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Abstract

Classical results of Bennett and Gill (1981) show that with probability 1, P4 # NP relative
to a random oracle A, and with probability 1, P™ = NP™ NcoNP™ relative to a random permuta-
tion . Whether P4 = NP“ N coNP* holds relative to a random oracle A remains open. While
the random oracle separation has been extended to specific individually random oracles—such
as Martin-Lo6f random or resource-bounded random oracles—no analogous result is known for
individually random permutations.

We introduce a new resource-bounded measure framework for analyzing individually ran-
dom permutations. We define permutation martingales and permutation betting games that
characterize measure-zero sets in the space of permutations, enabling formal definitions of
polynomial-time random permutations, polynomial-time betting-game random permutations,
and polynomial-space random permutations.

Our main result shows that P™ £ NP™ N coNP” for every polynomial-time betting-game ran-
dom permutation 7. This is the first separation result relative to individually random permuta-
tions, rather than an almost-everywhere separation. We also strengthen a quantum separation
of Bennett, Bernstein, Brassard, and Vazirani (1997) by showing that NP™ N coNP™ ¢ BQP™
for every polynomial-space random permutation .

We investigate the relationship between random permutations and random oracles. We prove
that random oracles are polynomial-time reducible from random permutations. The converse—
whether every random permutation is reducible from a random oracle-remains open. We show
that if NP NcoNP is not a measurable subset of EXP, then P4 # NP“ N coNP# holds with prob-
ability 1 relative to a random oracle A. Conversely, establishing this random oracle separation
with time-bounded measure would imply BPP is a measure 0 subset of EXP.

Our framework builds a foundation for studying permutation-based complexity using resource-
bounded measure, in direct analogy to classical work on random oracles. It raises natural ques-
tions about the power and limitations of random permutations, their relationship to random
oracles, and whether individual randomness can yield new class separations.

* A preliminary version of this paper appeared the Proceedings of the 50th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS 2025) [16].
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1 Introduction

The seminal work of Bennett and Gill [p] established two foundational separations in computational
complexity theory:

1. PA £ NP relative to a random oracle A with probability 1.
2. P™ £ NP™ N coNP™ relative to a random permutation 7 with probability 1.

Subsequent research extended the first separation to hold for specific, individually random oracles,
including algorithmically (Martin-Lof) random oracles [§], polynomial-space-bounded random ora-
cles [22], and polynomial-time betting-game random oracles [[15]. However, the second separation
has not yet been strengthened in an analogous way. Whether P4 = NP4 N coNP4 holds relative to
a random oracle A remains an open question.

In this paper, we develop a novel framework for resource-bounded permutation measure and
randomness, introducing permutation martingales and permutation betting games. These concepts
generalize classical martingales and betting games to the space I of all length-preserving permu-
tations 7 : {0,1}* — {0, 1}* where |7(z)| = |z| for all z € {0,1}*.

1.1 Background

Bennett and Gill [p] initiated the study of random oracles in computational complexity, proving
that P4 # NP4 for a random oracle A with probability 1. Subsequent work extended this to
individual random oracles. Book, Lutz, and Wagner [§] showed that PA £ NP4 for every oracle
A that is algorithmically random in the sense of Martin-Lof [23]. Lutz and Schmidt [22] improved
this further to show P4 # NP4 for every oracle A that is pspace-random in the sense of resource-
bounded measure [20]. Hitchcock, Sekoni, and Shafei [15] extended this result to polynomial-time
betting-game random oracles [[7].

The complexity class NP N coNP is particularly significant because it comprises problems that
have both efficiently verifiable proofs of membership and non-membership. This class includes
important problems such as integer factorization and discrete logarithm, which are widely believed
to be outside P but are not known to be NP-complete. These problems play a central role in
cryptography, as the security of widely-used cryptosystems relies on their presumed intractability
[8, 28]. Furthermore, under derandomization hypotheses, NP N coNP has been shown to contain
problems such as graph isomorphism [19], further underscoring its importance in complexity theory.
Thus, understanding the relationship between P and NP N coNP relative to different notions of
randomness could shed light on the structure of these classes and the limits of efficient computation.

1.2 Owur Approach: Permutation Martingales and Permutation Measure

In this work, we develop a novel framework for resource-bounded permutation measure and random-
ness. We introduce permutation martingales and permutation betting games, extending classical
notions of random permutations. Our theory captures essential properties of random permuta-
tions while enabling complexity separations. We prove that random oracles can be computed in
polynomial time from a random permutation; however, the converse remains unresolved.

