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Abstract

This paper is about the proximity gaps phenomenon for Reed-Solomon codes. Very roughly, the
proximity gaps phenomenon for a code C ⊆ Fn

q says that for two vectors f, g ∈ Fn
q , if sufficiently many

linear combinations f + z · g (with z ∈ Fq) are close to C in Hamming distance, then so are both f
and g, up to a proximity loss of ε∗. Determining the optimal quantitative form of proximity gaps for
Reed–Solomon codes has recently become of great interest because of applications to interactive proofs
and cryptography, and in particular, to scalable transparent arguments of knowledge (STARKs) and
other modern hash based argument systems used on blockchains today.

Our main results show improved positive and negative results for proximity gaps for Reed–Solomon
codes of constant relative distance δ ∈ (0, 1).

• For proximity gaps up to the unique decoding radius δ/2, we show that arbitrarily small proximity
loss ε∗ > 0 can be achieved with only Oε∗(1) exceptional z’s (improving the previous bound of
O(n) exceptions).

• For proximity gaps up to the Johnson radius J(δ), we show that proximity loss ε∗ = 0 can be
achieved with only O(n) exceptional z’s (improving the previous bound of O(n2) exceptions). This
significantly reduces the soundness error in the aforementioned arguments systems.

• In the other direction, we show that for some Reed–Solomon codes and some δ, proximity gaps at
or beyond the Johnson radius J(δ) with arbitrarily small proximity loss ε∗ needs to have at least
Ω(n1.99) exceptional z’s.

• More generally, for all constants τ , we show that for some Reed–Solomon codes and some δ =
δ(τ), proximity gaps at radius δ − Ωτ (1) with arbitrarily small proximity loss ε∗ needs to have nτ

exceptional z’s.

• Finally, for all Reed–Solomon codes, we show that improved proximity gaps imply improved bounds
for their list-decodability. This shows that improved bounds on the list-decoding radius of Reed–
Solomon codes is a prerequisite for any new proximity gaps results beyond the Johnson radius.
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1 Introduction

Reed–Solomon codes are classical error-correcting codes based on univariate polynomial evaluation, and are
of central importance in both the theory and practice of coding theory. In the past few decades, they have also
played a very important role in complexity theory and cryptography, utilizing their strong error-correcting
properties combined with the universal expressive power of polynomials.

This paper is about the proximity gaps phenomenon for Reed–Solomon codes. Very roughly, the proximity
gaps phenomenon for a code C ⊆ Fn

q says that for two vectors f, g ∈ Fn
q , if many linear combinations f + z · g

(with z ∈ Fq) are close to C in Hamming distance, then so are both f and g. The crucial quantitative
aspects of this are: how close is “close”, and how many is “many”? The question of understanding the
optimal quantiative form of proximity gaps for Reed–Solomon codes is of great interest, has many potential
applications, and is wide open.

Proximity gaps for linear codes in general, and Reed–Solomon codes in particular, have been very actively
studied in recent years, especially in connection to STARKs and other modern hash based argument systems
that are currently in use in blockchains. They capture interesting geometry of how the code C sits in the
Hamming space Fn

q : C has proximity gaps if for every line ℓ in the space Fn
q , either all the points of ℓ are

close to C, or else most points of ℓ are far from C. Consequently, a nominal one million dollar prize has been
recently announce by the Ethereum Foundation to resolve these very questions.

Proximity gaps are also closely related to another fundamental geometric property of a code: list-decodability.
A code C ⊆ Fn

q has good list-decodability if for any point f in Fn
q , there cannot be too many codewords of C

close to it. Again the same quantitative aspects arise: how close is “close”, and how many is “many”? The
question of determining the optimal quantitative form of list decodability of Reed–Solomon codes is also of
great interest, is much older, has been very well studied, and is wide open.

The study of proximity gaps originated in the works of Rothblum, Vadhan and Wigderson [RVW13] and
Ames, Hazay, Ishai and Venkitasubramanian [AHIV17], who used it for delegating computation in sublinear
time. The results of [RZ18, BKS18, BGKS20] further explored the quantitative aspects of proximity gaps
for general linear codes. The work of Ben-Sasson, Carmon, Ishai, Kopparty and Saraf [BCI+20] gave the
state of the art proximity gaps for Reed–Solomon codes. These results were proved using algorithms for
decoding Reed–Solomon codes: the proof of proximity gaps, which is a purely combinatorial result, used
the Berlekamp–Welch unique decoding and Guruswami–Sudan list-decoding algorithms for Reed–Solomon
codes. These results enabled new applications in interactive proofs, distributed storage, and cryptogra-
phy. In particular, they led to the strongest known soundness analysis of the FRI protocol [BBHR18] for
proving proximity to Reed–Solomon codes, a widely used protocol in modern argument systems, such as
STARKs [BSBHR18], and validity proofs for blockchains.

Since [BCI+20], several further applications of proximity gaps for Reed–Solomon codes have been discovered.

• In [ACY23], Arnon, Chiesa and Yogev used proximity gaps for Reed–Solomon codes to give interactive
protocols for NP in the IOP model with linear proof size and inverse polynomial soundness.

• The STIR [ACFY24] and WHIR [ACFY25] protocols of Arnon, Chiesa, Fenzi and Yogev give improved
theoretical and practical (1) protocols for proving proximity to (constrained) Reed–Solomon codes, and
(2) polynomial commitment schemes.

• In [MZ25], Minzer and Zheng gave stronger round-by-round soundness for languages in NP, as well as
a new protocol for further improved soundness for proving proximity to Reed–Solomon codes.

• In [Hab24], Haböck used proximity gaps for Reed–Solomon codes to give a strong soundness analysis
for Basefold [ZCF23], a polynomial commitment scheme.

• Finally, the FRI protocol, first used in the Stone STARK prover of StarkWare as a scaling solution
for Ethereum, has been widely adopted as the proximity proving protocol for a number of active
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or upcoming blockchain “ZKVMs”, such as S-two, SP1, Risc-0, Miden, Polygon Hermez, Plonky3,
OpenVM, Matterlabs, Lita, Miden, Brevis, Linea and Zisk.

Given all these applications, and the strong connections to basic questions about list-decoding of Reed–
Solomon codes, it is thus of great interest to prove quantitatively stronger proximity gaps for Reed–Solomon
codes, as well as to understand the limits of what kind of proximity gaps are possible.

1.1 Error-Correcting Codes and Proximity Gaps

For an alphabet Σ and strings f, g ∈ Σn, we define the relative Hamming distance ∆(f, g) to be the fraction
of i ∈ [n] for which fi ̸= gi. A linear code C over Fq of length n is a linear subspace of Fn

q , and the minimum
distance of C is the smallest value of ∆(x, y) as x, y vary over distinct elements of C.
Let C ⊆ Fn

q be a linear code with minimum distance δ. The minimum distance property immediately implies
that for any γ < δ/2 (the unique decoding radius), any Hamming ball of radius γ in Fn

q contains at most 1
codeword of C.
One can also say something about Hamming balls of larger radii – this is related to list-decoding. Define
the Johnson radius J(δ) = 1 −

√
1− δ (and note that δ/2 < J(δ) < δ). Then for any η > 0, the Johnson

bound [Joh62] implies that any Hamming ball in Fn
q of radius γ = J(δ)−η contains at most Oη(1) codewords

of C.
For Reed–Solomon codes of minimum distance δ, it is an extremely interesting question whether all Hamming
balls in Fn

q of radius γ (for some γ larger than J(δ)) are guaranteed to contain at most poly(n) codewords.
This is the problem of determining the list-decoding radius of Reed–Solomon codes. For some Reed–Solomon
codes, it is known that one can take γ arbitrarily close to δ; that this may be true for all Reed–Solomon
codes is a tantalizing possibility.

For a general linear code C, if f, g ∈ Fn
q are both in C, then of course every linear combination f+z·g (with z ∈

Fq) also lies in C. The proximity gaps phenomenon [BCI+20] (see also [RVW13, AHIV17, BKS18, BGKS20])
provides a robust converse to this – it says that if for many z we have that f + z · g is close to C, then f and
g are themselves both close to C in a certain correlated manner.

Before the formal definition, we quickly introduce a little bit of notation. For two strings f, g ∈ Σn, we let
[f, g] denote the interleaved/correlated vector h ∈ (Σ2)n with hi = (fi, gi). In the Hamming metric space
(Σ2)n, the alphabet is Σ2: thus ∆([f, g], [u, v]) ≤ λ if and only if there exists some subset S ⊆ [n], with
|S| ≥ (1 − λ)n, such that f |S = u|S and g|S = v|S . Finally, for a code C ⊆ Σn, we define the interleaved
code C2 ⊆ (Σ2)n, given by:

{[u, v] ∈ (Σ2)n | u, v ∈ C}.

It is easy to see that if ∆([f, g], C2) ≤ γ, then for all z ∈ Fq, we have ∆(f + z · g, C) ≤ γ.

Definition 1.1 (Proximity gaps). We say the linear code C ⊆ Fn
q has proximity gaps up to radius γ ∈ [0, 1],

with parameters a ∈ N and ε∗ ∈ [0, 1], if, for every f, g ∈ Fn
q and every γ′ ∈ [0, γ] we have the following:

• Whenever
|{z ∈ Fq | ∆(f + z · g, C) ≤ γ′}| ≥ a,

then
∆([f, g], C2) ≤ γ′ + ε∗.

The quantity a
q is called the soundness error. The quantity ε∗ is called the proximity loss.

In applications, we will usually need γ to be a constant in (0, 1), and proximity loss to tend to 0. Some
applications need proximity loss equal to 0. There have been many results on proximity gaps, for both
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general linear codes and Reed–Solomon codes. We give a quick summary of the prior work before we state
our results.

Arbitrary linear codes The first result of a proximity gap flavor was a very influential lemma of Roth-
blum, Vadhan, Wigderson [RVW13]. They showed that that for any linear code C (with no assumption about
the distance), proximity gaps holds with arbitrary γ, a = 2 and proximity loss ε∗ = γ. This was used in
their results on delegating computation in sublinear time. A generalization of the [RVW13] lemma was given
in [BKS18], using ideas from list-decoding and the Johnson bound. This again holds for every linear code C
and arbitrary γ: the result said that proximity gaps holds with any a and proximity loss ε∗ = 1

a−1 (γ − γ2).
Qualitatively, this gives a nontrivial proximity gap result even for very large radii γ close to 1. Notice that
both these results do not have vanishing proximity loss when γ is a fixed constant in (0, 1).

Linear codes with good distance A different line of work extending [RVW13] showed proximity gap
results for linear codes with good distance δ, provided the radius γ is small enough in terms of δ. The main
new feature was that these results could achieve vanishing proximity loss, and this feature enables many
more applications.

Ames, Hazay, Ishai and Venkitasubramaniam [AHIV17], in their work on sublinear time delegation (Ligero),
showed that for any linear code C of minimum distance δ, C has proximity gaps at any radius γ < δ/4 with
proximity loss ε∗ = 0 and any a = γn + 2. The same argument shows shows that C has proximity gaps at
radius γ < δ/4 with arbitrarily small proximity loss ε∗ and a = 1 + γ

ε∗ . The δ/4 threshold was improved to
δ/3 by Roth–Zemor [RZ18] and Ben-Sasson–Kopparty–Saraf [BKS18].

This latter work [BKS18] also showed a proximity gap result at a radius γ that could get close to 1: for
any linear code of minimum distance δ, for γ = J2(δ) − η (where J2(δ) = J(J(δ)) = 1 − (1 − δ)1/4 is the
“double Johnson” radius, and η > 0 is arbitrary), there are proximity gaps with proximity loss ε∗ and1

a = Oη(1/ε
∗) · γ. This result is incomparable to the above mentioned result on proximity gaps up to radius

δ/3: for small δ we have δ/3 > J2(δ), while for large δ we have δ/3 < J2(δ).

Both these bounds got a common improvement in the paper of Ben-Sasson, Goldberg, Kopparty and
Saraf [BGKS20]. That paper showed that proximity gaps hold at radius γ = J1.5(δ) − η (where J1.5(δ) =
1− (1− δ)1/3 is the “one-and-a-half Johnson radius”), with proximity loss ε∗ and a = Oη(1/ε

∗) · γ.
[BGKS20] also gave a matching lower bound. They gave instances of infinitely many Reed Solomon codes
with distance δ = 7/8, such that when γ is equal to the one-and-a-half Johnson radius J1.5(δ), a o(1)
proximity loss cannot be guaranteed even if a is taken as large as Ω(n).

Reed–Solomon codes with good distance Many of the cryptographic applications where the above
mentioned results were used took C to be a Reed–Solomon code. It was thus of interest to obtain proximity
gaps results for just Reed–Solomon codes.

In [BCI+20], Ben-Sasson, Carmon, Ishai, Kopparty and Saraf showed proximity gaps results for Reed–
Solomon codes going beyond what was known for general linear codes. The crucial ingredient that enabled
these results was the well developed theory of decoding algorithms for Reed–Solomon codes. Specifically, they
used the Berlekamp–Welch algorithm [WB86] (for unique decoding) and the Guruswami–Sudan algorithm
[GS99] (for list decoding up to the Johnson radius) as a tool (within the proof) to get a criterion for a given
string to be close to the code, and used this to analyze proximity gaps. There were two kinds of proximity
gaps that they showed:

• up to the unique decoding radius, γ < δ/2, proximity gaps holds with a = n and proximity loss ε∗ = 0,

• up to the Johnson radius γ < J(δ), proximity gaps holds with a = Oγ,δ(n
2) and proximity loss ε∗ = 0.

1Here OK(·) means that the constant in the O(·) may depend on K.
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Improving the radius up to which these proximity gap results holds is of is of great importance for the above
mentioned practical hash-based arguments of knowledge.

Conjectured proximity gaps for Reed–Solomon codes A central guiding conjecture for the area has
been that proximity gaps should hold all the way to radius δ with o(1) proximity loss and a being polynomial
in n. The conjecture is parametrized by a constant τ > 0, the exponent of the polynomial bound.

Conjecture 1.2 (nτ -bounded proximity gaps). Let δ ∈ (0, 1) be a constant.

For every Reed Solomon code C = RS[Fq,D, k] with length |D| = n and distance δ, and for every η > 0,

C has proximity gaps up to radius γ = δ − η, with proximity loss ε∗ = oη(1) and a = Oη(n
τ ).

A stronger form of the conjecture, which is needed for some applications, asks for ε∗ = 0.

If the above conjecture holds with a certain value of τ , then in applications of proximity gaps one would
choose the field size q to be Ωη(

nτ

β ), where β is the target soundness error.

The negative result of [BGKS20] showed that the conjecture is false for τ < 1. Diamond and Gruen [DG25b]
showed that a strengthened form of the conjecture is false for τ < 1 and certain δ = 1− o(1). We also just
learned of an elegant new result of Diamond and Gruen [DG25a] who disproved a stronger version of the above
conjecture (made explicitly in [BCI+20]) for all τ : the stronger version asked for a to also be polynomially
bounded in η.

To compare the conjecture with the positive results that are known, we list below how the strongest results
in this direction fall short of this.

• For proximity gaps with a = poly(n), the previously best known results required γ to be bounded
below J(δ), and achieved a = O(n2) and 0-proximity loss.

• For proximity gaps with a = O(n), the previously best known results required γ to be bounded below
max{δ/2, J1.5(δ)} and achieved 0-proximity loss.

With this state of affairs, we now describe our results.

1.2 Overview of Results

Our paper is motivated by Conjecture 1.2. On the one hand, we prove positive results establishing proximity
gaps for general Reed–Solomon codes with much stronger quantitative behavior than previously known. In
particular, these results reduce the a parameter (and thus the needed field size for the same target soundness
error) in known results by a factor n. On the other hand, we show negative results establishing the limits
of proximity gaps: there are instances where any proximity gap result must have a proximity loss of Ω(1)
unless the a parameter is chosen very large. In particular, we refute Conjecture 1.2 for all τ = O(1).

We give a brief summary of our main results:

• For γ < δ/2, we show that proximity gaps up to radius γ holds with proximity loss ε∗ and a =
max{Ω( 1

δ/2−γ ), 1+
γ
ε∗ }. Notably, this bound on a is O(1) if ε∗ and δ/2− γ are positive constants. The

previous result in this range of γ, of [BCI+20], could not give any proximity gaps with this small an a:
it needed a = n to conclude anything in this range of γ (and then it gave proximity gaps with ε∗ = 0).

Our method also gives the optimal bound on a for the ε∗ = 0 case. If δ/2 − γ is a positive constant,
then proximity gaps up to radius γ holds with proximity loss ε∗ = 0 with a = γn + 2, matching the
exact (and tight) bound on a that was proven by [AHIV17, RZ18] for γ < δ/3.
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• For γ < J(δ) − η, we show that proximity gaps up to radius γ holds with 0 proximity loss and
a = Oη,δ(n), The previous result in this range of γ, of [BCI+20], needed a = Ωη,δ(n

2). This significantly
reduces the soundness error in the practical argument systems where these results are used.

