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Abstract

We show that Reed-Solomon codes of dimension k and block length n over any finite field F
can be deterministically list decoded from agreement

√
(k − 1)n in time poly(n, log |F|).

Prior to this work, the list decoding algorithms for Reed-Solomon codes, from the cele-
brated results of Sudan and Guruswami-Sudan, were either randomized with time complexity
poly(n, log |F|) or were deterministic with time complexity depending polynomially on the char-
acteristic of the underlying field. In particular, over a prime field F, no deterministic algorithms
running in time poly(n, log |F|) were known for this problem.

Our main technical ingredient is a deterministic algorithm for solving the bivariate polyno-
mial factorization instances that appear in the algorithm of Sudan and Guruswami-Sudan with
only a poly(log |F|) dependence on the field size in its time complexity for every finite field F.
While the question of obtaining efficient deterministic algorithms for polynomial factorization
over finite fields is a fundamental open problem even for univariate polynomials of degree 2,
we show that additional information from the received word can be used to obtain such an
algorithm for instances that appear in the course of list decoding Reed-Solomon codes.
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1 Introduction

Reed–Solomon (RS) codes are among the most important and well-studied families of error-correcting
codes, notable for their algebraic simplicity and optimal trade-off between rate and distance. Their
simple algebraic structure lends to extremely efficient encoding and decoding algorithms, and RS
codes are widely used both in theory and practice. An [n, k] RS code over a finite field F encodes a
message polynomial f(X) of degree strictly less than k by evaluating it at n distinct field elements
α1, . . . , αn, yielding the codeword

(f(α1), f(α2), . . . , f(αn)) ∈ Fn.

These codes attain the Singleton bound and have distance exactly n− k + 1.

Unique and list decoding. In the unique decoding problem, given a received word, the goal is to
find the unique codeword, if it exists, within a Hamming ball of radius half the minimum distance,
which for RS codes equals (n − k + 1)/2. Classical algorithms such as those of Berlekamp-Welch,
Berlekamp-Massey and Peterson efficiently achieve this bound. However, when the corruption ex-
ceeds this radius, multiple codewords may have significant agreement with the received word. The
list decoding problem, introduced by Elias [Eli57] and Wozencraft [Woz58], relaxes this require-
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ment of uniqueness: instead of demanding uniqueness, the decoder outputs all codewords that are
sufficiently close to the received word.

A sequence of breakthroughs, beginning with Sudan’s algorithm [Sud97] and refined by Gu-
ruswami and Sudan [GS99], established that RS codes can be efficiently list decoded from agree-
ment roughly

√
(k − 1)n, corresponding to the Johnson radius, which is significantly larger than the

half-the-minimum distance. These algorithms hinge on two key algebraic steps: (1) constructing
a low-degree bivariate polynomial that vanishes at all received points with multiplicity, and (2)
factorizing this polynomial to recover all potential message polynomials.

Derandomization and the factorization barrier. Both the Sudan and Guruswami–Sudan
algorithms rely on the factorization of bivariate polynomials over finite fields. The known algorithms
for polynomial factorization include algorithms for univariate polynomials due to Berlekamp [Ber67,
Ber70] and Cantor–Zassenhaus [CZ81], and algorithms for multivariates developed in the 1980s
(e.g. Kaltofen [Kal85], Lenstra [Len85]). These algorithms run in polynomial time1 and are highly
efficient in practice, but are unfortunately randomized. Despite decades of effort, obtaining efficient
deterministic polynomial-time algorithms for polynomial factorization over finite fields2 remains a
fundamental open problem in computational algebra.

Even in the univariate case, where one seeks to factor a degree-d polynomial f ∈ Fq[X], all
known deterministic algorithms either have running time polynomial in the characteristic of the
field [Ber67, Ber70] or apply only to restricted classes of polynomials or work under unproven
assumptions. For instance, while it is known that Shoup’s improved deterministic factorization
algorithm [Sho90] is efficient (i.e., takes time poly(d, | log |F|)) for most polynomials, the best prov-
able worst-case guarantee is √p · poly(d, log |F|). Several deterministic algorithms based on the
Generalized Riemann Hypothesis (GRH) have also been developed; however, these approaches not
only rely on an unproven assumption but, like Shoup’s algorithm, fail to handle all polynomials. In
short, unconditional deterministic polynomial-time factorization over arbitrary finite fields remains
elusive, even for quadratic polynomials.

This limitation directly impacts derandomization efforts in list decoding; since both Sudan and
Guruswami–Sudan algorithms use the factorization step. As in the general polynomial factorization
setting, all known deterministic algorithms for the list-decoding RS codes run in time polynomial
in n and in the characteristic of the underlying field. Consequently, when the characteristic is
polynomial in n (as is the case in most coding theoretic settings), these algorithms do yield a fully
deterministic list-decoding procedure. However, no truly deterministic algorithm with running time
polynomial in (n, log |F|) was known for all settings of n and the finite field F. In particular, even

1For the multivariate setting, the input and the output polynomials are generally succinctly represented by alge-
braic circuits.

2Over the field of rational numbers, deterministic polynomial time algorithms for univariate factorization were
designed in the work of Lenstra, Lenstra & Lovasz [LLL82].
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for prime fields Fp with p≫ n, the existence of such a deterministic algorithm remained open.

Our results. We give the first deterministic list-decoding algorithms for RS codes up to the
Johnson radius that run in time polynomial in both the block length and logarithm of the field size.
More precisely, we prove the following theorem.

Theorem 1.1. There is a deterministic algorithm that for every finite field F and parameters
n > k ∈ N runs in time poly(n, log |F|) and list decodes Reed-Solomon codes of block length n and
dimension k over F from agreement greater than

√
(k − 1)n.

It would be interesting if we can obtain near-linear time versions of these deterministic algorithms
(a la Alekhnovich [Ale05]).

Our work demonstrates that even though general deterministic factorization remains elusive,
the algebraic structure inherent in coding-theoretic instances can circumvent this technical issue.
This result is an addition to the broader derandomization program in computational complexity,
offering yet another concrete setting where randomness can be provably removed without assuming
any unproven hypotheses.

Techniques. Our main technical contribution is a new deterministic algorithm for bivariate poly-
nomial factorization in the structured setting that arises within the algebraic list-decoding frame-
work. While the general problem of deterministic factorization remains open, we exploit additional
structure available from the received word, specifically, knowledge of its evaluation pattern and
multiplicities, to remove randomness in this restricted but highly relevant setting.

This idea of exploiting additional information from the codeword also appears in the work of
Kalev and Ta-Shma [KT22] in their analysis of a multiplicity-code-based lossless condenser. Inspired
by their approach, we can obtain the following derandomization of Sudan’s algorithm.

Theorem 1.2. There is a deterministic algorithm that, for every finite field F and parameters
n, k ∈ N, runs in time poly(n, log |F|) and list decodes Reed–Solomon codes of block length n and
dimension k over F from agreement greater than

√
2(k − 1)n.

To the best of our knowledge, such a deterministic variant of Sudan’s algorithm was not known
prior to our work. Our derandomized variant of Sudan’s algorithm employs Newton’s iteration 3 to
find a root (Y −f(X)) of a bivariate polynomial Q(X,Y ). Typical applications of Newton’s iteration
use a point (α, β) satisfying Q(α, β) = 0 and ∂Q

∂Y (α, β) ̸= 0. This point is typically obtained by
choosing an appropriate α, and then using randomized univariate factorization algorithms to obtain
a root β of Q(α, Y ). To do this factorization deterministically in the list-decoding setting, we note
that at all the points (αj , βj) in the received word, Q satisfies Q(αj , βj) = 0. If furthermore, one of
these points satisfy ∂Q

∂Y (α, β) ̸= 0, we can avoid the random search for a suitable (α, β). Otherwise,
3Kalev-TaShma used a similar approach to solve linear differential equations in [KT22].
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if all points (αj , βj) of agreement of f with the codeword satisfy ∂Q
∂Y (α, β) = 0, we can use this

to show that (Y − f(X)) is a root of ∂Q
∂Y (X,Y ), a lower-degree polynomial. Applying this idea

recursively, yields the above deterministic variant of Sudan’s algorithm.
However, this idea alone is insufficient to derandomize the Guruswami–Sudan algorithm: in both

Sudan’s list decoding and Kalev–Ta-Shma’s condenser, the multiplicity used in the interpolation
step is m = 1, whereas in the Guruswami–Sudan algorithm the multiplicity is considerably higher.

We follow an alternate approach using Hensel lifting instead of Newton’s iteration. Standard
applications of Hensel lifting, like Newton’s iteration, are seeded using an initial random step which
we cannot afford. To circumvent this, we do the following: for each codeword point (αj , βj), we first
deterministically factorize the interpolation polynomial Q(αj , Y ) into coprime factors as follows:
Q(αj , Y ) = (Y − βj)mj · P̂j(Y ) for some P̂j(Y ) such that P̂j(βj) ̸= 0. We use this initial condition
as a base case for the Hensel lifting and obtain a non-trivial local factorization of Q corresponding
to each point (αj , βj) in the received word. We then apply this local factorization recursively to
the set of factors obtained, till the set stabilizes. We then show how to obtain the desired factors
(Y − f(X)) corresponding to the polynomials f in the list from the stabilized factorization.

A detailed overview of these deterministic algorithms is presented in Section 2.

2 Proof overview

In this section, we outline the main ideas behind the proof of Theorem 1.1. To set the stage, we first
recall the structure of the list-decoding algorithms of Sudan [Sud97] and Guruswami–Sudan [GS99].
Let w = {(αj , βj)}j∈[n] denote the received word, where α1, . . . , αn ∈ F are distinct evaluation
points. The algorithms depend on parameters m,D, t, to be fixed later, and output a list L of
degree-(k− 1) univariate polynomials f(X) that agree with w on at least t points. Both algorithms
share the same two-step structure:

1. Interpolation. Find a nonzero polynomial Q(X,Y ) of (1, k − 1)-degree4 at most D that
vanishes at each (αj , βj) with multiplicity at least m. (Formally, all Hasse derivatives of order
less than m vanish at each point.)