First, we recall the basics of resource-bounded measure. A martingale in Cantor space may be
viewed as betting on the membership of strings in a language. The standard enumeration of {0, 1}*
is so = A\, 51 = 0,50 = 1,s3 = 00,54 = 01,.... In the i*" stage of the game, the martingale has
seen the membership of the first ¢ strings and bets on the membership of s; in the language. The



martingale’s value is updated based on the outcome of the bet. Formally, a classical martingale is
a function d : {0,1}* — [0, co) satisfying the fairness condition

d(w0) + d(w1)

a(w) = 2

for all strings w. Intuitively, d(w) represents the capital that a gambler has after betting on the
sequence of bits in w according to a particular strategy. The fairness condition ensures that the
expected capital after the next bit is equal to the current capital. A martingale succeeds on a
language A C {0,1}*
limsupd(A[n) = oo,
n—oo

where A[n is the length-n prefix of A’s characteristic sequence. The success set of d is S*°[d], the
set of all sequences that d succeeds on. Ville [B1] proved that a set X has Lebesgue measure zero
if and only if there is a martingale that succeeds on all elements of X. Lutz [20] defined resource-
bounded measure by imposing computability and complexity constraints on the martingales in
Ville’s theorem.

We take a similar approach in developing resource-bounded permutation measure. Unlike a
classical martingale betting on the bits of a language’s characteristic sequence, a permutation
martingale bets on the function values of a permutation 7. Instead of seeing the characteristic string
of a language, a permutation martingale sees a list of permutation function values. More precisely,
after ¢ > 0 rounds of betting, a permutation martingale has seen a prefix partial permutation

g9=1[9(s0),---,9(si-1)]

where |g(s;)| = |s;| for all i. The permutation martingale will bet on the next function value g(s;).
The current betting lengthis [(g) = |s;|, the length of the next string s; in the standard enumeration.
The set of free strings available for the next function value is

free(g) = {x e {0,1}9) |z is not listed in g} .

For any prefix partial permutation g, a permutation martingale d outputs a value d(g,x) > 0 for
each x € free(g). The values satisfy the averaging condition

d(g) = ‘free Z d(g, )

xefree( )

Here g, x denotes appending the string z as the next function value in prefix partial permutation
g. See Figure for an example of a permutation martingale betting on strings of length 2.

Prefix partial permutations may be used as cylinders to define a measure in 1 that is equivalent
to the natural product probability measure. We detail this in . Briefly, a class X C Tl
has measure 0 if for every e > 0, there exists a sequence of cylinders {[¢;] | ¢ € N} that has total
measure at most € and covers X. This is difficult to work with computationally as the covers may
be large and require exponential time to enumerate.

We prove an analogue of Ville’s theorem [31], showing that permutation martingales characterize
measure 0 sets in the permutation space I1: a class X C 1 has measure 0 if and only if there a
permutation martingale d with X C S°°[d]. This permutation martingale characterization allows us
to impose computability and complexity constraints in the same way Lutz did for resource-bounded

measure in Cantor space [20]. In the following, let A be a resource bound such as p, p,, pspace, or
p,space (see for more details).
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Figure 1.1: An example permutation martingale on strings of length 2. Each path through the tree
represents a permutation on {00,01,10,11}.

Definition 1.1. Let A be a resource bound. A class of permutations X C 1 has A-measure 0 if
there is a A-computable permutation martingale that succeeds on X.

Betting games [, 24] are a generalization of martingales that are allowed to bet on strings in
an adaptive order rather than the standard order. We analogously introduce permutation betting
games as a generalization of both permutation martingales and classical betting games by allowing
the betting strategy to adaptively choose the order in which it bets on the permutation’s values.
We use these betting games to define resource-bounded permutation betting-game measure.

Definition 1.2. Let A be a resource bound. A class of permutations X C 1 has A-betting game
measure 0 if there is a A-computable permutation betting game that succeeds on X.

We also define individually random permutations.
Definition 1.3. Let m € 1 be a permutation and let A be a resource bound.
1. 7 is A-random if no A-permutation martingale succeeds on .

2. 7 is A-betting game random if no A-permutation betting game succeeds on .

1.3 Our Results

Our main result strengthens the Bennett—Gill permutation separation by proving that P %= NP N
coNP relative to every polynomial-time betting-game random permutation 7. Formally,
establishes that

P™ £ NP™ N coNP™

for every p-betting-game random permutation 7. In fact, we obtain even stronger separations in
terms_of bi-immunity [3, 9], a notion formalizing the absence of infinite, easily-decidable subsets
(see for more details). We show that for a p-betting-game random permutation 7, the
class NLIN™ N coNLIN™ contains languages that are bi-immune to DTIME™(2¥") for all k > 1,
where NLIN denotes nondeterministic linear time. Moreover, relative to a p,-betting-game random
permutation, we derive that NP™ N coNP”™ contains languages that are bi-immune to DTIME”(Q”k)
for every k > 1.

Bennett et al. [4] showed that NP™ N coNP™ ¢ BQTIME™ (0(2"/3)) relative to a random permu-
tation m with probability 1. We apply our resource-bounded permutation measure framework to
improve this to individual space-bounded random oracles. Specifically, we show that relative to a

p,space-random permutation 7,
NP™ N coNP™ ¢ BQP™.



This illustrates the power of our framework for analyzing the interplay between randomness, clas-
sical complexity, and quantum complexity.