• On the negative side, we show that for any constant τ , the nτ -bounded proximity gaps conjecture
(Conjecture 1.2) is false. Specifically for each integer τ , letting λτ = 2−(τ+2), for an infinite family of
Reed–Solomon codes with distance δ = 1 − λτ , we show that proximity gaps at radius γ = 1 − 4λτ

must have a proximity loss of at least 2λτ if a is smaller than nτ−o(1). The main qualitative feature
is that for every constant τ , there are Reed-Solomon codes with some constant distance δ = δτ , such
that proximity gaps at radius δ − Ωτ (1) and a = O(nτ ) must have a proximity loss of Ωτ (1).

• An instantiation of the above negative result for τ = 2 gives us a tight negative result for proximity
gaps at the Johnson radius: for an infinite family of Reed–Solomon codes with distance δ = 15/16, we
get that proximity gaps at radius γ = J(δ) must have a proximity loss of at least Ω(1) if a is smaller
than n2−o(1). Thus a must jump from O(n) to Ω(n2−o(1)) as γ increases past J(δ).

• Finally, we show that proximity gaps for a Reed–Solomon code at the list decoding radius (for list size
q) and o(1) proximity loss needs a at least q

2n (and so the soundness error is at least 1
2n , independent

of q). This means that improving the proximity gap radius beyond the Johnson radius with a < q
2n for

any Reed–Solomon code implies that the list-decoding radius of that code is larger than the Johnson
radius.

Additional results include: some weaker limitations to proximity gaps over prime fields, a sharp threshold
behavior for proximity gaps at radius δ/3 (in the δ = o(1) regime), and some attacks on STARKs for some
simple constraint satisfaction problems, showing that the bound from [BGKS20] on their soundness error
cannot be improved much.

The following tables show our new results on proximity gaps alongside what was known before.

Table 1: Proximity gaps for Reed–Solomon codes of distance δ. The shaded rows hold for arbitrary linear
codes of distance δ.

Reference
requirement on

ε∗ Notes
γ a

[RVW13] arbitrary a ≥ 2 γ

[BKS18] arbitrary a ≥ 2 a
a−1

· (γ − γ2) ε∗ → J−1(γ)− γ as a → ∞

Trivial < δ a ≥ 2Ωδ(n) 0

[AHIV17] < δ/4 a ≥ 2 1
a−1

· γ ε∗ = 0 for a > γn+ 1

[RZ18, BKS18] < δ/3 a ≥ 2 1
a−1

· γ ε∗ = 0 for a > γn+ 1

[BCI+20] < δ/2 a > n 0

This work < δ/2 a ≥ 1
δ/2−γ

1
a−1

· γ ε∗ = 0 for a > γn+ 1, δ
2
− γ ≥ Ω( 1√

n
)

[BKS18] < 1− (1− δ)1/4 − η a ≥ Θδ

(
1
η2

)
Oδ

(
1

η2a

)
· γ ε∗ = 0 for a = Ωδ

(
n
η2

)
[BGKS20] < 1− (1− δ)1/3 − η a ≥ Θδ

(
1
η

)
Oδ

(
1
ηa

)
· γ ε∗ = 0 for a = Ωδ

(
n
η

)
[BCI+20] < 1− (1− δ)1/2 − η a ≥ Θδ

(
n2

η7

)
0

This work < 1− (1− δ)1/2 − η a ≥ Θδ

(
n
η5

)
0
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Table 2: Parameters where large proximity losses are unavoidable, for Reed–Solomon codes of distance δ.
LDR is the list-decoding radius, see Definition 1.8.

Reference δ γ a ε∗ Notes

[BGKS20] 7/8 1− (1− δ)1/3 = 1/2 n− 1 = q − 1 1/4 q even

This work 15/16 1− (1− δ)1/2 = 3/4 n2−o(1) = (1− o(1))q 1/8 q even

This work 1− λτ 1− 4λτ nτ−o(1) = (1− o(1))q 2λτ any τ , λτ = 2−(τ+2), q even

This work any δ γ = LDRFq,n,q(δ) +
2
n

q
2n

δ − γ − 1
n

This work ≈ 1/2 γ = δ − 1
log2 n

n = q 1
2 log2 n

Mersenne prime q

[DG25b] 1− 1/n δ/2− 1
2n

n 1
n

[DG25a] 1− n−ϵ δ − n−ϵ nτ = q
n

n−ϵ any τ , some ϵ > 1/2

This work c/n δ/3 n/c = (q − 1)/c δ/3 prime q, any c = O(1)

This work nϵ/n δ/2 n2/(1−4ϵ) = q − 1 δ/4 prime q, any ϵ ∈ (0, 1/4)

1.3 Statements of Positive Results

We summarize our concrete improvements over [BCI+20].

1.3.1 Up to half minimum distance

Up to the unique decoding radius of the Reed–Solomon code, we obtain the following main result:

Theorem 1.3. Let C be the code RS[Fq,D, k] of block-length n = |D| and minimum distance δ = 1− k
n . Let

γ ∈
[
δ
3 ,

δ
2 − 1

n

]
. Suppose u0, u1 : D → Fq are functions such that S = {z ∈ Fq | ∆(u0 + z · u1, C) ≤ γ} is of

size

a ≥
(
δ

γ
− 1

)
· 1

δ − 2γ

Then

∆([u0, u1], C2) ≤
(
1 +

1

a− 1

)
· γ.

In other words, for distance loss ε∗, it suffices to take

a ≥ max

((
δ

γ
− 1

)
· 1

δ − 2γ
, 1 +

γ

ε∗

)
.

Using that δ
γ ≤ 3, one obtains the coarser bound 1

δ/2−γ on a, as cited in Table 1.

The most notable feature of this theorem is that for ε∗ and δ/2− γ being positive constants, the a needed
for the proximity gap result is just a constant. This saves a factor of Θ(n) in soundness error compared to
the previous best result for this range, in [BCI+20], at the cost of introducing some arbitrarily small constant
proximity loss.

Choosing ε∗ < 1
n in Theorem 1.3 yields the following lossless result, for not too small distances.
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Corollary 1.4. For δ ≥ 3·
√
2√

n
and γ ∈

[
δ
3 ,

δ
2 − 3

δn

]
. If S = {z ∈ Fq | ∆(u0 + z · u1, C) ≤ γ} is of size

a > γ · n+ 1,

then ∆([u0, u1], C2) ≤ γ.

For practical parameters, with δ = Ω(1) and not too small word lengths n, the corollary improves [BCI+20,
Theorem 4.1] from a > n down to the [AHIV17, RZ18] bound a > γ · n+ 1. Moreover, since that bound is
tight, the result is optimal on its range of validity.

1.3.2 Up to the Johnson radius

Up to the Johnson radius J(δ) = 1−
√
1− δ, our main result is:

Theorem 1.5. Let C be the code RS[Fq,D, k] with block-length n = |D| and minimum distance δ = 1 − k
n .

Denote ρ = k
n = 1 − δ. For γ ∈

(
0, 1−√

ρ
)
, let η = 1 − √

ρ − γ, and m = max
(⌈√

ρ

2η

⌉
, 3
)
. Suppose

u0, u1 : D → Fq are functions such that S = {z ∈ Fq | ∆(u0 + z · u1, C) ≤ γ} is of size

a >
2(m+ 1/2)5 + 3(m+ 1/2)γρ

3ρ3/2
· n+

m+ 1/2
√
ρ

= Oρ

(
n

η5

)
. (1)

Then
∆([u0, u1], C2) ≤ γ.

Note that ρ = 1 − δ = k
n defined above is not the rate of the code, but off-by- 1n from it. Also note that

for η ≪
√
1− δ, the asymptotics of the right-hand side of (1) is Oδ

(
n
η5

)
, as quoted in Table 2, with leading

constant equal to 1
48(1−δ)3/2

. The theorem improves over [BCI+20, Theorem 5.1] by more than a factor n.

The newly achieved linear dependence on n is substantial for soundness proofs in certain real-world appli-
cations. In systems with parameters such that a soundness error of O(n/q) yields reasonable security, but
O(n2/q) error is too large, previously proven security could only be claimed for distances up to half the
code’s distance (via [BCI+20]), or the 1.5 Johnson bound (via [BGKS20]). The new result unlocks proven
security with distances near the Johnson bound in such systems, possibly leading to significant improvements
in performance.

1.3.3 Overview of techniques

The proofs of our positive results are based on the same approach as [BCI+20], which studies the Berlekamp–
Welch and Guruswami–Sudan decoding algorithms in the rational function field K = Fq(Z): Given that
u0 + z · u1 is γ-close to C for many z ∈ Fq, the aim is to say something useful about the decodability of
w = u0 + Zu1, to a word of the Reed–Solomon code extended by symbols in the rational function field
K = Fq(Z). By relating the decoding algorithm on w to the executions on u0+z ·u1 for several substitutions
Z = z, we show that it succeeds in finding a codeword P (X) ∈ K[X] that is γ-close to w. This P (X) turns
out to be of the form v0(X) + Zv1(X), where v0, v1 ∈ C, and this gives us the desired [v0, v1] ∈ C2 that is
γ-close to [u0, u1]. Note that there is 0 proximity loss in this argument.

However, showing that the codeword P (X) is of this specific form requires to keep track of the “algebraic
complexity” of P ’s coefficients in the course of the algorithm, that is, their degree in Z. Our improvement
comes from increasing the freedom in the first step of the algorithm, which solves a homogeneous linear
system over K for a bivariate polynomial Q(X,Y ) ∈ K[X,Y ] that vanishes on the given word w.

To demonstrate the source of the improvement, we discuss a key idea in a simple situation. Suppose are
given an n × (n + 1) matrix A whose entries are all (at most) degree 1 polynomials in Fq[Z]. We want to
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find a vector v ∈ (Fq[Z])n+1 in the right kernel with all entries having low degree. How small can we take
this degree? In general the kernel is only guaranteed to be at least 1 dimensional, and the formula for the
vector in this kernel is given by Cramer’s formula. Since it involves n×n determinants, we get that v can be
taken to have all entries with degree at most n (and this happens to be the best upper bound on the degree
that one can get).

Now suppose instead we are given an n × (n + λn) matrix A whose entries are all degree 1 polynomials
in Z. Again, we want to find a vector v ∈ (Fq[Z])n+λn in the kernel. How small can we take the degree?
It turns out that now there is a vector v in the kernel with all entries having degree Oλ(1)! The proof is
simple (dimension counting over Fq). This is the phenomenon that we use – by making our linear systems
have more slack than the bare minimum needed (which comes at a manageable cost to other parameters),
we get solutions of much lower degree in Z. It can be viewed as a polynomial analogue of Siegel’s Lemma
from number theory, which is used in Diophantine approximation and transcendence.

Now we return to describing our proximity gap analysis.

1. In the case of Berlekamp-Welch decoding, we change the linear system from barely under-determined
to significantly under-determined, by increasing the X-degree of Q(X,Y ) = A(X)Y + B(X). (That
is, we increase the degree of what would have been the error-locator polynomial, A(X).) However, a
generously oversized error-locator polynomial yields a large distance loss for correlated agreement. We
restore the distance afterwards, by applying a standard lemma for collinear proximates.

2. In the case of Guruswami–Sudan decoding, we discover that the linear system as set up in [BCI+20]
was already sufficiently under-determined. (This was a fluke: for the argument in [BCI+20], it just
needed to be barely under-determined.) Utilizing this slack, we find an interpolating polynomial
Q(X,Y ) ∈ K[X,Y ] of Z-degree O(1), compared to O(n) as obtained therein. The smaller Z-degree
directly translates to the improved bounds in the Guruswami–Sudan analysis of [BCI+20].

1.4 Statements of Negative Results

1.4.1 The failure of nτ -bounded proximity gaps

Our main negative result shows that the nτ -bounded proximity gaps conjecture does not hold for any τ .

Theorem 1.6. Let τ be a fixed positive integer, and λτ = 2−(τ+2). Let ϵ > 0 be an arbitrary constant, and
choose δ = 1− λτ and γ = 1− 4λτ .

Then for all Fq of characteristic 2, there are Reed-Solomon codes C = RS[Fq,D, (1− δ)n] over Fq, domain

D with n = |D| = O
(
q

1
τ (1+ϵ)

)
, distance δ and words f, g : D → Fq such that:∣∣{z ∈ Fq | ∆(f + zg, C) ≤ γ}

∣∣ ≥ (1− o(1)) · q ≥ nτ(1−ϵ),

for q large enough, and yet ∆([f, g], C2) ≥ 1− 2λτ = 2
3δ +

1
3γ.

It seems plausible to us that analogues of this statement hold over any Fq with constant characteristic, but
we have not checked this.

Versions of Conjecture 1.2 may still be true. For example, the conjecture may hold, even with τ = 1, for
fields of prime cardinality, or for well chosen evaluation domains D over fields of characteristic 2. We think
this is a very exciting direction for future research.

The τ = 2 case of the above theorem is particularly interesting: it shows that Theorem 1.5, on proximity
gaps up to the Johnson radius, is tight for a particular value of δ. That theorem showed that proximity
gaps hold for γ < J(δ) and with a = O(n), with 0 proximity loss. What if we want to go to larger γ? The
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following theorem shows that we cannot have proximity gaps at γ = J(δ), even with ε∗ = o(1), unless a is
nearly quadratic, ≥ n2−ϵ.

Corollary 1.7. Let ϵ > 0 be an arbitrary constant. Let δ = 15
16 . Let γ = 1 −

√
1− δ = 3

4 . Then for all Fq

of characteristic 2, there are RS codes C = RS[Fq,D, (1 − δ)n] over Fq, domain D with n = |D| = q
1
2 (1+ϵ),

distance δ and functions f, g : D → Fq such that:

|{z ∈ Fq | ∆(f + zg, C) ≤ γ}| ≥ (1− o(1))q = n2(1−ϵ),

and yet ∆([f, g], C2) ≥ 7
8 = γ + 1

8 .

The proof of Theorem 1.6 is based on the F2-linear algebraic structure of Fq. The evaluation domain D is
essentially a uniformly random F2-subspace of Fq of size ≈ q(1+ϵ)/τ . The functions f, g : D → Fq will be
the evaluation maps of well chosen monomials Xu, Xv (with u > v > k). Then f + z · g will be close to a
polynomial Pz(X) of degree at most k if the polynomial:

H(X) = Xu + zXv − Pz(X)

has many roots in D.

To create bad examples for proximity gaps using this framework, we need a special family of polynomials.
Specifically, we need for many z ∈ Fq a polynomial Hz(X) of the above form, with many roots in the small set
D. We find this special family through a combination of ideas from algebra and probability: using structural
properties of the coefficients of subspace polynomials, and the second moment method to understand the
distribution of these coefficients.

1.4.2 Limitations on proximity gaps at the list decoding radius

Our next result shows a strong connection with the extremely well studied question of list decoding Reed–
Solomon codes. To talk concretely about these, we define:

Definition 1.8 (LDRFq,D,L(δ)). Let C be the Reed–Solomon code RS[Fq,D, (1−δ)|D|]. We define LDRFq,D,L(δ)
to be the largest γ such that for all functions c : D → Fq, we have:

|{v ∈ C | ∆(c, v) ≤ γ}| ≤ L.

Further, for n ≤ q, we define LDRFq,n,L(δ) to be the minimum, over all choices of D ⊆ Fq with |D| = n, of
LDRFq,D,L(δ).

The Johnson bound applied to Reed–Solomon codes implies that LDRFq,D,n(δ) ≥ J(δ) = 1−
√
1− δ. It is

a well-known and easy fact that for L ≤ 2min(δn,n−δn), we have LDRFq,D,L(δ) ≤ δ.

Determining LDRFq,n,poly(n)(δ) is a very basic and well-studied problem in coding theory. In one direction,
it is known [JH01, BSKR06] that some Reed–Solomon codes require large polynomial list size at radii
strictly between J(δ) and δ in the δ = Θ(1) regime. In the other direction, an exciting line of recent
works [RW13, ST20, GLS+24, BGM23, GZ23, AGL24] showed that Reed–Solomon codes with randomly
chosen evaluation domains are list-decodable almost all the way to radius δ with constant list size.

We show that the proximity gaps phenomenon with o(1) proximity loss starts requiring large a once γ goes
beyond the list-decoding radius for list size q:

Theorem 1.9. Let C be the Reed–Solomon code RS[Fq,D, k], with |D| = n and k = (1 − δ)n. Let γ =
LDRFq,D,q(δ) +

2
n . Then there exist functions f, g : D → Fq such that:

|{z ∈ Fq | ∆(f + z · g, C) ≤ γ}| ≥ q

2n
,

but with ∆([f, g], C2) ≥ δ − 1
n .
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The value of a here means that the soundness error a
q is at least 1

2n , and thus cannot be reduced by increasing
q.

The proof of the above theorem is quite roundabout: we stumbled across it while studying the soundness of
STARKs and the so called “ETHSTARK toy problem” [Sta23]. It involves a clever choice of f and g based
on the center of any bad list-decoding configuration and a well chosen rational function of the form 1

X−α .
In particular, we do not know how to show any analogous theorem for general linear codes of distance δ.

Along the way, we prove a structural property of any bad list-decoding configuration, Lemma 6.1, which is
also useful in our results on the limitations on the soundness of STARKs, discussed in 1.4.5.

1.4.3 Limitations on proximity gaps at radius near δ over prime fields?

Our next result gives mild limitations of proximity gaps over prime fields, which are of particular interest
for practice. They are based on multiplicative subgroups, and they creates instances of proximity gaps with
mild proximity loss. However, the existence of infinitely many of these instances is conjectural. It depends
on a very clean and basic conjecture in additive number theory, which we now state.