2. Factorization. Factor Q(X,Y ) over F; for each factor of the form (Y − f(X)), output f if
deg f < k and f agrees with w on at least t positions.

The distinction between the two algorithms lies in the choice of parameters. Sudan’s algorithm
sets m = 1 and D, t ≈

√
2(k − 1)n, while Guruswami–Sudan sets m = poly(n) to decode from

agreement t =
√
(k − 1)n, with D ≈ m

√
(k − 1)n. The use of higher multiplicities, one of the key

innovations of [GS99], has since become a standard tool in algebraic coding theory [Sar11].
4The (a, b)-degree of a monomial xiyj is defined to be equal to (ai + bj). The (a, b)-degree of a polynomial Q is

the maximum of the (a, b)-degrees of the non-zero monomials in the polynomial.
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The interpolation step reduces to solving a homogeneous linear system in the coefficients of Q.
The parameters are chosen so that the number of constraints is smaller than the number of variables
and hence a nonzero solution always exists and can be found deterministically in poly(n, log q) time
by Gaussian elimination.

Randomness enters only in the factorization step, which employs standard algorithms for bivari-
ate polynomial factorization over F. A natural approach to derandomizing the decoding algorithm
would be to design a deterministic poly(d, log |F|)-time algorithm for factoring arbitrary bivariate
polynomials of degree d over a finite field F. However, such an algorithm is unknown even for univari-
ate quadratics. The factorization instances that arise in the decoding algorithms of [Sud97, GS99]
exhibit additional structure: the desired factors are always linear in Y (of the form (Y − f(X)) for
a univariate f of degree less than k), and we have access to noisy evaluations of f . We show that
this additional structure can be exploited to eliminate randomness efficiently.

The techniques differ slightly between the two parameter settings, and we first describe the
simpler case corresponding to Sudan’s algorithm before turning to the Guruswami–Sudan algorithm.

2.1 Derandomizing Sudan’s decoder

In Sudan’s algorithm, the interpolation step outputs a polynomial Q(X,Y ) that vanishes on each
(αj , βj) and has (1, k − 1)-degree less than

√
2(k − 1)n. The analysis observes that for any poly-

nomial f(X), the univariate Q(X, f(X)) vanishes at every αj where f(αj) = βj . Hence, if the
agreement between f and the received word exceeds the degree of Q(X, f(X)) (bounded by the
(1, k− 1)-degree of Q), then Q(X, f(X)) must be identically zero or equivalently, f(X) is a Y -root
of Q(X,Y ). To recover such an f from Q, we employ the classical Newton iteration technique,
stated below.

Lemma 2.1 (Newton Iteration [GG13, Chapter 9]). Let R = F[X] be a polynomial ring and let
Q(X,Y ) ∈ R[Y ]. Suppose φ ∈ FJXK satisfies Q(X,φ) ≡ 0 mod ⟨X⟩m and Q(0,1)(0, φ(0)) ̸= 0.
Then

φ′ := φ− Q(X,φ)

Q(0,1)(0, φ(0))

satisfies Q(X,φ′) ≡ 0 mod ⟨X⟩m+1 and φ′ ≡ φ mod ⟨X⟩m. Moreover, this extension is unique: any
φ′′ satisfying Q(X,φ′′) ≡ 0 mod ⟨X⟩m+1 and φ′′ ≡ φ mod ⟨X⟩m must also satisfy φ′′ ≡ φ′ mod

⟨X⟩m.

In our setting, the lemma implies that if we can find (α, β) ∈ F2 such that f(α) = β and
Q(0,1)(α, β) ̸= 0, then starting from

Q(X,β) ≡ 0 mod ⟨X − α⟩,

6



we can iteratively lift modulo powers of ⟨X − α⟩ using Lemma 2.1 to recover f . This process is
fully deterministic and can be implemented in poly(degQ, log |F|) time over any finite field. Thus,
recovering f reduces to finding a point (α, β) such that f(α) = β and Q(0,1)(α, β) ̸= 0.

Given the received word w, there are many candidate points (αj , βj) where f(αj) = βj . Al-
though we do not know which coordinates correspond to actual agreements, we can simply try all
n possibilities. If some j satisfies Q(0,1)(αj , βj) ̸= 0, then we can deterministically recover f via
Lemma 2.1.

The remaining case is for those close enough polynomials f such that for every point of agreement
(αj , βj), the derivative Q(0,1)(αj , βj) = 0. In this situation, f is in fact a Y -root of Q(0,1)(X,Y ).
The Y -degree of Q(0,1) is strictly smaller than that of Q, while its (1, k−1)-degree does not increase
in the process. Define R1(X) = Q(0,1)(X, f(X)). By assumption, R1(αj) = 0 at all points of
agreement of f , implying R1(X) ≡ 0. Hence, f(X) is also a Y -root of Q(0,1)(X,Y ).

We now repeat the same reasoning with Q(0,1) in place of Q. If there exists (αj , βj) satisfying
the conditions of Lemma 2.1, we recover f ; otherwise, f must also be a Y -root of Q(0,2)(X,Y ),
and so on. Consequently, the decoder simply tries all partial derivatives Q(0,i)(X,Y ) for successive
i and all candidate points (αj , βj). For each pair, it invokes the Newton iteration subroutine.
Correctness follows from the observation that for every codeword f close enough to w, at least one
such invocation succeeds. The technical details are deferred to Section 4.

2.2 Derandomizing the Guruswami–Sudan decoder

Given the previous section, it is natural to ask whether iterating over the Y -derivatives of Q also
works in the Guruswami–Sudan parameter regime. This direct approach fails. To decode from
agreement

√
(k − 1)n, the interpolation multiplicity is set to m = poly(n) , so Q vanishes with

multiplicity at least m at each (αj , βj). Consequently, for any f(X) agreeing with w at (αj , βj), the
univariate Q(X, f(X)) vanishes with multiplicity at least m at X = αj , and hence we can conclude
that Q(X, f(X)) is identically zero if

m ·#agreements(f, w) > (1, k − 1)-degree of Q. (2.2)

One might try to recover f by Newton iteration from an agreement point. However, since m > 1,
we have Q(0,1)(αj , βj) = 0 for every (αj , βj); thus we can attempt to recurse on Q(0,1). For this to
work, we would need

(m− 1) ·#agreements(f, w) > (1, k − 1)-degree of Q(0,1). (2.3)

But (1, k− 1)-degree of Q(0,1) can be as large as D− k where D = (1, k− 1)-degree of Q, so relative
to (2.2) the left-hand side drops by at least

√
(k − 1)n while the right-hand side drops by only k.

Thus (2.3) need not hold, and the simple derivative recursion from the Sudan case does not extend.
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To overcome this, we refine Q via a local factor-type decomposition at each received point. Let
P =

∏s
i=1 Pi be the factorization of a monic bivariate P (X,Y ) ∈ F[X,Y ] into irreducibles (with

multiplicity). For simplicity, we will assume in this proof overview section that all the bivariates are
monic in the variable Y . While the monic setting conveys most of the high level ideas of the proof,
for our final proofs, we have to work with non-monic bivariates and this leads to some additional
technical difficulties that we handle in Section 5 and Section 6. For (α, β) ∈ F2, we partition the
set [s] corresponding to the factors of P , into 3 sets as follows:

A(α, β) := {i ∈ [s] | Pi(α, Y ) = γ (Y − β)mi for some mi ≥ 1, γ ∈ F \ {0}},

B(α, β) := {i ∈ [s] | Pi(α, β) ̸= 0,degY Pi ≥ 1},

C(α, β) := {i ∈ [s] | Pi(α, Y ) = (Y − β)mi · P̂i(Y ) for some mi ≥ 1,degY P̂i ≥ 1, P̂i(β) ̸= 0}.

Let PA(α,β) :=
∏

i∈A(α,β) Pi and PB(α,β), PC(α,β) be defined similarly. For the received word
w = (αj , βj)j∈[n], write Aj , Bj , Cj and PA,j , PB,j , PC,j instead of A(αj , βj), B(αj , βj), C(αj , βj) and
PA(αj ,βj), PB(αj ,βj), PC(αj ,βj) for (αj , βj).

Since P is monic in Y , it follows from the Gauss’ lemma that each of its irreducible factors can
be assumed to be monic in Y . And, thus, P must equal the product of PA,j , PB,j and PC,j .

A simple but key observation is the following when applied to the Guruswami–Sudan interpola-
tion polynomial Q.

Observation 2.4. Let Q be the Guruswami–Sudan interpolation polynomial and f ∈ L. Then:

1. If f(αj) = βj for some j, then (Y − f(X)) divides QA,j.

2. If Q = QA,j for some j, then f(αj) = βj.

3. If f(αj) ̸= βj for some j, then (Y − f(X)) divides QB,j

The first item above follows from the definition of QAj and similarly the third item from the
definition of QB,j . For the second item, we recall that (Y − f(X)) divides Q(X,Y ) for every f in
the list L. As a consequence, (Y − f(αj)) must divide Q(αj , Y ), which by the definition of QAj and
the fact that Q = QA,j , only has irreducible factors of the form (Y − βj). So, f(αj) must equal βj .

Thus, if we can produce a bivariate P divisible by (Y − f(X)) and satisfying P = PA,j for at
least k indices j, then we can recover f by interpolating on those (αj , βj).

Our algorithm (Theorem 1.1) is an efficient deterministic realization of this plan, built from
three components.

(1) Deterministic local splitting P 7→ (PA,j , PB,j , PC,j).

Theorem 2.5 (monic version of Theorem 5.8). Let F be any finite field. There is a deterministic
algorithm Split which, given a polynomial P ∈ F[X,Y ] that is monic in the variable Y and a point
(α, β) ∈ F2, outputs polynomials PA(α,β), PB(α,β) in time poly(degP, log |F|).
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The method follows the Hensel-lifting paradigm but avoids randomized univariate factorization
by using (αj , βj) directly. First write

P (αj , Y ) = (Y − βj)mj · P̂j(Y ), where P̂j(βj) ̸= 0,

computed deterministically by repeated division by (Y − βj). If mj = 0 then P = PB,j ; if mj =

degY P (αj , Y ) then P = PA,j ; otherwise the coprime factorization
(
(Y − βj)

mj , P̂j(Y )
)

serves
as the base case for Hensel lifting to recover PA,j , PB,j , PC,j deterministically. While the standard
application of Hensel lifting (c.f., [KSS15, ST21]) uses randomized univariate factorization to seed it,
the above deterministic factoring of P (αj , Y ) into coprime factors (Y −βj)mj and P̂j(Y ) circumvents
the use of randomness in our application of Hensel lifting. See Section 6 for details.

