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Abstract

One of the oldest problems in coding theory is to match the Gilbert—Varshamov
bound with explicit binary codes. Over larger—yet still constant-sized—fields,
algebraic-geometry codes are known to beat the GV bound. In this work, we lever-
age this phenomenon by taking traces of AG codes. Our hope is that the margin by
which AG codes exceed the GV bound will withstand the parameter loss incurred
by taking the trace from a constant field extension to the binary field. In contrast
to concatenation, the usual alphabet-reduction method, our analysis of trace-of-AG
(TAG) codes uses the AG codes’ algebraic structure throughout — including in the
alphabet-reduction step.

Our main technical contribution is a Hasse-Weil-type theorem that is well-
suited for the analysis of TAG codes. The classical theorem (and its Grothendieck
trace-formula extension) are inadequate in this setting. Although we do not obtain
improved constructions, we show that a constant-factor strengthening of our bound
would suffice. We also analyze the limitations of TAG codes under our bound and
prove that, in the high-distance regime, they are inferior to code concatenation.
Our Hasse—Weil-type theorem holds in far greater generality than is needed for

analyzing TAG codes. In particular, we derive new estimates for exponential sums.
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1 Introduction

The study of the tradeoff between rate and distance is as old as coding theory itself, dating
back to the late 1940s and early 1950s. Gilbert [Gil52] proved the existence of codes with
distance ¢ and rate p > 1 — Hy(d), and Varshamov [Var57] subsequently proved that
such codes can be taken to be linear. Naturally, the ultimate goal is to achieve explicit
constructions, and indeed much effort has focused on obtaining efficiently encodable codes
with a good rate-vs.-distance tradeoff.

For binary codes, notable early constructions include Justesen’s code [Jus72], the first
explicit construction to get constant rate and constant relative distance, and expander-
based codes [Tan82, SS02], which further enjoy very efficient decoding. The large distance
regime, 6 = 1/2 — ¢, has been the subject of extensive and fruitful research over the past
decades, in part due to its importance in complexity theory via its relation to small-bias
sets. The GV bound guarantees the existence of codes with such § and rate Q(¢?). Earlier
explicit constructions achieved suboptimal rates [AGHP92, NN93, BT13], but a break-

2+o(1) via a sophisticated

through construction of Ta-Shma attained nearly optimal rate e
expander-based bias-reduction technique [Ta-17]. Progress toward the GV bound in the
regime where ¢ is bounded away from % has been comparatively limited.

Constructing codes over large alphabets has proved easier, particularly with respect
to the rate—distance tradeoff. Reed—Solomon codes are the prototypical example: they
attain the optimal tradeoff by meeting the Singleton bound with alphabet size equal to the
block length. Consequently, a particularly useful tool for constructing codes over small
alphabets is code concatenation, which reduces the alphabet size by combining large-
alphabet outer codes with short, small-alphabet inner codes, yielding arbitrarily long
codes over a small alphabet. Importantly, in the 6 = 1/2 — ¢ regime, several constructions
are concatenation-based (say, [AGHP92, BT13]), and in particular, one can show that
concatenating optimal AG codes with the Hadamard code yield codes of rate (g?).

Remarkably, the GV bound is suboptimal for sufficiently large constant alphabets. A
major line of research, initiated by Goppa’s 1981 introduction of algebraic-geometry (AG)
codes [Gop81], constructs codes from algebraic curves over finite fields. This approach laid
the foundation for the breakthrough of Tsfasman, Vladut, and Zink [TVZ82], who proved
that for sufficiently large fields (e.g., already over Fy9), AG codes can asymptotically
achieve a rate-distance tradeoff exceeding the GV bound. Their result relies on families
of curves with many rational points relative to their genus. Subsequently, Garcia and
Stichtenoth [GS95, GS96] constructed explicit recursive towers of function fields attain-
ing the Drinfel’d-Vladut, [VD83] upper bound on the number of rational points, thereby
providing explicit families of AG codes that meet the Tsfasman—Vladut-Zink bound in a



fully constructive way. Moreover, as the field size increases, the quantitative improvement
becomes more pronounced, and the range of parameters for which the GV bound can be

exceeded broadens accordingly.

1.1 Owur Approach: Trace-Based Alphabet Reduction for AG
Codes

Inspired by the work of Kopparty, Ta-Shma, and Yakirevitch [KTY24] and by a talk of
Ta-Shma at the Simons Institute (Berkeley) [Ta-24], this paper studies a family of explicit
constructions over constant-size fields that aim to meet—or even surpass—the GV bound,
with a particular focus on binary codes. Our primary technical contribution is to develop
tools for analyzing these candidate constructions and for understanding their limitations.
The resulting statements are general and extend beyond the original motivation, with
potential further applications.

Our idea is simple: we aim to leverage the underlying algebraic structure of AG codes—
which enables them to beat the GV bound—in the alphabet-reduction step as well. The
hope is that, by exploiting this structure, the reduction will not substantially compromise
the excellent rate—distance tradeoff of the original AG code. In its most basic form, the
alphabet-reduction method we propose applies the field trace to each coordinate of every
codeword. While this is the variant we focus on in this work, we view it as a special case
within a broader family of constructions whose common feature is the aforementioned
strategy of leveraging structure for alphabet reduction.

This approach is, in a sense, an antithesis of the off-the-shelf technique of the black-box
analysis of code concatenation. The latter ignores the code’s internal structure: the rate
and distance of the resulting code are simply the products of the corresponding parameters
of the outer and inner codes (see Section 3). One can hope to get better guarantees by
exploiting additional, more complicated, structure.

Concatenation is reminiscent of other composition-type primitives, such as the zig-zag
product in expander-graph constructions, where the roles of rate and distance are played
by the graph’s degree and spectral expansion. In contrast, exploiting more of the under-
lying structure—in the graph setting, the entire spectrum—yields stronger, and in fact
optimal, analyses [CCM24].

Of course, this is not the first work to consider trace codes: they have been studied for

decades, most notably since Delsarte [Del75], who established their connection to subfield

"'We note that while our trace code approach is inherently “non black-box”, there have been few
attempts at exploiting structure in concatenation-based construction, most recently in [DMW24], with a

similar goal of attaining the GV bound.



subcodes and, in particular, to dual BCH codes. Trace codes of AG codes have likewise
been investigated since the 1990s (e.g., [vdV91, Sko91, LC16] and subsequent works).
However, the aspects examined in that literature, largely motivated by the analysis of
BCH and cyclic codes, are of limited relevance to our goals here. The papers by Kopparty,
Ta-Shma, and Yakirevitch [KTY24, KTY25] as well as an earlier paper by Vladut [V1a96]
are the most relevant to our work. We discuss Vladut’s work in Section 2.2.

To clarify the challenges in analyzing trace codes of AG codes and to place our tech-
nical results in context, we must first turn to describe the simplest case: the trace of
Reed—Solomon codes. This (by now standard) analysis exposes the intimate relationship
between taking traces of codes and the geometry of algebraic curves. It also shows why
existing techniques, while effective for Reed—Solomon codes, fall short for trace codes of
general AG codes. With this perspective, we present our main result, which constitutes

a first step toward overcoming these obstacles.

Concurrent work. In concurrent, independent work, Kopparty, Ta-Shma, and Yakire-
vitch [KTY25] also study trace codes of AG codes, focusing on the Hermitian function
field; this extends their earlier paper [KTY?24], which inspired the present work. We give a
technical comparison with [KTY24, KTY25] after presenting our results (see Section 2.3).

1.2 Trace Codes of Reed—Solomon: Analysis via the Hasse—Weil

Theorem

We recall that a Reed-Solomon (RS) code over F, is defined by identifying messages
with polynomials f € F,[x] of degree < k and evaluating them at distinct field elements.
Specifically, for evaluation points py,...,p, € F, (with n < ¢), the codeword correspond-
ing to fis (f(p1),..., f(pn)). Let p denote the characteristic of F,, and write ¢ = p™.
The trace code of the Reed—Solomon code is obtained by applying the (absolute) field

trace Tr to each coordinate. Thus the encoder maps IF’; — [ via

fre= (Tr(f(p1)), ... Tr(f(pa))), (1.1)

where Tr(z) =z +aP+---+ 2?""". Note that the resulted code is [F,-linear. As it stands,

as long as the encoder is injective, the rate of the code is

_ klogqg mk

= 1.2
nlogp n’ (12)



which is a factor-m improvement over the rate of the underlying RS code. We now turn
to the distance analysis, which is more challenging.?

Fix a polynomial f € F [x] of degree t < k. Using Hilbert’s Theorem 90, it can be
shown that the number of zeros z; in the codeword corresponding to f in Equation (1.1)

is related to the number of pairs (z,y) € Fg satisfying

v —y=f(z), (1.3)
that is, to the number of F,-rational points n¢ on this curve. More precisely, we have that

nys
zp < —, 14
f= ( )

and equality holds when n = ¢. Therefore, analyzing the distance of the trace code is
equivalent to counting points on curves, one curve for each message f.

Counting points on curves over finite fields is a difficult task. A deep and powerful
result, the Hasse-Weil theorem (see [Sti09, Chapter 5]), provides a bound on the number of
points. We will discuss the Hasse—Weil theorem in more depth later on; for now it suffices
to note that in our current setting, where the curve has the form of Equation (1.3), the

theorem implies that the number of F -rational points ny satisfies
ny—(@+DI<(E-1)p-1va* (1.5)

Combining this with Inequality (1.4), we readily obtain a bound on the distance.

Assuming, for simplicity, that we evaluate over all field elements (i.e., n = q), we get

Since one cannot expect a distance better than 1 — %, we see that the “loss” term is \/Lﬁ

This, in particular, means that to obtain a nontrivial bound on the distance we must take

k = O(y/n), which forces the rate to vanish at an inverse-square-root rate, p = O <\/Lﬁ>

The above construction extends naturally to trace codes of AG codes, and this is

what we undertake in the following sections. However, the distance analysis based on the

2As it turns out, analyzing the distance will require a slight tweak to the construction, incurring a

small loss in the rate computed in Equation (1.2).
3To be precise, for some polynomials f the Hasse-Weil theorem does not apply: If f can be written

as f(z) = g(z)P — g(z) for some polynomial g(x), then the number of solutions of Equation (1.3) is ¢ - p,
yielding a trivial bound on the number of zeros. To circumvent this, we require the degree ¢t of f to be

coprime to p. This accounts for the rate loss mentioned above, namely a multiplicative (1 — %) factor

relative to Equation (1.2).