Definition 1.10. For E ⊆ Fq, we define:

E(+ℓ) = {e1 + . . .+ eℓ | e1, . . . , eℓ ∈ E and distinct}.

Definition 1.11. For a prime power q and integers a, b ≤ q, we say (q, a, b) is admissible if there exists a
multiplicative subgroup G ⊆ F∗

q with:

• |G| = b,

• For ℓ =
⌊
b
2

⌋
, we have that |G(+ℓ)| ≥ a.

Conjecture 1.12. For infinitely many primes q, there exists b ≤ 10 log q such that (q, q/10, b) is admissible.

Heuristically, if |G| = b, there are
(
b
ℓ

)
sums in G(+ℓ), and if they are pseudorandomly distributed, we may

very optimistically expect |G(+ℓ)| ≥ Ω(min(q,
(
b
ℓ

)
). The above conjecture expresses a milder form of this

heuristic.

If q is a Mersenne prime 2p−1, we can takeG to be the subgroup generated by−2: G = {±1,±2, . . . ,±2p−1}.
Using binary expansions, every element of Fq turns out to be representable as a sum of exactly p elements of
G (see Remark 7.3): this means that (q, q, 2 log2(q + 1)) is admissible. Thus Conjecture 1.12 is weaker than
the well-known conjecture asserting the infinitude of Mersenne primes.

Sumsets of multiplicative groups in Fq have been extensively studied in additive combinatorics, especially
recently in the context of the sum-product phenomeonon. However, existing results fall far short of the
conjecture. The strongest unconditional result in this direction, of Glibichuk and Konyagin [GK07], implies
that the ℓ-wise sumset of G (which includes nondistinct sums) has size at least |G|Ω(log ℓ), which is far short
of what the conjecture asks for.

The conjecture then gives infinitely many nontrivially bad instances for proximity gaps over prime fields,
via the following theorem.

Theorem 1.13. Suppose (q, a, b) is admissible with b even. Let G be the corresponding subgroup of F∗
q of

cardinality b, and let H ⊆ F∗
q be any multiplicative subgroup containing G. Consider the Reed–Solomon code

C = RS[Fq,D, k], with D = H, n = |D|, k =
(
1
2 − 2

b

)
n, and relative distance δ = 1

2 + 2
b .

Then there exist functions f, g : D → Fq such that:∣∣∣∣{z ∈ Fq | ∆(f + z · g, C) ≤ δ − 2

b

}∣∣∣∣ ≥ a,

but ∆([f, g], C2) ≥ δ − 1
b .
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Note that n, the size of the evaluation domain, might be chosen as small as b or as large as q − 1 (it just
needs to satisfy b | n and n | (q − 1)).

With the latter choice, the conjecture implies that for Reed–Solomon codes over prime fields, for infinitely

many n, when γ = δ −Θ
(

1
logn

)
and a ≥ q/10 ≥ n/10, we must have a proximity loss of Θ

(
1

logn

)
.

When instantiated with q being a Mersenne prime, the constants in the Θs above are explicit and small.
So for q = M31 (the Mersenne prime 231 − 1) and C = RS[Fq,F∗

q ,
q−1
2 + 2

log2 q ], this gives us functions

f, g : F∗
q → Fq such that for all values of z ∈ Fq we have

∆(f + z · g, C) ≤ 1

2
,

and yet

∆([f, g], C2) ≥ 1

2
+

1

62
≈ 0.516.

Another instantiation, closer to practice, is when q = (M31)
4 ≈ 2124. It turns out that (q, q, b) is admissible,

where b = 8 · 31 ≈ 2 log2 q, and we get an example of a Reed–Solomon code of any length n satisfying b and
n − 1, distance δ = 1

2 + 2
b ≈ 0.508, such that proximity gaps at radius γ = δ − 2

b = 1
2 ≈ δ − 0.008 have

proximity loss ε∗ = 1
b ≈ 0.004 with a = q.

For other specific q that are used in practical applications, it is sometimes possible to experimentally check
admissibility of a tuple (q, a, b) either by brute force or estimating collision probability of sums of random
ℓ-tuples from a subgroup G of size b.

1.4.4 Some proximity gap phase transitions when δ = o(1)

We now give some instances showing that for Reed–Solomon codes with vanishingly small relative distance,
there are some sharp transitions in the behavior of proximity gaps. We view them as explaining why the
simpler proof techniques from [AHIV17, RZ18, BKS18] for the γ < δ/3 do not extend to γ ≥ δ/3, and that
things will get tougher the closer we get to δ.

At δ/3

Recall the basic proximity gap phenomenon at distance strictly less than δ/3.

Theorem 1.14 ([AHIV17], [RZ18],[BKS18]). Let D ⊆ Fq with |D| = n. Let ϵ ∈ [0, 1]. Let C = RS[Fq,D, k],
and let f, g : D → Fq. Let δ = 1− k/n be the distance of C. Let γ < δ/3.

Suppose:
|{z ∈ Fq | ∆(f + zg, C) ≤ γ}| ≥ a.

Then ∆([f, g], C2) ≤ a
a−1 · γ.

In particular, for a > γn + 1, this theorem gives us ∆([f, g], C2) ≤ γ, that is correlated agreement with 0
proximity loss. The following theorem shows that there are Reed-Solomon codes where the behavior exactly
at γ = δ/3 changes drastically: even when a ≫ γn, there is a substantial proximity loss.

Theorem 1.15. Let c > 0 be an integer. There exist infinitely many q, RS codes C = RS[Fq,D, k] over Fq,
domain D = Fq with n = |D| = q, k = n − c (so that the relative distance δ of C equals c

n), and functions
f, g : D → Fq such that:

| {z ∈ Fq | ∆(f + zg, C) ≤ δ/3}| ≥ q − 1

c
=

n

c
= O

(
1

δ

)
,

and yet ∆([f, g], C) ≥ 2δ/3.
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How is this consistent with our Theorem 1.3, which shows proximity gaps almost all the way up to δ/2?
Theorem 1.3 requires a at least as large as Ω( 1

δ−2γ ). Thus when δ = O(1/n) and γ = δ/3 as in the above

theorem, Theorem 1.3 needs a ≥ Ω( 1δ ) = Ω(n), which is consistent with Theorem 1.15.

The above example shows that there truly is a behavioral transition at δ/3: the unrestricted proximity gap
phenomonon that holds for γ < δ/3 (which did not care about whether δ = o(1)), does not hold in this form
beyond δ/3.

At δ/2

We also see an interesting threshold occurring at radius γ = δ/2. The following theorem shows that there
are Reed-Solomon codes with prime field size q nearly quadratic in the block length n (but with vanishingly
small relative distance δ = O(1/n1−κ)), where proximity gaps at radius γ = δ/2 with ε∗ = o(γ) needs a
being nearly quadratic in n.

Theorem 1.16. Let 0 < ϵ < 1/4 be fixed. There are infinitely many primes q, RS codes C = RS[Fq,D, k]
over Fq, domain D with n = |D| = O(q0.5+2ϵ), k = n−Θ(nϵ) (so that the relative distance is δ = Θ(n−(1−ϵ))),
and functions f, g : D → Fq such that:

|{z ∈ Fq | ∆(f + zg, C) ≤ δ/2}| ≥ q − 1 = Ω(n2/(1+4ϵ)) = Ω(n2−8ϵ),

and yet ∆([f, g], C2) ≥ 3δ/4.

We remark that both the negative results of this section in the δ = o(1) regime, about thresholds at δ/3
and δ/2, cannot hold for δ being Ω(1). This is because we do know positive proximity gaps results at radius
J1.5(δ) − η and J(δ) − η with a equal to Oη(1) and Oη(n) respectively, and when δ = Ω(1) we have that
δ/3 < J1.5(δ)− Ωδ(1) and δ/2 < J(δ)− Ωδ(1).

1.4.5 Limits to the soundness of STARKs

Our final contribution is devoted to the soundness of STARKs.

The main theorem about STARKs [BSBHR18, BGKS20] shows how to interactively prove (in the IOPP
model) the satisfiability of a constraint satisfaction problem presented in Algebraic Intermediate Represen-
tation (AIR). The soundess of the resulting interactive protocol is a function of the complexity of the AIR.

There are two parts to this protocol.

1. The first part reduces the the satisfiablilty of the AIR to a statement of proximity to a Reed–Solomon
code. Specifically, given an AIR A which the prover claims is satisfiable, the prover and verifier first
interact and if the verifier does not reject, will end up with the prover writing down some functions
h1, . . . , hc : D → Fq, where D ⊆ Fq with |D| = n. The prover now has to prove that h1, . . . , hc has
high correlated agreement with the code C = RS[Fq,D, k].

2. The second part now checks this claim of the prover – this is done using proximity gaps, to combine
the c functions into one, and an IOPP protocol for Reed–Solomon codes, such as FRI, STIR or WHIR
(which typically also rely on some form of proximity gaps).

In practical STARKs, this protocol is typically instantiated with the Reed–Solomon code C having distance
δ some large constant like 0.75. Furthermore, q is typically very very large (eg. 2120, for cryptographic
security), and n is moderate (eg. 220). This will help interpret our results below: we view 1

q as negligible

probability and 1
n as noticeable probability.
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The first part of the protocol is based on a number of ideas: low-degree extension of the satisfying assignment,
arithmetization of the constraints, checking that a polynomial vanishes on the set S using the vanishing
polynomial of S, and the DEEP quotienting method. This protocol has the following completeness and
soundness properties, expressed in terms of the list-decodability of C:

• If the AIR is satisfiable, then there is a prover strategy for the protocol that will end with the prover
writing down h1, . . . , hc, such that (h1, . . . , hc) ∈ Cc.

• If the AIR is not satisfiable, then for any prover strategy, the probability that it will end with the
prover writing down some (h1, . . . , hc) with

Pr

[
∆([h1, . . . , hc], Cc) ≤ γL

]
≤ O

(
L2 · k
q

)
,

where γL = LDRFq,D,L(δ).

How are the parameters set? Note that for δ being a large constant near 1, and L being a large integer which
is O(1), then γL is also a large constant near 1, by the Johnson bound. In this case, the above “cheating
probability” is bounded by O(n/q), and this is made smaller than the tolerable soundness error by making
q large enough.

We give an attack showing that the soundness analysis of this reduction cannot be improved much: it is
truly governed by the list-decodability of C (for list size q).

Specifically, we give a simple unsatisfiable constraint satisfaction problem (specified by a simple AIR) and
a prover strategy that makes the first part of the protocol produce (h1, . . . , hc) such that:

Pr

[
∆([h1, . . . , hc], Cc) ≤ 1 + γq

2

]
≥ Ω(1/n),

where γq = LDRFq,D,q(δ). In more detail, given a “bad list decoding center” for C, we find a prover strategy
that uses it to get a probability Ω(1/n) of finding (h1, . . . , hc) that are much closer than trivial to Cc.

The constraint satisfaction problem itself is very easy to describe:

CYCLE-SUM:

• Let a divide q − 1. Let g ∈ F∗
q have order a. Let G = {1, g, g2, . . . , ga−1} be the subgroup generated

by g.

• We want a function f : G → Fq such that for each x ∈ G,

f(gx) = f(x) + 1.

Observe that no such f exists. If there was such a function, we would have

f(1) = f(ga) = f(ga−1) + 1 = f(ga−2) + 2 = . . . = f(1) + a.

But a is relatively prime to q, and is thus nonzero in Fq.

The prover strategy we give is based on bad list-decoding configurations for Reed–Solomon codes. We prove
some structural statements about any such configuration. The structural statements enable us to handle
the DEEP-quotienting challenge from the verifier – they tell us which nearby Reed–Solomon codeword to
answer according to.

Theorem 1.17. Consider the IOP protocol for the CYCLE-SUM constraint satisfaction problem given by
the DEEP-ALI reduction, using the Reed–Solomon code C = RS[Fq,D, k], where:
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• D is a union of t cosets of G

• |D| = a · t = n and k = a = 1
tn.

• δ = 1− 1
t is the distance of C.

Then there is a prover strategy that does not make the verifier reject, and produces (h1, . . . , hc) such that:

Pr

[
∆([h1, . . . , hc], Cc) ≤ 1 + γq

2

]
≥ Ω(1/n),

where γq = LDRFq,D,q(δ) +
1
n .

To understand the implication, it is good to think about settings where γq equals the Johnson radius
J(δ) = 1−

√
1− δ. (We know that this occurs for some Reed–Solomon codes [JH01, BSKR06], and does not

happen for some Reed–Solomon codes [ST20, GLS+24, BGM23, GZ23, AGL24]).

In this case, with noticeable probability the prover is producing h1, . . . , hc such that [h1, . . . , hc] is
(
1− 1

2

√
1− δ

)
-

close to Cc. When δ is large enough (> 0.75), this proximity is a smaller than δ by a constant, and translates
into noticeably larger success probability for a cheating prover in the final STARK proof. (For example, if
δ = 0.84 and γq = J(δ), then we have (1 + γq)/2 = 0.8).

1.5 Other Related Work

As mentioned earlier, the STIR [ACFY24] and WHIR [ACFY25] protocols improved the state of the art for
theoretical and practial IOPP protocols for Reed–Solomon codes. The latter work introduced a key new
notion, mutually correlated agreement, which is a strengthening of the property of having proximity gaps
with 0 proximity loss.

Recently, Haböck [Hab25] showed that Reed–Solomon codes have the mutually correlated agreement prop-
erty up to the Johnson radius, and gave a general method for establishing this property in any code whenever
there is an underlying collinearity version of proximity gaps.

The results of [Zei24] and [GKL24] showed versions of the proximity gaps results of [BKS18] and [BGKS20]
in the stronger mutual correlated agreement form.

The work of [GCXK25] gave a black box reduction showing that every code of distance δ has proximity gaps
up to radius J(LDR(δ)), and observed that this gave interesting new proximity gaps results for some codes
where we know very good bounds on the list decoding radius. Furthermore, they also achieved the stronger
mutually correlated agreement form2. The results of [GCXK25] gave new proximity gaps for random Reed–
Solomon codes up to the Johnson radius with a = O(n). Our results now show the same for all Reed–Solomon
codes.

Our Theorem 1.9 which gives a connection in the other direction (good proximity gaps results imply good
list-decodability – but only for Reed–Solomon codes) arose while we were studying the ETHSTARK [Sta23]
toy problem, and our methods can be used to give an attack on that problem. A different attack on the ETH-
STARK toy problem, in a different setting of parameters, was given by Garreta, Gruen, and Manzur [GGM25]
in upcoming work, using a more direct strategy studying the rank of an associated matrix.

Organization of this paper

The first part of the paper focuses on the positive results. In Section 2 we elaborate the aforementioned
improved Berlekamp–Welch analysis and prove Theorem 1.3 as well as its lossless variant Corollary 1.4.

2We remark the the weaker form without mutually correlated agreement can also be proved by inspecting the double-Johnson
radius proximity gap result of [BKS18], and noticing that one of the “Johnsons” could be replaced with the list-decoding radius.
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Section 3 shows Theorem 1.5, using more careful analysis of the Guruswami–Sudan interpolant polynomial,
as well as improved bookkeeping in other parts of the original proof from [BCI+20]. In Section 4 we
then discuss how our improvements translate to more general proximity gaps statements, which are used
in practice. We treat linear combinations of several words, the so-called weighted correlated agreement
theorem, and we outline how our improvements impact the mutual correlated agreement theorem proven in
[Hab25].

The rest of the paper is devoted to the negative results. In Section 5 we prove Theorem 1.6 and provide the
aforementioned examples which falsify nτ -bounded proximity gaps, Conjecture 1.2, for fields of characteristic
2. In Section 6 we prove Theorem 1.9 about the failure of proximity gaps beyond the list decoding radius of
the code. Section 7 investigates the limits of Conjecture 1.2 in prime fields. We prove Theorem 1.13 which is
the underlying tool for our counter examples over Mersenne primes, as well as the δ = o(1) phase transition
Theorems 1.15 (at δ/3) and 1.16 (at δ/2). Finally, in Section 8 the attack on the elementary STARK for
CYCLE-SUM is discussed and Theorem 1.17 is proven.

Concurrent Work

We just learnt about two concurrent and independent works that also address proximity gaps for Reed-
Solomon codes. In [CS25], Crites and Stewart disproved the stronger form of Conjecture 1.2 written
in [BCI+20] asking that a have a polynomial dependence on η (this result was also independently dis-
covered by [DG25a] already mentioned above). [CS25] also independently discovered the reduction between
list-decoding and proximity gaps (our Theorem 1.9). In [GG25], Goyal and Guruswami showed that random
Reed-Solomon codes do have proximity gaps all the way to radius δ − η, with a being Oη(n). Random
Reed-Solomon codes are the only family of Reed-Solomon codes known to have list decoding radius as large
as δ − η for any η > 0, and because of Theorem 1.9, we would have suggested them as a natural candidate
for improved proximity gaps.

Acknowledgements

We thank David Levit for valuable discussions and encouragement. We also thank Antonio Sanso for valuable
discussions that motivated the improvements in Section 3.2.

2 Improved proximity gaps up to half the minimum distance

In this section we show the following improvement of [BCI+20, Theorem 4.1], together with its lossless
variant, Corollary 1.4.

