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Abstract

A large alphabet Locally Decodable Code (LDC) C : Σk Ñ Σ1n, where Σ1

may be large, is a code where each symbol of x can be decoded by making
few queries to a noisy version of Cpxq. The rate of C is its information rate,
namely k logp|Σ|q

n logp|Σ1|q
. We construct the first constant-rate large alphabet LDC C

making a polylogarithmic number of queries (in k and n), while satisfying
log |Σ1| ď kε for any chosen constant ε ă 1. We add that in fact we show
a code with a property stronger than being a large alphabet LDC, which we
dub block-wise Locally Correctable Code (block-wise LCC), implying LDC.

Our construction is a variant of multivariate Multiplicity codes which were
introduced in the seminal work of Kopparty, Saraf and Yekhanin (STOC ’11).
However we remark that our definition of the code and its analysis are taking
a somewhat different approach, considering specific linear relations that are
required for our purposes. While the resulting rate is akin to the one obtained
through standard multiplicity codes analysis, this dual-based analysis extends
to other families of linear-constraint codes of the same flavor and may be of
independent technical interest.

To get the polylogarithmic query complexity we observe a correction pro-
cess for which very few random lines suffice in order to correct an element, as
opposed to an exponential number of lines as is usually required in decoding
Multiplicity codes. This seems to be the first non-trivial case where the lower-
bound for LDC due to Katz and Trevisan (STOC ’00), which in particular
implies that for constant rate the number of queries is at least logarithmic in
the code’s length, is close to tight.
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1 Introduction
Locally decodable codes were first defined by Katz and Trevisan [KT00]. They, in partic-
ular, allow for sublinear decoding algorithms in the case that a part of data is required.

Definition 1.1 (LDC). C : Σk Ñ Σ1n is a pq, δq-LDC (locally decodable code, abbrevi-
ated) if there exists a randomized procedure Dec : rks Ñ Σ that is given an oracle access
to z P Σ1n and has the following guarantee. For every i P rks, x P Σk and z P Σ1n satisfying
HammingDistancepz, Cpxqq ă δn, Deczpiq “ xi with probability at least 2

3
. Furthermore

Deczpiq always makes at most q queries to z.

Their study, and the study of the closely related locally correctable codes, has at-
tracted substantial attention. For a comprehensive exposition, the reader may consult
the excellent survey of Yekhanin [Yek11]. Locally decodable codes have abundant appli-
cations, including in error correcting codes, complexity theory, PCPs, error reduction,
cryptography, hardness amplification, data structures, and more.

A central question in the area of locally decodable codes is the optimal tradeoff between
the information rate of the code, k log |Σ|

n log |Σ1|
and the number of needed queries q, and a rich

line of work has been dedicated to shedding light on this question, yet much has remained
unknown.

Katz and Trevisan [KT00] have proved that1

n ě

ˆ

1

6
¨ δ

˙
1

q´1

¨

ˆ

1

q2

˙
1

q´1

¨

ˆ

2

3
¨
k ¨ tlog |Σ|u

log |Σ1|

˙1` 1
q´1

. (1.1)

In particular, whenever δ “ Ωp1q, if q “ Op1q2 then n “

´

k log |Σ|

log |Σ1|

¯1`Ωp1q

, and if the

information rate is constant, i.e., n “ O
´

k log |Σ|

log |Σ1|

¯

, then q “ Ωplog nq.
As for constructions, in the case that q “ Op1q is needed, sub-exponential construc-

tions are known due to Yekhanin and Efremenko [Yek08, Efr09], the state of the art
giving binary codes of a length n which is exponential in 2log

ε k (and thus subexpo-
nential in k) [Efr09]. In the other regime which aims for constant rate, after several
works [GKS13, KSY14, HOW15] improved on the rate of codes with polynomial query
complexity q “ nε, Kopparty, Meir, Ron-Zewi and Saraf [KMRS17] achieved high-rate
binary codes with q “ 2

O
´?

logpnq log logpnq
¯

.

1We remark that in fact they state their bound for the case that the input alphabet Σ “ t0, 1u, but
it is easy to see that it extends to the case of any Σ, by choosing an injective mapping t0, 1utlog |Σ|u Ñ Σ.

2The case q “ 1 is handled separately in [KT00], where it is shown that it is impossible to have q “ 1

with a nontrivial code alphabet Σ1.
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Significant work was also put in attempt to improve the Katz-Trevisan bound. In the
case q “ 2 tight exponential bounds were provided [Gol11, KDW03, DS05, BGT16]. For
larger constant q’s the work of [KDW03] gave a polynomial improvement in Equation (1.1)
for small alphabets, with improvements in [Woo07, AGKM23, BHKL25, JM25].3 We add
that in the constant rate regime no improvements upon the q “ Ωplog nq that follows from
Equation (1.1) were discovered.

1.1 Our main contribution

In this work we construct the first constant-rate polylogarithmic query locally decod-
able code with non-trivial code alphabet. Prior to this work, the best known locally
decodable code with log |Σ1| “ Opnεq for any constant ε ă 1 had an inverse polynomial
rate [BFLS91].

In fact a stronger object is achieved, which we now define. Since our constructed code
is going to be linear, we define it over a finite field F.

Definition 1.2 (pq, δq-blockwise LCC). For two sets P, S where |P | “ n, a code C Ď FPˆS

is a pq, δq-blockwise LCC if there exists a randomized procedure Cor : P ˆ S Ñ F that is
given an oracle access to z P FPˆS and has the following guarantee. For every pp, aq P

P ˆ S, c P C and z P FPˆS such that |tp P P | zpp, ¨q ‰ cpp, ¨qu| ă δn, Corzpp, aq “ cpp, aq

with probability at least 2
3
. Furthermore, Corzpp, aq always makes at most q queries to z,

where each query of Cor consists of obtaining cpp1, ¨q for some p1 P P .

We think of the set P as a set of n points where “on” each point p P P there is a block
pcpp, aqqaPS which is of size |S|; the overall length will usually be denoted by N :“ n|S|.
We proceed to make the following remark.

Remark 1.3 (From linear blockwise LCC, to LDC). If C Ď FPˆS is a F-vector space
of dimension k which is a pq, δq-blockwise LCC then C induces rC : Fk Ñ pFSqP which
is a pq, δq-LDC. Indeed, we can choose any systematic mapping C 1 : Fk Ñ C where by
systematic we mean that the symbols of x are embedded in the symbols of C 1pxq. Since
we can correct the symbols of C 1pxq, we can decode the symbols of x. We thus take
rC : Fk Ñ pFSqP to be such that for p P P , rCpxqppq “ C 1pxqpp, ¨q.

Our main result is the following.

Theorem 1.4. For every σ ě 4 the following holds. For every n1 P N there exists n ě n1

for which the following holds. There is a linear code C Ď FPˆS
q , where q “ Oplogσ`3pnqq,

3Also, for bounds on 3-query locally correctable codes see [KM23] and followups [Yan24, AG24, KM24].
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|P | “ n and |S| ď n3{σ, with rate ρ “
dimFq pCq

n|S|
“ Ωp1q, which is a plog3σ`9pnq,Ωp1qq-

blockwise LCC.

One interesting conclusion from Theorem 1.4 is that attempts to significantly strengthen
the Katz-Trevisan bound should rely on the code alphabet being small.