Hasse-Weil bound does not carry over. This motivates our results, and in particular our
main theorem: a Hasse-Weil-type bound suitable to the analysis of trace codes of AG
codes, which yields a meaningful lower bound on their distance.

To keep this introductory section accessible, we continue to assume no prior knowledge
of algebraic function fields. As a result, this section has an expository flavor, while the
formal treatment appears later in the technical sections. In particular, in Section 1.3 we

provide a brief, informal introduction to algebraic curves.

1.3 A Brief Introduction to Algebraic Curves

Informally, an algebraic curve over a finite field F, is the set of points in Fi" satisfying m—1
independent polynomial equations. A good example to have in mind is the Hermitian

plane curve over a field of size ¢ = r?

, consisting of all points (z,y) € F, satisfying
y" +y = 2"t Tt is not hard to show that this curve has 7® + 1 = ¢*/? + 1 points. In
general, the number of points n on a curve is a key parameter; in the coding-theoretic
context, it governs the block length of the associated code, as we shall see. Generally,
these points are denoted by pq, ..., p,.

AG codes are obtained by evaluating functions on a fixed curve. The notion of a
function on a curve is somewhat delicate. For example, on the Hermitian curve the
two polynomials y” and 2" ! — y, although different as formal polynomials, are identical
as functions, since they agree on all points of the curve. Nonetheless, there is a notion
analogous to the degree of a function irrespective of its representation as a polynomial. As
with polynomials, this notion of degree bounds the number of zeros a function may have
on the curve. Moreover, the set of all functions of degree at most k£ forms an F,-vector
space.

Given a curve, we associate the corresponding AG code in a manner analogous to
the Reed—Solomon code. We fix a degree k and identify the messages with the subspace
of functions of degree at most k. The codeword corresponding to such a function f is
obtained by evaluating f at all points on the curve, (f(p1),..., f(pn)) € Fy.

A second important parameter is the curve’s genus. This natural number, denoted
by g, is a measure of the curve’s complexity. We will not give a formal definition of the
genus here, but rather adopt the following operative perspective. The Hasse—Weil theorem
mentioned above is fundamental in the study of algebraic curves over finite fields; it is, in
fact, the proof of the Riemann Hypothesis over finite fields. We will discuss the theorem

itself later; however, an important corollary—referred to here as the Hasse—Weil bound—



states that the number of points n on a curve of genus g satisfies

n—=(g+1[<2Vq-9

From this result we deduced Inequality (1.5).* Thus, the smaller the genus, the better the
bound on the number of points on the curve. That is, we view the genus as the parameter
that controls |n — (¢ + 1)| (up to the factor 2,/7q).

1.4 TAG Codes

With the concepts in Section 1.3 in place, we are ready to give an informal definition of
trace codes of AG codes (TAG codes, for short). Fix an algebraic curve over a finite field
F, of characteristic p, choose n points pi,...,p,, and identify the message space with

functions of degree less than k. As in (1.1), we map a message f by

fr= (Te(f(pr))s- - Tr(f(pa) € F. (1.6)

As in the analysis of the trace of RS codes in Section 1.2, here too there is a precise
relation between the number of zeros z¢ in the codeword corresponding to f and the
number of points on a certain curve. This time, the latter curve depends on both the
original curve and the function f. In particular, analogously to Equation (1.3), if the
original curve lies in an ambient space of dimension m, then the new curve we consider
lies in an ambient space of dimension m + 1, and in addition to the m — 1 polynomial

relations among z1, ..., x,, dictated by the original curve, we have the relation
xg’b—i—l_xm—i-l :f(xlw"axm)- (17)

Analogously to Inequality (1.4), there is an exact relation between the number of
points ny on the new curve and n, the number of points on the original curve. It takes
a slightly less simple form, which is quantitatively almost identical; for simplicity, in this
informal section we will use the same relation as before, namely,

n
2 =L, (1.8)
p

Recall that, to analyze the distance of the trace of RS codes, we relied on the Hasse—
Weil bound as stated in Inequality (1.5). Looking more closely at that equation, the
term ¢ counts the number of points on the base curve underlying the Reed-Solomon

code, namely the line over F,. The Hasse-Weil bound controls the difference between the

4The reason it is ¢ + 1 rather than g is that, in this context, curves are taken to be projective rather

than affine, so one additional “point at infinity” is included.



number of points on the base curve and the number of points on the new curve. The
bound in Inequality (1.5) is in terms of the genus of the new curve. What should the
bound be in the case of TAG codes? There are now two genera involved: the genus of the
curve defining the code, denoted by g, and the genus of the new, extended curve, denoted
by g¢. In the original case, since the genus of the line is 0, it made no appearance in
the Hasse-Weil bound. There is a sense in which the ,/q appearing in the Hasse-Weil
bound provides the natural “units” for measuring the number of points, independent of
whether we extend the line or another curve (see Section 2.2). Thus, it is conceivable
that the difference of genera should be used in the bound. Indeed, the general result in
this context is Grothendieck’s trace formula [Gro77] which states exactly this; namely, it
yields the bound

Ing —n| <2/q- (95— 9)- (1.9)

Unfortunately, this bound, which is tight in general, doesn’t give any nontrivial bounds
on the distance of TAG codes. To see why, we rely on two results from the theory of
algebraic curves. First, there is a formula relating the genus gy of the extended curve and
the genus ¢ of the base curve, known as the Hurwitz genus formula. For our introductory
purposes it suffices to say that

gr =pg + A, (1.10)

5

where A > 0 is an integer. ° Hence, the bound given by Inequality (1.9) is at least

2y/q(p—1)g.
The second result is the Drinfeld-Vladut bound [VD83], which, informally, states that

asymptotically, as the genus of the curve tends to infinity, we have
n
-<Vq—-1 (1.11)
g

Combining this with the calculation above shows that the bound in Inequality (1.9) is
worse than 2(p — 1)n. Consequently, the resulting upper bound on ny is no better than
(2p — 1)n. Together with Equation (1.8), this yields an upper bound of @ on the
number of zeros in a codeword, which is trivial since this quantity exceeds n.%

As discussed above, a distance analysis for TAG codes demands estimates stronger
than those yielded by Grothendieck’s trace formula. This is the main technical contribu-
tion of the present work. In the next section we state our main result and its applications

to the analysis of TAG codes, as well as its broader consequences.

5For readers familiar with algebraic function fields, A is the degree of the Different divisor of the

corresponding function field extension.
6We remark that even a bound of the form /g (g5 — g) in Inequality (1.9) —which may be obtainable
asymptotically—still does not yield a nontrivial distance bound.



2 Our Results

As discussed in Section 1.4, the issue with Grothendieck’s trace formula for analyzing
the distance of TAG codes is that the upper bound it yields for |ny — n| depends too
heavily on the genus g of the underlying curve. In other words, regardless of how simple
the extension is (equivalently, regardless of the degree t of f), the bound is too loose
when the underlying function field is of large genus. Indeed, the degree of f is encoded
in A, and the previous section showed that even if the contribution of A to the bound is
ignored, one still does not obtain a meaningful bound on the distance. Thus, we seek a
bound that depends on the complexity of the extension as captured by A, rather than on
how complex is the base curve, as encoded by the genus g. More precisely, one can show
that A = O(pt), and in particular it can be taken significantly smaller than the genus g.
A bound of the form
ny—nl = @A) va. (2.1
for some function ® (e.g., linear in A) is most desirable, as it is completely independent
of the genus ¢g. Our main technical contribution is a step toward such a result, in which
the bound we obtain is the geometric mean of A (the quantity we wish to appear in the
bound) and the genus g, which by itself is too large.
For the analysis of TAG codes we only need to consider specific types of extensions,
as in Equation (1.7). Such extensions are called Artin—Schreier extensions. Our result,
however, holds in much greater generality. In this introductory section we choose to be

somewhat informal and consider only the special case required for analyzing TAG codes.

Theorem 2.1 (main result; informal). Let F, be a finite field of characteristic p. Let C
be a “nice” curve over F, with genus g and n points. Let f be a “nice” function on C
of degree t, and define the curve Cy by the additional polynomial constraint y? —y = f,

where y is a new formal variable. Then the number of points ny on the curve C satisfies
ny —n| = 0(p*vig\/a) - (2.2)

In fact, the result also extends to Kummer extensions and, more generally, to ex-
tensions of the form ¢(y) = f for an arbitrary polynomial ¢, as formalized in Proposi-
tion 5.3. The theorem further applies to even more general extensions under technical
conditions—hidden in the two “nice” instances highlighted in the informal Theorem 2.1.

For the complete, formal statement, see Theorem 5.6.



2.1 Implications for Error Correcting Codes

As discussed in Section 1.4, an upper bound on ny directly translates into a lower bound
on the weight of the codeword corresponds to f in the TAG construction. In this section,

we examine the resulting codes parameters and highlight the limitations of this approach.

2.1.1 The Hermitian TAG code

In this section, we illustrate Theorem 2.1 by giving an explicit instantiation of TAG codes
based on the Hermitian curve introduced in Section 1.3. Let r = p’ be a power of a prime
p, and let ¢ = r?. Let A C F, x F, be the set of roots of the polynomial y" +y — 2" .

For T' > 0, let
B={(i,j) e NxN:ir+jr+1)<T,

i is odd and j is even, (2.3)
j<r/6}.
The Hermitian TAG code is defined by
C= Tr Z C@jOéiﬁj Gy € Fq

The following theorem specifies the parameters of this code; the formal statement appears

in Theorem 7.2.

Theorem 2.2 (Hermitian TAG codes; informal). The Hermitian TAG code with message
length k and relative distance 1/2 — € has block length

L 3/2

In fact, the result shows that the Hermitian TAG code not only has relative distance %—

e but is actually e-balanced: every nonzero codeword has relative Hamming weight in | % —
£, %—i—&t]. In Section 7, we further instantiate our results for additional curves—specifically
the Hermitian tower of function fields and the norm-trace function field—obtaining e-

balanced codes with varying parameter trade-offs.

2.1.2 The high distance regime: TAG codes vs. concatenation

As our case studies in Section 7 show, in the regime 6 = %—5 all the TAG codes we consider
are still far from the GV bound, requiring n = w(e%) . This prompts the question: does
there exist a curve for which the corresponding TAG code matches the GV bound?

9



In Section 8 we present strong evidence for a negative answer. We show that, when
analyzed using our bound from Theorem 2.1, in the high-distance regime § = % —e, TAG
codes instantiated from a given AG code are outperformed by concatenating the same AG
code with Hadamard. This remains true even under a bound of the form Equation (2.1)

with ®(A) that is linear in A. In particular, we establish the following.