Theorem 1.3. Let C be the code RS[Fq,D, k] of block-length n = |D| and minimum distance δ = 1− k
n . Let

γ ∈
[
δ
3 ,

δ
2 − 1

n

]
. Suppose u0, u1 : D → Fq are functions such that S = {z ∈ Fq | ∆(u0 + z · u1, C) ≤ γ} is of

size

a ≥
(
δ

γ
− 1

)
· 1

δ − 2γ

Then

∆([u0, u1], C2) ≤
(
1 +

1

a− 1

)
· γ.

In other words, for distance loss ε∗, it suffices to take

a ≥ max

((
δ

γ
− 1

)
· 1

δ − 2γ
, 1 +

γ

ε∗

)
.
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Let us give a quick outline of the proof, and hence the section. The proof goes along the lines of [BCI+20],
which studies the Berlekamp–Welch decoder in the rational function field K = Fq(Z) on the “received” word

u0(x) + Z · u1(x).

In the first step, we search for polynomials A(X,Z), B(X,Z) ∈ Fq[X,Z] satisfying the interpolation con-
straints

A(x, Z) · (u0(x) + Z · u1(x)) = B(x,Z), x ∈ D,

a homogeneous linear system with n equations, and the coefficients of the polynomials as unknowns. See
Lemma 2.1 below. The crucial difference to [BCI+20] is that we consider the decoder in an unusual setting.
Given e = ⌊γ · n⌋ we drastically oversize the error-locator polynomial,

degX A = e+ h,

with h > 0 chosen maximal so that divisibility is still assured, i.e. degX A = n− e− 1. In this setting, the
distance of the decoded word is only assured < δ − γ and typically beyond the unique decoding radius. In
return, it allows us to find a solution of significantly lower Z-degree than in [BCI+20], see Lemma 2.1.

As a consequence of the smaller Z-degree, the divisibility step, which proves that

P (X,Z) = B(X,Z)/A(X,Z)

is again a polynomial with degX P ≤ k and degZ P ≤ 1, goes through with a smaller bound for a = |S|. As
in [BCI+20], this step uses the Polishchuk–Spielman lemma, concluding the desired divisibility from that

B(X, z)/A(X, z) = Pz(X),

for every z ∈ S, the promised proximate polynomial of degree at most k. A sensible choice of h achieves the
bound on |S| as stated in Theorem 1.3. We refer to Section 2.2 for the elaboration of this step.

Divisibilit the oversized A polynomial implies correlated agreement with a potientially huge distance loss.
Nevertheless, the loss is bounded enough to show collinearity : With only few exceptions (where P (X, z) = 0)
the γ-proximate polynomial Pz(X) lies on the line spanned by the polynomials P (0, X) and P (1, X), that is

Pz(X) = P (X, z) = P (0, X) + z · P (1, X).

It turns out that collinearity extends to all z ∈ S, and we may apply a well-known argument, Lemma 2.4,
that proves the claimed distance of [u0, u1] to the interleaved code C2 from collinearity, see Section 2.3.

2.1 Non-standard Berlekamp–Welch interpolant over K

Let u0, u1 ∈ FD
q , and let e < n−k

2 be an integer. For integer h ≥ 0, which we call slack, we search for
polynomials

A(X,Z) =

e+h∑
i=0

ai(Z) ·Xi, B(X,Z) =

k+e+h∑
j=0

bj(Z) ·Xj , (2)

with all ai(Z), bj(Z) ∈ Fq[Z], satisfying the interpolation constraints

A(x, Z) · (u0(x) + Z · u1(x)) = B(x,Z), x ∈ D (3)

as polynomials, or in other words as elements of K = Fq(Z). This is a homogeneous linear system of n
equations with the polynomials ai(Z), bj(Z) as unknowns. We consider the decoder with very large slack h,
so that

k + e+ h = degX(B) = n− e− 1, (4)

or h = n − k − 2e − 1. This is always non-negative, even in the edge case e = n−k−1
2 , where h = 0. In the

following, we abbreviate statements such as “for bivariate polynomial P (X,Z), its individual degrees are
bounded as degX P ≤ dX and degZ P ≤ dZ” by using the vector notation deg(P ) ≤ (dX , dZ).

18



Lemma 2.1. For any integer e ∈
[
0, n−k

2

)
, let DX = k + e+ h, with h = n− k − 2e− 1, and

DZ ≥
⌈
e+ 1

h+ 1

⌉
.

Then there are A(X,Z), B(X,Z) with deg(A) ≤ (DX − k,DZ − 1), deg(B) ≤ (DX , DZ), A non-zero, and
so that the equations (3) holds at every x ∈ D, as an identity in Fq[Z].

Proof. For any integer DZ ≥ 1, roll out (3) as a homogeneous Fq-linear system in the coefficients of the
polynomials ai(Z), bj(Z) with degree bounds deg ai(Z) ≤ DZ−1, deg bj(Z) ≤ DZ . The number of unknowns
is

(k + e+ h+ 1) · (DZ + 1) + (e+ h+ 1) ·DZ = n · (DZ + 1) + (h+ 1) ·DZ − e,

whereas the number of equations is n · (DZ + 1), one for each coefficient and each x ∈ D. Therefore, if
(h+ 1) ·DZ − e ≥ 1, then the linear system has a non-trivial solution, regardless of the size of S. For such
a non-trivial solution, A(X,Z) must be a non-zero polynomial: Triviality of A(x,Z) implies triviality of
B(x, Z) at more points than its degree in X hence if A = 0 then also B = 0, contradicting non-triviality.

2.2 Dividing B(X,Z) by A(X,Z)

Given two polynomials A(X,Z), B(X,Z) over an arbitrary field F , the Polishchuk–Spielman Lemma argues
divisibility in F [X,Z] from divisibility of sufficiently many univariate restrictions. Its original proof in [PS94]
has a subtle gap noted and fixed by Ronald Cramer and Jade Nardi, and a fixed version appears in [BCI+20,
Lemma 4.3].

Lemma 2.2 (Polishchuk–Spielman [PS94], see statement in [BCI+20]). Let A(X,Z), B(X,Z) ∈ F [X,Z]
be polynomials of degrees deg(A) ≤ (aX , aZ) and deg(B) ≤ (bX , bZ), and suppose that B(X, z)/A(X, z) ∈
F [X]≤bX−aX for at least nZ > 0 different values of z, as well as B(x,Z)/A(x, Z) ∈ F [Z]≤bZ−aZ for at least
nX > 0 different values of x, where

bX
nX

+
bZ
nZ

< 1. (5)

Then P (X,Z) = B(X,Z)/A(X,Z) ∈ F [X,Y ] and its degrees satisfy deg(P ) ≤ (bX − aX , bZ − aZ).

Let us demonstrate how to use Lemma 2.1 in combination with Lemma 2.2 to obtain the following inter-
mediate claim.

Claim 2.3. For 0 < γ < δ
2 . If S = {x ∈ Fq : ∆(u0 + z · u1, C) ≤ γ} is of size

a ≥ 1

γ
· δ − γ

δ − 2γ

then there exist polynomials p0(X), p1(X) ∈ Fq[X] of degree at most k so that ∆([u0, u1], [p0, p1]) < δ − γ.

Proof. Let e = γn, h = n − k − 2e − 1, and choose DX = k + e + h and DZ =
⌈
e+1
h+1

⌉
. Lemma 2.1 states

the existence of nontrivial polynomials A(X,Z), B(X,Z) with deg(A) ≤ (DX − k,DZ − 1) and deg(B) ≤
(DX , DZ), which satisfy the Berlekamp–Welch equations (3).

We claim that this solution satisfies the conditions of Lemma 2.2. First, for every z ∈ S the promised
proximate Pz(X) ∈ Fq[X] of degree at most k agrees with u0 + u1 · z on a set of at least n − e = DX + 1
points, and for these points A(x, z) · Pz(x) = B(x, z). Thus, by degree,

A(X, z) · Pz(X) = B(X, z), z ∈ S.
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On the other hand, by the definition of the linear system we have

A(x, Z) · (u0(x) + Z · u1(x)) = B(x,Z), x ∈ D.

Second, for that inequality (5) holds with bX = DX , nX = n and bZ = DZ , nZ = |S|, we must have

DZ

|S|
< 1− DX

n
= γ +

1

n
,

since n−DX = e+ 1 = γn+ 1. Using DZ ≤ e+h+1
h+1 = δ−γ

δ−2γ , we see that by our assumption on |S| = a, we
even have

DZ

|S|
≤ γ.

We thus can apply Lemma 2.2 and obtain a polynomial P (X,Z) ∈ Fq[X,Z] with degP ≤ (k, 1) which
satisfies

B(X,Z) = A(X,Z) · P (X,Z),

= A(X,Z) · (p0(X) + Z · p1(X))

with polynomials p1(X), p2(X) of degree at most k. In particular,

A(x, Z) · (u0(x) + Z · u1(x)) = A(x,Z) · (p0(x) + Z · p1(x)),

for all x ∈ D. Dividing by A(x, Z) in K whenever A(x,Z) ̸= 0, we conclude that

u0(x) + Z · u1(x) = p0(x) + Z · p1(x)

for every x ∈ D, except of a set of at most e+h points (for the potential zeros of A). Since e+h
n = δ−γ− 1

n ,
the proof of the claim is complete.

2.3 From Claim 2.3 to Theorem 1.3

Despite the distance loss in Claim 2.3, all proximates Pz(X), z ∈ S, lie on the line spanned by p0(X), p1(X).
In fact, by the triangle equality

∆(Pz, p0 + z · p1) ≤ ∆(Pz, u0 + z · u1) + ∆(u0 + z · u1, p0 + z · p1)
< γ + δ − γ = δ,

and we conclude equality Pz(X) = p0(X) + z · p1(X), for every z ∈ S. With this in place, Theorem 1.3
follows from the following well-known lemma.

Lemma 2.4. Assume p0, p1 ∈ C satisfy ∆(u0 + z · u1, p0 + z · p1) ≤ γ for a ≥ 2 many values z ∈ Fq. Then
∆([u0, u1], [p0, p1]) ≤ a

a−1 · ⌊n · γ⌋.

Proof. Let d = n ·∆([u0, u1], [p0, p1]). We show that d > a
a−1 · e, with e = ⌊γ · n⌋, leads to a contradiction.

Consider the set of disagreement

E = {x ∈ D : (p0(x), p1(x)) ̸= (u0(x), u1(x))}.

Note that for each point x ∈ E there is at most one z ∈ Fq so that (p0(x)− u0(x)) + z · (p1(x)− u1(x)) = 0,
removing the disagreement at the point. By our assumption d > e, each of the claimed z with ∆(u0 + z ·
u1, p0 + z · p1) ≤ γ needs to remove at least d− e disagreements, i.e.

Az = {x ∈ E : p0(x) + z · p1(x) = u0(x) + z · u1(x)}

20



has size |Az| ≥ d− e. By the previous observation, different z produce disjoint Az, and therefore

a · (d− e) ≤ |E|,

In other words d · (a− 1) ≤ a · e, contradicting the assumption. This proves the claim of the lemma.

Remark 2.5. The bound in Lemma 2.4 is tight whenever d = a · e/(a− 1) is an integer. Too see this, start
with arbitrary codewords p0, p1 ∈ C, choose a set E ⊂ D of size d, and partition it into a ≥ 2 disjoint subsets
E1, . . . Ea, each of size d − e. (By assumption, a · (d − e) = d.) Choose distinct roots z1, . . . , za ∈ F , and
perturb [p0, p1] on E via the piecewise defined function (v0(x), v1(x)) = (zi, 1) for x ∈ Ei, while leaving it
unperturbed outside E, where we set (v0(x), v1(x)) = (0, 0). By construction, the obtained word

(u0, u1) = [p0, p1] + (v0, v1)

has distance ∆([u0, u1], [p0, p1]) = d, and

u0(x) + z · u1(x)− (p0(x) + z · p1(x)) = z · v1(x)− v0(x) =

{
z − zi x ∈ Ei,

0 x ∈ D \
⋃

i Ei.

Thus z = zi removes disagreement only on Ei, and nowhere else on E, meaning that ∆(u0+zi·u1, p0+zi·p1) =
d− (d− e) = e.

2.3.1 Proof of Corollary 1.4

We show that if δ ≥ 3
√
2√
n

and δ
3 ≤ γ ≤ δ

2 −
3
nδ , then a ≤ 1

δ/2−γ ≤ γ · n in Theorem 1.3, proving the corollary.

In terms of η = δ/2− γ the desired inequality is 1
η ≤ n · ( δ2 − η), or

1 ≤ n · η ·
(
δ

2
− η

)
,

which we wish to show for 3
δn ≤ η < 2δ

3 . By concavity of the right-hand side on the interval (0, δ/2), it is

sufficient to show the inequality at the boundaries of the interval. We have δ ≥ 3
√

2/n, that is δ2 ≥ 18/n.
At η = 3

δn we obtain

3

2
− n ·

(
3

δn

)2

≥ 3

2
− 9

18
= 1,

and at η = 2δ
3 we simply get n · δ

3 · δ
6 = nδ2

18 ≥ 1. This completes the proof.

2.3.2 Further discussion about the statement of Theorem 1.3

In the edge case γ = δ
2 − 1

n , the coarser bound yields zero distance loss for a ≥ n, independent of δ,
reproducing [BCI+20, Theorem 4.1]. In the other edge case γ = δ/3, we obtain a ≥ 6/δ for distance loss
ε∗ = δ

6−δ · γ ≤ 1
5 · γ, whereas the example from Theorem 1.15 below has already loss ε∗ = γ (the common

gap, in the light of [RVW13]) with a = 1/δ. This indicates that the bound in Theorem 1.3 is not far from
optimal.

3 Improved proximity gaps up to the Johnson bound

In this section we prove the following sharpening of [BCI+20, Theorem 5.1]. Recall that ρ = 1 − δ = k
n is

the slightly reduced rate of the code.
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Theorem 1.5. Let C be the code RS[Fq,D, k] with block-length n = |D| and minimum distance δ = 1 − k
n .

Denote ρ = k
n = 1 − δ. For γ ∈

(
0, 1−√

ρ
)
, let η = 1 − √

ρ − γ, and m = max
(⌈√

ρ

2η

⌉
, 3
)
. Suppose

u0, u1 : D → Fq are functions such that S = {z ∈ Fq | ∆(u0 + z · u1, C) ≤ γ} is of size

a >
2(m+ 1/2)5 + 3(m+ 1/2)γρ

3ρ3/2
· n+

m+ 1/2
√
ρ

= Oρ

(
n

η5

)
. (1)

Then
∆([u0, u1], C2) ≤ γ.

The proof of Theorem 1.5 studies the Guruswami–Sudan [GS99] list decoder on the word

u(x) = u0(x) + Z · u1(x)

with values in the field of rational functions K = Fq(Z). However, unlike in [BCI+20, Section 5], we consider
the system of equations over Fq explicitly to get a low effective bound on the necessary degree DZ , rather
than considering equations over K and trying to investigate the degrees of the arbitrary solutions obtained.
It turns out that the gap between the number of variables and equations is sufficient to ensure DZ much
smaller than previously obtained, see Section 3.1. This is the major source of our improvement. A further
refinement on the final bound in Theorem 1.5, in terms of the degrees of the interpolant, is then discussed
in Section 3.2. This part is independent of our choice of the interpolant, and applies to the regular one used
in [BCI+20] as well.

3.1 Improved Guruswami–Sudan interpolant over K

Given two functions u0, u1 : D −→ Fq we consider the Guruswami–Sudan list decoder with input u =
u0(x) + Z · u1(x), a word with values in the field of rational functions K = Fq(Z). In the ordinary setting,
and for integer m ≥ 1, the decoder looks for a bivariate polynomial Q(X,Y ) ∈ K[X,Y ] of (1, k)-weighted
degree

DX =
√
m · (m+ 1) · kn

so that Q(x, u(x)) = 0 with multiplicity m,

mult(Q, (x, u(x))) = m, x ∈ D. (6)

With this setting, [BCI+20] argue a solution Q(X,Y ) with polynomial coefficients in Z, their degree bounded
as Oδ(n), see e.g. Claim 5.4 therein. However, a more careful analysis of the system of equations allows for
a significantly smaller Z-degree, as the following lemma shows.

Lemma 3.1. Let m ≥ 3 be an integer and set

DX = (m+ 1
2 ) ·

√
nk, (7)

DY = (m+ 1
2 ) ·

√
n
k , (8)

DZ = 1
3 (m+ 1

2 )
2 · n

k . (9)

There exists non-zero Q(X,Y, Z) ∈ Fq[X,Y, Z] such that (6) holds for all x ∈ D, and:

• the (1, k, 0)-weighted degree of Q(X,Y, Z) is less than DX ,

• the Y -degree of Q(X,Y, Z) is less than DY , and

• the (0, 1, 1)-weighted degree of Q(X,Y, Z) is less than DZ .
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Note that the notation DZ used here replaces the notation DY Z used in [BCI+20]. The parameters chosen
here are not fully optimized, but simplified to provide cleaner expressions. The 1

2 in m+ 1
2 and the value of

DZ can be adjusted to obtain finer results. The condition m ≥ 3 is only required to ensure DZ ≥ DY ; the
result can be generalized to smaller m by setting DZ as the maximum between DY and the value given in
Equation (9).