Remarks. We did not optimize the polylogarithmic factor in the query complexity; we
chose a simpler exposition, and a more careful analysis should further reduce this factor.
Secondly, while we do not highlight it in the paper an explicit construction of C follows
naturally.

We turn to give a technical overview of the construction and analysis. In Section 1.2.3
we describe a technical contribution.

1.2 Technical overview, and second contribution

We construct a code which we view as a variant of multivariate multiplicity codes which
were introduced in the most influential work of Kopparty, Saraf and Yekhanin [KSY14].
However, we take a somewhat different approach in defining the code and in the anal-
ysis (we will not explicitly mention derivatives). Instead of considering an encoding (of
polynomials into evaluations of their derivatives) we define a set of linear constraints,
sufficient for local correction, and prove an upper bound on the dimension of the linear
subspace spanned by these constraints. After giving the technical details we address the
connection to (normally defined) multiplicity codes, in Remark 1.7.

1.2.1 Setting the ground: a naive attempt

It is well known that a Reed-Muller code CRM Ď FFm
q

q consisted of the evaluations of
m-variate polynomials in Fqrx1, . . . , xms of total degree at most d - while possessing
wanted local-correction features - are of rapidly vanishing rate whenever m “ ωp1q.
These correction features stem from the dual code CK

RM which contains linear constraints
ℓpx1, . . . , xmq P FFm

q
q , in particular constraints supported on lines of Fm

q (that is, they are
0 outside of the line), giving rise to equations

ÿ

α1,...,αmPFq

ℓpα1, . . . , αmq ¨ cpα1, . . . , αmq “ 0

which hold for every c P CRM. A very naive attempt at increasing the rate of the code while
preserving the wanted correction features is to define a new code C 1 over copies of the
coordinate-sets of CRM, say s copies indexed by h P rss, while keeping the same constraints.
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That is - for every ℓpx1, . . . , xmq P CK
RM that was of need for the local correction, we take

ℓ1px1, . . . , xm, hq “ ℓpx1, . . . , xmq to be in the space orthogonal to C 1. Since the code length
increased from n “ qm to s ¨ n while the co-dimension remained as before, in particular,
at most n, the rate of C 1 is at least 1´ 1

s
. However, this rate seems too good to be useful

and indeed it is, since by ignoring the copy number h in our added constraints, we made
the constraints of the code only dependent on the sum of the copies. That is,

ÿ

hPrss

ÿ

α1,...,αmPFq

ℓpα1, . . . , αm, hq ¨ cpα1, . . . , αm, hq “ 0

is what we have for c P C 1, and thus we cannot ever correct a specific coordinate, rather
only the sum of its “copies”. However, if we could make a more clever choice for our
ℓ1px1, . . . , xm, hq – one which does depend on h, hopefully while still keeping the dimension
required in order to span all these constraints more close to n than to s ¨ n, then possibly
we would gain something. This is going to be what we aim towards doing, as we explain
next.

1.2.2 The line-constraints subspace

Continuing the approach of the previous discussion we will construct a subspace of low-
weight constraints, adding “copies” of the coordinate-set Fm

q , with the choice that each
copy will be indexed by H P H where H Ď pN Y t0uqm. That is, the constraints, and the
induced code, are subspaces of FFm

q ˆH
q .

Now, some technical details. First, to ignore sign `1 or ´1 nuances in this informal
overview we will assume that Fq is of characteristic 2. Second, notation wise, we will write
x as short for px1, . . . , xmq, and xI as short for

ś

iPrms x
Ii
i . Third, it will be convenient

for us to have another designated variable - which we will denote by t - and we will only
consider ordered lines which are indexed by t. That is, our space is FFqˆFm

q ˆH
q , and we will

consider all lines corresponding to direction a P Fm
q and offset b P Fm

q : the set of points
tpτ, a1τ ` b1, . . . , amτ ` bmq | τ P Fqu Ď Fm`1

q .
We will define the following constraints. For every τ P Fq, α P Fm

q and H P H

La,bpτ, α,Hq “

$

&

%

aH if α “ aτ ` b

0 otherwise
P FFqˆFm

q ˆH
q (1.2)

We will thus take our constraints subspace to be

L “ SpantLa,b | a, b P Fm
q u.

We call L the line-constraints subspace, and we see that the defined constraints do depend
on the copy H.
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Two questions arise: is L useful for local correction, and what can we say on its
dimension, especially what’s its dependence on the number of copies |H|. We first discuss
the second question, in our analysis we show that dimpLq can be related to the structure
of the set of copies H. After that, we will discuss the first question.

1.2.3 Our second contribution - bounding the dimension of the line-constraints
subspace

Recall that L Ď FFqˆFm
q ˆH

q , and we define N :“ |Fq ˆ Fm
q ˆ H| “ qm`1|H|. We now

make a definition regarding the structure of H which we show is key in the bound on the
dimension of L.

Definition 1.5.

BoundarypHq :“ tH P H | Di P rms : H ` ei R Hu,

where ei is the i-th unit vector.

With the definition of the boundary of H we can present our second contribution, which
is a bound on the dimension of the line-constraints subspace, related to BoundarypHq.

Theorem 1.6. For m “ opqq,

dimpLq ď N ¨ m ¨ |BoundarypHq| ` opNq.

That is, while we added |H| “copies” of the coordinates to our code, we only paid for
that in dimension proportional to m¨|BoundarypHq|, so whenever |BoundarypHq| ! 1

m
|H|,

we profit.
Before overviewing the elements of the proof for Theorem 1.6, we pause to discuss

instantiations of it.

Instantiations of Theorem 1.6. One natural choice for the set H, for a parameter
s P N, is H “ tH P pN Y t0uqm | |H| ď s ´ 1u, where |H| :“

řm
i“1 Hi, and note that

|H| “
`

m`s´1
m

˘

. In fact, this choice corresponds to the normally defined multiplicity codes
where the encoding outputs evaluations of derivatives up-to order s ´ 1. For this choice,
BoundarypHq “ tH P H | |H| “ s´ 1u, which is of size

`

m`s´2
m´1

˘

. Using that i
j

`

i´1
j´1

˘

“
`

i
j

˘

,
we see that

|BoundarypHq|

|H|
“

m

m ` s ´ 1
,

and thus defining a code by taking C “ LK with this choice for H, results by Theorem 1.6
in a code with rate 1 ´ m2

m`s´1
´ op1q, or more precisely 1 ´ m2

m`s´1
´ m`1

q
, using the more
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detailed bound from the technical section. We remark that this bound on the rate is quite
similar to the bound p1´ m2

s
qp1´ 2

q
qm on the rate of multiplicity codes which follows from

the rate bound in [KSY14]4.
However, there are also other possible choices for H. Another possible example is

taking H “ tH P pN Y t0uqm | H ď Ęs ´ 1u, where Ęs ´ 1 denotes ps ´ 1, . . . , s ´ 1q, and
by ď we mean that the inequality holds at every individual entry. We remark, without
getting into the details, that whenever s ď q this choice also allows correction. In this
case

|BoundarypHq|

|H|
“

sm ´ ps ´ 1qm

sm
“ 1 ´

ˆ

1 ´
1

s

˙m

ď
m

s
,

and thus by Theorem 1.6 for this choice C “ LK would have a similar rate as the previous
option. This example does not seem to be equivalent to multiplicity codes, and it seems
interesting to wonder what different options for H can give with respect to local correction,
where the choice of H does matter (specifically to get the low-query of Theorem 1.4 we
will need the firstly discussed, multiplicity-like H).