Theorem 2.3. Assume the bound given by Equation (2.1) is tight up to a constant. Then,
any TAG code with rate k and relative distance 1/2 — e has block length

-a(2).

Moreover, assuming the bound given in Theorem 2.1 is tight up to a constant, n = Q(k/e°).

2.1.3 The constant distance regime

As implied by Section 2.1.2, under our analysis, attaining the GV bound requires operating
in the regime where the distance ¢ is bounded away from % To approach the GV bound
in this regime, we must have a nonvanishing rate. In this short section, we examine the
implications for the parameters of the underlying AG code.

For a curve C, let ¢(T") denote the dimension of the vector space of functions on C' of
degree less than T'. Assume that Theorem 2.1 applies to every function in this space, and
let C be the resulting TAG code. By Equation (2.2) together with Equation (1.8), the
encoding of a function f of degree ¢ is nonzero provided the right-hand side is < (p—1) n.

For simplicity, assume the implicit constant hidden in the big-O of Equation (2.2) is 1,
and that n/g = /g — 1 (the optimal AG-code guarantee). To obtain a nontrivial bound

on the number of zeros of f, we require

P’Vig /g < pn,

which is equivalent (since n = g(\/g — 1)) to

t<g<1 1)2
p? Vi) o

Hence, to apply our result we must work in the regime 7' < g/p?. The resulting TAG

code C has rate
U(T) log,(q)

p = ——"—.
n

Since {(T) < T < g/p* and n = (/g — 1)g, we obtain

log,(q) «T) _ logy(a)

vi-1 g = (Va-1)p?
10




Thus, to obtain a family with constant rate, we must fix ¢ and choose curves (and T <
9/p*) so that ((T) = Qq(g).

This is a somewhat nonstandard regime for AG codes. Typically one works with
functions of degree at least 2g, where Riemann—Roch guarantees linear growth of ¢(7T)
(indeed, ¢(T) =T +1— g for T > 2g — 1). In particular, among degrees up to (1 + «)g
one obtains at least ag attainable degrees. By contrast, working below ¢ is subtler: the
attainable sub-g degrees—the Weierstrass non-gaps—depend on the curve. In our TAG
setting, one must therefore understand this sub-g regime.

A property closely related to the latter was examined in [BT13, Section 4.1]. However,
we are not aware of any optimal family of function fields exhibiting this behavior. For
instance, in [YH19], the authors show that certain Riemann-Roch spaces on the Garcia—

Stichtenoth tower do not satisfy this property. We formalize this as an open problem.

Open Problem 2.4. Does there exist a prime power ¢ = p* and a family of function
fields F;/F, with % = O4(1), such that each F; of genus g; contains a Riemann—Roch
space L; of degree T; < 1% satisfying ;(T;) = Qq(g:) ?

2.1.4 Limitations and consequences of improving the bound

In Section 2.1.3, we assumed that the constant appearing in the error term in Equa-
tion (2.2) is equal to 1. Suppose instead that we could obtain a small constant 0 < ¢ < 1

such that, for every “nice” function f of degree ¢, the bound

ny <+ Vg

holds. If a S-fraction of all functions of degree up to T" would be “nice”, then the resulting
TAG code would have rate and relative distance, correspondingly,
log, q UT)
vai-1l g~

1 V9T

s>1- Lo VTVa

D n

Taking 7' = 2g, the Riemann—Roch theorem gives ¢(7') = g + 1. We then have

p=0-

log, ¢

Vi1

1 V2

521———cp—q :
p Va—1

From this we see that if our bound were sharpened by reducing the leading constant,

p=p-

TAG codes would work in the usual AG regime (e.g., for degrees > 2¢g — 1) and could lead

11



to better code parameters. Note that the constant ¢ cannot be taken arbitrarily small;
doing so would violate the MRRW linear-programming upper bounds [MRRW77]. This
offers an unusual direction of inference: using coding-theoretic limits to deduce statements
about algebraic curves.

2.2 Exponential Sums over Curves

Exponential sums over finite fields play a central role in number theory and algebraic
geometry. A. Weil was the first to observe a deep connection between exponential sums
of polynomials and Artin—Schreier covers. Specifically, for a polynomial f(x) of degree d

over F, such that f # u? — u for all u € F,(z), the exponential sum

S(f) =3 e Ve (2.4)
ackF,
can be expressed as S(f) = w; + - -+ + wp, where the w; are a subset of the reciprocals of

the roots of the zeta function of the Artin—Schreier curve

WEeil also showed that if deg f is relatively prime to p, then D = d — 1. Combined
with his proof of the Riemann Hypothesis for curves over finite fields, which asserts that
cach w; satisfies |w;| = /g, this yields the bound

1SN < (d=1)Vag.

In 1966, Bombieri [Bom66, Theorem 5] extended Weil’s results from polynomials to gen-

eral rational functions defined over algebraic curves.

Theorem 2.5 ([Bom66], Theorem 5). Let C' be a complete, irreducible, non-singular
curve of genus g over F,, which contains n points. Let f € F,(C) be a function on C such
that f # uP —u for all u € F_Q(C). Let P be the set of poles of f. Then the exponential
sum

S(f) = e%Tr(f(P))’ (2.5)

peC\P

can be expressed as

S(f)=wi + - +wp, (2.6)

where |w;| = \/q for all1 <i < D, and
D <2g—2+|P|+ deg(f).
Moreover, if f has a single pole of degree relatively prime to p, then D = 2g — 1+ deg(f).
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Corollary 2.6 ([Bom66]). In the setting of Theorem 2.5, we have

IS < (29 — 1+ deg(f))v/a-

Note that a trivial bound |S(f)| < n—|P| follows directly from Equation (2.5). Hence,

the bound in Corollary 2.6 is non-trivial only when

(29 — 1+ deg(f))v/ga<n—|P|. (2.7)

Corollary 2.6 was used in [LC16] to compute the dimension of certain TAG codes defined
over curves for which Inequality (2.7) holds.

There is a major limitation of Bombieri’s bound in our setting: If the curve C satisfies
2g9,/q > n, then the bound becomes trivial for any function on the curve. By the Drinfeld—
Vladut bound, Inequality (1.11), this inequality holds for all curves of sufficiently large
genus. Since such curves are precisely those used in AG codes constructions, Bombieri’s
bound is not applicable in this regime.

In [V1a96], Vladut, proves nontrivial bounds for the case of Hermitian and Hansen—Stichtenoth
curves, showing that for certain functions f of bounded degree one has S(f) < cn for some
constant 0 < ¢ < 1. Our results provide new bounds on exponential sums of functions

over curves of large genus, yielding in particular that S(f) = o(n) for functions f of degree
o(g)-

Theorem 2.7 (exponential sums; informal). Let F, be a finite field of characteristic p.
Let C be a “nice” curve over F, with genus g and n rational points, and let f be a “nice”

function on C of degree t. Then,
S(f) =0 Vig/q) -

The reader is referred to Theorem 6.4 for the formal statement. Interestingly, in
conjunction with Theorem 2.5, this implies that the complex roots w;, each of absolute
value /g, cannot be all in the same direction.

Note that this bound remains meaningful even for families of curves with g — oo.
However, since g,/q = ©(n), as in Section 2.1.3, the function f must satisfy ¢ < g for the

bound to be non-trivial.

2.3 Comparison with [KTY24, KTY25]

In this section, we compare our results with those obtained in an earlier work by Kop-
party, Ta-Shma, and Yakirevitch [KTY24], and with a concurrent work by the same
authors [KTY25]. These works focus primarily on the Hermitian function field. For a

technical comparison, we instantiate Proposition 6.5 with this function field.
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Theorem 2.8. Let d > 1 be such thatd | q—1. Let f € L(¢Bw) of degree t = ir—+j(r—+1),
such that (d,t) =1, (i +j,d) =1 and j < 3;. Then,
1

L Hae B} Ive R, v = @} < 5 +0 (m/E+pal).

The corresponding theorem from [KTY24| goes as follows.

Theorem 2.9 ([KTY24]). Assume that r > 500 is a prime number, ¢ = r* and let d be
a prime number that divides g — 1. Let f € L(¢Poo) of degree t = ir + j(r + 1), such that
(d,t) =1, (i+j,d) =1, and d < OVt + L2). Then,
1 1 v 4 1 t
FHaer G 3ver, v =) < 5o (|1,

There are several distinctions between these results. First, Theorem 2.9 is restricted
to the case where 7 is a prime number, reflecting the limitations of the derivatives method
as used in [KTY24]. In contrast, our result applies to general prime powers r = p¢; but
the error term in our bound depends on p. For the purpose of TAG codes, one can take p
to be a constant, particularly p = 2 (and we are free to vary r) so it has no effect on our
bound. Importantly, our result is meaningful for all e > 2 whereas Theorem 2.9 requires
e=1.

In [KTY25], the authors extend the bound for the case d = 2 to all functions f €
L (q3/ 4 ‘}300) for which the polynomial 7% — f is absolutely irreducible, without imposing
any restriction on deg(f). However, this comes at the cost of replacing the error term
O(ﬂ) with O<q3ﬁ>. Moreover, in [KTY25], the authors provide a bound on the ex-
ponential sum Equation (2.5) in the setting of the Hermitian curve, when p = 2 and ¢
is an arbitrary power of 2, for any function f € £ (q3/ 4 ‘,]300) of odd degree; the resulting
error term is O(#)» whereas our result Theorem 6.4 yields the sharper bound O<\/g>

as t = Q(\/q).

3 Preliminaries

We assume familiarity with basic background on algebraic function fields, such as places,
valuations, extensions, decomposition and ramification of places, etc. A detailed exposi-
tion of the subject can be found in [Sti09]. In this section we recall some basic notions
concerning algebraic function fields, the trace map over finite fields, e-balanced codes, and

code concatenation.
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Algebraic function fields, valuations and places

Let F, be the finite field with ¢ elements. The rational function field F,(x) is the field
of rational functions in an indeterminate = with coefficients in F,. An algebraic function
field F'/F, is a finite algebraic extension of F,(x). Elements of F' are called functions.

A discrete valuation on F is a map v: F* — Z satisfying v(fg) = v(f) + v(g),
v(f+g) > min{v(f),v(g)}, and it can be extended to F' by setting v(0) = oco. Associated
to a discrete valuation v is its valuation ring O, = {f € F : v(f) > 0}, a maximal ideal
m, = {f € O, : v(f) > 0} and the residue field F, = O,/m,. A place p of F is the
maximal ideal m,, of some valuation ring O,. We write v, for the valuation corresponding

to p, O, for its valuation ring and I, for its residue field.