Proof. Given the degree bounds above, our polynomial has the form

Q(X,Y, Z) =
∑

i + kj < DX

j + h < DZ

Qi,j,hX
iY jZh

with variables Qi,j,h ∈ Fq. Throughout the computations below we will make implicit use of the facts that
DX ≥ kDY (in fact equal in our choice), DZ ≥ DY and DY ≥ m− 1, which ensure all enumerations made
are of non-negative amounts. The Guruswami–Sudan equations (6) say that for each x ∈ D and integers
r, s ≥ 0 with r + s < m, we have the constraint

Q(r,s)(x, u(x,Z), Z) = 0,

which can be explicitly written as∑
i + kj < DX

j + h < DZ

Qi,j,h ·
(
i

r

)(
j

s

)
· xi−r · (u0(x) + Z · u1(x))

j−s · Zh = 0. (10)

This is a polynomial equation in Z of degree at most ⌈DZ⌉ − 1− s, and therefore corresponds to ⌈DZ⌉ − s
linear equations in the Qi,j,h. For each 0 ≤ s < m we have m − s corresponding choices of 0 ≤ r < m − s
and n choices of x ∈ D, thus the total number of equations is 3

neqs = n ·
m−1∑
s=0

(⌈DZ⌉ − s)(m− s) = n ·
(
m(m+ 1)

2
⌈DZ⌉ −

m3 −m

6

)
. (11)

We now count the number of variables Qi,j,h. For each coefficient Y j with j < ⌈DY ⌉, we have ⌈DX⌉ − kj
corresponding X monomials and ⌈DZ⌉ − j corresponding Z monomials, so the number of variables Qi,j,h

with fixed j is equal to (⌈DX⌉ − kj)(⌈DZ⌉ − j), and in total we have4

nvars =

⌈DY ⌉−1∑
j=0

(⌈DX⌉ − kj)(⌈DZ⌉ − j)

=

(
⌈DX⌉⌈DY ⌉ − k

⌈DY ⌉(⌈DY ⌉ − 1)

2

)
⌈DZ⌉−

(
⌈DX⌉⌈DY ⌉(⌈DY ⌉+ 1)

2
− k

⌈DY ⌉(⌈DY ⌉ − 1)(2⌈DY ⌉ − 1)

6

)
.

Noting that the expression for nvars is monotone increasing in both ⌈DX⌉ and ⌈DY ⌉ (as long as the necessary
inequalities are maintained), replacing them by the slightly smaller DX and DY yields a lower bound on
nvars, which can then be much simplified using DX = kDY , yielding:

nvars ≥ k ·
(
DY (DY + 1)

2
⌈DZ⌉ −

D3
Y −DY

6

)
. (12)

3Using the identities
∑t

j=1 j =
t(t+1)

2
and

∑t
j=1 j(t− j) = t3−t

6
.

4Using
∑t

j=1 j
2 =

t(t+1)(2t+1)
6

.
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Comparing equations (11) and (12), we find that nvars > neqs is satisfied if:

k ·
(
DY (DY + 1)

2
⌈DZ⌉ −

D3
Y −DY

6

)
> n ·

(
m(m+ 1)

2
⌈DZ⌉ −

m3 −m

6

)
which is equivalent to

(ρDY (DY + 1)−m(m+ 1))⌈DZ⌉ > ρ · D
3
Y −DY

3
− m3 −m

3
.

Recalling now our choice of DY = (m+ 1
2 )
√
n/k = m+1/2√

ρ , the last inequality becomes

(
(m+ 1

2 )(m+ 1
2 +

√
ρ)−m(m+ 1)

)
⌈DZ⌉ >

1

3

(
(m+ 1

2 )
3

√
ρ

− (m+ 1
2 )
√
ρ− (m3 −m)

)
which is equivalent to

((m+ 1
2 )
√
ρ+ 1

4 )⌈DZ⌉ >
(m+ 1

2 )
3

3
√
ρ

− 1

3

(
(m+ 1

2 )
√
ρ+ (m3 −m)

)
,

which is clearly satisfied for our choice of DZ = (m+1/2)2

3
n
k = (m+1/2)2

3ρ .

Thus our choice of parameters guarantees nvars > neqs, which ensures the homogeneous system of neqs
equations (10) in the nvars variables Qi,j,h has a non-trivial solution, i.e. a non-zero polynomial Q with the
properties claimed exists.

3.2 Improved bound on a in terms of DX , DY , DZ

Given a polynomial Q(X,Y, Z) corresponding to the word u0 +Zu1 as in Lemma 3.1, the proof in [BCI+20,
Section 5] establishes the proximity gap assuming DX ≤ (1− γ)mn and a > 2DXD3

Y DZ (see e.g. [BCI+20,
Equation (5.8)]). In this section we show that the same methods, with slightly improved bookkeeping,
actually yield the result assuming an improved bound of

a > 2DXD2
Y DZ + (γn+ 1)DY . (13)

The condition DX ≤ (1− γ)mn simplifies as

DX ≤ (1− γ)mn ⇔

(m+ 1
2 )
√
kn = (m+ 1

2 )n
√
ρ ≤ (

√
ρ+ η)mn ⇔

1 +
1

2m
≤ 1 +

η
√
ρ

⇔

m ≥
√
ρ

2η
.

We can thus take m =
⌈√

ρ

2η

⌉
, for which the degrees provided by Lemma 3.1 plugged into (13) yield Theo-

rem 1.5.

Let S = {z ∈ Fq | ∆(u0 + z · u1, C) ≤ γ}. The following is a brief summary of the steps from [BCI+20,
Section 5] involving the manipulations on the bound |S| ≥ 2DXD3

Y DZ and the proof of its sufficiency. These
steps are along the lines of the well-known procedure of factoring bivariate polynomials over finite fields via
Hensel lifts. However, the underlying field is the field of rational functions K = Fq(Z), and the required
finite extension is an algebraic function field, which makes concrete computations quite technical.
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1. Decomposition into irreducible and separable factors. The polynomial Q(X,Y, Z) is decomposed as

C(X,Z)
∏

i Ri(X,Y pfi
, Z)ei where each Ri is irreducible and separable in the Y variable. For simplicity

we assume all fi = 0; the case that some fi > 0 was dealt within [BCI+20, Appendix C] and the
arguments there remain applicable.

2. Finding a uniform starting point for the Hensel lift. An x0 ∈ Fq is chosen such that all Ri(x0, Y, Z)
remain separable in Y after the substitution. They are decomnposed in Fq[Y,Z] as Ri(x0, Y, Z) =
Ci(Z)

∏
j Hij(Y,Z) where Hij are irreducible, non-constant in Y and separable in Y .

3. Focusing on a single “useful” factor. For each z ∈ S (except maybe DZ values)5 the polynomial Pz(X)
satisfies Ri(X,Pz(X), z) = 0 and Hij(x0, Pz(x0), z) = 0 for some pair i, j. The number of such pairs is
at most DY , so for some pair (R,H) = (Ri, Hij) the set

Sx0,R,H = {z ∈ S : R(X,Pz(X), z) ≡ 0 and H(Pz(x0), z) = 0}

must have size at least |Sx0,R,H | ≥ |S|/DY .

4. Determining a smooth solution via Hensel lift. Let D
(R)
Y , D

(H)
Y , D

(R)
Z denote the Y degree of R,

the Y degree of H, and the (1, 1)-weighted (Y, Z) degree of R, respectively. Suppose |Sx0,R,H | >

2DXD
(R)
Y D

(H)
Y D

(R)
Z . Then R(X,Y, Z) = Y −P (X,Z) with a polynomial P (X,Z) = v0(X)+Z · v1(X)

with degX P ≤ k, degZ P ≤ 1 and a subset S′ ⊂ S with

|S′| ≥ |Sx0,R,H | −D
(R)
Y D

(H)
Y D

(R)
Z > (2DX − 1)D

(R)
Y D

(H)
Y D

(R)
Z

such that P (X, z) = Pz(X) for each z ∈ S′. Reaching this conclusion is the major part of the proof,
comprising sections 5.2.5 – 5.2.7 as well as Appendix A of [BCI+20]. This part computes an approximate
solution Y = P (X) of R(X,Y ) = 0 in K[X,Y ]/H(X,Y ), a finite extension of K, via Hensel lift. The
approximate solution is subsequently shown to be exact from the fact that substitution by z ∈ S′ leads
to the promised proximate polynomial Pz(X).

5. Correlated agreement from collinearity of the proximates. This is the standard argument using Lemma
2.4. If |S′| above is greater than γn+ 1, then ∆([u0, u1], [v0, v1]) ≤ γ.

The sufficient bound |S| ≥ 2DXD3
Y DZ is thus established by combining the obtained bound |Sx0,R,H | ≥

|S|/DY with the sufficient condition |Sx0,R,H | ≥ 2DXD
(R)
Y D

(H)
Y D

(R)
Z , using the naive bounds D

(R)
Y , D

(H)
Y ≤

DY and D
(R)
Z ≤ DZ . This naive approach to the bounds introduced an unnecessary extra factor of DY ,

which we now observe can be saved.

We tweak the definition ofD
(Ri)
Z to be the (1, 1) weighted (Y, Z) degree of the content-free part of R(x0, Y, Z)

(i.e. not including Ci(Z)), rather than all of Ri. This degree enters play in the Hensel lifting and in bounds

related directly to Hij-s, and all appearances are unaffected by the content Ci(Z). We also denote by D
(C)
Z

the Z degree of C(X,Z)
∏

i Ci(Z).

Our aim is to show that there exist some (Ri, Hij) for which both inequalities

|Sx0,Ri,Hij | ≥ 2DXD
(Ri)
Y D

(Hij)
Y D

(Ri)
Z (14)

|Sx0,Ri,Hij
| > D

(Ri)
Y D

(Hij)
Y D

(Ri)
Z + γn+ 1 (15)

hold; the latter is required so that the final S′ is not smaller than γn+ 1.

5This appears to be a previously unnoticed minor omission in [BCI+20]: some roots (X,Pz(X), z) of Q(X,Y, Z) could be
due to C(X, z) vanishing rather than any Ri, and similarly Ci(z) might vanish instead of any Hij , and so not every z ∈ S is
necessarily accounted for in the Sx0,R,H -s. This can be accounted for without affecting the necessary bound on S, as will be
described below. For the purpose of describing the proof in [BCI+20] we ignore this issue.

25



Suppose not; then for each i, j we have |Sx0,Ri,Hij | ≤ 2DXD
(Ri)
Y D

(Hij)
Y D

(Ri)
Z + γn+ 1. We take the sum of

this expression over all i, j, noting that each element of S (except at most D
(C)
Z roots of C(X,Z)

∏
i Ci(Z))

must belong to some Sx0,Ri,Hij
, and using the simple identities∑

j

D
(Hij)
Y = D

(Ri)
Y ;

∑
i

D
(Ri)
Y = DY ; D

(Ri)
Z ≤ DZ −D

(C)
Z

we get

|S| ≤ D
(C)
Z +

∑
i

∑
j

|Sx0,Ri,Hij |

≤ D
(C)
Z +

∑
i

∑
j

(
2DXD

(Ri)
Y D

(Hij)
Y D

(Ri)
Z + γn+ 1

)
≤ D

(C)
Z + (γn+ 1)DY + 2DXDY (DZ −D

(C)
Z )

∑
i

D
(Ri)
Y

= D
(C)
Z + (γn+ 1)DY + 2DXD2

Y (DZ −D
(C)
Z )

≤ 2DXD2
Y DZ + (γn+ 1)DY .

Thus, taking |S| > 2DXD2
Y DZ + (γn+ 1)DY indeed suffices for Theorem 1.5, as claimed.

4 Generalizations

In this section we state generalizations of the positive Theorems 1.3 and 1.5.

4.1 More general linear combinations

In practice one desires proximity gaps for the interleaved code CM+1, often with large integer M . Given
functions u0, . . . , uM : D −→ Fq, where M ≥ 1, one wishes to infer ∆([u0, . . . , uM ], CM+1) ≤ γ from the fact
that sufficiently many linear combinations of u0, . . . , uM are close to C. The multilinear case,

uz1,...,zm =

M∑
i=0

zi00 · · · zim−1

m−1 · ui,

where i0, . . . , im−1 are the m = ⌈logM⌉ bits of i, can be derived from elementary line case covered by
Theorem 1.3 and 1.5, with a factor l larger bounds [DG25b]. However, of particular importance in practice
is the case

uz = u0 + u1 · z + . . .+ uL · zM ,

since it requires only a single randomness z. Both Section 2 and Section 3 can be generalized to this case,
by considering the word u(x) = u0(x) + u1(x) · Z + . . .+ uM (x) · ZM as input of the decoder.

We only state the lossless results.

Theorem 4.1 (Correlated agreement for curves, up to δ/2). Let C be the code RS[Fq,D, k] with block-length

n = |D|, dimension k + 1, and minimum distance δ ≥ 3·
√
2√

n
. Then for any γ ∈

[
δ
3 ,

δ
2 − 3

δn

]
and functions

u0, . . . , uM : D → Fq the following holds. If∣∣{z ∈ Fq | ∆(u0 + z · u1 + . . .+ zM · uM , C) ≤ γ}
∣∣ > M · (γn+ 1),

then
∆([u0, . . . , uM ], CM+1) ≤ γ.
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In words, there exist polynomials p0(X), . . . , pM (X) ∈ Fq[X] of degree at most k, which agree with u0, . . . , uM

on a joint set A of density |A|/n ≥ 1− γ.

In a nutshell, the proof of Theorem 4.1 adapts the interpolant Lemma 2.1 to the M times higher Z-degree,
which translates to the same blow-up of the bound for a in Claim 2.3. The collinearity argument from
Lemma 2.4 extends to degree M curves with distance loss M

a−M · γ instead of 1
a−1 · γ. Zero distance loss is

obtained by requiring M
a−M · γ < 1

n , that is a > M · (γn+ 1).

Likewise, the oversized Guruswami–Sudan interpolant from Lemma 3.1 requires an M times larger bound
for DZ , which is now the (0,M, 1)-weighted degree of Q, and the final bound for a again scales by the same
factor.

Theorem 4.2 (Correlated agreement for curves, up to Johnson bound). Let C be the code RS[Fq,D, k] with
block-length n = |D|, dimension k + 1 and minimum distance δ. Denote ρ = 1− δ, the slightly reduced rate
of the code. Then for any γ ∈

(
0, 1−√

ρ
)
and functions u0, . . . , uM : D → Fq the following holds. If∣∣{z ∈ Fq | ∆(u0 + z · u1 + . . .+ zM · uM , C) ≤ γ}

∣∣ > M ·
(
2(m+ 1/2)5 + 3(m+ 1/2)γρ

3ρ3/2
· n+

m+ 1/2
√
ρ

)
,

where m = max
(⌈ √

ρ

1−√
ρ−γ

⌉
, 3
)
, then

∆([u0, . . . , uM ], CM+1) ≤ γ.

In words, there exist polynomials p0(X), . . . , pM (X) ∈ Fq[X] of degree at most k, which agree with u0, . . . , uM

on a joint set A of density |A|/n ≥ 1− γ.

4.2 Constrained agreement

The following strengthened statements on correlated agreement are useful in the soundness analysis of
interactive proofs of proximity such as FRI [BBHR18, BCI+20], Basefold [ZCF23], FRI-Binius [DP24] and
WHIR [ACFY25]. These refined properties are a direct consequence of collinearity (or, in the light of Section
4.1, co-curvilinearity) of proximate polynomials, the core property behind correlated agreement, and they
are obtained by minor strengthenings of Lemma 2.4.

For brevity, we restrict to the curve case.

Theorem 4.3 (Correlated agreement with given sets, up to Johnson bound). For C = RS[Fq,D, k] and δ,
ρ, γ as in Theorem 4.2, and words u0, . . . , uM : D −→ Fq. Suppose that

S = {z ∈ Fq | ∆(u0 + z · u1 + . . .+ zM · uM , C) ≤ γ}

is as large as in Theorem 4.2, and let
{Az}z∈S

be any choice of agreement sets with density 1− γ. (That is, for each z ∈ S there exists a proximate pz ∈ C
such that u0 + z · u1 + . . . + zM · uM = pz on Az, and |Az|/|D| ≥ 1 − γ.) Then there exists z0 ∈ S and
[p0, . . . , pM ] ∈ CM+1 such that

[u0, . . . , uM ]
∣∣
Az0

= [p0, . . . , pM ]
∣∣
Az0

.

The theorem is obtained by plugging in the improved bounds in the proof of [Sta25, Theorem 22]. Notably,
the theorem immediately implies the weighted correlated agreement theorem in a simpler form than stated
by [BCI+20, Theorem 7.2], and with no restriction on the weights. Assume a sub-probability measure on D
of the form

µ({x}) = w(x)

|D|
,

for some function w with values in [0, 1].
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Corollary 4.4 (Weighted correlated agreement, up to Johnson bound). Given C = RS[Fq,D, k] and δ, ρ,
γ as in Theorem 4.2, and words u0, . . . , uM : D −→ Fq, and let µ be a sub-probability measure as above.
Suppose that

S =
{
z ∈ F : ∃pz ∈ C, µ({x : uz(x) = pz(x)}) ≥ 1− γ

}
is as large as in Theorem 4.2, where uz = u0 + u1 · z+ . . .+uL · zM . Then there exists [p0, . . . , pM ] ∈ CM+1,
and a set A of weight µ(A) ≥ 1− γ such that [p0, . . . , pM ] = [u0, . . . , uM ] on A.