1.2.4 On bounding the dimension of the line-constraints subspace

We now turn to give a technical overview on the proof for Theorem 1.6. It turns out that
we can algebraically express the line-functions defined in Equation (1.2) above by relying
only on Fermat’s Little Theorem. We define the following (H-dependent function times
a) polynomial for every a, b P Fm

q :

La,bpt, x,Hq “ aH
ź

iPrms

p1 ´ pxi ` ait ` biq
q´1q. (1.3)

and it is an easy check that for every τ P Fq and α P Fm
q , La,bpτ, α,Hq evaluates exactly

to our wanted function. This is useful when we look for a small basis for L. If we open
up the product in Equation (1.3), then we can see (the full details in Section 3) that in
the case that m “ opqq, the challenge boils down to bounding the dimension of the span
of functions

rLa,bpt, x,Hq “ aH
ź

iPrms

pxi ` ait ` biq
q´1,

i.e., those containing the “heavy”, degree mpq ´ 1q, product. We will thus denote rL “

SpantrLa,b | a, b P Fm
q u and turn our focus to bounding its dimension since it will dominate

the dimension of L.
4When choosing the maximal degree of the evaluated polynomial to be d “ spq ´ 1q ´ 1 to give a

comparable setting to ours.
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Now, one can check that

rLa,bpt, x,Hq “
ÿ

s0ďIď Ěq´1

|I|
ÿ

j“0

˜

ÿ

JďI
|J |“j

ˆ

I

J

˙

aH`JbI´J

¸

loooooooooooooomoooooooooooooon

:“Da,bpj,I,Hq

¨

ˆ

Ęq ´ 1

I

˙

tjx
Ěq´1´I .

where I, J P pN Y t0uqm, s0 :“ p0, . . . , 0q
loooomoooon

m times

, Ęq ´ 1 :“ pq ´ 1, . . . , q ´ 1q
looooooooomooooooooon

m times

, |I| :“
řm

r“1 Ir,

J ď I ðñ J1 ď I1 ^ ¨ ¨ ¨ ^ Jm ď Im,
`

I
J

˘

:“
śm

r“1

`

Ir
Jr

˘

and xI :“
śm

r“1 x
Ir
r .

The next step is to consider the defined above Da,bpj, I,Hq for every I ď Ęq ´ 1, j ď |I|

and H P H, and we will inspect them as polynomials in a, b – i.e., while rLa,b is a function
of t, x and H, where a and b are some fixed elements of Fm

q , we will analyze the family of
polynomials Da,bpj, I,Hq P Fqra, bs defined according to all possible I, j,H. Doing so, we
define D “ SpantDa,bpj, I,Hq | I ď Ęq ´ 1, j ď |I|, H P Hu Ď Fqra, bs, and in Section 3 we
prove that dim rL ď dimD, so it turns out that it suffices to consider these polynomials. In
fact, we bound the dimension of SpantDa,bpj, I,Hqu as polynomials over the reals, which
suffices in order to bound dimD.

It may look daunting to analyze the dimension of Span
!

ř

JďI,|J |“j

`

I
J

˘

aH`JbI´J | j, I,H
)

as polynomials in a, b since the coefficients are specific sums of m-wise products of bino-
mial coefficients. However, it turns out that all is needed in order to do so is the fact that
i
j

`

i´1
j´1

˘

“
`

i
j

˘5. Using this fact, we show in Section 3 that for any j ą 0

jDa,bpj, I,Hq “
ÿ

rPrms|Irą0

IrD
a,bpj ´ 1, I ´ er, H ` erq, (1.4)

In particular, in order to span the entire space, it suffices to take a set which consists
of tDa,bp0, I,Hq | I ď Ęq ´ 1, H P Hu (which is a small set when q “ ωp1q since fixing
j to 0 corresponds the size being divided by q), and of tDa,bpj, I,Hq | I ď Ęq ´ 1, j ď

|I|, H P BoundarypHqu since BoundarypHq consists exactly of the H’s where we can’t
apply Equation (1.4) in order to span them using “higher” H’s. This is enough to deduce
Theorem 1.6, for the full statement and proofs see Section 3.

1.2.5 From the line-constraints subspace to Theorem 1.4

As mentioned above, we will instantiate Theorem 1.6 with H “ tH P pN Y t0uqm | |H| ď

s ´ 1u, and take C “ LK Ď FFqˆFm
q ˆH

q “ FPˆH
q where P “ Fq ˆ Fm

q and n “ |P |. Assume
that we wish to correct a coordinate pτ˚, α˚, H˚q P Fq ˆ Fm

q ˆ H, that is, to recover
cpτ˚, α˚, H˚q amid some c P C.

5Which was already used one time in the discussion following Theorem 1.6.
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It will be sufficient to show that C has a smooth local correction procedure, where
by smooth we roughly mean that coordinate of the code is queried with about the same
probability. If C satisfies this, since we have good and query efficient distance amplifica-
tion procedures [AEL95, KMRS17, CY21, CY22], that would yield a constant correction
radius code as desired.

The codewords c P C by definition satisfy the line constraints, which are, observe from
Equation (1.2), that for every direction a P Fm

q and offset b P Fm
q ,

ÿ

τPFq

ÿ

HPH
aHcpτ, a1τ ` b1, . . . , amτ ` bm, Hq “ 0.

In particular imagine that we choose a P Fm
q uniformly at random, and set b “ α˚ ´ aτ˚.

It is not too hard to see every point (beside pτ˚, α˚q) has probability at most q
n

to be on
the ordered line with direction a and this offset b, and that pτ˚, α˚q is the τ˚-th point of
the ordered line. Thus,

ÿ

HPH
aHcpτ˚, α˚, Hq “

ÿ

τPFqztτ˚u

ÿ

HPH
aHcpτ, aτ ` b,Hq, (1.5)

and recall that we ignore plus/minus signs by assuming charpFqq “ 2 in this overview. As
we are interested in cpτ˚, α˚, Hq, and by querying the sampled line, we would only get one
equation involving it but also other unknowns, we can, like in the decoding of multiplicity
codes [KSY14] choose roughly |H| ă sm such lines and solve the system of equations. In
fact in [Kop15] it is shown that in the case of multiplicity codes the number of lines can
even be reduced to 2Opmq. However, for our needs, even 2Opmq is far too large since we aim
for a polylogarithmic number of queries.

We take a moment to inspect Equation (1.5). If we define for every pτ, αq P Fq ˆ Fm
q

the polynomial

pcτ,α “
ÿ

HPH
cpτ, α,Hq ¨ yH P Fqrys “ Fqry1, . . . , yms,

then rewriting Equation (1.5),

pcτ˚,α˚paq “
ÿ

τPFqztτ˚u

pcτ,aτ`bpaq.

That is, querying the line at direction a gives us the evaluation of pcτ˚,α˚ on point a.
Yet, by itself, this does not paint a better way to obtain cpτ˚, α˚, H˚q. However, we can
make the following observation, which is that we know something about the polynomial
pcτ˚,α˚ : that by our choice of H, it is of total degree at most s ´ 1. This means that
directly getting its evaluation on a is not the only way to deduce pcτ˚,α˚paq. Rather, we
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can “locally correct” pcτ˚,α˚paq by obtaining any s evaluation points of pcτ˚,α˚ , on a line
which passes through a (recall that a in itself was the direction of a line chosen in order
to correct cpτ˚, α˚, H˚q).