The degree of a place p is degp = [F, : F,]. Places of degree 1 are called rational
places. We denote the set of all places of F' by Pr, and the set of all rational places of F
by PL.

Extensions of function fields and integral closures

Let F/F, be an algebraic function field, and let L/F be a finite extension of function
fields. For each place p € Pg, we consider the behavior of p in the extension L/F.
A place B € Py, is said to lie above p, denoted P|p, if O, C Oy, or equivalently, if
PNO, = p. For a fixed place p of F, there are finitely many places B, ..., B, of L lying

above it. Associated with each 3| p are two important numerical invariants:
e The ramification index e(Blp), defined by vy (f) = e(Bp) vy (f) for all f € F.
e The inertia degree f(B|p) = [Fy : F,].

These invariants satisfy the fundamental identity

> e(Blp)f(Blp) = [L: Fl.

Blp

The integral closure of O, in L is defined as
O, :={f € L: fis integral over O, }.

Equivalently, O, consists of all elements of L that satisfy a monic polynomial with coef-

ficients in O,.
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Divisors, principal and pole divisors

A divisor of F is a formal finite Z-linear combination
pePr

with finite support supp(G) = {p € Pr : n, # 0}. For two divisors Gy,Gy we write
G1 > Gy if ny(G1) > ny(Go) for all p. The degree of G is deg(G) = 3, ny degp.
Every nonzero function f € F* determines the principal divisor
(F) = wl(f)p.
pePr
The pole divisor (or divisor of poles) of f is
(Moo= DY, —ulf)p

p:up(f)<0

The zero divisor of f is defined analogously by
(Ho=" D wlfp
p:op(f)>0

An important connection between those divisors states that the number of zeros equals
the number of poles. Moreover, if f € F'\ F, then

deg(f)oo = deg(f)o = [F : ()]
In particular, (f) = (f)o — (f) has degree 0. The number

v = min{[F : F,(f)] : f € F\F,} = min{deg(f)os : f € F\ F,}
is called the gonality of F'/F,. The following claim gives a lower bound on ~.

Claim 3.1 ([BT13], Lemma 4.2). Let F'/F, be a function field with Ng rational places.

Then
Np

g+1

Y2

Riemann—Roch spaces and the genus
For a divisor GG, define the Riemann—Roch space
LG) = {feF" :(/)+G=0}uU{0}.

This is a finite-dimensional Fg-vector space; denote ¢(G) := dimg, £(G). The function

(-) encodes the number of independent functions with poles bounded by a given divisor.
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Claim 3.2. Let G be a divisor of F with deg(G) > 0. Then ((G) < deg(G) + 1.

The genus g = g(F) is the nonnegative integer characterized as the unique constant
for which ¢(G) > deg(G) — g + 1 holds for every divisor G, and equality holds for all
G of sufficiently large degree. The celebrated Riemann-Roch theorem gives the precise

relation.
Theorem 3.3 (Riemann—Roch). If G is a divisor of F' and K is a canonical divisor, then
U(G)— UK —G) = deg(G) — g+ 1.

In particular, if deg(G) > 2g — 1 then ((G) = deg(G) — g + 1.

Bounds on the number of rational places

Let Np denote the number of rational places of a function field F'/F, of genus g. The

classical Hasse—Weil bound states that

INr — (¢ +1)] <29v/4. (3.1)

Thus Np grows at most linearly with g.

Considering the asymptotic regime, let
N,(g) == max{Np : F is a function field over I, of genus g}.

Thara’s constant is defined by

Nls).

A(q) = limsup —%

g—00 g

Drinfeld and Vladut proved the upper bound

Alg) <Vg—1L

Moreover, when ¢ is a square, this bound is tight: explicit towers of function fields (notably

those of Garcia—Stichtenoth) achieve Np/gr — /¢ — 1. Such optimal towers are the key

source of asymptotically good algebraic-geometric codes.

Trace map on finite fields

For an extension of finite fields F = /F,, the trace Tre m/r, : Fgn — F, is the Fy-linear map
m—1

Tty m/r, (2) = P, N LT PREP 2 € Fym.

The trace is surjective and every a € F, has inverse image Tr™'(a) of size ¢™ .
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Additional coding theory preliminaries

We say that C'is an [n, k,d], code if C'is a linear subspace of ' of dimension &, and the
distance of C (i.e., the minimal Hamming distance between each two distinct codewords)
is at least d. We will often choose to omit the distance parameter. We say that an [n, k|
code C' is e-balanced if for any nonzero ¢ € C| the relative Hamming weight of ¢ lies in
the range [1/2 —¢,1/24¢]."

We conclude this section by recalling the operation of code concatenation. Letting
Cout C F(]ZV be an “outer” [N, K, D], code, and Cj, be an “inner” [niy,, log ¢, di,]2 code, the
concatenated code Coy;0Chy is an [N-n, K -log, ¢, D-d] such that for any z € FY = Fh ez,

(Cout o Cin)i’j - Cin(oout(x)i)j

where ¢ € [N] and j € [n]. A particularly useful inner code is the Hadamard code. Given
a message length m, set ¢ = 2™, and identify I, with the vector space F3'. For u € Fy,
the (binary) Hadamard codeword Had(u) is the length-2" vector indexed by v € Fy* with

entries (u,v) (dot product modulo 2). The Hadamard code has relative distance 3.

4 TAG Codes and Function Field Extensions

In this short section, we formally define the construction of the trace code associated with
an algebraic geometric code. We then review the relation of its minimum distance to the
number of rational points in a certain elementary abelian p-extension of the underlying
function field. This connection is a known result, which we include here for completeness.

Let p be a prime number, and let p < ¢ < g be powers of p such that F, C F, C [F,.
Throughout, Tr is the trace function from F, down to Fy. Let F'/F, be a function field of
genus g with N = n + 1 rational points, one of which is denoted by p, and the remaining

by p1,...,p,. For an integer r, we denote the set of pole numbers up to r at p by

WS, = {i € [r] : L(ip) # L((i — 1)p)},

and for each i € WS, let b; € L(ip) \ L((: — 1)p). We now focus on those functions whose
pole order is coprime to the characteristic p: let i; < iy < - -+ < i) be the elements of WS,
such that p 1, and define

B, = {b; : i € WS, such that p { i}

"Linear e-balanced codes are essentially equivalent to e-biased sets, a primitive of great importance in

pseudorandomness (see, e.g., [HHT24, Section 2.2]).
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to be the corresponding set of functions.
With these notations, we define the Fy-linear code TC: Fi — F} as follows. Given

m = (my,...,my) € IF’;, define the function f,, = 2521 m;b;,;. Then, set

TC(m) = (Tr(fm(p1)); - - Tr(fin(Pn))) -

Put differently, we identify the domain of TC with Spang (B,), and for a given input
function f € Spang (B,), we evaluate it at the n rational points py, ..., p,, followed by
applying the trace function from F, to [F, coordinate-wise.

We now turn to analyze the distance of the code TC. As hinted above, the key fact used
is that the distance is closely related to the number of rational points in a certain extension
of the function field F'. To make this connection precise, fix a function 0 # f € Spang, (B,)
and consider the field extension L = F(z) defined by the equation

—z=f.

We first note that L/F is an elementary abelian p-extension, which is a generalization of
Artin-Schreier extensions (which are the case ¢ = p). Indeed, notice that the polynomial
a(T) = T* — T is additive, and its set of roots is F, C F,. In addition, v,(f) < 0 with
p1up(f), and vg(f) > 0 for all g € Pp \ {p}. Thus, all the conditions of [Sti09, Proposi-
tion 3.7.10] are satisfied, and the extension L/F' is an elementary abelian p-extension of

degree /£.

Claim 4.1. For every i € [n|, we have Tr(f(p;)) = 0 if and only if the place p; splits
completely in the extension L/F.

For the proof of Claim 4.1, we make use of Kummer’s Theorem (see Theorem 3.3.7

in [Sti09]), which we cite here, with some modifications to suit our needs, for convenience.

Theorem 4.2 (Kummer’s Theorem). Let L/F be a function field extension, and fix a
place p of F'. Assume there exists an element z € L such that L = F(z) and z € O.

Consider the minimal polynomial of z over F,

d
o(T) = Z hT",
=0

where we use the known fact that h; € O, for alli. Define

d

P(T) = hi(p)T" € FK[T],

=0

19



where F, denotes the residue class field at p. Factor ¢ over F, as
o(T) = [ [ (1),
j=1

where vy1,...,7, are distinct irreducible factors and €; denotes the multiplicity of ~; in
the factorization. Assuming that e = --- = €, = 1, there are exactly r distinct places
PBi,..., B of L lying above p. Moreover, for each i € [r], we have e(P;|p) = 1 and

f(Bilp) = deg .

With this we are in position to prove Claim 4.1.

Proof of Claim /.1. We recall Hilbert’s Theorem 90, in its additive form, which asserts
that for every a € F,

Tr(a)=0 <= 3BeF, a=4"—-5.
Fix i € [n] and assume that Tr(f(p;)) = 0. By Hilbert’s Theorem 90,
IBEF, flp)=p5"~5. (4.1)
Observe that z € Oy,. Indeed, the minimal polynomial of z over F' is
p(T) =T =T~ f € O,[T],

where f € O,, since the only pole of f is p. As we also have that L = F(z), we are in
a position to apply Kummer’s Theorem. With the notations of Theorem 4.2, we get by
Equation (4.1) that

P(T)=T" =T~ f(p)

=TT~ (8~ P)
=(T-B) = (T - p)
=[[@-8-01.

Hence, Kummer’s Theorem implies that p; splits completely in the extension L/F.
On the other hand, if Tr(f(p;)) # 0, then Hilbert’s Theorem 90 implies that the
polynomial ¢(7") has no roots in F,. Notice that F,, = F,, as p; is a rational place. Let

o(1) = [Ty

be the factorization of @(T") over F,,. Then it follows that degvy; > 1 for all j € [r]. In
addition, since ged (¢(T'), ¢'(T")) = 1, the polynomial @(T) is separable. Hence ¢; = 1
for all j € [r]. Thus, by Kummer’s Theorem, every place of L lying above p; must be of
degree > 1, and the proof is completed. O
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As a consequence of Claim 4.1, we obtain the following result. We denote by Nj, the

number of rational points of L.