(2) Refinement to a stable set. Call P stable (with respect to the received word w) if for every
j ∈ [n], either P = PA,j or P = PB,j . Initialize S ← {Q}. While some P ∈ S is not stable (i.e.,
there is a j ∈ [n] such that P /∈ {PAj , PBj}, update

S ←
(
S ∪ {PA,j , PB,j}

)
\ {P}.

This refinement uses Theorem 2.5 at each step.

(3) Decoding from stability and efficiency. If S is stable and (Y − f) | P ∈ S, then by
Observation 2.4, every j with P = PA,j corresponds to a true agreement f(αj) = βj . We prove that
after stabilization, for every f ∈ L there exists P ∈ S such that (Y − f) | P and P = PA,j holds on
at least k indices j. Interpolating on these points recovers f , and iterating over P ∈ S outputs all
f ∈ L.

To conclude the argument, we need to show that the refinement to a stable set can be done in
polynomial time. We do this via a potential function argument. See Section 5 for the full details
and analysis.

3 Preliminaries

For a natural number n, we use [n] to denote the set {1, 2, . . . , n}. We say that a function T (n) is
poly(n) if there is a constant c (independent of n) such that for all sufficiently large n, T (n) ≤ nc.

Throughout the paper, F denotes a finite field of size q = pr, for some prime p and positive
integer r. The prime p is referred to as characteristic of the field F. We will be working with the
ring F[X,Y ] of bivariate polynomials over the field F.
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3.1 Resultants and GCD

Greatest common divisor: The greatest common divisor (GCD) of two polynomials P,Q ∈
F[X,Y ], denoted by gcd(P,Q) is a polynomial D ∈ F[X,Y ] that divides P and Q, and such that
every common divisor of P and Q also divides D. If D = gcd(P,Q), there exist two polynomials
A,B ∈ F[X,Y ], referred to as the Bezout coefficients such that

A · P +B ·Q = D.

Resultant: Let g =
∑d1

i=0 gi(X)Y i and h =
∑d2

i=0 hi(X)Y i be polynomials in F[X,Y ] of Y -degree
exactly d1 and d2. Denote the vector space Wd = {f ∈ F[X,Y ] | degY (f) < d} over F(X). Then
consider linear map ψ : Wd2 ×Wd1 → Wd1+d2 where ψ(a(X,Y ), b(X,Y )) = a(X,Y ) · g(X,Y ) +

b(X,Y ) · h(X,Y ) where a, b ∈ F[X,Y ] and degY (a) < d2, degY (b) < d1. Then the matrix of the
ψ, over F[X] is called the Sylvester Matrix with respect to Y . And the determinant the Sylvester
matrix is called the Resultant of g, h with respect to Y , denoted by ResY (g, h)

Lemma 3.1 (Resultant Properties). Let d1, d2 ≥ 1. Let g(X,Y ), h(X,Y ) ∈ F[X,Y ] have Y -degree
exactly d1, d2 respectively. Then the following are true:

1. If each gi is a polynomial of degree at most e1 and each hj is a polynomial of degree at most
e2 then deg(ResY (g, h)) ≤ 2e1e2

2. ResY (g, h) = 0 if and only if g, h have a nontrivial GCD in the ring F(X)[Y ].

3. There exist polynomials a(X,Y ) and b(X,Y ) in F[X,Y ] such that:

ResY (g, h) = a · g + b · h

The following lemma is an easy consequence of Gauss’ lemma and will be useful for us.

Lemma 3.2 (Gauss’ lemma). Let A(X,Y ) =
∑d

i=0Ai(X)Y i and B(X,Y ) =
∑e

j=0Bj(X)Y j be
polynomials in F[X,Y ] of Y -degrees at least one.

Then, A and B have a GCD with Y -degree at least one in the ring F(X)[Y ] if and only if they
have GCD with Y -degree at least one in F[X,Y ].

3.2 Hasse derivatives and multiplicties

In many parts of the proof, especially in the context of the list decoding algorithm of Guruswami–
Sudan, we have to work with the notion of multiplicities. We start by recalling the notion of Hasse
derivatives and multiplicity.
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Definition 3.3 (Hasse derivatives). Let Q(X,Y ) ∈ F[X,Y ] be a bivariate polynomial. Then for
any (e1, e2) ∈ Z2

≥0, the (e1, e2)-th Hasse derivative of Q, denoted by Q(e1,e2)(X,Y ) is defined to be
the coefficient of the monomial Ze1

1 Z
e2
2 in the polynomial Q(X + Z1, Y + Z2), when it is viewed as

a bivariate in Z1, Z2.
(e1 + e2) is said to be the order of the Hasse derivative Q(e1,e2).

♢

Definition 3.4 (multiplicity). Let Q(X,Y ) ∈ F[X,Y ] be a bivariate polynomial, m be a non-
negative integer and (α, β) ∈ F2 be a point. We say that Q vanishes with multiplicity at least m on
on (α, β) if every Hasse derivative of Q of order at most (m− 1) evaluates to zero at (α, β). ♢

The definitions of both Hasse derivatives and multiplicity extend naturally to polynomials with
an arbitrary number of variables. Throughout the paper, these are invoked only for bivariate or
univariate polynomials.

3.3 Computing with polynomials:

In this section, we mention several standard deterministic building blocks for working with polyno-
mials.

Exact division: There exists a deterministic algorithm that on input two polynomials P,Q ∈
F[X,Y ] with the guarantee thatQ divides P , finds the quotient P/Q in time poly(degP, degQ, log |F|).

GCD Computation: Euclid’s algorithm computes the GCD of n univariate polynomials P1, . . . , Pn ∈
F[X] in time poly(max degPi, log |F|). The extended-Euclid algorithm, on input two polynomials
P,Q ∈ F[X] computes the gcd(P,Q) as well as the Bezout coeffients in poly(degP, degQ, log |F|)
time.

Content of polynomials. Given a polynomial P ∈ F[X,Y ], we can view it as a polynomial
in Y with coefficients from the ring F[X], more precisely write P (X,Y ) =

∑
ℓ P

(ℓ)(X) · Y ℓ. The
X-content of the polynomial P is gcd(P (1), P (2), . . . ).

Polynomial factorization for small characteristic fields: As mentioned in the introduction,
Shoup’s algorithm [Sho90] computes the factorization of degree d bivariate polynomials in deter-
ministic √p · poly(d, log |F|) time where p is the characteristic of the polynomial.

For fields of larger characteristic, we will use the following standard tools from computational
algebra: Newton’s iteration and Hensel lifting.

Newton’s iteration. As mentioned in the proof overview (Section 2), we will be using Newton’s
iteration repeatedly to find the Y -roots of bivariate polynomials.
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Lemma 2.1 (Newton Iteration [GG13, Chapter 9]). Let R = F[X] be a polynomial ring and let
Q(X,Y ) ∈ R[Y ]. Suppose φ ∈ FJXK satisfies Q(X,φ) ≡ 0 mod ⟨X⟩m and Q(0,1)(0, φ(0)) ̸= 0.
Then

φ′ := φ− Q(X,φ)

Q(0,1)(0, φ(0))

satisfies Q(X,φ′) ≡ 0 mod ⟨X⟩m+1 and φ′ ≡ φ mod ⟨X⟩m. Moreover, this extension is unique: any
φ′′ satisfying Q(X,φ′′) ≡ 0 mod ⟨X⟩m+1 and φ′′ ≡ φ mod ⟨X⟩m must also satisfy φ′′ ≡ φ′ mod

⟨X⟩m.

Hensel lifting. Hensel lifting allows us to lift a local factorization of a polynomial modulo a power
of (X − α) to a higher power. This may be viewed as the analog of Newton iteration for factoring,
as opposed to root lifting. We give more details of the Hensel lifting in Section 6.1.

A note on the characteristic of the underlying field. Typical applications of Newton’s
iteration and Hensel’s lifting assume that the characteristic of the underlying field is at least the
degree of the polynomials involved. While it is possible to use these ideas for polynomial factorization
over fields of small characteristic with some care, it will be convenient for us to assume that the
characteristic is at least poly(n) for our applications, since anyway when the characteristic is smaller
one can use Shoup’s deterministic factorization to obtain deterministic list-decoding algorithms.

4 Derandomizing Sudan’s decoder

In this section, we prove Theorem 1.2. Recall that Sudan’s list-decoding algorithm consists of two
main steps:

1. Interpolation Step: Given the received word w = {(αj , βj)}j∈[n], find a nonzero bivariate
polynomial Q(X,Y ) ∈ F[X,Y ] of (1, k − 1)-degree at most D such that Q(αj , βj) = 0 for all
j ∈ [n]. Here D is a parameter depending on n and k, set to D =

√
2(k − 1)n.

2. Factorization Step: Find all factors of Q(X,Y ) of the form Y −f(X) where deg(f) ≤ k−1,
such that f agrees with w on more than

√
2(k − 1)n coordinates.

The first step can be carried out deterministically in polynomial time by solving a homogeneous
linear system: there are more variables than equations, guaranteeing a nontrivial solution. Thus,
the only source of randomness lies in the factorization step. The main technical result of this
section is the following theorem, which, combined with the above observation, immediately implies
Theorem 1.2.
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Theorem 4.1. There is a deterministic algorithm that, for every finite field F and parameters
n, k ∈ N, runs in time poly(n, log |F|) and, given as input a received word w = {(αj , βj)}j∈[n] and a
polynomial Q(X,Y ) ∈ F[X,Y ] of (1, k − 1)-degree at most

√
2(k − 1)n satisfying Q(αj , βj) = 0 for

all j ∈ [n], returns all polynomials f ∈ F[X] of degree at most (k − 1) that agree with w on more
than

√
2(k − 1)n coordinates.

