexity 19
4.1 High-rate blockwise LCCs 19

4.2 Applying the AEL distance amplification to get asymptotically good block-
wise LCCs o o o 23

1 Introduction

Locally decodable codes were first defined by Katz and Trevisan [KT00]. They, in partic-

ular, allow for sublinear decoding algorithms in the case that a part of data is required.

Definition 1.1 (LDC). C : X¥ — ¥ 4s a (¢,6)-LDC (locally decodable code, abbrevi-
ated) if there exists a randomized procedure Dec : [k] — X that is given an oracle access
to z € X' and has the following guarantee. For everyi € [k], x € XF and z € X' satisfying
HammingDistance(z,C(x)) < on, Dec®(i) = z; with probability at least % Furthermore

Dec®(i) always makes at most q queries to z.

Their study, and the study of the closely related locally correctable codes, has at-
tracted substantial attention. For a comprehensive exposition, the reader may consult
the excellent survey of Yekhanin [Yek11]. Locally decodable codes have abundant appli-
cations, including in error correcting codes, complexity theory, PCPs, error reduction,

cryptography, hardness amplification, data structures, and more.

A central question in the area of locally decodable codes is the optimal tradeoff between
klog |X|

the information rate of the code, TSl
nlog |>]

and the number of needed queries ¢, and a rich
line of work has been dedicated to shedding light on this question, yet much has remained
unknown.

Katz and Trevisan [KT00] have proved that!

1 \7T (1\7T (2 k- |log|S|]\ T
>(=-6) (= Y e . 1.1
! (6) ((f) (3 log [3] ()

1+0(1)
In particular, whenever § = Q(1), if ¢ = O(1)? then n = <ﬁ;g|§|‘> , and if the

information rate is constant, i.e., n = O (ﬁzglgll), then g = Q(logn).

As for constructions, in the case that ¢ = O(1) is needed, sub-exponential construc-
tions are known due to Yekhanin and Efremenko [Yek08, Efr09], the state of the art
giving binary codes of a length n which is exponential in 2'°¢°* (and thus subexpo-
nential in k) [Efr09]. In the other regime which aims for constant rate, after several
works [GKS13, KSY14, HOW15] improved on the rate of codes with polynomial query

complexity ¢ = n®, Kopparty, Meir, Ron-Zewi and Saraf [KMRS17] achieved high-rate

binary codes with ¢ = 20< log(n) log log(n))'

'We remark that in fact they state their bound for the case that the input alphabet ¥ = {0,1}, but
it is easy to see that it extends to the case of any X, by choosing an injective mapping {0, 1}“0g ol QN
2The case q = 1 is handled separately in [KT00], where it is shown that it is impossible to have ¢ = 1

with a nontrivial code alphabet X'.

Significant work was also put in attempt to improve the Katz-Trevisan bound. In the
case ¢ = 2 tight exponential bounds were provided [Golll, KDWO03, DS05, BGT16]. For
larger constant ¢’s the work of [KDWO03] gave a polynomial improvement in Equation (1.1)
for small alphabets, with improvements in [Woo07, AGKM23, BHKL25, JM25].> We add
that in the constant rate regime no improvements upon the ¢ = Q(logn) that follows from

Equation (1.1) were discovered.

1.1 Owur main contribution

In this work we construct the first constant-rate polylogarithmic query locally decod-
able code with non-trivial code alphabet. Prior to this work, the best known locally
decodable code with log|¥'| = O(nf) for any constant ¢ < 1 had an inverse polynomial
rate [BFLSI1].

In fact a stronger object is achieved, which we now define. Since our constructed code

is going to be linear, we define it over a finite field F.

Definition 1.2 ((g, §)-blockwise LCC). For two sets P, S where |P| = n, a code C < F'*S
is a (q,9)-blockwise LCC if there exists a randomized procedure Cor : P x S — F that is
given an oracle access to z € FP*9 and has the following guarantee. For every (p,a) €
P xS, ceC and z € F'*5 such that |{p € P | 2(p,-) # c(p,-)}| < dn, Cor*(p,a) = c(p,a)
with probability at least % Furthermore, Cor®*(p,a) always makes at most q queries to z,

where each query of Cor consists of obtaining ¢(p/, -) for some p’ € P.

We think of the set P as a set of n points where “on” each point p € P there is a block
(¢(p,a))aes which is of size |S|; the overall length will usually be denoted by N := n|S].
We proceed to make the following remark.

Remark 1.3 (From linear blockwise LCC, to LDC). If C < FF*S s a F-vector space
of dimension k which is a (q,8)-blockwise LCC then C induces C : F* — (FS)P which
is a (q,0)-LDC. Indeed, we can choose any systematic mapping C' : F* — C where by
systematic we mean that the symbols of x are embedded in the symbols of C'(x). Since

we can correct the symbols of C'(x), we can decode the symbols of . We thus take

C : F¥ — (FS)T to be such that for pe P, C(z)(p) = C'(z)(p,-).
Our main result is the following.

Theorem 1.4. For every o = 4 the following holds. For every n’ € N there exists n = n’
for which the following holds. There is a linear code C <]Ff;xs, where ¢ = O(log” ™ (n)),

3 Also, for bounds on 3-query locally correctable codes see [KM23] and followups [Yan24, AG24, KM24].

2

dimg, (C)

s = Q(1), which is a (log®**(n), (1))-

|P| = n and |S| < n®°, with rate p =
blockwise LCC.

One interesting conclusion from Theorem 1.4 is that attempts to significantly strengthen

the Katz-Trevisan bound should rely on the code alphabet being small.

Remarks. We did not optimize the polylogarithmic factor in the query complexity; we
chose a simpler exposition, and a more careful analysis should further reduce this factor.
Secondly, while we do not highlight it in the paper an explicit construction of C' follows
naturally.

We turn to give a technical overview of the construction and analysis. In Section 1.2.3

we describe a technical contribution.

1.2 Technical overview, and second contribution

We construct a code which we view as a variant of multivariate multiplicity codes which
were introduced in the most influential work of Kopparty, Saraf and Yekhanin [KSY14].
However, we take a somewhat different approach in defining the code and in the anal-
ysis (we will not explicitly mention derivatives). Instead of considering an encoding (of
polynomials into evaluations of their derivatives) we define a set of linear constraints,
sufficient for local correction, and prove an upper bound on the dimension of the linear
subspace spanned by these constraints. After giving the technical details we address the

connection to (normally defined) multiplicity codes, in Remark 1.7.