Corollary 4.3. The relative-distance of the code TC defined above is

Proof. Choose a codeword (Tr(f(p1)),..., Tr(f(p,))) of minimal weight, and let

Z ={i€n]: Tr(f(p:)) = 0}

Then the relative distance of the code is given by § =1 — %

By Claim 4.1, for every i € Z there are exactly ¢ rational places of L lying above p;.
Moreover, from the proof of the claim, for every i € [n]\ Z, there are no rational places
of L lying above p;. As the remaining rational place p € Pp is totally ramified in L/F,

there is one more rational place of L lying above it. Altogether, we conclude that

hence |Z| = f=1 and the proof follows. O

By Corollary 4.3, to lower bound the distance of TC, it suffices to upper bound the

ratio % = xij, or, essentially equivalently, the more natural ratio J]\\;—i Note that the

trivial upper bound Ny < /n + 1 yields only the trivial lower bound § > 0. Obtaining a

nontrivial upper bound on N, is the content of Section 5.

5 Owur Bound on the Number of Rational Points

In this section, we prove the following fairly general—though somewhat technical to
state—proposition, which serves as the foundation for our results on elementary abelian
p-extensions and Kummer extensions. The statement of Proposition 5.1 is formulated
in a broad setting and thus involves several unspecified parameters. In Corollary 5.2,
we present new normalized parameters, and rewrite the bound with these notations. In
Proposition 5.3 we instantiate these parameters, and obtain the main general result,
although still quite technical. In Section 5.3 we show that a quite general family of ex-
tensions satisfy the conditions of Proposition 5.3, and conclude Theorem 5.6, which will
be used in all our applications.

From here onwards, p is a prime number and ¢ = p* for some integer v > 1. Moreover,

F/F, is a function field with N rational places and genus g. We focus on curves in the
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regime g = (ﬁ) For the complementary regime, one can apply the Grothendieck’s

trace formula to\/l?)ound the number of rational places over extensions of F'; see the dis-
cussion in Section 1.4. Let p be a rational place of F', and let x € L(sp) \ L((s — 1)p) for
some integer s > 1. Hence deg(x)s = s. We consider field extensions of the form L/F
where L = F(z). We denote by

t 2 deg(2)oo.
The reader may think of ¢ as given as input, and the resulted bound depends on ¢. The

parameter s on the other hand is “internal” to the proof and it will be beneficiary to

choose it as small as possible.®

We will need to introduce a few more parameters. Let 1 < m < ¢ be a power of p.
4 b Nm
2q

Proposition 5.1. Let L/F be a function field extension of the form L = F(z), and let
d = [L: F]. Assume that p is totally ramified in L, and denote by B the unique place of
L lying above p. Let {b;}icz be a basis of L(AR) such that vy (b;) = —i. Assume that the

elements

Denote

and let B € N be a parameter.

S ={ba!"" i <A j< B k<d} (5.1)

are linearly independent over F,. Further assume that
N
(A—gp)Bd > 5 +dsB+ (d — 1)t, (5.2)
where gr, denotes the genus of L. Then, the number of rational points N, of L satisfies

N
Np < <sdB—|—2—+td) m.
q

Proof of Proposition 5.1. First, notice that as p is totally ramified, I, is the full constant
field of L. Let U be the F, vector space spanned by S as given in Equation (5.1). Consider
the I, linear map ¥ : U — L defined by

Cpagpdmokm | a/mya/m,.j k
v g Cijrbid?" 2 —E ciixbi' a2,
i<A ij.k
j<Bk<d

where ¢; j, € F,. Note that

Im¥ C L ((N/2+dsB)B + (d —1)(2)e0) ,

8Note that by Claim 3.1, s > qTNr
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where we used that vg(z) = e(P|p)v,(z) = ds. This, together with Claim 3.2, shows that
dimp, Im¥ < (N/24+dsB + (d — 1)t + 1) - [F, : ).
Per our assumption on S, as an F,-vector space,
dimp, U = dimp, L(AB) - (B+1)d - [F, : Fp] > (A—gp) (B+1)d- [F,:Fpl,

where the last inequality follows by Riemann’s Theorem.

Therefore our assumption Inequality (5.2) implies that dimg, U > dimg, Im¥ and so
there exists a nonzero element h € U such that W(h) = 0. Indeed, this follows since ¥ is
additive. Note however that for every degree-1 place Q # B of L,

0=V(h)"(Q)=h(Q).
That is, h vanishes on all rational places Q # P of L, and so Ny, < deg(h)s + 1. But
heUCL{(A+sdBm)PB+ (d—1)m(z)w),
hence deg(h)s < A+ sdBm + t(d — 1)m, which concludes the proof. O

We define the parameters 7, 3,7, 4 and o which satisfies the following relations with

regards to the previously defined parameters in this section so far:

t=7—
Va
V4
B =p3M1
Bd
N
9g=7—"F%

s =0— (5.3)

Note that we assume that v = (1).

With this we have the following corollary, retaining the notation from Proposition 5.1.

Corollary 5.2. Assume that
gr < d(g+1) (5.4)
and that

Bu>1+2(t+v)8d+ % (1(d—1)+0op) (5.5)

hold. Assume further, as in Proposition 5.1, that the elements in S are linearly indepen-

dent over F,. Then,

Np < uN (Jﬂ +7d + ZL\/G) : (5.6)
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Proof. Per our assumption, Inequality (5.4), and using the parameters defined in Equa-
tion (5.3), we have that the LHS of Inequality (5.2) can be bounded from below by

N
q
= (/2 = (7 +7)d)5N,
whereas the RHS of Inequality (5.2) can be rewritten as

N 11
5 +dsB+(d—1)t = <§+ﬁ(f(d—1)+aﬁ)> N.

Thus, Inequality (5.2) in Proposition 5.1 holds per our assumption, Inequality (5.5). Thus,

we can invoke Proposition 5.1 to conclude that

N
Ny < (sdB+2—+td)m
q

= uN (aﬁ—l—Td—i—z—\l/a).

5.1 Before the Instantiation: A Parameter Walkthrough

Before proceeding to instantiate the parameters 8, in Corollary 5.2, we provide the
reader with some informal insight into the magnitudes of the various parameters. While
this discussion is not rigorous, it is intended to offer intuition about the bounds one should
expect.

The five parameters appearing in Equation (5.3) can be grouped into three distinct
categories. As previously noted, the reader should view 7 as the input parameter — the
bound we derive for N depends on 7, and it is the nature of this dependence that we
aim to understand. The parameters [ and p are under our control; by selecting them
appropriately, we can optimize the resulting bound. In contrast, the parameters v and
o are intrinsic to the function field under consideration, and for the purposes of this
discussion, the reader may assume v =0 = 1.

As a starting point, we ignore terms that vanish as ¢ — oo. This simplification allows
us to gain an initial understanding of how the bound depends on the dominant quantities,
namely, p, d and 7. It also offers guidance on how to optimize the bound by appropriately

choosing the parameters 5 and p. The assumption in Inequality (5.5) then simplifies to
Bu>1+2(r+ 1)3d.
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We take this to hold with equality, yielding the following relation between 3 and pu:

= % +2(r + 1)d. (5.7)

Now, the bound guaranteed by Corollary 5.2 simplifies, as discussed above, to

N
WLSM(5+Td).

Plugging in the relation between p and [, we obtain

N 1
WL < (B+2(1+7)d) (B+7d).

Generally, for a,b > 0, the minimum of the function f(z) = (z + a) (1 +b) in (0, )
is (1+ \/@)2, attained at z = \/% Applying this, we get that setting § = , /%T) yields

21
the bound N )
WL§(1+\/2T(1+7)d> :

Analogously to the Hasse-Weil theorem, where the number of rational points on a curve
lying over the projective line is expressed as ¢ + 1 + Err, the presence of the constant
term 1 is natural and expected. The remaining contribution is the “error term”. Note
that a bound of d on the ratio is trivial, since L/F is an extension of degree d. Thus, the
bound is meaningful only when 7 < 1, in which case we can simplify the informal (and

inaccurate) bound to

N 2
WL < (1 +V2r d) — 14227 d + 2rd>.

Note that the contributions of the two summands on the right-hand side to the error

term are incomparable; which one dominates depends on whether 27 < d% or not.

The dependence on q. Of course, this bound is not accurate — in particular, it ignores
the dependence on ¢, which is actually quite important in applications, as it determines
how the alphabet reduction (i.e., the minimal value of ¢ for which we start) affects the
bound. Moreover, the parameter S should be chosen such that B is an integer, and p
should be chosen such that m is a power of p, which we will take care of later.

However, the above discussion provides useful insight into how to choose § and p. In

particular, we set § = ) which is well-approximated by 1/7/2 under the assump-

tion that 7 < 1. Thus, we proceed with the choice § = 4/7/2. Substituting this into
Equation (5.7), and using again that 7 < 1, a suitable choice for p is

1

T/2

= +2d. (5.8)
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Plugging this into Inequality (5.6), we obtain

%S(l—i‘@d)Q—f—L(d—i-L). (5.9)

— <1+ 0WT1d+7d). (5.10)

5.2 Instantiation of Parameters

In this subsection, we formalize the above discussion and establish the following general

result.

Proposition 5.3. Let L/F be a function field extension of the form L = F(z), and let
d = [L: F]. Assume that p is totally ramified in L, and denote by B the unique place of
L lying above p. Let {b;},cz be a basis of LIAP) such that vy(b;) = —i. Assume that the
elements

S={ba’m" i< A j< B, k<d} (5.11)

are linearly independent over F,. Further, assume that g, < d(g+t). Then,

¥ <o 0r (Vi G (v d) )
— <o+ 0, (Vrdyp +7d*yp+ — | —= +d . 5.12
I p P AV P (5.12)

Remark 5.4. If 0 ~ 1,7 ~ 1 as in Section 5.1, this is the same error term as in

Inequality (5.9) up to a factor of p.

Proof. By Corollary 5.2, if

By > 1+2(7’+7)5d+%(7(d—1)+05), (5.13)
then,
Ny < uN (w +rd+ %) . (5.14)
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We now choose values for the parameters 5 and p. Similarly to Section 5.1, we want
to take Inequality (5.13) with equality. But we have to make sure that B=p ‘/76 is an

integer. Isolating 3 in Inequality (5.13), as long as pu > 2d(T +7) + 2Z, we get

\/77
2

6> 1+7§T<d_1>

T op—2d(T+7) -

5 (5.15)
Va
To ensure that B is an integer, we can choose
14+ 27(d-1) d
8= Vi +0 ( ) .