We now describe and analyze the deterministic algorithm.

4.1 The algorithm

Algorithm 1: Deterministic-Sudan

Input: w = {(αj , βj)}j∈[n] and Q(X,Y ) ∈ F[X,Y ] of (1, k − 1)-degree at most
√
2(k − 1)n

such that Q(αj , βj) = 0 for all j ∈ [n]

Output: All f ∈ F[X] of degree at most (k − 1) that agree with w on more than√
2(k − 1)n coordinates

1 if there exists f(X) of degree ≤ k−1 such that f(αj) = βj for all j ∈ [n] then return {f}
2 if degY (Q) = 1 then
3 Write Q(X,Y ) = Q0(X) + Y ·Q1(X)

4 Set f(X)← −Q0(X)
Q1(X)

5 if deg(f) ≤ k− 1 and f has agreement with w exceeding
√
2(k − 1)n then return {f}

6 Set L← ∅
7 Set P ← Q(0,1)(X,Y )

8 while there exists j ∈ [n] such that P (αj , βj) ̸= 0 do
9 φ0 ← βj

10 for i = 1 to (k − 1) do
11 Use Newton Iteration (Lemma 2.1) to compute the lift φi from φi−1 satisfying

Q(X,φi(X)) ≡ 0 (mod ⟨X − αj⟩i+1) and φi ≡ φi−1 (mod ⟨X − αj⟩i)
12 Set φ← φk−1 mod ⟨X − αj⟩k

13 if φ agrees with w on more than
√

2(k − 1)n coordinates then L← L ∪ {φ}
14 Set w ← w \ {(αj , βj)}
15 L′ ← Deterministic-Sudan(P,w)

16 return L ∪ L′

4.2 Correctness of the algorithm

The theorem is interesting only when the desired agreement threshold,
√
2(k − 1)n+ 1, is smaller

than n. If it equals n, the problem reduces to simple polynomial interpolation: we can directly
check whether there exists f of degree at most k − 1 such that f(αj) = βj for all j ∈ [n].
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Henceforth, assume degY (Q) ≥ 1. If degY (Q) = 0, then Q is a univariate polynomial in X of
degree at most

√
2(k − 1)n vanishing at n distinct points, which would imply Q ≡ 0, a trivial case.

We begin with a simple observation.

Claim 4.2. Let f(X) be a polynomial of degree < k that agrees with w on more than
√
2(k − 1)n

coordinates. Let R(X,Y ) be a nonzero polynomial of (1, k−1)-degree at most
√
2(k − 1)n such that

R(αj , βj) = 0 for every j where f(αj) = βj. Then R(X, f(X)) is identically zero.

Proof. The univariate R(X, f(X)) has degree at most the (1, k−1)-degree of R, namely
√

2(k − 1)n.
It vanishes at each αj where f(αj) = βj , i.e., on more than

√
2(k − 1)n distinct points. Hence

R(X, f(X)) has more zeros than its degree and must be identically zero.

By Claim 4.2, for any such f , we have Q(X, f(X)) ≡ 0. We now prove by induction on degY (Q)

that every such f is included in the list L.

Base case: If degY (Q) = 1, there is at most one polynomial f such that Q(X, f(X)) ≡ 0, and
the algorithm explicitly checks for this case.

Induction step: Assume correctness for all polynomials of Y -degree at most t. Let Q have
Y -degree t+ 1 > 1. We consider two cases:

Case I: There exists j such that f(αj) = βj and Q(0,1)(αj , βj) ̸= 0. Then the conditions of
the Newton Iteration lemma (Lemma 2.1) are met, and the algorithm successfully lifts βj modulo
successive powers of ⟨X − αj⟩ to recover f . Since f has sufficiently large agreement, it is added to
L.

Case II: For every j with f(αj) = βj , we also have Q(0,1)(αj , βj) = 0. In this case, Q(0,1)(X,Y )

is a nonzero polynomial (since degY (Q) > 1) of (1, k− 1)-degree at most
√
2(k − 1)n that vanishes

on all agreement points of f . By Claim 4.2, Q(0,1)(X, f(X)) ≡ 0, so f is a Y -root of Q(0,1)(X,Y ).
By the induction hypothesis, the recursive call with Q(0,1) includes f in L.

This completes the proof of correctness.

4.3 Running time analysis

In each recursive call, the Y -degree of Q decreases by at least one. Hence, the recursion depth is at
most degY (Q) = O(

√
2(k − 1)n), and only one recursive call is made per level. Each call involves

polynomial-time computations; evaluating Hasse derivatives, performing polynomial divisions, veri-
fying agreement, and executing poly(n) many calls to the Newton Iteration procedure (Lemma 2.1),
each of which requires poly(n) field operations.

Therefore, the total running time of the algorithm is poly(n, log |F|), and the algorithm is de-
terministic, completing the proof of Theorem 4.1.
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5 Derandomizing the Guruswami-Sudan decoder

In this section, we prove Theorem 1.1. We begin by recalling the high-level structure of the
Guruswami–Sudan algorithm [GS99], which proceeds in two stages.

1. Interpolation. Given the received word w = {(αj , βj)}j∈[n], find a nonzero bivariate poly-
nomial Q(X,Y ) of (1, k − 1)-degree at most D such that each point (αj , βj) is a root of Q
with multiplicity at least m. To decode from agreement

√
n(k − 1), set m = 2

√
n(k − 1) and

D = Θ(m
√
(k − 1)n).

2. Factorization. Find all factors of Q(X,Y ) of the form (Y − f(X)), where deg f ≤ k− 1 and
f agrees with w on at least

√
(k − 1)n coordinates.

The following two lemmas from [GS99] ensure that the interpolation step succeeds and that all
sufficiently close codewords appear as Y -roots of Q.

Lemma 5.1 (interpolation guarantees [GS99]). For every n > k ∈ N, there exist parameters
m = 2

√
n(k − 1) and D = Θ(m

√
(k − 1)n) such that the following hold.

For every received word w = {(αj , βj)}j∈[n], there exists a nonzero polynomial Q(X,Y ) satisfy-
ing:

1. (1, k − 1)-degree(Q) ≤ D,

2. degY (Q) = O(m
√
n/(k − 1)),

3. For every j ∈ [n], Q vanishes at each (αj , βj) with multiplicity at least m.

Moreover, such a Q can be found deterministically in poly(n, log |F|) time.

Lemma 5.2 (root containment [GS99]). Let Q satisfy the properties in Lemma 5.1. Then for every
polynomial f of degree at most k− 1 that agrees with w on at least

√
(k − 1)n coordinates, we have

Q(X, f(X)) ≡ 0, i.e., (Y − f(X)) divides Q(X,Y ).

Proof. The proof follows immediately from the bounds on D and m in Lemma 5.1 and the observa-
tion that at each agreement point of f and w, the univariate Q(X, f(X)) vanishes with multiplicity
at least m.

Thus, the list-decoding task reduces to finding all Y -roots of Q(X,Y ) of degree at most (k− 1).
The main challenge is to do this deterministically in time poly(n, log |F|). The next theorem, which
is the main contribution of this paper, provides such an algorithm.

Theorem 5.3. There is a deterministic algorithm such that for every finite field F and parameters
n > k ∈ N:
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• It takes as input a received word w = {(αj , βj)}j∈[n] and a polynomial Q(X,Y ) ∈ F[X,Y ] with
degY (Q) = poly(n), under the promise that every degree-(k − 1) polynomial with agreement
at least

√
(k − 1)n with w is a Y -root of Q.

• It outputs all such polynomials f in time poly(n, log |F|).

The rest of this section proves this theorem, completing the proof of Theorem 1.1.
Let L denote the set of polynomials f(X) of degree less than k and agreement more than√

(k − 1)n with w. Factor Q(X,Y ) =
∏s

i=1Qi(X,Y ), where each Qi is (with multiplicity) and has
degY (Qi) ≥ 1. We may assume without loss of generality that Q has no factors depending only on
X, since dividing out the GCD of its pure-X components does not affect the property that each
f ∈ L is a Y -root of Q.

In the rest of this section we prove this theorem, and this would complete the proof of Theo-
rem 1.1. We start by recalling some notation already discussed in the proof overview. Let L be
the set of polynomials f(X) of degree less than k and agreement more than

√
(k − 1)n with the

received word w.

5.1 Local Splitting

Let P (X,Y ) ∈ F[X,Y ] be a bivariate polynomial with no pure-X factors and a point (α, β) ∈ F2.
Given the factorization P =

∏s
i=1 Pi into irreducibles (with multiplicity), define:

A(α, β) := {i ∈ [s] | Pi(α, Y ) = γ (Y − β)mi for some mi ≥ 1, γ ∈ F \ {0}},

B(α, β) := {i ∈ [s] | Pi(α, β) ̸= 0,degY Pi ≥ 1},

C(α, β) := {i ∈ [s] | Pi(α, Y ) = (Y − β)mi · P̂i(Y ) for some mi ≥ 1,degY P̂i ≥ 1, P̂i(β) ̸= 0},

D(α, β) := {i ∈ [s] | Pi(α, β) ̸= 0,degY Pi(α, Y ) = 0}.

Let PA(α,β) =
∏

i∈A(α,β) Pi, and define PB(α,β), PC(α,β), PD(α,β) analogously. For each (αj , βj) in w,
we writeAj , Bj , Cj , Dj and PA,j , PB,j , PC,j , PD,j for brevity instead ofA(αj , βj), B(αj , βj), C(αj , βj),
D(αj , βj) and PA(αj ,βj), PB(αj ,βj), PC(αj ,βj), PD(αj ,βj) for (αj , βj).

We recall that in Section 2, we focused on bivariates that are monic in Y . For such polynomials,
all the irreducible factors can be assumed to be monic in Y without loss of generality. As a
consequence, the Y -degree of any of its irreducible factors cannot drop when X is set to α ∈ F and
hence the set D defined above is empty. However, the Guruswami-Sudan interpolation polynomial
Q need not be monic in Y and we need to exercise some additional care to handle such polynomials.