Did we make any progress by observing that we can “locally correct” pcτ˚,α˚paq? This
would have helped us, in case we needed to obtain pcτ˚,α˚paq instead of cpτ˚, α˚, H˚q. This
is because it suggests a way to obtain pcτ˚,α˚paq smoothly, opposed to only having one
deterministic way (querying exactly the line at direction a). Instead, to query all the
lines corresponding to a set of s directions ap1q, . . . , apsq P Fm

q which lie on a line of Fm
q

which passes through a – suffices in order to obtain pcτ˚,α˚paq. One can observe that we can
choose such a line uniformly at random, and the s directions on it uniformly at random,
resulting in a smooth decoding procedure for pcτ˚,α˚paq, since marginally each direction
apiq is uniform.

But again, we did not set out to obtain pcτ˚,α˚paq for some a P Fm
q ; rather, our goal was

to locally correct our code C, that is to recover cpτ˚, α˚, H˚q. The final trick, then, is to
change that goal. Since we have, for each point pτ, αq P Fq ˆ Fm

q , a good correction pro-
cedure for evaluations of the polynomial pcτ,α, why not replace each block pcpτ, α,HqqHPH

with ppτ,αpaqqaPS, where S Ď Fm
q is some chosen set of evaluation points (one needs to

verify that this is a linear transformation and indeed it is). In fact, this is what we do.
We accordingly construct from C a code C 1 Ď FFqˆFm

q ˆS
q , and by choosing S to be any

interpolating set of Fm
q for degree at most s ´ 1 polynomials (that is, no such polynomial

evaluates to 0 on all of S) of size |H|, this doesn’t change the length of the code, and
keeps Equation (1.5) useful for our decoding, since we can deduce each pcτ,α by querying
ppcτ,αpaqqaPS.

To conclude, we constructed a block-wise locally correctable code C 1 Ď FPˆS
q , |P | “ n,

which corrects each coordinate by smoothly querying s ¨ pq ´ 1q blocks, corresponding
to the s line directions we sample, and the q ´ 1 blocks we query on each such line.
In our choice of parameters we will set, for any chosen σ: q « logσ n, s “ logOp1qpnq

and m « 1
σ

¨
logn

log log n
´ 1 (to be constant with that |P | “ qm`1 “ n). This choice, by

Theorem 1.6, assures that C (and therefore C 1) has a high rate. The block-length is
|S| “ |H| ď sm « plog nq

Op1q¨ 1
σ

¨
logn

log log n “ n
Op1q

σ , while the query complexity is less than
sq « plog nqσ`Op1q, as wanted. The exact details, as well as the distance amplification
step, are found in Section 4.

Remark 1.7 (On the connection to multiplicity codes.). The line-constraint subspace
underlying our construction is closely related to the structure of classical multiplicity
codes [KSY14]. In fact, one can view our C defined above as a restricted version of a
multiplicity code, where we retain only a subset of the linear relations that arise from
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taking directional derivatives along lines (though the final C 1 is a different code). We
believe that standard multiplicity codes themselves would have sufficed, but here we isolate
only the minimal portion of the structure that suffices for our decoding argument. The
more rich structure of standard multiplicity codes is very useful, while in our view focusing
only on the linear relations considered by us here has the advantage of making the steps
described in Section 1.2.5 follow somewhat more naturally.

2 Preliminaries

2.1 Notation.

All logarithms are taken base 2. N “ t1, 2, . . .u is the set of natural numbers. For m P N,
rms “ t1, 2, . . . ,mu. For a prime power q, Fq is the finite field with q elements. For two
vector spaces A “ FU

q and B “ FV
q their tensor product A b B Ď FUˆV

q is the space
Spantf P FUˆV

q | Dg P FU
q , h P FV

q such that @x, y fpx, yq “ gpxq ¨ hpyqu.

Abbreviated m-wise notation. Fix m P N. For vectors u “ pu1, . . . , umq over a
ring/field and a multi-index I “ pi1, . . . , imq P pN Y t0uqm, write

uI :“
m

ź

r“1

u ir
r .

For k P N Y t0u, let sk :“ pk, . . . , kq P pN Y t0uqm and abbreviate uk :“ u
sk. For I “

pi1, . . . , imq, J “ pj1, . . . , jmq P pN Y t0uqm, define

|I| :“
m
ÿ

r“1

ir, I ď J ðñ i1 ď j1, . . . , im ď jm,

ˆ

I

J

˙

:“
m

ź

r“1

ˆ

ir
jr

˙

.

For i P rms, ei denotes the i-th unit vector.
For indeterminates x “ px1, . . . , xmq, we write the monomial xI :“

śm
r“1 x

ir
r . For a

subset W “ tw1, . . . , w|W |u Ď rms where w1 ă ¨ ¨ ¨ ă w|W |, we define xW “ pxw1 , . . . , xw|W |
q.

2.2 Facts.

We will use the following easy fact.

Fact 2.1. Let v1, . . . , vt P Zn be integral vectors such that dimRpv1, . . . , vtq “ k and let p
be a prime number. Then, dimFppvp1, . . . , v

p
t q ď k where vpi is the vector vi with all of its

elements reduced modulo p.
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Proof. Over any field F, dimFpv1, . . . , vtq ď k if and only if every k`1-subset of tv1, . . . , vtu

is F-linearly dependent. Let vpi1 , . . . , v
p
ik`1

be a k`1-subset of vp1, . . . , v
p
t . Since dimRpv1, . . . , vtq “

k, vi1 , . . . , vik`1
are linearly dependent over R. Thus there exist not-all-zero γ1, . . . , γk`1

such that
ř

γjvij “ 0̄ and since vi1 , . . . , vik`1
are integral we can assume without loss of

generality that γ1, . . . , γk`1 P Z. Moreover, we can further assume without loss of gener-
ality that it is not the case that p divides all of γ1, . . . , γk`1 (otherwise we divide them by
their largest common divisible power of p). Thus,

ř

pγj mod pqvpij “ 0̄ over Fn
p is a zero

non-trivial linear combination of vi1 , . . . , vik`1
. The fact follows.

Fact 2.2. For every i, j P N
i

j

ˆ

i ´ 1

j ´ 1

˙

“

ˆ

i

j

˙

.

Fact 2.3. For every ef unit vector for f P rms, and I, J P pNY t0uqm such that I, J ě ef

if
jf

ˆ

I ´ ef
J ´ ef

˙

“

ˆ

I

J

˙

.

Proof. Follows trivially from Fact 2.2.

3 The line constraints subspace
In the following section q is a prime power, m P N and s P N are some parameters.
H Ď pN Y t0uqm is a finite set. We define n :“ qm`1 and N :“ n|H|.