T p—2d(rty) - % Vi

Notice the inequality 1 — < 1+ 2z which holds for 0 <z < 0.5. Under the assumption

(5.16)

we have
1 2 4d 4o d
pe (1 o) (14 2 s 2 ) o (L),
I Va ( I ) 14 Va
We want to choose p similarly to Equation (5.8), but we have to make sure that m is a

power of p, and that Inequality (5.16) is satisfied. Pick 0 < o < 1 and C' = C(0) such
that

+ 2d> ~yCp®

(ﬁ

satisfies Inequality (5.16), and such that m is a power of p. Instantiating those choices

into Inequality (5.14), we obtain

NL<5+ d+
N S HPOTHEAT 2\/_

J(l—k%T(d—l)) <1+4Ed(7+7)+;_\2) +0(%)

(i 55) ( Wd) G

Expanding using Inequality (5.16), we have

%ga(1+%(7+7>+;‘£—;§+0(%))

Yp* dyp”
+ CV2rdyp™ + C2rd*yp™ + C +C )
V2qT \/5
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Now, notice that ;% < CVVTp/f , and p® < p, hence

(07

a d
CV2rdyp™ + C21d*yp™ + C vy oP

V2qT1 V4
d
— O (rdyp + & +“—).
(\f p vp NG

If 7 > 1, the bound is trivial, therefore we can assume 7 < 1. As v = (1), we have

T+ = O(7), hence

This implies

Ny ( 2 pd
<o+ 0, |VTdyp+ Td*vp + —
N K PTG

d [/ 1
:a+Oo( Tdyp + Td? +—(—+d) )
VTdyp p NAW: p

5.3 Extensions that Satisfy the Conditions of Proposition 5.3

Proposition 5.5. Let p € Pr be a rational place, and let f € F' have poles only at p. Let
L/F be a function field extension defined by

L=F(z) suchthat ¢(z)=f,

where ¢(T') € F,[T] is a polynomial of degree d. Assume that the polynomial ¢(T') — f €
F[T] is irreducible. Assume that p is totally ramified in L, and denote by P the unique
place of L lying above p. Let {b;};cr be a basis of LI(AP) such that vy(b;) = —i. Then,

1.t 2 degp(2)ee = —vp(2) = degp(f)oo-

2. If we can write degp(f)oo =t = ls + 6% for some { relatively prime to d, and

o—1/2
T then the set

lef <
S = {ba!™" i < A j< B, k<d} (5.17)
is linearly independent over F,,.

Proof. First, we prove that for every h € F we have deg;(h)o = ddegp(h)s. Indeed,
since the place p is totally ramified, IF, is the constant field of L and so by Proposition
3.1.9 and Corollary 3.1.14 in [Sti09]:

deg; (h)oo = degConp/p(h)e = [L : F]degp(h)oo = ddegp(h)oc-
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In particular, for h = f we obtain

ddegp(f)oc = degr(f)oo = degp(¢(2))o0 = ddegp ()

We turn to prove the remaining equality appearing in Item 1, namely, deg; (2)oo = —vsp(2).
As f € L(rp) it has a pole only at p, and so v,(f) = —degp(f)w. Consider now a pole
9 of z. Then, vq(z) < 0 and so by the strict triangle inequality va(¢(2)) = dvg(z) < 0.
But va(é(2)) = va(f), and so 2 lies over a pole of f. As the only pole of f is p and since
B is the only place lying over p, we get that Q = . Thus, (2)s = —vg(2)B, and so

degp(2)e = —up(2) deg P = —up(2),

where the last equality follows since 3 | p totally ramifies, hence f(B|p) = 1 and deg’P =
f(Blp) degp = 1.

Next, we prove Item 2. Recall that A = L]g—gnj We claim that for i,7 < A, j,7 < B
and k, k' < d we have (i,7,k) = (i, 7', k') if and only if vy (b;z7™25™) = vy (bpa? ™2F™).
This will complete the proof.

Assume that vy (b;z/™2"") = vy (b ™2¥™). Denote A; = i — i’ and similarly for 7, k.

We have

, P N

Since t = fs + 8%, we can write t- = (o + ¢, to get

N

N
— A+ mT(a(dAj + AL + eA),

which is equivalent to
N
—A; = T (0(dA; + AR + eA) (5.18)
q
Since ged(4,d) = 1 and |Ag| < d, we have either Ay = 0 or /A, # 0 mod d. However, if

(A, Z0 mod d, then
1
|O'(dAj —f—fAk) +8Ak| >0 — (d— 1)8 > 5

Plugging this into Equation (5.18), we get

mN mN mN
— — (o(dA; + (A AL = A < —
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which is a contradiction. Thus, Ay = 0. Now, if A; # 0, then by Equation (5.18) we have

N N
mN_|mN a
q q

which is again a contradiction. Thus A; = Ay = 0, and hence A; = 0 which completes
the proof. O

As a corollary, we state the main theorem which will be used in all our applications.

Theorem 5.6. Let p € Pr be a rational place, and let f € F have poles only at p. Assume
that degp(f)oo is relatively prime to d, and that we can write degp(f)oo = €5 + s% for

some £ relatively prime to d, and 0 < e < Ud__lfz. Let L/F be a function field extension
defined by
L=F(z) suchthat &(z)=Ff,

where ¢(T') € F,[T] is a polynomial of degree d. Assume that the polynomial ¢p(T') —
f € F[T] is irreducible. Assume that p is totally ramified in L. Further, assume that
gr < d(g+1). Then degp(f)o =t, and

N,
WL <o+ O, (V7dyp + 7d*yp) . (5.19)
Proof. Let B € P, be a place lying above p. The equation ¢(z) = f implies that

e(Blp) - degp(f)oo = degr(f)oo = d degp(2)oe = dt.

As degp(f)eo is relatively prime to d, we must have degp(f)s =t and e(B|p) = d. Hence
we are in a position to apply Proposition 5.3, to obtain

¥ <ot 0 (Vi riws (o))
— <o+0, |Vrdyp+1d°vyp+ — | —=+d .
N VTdyp p NAW ¥

To complete the proof, we use Claim 3.1 to observe that

T=1

\/Wc_lzdeg}?(f)oo'\/az !

Hence



6 Abelian Extensions and Character Sums

In this section, we instantiate the bound from Theorem 5.6 for two families of abelian
extensions. The first family consists of elementary abelian p-extensions of the form L =
F(z), where 2* — 2z = f and d is a prime power. We apply the bound to this setting to
derive a lower bound on the minimum distance of TAG codes, as discussed in Section 4.
Moreover, in the Artin—Schreier case (i.e., when ¢ = p is prime), the bound yields an upper
bound on exponential sums of functions over curves. The second family we consider is
Kummer extensions, namely those of the form L = F(z) with 2% = f, where d is not

divisible by the characteristic p of F'.

6.1 Elementary Abelian p-Extensions and Exponential Sums

In this subsection we consider elementary abelian p-extensions of the form L = F(z),

 — 2 = f and ¢ is a prime power. These extensions satisfy the conditions of

where z
Theorem 5.6. As discussed in Section 4, any non-trivial bound for the number of rational
points on this type of extensions immediately yields a lower bound on the minimum
distance of the corresponding TAG code. In Theorem 6.1, we use this connection to
obtain a lower bound for the distance of TAG codes; in Corollary 6.3 we give an argument
that also yields an upper bound. We use this in Theorem 6.4 to get an upper bound for
exponential sums of function on curves.

Recall the setting of Section 5. Let £ > 1 be a power of p. Let ¢(T) = T* — T, let
f € L(rp) and assume that ¢t = deg(f)oc = —vy(f) is not divisible by p. Let L = F(2)
with ¢(z) = f. By [Sti09, Theorem 3.7.10(a)], L/F is an elementary abelian extension
of exponent p. By part (d) of this proposition, the prime p is totally ramified in L, and

moreover by part (e) we have

(-1
gr=Lg+ ——(=2+(t+1)) <lg+1).
Thus we are in a position to apply Theorem 5.6 to L/F.

Proposition 6.1. In the above setting, assume further that f satisfies the condition in
Item 2 of Proposition 5.5. Then,

N,
WL < o+ 0, ((Typ + Crp) . (6.1)

Let Tr be the trace function from F, to [F,. Claim 4.1 relates splitting places in L/F
to the vanishing of the trace of f at these places. We use this relation together with

Theorem 6.1 to get an upper bound for the number of vanishing traces of evaluations of

f.
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Corollary 6.2. For every function f € L(rp) such that t = deg(f)s is not divisible by

p, we have
[{a € P\ {p}: Tr(f(q)) = 0}| =
If moreover f satisfies the condition in Item 2 of Pmposztzon 5.5, then
1 o
o Ha e PRV () s (i) =0} < T 40, (pWrr 4 o). (62)

As we will see in Section 7, for all function fields in which we instantiate our results,
it will be possible to choose x € F such that ¢ < 1. Moreover, Proposition 5.5 provides
a condition for the set S = S(f) to be linearly independent over F,, depending only on t.
Consequently, if the result applies to f, it also applies to f — a for all a € F,.

In this case, we can also obtain a lower bound.

Corollary 6.3. Assume that o < 1. For every function f € L(rp) of degree not divisible
by p, and that satz’sﬁes the condition in Item 2 of Proposition 5.5, we have

N— |{CIEIP>1 \{p}: Tr(f 5}} ——I-O(E\/_fyp)

Proof. Let 8 € Fy. Since the map Tr : F, — F, is onto, there exists some v € F, such
that Tr(vy) = . Applying Corollary 6.2 to f — 7, we obtain

N— [{a € Pp\ {p}: Tr(f(a) = B}| < +O(\/_7p+€ﬂp)
For a € Ty, let
|{q€IP’1\{p} Tr(f —a}}
Since
Y S.=N-
a€clf,
we get
Sp 1 2
N 1- N Z S < €+O(€\/F7p+€7'yp)
BFaclF,
Thus,
Lo (VTyp + Cryp) < S
l - N-1
To complete the proof, notice that if \/7¢ > 1 the result is trivial, and otherwise 7% <
VTl < 1. O

In Section 7 we use these results to construct and analyze TAG codes on some curves.
Lastly, from the special case of Artin-Schreier extensions, i.e. when ¢ = p, we conclude

an upper bound for the exponential sums arising from these functions.
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Theorem 6.4. Let { = p. Assume that o < 1. For every function f € L(rp) of degree

not divisible by p, and that satisfies the condition in Item 2 of Proposition 5.5, we have

1 ni
5 2 e O =0 (Ve
a€PL\{p}

Proof. Applying Corollary 6.3 to the case ¢ = p, we get

1 152 o
< Z e Tr(f(a) — ~ 262,, B Hq e ]PF \ {p}: Tr(f B}|
a€PL\{p} =0
p—1 ) 1
=) v’ (— +0 (\/ﬁpz))
5=0
= O (Vm°),
which finishes the proof. m

6.2 Kummer Extensions and Multiplicative Character Sums

In this section, following a similar outline to Section 6.1, we instantiate the bound from
Theorem 5.6 in the setting of Kummer extensions to get an upper bound on the number
of rational place on such extensions. Similarly to Corollary 6.3, in Proposition 6.6 we give
an argument that also yields a lower bound. We then apply this bound to derive upper
bounds for multiplicative character sums of functions on curves, in direct analogy with
the upper bounds for exponential sums obtained from the Artin—Schreier case.