We now apply this definition to Guruswami–Sudan interpolation polynomialQ (or more precisely
Q with its pure X factors shaved off). If f ∈ L, then Q(X, f(X)) ≡ 0 or equivalently Y −f(X) | Q.
Now for any j ∈ [n] if f(αj) = βj then Y − f(X) ≡ Y − βj mod ⟨X − αj⟩. Hence, Y − f(X) |
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QA,j(X,Y ). And if f(αj) ̸= βj then (Y − f(X))(αj , βj) = βj − f(αj) ̸= 0. Therefore, Y − f(X) |
QB,j(X,Y ). Therefore, we have the following observation:

Observation 5.4. For every f ∈ L:

1. If f(αj) = βj for some j, then (Y − f(X)) | QA,j(X,Y ).

2. If f(αj) ̸= βj for some j, then (Y − f(X)) | QB,j(X,Y ).

We also rely on the following simple observation in the description of our algorithm.

Observation 5.5. Let g(X,Y ) ∈ F[X,Y ] be a bivariate polynomial such that there is an α ∈ F for
which g(α, Y ) is a non-zero field constant. Then, g(X,Y ) is not divisible any bivariate polynomial
that is monic in Y .

In particular, g(X,Y ) does not have a factor of the form (Y − f(X)).

Proof. We will prove the contrapositive - we assume that g(X,Y ) has a factor P (X,Y ) that is
monic in Y and show that g(α, Y ) cannot be a non-zero field constant.

Let R(X,Y ) be a polynomial that is monic in Y (and hence has Y -degree at least one) and
divides g(X,Y ). Thus, there is a bivariate R′ such that g(X,Y ) = R(X,Y )R′(X,Y ). Now, by
setting X to α in the above identity, we get g(α, Y ) = R(α, Y )R′(α, Y ). Since g(α, Y ) is non-zero,
both R′(α, Y ) and R(α, Y ) are non-zero polynomials. Moreover, R was monic in Y , so its degree
in Y does not reduce when X is set to α. But this implies that the g(α, Y ) has degree at least as
R(α, Y ), which is at least one.

This observation motivates the following definition.

Definition 5.6 (Useless bivariates). A bivariate g(X,Y ) ∈ F[X,Y ] is said to be useless with respect
to a set E ⊆ F if there exists an α ∈ E such that g(α, Y ) is a non-zero field constant. ♢

We now define the notion of stability, that is once again crucially used in our algorithm.

Definition 5.7 (stability of a polynomial). We call a polynomial P (X,Y ) stable with respect to the
point (α, β) if degP (α, Y ) ≥ 1 and one of the following holds

• P (α, Y ) = γ(Y − β)r for some γ ∈ F \ {0} and positive integer r

• P (α, β) ̸= 0

We call a polynomial P (X,Y ) stable with respect to the received word w if for all j ∈ [n], P is
stable with respect to (αj , βj). We will usually drop the phrase "with respect to the received word w"

A finite set S ⊆ F[X,Y ] is stable if every P ∈ S is stable. ♢

Our algorithm relies on a deterministic subroutine, Split, that given P (X,Y ) and (α, β) com-
putes PA(α,β)R1 and PB(α,β)R2 such that R1 ·R2 divides PD(α,β) in time poly(deg(P ), log |F|). We
defer its description to Section 6 and restate its guarantee below.
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Theorem 5.8 (Split procedure). Let F be any finite field. There is a deterministic algorithm Split

which, given P ∈ F[X,Y ] and (α, β) ∈ F2, outputs polynomials (P1, P2) such that P1 = PA(α,β) ·R1

and P2 = PB(α,β) ·R2 where R1 ·R2 divides PD(α,β).
Moreover, if P is stable with respect to (α, β), Split outputs either (P, 1) or (1, P ) depending

on which of the two conditions in Definition 5.7 is met.

The moreover part of the above theorem explains the behavior of the algorithm Split on inputs
that are stable. The corollary below summarises its properties on inputs that are not stable. This
will be useful for us in the analysis of the algorithm later in this section.

Corollary 5.9. Let P (X,Y ) be a polynomial such that the degree of P (α, Y ) is at least one and P is
not stable at the point (α, β). Let (P1, P2) be the output of the algorithm Split on inputs P, (α, β).

Then, degY (P1), degY (P2) are both strictly smaller than degY (P ). Moreover, degY (P1)+degY (P2) ≤
degY (P ).

Proof. The moreover part of the corrollary follows immediately from the structure and guarantees
on P1, P2 in Theorem 5.8. So, we focus on proving that the Y -degrees of both P1 and P2 is strictly
smaller than the Y -degree of P .

Since degY (P (α, Y )) is at least one, and P is not stable at (α, β), we get from Definition 5.7
that P (α, β) is zero and P (α, Y ) is not a non-zero scalar multiple of a power of (Y − β). In other
words, there is a univariate P̂ ∈ F[Y ] of degree at least one, a positive integer r such that

P (α, Y ) = (Y − β)r · P̂ (Y ),

and P̂ (β) is non-zero.
From the above and the definitions of PA(α,β), PB(α,β), PC(α,β), PD(α,β), we get that the product

PB(α,β)(α, Y )·PC(α,β)(α, Y ) must be divisible by P̂ , and hence has degree at least one. Furthermore,
from Theorem 5.8, we have that P1 divides PA(α,β)PD(α,β). Hence, we have the following sequence
of inequalities.

degY (P1) ≤ degY (PA(α,β)(X,Y )) + degY (PD(α,β)(X,Y ))

= degY (P )− (degY (PB(α,β)(X,Y )) + degY (PC(α,β)(X,Y )))

≤ degY (P )− (deg(PB(α,β)(α, Y )) + deg(PC(α,β)(α, Y )))

≤ degY (P )− 1.

Here, we used the fact that the Y degree cannot increase when X is set to α and the fact that
(deg(PB(α,β)(α, Y )) + deg(PC(α,β)(α, Y ))) is equal to the degree of the product PB(α,β)(α, Y ) ·
PC(α,β)(α, Y ), which as discussed earlier is at least one.

Similarly, since r is positive, we get that the product PA(α,β)(α, Y ) · PC(α,β)(α, Y ) must be
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divisible by (Y − β)r, and hence has degree at least one. We again have a sequence of inequalities.

degY (P2) ≤ degY (PB(α,β)(X,Y )) + degY (PD(α,β)(X,Y ))

= degY (P )− (degY (PA(α,β)(X,Y )) + degY (PC(α,β)(X,Y )))

≤ degY (P )− (deg(PA(α,β)(α, Y )) + deg(PC(α,β)(α, Y )))

≤ degY (P )− 1.

5.2 Details of the the algorithm

We are now ready to describe the deterministic variant of the Guruswami–Sudan algorithm. Given
Q(X,Y ), we first remove any pure-X factors to obtain Q′. The algorithm then proceeds in two
stages:

1. Refinement. Initialize S ← {Q′}. Repeatedly apply Split to every P ∈ S and each (αj , βj),
replacing P by its components PA,j , PB,j , until S becomes stable.

2. Extraction. For each g ∈ S, let U = {j : g(αj , βj) = 0}. If there exists a degree-(k − 1)

polynomial f that agrees with w on all indices in U , output f .

The formal description of the algorithm follows.
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Algorithm 2: Deterministic-Factorization-for-List-Decoding
Input: Received word w = {(αj , βj)}j∈[n] and interpolation polynomial Q(X,Y ) ∈ F[X,Y ]

such that Q(αj , βj) = 0 for all j ∈ [n].
Output: All polynomials f ∈ F[X] of degree at most (k − 1) that agree with w on at least√

(k − 1)n coordinates.

Step 1: Remove pure-X factors.
1 Write Q(X,Y ) =

∑
ℓQ

(ℓ)(X)Y ℓ and set Q̃← gcd(Q(1), Q(2), . . .).
2 Set Q′ ← Q/Q̃ and initialize S ← {Q′(X,Y )}.
3 if Q′ is useless with respect to {α1, . . . , αn} as per Definition 5.6 then
4 return ∅

Step 2: Refinement via Split.
5 while there is a g ∈ S of degree at least 2 that is not stable do
6 Choose a j ∈ [n] such that g is not stable with respect to (αj , βj)

7 Update S ← S \ {g}.
8 Set (g1, g2)← Split(g, (αj , βj))

9 if degY (g1) ≥ 1 then
10 Write g1(X,Y ) =

∑
ℓ g

(ℓ)
1 (X)Y ℓ and set g̃1 ← gcd(g

(1)
1 , g

(2)
1 , . . .).

11 if g1/g̃1 is not useless with respect to {α1, . . . , αn} as per Definition 5.6 then
12 S ← S ∪ {g1/g̃1}
13 if degY (g2) ≥ 1 then
14 Write g2(X,Y ) =

∑
ℓ g

(ℓ)
2 (X)Y ℓ and set g̃2 ← gcd(g

(1)
2 , g

(2)
2 , . . .).

15 if g2/g̃2 is not useless with respect to {α1, . . . , αn} as per Definition 5.6 then
16 S ← S ∪ {g2/g̃2}

Step 3: Extract codewords.
17 Initialize L← ∅.
18 for g ∈ S do
19 if deg(g) = 1 and g is of the form γ(Y − f) for γ· ∈ F \ {0}, deg(f) < k then

if f agrees with w on at least
√

(k − 1)n coordinates then L← L ∪ {f}.
20 else
21 Set U ← {j ∈ [n] : g(αj , βj) = 0}.
22 if there exists f ∈ F[X] with deg(f) ≤ (k − 1) and f(αj) = βj for all j ∈ U then

if f agrees with w on at least
√
(k − 1)n coordinates then L← L ∪ {f}.

23 return L
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5.3 Correctness of the algorithm

We now argue the correctness of Algorithm 2.
If the polynomial Q′ is useless with respect to {α1, . . . , αn}, then, from Observation 5.5, we get

that Q′ has no factors of the form Y − f for an f ∈ F[X] and the algorithm is clearly correct and
terminates in polynomial time. Thus, for the rest of the this discussion, we assume that this is not
the case.

Suppose the while loop terminates after T iterations, and let St denote the set of polynomials
at the end of the t-th iteration, for t ∈ {0, . . . , T}. Thus S0 = {Q′(X,Y )} and ST is the final stable
set.