1.2.1 Setting the ground: a naive attempt

It is well known that a Reed-Muller code Crmy < Fggl consisted of the evaluations of
m-variate polynomials in F,[z1,...,2,,] of total degree at most d - while possessing
wanted local-correction features - are of rapidly vanishing rate whenever m = w(1).
These correction features stem from the dual code Cgy, which contains linear constraints
Uxy,y ... xy) € IFISZH, in particular constraints supported on lines of Fy" (that is, they are

0 outside of the line), giving rise to equations

Z U o, ...,0m) clag,...,am) =0
ai,...,am€Fg
which hold for every ¢ € Crm. A very naive attempt at increasing the rate of the code while
preserving the wanted correction features is to define a new code C” over copies of the

coordinate-sets of Cry, say s copies indexed by h € [s], while keeping the same constraints.

That is - for every {(z1,...,2,,) € Cay that was of need for the local correction, we take
U(x1,. .., &m, h) = L(z1,...,2,) to be in the space orthogonal to C’. Since the code length
increased from n = ¢ to s - n while the co-dimension remained as before, in particular,
at most n, the rate of C’ is at least 1 — % However, this rate seems too good to be useful
and indeed it is, since by ignoring the copy number A in our added constraints, we made

the constraints of the code only dependent on the sum of the copies. That is,

Z U o, am, h) - clag,...,qm,h) =0

hes] a1y ameFq
is what we have for ¢ € C’, and thus we cannot ever correct a specific coordinate, rather
only the sum of its “copies”. However, if we could make a more clever choice for our
U'(z1,...,%m, h) —one which does depend on h, hopefully while still keeping the dimension
required in order to span all these constraints more close to n than to s-n, then possibly
we would gain something. This is going to be what we aim towards doing, as we explain

next.

1.2.2 The line-constraints subspace

Continuing the approach of the previous discussion we will construct a subspace of low-

weight constraints, adding “copies” of the coordinate-set Fy", with the choice that each

copy will be indexed by H € H where H < (N u {0})™. That is, the constraints, and the
X H

: F
induced code, are subspaces of F,*

Now, some technical details. First, to ignore sign +1 or —1 nuances in this informal
overview we will assume that I, is of characteristic 2. Second, notation wise, we will write

iem] xf Third, it will be convenient

for us to have another designated variable - which we will denote by ¢ - and we will only
xH

x as short for (z1,...,2,,), and z’ as short for []

consider ordered lines which are indexed by t. That is, our space is ngxw’n , and we will
consider all lines corresponding to direction a € F" and offset b € Fi": the set of points
{(T,a17 + b1, .. amT + b)) | 7 € Fg} S 4L
We will define the following constraints. For every 7 € F, a € F" and H € H
L0 o H) = a? ifa=ar+0b .]F]quX]FZnXﬂ
0 otherwise

We will thus take our constraints subspace to be

L = Span{L*?

a,beF'}.

We call L the line-constraints subspace, and we see that the defined constraints do depend

on the copy H.

Two questions arise: is £ useful for local correction, and what can we say on its
dimension, especially what’s its dependence on the number of copies |H|. We first discuss
the second question, in our analysis we show that dim(£) can be related to the structure

of the set of copies H. After that, we will discuss the first question.

1.2.3 Our second contribution - bounding the dimension of the line-constraints

subspace

Recall that £ < ngxwxﬂ, and we define N := |[Fy x Fi* x H| = ¢"*'|H|. We now

make a definition regarding the structure of H which we show is key in the bound on the

dimension of L.

Definition 1.5.
Boundary(H) :={H e H|Jie[m]: H+e; ¢ H},
where e; is the i-th unit vector.

With the definition of the boundary of H we can present our second contribution, which

is a bound on the dimension of the line-constraints subspace, related to Boundary(H).

Theorem 1.6. For m = o(q),
dim(L) < N -m - |Boundary(H)| + o(N).

That is, while we added |#H| “copies” of the coordinates to our code, we only paid for
that in dimension proportional to m-|Boundary(#)|, so whenever |[Boundary(H)| « =|H]|,
we profit.

Before overviewing the elements of the proof for Theorem 1.6, we pause to discuss

instantiations of it.

Instantiations of Theorem 1.6. One natural choice for the set H, for a parameter
seNisH ={He Nu{0})™||H| <s—1}, where |H| := ", H;, and note that

|H| = (mti_l). In fact, this choice corresponds to the normally defined multiplicity codes

where the encoding outputs evaluations of derivatives up-to order s — 1. For this choice,

ich i i m+s—2 : i(i—1 i
Boundary(H) = {H € H | |H| = s — 1}, which is of size (™*°]?). Using that 3(j—1) = (j),
we see that

|Boundary(H)| m
| T mts—1
and thus defining a code by taking C' = £ with this choice for H, results by Theorem 1.6
in a code with rate 1 — #52—1 —o(1), or more precisely 1 — mT52—1 — mTH’ using the more

b}

detailed bound from the technical section. We remark that this bound on the rate is quite
similar to the bound (1 — mTQ)(1— %)m on the rate of multiplicity codes which follows from
the rate bound in [KSY14]*.

However, there are also other possible choices for H. Another possible example is
taking H = {H € (NuU {0})" | H < s — 1}, where s — 1 denotes (s — 1,...,s — 1), and
by < we mean that the inequality holds at every individual entry. We remark, without
getting into the details, that whenever s < ¢ this choice also allows correction. In this

case

S

|H| 8™

and thus by Theorem 1.6 for this choice C' = £+ would have a similar rate as the previous

)

|Boundary(H)| s™—(s—1)" 1 (1 B 1) <M

S

option. This example does not seem to be equivalent to multiplicity codes, and it seems
interesting to wonder what different options for H can give with respect to local correction,
where the choice of ‘H does matter (specifically to get the low-query of Theorem 1.4 we
will need the firstly discussed, multiplicity-like H).

1.2.4 On bounding the dimension of the line-constraints subspace

We now turn to give a technical overview on the proof for Theorem 1.6. It turns out that
we can algebraically express the line-functions defined in Equation (1.2) above by relying
only on Fermat’s Little Theorem. We define the following (H-dependent function times

a) polynomial for every a,b € Fy":

LYt a, H) = o™ TT (1= (2 + ait + b)), (1.3)

i€[m]

and it is an easy check that for every 7 € F; and o € "

, L¥(7,a, H) evaluates exactly
to our wanted function. This is useful when we look for a small basis for £. If we open
up the product in Equation (1.3), then we can see (the full details in Section 3) that in
the case that m = o(q), the challenge boils down to bounding the dimension of the span
of functions
L@t z, H) = a" H (z; + a;t + b;)7
i€[m]

i.e., those containing the “heavy”, degree m(q — 1), product. We will thus denote L=
Span{L®"

the dimension of L.

a,be IF;”} and turn our focus to bounding its dimension since it will dominate

4When choosing the maximal degree of the evaluated polynomial to be d = s(q — 1) — 1 to give a

comparable setting to ours.