3.1 The desired functions and the bound on their dimension

We define a linear subspace

L “ SpantLa,b | a, b P Fm
q u

which is to contain all functions which correspond to lines of direction (minus) a and
offset (minus) b. For every a, b P Fm

q ,

La,b : Fq ˆ Fm
q ˆ H Ñ Fq

is defined as follows. For every τ P Fq, α P Fm
q and H P H

La,bpτ, α,Hq “

$

&

%

aH if α “ ´aτ ´ b

0 otherwise.
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In words, La,bpτ, α,Hq takes value aH if pτ, αq is on the ordered line tpτ,´aτ ´bq | τ P Fqu,
and 0 outside of it.

In Theorem 3.2 we state a bound on the dimension of L over Fq. Prior to that, we
make the following important definition.

Definition 3.1.

BoundarypHq :“ tH P H | Di P rms : H ` ei R Hu.

Theorem 3.2 (Theorem 1.6, rephrased).

dimFqpLq ď pmpq ´ 1q ` 1q ¨ qm ¨ |BoundarypHq| `
m ` 1

q
N.

In particular, for the choice H “ tH P pN Y t0uqm | |H| ď s ´ 1u,

dimFqpLq ď
pmpq ´ 1q ` 1q

q
¨

m

m ` s ´ 1
¨ N `

m ` 1

q
¨ N.

We defer the proof for Theorem 3.2 to the end of this section and we first set up some
needed claims and definitions.

3.2 Expressing the desired functions

The following claim states that each function La,b can be expressed as a product of a
polynomial in Fqrt, xs where x “ px1, . . . , xmq, and the function aH .

Claim 3.3. For every a, b P Fm
q

La,bpt, x,Hq “ aH
ź

iPrms

p1 ´ pxi ` ait ` biq
q´1q.

Proof. For every α P Fq, αq´1 “ 1 if α ‰ 0 and 0 otherwise. Thus, for every i P rms,
1 ´ pxi ` ait ` biq

q´1 is 1 if xi “ ´ait ´ bi and 0 otherwise. Hence, the product over i

evaluates to 1 if x “ ´at ´ b and to 0 otherwise. It only remains to multiply by aH per
the definition of La,b.

Thus

La,bpt, x,Hq “ aH
ÿ

WĎrms

p´1q|W |pxW ` aW t ` bW q
Ěq´1

“ aH
ÿ

WĹrms

p´1q|W |pxW ` aW t ` bW q
Ěq´1 ` p´1qmaHpx ` at ` bq

Ěq´1. (3.1)
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We define for every a, b P Fm
q the functions

rLa,bpt, x,Hq “ aHpx ` at ` bq
Ěq´1,

«

La,bpt, x,Hq “ aH
ÿ

WĹrms

p´1q|W |pxW ` aW t ` bW q
Ěq´1,

and the families

rL “ SpantrLa,b | a, b P Fm
q u,

«

L “ Spant
«

La,b | a, b P Fm
q u.

We observe that it is essentially enough to bound only dimFqp rLq.

Claim 3.4.
dimFqpLq ď dimFqp rLq `

m

q
N.

Proof. We have that L Ď rL `
«

L, by Equation (3.1), and thus dimFqpLq ď dimFqp rLq `

dimFqp
«

Lq. It remains to observe that for every a, b P Fm
q ,

«

La,b can be expressed as the
product of aH with a sum of m polynomials ga,b1 pt, xq, . . . , ga,bm pt, xq where for every i P rms,
ga,bi does not depend on xi, and thus is spanned by the set of monomials Mi “ ttjxI | 0 ď

j ď q ´ 1,s0 ď I ď Ęq ´ 1, Ii “ 0u, which is of size n{q. As
«

La,b P FH
q b Spanp

ď

iPrms

Miq

we conclude that dimFqp
«

Lq ď |H|
ř

iPrms |Mi| ď |H|mn{q “ m
q
N .

3.3 From a span of functions in t, x,H to a span of polynomials
in a, b

We want to show that we can span each rLa,bpt, x,Hq “ aHpx ` at ` bq
Ěq´1 using a low

dimension. Notice that

aHpat ` b ` xq
Ěq´1 “ aH

ÿ

0ďIď Ěq´1

ˆ

Ęq ´ 1

I

˙

pat ` bqIxÎ ,

where Î :“ Ęq ´ 1 ´ I. Recall that rL Ď FFqˆFm
q ˆH

q is a vector space, while were defined to
be the span of a set of functions in variables t, x,H, going over all possible a, b P Fm

q . We
will now observe that the dimension of rL is in fact related to the dimension of the space
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of certain polynomials in formal variables a “ pa1, . . . , amq, b “ pb1, . . . , bmq, over Fqra, bs.
Specifically, we define for every 0 ď j ď mpq ´ 1q, s0 ď I ď Ęq ´ 1 and H P H,

Da,bpj, I,Hq :“
ÿ

s0ďJďI
|J |“j

ˆ

I

J

˙

aH`JbI´J P Fqra, bs, (3.2)

and we then take

D :“ SpantDa,bpj, I,Hq | 0 ď j ď mpq ´ 1q,s0 ď I ď Ęq ´ 1, H P Hu,

and we view D as a vector space over Fq. We argue that

Claim 3.5.
dimFq

rL ď dimFq D.

Proof. Fix a, b P Fm
q and expand

rLa,bpt, x,Hq “ aH px ` at ` bq
Ěq´1 “

ÿ

s0ďIď Ěq´1

ˆ

Ęq ´ 1

I

˙

xÎ pat ` bqI aH .

Writing pat ` bqI “
ř

JďI

`

I
J

˘

patqJbI´J and grouping by the power of t,

rLa,bpt, x,Hq “
ÿ

s0ďIď Ěq´1

|I|
ÿ

j“0

˜

ÿ

JďI
|J |“j

ˆ

I

J

˙

aH`JbI´J

¸

¨

ˆ

Ęq ´ 1

I

˙

tjxÎ .

By definition,
Da,bpj, I,Hq “

ÿ

JďI
|J |“j

ˆ

I

J

˙

aH`JbI´J P Fqra, bs,

so we can rewrite the expansion as

rLa,bpt, x,Hq “
ÿ

s0ďIď Ěq´1

|I|
ÿ

j“0

ˆ

Ęq ´ 1

I

˙

tjxÎ ¨ Da,bpj, I,Hq. (3.3)

Let r “ dimFq D and choose a basis p1, . . . , pr of D (as a subspace of Fqra, bs). For
each triple pj, I,Hq there exist scalars γhpj, I,Hq P Fq such that, in D,

Da,bpj, I,Hq “

r
ÿ

h“1

γhpj, I,Hq phpa, bq.

Substituting this into (3.3) and interchanging sums gives

rLa,bpt, x,Hq “

r
ÿ

h“1

phpa, bq ¨

˜

ÿ

s0ďIď Ěq´1

|I|
ÿ

j“0

γhpj, I,Hq

ˆ

Ęq ´ 1

I

˙

tjxÎ

¸

. (3.4)
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Define the (fixed) functions

Ghpt, x,Hq “
ÿ

s0ďIď Ěq´1

|I|
ÿ

j“0

γhpj, I,Hq

ˆ

Ęq ´ 1

I

˙

tjxÎ P FFqˆFm
q ˆH

q .

These G1, . . . , Gr do not depend on a, b. Equation (3.4) above says that

rLa,b P SpanFq
tG1, . . . , Gru for every a, b P Fm

q .

Hence rL Ď SpanFq
tG1, . . . , Gru and therefore

dimFq
rL ď r “ dimFq D.