To prove correctness, we proceed in two steps:

1. For every f in the true list L and every iteration t, there exists some g ∈ St such that
(Y − f(X)) | g(X,Y ).

2. For the final stable set ST , the zeros of such a g correspond exactly to the agreement points
of f with the received word w.

Since the number of agreement points exceeds
√
(k − 1)n > k−1, the polynomial f can be uniquely

recovered by interpolation in Step 2 of Algorithm 2.
We now formalize these claims, but before that state the following simple observation that is

immediately evident from the description of the algorithm.

Observation 5.10. For every t ∈ {1, 2, . . . , T}, and for every polynomial g(X,Y ) in the set St, the
following are true.

• g is not useless with respect to {α1, . . . , αn}.

• If g =
∑

ℓ gi(X)Y ℓ, then gcd(g0(X), g1(X), . . .) equals 1. In particular, g has no pure X

factors.

We now state and prove the first technical lemma.

Lemma 5.11. For every f ∈ L and every t ∈ {0, . . . , T}, there exists a polynomial g ∈ St such that
(Y − f(X)) | g(X,Y ).

Proof. We proceed by induction on t. For the base case t = 0, the claim follows directly from
Lemma 5.2, since (Y − f(X)) | Q(X,Y ) (and hence, (Y − f) | Q′) for every f ∈ L.

Assume the claim holds for St−1, and let g ∈ St−1 be such that (Y − f(X)) | g(X,Y ). Consider
the t-th iteration of the while loop, when g is selected for splitting at some point (αj , βj). For this
to happen the Y -degree of g is at least two.

If g is already stable, it remains in St, and the inductive claim holds trivially. Otherwise,
(g1, g2) ← Split(g, (αj , βj)). By Observation 5.4, if f(αj) = βj , then (Y − f(X)) divides gA,j ;
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otherwise it divides gB,j . From Theorem 5.8, we get that in the first case, (Y − f(X)) divides g1
and in the latter case, it divides g2.

If Y − f divides g1, then g1 clearly has Y -degree at least one, and from Observation 5.5, it
cannot be useless with respect to {α1, . . . , αn}, and it is added to the set St (after removing some
pure X factors). Similarly, if Y − f divides g2, then g2 clearly has Y -degree at least one, and from
Observation 5.5, it cannot be useless with respect to {α1, . . . , αn}, and it is added to the set St
(again after removing some pure X factors).

Thus St continues to contain a polynomial divisible by (Y −f(X)), completing the induction.

Lemma 5.12. For every f ∈ L, there exists g ∈ ST such that, for all j ∈ [n],

g(αj , βj) = 0 ⇐⇒ f(αj) = βj .

Proof. From Lemma 5.11, there exists g ∈ ST with (Y − f(X)) | g(X,Y ). We work with this g for
the rest of the proof.

Clearly, g(αj , βj) = 0 whenever f(αj) = βj . Suppose for contradiction that there exists j such
that g(αj , βj) = 0 but f(αj) ̸= βj . Then g must have some irreducible factor ĝ(X,Y ) distinct from
(Y − f(X)) with ĝ(αj , βj) = 0 and Y -degree at least 1 (the latter is true because we have shaved
off all pure X factors). Furthermore, ĝ(αj , Y ) also has Y -degree at least one, since if this is not the
case, the only way ĝ(αj , βj) can be zero is if ĝ(αj , Y ) is zero. But this would mean that g has pure
X-factors, hence contradicting Observation 5.10.

Thus, the univariate g(αj , Y ) has Y -degree at least two, and is divisible by (Y − f(αj)) and
ĝ(αj , Y ), both of which have Y degree at least one. From Definition 5.7, we get that g is not stable
at (αj , βj), contradicting the stability of ST .

Therefore, the zeros of g(X,Y ) coincide exactly with the agreement points of f and w.

By Lemma 5.12, for every f ∈ L there exists a polynomial g ∈ ST whose zero set identifies
precisely the coordinates where f and w agree. Since the number of agreement points is greater
than

√
(k − 1)n and thus exceeds k − 1, f can be uniquely recovered by interpolation in Step 2 of

Algorithm 2.
This completes the proof of correctness of the deterministic list-decoding algorithm.

5.4 Running-time analysis

The algorithm is clearly deterministic (assuming Theorem 5.8 for the Split subroutine). We now
show that it runs in time poly(n, log |F|). The extraction step (Step 3) of Algorithm 2 runs in
poly(n, log |F|, |S|) time, where S is the set of polynomials obtained after refinement (Step 2).
Hence, it suffices to show that the refinement step (Step 2) terminates in polynomial time and that
|S| is polynomially bounded.
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Lemma 5.13. The refinement step (Step 2) of Algorithm 2 terminates in poly(deg(Q), log |F|) =
poly(n, log |F|) time.

Proof. Let S denote the set of polynomials at any stage of refinement step (Step 2). We now show,
via a potential-function argument, that the refinement process terminates after only polynomially
many updates.

Partition S by Y -degree: let S(i) = {g ∈ S | degY (g) = i} for i ∈ [degY (Q)]. Define the
potential

Φ(S) =

degY (Q)∑
i=1

(i− 1) |S(i)|.

Initially, S = {Q(X,Y )} and Φ(S) = degY (Q) − 1. We will show that if S is not already stable,
then Φ(S) decreases by at least 1 in the next iteration, implying that the refinement loop executes
at most degY (Q) times.

Consider a refinement step where the set S is modified to the set S′ by splitting g ∈ S with
respect to the point (αj , βj). For g to be split, the Y -degree of g must be at least two and there
must be a point (αj , βj) such that g is not stable at (αj , βj). Let (g1, g2) be the output of Split

on input g, (αj , βj).
Note that if neither of the polynomials g′1 = g1/g̃1 and g′2 = g2/g̃2 is added to the set S (to

obtain S′) in this iteration, then the potential for S′ is clearly strictly less than that of S, since the
polynomial g with Y -degree at least two is removed from S in the iteration. Thus, at least one of
g′1, g

′
2 is in S′. We now argue that the potential of S′ is strictly smaller than the potential of S using

some case analysis.
Let d = degY (g), d1 = degY (g

′
1) and d2 = degY (g

′
2). We now consider some cases.

• d1 ≥ 1, d2 ≥ 1: In this case, Φ(S′)− Φ(S) = −(d− 1) + (d1 − 1) + (d2 − 1), which is clearly
at most −1 since d1 + d2 ≤ d from Corollary 5.9.

• d1 = d2 = 0: In this case, Φ(S′)−Φ(S) = −(d− 1) which is at most −1 since d is at least 2

(else g could not have been chosen for splitting).

• d1 ≥ 1, d2 = 0: In this case, Φ(S′)− Φ(S) = −(d− 1) + (d1 − 1) = d1 − d, but this is again
at most −1 since d1 < d from Corollary 5.9.

• d2 ≥ 1, d1 = 0: This is the same as the previous case.

Since the initial potential is at most degY (Q) − 1, the refinement loop can execute at most
degY (Q) iterations, each of which runs in poly(deg(Q), log |F|) time. Hence, Step 2 terminates in
poly(n, log |F|) time.
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6 The Split algorithm

In this section, we prove Theorem 5.8, completing the proof of Theorem 5.3 and hence of Theo-
rem 1.1. For completeness, we restate the theorem below.

Theorem 5.8 (Split procedure). Let F be any finite field. There is a deterministic algorithm Split

which, given P ∈ F[X,Y ] and (α, β) ∈ F2, outputs polynomials (P1, P2) such that P1 = PA(α,β) ·R1

and P2 = PB(α,β) ·R2 where R1 ·R2 divides PD(α,β).
Moreover, if P is stable with respect to (α, β), Split outputs either (P, 1) or (1, P ) depending

on which of the two conditions in Definition 5.7 is met.

6.1 The Hensel lifting paradigm

Our main ingredient is the classical technique of Hensel lifting, which allows one to lift a local
factorization of a polynomial modulo a power of (X − α) to a higher power. This may be viewed
as the analog of Newton iteration for factoring, as opposed to root lifting. We recall the version we
use below and refer to [ST21, KSS15] for a proof.

Lemma 6.1 (Hensel Lifting [ST21]). Let F be a finite field, and let P, g, h, a, b ∈ F[X,Y ], α ∈ F,
and m ≥ 1 satisfy

P ≡ gh mod ⟨X − α⟩m and ag + bh ≡ 1 mod ⟨X − α⟩m.

Then the following hold.

1. (Existence) There exist g′, h′ ∈ F[X,Y ] such that

(a) P ≡ g′h′ mod ⟨X − α⟩2m

(b) g′ ≡ g mod ⟨X − α⟩m and h′ ≡ h mod ⟨X − α⟩m

(c) there exist a′, b′ ∈ F[X,Y ] with a′g′ + b′h′ ≡ 1 mod ⟨X − α⟩2m.

We call g′, h′ the lifts of g, h respectively and a′, b′ the corresponding Bezout pairs.

2. (Uniqueness) For any other lifts g∗, h∗ of g, h, there exists u ∈ ⟨X − α⟩m such that

g∗ ≡ g′(1 + u) mod ⟨X − α⟩2m, h∗ ≡ h′(1− u) mod ⟨X − α⟩2m.

3. (Efficiency) There is a deterministic algorithm that, given P, g, h, a, b,m, α, outputs g′, h′, a′, b′

in time poly(deg(P ), deg(a),deg(b), log |F|,m).
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Degree bounds under iterative Hensel lifting. In standard applications of Hensel lifting for
polynomial factorization, the polynomial P is typically assumed to be monic, in which case degree
growth during lifting is straightforward to bound. In our setting, we must handle the non-monic case
as well. The following lemma provides quantitative degree bounds for the iterative lifting process;
these follow from the analysis in [Sud12] (Lecture 8).

Lemma 6.2 (Degree bounds for iterative Hensel lifting). Let F be any field, and let P (X,Y ) be a
polynomial of total degree d. Fix α ∈ F.

1. (Degree bound) Let g0, h0 be relatively prime polynomials of positive Y -degree such that

P ≡ g0h0 mod ⟨X − α⟩.