Proof. Since µ is dominated by the regular density, the agreement sets Az for the scalars z ∈ S of weight
µ(Az) ≥ 1 − γ are also of regular density |Az|/|D| ≥ 1 − γ. We thus may apply Theorem 4.3 to see that,
over one of these agreement sets we have correlated agreement.

The error bound of Corollary 4.4 replaces the O(n2)-bound from [BCI+20], used in any round-by-round
analysis of FRI in the list-decoding regime ([BCI+20], see also [HLP24] or [Sta25]) yielding significantly
smaller soundness errors.

Of similar importance is the following agreement theorem where the proximate polynomials are subject
to given linear constraints. This is the situation met in Basefold [ZCF23], and a non-linear generalization
which we do not cite here is useful for WHIR and FRI-Binius, see [Hab24]. Again, its proof is obtained by
plugging in the improved bounds in the proof of [Hab24, Theorem 3].

Theorem 4.5. (Weighted correlated agreement for subspaces) For C = RS[Fq,D, k] and δ, ρ, γ as in Theorem
4.2, and words u0, . . . , uM : D −→ Fq, and µ a sub-probability measure as above. Suppose that C′ is a linear
subspace of C, and that

S =
{
z ∈ F : ∃pz ∈ C′, µ({x : uz(x) = pz(x)}) ≥ 1− γ

}
,

with uz = u0 + u1 · z + . . .+ uL · zM , is of size

a > M ·
(
2(m+ 1/2)5 + 3(m+ 1/2)γρ

3ρ3/2
· n+

m+ 1/2
√
ρ

)
.

Then there exists [p0, . . . , pM ] ∈ (C′)M+1 and a set A of weight µ(A) ≥ 1 − γ, such that [p0, . . . , pM ] =
[u0, . . . , uM ] on A.

4.3 List correlated agreement

List correlated agreement, also called strong correlated agreement in [Zei24] or mutual correlated agreement
in [ACFY25], is a “global” variant of regular correlated agreement. Given two functions u0, u1 : D −→ Fq

and proximity parameter γ, the list correlated agreement property claims that, except for few scalars z,
every γ-proximate pz ∈ C of u0 + zu1 stems from a γ-proximate [p0, p1] ∈ C2 of [u0, u1]. The property has
been shown for general linear codes up to the double-Johnson bound in [Zei24], and up to one-and-a-half
Johnson bound in [GKL24]. For Reed–Solomon codes it has been conjectured to hold up to the Johnson
bound [ACFY25, Conjecture 4.12]; a proof of it, which generalizes the decoder analysis from [BCI+20] is
discussed in [Hab25].

We state the result with the improved bounds.

Theorem 4.6 (List correlated agreement, up to Johson bound). Let C = RSk[Fq,D, k] be the Reed–Solomon
code over Fq with domain of definition D of size |D| = n, and dimension k+1. Denote ρ = k/n, the slightly
reduced rate of the code.

Then for any u0, . . . , uM : D −→ Fq, and γ ∈ (0, 1−√
ρ), the size of

E =

z ∈ Fq :
∃A ⊂ D,

|A| ≥ (1− γ) · n,
s.t.

(u0 + zu1 + . . .+ zMuM )
∣∣
A
∈ C
∣∣
A
, but

[u0, . . . , uM ]
∣∣
A

/∈ CM+1
∣∣
A


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is bounded as

|E| ≤ M ·
(
2(m+ 1/2)5 + 3(m+ 1/2)γρ

3ρ3/2
· n+

m+ 1/2
√
ρ

)
,

where m = max
(⌈ √

ρ

1−√
ρ−γ

⌉
, 3
)
.

The proof of Theorem 4.6 generalizes Section 3.2 as follows. Instead focusing on a single “useful” factor of

Q(X,Y, Z) = C(X,Z) ·
∏
i

Ri(X,Y, Z)

(for simplicity we restrict to the separable case) one looks at all such useful factors Ri(X,Y, Z), where useful
means that Ri(X, pz(X), Z) = 0 for sufficiently many of the claimed γ-proximate pz(X). (Again, each useful
factor is decomposed into irreducible and separable components Ri(x0, Y, Z) = Ci(Z) ·

∏
j Hi,j(Y, Z).) Each

such good factor can only cause few proximates which correct an error of [u0, . . . , uM ] (since most of their
proximates are co-curvilinear), and the remaining non-useful factors cover few proximates by definition.

5 The failure of nτ -bounded proximity gaps

In this section we prove Theorem 1.6 showing that a has to be superpolynomial if we want proximity gaps
at radius δ − o(1). This also immediately gives us Corollary 1.7, showing that a has to be nearly quadratic
in n if we want proximity gaps at the Johnson radius.

Recall the statement of theorem:

Theorem 1.6. Let τ be a fixed positive integer, and λτ = 2−(τ+2). Let ϵ > 0 be an arbitrary constant, and
choose δ = 1− λτ and γ = 1− 4λτ .

Then for all Fq of characteristic 2, there are Reed-Solomon codes C = RS[Fq,D, (1− δ)n] over Fq, domain

D with n = |D| = O
(
q

1
τ (1+ϵ)

)
, distance δ and words f, g : D → Fq such that:∣∣{z ∈ Fq | ∆(f + zg, C) ≤ γ}

∣∣ ≥ (1− o(1)) · q ≥ nτ(1−ϵ),

for q large enough, and yet ∆([f, g], C2) ≥ 1− 2λτ = 2
3δ +

1
3γ.

We will need a special family of polynomials with many roots and well-behaved coefficients. We will find
this special family through a combination of ideas from algebra and probability: using structural properties
of the coefficients of subspace polynomials, and the second moment method to understand the distribution
of these coefficients. This is done in Theorem 5.1 below.

Throughout this section, we assume that q = 2m, for some integer m ≥ 1. We will work with Fq and the
F2-linear structure of it. For any F2-linear subspace W ⊆ Fq of dimension b, recall that the monic vanishing
polynomial PW (X) of W , called the subspace polynomial of W , is a linearized polynomial of degree 2b:

PW (X) = X2b + c1X
2b−1

+ c2X
2b−2

+ . . .+ cbX.

Define Λ(W ) to be the coefficient c1 of X2b−1

in PW (X).

For an F2-linear subspace (in short F2-subspace) V ⊆ Fq, we define suppb(V ) by:

suppb(V ) =
∣∣{λ ∈ Fq | ∃ F2-subspace W ⊆ V with dimF2

(W ) = b,Λ(W ) = λ)}
∣∣.

We will informally call suppb(V ) the diversity of V .
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Theorem 5.1 (Subspaces with large diversity). Let a, b ∈ [m] with b · (a− b) ≥ (1 + ϵ)m. Then there exists
an a-dimensional F2-subspace V ⊆ Fq with

suppb(V ) ≥
(
1−Oϵ(q

−ϵ)
)
· q.

Heuristically: there are about 2b·(a−b) ≥ 2(1+ϵ)m = q1+ϵ different b-dimensional F2-subspaces W of V . (In

V , the number of ordered linear independent sets of b vectors is
∏b−1

i=0 (2
a − 2i), and each b-dimensional

F2-subspace has
∏b−1

i=0 (2
b − 2i) ordered bases.) If the values of Λ(W ) as W varies over b-dimensional F2-

subspaces of V are roughly uniformly distributed over Fq, then all values in Fq ought to appear as Λ(W ) for
some subspace W of V .

Note that if V is contained in a subfield K of Fq, then for any subspace W of V , Λ(W ) also lies in K. So
not every V satisfies the conclusion of Theorem 5.1 (but most V do, as our proof will show).

Using this theorem, we can proceed.

Proof. Proof of Theorem 1.6. Let q = 2m be an arbitrary power of 2. Choose b =
⌈
(1+ϵ)m

τ

⌉
, where ϵ > 0 is

the arbitrary small constant in the statement of the theorem, and let a = b+τ . By Theorem 5.1, there exists
an a-dimensional F2-subspace V ⊆ Fq with suppb(V ) ≥ (1− q−ϵ) · q. Let C = RS[Fq,D, k], where D = V and
k = 2b−2. Then C has blocklength

n = |V | = 2a = O(q
1+ϵ
τ ),

so that nτ(1−ϵ) = q · (1 + O(q−ϵ2)) which smaller than any q · (1 − o(1)) for q large enough. The minimum
distance of the code is

δ = 1− k

n
= 1− 2b−2

2a
= 1− 2−(τ+2) = 1− λτ .

Take f : V → Fq to be the function f(x) = x2b . Take g : V → Fq to be the function g(x) = x2b−1

. By
Theorem 5.1, for least (1 − o(1))q choices of λ ∈ Fq, there exists some F2-subspace W ⊆ V of dimension
b = a− τ with a subspace polynomial PW (X) of the form:

PW (X) = X2b + λX2b−1

+ ( some polynomial of degree ≤ 2b−2).

This means that f + λg agrees with some polynomial of degree at most 2b−2 = k on all the points of W , in
particular on at least 2b points. Thus for such λ ∈ Fq, we have

∆(f + λg, C) ≤ 1− 2b

2a
= 1− 2−τ = 1− 4λτ .

On the other hand, since g is a polynomial of degree at most 2b−1, it has at most 2b−1 = 2 ·λτ ·n agreement
evaluation points with polynomials of degree at most k = 2b−2 – which proves that ∆(g, C) ≥ 1− 2 · λτ , and
thus ∆([f, g], C2) ≥ 1− 2 · λτ . This completes the proof of Theorem 1.6.

The rest of this section is devoted to proving Theorem 5.1.

5.1 Finding a subspace with large diversity

For an F2-subspace V ⊆ Fq of dimension dim(V ) = a and an integer b ∈ [0, a], we let
[
V
b

]
denote the set of

all b-dimensional subspaces of V .

30



Proof of Theorem 5.1. For an F2-subspace V ⊆ Fq, we introduce a parameter scoreb(V ). Let W be a
uniformly random b-dimensional F2-subspace of V . Then we define:

scoreb(V ) =
∑
λ∈Fq

(
Pr
W
[Λ(W ) = λ]

)2
.

This measures how well spread the values of Λ(W ) are as W varies over all b-dimensional F2-subspaces of
V . Observe that we also have an alternative interpretation of scoreb(V ) as follows:

scoreb(V ) = Pr
W,W ′

[Λ(W ) = Λ(W ′)],

where W and W ′ are independent, uniformly chosen b-dimensional F2-subspaces of V . By the Cauchy–
Schwarz inequality, we get a simple relation between suppb(V ) and scoreb(V ):

suppb(V ) ≥

(∑
λ∈Fq

PrW [Λ(W ) = λ]
)2

scoreb(V )
=

1

scoreb(V )
.

Thus to prove the theorem, we need to find a V with small scoreb(V ). We do this by averaging. Pick V
uniformly at random from amongst all a-dimensional F2-subspaces of Fq.

EV [scoreb(V )] = EV

[
Pr

W,W ′∈[Vb ]
[Λ(W ) = Λ(W ′)]

]
= Pr

(W,W ′)∈µ
[Λ(W ) = Λ(W ′)],

where W and W ′ are chosen uniformly and independent from all b-dimensional subspaces of the randomly
selected V , and µ is the distribution of (W,W ′) created by the process.

Let us a closer look at the distribution µ. Let τ = a− b, and K be the random variable b− dim(W ∩W ′).
Observe that K takes values between 0 and τ . By symmetry, it is clear that the distribution of (W,W ′) can
be equivalently generated by first choosing K ∈ [0, τ ], then picking a uniformly random b −K dimensional
F2-subspace U of Fq, and then picking a pair of F2-subspaces (W,W ′) of Fq, each of dimension b, with
W ∩W ′ = U , uniformly random amongst all such pairs.

The following lemma, proved in the next subsection, shows that conditioned on K being nonzero, the
probability of Λ(W ) = Λ(W ′) is very small:

Pr[Λ(W ) = Λ(W ′) | K ̸= 0] ≤ 1

q
+O

(
22τ

q2

)
.

Lemma 5.2 (Λ-collisions lemma). Let 0 ≤ c < b ≤ m. Consider the following experiment. Let U be a
uniformly random c-dimensional F2-linear subspace of Fq. Let (W,W ′) be a pair of F2-linear subspaces of
dimension b, picked uniformly at random amongst all pairs of b-dimensional F2-subspaces, the intersection
of which is exactly U . Then

Pr[Λ(W ) = Λ(W ′)] ≤ 1

q
+O

(
22(b−c)

q2

)
.

Furthermore, the probability that K = 0 is simply the probability that W = W ′, and this is also small:

Since
∣∣∣[Vb ]∣∣∣ =∏b−1

i=0
2a−2i

2b−2i
≥ 2b·(a−b), we obtain

Pr[K = 0] = Pr[W = W ′] ≤ 1∣∣∣[Vb ]∣∣∣ ≤
1

2τ ·(a−τ)
.

Putting these together, we get:

EV [scoreb(V )] = Pr[Λ(W ) = Λ(W ′)] ≤ Pr[K = 0] + Pr[Λ(W ) = Λ(W ′) | K ̸= 0]
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≤ 1

2τ ·(a−τ)
+

1

q
+O

(
22τ

q2

)
.

By our assumptions on τ, a, the right hand side is at most (1 +O(q−ϵ)) · 1
q . Therefore, by the probabilistic

method, there exists a V with scoreb(V ) ≤ (1 +O(q−ϵ)) · 1
q . For any such V , we have

suppb(V ) ≥ 1

scoreb(V )
≥
(
1−O

(
q−ϵ
))

· q,

as desired.

5.2 Preparations for the proof of the Λ-collisions lemma

We will need two ingredients: Berlekamp duality, and the relationship between Λ(U) and Λ(W ) for F2-linear
subspaces U ⊆ W .

Definition 5.3 (Berlekamp Dual). Let U be an F2-linear subspace of Fq, and PU (X) the vanishing polynomial
of U . The Berlekamp dual of U is defined as

U∗ = PU (Fq).

Lemma 5.4 (Berlekamp Duality). Let U be an F2-linear subspace of Fq with dim(U) = c. Then:

1. U∗ is an F2-linear subspace of Fq with dim(U∗) = m− c.

2. (U∗)∗ = U .

The proof of the lemma can be found in [Ber15] (Theorem 11.35). For another (totally unrelated) application
of this machinery, see [BSK12] (the above lemma is also reproved there).

Lemma 5.5 (Λ(W ) and Λ(U)). Suppose U ⊆ W are F2-linear subspaces of Fq with dimension c, b respec-
tively. Then

Λ(W ) = Λ(U)2
b−c

+ Λ(L),

where L = PU (W ).

Proof. Note that the quotient W/U has dimension b− c. Thus, since PU is F2-linear with kernel U , we get
that L = PU (W ) has dimension exactly b− c, and that P−1

U (L) = W . Therefore the monic polynomial

PL(PU (X)) =
∏
α∈L

(PU (X)− α),

which has degree |L| ·deg(PU (X)) = 2b, vanishes at all points of W . Thus it must equal PW (X). Expanding
PL(PU (X)), we obtain:

PL(PU (X)) = PU (X)2
b−c

+ Λ(L)PU (X)2
b−c−1

+
(
deg ≤ 2b−2

)
=
(
X2c + Λ(U)X2c−1

+ (deg ≤ 2c−2)
)2b−c

+ Λ(L)
(
X2c + (deg ≤ 2c−1)

)2b−c−1

+
(
deg ≤ 2b−2

)
= X2b +

(
Λ(U)2

b−c

+ Λ(L)
)
X2b−1

+
(
deg ≤ 2b−2

)
,

where (deg ≤ 2r) is short for a polynomial of degree at most 2r. This proves the claimed formula for
Λ(W ).
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5.3 Proof of Λ-collisions lemma

We can now prove Lemma 5.2.

Proof. Our proof relies on an alternate way to generate the distribution of (U,W,W ′). The key point is
that specifying U is equivalent to specifying U∗, and that specifying a superspace W ⊇ U is equivalent to
specifying the subspace PU (W ) of U∗ = PU (Fq).

First pick a uniformly random (m − c)-dimensional subspace Ũ . Then pick a pair of (b − c)-dimensional

subspaces (L,L′) of Ũ with L ∩ L′ = {0}, uniformly random among all such pairs. We then set

U = (Ũ)∗,

W = P−1
U (L),

W ′ = P−1
U (L′).

Note that the distribution of (U,W,W ′) generated in this manner is exactly as in the hypothesis. Indeed,

from (U,W,W ′) we can recover (Ũ , L, L′) as (U∗, PU (W ), PU (W
′)).

Now by Lemma 5.5,

Λ(W ) = Λ(U)2
b−c

+ Λ(L),

Λ(W ′) = Λ(U)2
b−c

+ Λ(L′).

Thus Λ(W ) = Λ(W ′) if and only if Λ(L) = Λ(L′). Thus, the probability that we want to bound,
Pr(U,W,W ′)[Λ(W ) = Λ(W ′)], is given by the exact expression:

Pr
(U,W,W ′)

[Λ(W ) = Λ(W ′)] = Pr
(Ũ,L,L′)

[Λ(L) = Λ(L′)].

This right hand side only depends on the marginal distribution of (L,L′), which we now investigate.