We thus turn our focus to showing that dimFq D is small. Observe, by considering
Equation (3.2), that each Da,bpj, I,Hq was defined as a polynomial with integer coefficients
(then taken modulo the characteristic to get a polynomial over Fq). Hence, we can re-view
each Da,bpj, I,Hq as being in Rra, bs, and consider dimR of D.

Claim 3.6.
dimFq D ď dimR D.

Proof. Follows by Fact 2.1.

3.4 Bounding the span of polynomials over the Reals

Proposition 3.7.

dimR D ď qm|H| ` pmpq ´ 1q ` 1q ¨ qm ¨ |BoundarypHq|.

Proof. Consider

A “ tDa,bp0, I,Hq | s0 ď I ď Ęq ´ 1, H P Hu,

B “ tDa,bpj, I,Hq | 0 ď j ď mpq ´ 1q,s0 ď I ď Ęq ´ 1, H P BoundarypHqu.

We prove
SpanpA Y Bq “ D. (3.5)

Since |A| “ qm|H| and |B| “ pmpq´1q ` 1q qm |BoundarypHq|, the bound on dimR D
follows immediately from (3.5).
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Fix j P t1, . . . ,mpq´1qu, s0 ď I ď Ęq ´ 1, and H P H. If H P BoundarypHq then
Da,bpj, I,Hq P B and we are done. Otherwise, it suffices to show

Da,bpj, I,Hq P SpanR

!

Da,bpj ´ 1, I ´ ef , H ` ef q | f P G
)

, (3.6)

where G “ tf P rms | if ą 0u. Once Equation (3.6) is established, we may iterate the step
while j ą 0: either we reach j1 “ 0 (hence a member of A), or at some intermediate time
we use an index f with H 1 :“ H ` ef P BoundarypHq, in which case the corresponding
term lies in B. In all cases we obtain Da,bpj, I,Hq P SpanRpAYBq, proving Equation (3.5).

To show Equation (3.6) recall that

Da,bpj, I,Hq “
ÿ

s0ďJďI
|J |“j

ˆ

I

J

˙

aH`JbI´J .

Consider the linear combination

p˚q :“
ÿ

fPG

if
j
Da,bpj ´ 1, I ´ ef , H ` ef q.

For each f P G, by the definition of Da,b we have

Da,bpj ´ 1, I ´ ef , H ` ef q “
ÿ

s0ďJ 1ďI´ef
|J 1|“j´1

ˆ

I ´ ef
J 1

˙

aH`ef`J 1

bI´ef´J 1

.

Substituting this into p˚q gives

p˚q “
ÿ

fPG

if
j

ÿ

s0ďJ 1ďI´ef
|J 1|“j´1

ˆ

I ´ ef
J 1

˙

aH`ef`J 1

bI´ef´J 1

. (3.7)

Next, for each fixed f P G, we perform a change of variables: let

J “ J 1 ` ef .

Then note that

s0 ď J 1 ď I ´ ef , |J 1| “ j ´ 1 ðñ ef ď J ď I, |J | “ j.

Further, under this substitution we have
ˆ

I ´ ef
J 1

˙

“

ˆ

I ´ ef
J ´ ef

˙

, aH`ef`J 1

“ aH`J , bI´ef´J 1

“ bI´J .
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Thus we get
p˚q “

ÿ

fPG

if
j

ÿ

efďJďI
|J |“j

ˆ

I ´ ef
J ´ ef

˙

aH`J bI´J ,

which already looks more similar to Da,bpj, I,Hq that we wish to show is expressed, though
we are not quite done yet.

For each f P G and each J in the range (notice that I, J ě ef ), we can apply Fact 2.3
to get

if

ˆ

I ´ ef
J ´ ef

˙

“ jf

ˆ

I

J

˙

.

Thus,
p˚q “

ÿ

fPG

ÿ

efďJďI
|J |“j

jf
j

ˆ

I

J

˙

aH`J bI´J .

We proceed by noticing that we can extend the inner sum to range over all s0 ď J ď I

with |J | “ j, since for J with jf “ 0, the inner term anyhow evaluates to 0.

p˚q “
ÿ

fPG

ÿ

s0ďJďI
|J |“j

jf
j

ˆ

I

J

˙

aH`J bI´J .

Changing the order of summation and taking out terms which don’t depend on f ,

p˚q “
ÿ

s0ďJďI
|J |“j

ˆ

I

J

˙

aH`J bI´J
ÿ

fPG

jf
j
.

Now, by G’s definition - for f R G, if “ 0 and thus also jf “ 0 for every J in the
summation, we see that

p˚q “
ÿ

s0ďJďI
|J |“j

ˆ

I

J

˙

aH`J bI´J
ÿ

fPrms

jf
j

“
ÿ

s0ďJďI
|J |“j

ˆ

I

J

˙

aH`J bI´J |J |

j

“
ÿ

s0ďJďI
|J |“j

ˆ

I

J

˙

aH`J bI´J

which is the definition of Da,bpj, I,Hq - as wanted. We thus established Equation (3.6),
from which as said, the proposition follows.

17



3.5 Concluding Theorem 3.2

Proof for Theorem 3.2. By Claim 3.4,

dimFqpLq ď dimFqp rLq `
m

q
N.

By Claim 3.5 and Claim 3.6,

dimFq
rL ď dimFq D ď dimR D.

By Proposition 3.7,

dimR D ď pmpq ´ 1q ` 1q ¨ qm ¨ |BoundarypHq| `
1

q
N.

Thus,
dimFqpLq ď pmpq ´ 1q ` 1q ¨ qm ¨ |BoundarypHq| `

m ` 1

q
N,

as desired.
As for the in particular part of the theorem, it follows by noting that for H “ tH P

pN Y t0uqm | |H| ď s ´ 1u,

|H| “

ˆ

m ` s ´ 1

m

˙

,

whereas
BoundarypHq “ tH P pN Y t0uqm | |H| “ s ´ 1u

and so
|BoundarypHq| “

ˆ

m ` s ´ 2

m ´ 1

˙

.

Appealing to Fact 2.2,
m ` s ´ 1

m
¨ |BoundarypHq| “ |H|,

and so

dimFqpLq ď pmpq ´ 1q ` 1q ¨ qm ¨ |H| ¨
m

m ` s ´ 1
`

m ` 1

q
¨ N

ď
pmpq ´ 1q ` 1q

q
¨

m

m ` s ´ 1
¨ N `

m ` 1

q
¨ N

as wanted.
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4 Good blockwise LCCs with polylog query complex-
ity

In this part we construct a good blockwise LCC with polylogarithmic query complexity.
We will do so in two stages, first in Section 4.1 we will construct one such with rate 1´op1q

and a (modestly) vanishing correction radius. Second, in Section 4.2 we will apply the
AEL distance amplification to increase the distance, and conclude Theorem 1.4. Such
two step approach is similar to the one taken in [KMRS17].

As is pretty standard, it will be more convenient to work with a slightly different
definition of local correction, in which we will consider the probability the a point being
queried, instead of directly considering corruptions.

Definition 4.1 (pq, µq-blockwise smooth LCC). A code C Ď FPˆS is a pq, µq-blockwise
smooth LCC if there exists a randomized procedure Cor : P ˆ S Ñ F that is given oracle
access to c P C and has the following guarantee. For every pp, aq P P ˆ S and c P C,
Corcpp, aq “ cpp, aq with probability 1. Furthermore, Corcpp, aq always makes at most
q queries to c, where each query of Cor consists of obtaining cpp1, ¨q for some p1 P P .
Moreover, for every pp1, ¨q P P ˆ S the probability that cpp1, ¨q is queried by Corcpp, aq is at
most µ.