Let (gi, hi) and (ai, bi) be the sequences of lifts and Bézout pairs obtained by successive appli-
cations of Lemma 6.1, satisfying

P ≡ gihi mod ⟨X − α⟩2i ,

aigi + bihi ≡ 1 mod ⟨X − α⟩2i ,

gi ≡ gi−1 mod ⟨X − α⟩2i−1
, hi ≡ hi−1 mod ⟨X − α⟩2i−1

.

Then, for every i, the total degrees of ai, bi, gi, hi are at most d · 5i.

2. (Uniqueness) Let (g′i, h
′
i) be another sequence of pairs of total degree at most D satisfying

the same congruences as above and with g′1 ≡ g0, h′1 ≡ h0 modulo ⟨X − α⟩. Then there
exist polynomials u0, u1, . . . such that ui ∈ ⟨X − α⟩2

i and has total degree at most (d+D)10i

satisfying

g′i ≡ gi ·

∏
j<i

(1 + uj)

 mod ⟨X − α⟩2i , h′i ≡ hi ·

∏
j<i

(1 + uj)

−1

mod ⟨X − α⟩2i .

Proof. We closely follow the proof of Lemma 6.1 from [ST21].

Degree Bound: From the proof of for any i we have the following relations:

1. mi = f − gi · hi;

2. gi+1 = g + bi ·mi, hi+1 = gi + ai ·mi;

3. qi+1 = ai · gi+1 + bi · hi+1 − 1;

4. ai+1 = ai − ai · qi+1, bi+1 = bi − bi · qi+1.
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For i = 0, we have deg(g0), deg(h0) ≤ d, since deg(P (α, Y )) ≤ deg(P ) ≤ d. As g0, h0 ∈ F[Y ], the
extended GCD algorithm ensures that deg(a0) < deg(h0) ≤ d and deg(b0) < deg(g0) ≤ d. Hence,
the base case holds.

Assume inductively that the total degrees of (gi, hi, ai, bi) are at most d · 5i. Then deg(gi · hi) ≤
2d · 5i and hence deg(mi) ≤ 2d · 5i. Consequently deg(gi+1) ≤ deg(bi ·mi) ≤ 3d · 5i and similarly,
deg(hi+1) ≤ 3d · 5i. So, deg(ai · gi+1) ≤ 4d · 5i and similarly, we have deg(bi · hi+1) ≤ 4d · 5i. Hence,
deg(qi+1) ≤ 4d · 5i. Thus, deg(ai+1) ≤ deg(ai · qi+1) ≤ d · 5i + 4d · 5i = d · 5i+1 and similalry,
deg(bi+1) ≤ d · 5i+1. So we got the degree bounds of (gi+1, hi+1, ai+1, bi+1) are at most d · 5i+1. By
induction, we conclude that for every i ≥ 0, the total degrees of gi, hi, ai, bi are bounded by d · 5i.

Uniqueness: We now establish uniqueness by induction on i. For the base case i = 1, we have
g1 ≡ g′1 ≡ g0 mod ⟨X − α⟩ and h1 ≡ h′1 ≡ h0 mod ⟨X − α⟩. Following the proof of Lemma 6.1
define u0 = a1(g

′
1 − g1)− b1(h′1 − h1), so that u0 ∈ mod⟨X − α⟩ and

g′1 ≡ g1(1 + u0) mod ⟨X − α⟩2, h′1 ≡ h1(1− u0) ≡ h1(1 + u0)
−1 mod ⟨X⟩2

From the degree bounds above, the total degrees of (g1, h1, a1, b1) are at most 5d, implying deg(a1(g
′
1−

g1)), deg(b1(g
′
1− g1)) ≤ (d+D)10 and hence deg(u0) ≤ (d+D)10. Hence, the base case is satisfied.

Now suppose that this is true for i. Since uj ∈ ⟨X − α⟩2j for each j < i, it follows that

(1 + uj) is invertible modulo ⟨X − α⟩2i . Now consider the elements g′i+1

(∏
j<i(1 + uj)

)−1
and

h′i+1

(∏
j<i(1 + uj)

)
. We have g′i+1

(∏
j<i(1 + uj)

)−1
≡ g′i

(∏
j<i(1 + uj)

)−1
≡ gi mod ⟨X − α⟩2i

and h′i+1

(∏
j<i(1 + uj)

)
≡ h′i

(∏
j<i(1 + uj)

)
≡ hi mod ⟨X − α⟩2i . We also have

g′i+1

∏
j<i

(1 + uj)

−1

· h′i+1

∏
j<i

(1 + uj)

 ≡ g′i+1h
′
i+1 ≡ f mod ⟨X − α⟩2i+1

Thus, both gi+1, hi+1 and g′i+1

(∏
j<i(1 + uj)

)−1
, h′i+1

(∏
j<i(1 + uj)

)
are valid lifts of (gi, hi). By

the Uniqueness property of Lemma 6.1, there exists ui ∈ ⟨X − α⟩2
i such that

g′i+1

∏
j<i

(1 + uj)

−1

≡ gi+1(1 + ui) mod ⟨X − α⟩2i+1

and therefore g′i+1 ≡ gi+1
∏

j<i+1(1 + uj) mod ⟨X − α⟩2i+1 . Similarly,

h′i+1

∏
j<i

(1 + uj)

 ≡ hi+1(1− ui) mod ⟨X − α⟩2i+1
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which implies h′i+1 ≡ hi+1

(∏
j<i+1(1 + uj)

)−1
mod ⟨X − α⟩2i+1 . Since (1 + ui)(1 − ui) ≡ 1 mod

⟨X − α⟩2i+1 . From the construction in Lemma 6.1, we have ui = ai+1(g
′
i+1−gi+1)−bi+1(h

′
i+1−hi+1)

and, by the degree bound in the first part, we have the total degrees of (gi+1, hi+1, ai+1, bi+1) are at
most d · 5i+1. Therefore, deg(ui) ≤ d · 5i+1+max{d · 5i+1, D} ≤ (d+D)10i+1. Hence, by induction,

for all i, g′i ≡ gi
(∏

j<i(1 + uj)
)
mod ⟨X − α⟩2

i

and h′i ≡ hi ·
(∏

j<i(1− uj)
)−1

mod ⟨X − α⟩2
i

with
deg(ui) ≤ (d+D) · 10i, as desired.

6.2 Details of the Split algorithm

We now describe the algorithm promised in Theorem 5.8. For clarity, from now on we write
PA, PB, PC , PD for PA(α,β), PB(α,β), PC(α,β), PD(α,β), respectively.

Before proceeding, we record a basic but useful subroutine that we will invoke repeatedly. Sup-
pose the polynomial P ∈ F[X,Y ] has a nontrivial factor g ∈ F[X,Y ]. If we already know the splits
of g and of P/g with respect to a point (α, β), then we can obtain the split of P itself by simply
combining the corresponding A and B parts. The following routine formalizes this observation.

Algorithm 3: Combine-Splits
Input: Polynomials P, g ∈ F[X,Y ] and (α, β) ∈ F2 with the guarantee that g divides P
Output: Polynomials PA(α,β) ·R1 and PB(α,β) ·R2 for some polynomials R1, R2 such that

R1 ·R2 divide PD(α,β)

1 Set g′ ← P/g
2 Compute (g1, g2)← Split(g, (α, β)) and (g′1, g

′
2)← Split(g′, (α, β))

3 return (g1 · g′1, g2 · g′2)

We now develop a series of claims that naturally lead to the Split algorithm. We begin with a
deterministic base case that seeds the Hensel lifting.

Lemma 6.3. Let F be any finite field. There is a deterministic algorithm that, given a bivariate
polynomial P (X,Y ) ∈ F[X,Y ] and a point (α, β) ∈ F2, runs in time poly(deg(P ), log |F|) and
outputs a factorization

P (α, Y ) = (Y − β)m · P̂ (Y ),

where P̂ (β) ̸= 0.

Proof. Iteratively perform univariate division to find the largest m ∈ N such that (Y − β)m divides
P (α, Y ); then set P̂ (Y ) := P (α, Y )/(Y − β)m. Both steps are deterministic and run in time
poly(deg(P ), log |F|) by standard univariate algorithms.
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An immediate consequence is that if degY (P (α, Y )) ≥ 1, we can recognize when P = PAPD

or P = PBPD: if m = degY (P ), then P = PAPD; if m = 0, then P = PBPD. In either case,
Theorem 5.8 follows directly. If degY (P (α, Y )) = 0 and P (α, β) ̸= 0, P = PD. In that case we just
throw it away.

The interesting case is when 0 < m < degY (P ). Then Lemma 6.3 yields

P (α, Y ) = (Y − β)m · P̂ (Y ),

where (Y − β)m and P̂ (Y ) are coprime and both have positive Y -degree. Equivalently,

P (X,Y ) ≡ (Y − β)m · P̂ (Y ) (mod ⟨X − α⟩).

This is precisely the hypothesis needed to invoke Lemma 6.1: we lift this factorization to sufficiently
high precision in (X−α), recover a nontrivial factor of P , and then recurse, using Combine-Splits

to combine results.
More precisely, set g0 = (Y − β)m and h0 = P̂ (Y ). Apply iterative Hensel lifting (Lemma 6.1)

for t := 2 ⌈log degY (P )⌉+ 1 rounds to obtain gt, ht with

P (X,Y ) ≡ gt · ht mod ⟨X − α⟩2t , gt ≡ g0 mod ⟨X − α⟩, ht ≡ h0 mod ⟨X − α⟩.

Given these lifts gt, ht, we can write the following linear system

U · ht ≡ V mod ⟨X − α⟩2t ,

E · gt ≡ F mod ⟨X − α⟩2t ,

where the variables are the coefficients of the polynomials U, V,E, F . The following claim is standard
in Hensel-based factorization and we include it for completeness.

Claim 6.4. If the system U · ht ≡ V mod ⟨X − α⟩2t has a solution, then gcd(V, P ) has Y -degree
at least one. Similarly, if the system E · gt ≡ F mod ⟨X − α⟩2t has a solution, then gcd(F, P ) has
Y -degree at least one.