Now, one can check that

where I,J € (Nu {0})™, 0 == (0,...,0), ¢—1 = (¢g—1,...,¢—=1), |I| := X" I,

— ~ ~ -
m times m times
J<I <= LW <hnAdyp<IDn (5) =105 (7) and 2! o= [2.

The next step is to consider the defined above D%*(j, I, H) for every I < q— 1, j < |[|
and H € H, and we will inspect them as polynomials in a,b —i.e., while Lo is a function
of t,x and H, where a and b are some fixed elements of [;", we will analyze the family of
polynomials D%*(j, I, H) € F,[a,b] defined according to all possible I,j, H. Doing so, we
define D = Span{D**(j, [, H) | [< q—1,j < |I|,H € H} < F,[a,b], and in Section 3 we
prove that dim £ < dim D, so it turns out that it suffices to consider these polynomials. In
fact, we bound the dimension of Span{D%®(j, I, H)} as polynomials over the reals, which
suffices in order to bound dim D.

It may look daunting to analyze the dimension of Span {ZJSI,\lej () a7 | 4,1, H}
as polynomials in a, b since the coefficients are specific sums of m-wise products of bino-
mial coefficients. However, it turns out that all is needed in order to do so is the fact that

?(;j) = (;)5 Using this fact, we show in Section 3 that for any j > 0

DG H) = Y, LD = LT —en H ey, (1.4

re[m]|I,>0

In particular, in order to span the entire space, it suffices to take a set which consists
of {D**(0,I,H) | I < q—1,H € H} (which is a small set when ¢ = w(1) since fixing
j to 0 corresponds the size being divided by ¢), and of {D**(j,I,H) | [< q—1,j <
|I|, H € Boundary()} since Boundary(?) consists exactly of the H’s where we can’t
apply Equation (1.4) in order to span them using “higher” H’s. This is enough to deduce

Theorem 1.6, for the full statement and proofs see Section 3.

1.2.5 From the line-constraints subspace to Theorem 1.4

As mentioned above, we will instantiate Theorem 1.6 with H = {H € (N u {0})™ | |H| <
s — 1}, and take C = £+ < Fy"" " = F*? where P = Fy x F7" and n = |P|. Assume
that we wish to correct a coordinate (7%,a* H*) € F, x F" x H, that is, to recover

c(t*, o*, H*) amid some c € C.

SWhich was already used one time in the discussion following Theorem 1.6.

7

It will be sufficient to show that C' has a smooth local correction procedure, where
by smooth we roughly mean that coordinate of the code is queried with about the same
probability. If C satisfies this, since we have good and query efficient distance amplifica-
tion procedures [AEL95, KMRS17, CY21, CY22], that would yield a constant correction

radius code as desired.

The codewords ¢ € C' by definition satisfy the line constraints, which are, observe from
Equation (1.2), that for every direction a € Fy* and offset b € F}",

Z Z ae(r,aym 4+ by, .. amT + by, H) = 0.

reF, HeM
In particular imagine that we choose a € Fy" uniformly at random, and set b = o™ — at™.
It is not too hard to see every point (beside (7%,a*)) has probability at most £ to be on
the ordered line with direction a and this offset b, and that (7%, a*) is the 7*-th point of
the ordered line. Thus,

Z ae(t*,0* H) = Z Z ae(r,ar + b, H), (1.5)
HeH el \{r*} HeH
and recall that we ignore plus/minus signs by assuming char(IF,) = 2 in this overview. As
we are interested in ¢(7*, o*, H), and by querying the sampled line, we would only get one
equation involving it but also other unknowns, we can, like in the decoding of multiplicity
codes [KSY14] choose roughly |H| < s™ such lines and solve the system of equations. In
fact in [Kopl15] it is shown that in the case of multiplicity codes the number of lines can
even be reduced to 2°0™) . However, for our needs, even 2°0™ is far too large since we aim
for a polylogarithmic number of queries.
We take a moment to inspect Equation (1.5). If we define for every (7, a) € Fy x F?

the polynomial

Pra = 2 o(r,o, H) - y" e Foly]l = Fylva, - -, yml,
HeH

then rewriting Equation (1.5),

Prear(@) = D Piarla).
TeF,\{T*}
That is, querying the line at direction a gives us the evaluation of pfs« ,« on point a.
Yet, by itself, this does not paint a better way to obtain ¢(7*, a*, H*). However, we can
make the following observation, which is that we know something about the polynomial
Pyx o that by our choice of H, it is of total degree at most s — 1. This means that

directly getting its evaluation on a is not the only way to deduce pi*@*(a). Rather, we

8

can “locally correct” pﬁ*@*(a) by obtaining any s evaluation points of pf ,«, on a line
which passes through a (recall that a in itself was the direction of a line chosen in order
to correct ¢(7*, a*, H*)).

Did we make any progress by observing that we can “locally correct” pg. ,«(a)? This
would have helped us, in case we needed to obtain pg. ,«(a) instead of ¢(7*, a*, H*). This
is because it suggests a way to obtain pﬁ*@*(a) smoothly, opposed to only having one
deterministic way (querying exactly the line at direction a). Instead, to query all the
lines corresponding to a set of s directions aV),... a®® € [Fy" which lie on a line of F}"
which passes through a — suffices in order to obtain pf« ,«(a). One can observe that we can
choose such a line uniformly at random, and the s directions on it uniformly at random,
resulting in a smooth decoding procedure for pi*va*(a), since marginally each direction
a' is uniform.

But again, we did not set out to obtain pfs .« (a) for some a € F7'; rather, our goal was
to locally correct our code C, that is to recover ¢(7*, a*, H*). The final trick, then, is to
change that goal. Since we have, for each point (7,«a) € F, x ", a good correction pro-
cedure for evaluations of the polynomial p¢ ,, why not replace each block (¢(7, a, H)) pen
with (pra(a))ecs, where S < Fi* is some chosen set of evaluation points (one needs to
verify that this is a linear transformation and indeed it is). In fact, this is what we do.
We accordingly construct from C' a code C' < IFS‘ZXFTXS, and by choosing S to be any
interpolating set of ;" for degree at most s — 1 polynomials (that is, no such polynomial
evaluates to 0 on all of S) of size |#H|, this doesn’t change the length of the code, and
keeps Equation (1.5) useful for our decoding, since we can deduce each pf , by querying
(9.0 ().