By symmetry, picking the uniformly random (m− c)-dimensional F2-subspace Ũ and then picking L,L′ of

dimension b−c contained in Ũ with L∩L′ = {0} is exactly the same as first picking F2-subspaces L,L
′ of the

entire space Fq of dimension b−c with L∩L′ = {0}, uniformly at random from among all such pairs, and then

picking Ũ to be a (m− c)-dimensional space uniformly at random from among all such spaces that contain
both L and L′. Thus the marginal distribution of (L,L′) is uniform over all pairs of (b − c)-dimensional
subspaces of Fq with intersection {0}.
The following lemma, proved next, gives a strong bound on the probability that Λ(L) = Λ(L′) under this
distribution.

Lemma 5.6. Let (L,L′) be a pair of e-dimensional subspaces of Fq with intersection {0}, picked uniformly
at random from amongst all such pairs.

Then:

Pr[Λ(L) = Λ(L′)] ≤ 1

q
+O

(
22e

q2

)
.

This completes the proof of Lemma 5.2.

5.4 Proof of Lemma 5.6

We now prove Lemma 5.6.
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Proof. We can equivalently generate the distribution (L,L′) as follows. Pick α1, . . . , αe, α
′
1, . . . , α

′
e ∈ Fq

independently and uniformly at random. In the sequel we condition on the event I, that all these 2e
elements are F2-linearly independent. Then define L = span(α1, . . . , αe) and L′ = span(α′

1, . . . , α
′
e). The

event I implies that L and L′ both have dimension e, while L ∩ L′ = {0}. By symmetry, the distribution of
(L,L′) is uniform over all such pairs, matching the distribution in the hypothesis of the lemma.

Notice that Λ(L) can be expressed as the 2e−1-th elementary symmetric polynomial of all the elements of
L. Since the elements of L are precisely {

∑
i∈S αi | S ⊆ [e]}, we get that

Λ(L) = He(α1, . . . , αe),

and likewise
Λ(L′) = He(α

′
1, . . . , α

′
e),

where

He(Z1, . . . , Ze) =
∑

J⊆P([e]),|J|=2e−1

∏
S∈J

(∑
i∈S

Zi

)
.

Note that He(Z1, . . . , Ze) is a non-zero, homogeneous polynomial of degree 2e−1. The latter is obvious from

its explicit form, and the first fact follows from that the coefficient of Z2e−1

1 equals 1: this coefficient comes
from the unique subset J ⊆ P([e]) of size 2e−1 that contains all subsets S of [e] with 1 ∈ S.

Thus we want to bound:

Pr
α1,...,αe,α′

1,...,α
′
e∈Fq

[He(α1, . . . , αe) = He(α
′
1, . . . , α

′
e) | I].

For that, we first bound

Pr
α1,...,αe,α′

1,...,α
′
e∈Fq

[He(α1, . . . , αe) = He(α
′
1, . . . , α

′
e)],

that is the collision probability of the distribution ν ofHe(α1, . . . , αe) for uniformly random (α1, . . . , αe) ∈ Fe
q.

From the properties of He, we see that:

1. He(tZ1, . . . , tZe) = t2
e−1

He(Z1, . . . , Ze) for all t ∈ Fq. Since t 7→ t2
e−1

is a bijection on Fq, we get that
all non-zero elements of Fq have equal probability under ν.

2. Prα1,...,αe∈Fq
[He(α1, . . . , αe) = 0] ≤ 2e

q . This is by the Schwartz–Zippel lemma. Thus 0 has probability

at most 2e

q under ν.

Putting these together, we get that

Pr
α1,...,αe,α′

1,...,α
′
e∈Fq

[He(α1, . . . , αe) = He(α
′
1, . . . , α

′
e)] ≤

1

q − 1
+

22e

q2
=

1

q
+O

(
22e

q2

)
.

Finally, using the fact that Pr[I] ≥ 1−O
(

22e

q

)
, we get that:

Pr
α1,...,αe,α′

1,...,α
′
e∈Fq

[He(α1, . . . , αe) = He(α
′
1, . . . , α

′
e) | I] ≤

1
q +O

(
22e

q2

)
1−O

(
22e

q

) ≤ 1

q
+O

(
22e

q2

)
.

This completes the proof of Lemma 5.6.
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6 Limitations on the proximity gaps at the list-decoding radius

In this section we prove Theorem 1.9.

6.1 Structural lemma: Many values at a random point

The basic phenomenon that we will use is that any large collection of far-apart functions take many different
values at a random point. Namely, at a random point α, there are many different β for which some function
in the collection has f(α) = β.

Formally, let L be a set of functions from S to Fq. For α ∈ S, define:

L(α) = {h(α) | h ∈ L}.

Lemma 6.1. Let L be a set of functions from S to Fq. Suppose any two elements of L have at most A
agreements. Then:

Eα∈S [|L(α)|] ≥ 1

2
min

(
|L|, |S|

A

)
.

Proof. Let L = |L|. For α ∈ S, y ∈ Fq, define

W (α, y) =
1

L
· |{h ∈ L | h(α) = y}|.

Then W (α, ·) is the probability distribution of h(α) when h is chosen uniformly at random from L.
Observe that L(α) = {y | W (α, y) > 0} is the support of the distribution W (α, ·).
We bound the size of L(α) from below using the second moment by Cauchy–Schwarz:

|L(α)| ≥

(∑
y W (α, y)

)2
∑

y W (α, y)2
=

1∑
y W (α, y)2

.

By definition, ∑
y

W (α, y)2 =
1

L2
· |{(h1, h2) ∈ L | h1(α) = h2(α)}|.

By linearity of expectation,

Eα∈S

[∑
y

W (α, y)2

]
=

1

L2
·Eα [|{(h1, h2) ∈ L | h1(α) = h2(α)}|]

=
1

L2
·

L+
∑

h1 ̸=h2

agree(h1, h2)


≤ 1

L2
·
(
L+ L · (L− 1) · A

|S|

)
.

Thus,

Eα [|L(α)] ≥ Eα

[
1∑

y W (α, y)2

]
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≥ 1

Eα

[∑
y W (α, y)2

] since E
[
1
X

]
≥ 1

E[X] for nonnegative r.v.s X

≥ L2

L+ L(L− 1) A
|S|

≥ 1

2
· 2

1
L + A

|S|
≥ 1

2
min

(
|L|, |S|

A

)
,

where the last inequality is just the fact that the harmonic mean of L, |S|
A is at least the minimal value. This

completes the proof.

In general, the term |S|
A cannot be improved (for example, if L consists of perfect A’th powers of degree 1

polynomials evaluated on S = Fq, and A divides q − 1).

6.2 Proximity gaps stop at the list decoding radius

We now prove Theorem 1.9:

Theorem 1.9. Let C be the Reed–Solomon code RS[Fq,D, k], with |D| = n and k = (1 − δ)n. Let γ =
LDRFq,D,q(δ) +

2
n . Then there exist functions f, g : D → Fq such that:

|{z ∈ Fq | ∆(f + z · g, C) ≤ γ}| ≥ q

2n
,

but with ∆([f, g], C2) ≥ δ − 1
n .

Since LDRFq,D,q(δ) = γ − 2
n , we know that there is some Hamming ball of radius γ − 1

n which contains > q
elements of C. Let c : D → Fq be the center of this ball, and let L be the set of polynomials H(X) ∈ Fq[X]
of degree at most k with ∆(c,H) ≤ γ − 1

n . We know that |L| ≥ q.

We will now view L as a set of functions from Fq → Fq (L was defined based only on the values in D). By
Lemma 6.1 applied with domain Fq, we get that there exists α ∈ Fq, for which the set of values

L(α) = {H(α) : H(X) ∈ L}

has size at least min( q2 ,
q
2k ) ≥

q
2n . Define f : D → Fq and g : D → Fq by

f(x) =
c(x)

x− α
,

g(x) =
−1

x− α
,

for each x ∈ D. Then the function f + z · g : D → Fq satisfies

(f + z · g)(x) = c(x)− z

x− α
.

Claim 6.2. If z ∈ L(α), then there exists a polynomial P (X) of degree at most k − 1 with:

∆(f + z · g, P ) ≤ γ.

Proof. Let z ∈ L(α), and let H(X) ∈ L be a polynomial in L of degree ≤ k with H(α) = z. We have

that the quotient Hα,z(X) = H(X)−z
X−α is in fact a polynomial of degree ≤ k − 1. For any x ∈ D \ {α} with

H(x) = c(x), we have

Hα,z(x) =
H(x)− z

x− α
=

c(x)− z

x− α
= f(x) + z · g(x).
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Thus ∆(f + z · g,Hα,z) ≤ ∆(H, c) + 1
n ≤ γ, which proves the claim.

Finally, we note that ∆(g, C) ≥ δ− 1
n . Indeed, if P (X) ∈ Fq[X] is of degree ≤ k, then whenever x ∈ D\{α}

satisfies g(x) = P (x), we also have:
P (x) · (x− α) + 1 = 0.

Since the polynomial P (X) · (X −α) + 1 has degree at most k+1, there can be at most k+ 1 such x. Thus
∆(g, P ) ≥ 1− k+1

n = δ − 1
n , and so ∆([f, g], C2) ≥ δ − 1

n , as desired.

7 Limits to proximity gaps over prime fields

In this section, we develop some machinery to show limitations to proximity gaps over prime fields. We use
this machinery to prove Theorem 1.15 and Theorem 1.16, which exhibit proximity gap thresholds and δ/3
and δ/2 in the regime δ = o(1). We also show limitations on proximity gaps over prime fields in the setting
δ = Ω(1) for primes with a certain special number theoretic property. For specific primes of interest, this
hypothesis could be checked experimentally, and it seems plausible to us that there are infinitely many such
primes (see Conjecture 1.12).

We begin with a general construction based on multiplicative subgroups G of Fq, which we will instantiate
with a good choice of E ⊆ G. For the sake of a wider range of evaluation domains, we directly state
construction lifted to a larger subgroup H ⊇ G.

Theorem 7.1. Let G ⊆ H ⊆ F∗
q be multiplicative subgroups, and denote Φ : H → G the (onto) map sending

x 7→ xc, where c = |H|/|G|. Given a subset E ⊆ G and integers ℓ, a ≥ 1, so that

|E(+ℓ)| =

∣∣∣∣∣
{

ℓ∑
i=1

ei | e1, . . . , eℓ ∈ E are distinct

}∣∣∣∣∣ ≥ a,

let C = RS[Fq,D, n− (ℓ+2)c] be the Reed–Solomon code with evaluation domain D = Φ−1(E) of size n, and

minimum distance δ = (ℓ+2)c
n . Then, for γ = ℓc

n = ℓ
ℓ+2 · δ, there exist f, g : D → Fq such that

|{z ∈ Fq | ∆(f + zg, C) ≤ γ}| ≥ a,

and yet ∆([f, g], C2) ≥ (ℓ+1)c
n = ℓ+1

ℓ+2δ = ℓ+1
ℓ γ.

Proof. Take f, g : D → Fq defined as

f(x) = xn−ℓ·c,

g(x) = xn−(ℓ+1)·c.

Since g is the evaluation of a polynomial of degree n − (ℓ + 1)c, we have ∆(g, C) ≥ (ℓ+1)c
n = ℓ+1

ℓ γ, and
therefore

∆([f, g], C2) ≥ ℓ+ 1

ℓ
γ.

We want to show that for at least a choices of z ∈ Fq, there is a polynomial Pz(X) ∈ Fq[X] of degree at
most n− (ℓ+2) · c such that f + zg−Pz has n− ℓ · c zero evaluations in D. This will hold if the polynomial

Xn−ℓ·c + zX(n−ℓ+1)c − Pz(X)

is the vanishing polynomial of some subset of D. Let s =
∑

α∈E α. For every z ∈ Fq of the form

z = s−
ℓ∑

i=1

ei
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with e1, . . . , eℓ distinct elements of E, consider the vanishing polynomial of S = Φ−1(S′), where S′ =
E \ {e1, . . . , eℓ}. The size of S′ is n

c − ℓ, and

PS(X) =
∏
α∈S′

(Xc − α).

Expanding:

PS(X) = Xn−ℓc −

(∑
α∈S′

α

)
Xn−(ℓ+1)c +

(
Some polynomial of deg ≤ n− (ℓ+ 2)c

)
= Xn−ℓc + zXn−(ℓ+1)c +

(
Some polynomial of deg ≤ n− (ℓ+ 2)c

)
.

Thus PS(X) has the desired form. By our hypothesis on D, there are at least a choices of z for which f + zg
has agreement n− ℓc with some Pz(X) ∈ C. This proves the theorem.

7.1 Proof of Theorem 1.15

Recall the theorem statement:

Theorem 1.15. Let c > 0 be an integer. There exist infinitely many q, RS codes C = RS[Fq,D, k] over Fq,
domain D = Fq with n = |D| = q, k = n − c (so that the relative distance δ of C equals c

n), and functions
f, g : D → Fq such that:

| {z ∈ Fq | ∆(f + zg, C) ≤ δ/3}| ≥ q − 1

c
=

n

c
= O

(
1

δ

)
,

and yet ∆([f, g], C) ≥ 2δ/3.

Proof. Fix c. Let q be a prime with q − 1 divisible by c. (By Dirichlet’s theorem on primes in arithmetic
progressions, there are infinitely many such q.) Instantiating Theorem 7.1 with ℓ = 1, E = G, H = F∗

q ,

and a = |E| = |G| = q−1
c , exactly gives us the content of Theorem 1.15: examples with constant absolute

distance showing that proximity gaps behavior for γ < δ/3 changes drastically at γ = δ/3.

To state the difference starkly, when δ = O(1/n) and γ = δ/3, even when a is as large as Ω(1/δ) = Ω(n),
we must have distance loss ε∗ ≥ γ. While if δ = O(1/n) and γ < δ/3, already when a = γn+ 1 = O(1), we
have ε∗ = 0.

Observe that the evaluation domain D of these examples equals F∗
q , and thus has n = q − 1.

7.2 Proof of Theorem 1.16

Recall the theorem statement:

Theorem 1.16. Let 0 < ϵ < 1/4 be fixed. There are infinitely many primes q, RS codes C = RS[Fq,D, k]
over Fq, domain D with n = |D| = O(q0.5+2ϵ), k = n−Θ(nϵ) (so that the relative distance is δ = Θ(n−(1−ϵ))),
and functions f, g : D → Fq such that:

|{z ∈ Fq | ∆(f + zg, C) ≤ δ/2}| ≥ q − 1 = Ω(n2/(1+4ϵ)) = Ω(n2−8ϵ),

and yet ∆([f, g], C2) ≥ 3δ/4.
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The theorem is obtained by instantiating Theorem 7.1 with ℓ = 2 and a suitable choice of E, supported by
the following lemma.

Lemma 7.2. Let θ, β be constants with β < 1/4, θ > 1/2 and θ + β < 1. Suppose Fq is a prime field, and
G ⊆ F∗

q is a multiplicative subgroup of size q−1
c , where c ∈ Θ(qβ). Then there exists a subset E of G of size

O(qθ) such that
|{e1 + e2 : e1, e2 ∈ E distinct }| ≥ q − 1.

Proof. We use the probabilistic method.

Set p = qθ

|G| (this is at most 1 since θ+β < 1). Pick a random set E in Bernoulli manner, by independently

deciding for each element in G whether to be included (probability p) or not (probability 1 − p). We will
show that with overwhelming probability the sampled set E has the desired property.

The expected size of E is p|G|, thus by the Chernoff bound, |E| ≤ 2p|G| = 2qθ with probability at least

1− exp(−p|G|) = 1− o(1).

In this case |E| = O(qθ), as required.

Let us investigate the second property. By the finite field Waring theorem (e.g., see [LN96]) every nonzero
element of Fq can be written as x+ y for (x, y) ∈ G2 in |G|2/q±O(

√
q) = Ω(q1−2β) ways. Moreover, asking

for x, y to be distinct can change this quantity by at most 1. Fix a nonzero α ∈ G. The probability that
none of the (x, y) ∈ G2 with x+ y = α are such that {x, y} ⊆ E is at most:

(1− p2)Ω(q1−2β) = e−Ω(p2q1−2β),

since the events {x, y} ⊆ E for different unordered pairs {x, y} ⊆ G with x+ y = α are independent. Taking
a union bound over all α ∈ F∗

q , the probability that there exists some α ∈ F∗
q which cannot be written as

e1 + e2 for some distinct e1, e2 ∈ E is at most:

q · e−Ω(p2q1−2β) = q · e−q2θ−1

≤ o(1),

where the last inequality holds because θ > 1/2.

Taking the intersection of the two events of large probability yields the claim of the lemma.

Proof of Theorem 1.16. Let ϵ ∈ (0, 1/4) be arbitrary. Choose constants β = ϵ and θ = 1/2 + ϵ.

By a standard application of the Bombieri–Vinogradov theorem [Dav00], there are infinitely many primes
q for which q − 1 has a factor c in the range (qβ , 2qβ). (In other words, we seek infinitely many integers c
such that the arithmetic progression {n | n ≡ 1 mod c} contains a prime between (c/2)1/β and c1/β . It is
known that the Generalized Riemann Hypothesis implies this for all large enough c.)