Finally, we show that if both systems have no solution, then P must be entirely in the C D-parts.

Claim 6.5. Let P (X,Y ) and (α, β) be inputs with P ̸= PAPD and P ̸= PBPD. If neither

U · ht ≡ V mod ⟨X − α⟩2t nor E · gt ≡ F mod ⟨X − α⟩2t

has a solution, then P = PCPD.

Given all the above observations and claims, we now have the following deterministic Split

algorithm.
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Algorithm 4: Split
Input: P (X,Y ) ∈ F[X,Y ] and a point (α, β) ∈ F2

Output: Polynomials PA(α,β) ·R1 and PB(α,β) ·R2, for some polynomials R1, R2 such that
R1 ·R2 divide PD(α,β).

Step 0: Remove pure-X factors.
1 Write P (X,Y ) =

∑
ℓ P

(ℓ)(X)Y ℓ and set P ← P/ gcd(P (1), P (2), . . .).

Step 1: Seed Hensel lifting and handle simple cases.
2 Factor P (α, Y ) = (Y − β)m · P̂ (Y ) such that P̂ (β) ̸= 0 /* Use Lemma 6.3 */
3 Set g0 := (Y − β)m, h0 := P̂ (Y ).
4 if deg(P (α, Y )) = 0 then return (1, 1) /* P = PD */
5 if deg(g0) = degP (α, Y ) then return (P, 1) /* P = PAPD */
6 if deg(h0) = degP (α, Y ) then return (1, P ) /* P = PBPD */

Step 2: Iterative Hensel lifting.
7 Set t← 2⌈log(degY P )⌉+ 1 and D̂ ← 2 deg(P ) · 103 log deg(P ).
8 Apply iterative Hensel lifting (Lemma 6.1) for t rounds to compute lifts gt, ht satisfying

P ≡ gt · ht mod ⟨X − α⟩2t , gt ≡ g0 mod ⟨X − α⟩, ht ≡ h0 mod ⟨X − α⟩.

Step 3: Solve linear systems.
9 if there exist U, V ∈ F[X,Y ] satisfying U · ht ≡ V mod ⟨X − α⟩2t with the degree

constraints degY U ≤ D̂, degY V ≤ degY P − 1, degX U ≤ 2t − 1, degX V ≤ degX P then
10 Set ρ← gcd(P, V ) /* degY ρ ≥ 1 by Claim 6.4 */
11 return Combine-Splits(P, (α, β), ρ)

12 if there exist E,F ∈ F[X,Y ] satisfying E · gt ≡ F mod ⟨X − α⟩2t with the degree constraints
degY E ≤ D̂, degY F ≤ degY P − 1, degX E ≤ 2t − 1, degX F ≤ degX P such that then

13 Set σ ← gcd(P, F ) /* degY σ ≥ 1 by Claim 6.4 */
14 return Combine-Splits(P, (α, β), σ)

Step 4: All tests fail. /* Use Claim 6.5 */
15 return (1, 1).

6.3 Correctness of the Split algorithm

We now establish the correctness of the Split algorithm. We first prove the main correctness lemma
assuming Claims 6.4 and 6.5, and subsequently provide proofs of these claims.

Lemma 6.6 (Correctness of Split algorithm). For every bivariate polynomial P (X,Y ) and point
(α, β) ∈ F2, Algorithm 4 terminates and correctly outputs the decomposition PAR1 and PBR2 where
R1 ·R2 divides PD.
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Proof. We proceed by induction on degY P .
Base case. If degY P = 1, then P must equal one of PA, PB, PD, and the algorithm’s initial

checks clearly return the correct classification.
Inductive step. Assume the algorithm is correct for all polynomials of Y -degree at most d − 1.

Let P have degY P = d > 1.
If P = PAPD or P = PBPD, correctness is immediate. Otherwise, both g0 and h0 from Step 1

have positive Y -degree, and the algorithm proceeds to the Hensel lifting step to obtain gt, ht and
then further proceeds to solving the linear systems.

If either linear system admits a solution, then by Claim 6.4, the resulting GCD has positive
Y -degree, producing a smaller subproblem on which the inductive hypothesis applies. If neither
system has a solution, then by Claim 6.5, P = PCPD, and the algorithm correctly returns (1, 1).

We now prove the correctness of the algorithm if P is stable. Since P is stable, deg(P (α, Y )) ≥ 1.
Suppose after invoking Lemma 6.3 we obtain the factorization P (α, Y ) = (Y − β)m · P̂ (Y ) such
that P̂ (β) ̸= 0. Now if P (α, Y ) = γ(Y − β)r for some γ ∈ F \ {0} and positive integer r, then,
r = m and P̂ (Y ) = γ. Therefore, deg(P (α, Y )) = m hence the algorithm returns (P, 1) in Step 1.
If P (α, β) ̸= 0, m = 0. Therefore deg(P (α, Y )) = deg(P̂ ). Therefore, the algorithm returns (1, P )

in Step 1.
This completes the inductive argument, and hence the proof of correctness.

We now prove Claims 6.4 and 6.5.

Proof of Claim 6.4. Consider the resultant Γ(X) := ResY (P, V ). We have deg Γ ≤ 2 degX(P )2.
Since t = 2⌈log(degY P )⌉ + 1, we have 2t > deg Γ. From the property of resultants, there exist
a, b ∈ F[X,Y ] with

a · P + b · V = Γ(X).

Reducing modulo ⟨X − α⟩2t and using P ≡ gt · ht mod ⟨X − α⟩2t and V ≡ U · ht mod ⟨X − α⟩2t

yields

(a · gt + b · U) · ht ≡ Γ mod ⟨X − α⟩2t .

Viewing both sides as polynomials in (X − α) with coefficients in F[Y ], the constant term of ht
equals h0(Y ), which has degY ≥ 1. However, the right hand side, namely Γ = ResY (P, V ) has
no dependence on Y . Hence, it must be the case that agt + bU is divisible by (X − α)2t , forcing
(X −α)2t | Γ. But deg Γ < 2t, so this implies Γ ≡ 0, i.e., P and V have a nontrivial common factor
in F(X)[Y ] (By Lemma 3.1). By Gauss’s lemma (see Lemma 3.2), they have a nontrivial GCD in
F[X,Y ] of positive Y -degree. The case of E, gt, F is analogous.
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Proof of Claim 6.5. For brevity, assume wlog α = 0 (so the ideal is ⟨X⟩). By assumption, P ̸=
PAPD and P ̸= PBPD. We prove the contrapositive: assume P ̸= PCPD and show that at least one
of the two linear systems has a solution.

Since P = PAPBPCPD and P ̸= PCPD, at least two of PA, PB, PC have positive Y -degree.
Case I: degY PA ≥ 1 and degY (PBPC) ≥ 1. Reducing modulo ⟨X⟩,

PB(X,Y )PC(X,Y )PD(X,Y ) ≡ (Y − β)mĥ0(Y ) (mod ⟨X⟩)

with ĥ0(β) ̸= 0 and m ≥ 1. Here ĥ0 = h0 (since PA contributes only powers of (Y − β)). Let
ĝ0 = (Y − β)m. Hensel lifting gives lifts ĝt, ĥt with

PBPCPD ≡ ĝtĥt (mod ⟨X⟩2t), ĝt ≡ ĝ0, ĥt ≡ ĥ0 (mod ⟨X⟩).

Hence

P ≡
(
PAĝt

)
ĥt (mod ⟨X⟩2t).

Both this factorization and P ≡ gtht (mod ⟨X⟩2t) lift P (0, Y ) = g0(Y )h0(Y ). Since ĥt ≡ h0

(mod ⟨X⟩), comparison modulo ⟨X⟩ yields PA(0, Y ) ĝ0(Y ) = g0(Y ). Using Lemma 6.2 (degree and
uniqueness parts), there exist u1, . . . , ut with controlled total degrees and vanishing modulo the
appropriate powers of X such that

ĥt ≡ ht
∏
j<t

(1 + uj) (mod ⟨X⟩2t).

Set

U := ĝt

∏
j<t

(1 + uj)

 mod ⟨X⟩2t , V := PBPC .

Then U · ht ≡ V (mod ⟨X⟩2t), with degX U ≤ 2t − 1, degX V ≤ degX P , and (by the chosen
parameter bounds) degY U ≤ D̂, degY V < degY P . Thus the first linear system has a valid
solution.

Case II: degY PB ≥ 1 and degY (PAPC) ≥ 1. An entirely analogous argument (now producing a
solution to E · gt ≡ F (mod ⟨X⟩2t)) yields a solution to the second system.

In either case, at least one system has a solution. Therefore, if neither system has a solution,
necessarily P = PCPD.
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6.4 Running time analysis

The algorithm described above is clearly deterministic. We now analyze its running time.
The computations in Step 0 and Step 1 clearly take at most poly(deg(P ), log |F|) time. From

Lemma 6.1, each Hensel lifting step, that is, computing the lift from (gi−1, hi−1) to (gi, hi), requires
poly(deg(P ), log |F|) time and this is performed for at most t = Θ(log degY P ) rounds. In Step 3,
the systems of linear equations each have size polynomial in deg(P ), and we solve O(deg(P )) such
systems. Hence this step also runs in poly(deg(P ), log |F|) time overall.

We now focus on the recursive structure of the algorithm. The key observation is that at most
two recursive calls are made before termination. Each call is made with P replaced by polynomials
of the form g and P/g, where g is a nontrivial factor of P whose Y -degree is at least one and strictly
smaller than degY (P ). Assuming this, the total running time satisfies the recurrence

T (d) ≤ max
r∈{1,...,d−1}

{
T (r) + T (d− r) + poly(d, log |F|)

}
.

This immediately implies T (d) = poly(d, log |F|).
To justify the degree constraint, observe first that it holds for the pairs (ρ, P/ρ) and (σ, P/σ)

arising from Step 3, since degY (ρ) ≤ degY (V ) and degY (V ) < degY (P ) by Claim 6.4, and likewise
for σ.

Therefore, every recursive call reduces the Y -degree strictly, and each level of recursion incurs
only polynomial work. This proves that the total running time of the algorithm is poly(deg(P ), log |F|).
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