To conclude, we constructed a block-wise locally correctable code C' < Ff; S 1P| =,
which corrects each coordinate by smoothly querying s - (¢ — 1) blocks, corresponding
to the s line directions we sample, and the ¢ — 1 blocks we query on each such line.
In our choice of parameters we will set, for any chosen o: ¢ ~ log'n, s = logo(l)(n)
and m ~ 1. %"] (to be constant with that |P| = ¢™*' = n). This choice, by

o loglogn

Theorem 1.6, assures that C' (and therefore C”) has a high rate. The block-length is
logn
S| = |H| < s™ ~ (logn)®W 7 mslsn = n%", while the query complexity is less than

)U+O(1)

sq ~ (logn , as wanted. The exact details, as well as the distance amplification

step, are found in Section 4.

Remark 1.7 (On the connection to multiplicity codes.). The line-constraint subspace
underlying our construction is closely related to the structure of classical multiplicity
codes [KSY1]]. In fact, one can view our C defined above as a restricted version of a

multiplicity code, where we retain only a subset of the linear relations that arise from

taking directional derivatives along lines (though the final C' is a different code). We
believe that standard multiplicity codes themselves would have sufficed, but here we isolate
only the minimal portion of the structure that suffices for our decoding argument. The
more rich structure of standard multiplicity codes is very useful, while in our view focusing
only on the linear relations considered by us here has the advantage of making the steps

described in Section 1.2.5 follow somewhat more naturally.

2 Preliminaries

2.1 Notation.

All logarithms are taken base 2. N = {1,2,...} is the set of natural numbers. For m € N,
[m] = {1,2,...,m}. For a prime power ¢, F, is the finite field with ¢ elements. For two
vector spaces A = F and B = F, their tensor product A® B < FJ*V is the space
Span{f e FI*V | 3g e F , h € F, such that Vz,y f(z,y) = g(z) - h(y)}.

Abbreviated m-wise notation. Fix m € N. For vectors u = (uy,...,u,) over a
ring/field and a multi-index I = (iy,...,4,) € (N U {0})™, write

m
I._ i
u .—| |ur.

r=1

For k e N U {0}, let k := (k,...,k) € (N U {0})" and abbreviate u* := u*. For I =
(11, yim)s J = (J1, -+ -5 Jm) € (N U {0})™, define

m. I . = /l:T
|I|I=;’Lr, I<J<:>21<j1,...,lm<]m, (J):H()

For i € [m], e; denotes the i-th unit vector.

For indeterminates x = (1,...,%y,), we write the monomial =’ := [[" x/r. For a
subset W = {wy, ..., ww} S [m] where w; < -+ < wyy), we define xw = (Zu,, - -+, Tugyy)-
2.2 Facts.

We will use the following easy fact.

Fact 2.1. Let vy,...,v; € Z™ be integral vectors such that dimg(vy,...,v,) =k and let p
be a prime number. Then, dimg, (v7,...,v]) < k where v is the vector v; with all of its

elements reduced modulo p.

10

Proof. Over any field F, dimg(vy, . ..,v;) < k if and only if every k+1-subset of {vq, ..., v}
oo Uy, beak+l-subset of v, ..., vf. Since dimg(vy, ..., v;) =

k, v, ..., v;,, are linearly dependent over R. Thus there exist not-all-zero v1,..., V41

is F-linearly dependent. Let v

such that Z%’Uij = 0 and since v;,, ... ,Vi,,, are integral we can assume without loss of
generality that v1,...,v+1 € Z. Moreover, we can further assume without loss of gener-
ality that it is not the case that p divides all of 71, ..., v%11 (otherwise we divide them by
their largest common divisible power of p). Thus, >}(v; mod p)v; = 0 over F7! is a zero

non-trivial linear combination of v; ,...,v;,,,. The fact follows. O

(Go)=0)

Fact 2.3. For every ey unit vector for f € [m], and I,J € (N U {0})™ such that I,J = ey

z'_fI—ef . I
ir\I—er) \J)

Proof. Follows trivially from Fact 2.2. [

Fact 2.2. For everyi,j e N

3 The line constraints subspace

In the following section ¢ is a prime power, m € N and s € N are some parameters.
H < (NuU{0})™ is a finite set. We define n := ¢™*! and N := n|H|.

3.1 The desired functions and the bound on their dimension
We define a linear subspace
L = Span{L*® | a,be '

which is to contain all functions which correspond to lines of direction (minus) a and

offset (minus) b. For every a,b e F",
L Fy x F' x H — F,
is defined as follows. For every 7 € Fy, a e F;" and H € H

b a ifa=—ar—0>
L*(t,a, H) =

0 otherwise.

11

In words, L**(7, o, H) takes value a” if (7, @) is on the ordered line {(7, —ar—b) | 7 € F },

and 0 outside of it.
In Theorem 3.2 we state a bound on the dimension of £ over F,. Prior to that, we

make the following important definition.

Definition 3.1.
Boundary(H) :={H e H |Jie[m]: H+e; ¢ H}.

Theorem 3.2 (Theorem 1.6, rephrased).

m+1

dimg, (£) < (m(q—1) +1) - ¢ - |Boundary(H)| + N.
In particular, for the choice H = {H € (Nu {0}))™ | |H| < s — 1},
dinly(ﬁ)<(m(q_1)+1)- = -N+m+1-N.
¢ q m+s—1 q

We defer the proof for Theorem 3.2 to the end of this section and we first set up some

needed claims and definitions.

3.2 Expressing the desired functions

The following claim states that each function L*® can be expressed as a product of a

polynomial in F,[¢,x] where x = (1, ..., %), and the function a”.

Claim 3.3. For every a,be Fy

L (t,x, H) = a] (1= (2 + ait +b;)").

1€[m]

Proof. For every a € F,, a7t = 1 if a # 0 and 0 otherwise. Thus, for every i € [m],

1 — (z; + at +b;)9 1 is 1if x; = —a;t — b; and 0 otherwise. Hence, the product over i

evaluates to 1 if z = —at — b and to 0 otherwise. It only remains to multiply by a” per

the definition of L*°. O
Thus

Ltz H) = a Y (=)™l aw + awt + b))
wcm]

=a" Z ()" (zw + awt + b)) + (—=1)"a" (z + at + b)T'. (3.1)
Welm]

12

We define for every a,b € Fy" the functions

Lotz H) = a” (z + at + b)7 1,
zajb(taxa H) = aH Z (_1)‘W‘(1‘W +awt + bW)qT17

Wgm]

and the families

L = Span{L* | a,b e o,
L= Span{z“’b |a,beF"}.