We state the simple fact that a smooth-enough pq, µq-blockwise smooth LCC is a
decent-δ blockwise LCC (as defined in Definition 1.2).

Claim 4.2. If C Ď FPˆS where |P | “ n is a pq, µq-blockwise smooth LCC then it is a
blockwise-pq, δq LCC for δ “ 1

3nµ
.

Proof. For z P FPˆS such that |tp P P | zpp, ¨q ‰ cpp, ¨qu| ă δn, czpp, aq outputs cpp, aq

in the case that no points p1 P P where z and c differ were queried. By a union bound,
since the probability to query each p1 is at most µ, for δ “ 1

3nµ
, the probability to make

an erroneous query is at most δnµ “ 1
3
.

4.1 High-rate blockwise LCCs

We will need to use interpolating sets for Fm
q which we define as follows.

Definition 4.3. An s-interpolating set S Ď Fm
q is a set such that for every polynomial

q P Fqry1, . . . , yms of total degree at most s ´ 1, there exists α P S such that qpαq ‰ 0.

The following fact is well known.

19



Fact 4.4. For every s ď q ´ 1 there is an explicit s-interpolating set S Ď Fm
q of size

`

m`s´1
m

˘

.

The next claim states that we can, instead of viewing each block as “coefficients” of a
degree less than s polynomial, view each block as evaluations of such a polynomial, while
still having the same line-wise requirements satisfied. The claim asserts that this results
in the same dimension, but we stress that this is not the same code, since the constraints
are in fact different.

Claim 4.5. Let C Ď FFqˆFm
q ˆH

q , for H “ tH P pN Y t0uqm | |H| ď s ´ 1u, be the largest
linear code satisfying the following property. For every c P C and for every a, b P Fm

ÿ

τPFq

ÿ

HPH
aHcpτ, aτ ` b,Hq “ 0. (4.1)

Let S Ď Fm
q be an s-interpolating set and let C 1 Ď FFqˆFm

q ˆS
q be the largest linear code

satisfying the following property. For every c1 P C 1 and for every a, b P Fm

ÿ

τPFq

qτ,aτ`bpaq “ 0 (4.2)

where for every τ P Fq and γ P Fm
q , qτ,γ is the unique polynomial of degree at most s ´ 1

such that @β P S, qτ,γpβq “ c1pτ, γ, βq (notice that these are indeed linear requirements).
Then, dimC 1 “ dimC.

Proof. The proof is straightforward. We show C Ď C 1 by describing an injective f :

C Ñ C 1 (the other direction is identical). For c P C we define c1 “ fpcq to be the word
obtained by setting for every τ P Fq, γ P Fm

q and β P S c1pτ, γ, βq “
ř

HPH βHcpτ, γ,Hq.
Indeed f is injective, since S is an s-interpolating set, for every c1 ‰ c2, c1

1 “ fpc1q ‰

c1
2 “ fpc2q. Moreover, it is immediate from the definition of qτ,γ that since c satisfied any

Equation (4.1), c1 satisfies any Equation (4.2), and thus c1 P C 1.

The following important proposition asserts that a code which is constructed to satisfy
Equation (4.2) is a blockwise smooth LCC with a low query.

Proposition 4.6. Let C 1 Ď FFqˆFm
q ˆS

q , for S Ď Fm
q an s-interpolating set, be such that

for every c1 P C 1 and for every a, b P Fm

ÿ

τPFq

qτ,aτ`bpaq “ 0 (4.3)

where for every τ P Fq and γ P Fm
q , qτ,γ is the unique polynomial of degree at most

s ´ 1 such that @β P S, qτ,γpβq “ c1pτ, γ, βq. Assume that s ď q ´ 1. Then, if we define
P “ Fq ˆ Fm

q and n “ |P |, C 1 Ď FPˆS is a psq, sq
n

q-blockwise smooth LCC.

Proof. To prove the proposition, we describe the correction procedure Cor.
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The correction Cor. On oracle access to c P C 1, in order to correct an element
pτ˚, α˚, a˚q P Fq ˆ Fm

q ˆ S, Cor proceeds as follows.

1. Sample uniformly at random a line direction ν P Fm
q .

2. Sample uniformly at random distinct σ1, . . . , σs P Fqzt0u.

3. For every i P rss:

(a) Set apiq “ σiν ` a˚.

(b) Set bpiq “ α˚ ´ τ˚apiq.

(c) Query the q ´ 1 blocks at the points p P P which are on the ordered line with
direction apiq and offset bpiq, except for the τ˚-th point. That is, we query the
blocks of the points tpτ, τapiq ` bpiqq | τ P Fqztτ˚uu Ď P . By “query the blocks”
we mean that for every such p we query c1pp, ¨q.

(d) For every such point on the line, pτ for τ P Fqztτ˚u, denote the resulted block
of the query by Bτ : S Ñ Fq.

(e) For each τ P Fqztτ˚u, compute the unique degree less than s polynomial qτ P

Fqry1, . . . , yms which agrees with Bτ on S.

(f) Set ∆i “
ř

τPFqztτ˚u qτ papiqq.

4. Compute the unique univariate polynomial of degree less than s, r P Fqrzs, such
that for every i P rss, rpσiq “ ´∆i.

5. Output rp0q.

Query analysis. It follows immediately by inspecting Item 3c that Cor queries at most
spq ´ 1q blocks.

Correctness. Let q˚ P Fqry1, . . . , yms denote the unique degree less than s polynomial
which agrees with c1pτ˚, α˚, ¨q on S. Now, notice that for every i P rss the value ∆i that
we compute at Item 3f of the iteration is exactly the sum of the evaluations on apiq P Fm

q

of the polynomials in Fqry1, . . . , yms of the blocks along the line pτ, τapiq ` bpiqqτPFq , except
for the evaluation of the polynomial which corresponds to the τ˚-th point of the line.
Notice that the τ˚-th point of the line, by Item 3b, is exactly

pτ˚, τ˚apiq ` bpiqq “ pτ˚, τ˚apiq ` α˚ ´ τ˚apiqq “ pτ˚, α˚q,
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which corresponds to the polynomial q˚. Thus, by Equation (4.3),

∆i ` q˚papiqq “ 0,

and hence q˚papiqq “ ´∆i. Now, notice that ap1q, . . . , apsq are all on the line tσ ¨ ν ` a˚ |

σ P Fqu Ď Fm
q . Since the reduction of q˚ on that line is a univariate polynomial of degree

less than s, which on 0 P Fq evaluates to q˚pa˚q, it readily follows that in Item 4 the
computed r is equal to that polynomial, and that the value outputted in Item 5 is q˚pa˚q.
Since q˚pa˚q “ c1pτ˚, α˚, a˚q by the definition of q˚, it follows that Cor is correct.

Smoothness. Let p1 “ pτ 1, α1q P P . Fix i P rss. We ask what is the probability that the
block corresponding to p1 is queried in Item 3c. If τ 1 “ τ˚ this never happens. If τ 1 ‰ τ˚,
this happens if and only if τ 1apiq ` bpiq “ α1. By inspecting Item 3a and Item 3b one sees
that this event, in turn, is equivalent to

pτ 1 ´ τ˚qpσiν ` a˚q “ α1 ´ α˚.