Recall the setting of Section 5. Let ¢(T) = T? for d > 1 such that d | ¢ — 1. Let
f € L(rp) and assume that t = deg(f)oo = —vp(f) is relatively prime to d. Let L = F(z)
with ¢(z) = f. Since d | ¢ — 1, the field F, contains a primitive d-th root of unity.
By Corollary 3.7.4 in [Sti09], L/F is a cyclic Kummer extension of degree d, and hence
¢(T) — f is irreducible. By Proposition 3.7.3(b) in [Sti09], the place p is totally ramified
in L, and moreover by Corollary 3.7.4 in [Sti09] we have

g =1 dlg = 1)+ S (A~ (d () degg,

qeP R
Note that for q € Pp, if vq(f) = 0 then d — (d,v4(f)) = 0. Otherwise, d — (d,vq4(f)) < d.
Therefore,

1
g < ltd(g=1)+ - > ddegq
qE€PF 1 vq(f)#0

< dg+ 3 (deg(f)o + des(f)) < d(g +1)

as deg(f)o = deg(f)oo = t. Thus we are in a position to apply Theorem 5.6 to L/F.
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Proposition 6.5. In the above setting, assume further that degp(f)oo is relatively prime

to d, and satisfies the condition in Item 2 of Proposition 5.5. Then,

N
WL <o+ O, (V7dyp + 7d*yp) . (6.3)

Similarly to Section 6.1, we can also achieve a lower bound under further assumptions.

Proposition 6.6. Assume that o < 1. For every function f € L(rp) such that degp(f)oo

1s relatively prime to d, and satisfies the condition in Item 2 of Proposition 5.5, we have
N
WL =1+0 (\/Fd27p) :

Furthermore, we have

1 1
v H{aePe\{p}:Fy e F, ¢' = f(@)}| = 5 + O (Vrdp).
Proof. Fix representatives {€; = 1,... ¢4} of (F;/ng). Fori=1,...,d, let

Si={qeP\{p}:FyeF;, v =ef(a)}.

Note that the sets S; form a partition of the set {q € PL \ {p} : f(q) # 0}. Denote
S; = |S;] and let

Li = F(Zi), Zid = Eif.
Since L;/F is Galois, every q € Pr decomposes in L; to places of the same degree with
the same ramification index. Hence, rational places in L; must lie above splitting rational

places in I, or above ramified rational places. Let IP’ILZ_ be the set of rational place in L;.
We have,

Ni, = [{Q € P}, : Q lies above q such that f(q) # 0}|
+ [{Q € P, : Q lies above q such that f(q) =0}|
+1,

where the last term corresponds to the totally ramified place lying above p. By Theo-
rem 4.2, if f(q) # 0, then q € S; if and only if q splits completely into d rational places in
L;. Hence the first summand in the RHS is dS;. As for the second summand, note that
the number of rational places ¢ in F' with f(q) = 0 is at most qu =t = deg(f)o, and

T
there are at most d places in L; lying above each. Thus,
0<N dS; =0 (d N > (6.4)
. — P = T—. .
< N, NG
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Thus, by applying Proposition 6.5 to L; in the inequality above on the left, we obtain

S
T ;l + O (V7yp + Tdvp) - (6.5)

On the other hand we have

ZSH{quP’F\{p} fla) =0} =

Thus,
Ny, S d
N—-1—"N-1

d——I{quF\{p} f(q —0}\——23

S

Notice that 7 < 1, and hence deg(f)o < % Therefore,

[{aePp\ {p}: f(q) =0} = (\@)

Combined with Inequality (6.5), we obtain

Ny, d

>d—0|—)—-d-1)-0 d? d*vyp) .

12 (\/6) (d—1) = O (V7d*yp + 1d’yp)

To complete the proof of the first part, notice that if v/7d > 1 the result is trivial, and
otherwise 7d* < \/7d < 1.

To conclude the second part, plug the first part into the right equality in (6.4). O]

Lastly, we conclude the bound for multiplicative character sums arising from these

functions.

Theorem 6.7. For all multiplicative characters x € Iﬁ‘q; of order d, and for all functions
f € F which satisfy the conditions of Proposition 6.6, we have

% > x(f(@) =0 (V7d*p).

9€PE\{p}

Proof. We use the notation of §; and ¢; used in Proposition 6.6. Notice that,

% Z X(f(Q))_%;X(Gi)lsi

a€PE\{p}
( Zx €)” ) + 0 (Vrd*yp)
=0 (\/FdQW) :
where we have used the second part of Proposition 6.6. O]
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7 TAG Codes Instantiations

In this section, we use the results obtained in the previous sections to construct and ana-
lyze TAG codes of specific function fields F'. As discussed in Section 2.1.3, the functions
captured by our result are roughly those of degree ¢t < z%' Therefore, in order to construct
TAG codes with high rate, it is necessary to consider curves that admit a place for which
the associated Riemann-Roch spaces of degree < ]% have sufficiently large dimensions.

7.1 The Hermitian TAG Code

Let r be a power of a prime p, and let ¢ = r?. The Hermitian function field over F, is
defined by
F =F,(z,y), y +y=a"th (7.1)

It is an elementary abelian p-extension of F,(z) of degree r. Consider the place po, €

Pp,(2). Let B be some place lying above it. Then

vp(a) = e(Plpse) - vpo (@71) = =(r + 1) - e(Plpc) <0,

hence by Equation (7.1),

vp(y" +y) =7 -op(y) = —(r+1) - e(Plpso)-

Since r and r + 1 are coprime, it follows that

e(mmw) =T,
vgp(x) = -1,
vp(y) = —(r+1).

In particular, the place p., is totally ramified. Let ., be the only place lying above it.
This function field has N = r® + 1 rational places - Po, and another place P, 5 for

all a, 8 € F, such that "™ = " + 3. Taking = as the element with deg(x)., = s, we

have s = r and 0 = sL = < 1. The genus of this curve is g = M, and hence

va 2(r1) N = 341 — 2
Y= gW = 2(r341) - @(1)

Fix an integer r < T < g. We have

r3

L(TBo) = Spang, {a'y’ :4,5 >0, ir+j(r+1) <T}.

To use Corollary 6.2, we seek a subspace of L(T*B,) consisting of functions whose degrees
are not divisible by p, and that satisfy the condition in Item 2 of Proposition 5.5. Notice
that r = s, and that

deg(z'y ) oo = —vp (2'y!) = ir + j(r + 1) = (i + j)r + J.
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Thus, if ptj then the degree of z'y’ is not divisible by p. Moreover, if ¢ + j is relatively

prime to ¢, and j# < 3, then the monomial z'y/ satisfies the condition of Item 2.

Therefore we define V' < L(T*B..) by
V= SpanFq{xiyj 1,5 >0,
ir+j(r+1)<T,
j#0 mod p, (7.2)
ged(t+ 4, 0) =1,
Jj<r/(30)}.
Every function f € V must satisfy the conditions of Corollary 6.2. We are in a position

to obtain a code and calculate its dimension and distance.

Theorem 7.1. Let T be an integer such that r < T < g, and let ¢ be a power of p such
that ¥, CF, CF,. Let V be defined as in Equation (7.2). Let PBy,...,Bn_1 be the set of
all rational places of the Hermitian function field, except Poo. Let TC: V — Fzg be the
trace code of V to IFy, defined by

TC(f) = (Tr(f(B1), -, Tr(f (Bu-1))) -

Then, this code has rate p and relative distance & satisfying

_ o T*log(q)
o= (i) i

o (YT LT
f=1- 0p<\/a+£q>. (7.4)

Proof. Every function f € V satisfies the conditions of Corollary 6.2. Hence, the distance

of the code is at least .
Z - Op(\/; + ET)’

where 72 = T'. Using Equation (7.2), it is easy to verify that

w3 (7))

_ dimV-logi(q) _  ( T%log(q)
r3 Clog(0)qd/?

0=1-

Hence,

p
[l

We instantiate Theorem 7.1 to the setting of e-balanced codes to get an Fy linear code.
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Theorem 7.2. For every k and every € > 0, there are choices for T, r = 2% such that the
Hermitian trace code TC(V) from I, to Fy is a [n, (k)]s linear code that is e-balanced,

with .
k

Proof. Let p=+{¢=2. Pick r and T withr <T < @, where r is a power of 2, and

such that the O-term in Equation (7.4) is at most . Consider the construction of Theo-
rem 7.1 over F, with these choices of T, r, and ¢ = r?. It admits an e-balanced codes over

[y, with rate
Q <T2 102g(q)
,

) = ktogta))

Since n = 73, we have

as claimed. O

7.2 The Norm-Trace TAG Code

Here we present some known facts that can be found in [MP12]. Let r be a prime power,
let e > 2 be an integer and let ¢ = r°. The extended norm-trace function field is a function

field over F,, with a parameter u > 1 such that w | Z:—}, and is defined by

e—1 e—2

F=F,(z,y), y +y ~+--+y=a" (7.5)
The extended norm-trace function field F'/F, has genus g = %;71_1), and
N=r"Yu(r—1)+1)+1
places of degree one. Hence,
e—1 N
gzur , N =~ ur®, — = 2r.
2 g
Thus we have Ja
q e/2—
1=9%F =0 (). (7.6



Consider the place poo € Pr,(,). Let P be some place lying above it. Then

vp(r") = e(Plpoo) - vpo (2") = —u - e(Plpoe) < 0

and hence by Equation (7.5),

e—2

vp(y T YT y) = up(y) = —u- e(Plpoo).

Since u | g — 1 we have (u,p) = 1, hence 1~ | e(Plpac). As e(Blpc) < [F: Fyf)] =,
we conclude that

e(mlpw) = reilv
vp(x) = —r°
vp(y) = —u.

In particular, the place p, is totally ramified. Let P, be the only place lying above it.