We observe that it is essentially enough to bound only dimg, (E)

Claim 3.4.
diqu (E) < diIIqu (E) + %N

Proof. We have that £ < £ + £, by Equation (3.1), and thus dimg, (£) < dim]pq(lj) +

dimyq(ﬁ). It remains to observe that for every a,b € Fy

, L% can be expressed as the
product of a” with a sum of m polynomials ¢*°(¢, z), ..., g% (t, z) where for every i € [m],
gi * does not depend on x;, and thus is spanned by the set of monomials M; = {t/z! | 0 <
j<q—1,0<1<q—1,1; =0}, which is of size n/q. As

[+ e IFZ; ® Span(U M;)

i€[m]

we conclude that diqu(f) < |H| Zie[m] |M;| < |H|mn/q = nN. O

3.3 From a span of functions in ¢,x, H to a span of polynomials

in a,b

We want to show that we can span each L (t,z, H) = af(z + at + b)9™! using a low

dimension. Notice that
H ~1 H q—1 1.1
t+5b = = t+b
a’(at +b+x) a E (I)(a+)x,
0<I<qg-1

where I := ¢—1 — 1. Recall that £ < FIquxIF;an

be the span of a set of functions in variables ¢, z, H, going over all possible a,b € F". We

is a vector space, while were defined to

will now observe that the dimension of £ is in fact related to the dimension of the space

13

of certain polynomials in formal variables a = (ay,...,am),b = (b,...,bn), over F,[a,b].
Specifically, we define for every 0 < j <m(q—1),0<I<qg—1and He H,

I
D*(j,I,H):= > <J>aH+be—Jqu[a,b], (3.2)
o<J<I

|J1=3

and we then take
D := Span{D*’(j,[,H) [0 < j <m(q—1),0< I <q—1,HeH},
and we view D as a vector space over [F,. We argue that

Claim 3.5.
dimg, £ < dimg, D.

Proof. Fix a,b € F;" and expand

N . e N
Lt x, H) = o (x + at + b)) = Z (q I) 2! (at + b)) a”

0<I<q

Writing (at + b)* =D <l ()(t)’b'=7 and grouping by the power of ¢,

11| —
Lab t,x, H) Z Z (Z ()aHJerIJ) _ <q;1) g
0<I<q—1 J<I

[J]=3

By definition,

I
DG 1 H) =) (J) a6 e Fyla, b,

so we can rewrite the expansion as

z“’b(t,x,H)zi - Z()tjxf-D“’b(j,],H). (3.3)

0<I<g—1 j=0

Let r = dimg, D and choose a basis p1,...,p, of D (as a subspace of Fy[a,b]). For
cach triple (j, I, H) there exist scalars v,(j, I, H) € F, such that, in D,

D (j, 1, H) = > (4, I, H) pu(a,).
h=1

Substituting this into (3.3) and interchanging sums gives

1]
LabtxH thab (Z th],]]—] (Il>) (3.4)

<I<q—-1 j=0

14

Define the (fixed) functions

1] —

Ghlt,z, H) = > w1, H) (q ; 1) tigl e Fy M,
These Gy, ..., G, do not depend on a,b. Equation (3.4) above says that
L e SpanFq{Gl, G} for every a,b e F".
Hence £ < Spang {G1,. .., G} and therefore
dimp, L < r = dimg, D.
O

We thus turn our focus to showing that dimp, D is small. Observe, by considering
Equation (3.2), that each D*(j, I, H) was defined as a polynomial with integer coefficients
(then taken modulo the characteristic to get a polynomial over F,). Hence, we can re-view
each D**(j, I, H) as being in R[a, b], and consider dimg of D.

Claim 3.6.
dimp, D < dimg D.

Proof. Follows by Fact 2.1.]

3.4 Bounding the span of polynomials over the Reals
Proposition 3.7.

dimg D < ¢™|H| + (m(q¢—1) + 1) - ¢"* - |Boundary(H)|.
Proof. Consider

A={D*0,I,H)|0<I<q—1,HeH},
B={D"(G,I[,H)|0<j<m(qg—1),0<I<q—1,H e Boundary(H)}.

We prove
Span(A u B) = D. (3.5)

Since |A| = ¢"|H| and |B| = (m(gq—1) + 1) ¢™ |Boundary(H)|, the bound on dimg D

follows immediately from (3.5).

15

Fix j e {1,...,m(g=1)}, 0 < I < ¢g—1, and H € H. If H € Boundary(#) then
D*b(j,1, H) € B and we are done. Otherwise, it suffices to show

DU, 1, H) e SpanR{Da’b(j—l,[—ef,H—l—ef) | feG}, (3.6)

where G = {f € [m] | iy > 0}. Once Equation (3.6) is established, we may iterate the step

while j > 0: either we reach j' = 0 (hence a member of A), or at some intermediate time

we use an index f with H' := H + e; € Boundary(#), in which case the corresponding

term lies in B. In all cases we obtain D*°(j, I, H) € Spang(Au B), proving Equation (3.5).
To show Equation (3.6) recall that

I
Da’b(j,]7H) _ Z <J> aH-‘erI—J.
o<J<I

IJ X

[J]=J

Counsider the linear combination

1 .
(%) := Z —fD“’b(] — 1,1 —es, H+ey).
feG

For each f € G, by the definition of D%® we have

[_ ! !
D (j—1,1—es, H+ey) = Z (J/ef> affrertd" pl=es=7",

Substituting this into (*) gives

) .[- ! ’
() = Z Z_f Z < J/ef) gHres+J pl—es=J' (3.7)

feG J 0<J'<I—ey
[J]=j—1

Next, for each fixed f € GG, we perform a change of variables: let
J=J +ey.
Then note that
0<J <IT—ep |J]=j—-1 <= e<J<I, |J =37

Further, under this substitution we have
I—ep\ _(I—e o qHres I _ gHAT pleep=J _ pl=J
J’ J — €f

16

Thus we get

if I—ep\ migpi-g
SR IR A L
fec) e;<usr f
| 7]=j
which already looks more similar to D*%(j, I, H) that we wish to show is expressed, though
we are not quite done yet.

For each f € G and each J in the range (notice that I, J > ef), we can apply Fact 2.3

3 I—ef 3 [
7 = .
Ng—e,) 790\

]f I H+J pI—-J
f;ef;ﬁ[‘7 J
|J]=4

to get

Thus,

We proceed by noticing that we can extend the inner sum to range over all 0 < J < [

with |J| = j, since for J with j; = 0, the inner term anyhow evaluates to 0.