Since σi is by choice nonzero, and ν P Fm
q is independent of it and uniformly random, the

probability for this to occur is 1
qm

. Since this was for a fixed i P rss, the probability that
the block corresponding to p1 is queried by any of the s iterations is at most s

qm
“

sq
n

, as
required.

The following proposition concludes that for infinitely many n’s, there exists a high
rate blockwise LCC.

Proposition 4.7. For every σ ě 4 the following holds. For every n1 P N there exists
n ě n1 for which the following holds. There is a code C Ď FPˆS

q , with |P | “ n, q “

polyσplog nq, |S| ď n3{σ, which is a p2 logσ`3pnq, 2 log
σ`3pnq

n
q-blockwise smooth LCC, with

dimFqpCq “ p1 ´ op1qqN .

Proof. We set q to be the minimal power of 2 which is larger than logσpn1q. Note that
logσpn1q ď q ď 2 logσpn1q. We further set

m “
logpn1q

log q
´ 1,

n “ qm`1,

s “ m3,

P “ Fq ˆ Fm
q ,

H “ tH P pN Y t0uqm | |H| ď s ´ 1u,

N “ |P | ¨ |H|.
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Note that |P | “ qm`1 “ n ě n1. Let C Ď FPˆH
q “ FFqˆFm

q ˆH
q be the maximal linear

subspace satisfying all line constraints Equation (4.1). Notice that C “ LK,6 where L is
as defined in the previous section. Thus, by the in particular part of Theorem 3.2,

dimFq C ě N ´

ˆ

pmpq ´ 1q ` 1q

q
¨

m

m ` s ´ 1
¨ N `

m ` 1

q
¨ N

˙

“ p1 ´ op1qqN,

for our choice of q, m and s. Let S Ď Fm
q be an s-interpolating set, which exists by

Fact 4.4, and let C 1 be the maximal linear subspace satisfying all line constraints as in
Equation (4.3). By Claim 4.5, dimC 1 “ dimC. By Proposition 4.6, C 1, is a psq, sq

n
q-

blockwise smooth LCC, and notice that sq ď 2 logσ`3pn1q ď 2 logσ`3pnq and

|S| ď sm ď plog3 n1q
logn1

log q “ 2
3 logpn1q¨log logpn1q

logpqq ď 2
3 logpn1q¨log logpn1q

σ log logpn1q ď n3{σ.

As required.

4.2 Applying the AEL distance amplification to get asymptoti-
cally good blockwise LCCs

[KMRS17] crucially observed that the AEL distance amplification [AEL95] is fit for ampli-
fying the distance of LCCs, and adapted it. A variant of those amplification procedures,
which is given in the language of linear constraints, was described in [CY22] (in particular
it doesn’t increase the length of the code), so we opt to using it, for convenience.

Definition 4.8 ([CY22]). A linear subspace A Ď Fn is called a (q,δ,α)-local-amplifier if
there exists a deterministic procedure Amp : rns Ñ F that is given oracle access to z P Fn

and has the following guarantee. For every y P A and z P Fn such that Distpz, yq ď δn,
Amppiq outputs yi when given oracle access to z, for at least α-fraction of the indices
i P rns. Furthermore, Amp always makes at most q queries to z.

Claim 4.9 ([CY22]). For every n P N, F a field, and δ, α P p0, 1q such that δ ď 1{25, there
exists a linear subspace A Ď Fn which is a pq, δ, αq-local-amplifier for q “ 25{pδp1 ´ αq2q

such that dimFpAq ě p1´2H|F|p5
?
δq´

?
δp1´αqqn. Furthermore, adding to Definition 4.8,

for every z, the guaranteed α-fraction set of good indices depends only on the locations
where z disagrees with y (“corruptions”), and is a monotone function of these locations
(that is, for two sets of corruptions where one is contained in the other, their two respective
good indices sets satisfy that the second is contained in the first).

6In fact, not precisely, for the following reason. Equation (4.1) requires that for every a, b P Fm
q , the

sum along the line pτ, aτ ` bqτ is 0. However in Section 3, L was defined so that for every a, b P Fm
q , we

have a constraint supported on the line pτ,´aτ ´ bqτ , to make the analysis more nice. However this is of
little importance, as by permuting the coordinate names pτ, αq Ñ pτ,´αq we don’t change the dimension.
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With everything set, we now prove Theorem 1.4.

Proof for Theorem 1.4. Set δ “ 0.01. Let C Ď FPˆS
q be the code guaranteed by Proposi-

tion 4.7, when invoked with σ and n1 of the hypothesis, to be a p2 logσ`3pnq, 2 log
σ`3pnq

n
q-

blockwise smooth LCC, with

dimFqpCq ě p1 ´ op1qq ¨ |P | ¨ |S|.

By Claim 4.2 C is a pqs, δ1q-blockwise LCC for

δ1 “
n

3n ¨ 2 logσ`3pnq
“ Θ

ˆ

1

logσ`3pnq

˙

,

and let Cor be a corresponding local corrector for it. Set α “ 1 ´ δ1 and let A Ď FP
q be a

pqA, δ, αq-local-amplifier which exists by Claim 4.9, for

dimFqpAq ě p1 ´ 2Hqp5
?
δq ´

?
δp1 ´ αqqn “ pΩp1q ´ Opδ1qqn “ Ωpnq,

qA “
25

δpδ1q2
“ Oplog2σ`6pnqq,

and let Amp be its corresponding procedure. We take

C 1 “ tc P C | @a P S : cp¨, aq P Au.

First, to address the dimension of C 1, by counting constraints we see that

dimFqpC 1q ě dimFqpCq ´ pn ´ dimFqpAqq|S| “ Ωpn|S|q,

by the bounds on dimFqpCq and dimFqpAq, and thus the rate ρ “
dimFq pC1q

n|S|
“ Ωp1q.

Secondly, it readily follows that C 1 is a blockwise LCC as desired. Indeed, let z P FPˆS
q

be such that for some c P C 1, |tp P P | zpp, ¨q ‰ cpp, ¨qu| ă δn. Since, by Claim 4.9, for
every za P FP

q (where for a P S, za :“ zp¨, aq) the guaranteed set of good indices is
a monotone function of the corruptions, we can assume without loss of generality that
whenever for some p P P and a P S cpp, aq ‰ zpp, aq, then for all a1 P S cpp, a1q ‰ zpp, a1q.
As the good α-fraction sets induced by A for every z depend only on the location of
corruptions, the good indices sets are the same for all p P P , that is, there is an α fraction
subset Pgood Ď P such that for any p P Pgood and for any a P S, Ampzp¨,aqppq “ cpp, aq.
Hence, simulating Cor and whenever its makes a query p P P feeding it with the result of
pAmpzp¨,aqppqq |aPS has the same result as simulating it on a word z1 which is α “ p1 ´ δ1q-
close to c. Notice that for such words z1, Corz1

pp, aq outputs the correct result cpp, aq with
probability at least 2

3
, as required. The number of queries of this correction procedure is

at most
qA ¨ 2 logσ`3 “ Oplog3σ`9pnqq,

as wanted.
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