1 -1 _ . .
From now on, assume that u = 4= = >~ " = O(r*"'). We remark that in this case,

Equation (7.5) may be written as

F =TFy(z,y), TrIFq/IFT(y) = NFQ/FT(:U)-

e—1

Taking z as the element with deg(z),, = s, we get that s = r¢~! and

e e—1
q e—1 r r

ure —ure=l fre-1 41 - w(l—1/r)+1/r+1/re¢

. 1 _
Since u© = &= Wehaveu(l—%):re 1

, — 1 Thus we obtain
r—1 r

Tefl

- <
re=l 4+ 1/re =

Fix an integer r¢~! < T < g. We have
L(TP) = Spang, {xiyj 24,5 >0, i 4 ju < T} .

To use Corollary 6.2, we seek a subspace of L(T*B,) consisting of functions whose degrees
are not divisible by p, and that satisfy the condition in Item 2 of Proposition 5.5. Notice

that
e—2

deg(a'y)oo = —vp ('y?) = i 4 ju=(i+ " +5 30,
=0
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Thus, if p{ j then the degree of 'y’ is not divisible by p. Write j = a(r — 1) + b for some
integers a, b such that 0 < a <72 and 0 < b <r — 1. Then,

e—2
—vp (@'y) = () (a(r = 1)+ ) Y
=0

e—2
=@+ +alr =1 +b Y 7
=0
e—2
=(i+j+ar! —|—b27‘i — a.
=0

Notice that s = r¢"1. If ged(i +j +a, £) =1, and (bX_7r" —a) £ = O () < 1, then
the monomial z'y’ satisfies the condition of Item 2. Let V < L(T*B.) be defined by

V' = Spang, {a'y’ :i,j >0,
ire! +ju < T,

j#0 modp (7.7)
ged(i+j +a,0) =1,

r
b<O (—) :
7))

Thus, every function f € V satisfies the conditions of Corollary 6.2.

Theorem 7.3. Let T be an integer such that r¢~' < T < g, and let { be a power of p
such that F, CF, CF,. LetV be defined as in Equation (7.7). Let B1,...,Pn_1 be the
set of all rational places in the norm-trace function field, except PBoo. Let TC: V — Iﬁ‘év_l
be the trace code to of V to I, , defined by

TC(f) = (Tr(f(B1), -, Tr(f (Bu-1))) -

Then,
T%log(q)
—o— 5\ .
P (m%ww%*)’ (78)

1 T
5:1—Z—Op<\/re/2+l+€ > (7.9)

Remark 7.4. Since r*~!' < T, FEquation (7.9) is non-trivial only if e < 4.

Proof. Every function f € V satisfies the conditions of Corollary 6.2. Hence, the distance
of the code is at least

1
5=1-7 - O(V/7r+0r7)
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where TT,% =T. We have,

re/? T
T=0 <Tr26—1) =0 (T3e/2—1> :

Together with Equation (7.6), we obtain Equation (7.9). To analyze the rate of the code,
using Equation (7.7) it is easy to verify that

1/ T \?
di =Q| = )
imV <€ <rel) >

We output N — 1 = O (r**7!) elements in Fy, hence

_dimV - log,(q) _q T?log(q)
P= N " \Ulog(O)rte=3 ) -

]

We instantiate Theorem 7.3 with e = 3 in the setting of e-balanced codes, thereby
obtaining an Fa-linear code. In this case, the resulting e-balanced codes are significantly
weaker than those in Theorem 7.2, primarily because v is non-constant and appears in

the error term of the relative distance.

Theorem 7.5. For every k and every € > 0, there are choices for T',r = 2% such that the

trace code TC(V) of the norm-trace curve with e = 3 from [F, to Fy is a [n, (k)]s linear

L 5

Proof. In the above setting, let e = 3, and let p = £ = 2. Pick r,T such that r> <T < g

where 7 is a power of 2, and
5/2
()
€

k
o (%)

such that the O-term in Equation (7.9) is at most €. Consider the construction of Theo-

code that is e-balanced, with

rem 7.3 over F, with these choices of e = 3, T, r, and ¢ = r?. It admits an e-balanced

codes over [y, with rate
Q <T2 log(q)

rd

) = klogta) = k)

Since n = O(r°), we have

as claimed. 0

41



7.3 The Hermitian Tower TAG Code

In this subsection we mainly follow [GX12, Section 3.1].
Let p be a prime number, and r = p* for some integer £ > 1. Let ¢ = 72 and let e < /2

be an integer. The Hermitian tower is defined by the following recursive equations
Tl 4 i =2l i=1,2,...,e—1,

and F, = Fy(21,72,...,2.). The place p € P, (y) is totally ramified in F, and let P,
be the unique place lying above it. This is a rational place. There are exactly ™! more
rational places in Pr,, coming from e-tuples (ay,...,a.) € F; such that af,; + a1 =

a™ i=1,2,...,e—1. The genus of F, is

e—1 i—1
1 Z 1

=1

Hence,

Y= g% < erereil =e. (7.10)
Taking x as the element with deg(z)s = s, we have s = —uyp_ (¥) = e(Poo|poo) = 771
Hence 2
o= SN = re_lm < 1.

Moreover, for all 1 < i < e, we have
vp (@) = (r+ 1)1
Next, fix an integer r*! < T < g, < er®. We have
£(T(*BOO):SpanIFq {lelx{; P Je) € ZS, ZJ@ ‘(r+ 1)t <T}
To use Corollary 6.2, we seek a subspace of L(T*B) consisting of functions whose degrees

are not divisible by p, and that satisfy the condition in Item 2 of Proposition 5.5. Notice
that s = ¢!, and that

J § -1
_Umoo xl : l’ 5 ]'L

_ jﬂ"e_l + Zji(re_l + Oe(T6_2)).
=2
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Hence, if j. is not divisible by p, then deg(lel1 -+~ 2J¢) is not divisible by p. Moreover,
if j; < Oe(@ for all 7+ > 2, then this monomial satisfies the condition of Item 2. Let
V < L(TB,) be defined by

V= Span]Fq{lel1 coexle 5 >0,
> G r+ 1) ST
i=1
Je #0 mod p, (7.11)
ng (Z]’Lv g) = 17
i=1

. r .
Ji S Oe (E) Vi Z 2}

Thus, every function f € V satisfies the conditions of Corollary 6.2.

Theorem 7.6. Let T be an integer such that r*=t < T < g, < er®, and let { be a power
of p such that F, CFy CF,. Let V be defined as in Equation (7.11). Let Py,..., Pn_1
be the set of all rational places in F,, except Po. Let TC : V — Fév_l be the trace code
to of V to ¥, , defined by

TC(f) = (Tr(f(B1), -, Tr(f (Bu-1))) -

Then,

B T log(q)
p = @e (ﬁe—lre(e—l) log(ﬁ) 5 (7].2)

1 T T
5:1—z—0p,6<,/ﬁ+£ﬁ>. (7.13)

Proof. Every function f € V satisfies the conditions of Corollary 6.2. Hence, the relative
distance of the code is at least

1
5= 1= = O,(/ry + fr3),

r=0(1-5)=6 (TZ) .

Together with Equation (7.10), we obtain Equation (7.13). Using Equation (7.11), it is

easy to verify that
. T T e—1
dimV = Q, (—Te_l (€T6_1> )
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where T% =T. We have,




Since we output N — 1 = r¢*! elements in F,, we conclude

dim V' - log,(g) _ o, ( T°log(q) ) ‘

P= N (e=1ree=D) log(0)
O

We instantiate Theorem 7.6 to the setting of e-balanced codes to get an [Fy linear code.

Theorem 7.7. For every k, e > 0 and e > 2, there are choices for T, r = 2% such that the
trace code of the Hermitian tower of level e TC(V) from F, to Fy is a [n,Qe(k)]2 linear
code that is e-balanced, with

l<T <y

Proof. Let p = = 2. Pick r, T such that r¢~

and
k
T =06 <€2(e—1)> ’

kl/e
T = @e (E_Z) ,

such that the O-term in Equation (7.13) is at most . Consider the construction of

. < er®, where r is a power of 2,

Theorem 7.6 over F, with these choices of T, r, and ¢ = r*. It admits an e-balanced codes

T \° ko e2eDNC
{le <re_1) = (mk—> = Qc (k).

Since n = r°*!, we have

ke+1 k etl
_ etl N _ ‘
n=r =0 (52(e+1)> =0 (€2e) ’

as claimed. O

over Iy, with rate

8 TAG Codes vs. Concatenation in the High Dis-

tance Regime

In this section we compare binary TAG codes with the familiar approach of concatenating

with the Hadamard code, thereby proving Theorem 2.3. We consider here the case where
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the error term guaranteed in Corollary 6.2 is O(7), which would lead to the Q(g*) lower
bound on the rate. The “Moreover” part of Theorem 2.3, corresponds to O(+/7), is similar.

Let C be a one-point evaluation AG code, defined by an algebraic function field F'/F,
with genus g, and a set of N rational places Y with respect to a divisor G = T*B such that
P &Y, T < g. Assume that F contains an element x € F with < deg(z)o = 1+0(q¢/?),
and N/g = Q(\/q). Let £ = ¢(T*B), the dimension of the corresponding Riemann-Roch
space. This AG code has parameters n; = N, designated distance d; = N — T, and
dimension ¢, and it is defined over F,. We compare the parameters of the two methods
described above:

1. TAG codes. Without loss of generality, assume that every function f € L(T*])
satisfies the conditions of Corollary 6.2. The error term guaranteed in Corollary 6.2
is O(r) =0 <%§> Then the resulting TAG code has parameters

nT:N,

kr = €log(q),
—)

2. Concatenation with Hadamard. The resulting code has parameters

ng = NQa
kx = (log(q),
< T
€ —.
=N

We let k& = ky = kp. Ta-Shma and Ben-Aroya [BT13] proved that in the regime of

g = Q(\/q) we have .
=0 eyt (&1

Assume that «, 8 > 0 are such that

ng = Q (k—;) 5 (82)

and note that per Equation (8.1), 8 > 2.5. Observe that ey = Q(eg\/q), nr = nu/q.

Hence,
a.—B
ny = n_H =0 (k  H ) -0 <ka6;ﬁqﬁ/2—l> )

q q

45



Notice that by Claim 3.1, in order to have L(T*B) # F,, we must have 7" > q%, hence as
er = Q(%) we have /g = €)(=-). Finally, we obtain

1
er

o, ~B—(5-2) ke
nr = (keeg ):Q(EQH).
T

Comparing this with Equation (8.2), recalling that 5 > 2.5, wee see that the exponent
in the dependence in € in the TAG code, 28 — 2, is larger by at least 0.5 from the
corresponding exponent for the concaentated code. Indeed, the difference is (25 —2)—f =
g —22>0.5.
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