() => > Jj—fG) at b

feGo<i<I
|J|=3

Changing the order of summation and taking out terms which don’t depend on f,

() = 0<ZJ<I G) a =y I

feG J

Now, by G’s definition - for f ¢ G, iy = 0 and thus also j; = 0 for every J in the

summation, we see that

=2 () B

felm]

_ <-’) o+ kaﬂ
1 J J

I
= <J> i+ pl=7
0<J<I

which is the definition of D**(j, I, H) - as wanted. We thus established Equation (3.6),

from which as said, the proposition follows.

]

17

3.5 Concluding Theorem 3.2
Proof for Theorem 3.2. By Claim 3.4,
. . ~ m
dimp, (£) < dimg,(£) + —N.
q
By Claim 3.5 and Claim 3.6,
dimg, £ < dimg, D < dimg D.
By Proposition 3.7,

1
dimg D < (m(q— 1) + 1) - ¢" - |Boundary(H)| + —N.
q

Thus,

m—+1

dimg, (£) < (m(q¢—1)+1) - ¢™ - |Boundary(H)| + N

Y

as desired.

As for the in particular part of the theorem, it follows by noting that for H = {H €

(N G {0} | H] <5~ 1), 1
- ("),

Boundary(H) = {H e (Nu {0})" | |H| = s — 1}

whereas

and so

m—1

|Boundary(H)| = (m e 2>.

Appealing to Fact 2.2,

—1
mts—1 |Boundary(H)| = |H],
m
and so
m m—l—l
di L) < — 1) +1)-¢" : N
img, (£) < (m(g =1+ 1) " [H] =] q
Lmlg=D+D) ~ om o omEl
q m+s—1 q
as wanted. -

18

4 Good blockwise LCCs with polylog query complex-
ity

In this part we construct a good blockwise LCC with polylogarithmic query complexity.
We will do so in two stages, first in Section 4.1 we will construct one such with rate 1—o(1)
and a (modestly) vanishing correction radius. Second, in Section 4.2 we will apply the
AEL distance amplification to increase the distance, and conclude Theorem 1.4. Such
two step approach is similar to the one taken in [KMRS17].

As is pretty standard, it will be more convenient to work with a slightly different
definition of local correction, in which we will consider the probability the a point being

queried, instead of directly considering corruptions.

Definition 4.1 ((g, p)-blockwise smooth LCC). A code C' < FF*S s a (q, p)-blockwise
smooth LCC if there exists a randomized procedure Cor : P x S — F that is given oracle
access to ¢ € C' and has the following guarantee. For every (p,a) € P x S and ¢ € C,
Cor’(p,a) = c(p,a) with probability 1. Furthermore, Cor’(p,a) always makes at most
q queries to ¢, where each query of Cor consists of obtaining c(p',-) for some p' € P.
Moreover, for every (p',-) € P x S the probability that c(p',-) is queried by Cor®(p,a) is at

most L.

We state the simple fact that a smooth-enough (g, u)-blockwise smooth LCC is a
decent-§ blockwise LCC (as defined in Definition 1.2).

Claim 4.2. If C < FP* where |P| = n is a (q, p)-blockwise smooth LCC then it is a
blockwise-(q,d) LCC for ¢ = ﬁ

Proof. For z € FP*% guch that [{p € P | z(p,-) # c(p,-)}| < on, c*(p,a) outputs c(p, a)
in the case that no points p’ € P where z and ¢ differ were queried. By a union bound,
since the probability to query each p’ is at most pu, for § = ﬁ, the probability to make
an erroneous query is at most onu = %]
4.1 High-rate blockwise LCCs

We will need to use interpolating sets for ;" which we define as follows.

Definition 4.3. An s-interpolating set S < Fi" is a sel such that for every polynomial

qeF,ly1,...,ym] of total degree at most s — 1, there exists a € S such that q(«) # 0.

The following fact is well known.

19

Fact 4.4. For every s < q — 1 there is an explicit s-interpolating set S < Fy' of size
(m+s—1)]

m

The next claim states that we can, instead of viewing each block as “coefficients” of a
degree less than s polynomial, view each block as evaluations of such a polynomial, while
still having the same line-wise requirements satisfied. The claim asserts that this results
in the same dimension, but we stress that this is not the same code, since the constraints

are in fact different.

Claim 4.5. Let C < F,""" ™ for H = {H e (NU {0})™ | |H| < s — 1}, be the largest

linear code satisfying the following property. For every c € C and for every a,b e F™

Z Z ac(r,at + b, H) = 0. (4.1)

TeF, HEH

Let S < F be an s-interpolating set and let C' < ngxwxs be the largest linear code

satisfying the following property. For every ¢ € C' and for every a,b e F™
Z QT,aT+b(a> =0 (42)
TeF,

where for every T € By and v € F', qr is the unique polynomial of degree at most s — 1

such that V3 € S, q.(8) = (7,7, 8) (notice that these are indeed linear requirements).
Then, dim C" = dim C'.

Proof. The proof is straightforward. We show C < C” by describing an injective f :
C' — (' (the other direction is identical). For ¢ € C' we define ¢ = f(c) to be the word
obtained by setting for every 7 € Fy, v € Fi* and B € S (7,7, 8) = Xpyen BHc(r, v, H).
Indeed f is injective, since S is an s-interpolating set, for every ¢; # ¢, ¢f = f(c1) #
ch = f(c2). Moreover, it is immediate from the definition of ¢, . that since c satisfied any
Equation (4.1), ¢ satisfies any Equation (4.2), and thus ¢ € C". O

The following important proposition asserts that a code which is constructed to satisfy

Equation (4.2) is a blockwise smooth LCC with a low query.

Proposition 4.6. Let C' < Flng;ﬂxs, for S < F" an s-interpolating set, be such that

for every ¢ € C' and for every a,b e F™
Z QT,aT+b(a) =0 (43)
TeF,

where for every T € Fy and v € F', qr, is the unique polynomial of degree at most
s — 1 such that V3 € S,q.~(B) = (1,7, 0). Assume that s < ¢ — 1. Then, if we define
P =TF, xF" and n = |P|, C" = F"*% is a (sq, 2)-blockwise smooth LCC.

Proof. To prove the proposition, we describe the correction procedure Cor.

20

The correction Cor. On oracle access to ¢ € C’, in order to correct an element

(7%, a*,a*) e Fy x F xS, Cor proceeds as follows.
1. Sample uniformly at random a line direction v € Fy".
2. Sample uniformly at random distinct oy, ..., 0, € F,\{0}.
3. For every i € [s]:

(a) Set a® = o + a*.