Take such a q. Let G be the set of c-th powers in F∗
q , and let E ⊆ G be a subset of G given by the above

lemma. Using ℓ = 2, c, E as above, and applying Theorem 7.1, we get proximity loss ε∗ = 1
4δ at radius

γ = δ/2 for the Reed–Solomon code RS[Fq,D, k], with domain D satisfying:

n = |D| = c · |E| = O(qβ · qθ) = O(q1/2+2ϵ),

k = n− 4c = n−Θ(qβ) = n−Θ(nϵ), and the number of exceptional z’s:

a = q − 1.

This completes the proof of Theorem 1.16.
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7.3 Limits on proximity gaps over prime fields in the δ = Ω(1) regime?

We now prove Theorem 1.13:

Theorem 1.13. Suppose (q, a, b) is admissible with b even. Let G be the corresponding subgroup of F∗
q of

cardinality b, and let H ⊆ F∗
q be any multiplicative subgroup containing G. Consider the Reed–Solomon code

C = RS[Fq,D, k], with D = H, n = |D|, k =
(
1
2 − 2

b

)
n, and relative distance δ = 1

2 + 2
b .

Then there exist functions f, g : D → Fq such that:∣∣∣∣{z ∈ Fq | ∆(f + z · g, C) ≤ δ − 2

b

}∣∣∣∣ ≥ a,

but ∆([f, g], C2) ≥ δ − 1
b .

Proof. As mentioned in Section 1.4.3, this combined with Conjecture 1.12 provides infinitely many n for
which there are Reed–Solomon codes over prime fields Fq with length n = q − 1 and relative distance
δ = 1/2, such that any proximity gaps result with γ = δ − Θ(1/ log n) and a ≥ n has a proximity loss of
Θ(1/ logn).

Let (q, a, b) be admissible. Let G be the subgroup of F∗
q of size b. Let D be a multiplicative subgroup of F∗

q

containing G. Set c = |D|/b. Then the c-th power map Φ : D → G is c-to-1 and onto. We apply Theorem 7.1
with this c, G = E, H = D, and ℓ = b/2. By our admissibility assumption, we have |E(+ℓ)| ≥ a. We get

that for parameters δ = (ℓ+2)c
n = 1

2 +
2
b , γ = ℓc

n = 1
2 and code C = RS[Fq,D, n− (ℓ+2)c] (which has distance

δ), there are functions f, g : D → Fq such that:

|{z ∈ Fq | ∆(f + z · g, C) ≤ γ}| ≥ a,

and yet ∆([f, g], C2) ≥ γ + 1
b . This completes the proof of Theorem 1.13.

Remark 7.3. Let q = 2p − 1 be a Mersenne prime, with p an odd prime. Then (q, q, 2p) is admissible.
Indeed, let G be the subgroup of F∗

q generated by −2. Then G = {±1,±2,±22, . . . ,±2p−1}, and |G| = 2p.

For any u ∈ Fq, consider the binary representation of u/2 =
∑p−1

i=0 bi2
i with bi ∈ {0, 1}. Note that for each

i, 2bi − 1 = ±1 and consider the p distinct elements ei = (2bi − 1) · 2i ∈ G. We get

p−1∑
i=0

ei = 2

p−1∑
i=0

bi2
i −

p−1∑
i=0

2i ≡ u (mod q),

which shows that u ∈ G(+p). This proves the claim about admissibility and Mersenne primes.

8 Attacks on STARKs near the list decoding radius

In this section, we prove Theorem 1.17:

Theorem 1.17. Consider the IOP protocol for the CYCLE-SUM constraint satisfaction problem given by
the DEEP-ALI reduction, using the Reed–Solomon code C = RS[Fq,D, k], where:

• D is a union of t cosets of G

• |D| = a · t = n and k = a = 1
tn.

• δ = 1− 1
t is the distance of C.
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Then there is a prover strategy that does not make the verifier reject, and produces (h1, . . . , hc) such that:

Pr

[
∆([h1, . . . , hc], Cc) ≤ 1 + γq

2

]
≥ Ω(1/n),

where γq = LDRFq,D,q(δ) +
1
n .

We begin by recalling the basic STARKs IOP protocol, instantiated for the CYCLE-SUM CSP.

8.1 The basic STARK

The basic STARK IOPP, from [BSBHR18], is as follows.

1. We first pick an evaluation domain D ⊆ Fq which is a union of t cosets of G. So n = |D| = a · t.

2. We ask the prover to write down a function f : D → Fq (which is supposed to be evaluations of a low
degree polynomial F (X) interpolating the satisfying assignment f : G → Fq).

The key observation: if F is truly as intended, then the polynomial F (gX) − F (X) − 1 will vanish on G,
and thus be divisible by the vanishing polynomial of G, namely Xa − 1. Thus we expect Bf : D → Fq to be
a low degree polynomial, where for a general function h : D → Fq, the function Bh : D → Fq is defined to
be:

Bh(x) =
h(gx)− h(x)− 1

xa − 1
,

where f and Bf are the output of this first phase of the protocol. Observe that there was no interaction
in this protocol after the prover wrote down f , and that oracle access to Bf can be simulated from oracle
access to f . The next phase is:

3. Check the low-degreeness of f and Bf by running a low-degree test such as FRI, to confirm that they
are both of degree at most k = a.

This is the problem of checking proximity to C = RS[Fq,D, k]. Let ρ = k/n, and note that the distance δ of
C equals 1− ρ = 1− 1

t .

8.1.1 Attack on the basic STARK

We now show that it is possible to choose f so that both f and Bf have distance ≤ δ/2 from C, and
furthermore it can be correlated: ∆([f,Bf ], C2) ≤ δ/2. (This is the unique decoding radius of C.)
The idea is that the value of Bf at a single element of D can be set to any desired value by modifying a
single value of f . Thus taking half the values of f consistent with some low degree polynomial F (X) and
the other half of the values of f so that Bf is consistent with some low degree polynomial C(X), we get that
both f and Bf have agreement at least 1/2 with low degree polynomials.

Explicitly, let F (X), C(X) ∈ Fq[X] be arbitrary polynomials of degree at most k. For each coset yG ⊆ D,
define:

f(y · g2i) = F (y · g2i)
f(y · g2i+1) = C(y · g2i)

(
(y · g2i)a − 1

)
+ 1 + f(y · g2i).

This ensures that for all i,

f(y · g2i) = F (y · g2i),
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Bf (y · g2i) = C(y · g2i).

This gives us a correlated agreement of at least 1/2.

By choosing F (X) arbitrarily and C(X) to be the low degree extension of BF on some k = ρ · n points, we
can get some extra agreements. It is easy to check that this lets us increase the agreement to 1+ρ

2 = δ
2 .

8.2 STARK with DEEP queries

Now we consider the STARK protocol with DEEP6 queries [BGKS20]. This is the version of the protocol
with the best known soundness, and our main result about attacking STARKs is for this.

Again we have an evaluation domain D ⊆ Fq which is a union of t cosets of G. So n = |D| = a · t.
We ask the prover to write down a function f : D → Fq (which is supposed to be evaluations of a low degree
polynomial F (X) interpolating the satisfying assignment f : G → Fq). Thus f is supposed to be an element
of C = RS[Fq,D, k], where k = a. Let ρ = k/n and δ = 1− ρ, the distance of C.
The main technical notion we need is the quotient of a function h : D → Fq by some claims: “h(α1) =
β1”, . . . , “h(αr) = βr”. This is a function h′ : D → Fq given by:

h′(x) =
h(x)− V (x)

Z(x)

where:

• V (X) ∈ Fq[X] is the unique polynomial of degree at most r − 1 with V (αi) = βi for each i,

• Z(X) is the vanishing polynomial of {α1, . . . , αr}.

The definition has the following property: suppose h is the evaluation table of some polynomial H(X) of
degree at most d such that H(αi) = βi – then h′ is the evaluation table of some polynomial H ′(X) of degree
at most d− t.

In this protocol, after the prover has committed to values of f on D, the verifier then asks for values of
(the polynomial underlying) f at values α, gα outside the domain D, for a uniformly random α ∈ Fq. If the
prover responds with values u, v, the verifier then quotients f by the claims “f(α) = u” and “f(gα) = v”, and
quotients Bf by the claim “Bf (α) = v−u−1

αa−1 ”. These quotiented functions are then checked for low-degreeness
using a low degree test like FRI.

8.2.1 Attack on the DEEP STARK

The main lemma from [BGKS20] about quotienting is below.

Lemma 8.1. Given a function h : D → Fq, and some claimed values h(αi) = βi for some α1, . . . , αr ∈ Fq\D,
let h′ be the quotient of h by these claimed values. Then the following are equivalent:

• There exists H ′(X) of degree at most d− r such that ∆D(h
′, H ′) ≤ δ.

• There exists H(X) of degree at most d such that ∆D(h,H) ≤ δ and H(αi) = βi for each i.

Let us first see why the previous attack does not work.

6DEEP is short for Domain Extension for Eliminating Pretenders, and the main idea is to make queries outside the domain
of definition of what the prover has sent.
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Suppose we (the attacking provers) chose f so that f is close to F and Bf is close to C. Now when the
verifier asks us for the values of f at α and gα, we can either answer consistent with F or not. If we do
not answer consistent with F , then by the quotienting lemma there will not exist a low degree polynomial
close to the quotient of f , and the low degree test will catch us. If we do answer consistent with F , then we

will quotient Bf by the claim “Bf (α) = F (gα)−F (α)−1
αa−1 ”, which is very unlikely to be consistent with C(α)

(since C(X) and F (gX)−F (X)−1
Xa−1 are distinct low-degree rational functions). This means, by the quotienting

lemma again, that the quotiented Bf will be very far from low degree polynomials, and the low degree test
will catch us.

Thus, the previous attack does not work as is. This is for a good reason, since the analysis in [BGKS20]
proves soundness upto the list-decoding radius of Reed–Solomon codes.

Instead we need to use bad list-decoding configurations, which only exist for radii beyond the list-decoding
radius of Reed–Solomon codes.

Let γ = LDRFq,D,q(δ) +
1
n . By definition, there exists a function c : D → Fq such that

L = {H(X) ∈ Fq[X] | deg(H) ≤ k,∆(c,H) ≤ γ} (16)

has |L| ≥ q.

We know that γ ≥ 1−
√
1− δ and γ ≤ δ.

Theorem 8.2. There is a function f which the prover can write down such that probability at least Ω( 1n )
over the choice of α ∈ Fq, the prover can answer values for f(α) and f(gα) so that the quotiented versions
of f and Bf , denote h1 and h2, satisfy:

∆([h1, h2], C2) ≤ 1 + γ

2
.

Proof. The idea is to use the bad list-decoding center c in place of the polynomial C(X) in the original
attack on the STARK without DEEP.

Before we describe the prover’s strategy, we first some preliminary adjustments to c and L.
Suppose Y is a set of representatives for the cosets of G that make up D. (Thus D is a disjoint union of
yG for y ∈ Y ).

Let G2 = {g2i | i ∈ N}. Define D∗ =
⋃

y∈Y (yG
2). Note that |D∗| = |D|/2.

Each H(X) in L has ∆D(c,H) ≤ γ. This means that either ∆D∗(c,H) ≤ γ or ∆D\D∗(c,H) ≤ γ. In the
latter case, defining c′(x) = c(gx) and H ′(X) = H(gX), we have ∆D∗(c′, H ′) ≤ γ.

Thus, by replacing c with c′ if needed, we may assume that there is a large number of polynomials H(X)
that are close to c on D∗. Concretely, define:

L∗ = {H(X) ∈ Fq[X] | deg(H) ≤ k,∆D∗(c,H) ≤ γ},

and we have:
|L∗| ≥ q/2.

Let F (X) be a low degree polynomial that will be chosen carefully later. For each coset yG ⊆ D, define as
before for each i:

f(y · g2i) = F (y · g2i)
f(y · g2i+1) = c(y · g2i)

(
(y · g2i)a − 1

)
+ 1 + f(y · g2i).

This will be the f that the prover writes down.
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Our definition of f ensures that for all x ∈ D∗:

f(x) = F (x)

Bf (x) = c(x)

This gives us perfect agreement between [f,Bf ] and [F, c] on D∗, (and thus correlated agreement at least
1/2 between (f,Bf ) and (F, c) on D).

Now when the verifier asks for f(α) and f(gα), the prover answers F (α) and F (gα). By the quotienting
lemma, this ensures that the quotiented F , which is a low degree polynomial of degree at most k − 2, has
perfect agreement with the quotiented f on D∗, (and agreement ≥ 1/2 with the quotiented f on D).

What about the quotiented Bf? Bf was quotiented by the claim “Bf (α) = F (gα)−F (α)−1
αa−1 ”. Does there

exist a polynomial of degree at most k − 1 that is close to the quotiented Bf on D∗? By the quotienting
lemma, this will be true if and only if there is a polynomial of degree at most k that is close to Bf on D∗

(recall that Bf = c on D∗), such that H(α) = F (gα)−F (α)−1
αa−1 .

We can now choose the univariate polynomial F (X); it will be so that the probability (over α) of such an
H existing is noticeable. First, a lemma.

Lemma 8.3. Let L be the set of polynomials close to c as given by (16).

Define L′ =
{

H(X)·(Xa−1)+1
(g−1)X : H(X) ∈ L∗

}
. Then there exists some λ ∈ Fq such that:

Pr
α∈Fq

[λ ∈ L′(α)] ≥ 1

2

1

k + a
.

Proof. Observe that any two elements of L′ have agreement at most k + a. Lemma 6.1 tells us that the
average L′(α) is big:

Eα∈Fq
[|L′(α)|] ≥ 1

2

q

k + a
.

Thus by the probabilistic method, there exists λ ∈ Fq that lies in 1
2

1
k+a fraction of all the L′(α). This λ

satisfies the requirements of the lemma.

Define F (X) = λX. Then F (gα)−F (α)−1
αa−1 = λ(g−1)α−1

αa−1 . Thus H(X) ∈ L∗ will have

H(α) =
F (gα)− F (α)− 1

αa − 1

if and only if:
H(α) · (αa − 1) + 1

(g − 1) · α
= λ.

By choice of λ, such an H(X) ∈ L will exist with probability at least 1
2

1
k+a over the choice of α.

If this happens, we get that [f,Bf ] is close to the pair of low degree polynomials [F,H]:

∆D([f,B
f ], [F,H]) ≤ 1 + γ

2
. (17)

Indeed, by our choice of f , we already know that for all x ∈ D∗,

f(x) = F (x).

We also know that H(X) ∈ L∗: thus ∆D∗(H, c) ≤ γ. This means that ∆D∗([f,Bf ], [F,H]) ≤ γ. Taking into
account the fact that |D∗| = |D|/2, we get Equation (17) above. Thus

Pr

[
∆([f,Bf ], C2) ≤ 1 + γ

2

]
≥ 1

2(k + a)
,

as desired.
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8.3 Attack on the Ethstark Toy Problem

The Ethstark Toy Problem [Sta23] asked what is the best prover success probability that one could have
for the following protocol. We fix a Reed-Solomon code C = RS[Fq,D, k], and let n = |D|, and its distance
δ = 1− k

n .

• The prover writes down f : D → Fq

• The verifier picks α, β uniformly at random, and sends them to the prover.

• The prover will try to convince the verifier that f is in C, and the polynomial F (X) underlying it has
F (α) = β. Concretely, define the function h[f, α, β] : D → Fq by:

hf,α,β(x) =
f(x)− β

x− α
.

(Access to h can be simulated using access to f).

The prover and verifier now run the FRI protocol with repetition parameter t to prove that h lies in
C′ = RS[Fq,D, k − 1].

In [Sta23], it was noted that the best known success probability for the prover was 1
q +

(
k
n

)t
= 1

q +(1− δ)t.

We prove:

Lemma 8.4. Let γq = LDRFq,D,q(δ) +
1
n . Then there is a function f : D → Fq such that:

Pr
α,β

[∆(hf,α,β , C′) ≤ γq] ≥
1

2n
.

Using the fact that the FRI protocol accepts functions that are β-close to C′ with probability (1− β)t, this
lemma translates into a prover strategy with success probability

1

2n
+ (1− γq)

t.

If the Reed-Solomon code C has a small list decoding radius for list size q, then this is potentially a much
larger success probability. Examples of (infinite families of) Reed-Solomon codes with γq < δ − Ω(1) are
known, for example in [BSKR06].

Proof of Lemma 8.4

We take f : D → Fq to be a function with many nearby codewords of C. Specifically, we take f such that:

L := {P (X) ∈ C | ∆D(f, P ) ≤ γq}

satisfies:
|L| ≥ q.

Such an f is guaranteed to exist by definition of γq.

We now view L as a collection of functions from Fq → Fq, and apply Lemma 6.1 (with S = Fq) to it. We
get that for random α ∈ Fq:

Eα∈Fq [|L(α)|] ≥
1

2
min(q,

q

k
) ≥ q

2n
.
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Thus for uniformly random β ∈ Fq,

Pr
α,β

[β ∈ L(α)] ≥ 1

2n
.

In other words, with probability at least 1
2n over the choice of α, β ∈ Fq, there exists some polynomial

F (X) ∈ L such that F (α) = β.

If this happens, we show that hf,α,β is close to C′. For this, we use the main fact about quotienting: Suppose
F (X) is a polynomial such that:

• ∆D(f, F ) ≤ γq

• F (α) = β

Then defining H(X) to be the degree ≤ (k − 1) polynomial F (X)−β
X−α , we have:

∆D(h
f,α,β , H) ≤ γq.

This completes the proof of Lemma 8.4.
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