(b) Set b = a* — 7%a(®,

(¢) Query the ¢ — 1 blocks at the points p € P which are on the ordered line with
direction a and offset b, except for the 7*-th point. That is, we query the
blocks of the points {(7,7a® +b®)) | 7 € F,\{7*}} < P. By “query the blocks”

we mean that for every such p we query ¢(p,-).
(d) For every such point on the line, p, for 7 € F,\{r*}, denote the resulted block
of the query by B; : § — F,.

(e) For each 7 € F,\{r*}, compute the unique degree less than s polynomial ¢, €

F,lv1,--.,Ym] which agrees with B, on S.
(f) Set Ai =2 cr,\(re) g7 (a).

4. Compute the unique univariate polynomial of degree less than s, r € F [z], such

that for every i € [s], r(0;) = —A;.

5. Output 7(0).

Query analysis. [t follows immediately by inspecting Item 3c that Cor queries at most
s(q — 1) blocks.

Correctness. Let ¢* € Fy[y1,...,yn] denote the unique degree less than s polynomial
which agrees with ¢/(7*,a*,-) on S. Now, notice that for every i € [s] the value A; that
we compute at Item 3f of the iteration is exactly the sum of the evaluations on a® e Fy
of the polynomials in F,[y1, . .., ym] of the blocks along the line (7, 7a® + b)), x . except
for the evaluation of the polynomial which corresponds to the 7*-th point of the line.
Notice that the 7*-th point of the line, by Item 3b, is exactly

(7%, 7%aD + 0D = (7%, 7% + o — 7%aV) = (1%,),

21

which corresponds to the polynomial ¢*. Thus, by Equation (4.3),

and hence ¢*(a”) = —A;. Now, notice that a¥),...,a® are all on the line {o - v + a* |
o eF,} <. Since the reduction of ¢* on that line is a univariate polynomial of degree
less than s, which on 0 € F, evaluates to ¢*(a*), it readily follows that in Item 4 the
computed 7 is equal to that polynomial, and that the value outputted in Item 5 is ¢*(a*).

Since ¢*(a*) = ¢ (7%, a*, a*) by the definition of ¢*, it follows that Cor is correct.

Smoothness. Let p' = (7/,a/) € P. Fix i € [s]. We ask what is the probability that the
block corresponding to p’ is queried in Item 3c. If 7/ = 7* this never happens. If 7/ # 7%,
this happens if and only if 7/a? + b = . By inspecting Item 3a and Item 3b one sees
that this event, in turn, is equivalent to

(7" = 7)o + a*) = o' — a*.

Since o; is by choice nonzero, and v € Fi" is independent of it and uniformly random, the

probability for this to occur is qlm. Since this was for a fixed i € [s], the probability that

the block corresponding to p’ is queried by any of the s iterations is at most -5 = 24 as
q n

required. O

The following proposition concludes that for infinitely many n’s, there exists a high
rate blockwise LCC.

Proposition 4.7. For every o > 4 the following holds. For every n’ € N there exists
n = n' for which the following holds. There is a code C = FE*, with |P| = n, q¢ =
poly,(logn), |S| < n®?, which is a (2log”"?(n), %ﬁ("))—blockwise smooth LCC, with
dimg, (C) = (1 —o(1))N.

Proof. We set ¢ to be the minimal power of 2 which is larger than log”(n’). Note that
log?(n') < ¢ < 2log”(n’). We further set

log(n’
e lféq)_ ’
n=q"t
s =m?,
P—F,xF",
H={HeNuf{0})"|H|l<s—1}
N =|P|-|H|.

22

Note that [P| = ¢™*' = n > n/. Let C < F*" =]F]quFZ’nXH be the maximal linear

subspace satisfying all line constraints Equation (4.1). Notice that C' = £,° where L is

as defined in the previous section. Thus, by the in particular part of Theorem 3.2,

-1 +1 1
dimFC>N—((m(q ¥ _m oy mil
! q m+s—1 q

V) = =W

for our choice of ¢, m and s. Let S < F" be an s-interpolating set, which exists by
Fact 4.4, and let C’ be the maximal linear subspace satisfying all line constraints as in
Equation (4.3). By Claim 4.5, dimC’" = dimC. By Proposition 4.6, (', is a (sq, >!)-
blockwise smooth LCC, and notice that sq < 2log”**(n’) < 2log”**(n) and

logn' 3log(n’)-loglog(n’) 3log(n’)-log log(n’)
|S| g Sm g (10g3 n/) logg — 2 log(q) < 2 o log log(n’) < n3/o—'

As required.]

4.2 Applying the AEL distance amplification to get asymptoti-
cally good blockwise LCCs

[KMRS17] crucially observed that the AEL distance amplification [AEL95] is fit for ampli-
fying the distance of LCCs, and adapted it. A variant of those amplification procedures,
which is given in the language of linear constraints, was described in [CY22] (in particular

it doesn’t increase the length of the code), so we opt to using it, for convenience.

Definition 4.8 ([CY22]). A linear subspace A < F" is called a (q,0,c)-local-amplifier if
there exists a deterministic procedure Amp : [n] — F that is given oracle access to z € F"
and has the following guarantee. For every y € A and z € F™ such that Dist(z,y) < on,
Amp(i) outputs y; when given oracle access to z, for at least a-fraction of the indices

i € [n]. Furthermore, Amp always makes at most q queries to z.

Claim 4.9 ([CY22]). For everyn € N, FF a field, and 6, a € (0, 1) such that 6 < 1/25, there
exists a linear subspace A € F™ which is a (q, 9, a)-local-amplifier for ¢ = 25/(6(1 — a)?)
such that dimp(A) > (1—-2Hg (5v/0) —V/0(1—a))n. Furthermore, adding to Definition 4.8,
for every z, the guaranteed a-fraction set of good indices depends only on the locations
where z disagrees with y (“corruptions”), and is a monotone function of these locations
(that is, for two sets of corruptions where one is contained in the other, their two respective

good indices sets satisfy that the second is contained in the first).

6In fact, not precisely, for the following reason. Equation (4.1) requires that for every a,b € Fy', the
sum along the line (7, a7 + b), is 0. However in Section 3, £ was defined so that for every a,b € Fy', we
have a constraint supported on the line (7, —a7 — b),, to make the analysis more nice. However this is of

little importance, as by permuting the coordinate names (7, @) — (7, —«) we don’t change the dimension.

23

With everything set, we now prove Theorem 1.4.

Proof for Theorem 1.4. Set § = 0.01. Let C' <]F(I;XS be the code guaranteed by Proposi-

tion 4.7, when invoked with o and n’ of the hypothesis, to be a (2log”*3(n), M)—

blockwise smooth LCC, with
dime, (C) > (1 - o(1)) - |P| - |S].
By Claim 4.2 C'is a (gs, ¢')-blockwise LCC for

!

~ 5 ~© (o)
©3n-2log”B(n) \log"(n))’

and let Cor be a corresponding local corrector for it. Set o =1 — ¢’ and let A < IFqP be a

(qa, 0, a)-local-amplifier which exists by Claim 4.9, for

dimg, (A) = (1 - 2Hq(5\/5) — \/5(1 —a))n = (2(1) = O(8)n = Q(n),
25 2046
4= S O(log™™(n)),
and let Amp be its corresponding procedure. We take
C'={ceC|Vae S:c(,a)e A}.
First, to address the dimension of C’, by counting constraints we see that

dimg, (C") = dimg, (C) — (n — dimg, (A))|S] = Q(n|S]),

by the bounds on dimg, (C) and dimg,(A), and thus the rate p = din;i‘fg(‘cl) = Q(1).

Secondly, it readily follows that C” is a blockwise LCC as desired. Indeed, let z € Ffj xS
be such that for some c € C', |{p € P | z(p,-) # c(p,-)}| < dn. Since, by Claim 4.9, for

every z, € F (where for a € S, z, := z(-,a)) the guaranteed set of good indices is

a monotone function of the corruptions, we can assume without loss of generality that
whenever for some p € P and a € S ¢(p,a) # z(p,a), then for all a’ € S ¢(p,d’) # z(p,d’).
As the good a-fraction sets induced by A for every z depend only on the location of
corruptions, the good indices sets are the same for all p € P, that is, there is an « fraction
subset Pyooq & P such that for any p € Pyo0q and for any a € S, Amp=(+®) (p) = c(p,a).
Hence, simulating Cor and whenever its makes a query p € P feeding it with the result of
(Amp*U ¥ (p)) |aes has the same result as simulating it on a word 2’ which is o = (1 — 0')-
close to ¢. Notice that for such words z’, Cor® (p, a) outputs the correct result ¢(p, a) with
probability at least %, as required. The number of queries of this correction procedure is
at most
qa - 21og”"* = O(log™ ™ (n)),

as wanted.]

24

References

[AEL95]

[AG24]

[AGKM?23]

[BFLS91]

[BGT16]

[BHKL25]

[CY21]

[CY22]

[DSO05]

Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with
nearly optimal recovery. In Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 512-519. IEEE, 1995.

Omar Alrabiah and Venkatesan Guruswami. Near-tight bounds for 3-query
locally correctable binary linear codes via rainbow cycles. In 2024 IEEE
65th Annual Symposium on Foundations of Computer Science (FOCS), pages
1874-1882. IEEE, 2024.

Omar Alrabiah, Venkatesan Guruswami, Pravesh K Kothari, and Peter
Manohar. A near-cubic lower bound for 3-query locally decodable codes from
semirandom csp refutation. In Proceedings of the 55th Annual ACM Sympo-
stum on Theory of Computing, pages 1438-1448, 2023.

Laszl6 Babai, Lance Fortnow, Leonid A Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In Proceedings of the twenty-third

annual ACM symposium on Theory of computing, pages 21-32, 1991.

Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal. Lower bounds for
2-query LCCs over large alphabet. arXiv preprint arXiv:1611.06980, 2016.

Arpon Basu, Jun-Ting Hsieh, Pravesh K Kothari, and Andrew D Lin. Im-
proved lower bounds for all odd-query locally decodable codes. 2025 IEEE
66th Annual Symposium on Foundations of Computer Science (FOCS), 2025.

Gil Cohen and Tal Yankovitz. Rate amplification and query-efficient distance
amplification for linear lcc and 1dc. In 36th Computational Complexity Con-
ference (CCC 2021). Schloss Dagstuhl-Leibniz-Zentrum fir Informatik, 2021.

Gil Cohen and Tal Yankovitz. LCC and LDC: Tailor-made distance amplifi-
cation and a refined separation. In 49th EATCS International Conference on
Automata, Languages, and Programming, volume 229 of LIPIcs. Leibniz Int.
Proc. Inform., pages Art. No. 44, 20. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2022.

Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and
polynomial identity testing for depth 3 circuits. In Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing, pages 592-601,
2005.

25

[Efr09]

[GKS13]

[Goll1]

[HOW15]

[IM25]

[KDWO03]

[KM23]

[KM24]

[KMRS17]

[Kop15]

[KSY14]

Klim Efremenko. 3-query locally decodable codes of subexponential length. In
Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 39-44, 2009.

Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes
from lifting. In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science, pages 529-540. ACM, 2013.

Oded Goldreich. Short locally testable codes and proofs. In Studies in Com-
plexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation, pages 333-372. Springer, 2011.

Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability
of expander codes. Information and Computation, 243:178-190, 2015.

Oliver Janzer and Peter Manohar. A k72 lower bound for odd query lo-
cally decodable codes from bipartite kikuchi graphs. 2025 IEEE 66th Annual
Symposium on Foundations of Computer Science (FOCS), 2025.

Iordanis Kerenidis and Ronald De Wolf. Exponential lower bound for 2-query
locally decodable codes via a quantum argument. In Proceedings of the thirty-

fifth annual ACM symposium on Theory of computing, pages 106—115, 2003.

Pravesh K Kothari and Peter Manohar. An exponential lower bound for linear
3-query locally correctable codes. In Electronic Colloguium on Computational
Complexity (ECCC), number 162, 2023.

Pravesh K Kothari and Peter Manohar. Exponential lower bounds for smooth
3-lccs and sharp bounds for designs. In 2024 IEEE 65th Annual Symposium
on Foundations of Computer Science (FOCS), pages 1802-1845. IEEE, 2024.

Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-
rate locally correctable and locally testable codes with sub-polynomial query
complexity. Journal of the ACM (JACM), 64(2):11, 2017.

Swastik Kopparty. Some remarks on multiplicity codes. arXiv preprint
arXiv:1505.07547, 2015.

Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes
with sublinear-time decoding. Journal of the ACM (JACM), 61(5):28, 2014.

26

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding pro-
cedures for error-correcting codes. In Proceedings of the thirty-second annual

ACM symposium on Theory of computing, pages 80-86, 2000.

[Woo07] David Woodruff. New lower bounds for general locally decodable codes. In
FElectronic Colloquium on Computational Complexity (ECCC), volume 14,
2007.

[Yan24] Tal Yankovitz. A stronger bound for linear 3-lcc. In 2024 IEEE 65th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1786-1801.
IEEE, 2024.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential
length. Journal of the ACM (JACM), 55(1):1-16, 2008.

[Yek11] S. Yekhanin. Locally decodable codes. In International Computer Science
Symposium in Russia, pages 289-290. Springer, 2011.

27

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