1.4 Random Oracles and Measure 0-1 Laws in EXP

Tardos [29] proved that if AM N coAM # BPP, then P4 # NP4 N coNP# with probability 1 for a
random oracle A. This is proved using ALMOST complexity classes. For a relativizable complexity
class C, its ALMOST-C class consists of all languages that are in the class with probability 1 relative
to a random oracle: ALMOST-C = {L | Pr[L € C4] = 1}. We have ALMOST-P = BPP [5] and
ALMOST-NP = AM [26]. The condition AM N coAM = BPP implies that there exist problems in
ALMOST-NP N ALMOST-coNP that are not in ALMOST-P. Since the intersection of measure 1
classes is measure 1, this implies NP4 N coNPA # P4 relative to a random oracle A with probability
1. Recent work of Ghosal et al. [10]_shows that if UP ¢ RP, then P4 # NP# N coNP# with
probability 1 for a random oracle A. In we pivot from permutation randomness to classical
random oracles and show that resolving the long-standing question “does P® = NPT N coNP® with
probability 177 is tightly linked to quantitative structure inside EXP. Leveraging the conditional
oracle separations of Tardos [29] and of Ghosal et al. [10], we prove that if P® = NP® 1 coNP%
holds almost surely, then several familiar subclasses of EXP obey strong 0-1 laws: specifically,
either NP N coNP, UP N coUP, (and, in a weaker form, UP vs. FewP) each has p-measure 0 or else
fills all of EXP. Consequently, non-measurability of any one of these classes immediately forces
PR £ NP N coNP? with probability 1. We further show that placing the same oracle separation in
p, measure would collapse BPP below EXP, thereby framing the random-oracle problem in terms
of concrete measure-theoretic thresholds inside exponential time.

1.5 Organization

This paper is organized as follows: Section 2 contains preliminaries. Section 3 develops permuta-

tion martingales, resource-bounded permutation measure, and random permutations. Elementary
properties of p-random permutations are presented in bection 41 In bection d, we prove our main
results on random permutations for P vs. NP N coNP. Eection d contains our results on NP N coNP
versus quantum computation relative to a random permutation. In Eection 1 we present our results
on random oracles and 0-1 laws. We conclude in with some open questions.

2 Preliminaries

The binary alphabet is ¥ = {0, 1}, the set of all binary strings is ¥*, the set of all binary strings
of length n is X", and the set of all infinite binary sequences is 3°°. The empty string is denoted
by A. We use the standard enumeration of strings, sg = A, 51 = 0,59 = 1,53 = 00,54 =01, .... The
characteristic sequence of a language A is the sequence x4 € X, where xa[n] =1 < s, € A.
We refer to xa[sn] = xaln| as the characteristic bit of s, in A. A language A can alternatively be
seen as a subset of X*, or as an element of X*° via identification with its characteristic sequence
xA. Given strings z,y we denote by [z,y] the set of all strings z such that z < z < y. For any
string s, and natural number k, s, + k is the string s,,4; e.g. A+ 4 = 01. Similarly we denote by
Alz,y| the substring of the characteristic sequence y 4 that corresponds to the characteristic bits of
the strings in [z,y]. We use parentheses for intervals that do not include the endpoints. We write
A ln for the length n prefix of A. A statement S,, holds infinitely often (written i.o.) if it holds for
infinitely many n, and it holds almost everywhere (written a.e.) if it holds for all but finitely many
n.



3 Permutation Martingales and Permutation Measure

3.1 Permutation Measure Space

Resource-bounded measure is typically defined in the Cantor Space C = {0,1}> = 2N of all infinite
binary sequences. For measure in C, we use the open balls or cylinders C,, = w - C that have
measure 1(C,) = 271! for each w € X*. Let C be the o-algebra generated by {C,, | w € {0,1}*}.
Resource-bounded measure and algorithmic randomness typically work in the probability space
(C,C,p).

We only consider permutations in [, the set of permutations on {0, 1}* that preserve string
lengths. Given a permutation 7 € I, we denote by 7, the permutation 7 restricted to {0,1}" i.e.,
7, is a permutation on {0,1}". Similarly, ,, denotes the set of permutations in [ restricted to
{0,1}™. Bennett and Gill [5] considered random permutations by placing the uniform measure on
each I, and taking the product measure to get a measure on . We now define this measure space
more formally so we may place martingales on it.

Standard resource-bounded measure identifies a language A C {0,1}* with its infinite binary
characteristic sequence x4 € C. For permutations, we analogously use the value sequence consisting
of all function values.

Definition 3.1. The value sequence of a permutation f € I is the sequence

ve = [f(s0), f(s1), f(s2),.. ]
of function values where sg, s1, s2, ... is the standard enumeration of {0, 1}*.

We identify a permutation f € [l with its value sequence vy. Initial segments of permutations
are called prefix partial permutations.

Definition 3.2. A prefiz partial permutation is a list g = [g(s0),...,9(sn—-1)] of function values
for some N > 0 where no value is repeated and [g(s;)| = |s;| for all 0 < i < N. We let PP denote
the class of all prefix partial permutations.

We write each g € PPl as a list g = [g(s0),...,9(sny—1)]. The length of g is N, the number of
function values assigned, and is denoted |g|. We use [] to denote the empty list, the list of length
0. We write f [N for the length N prefix partial permutation of f € .

Definition 3.3. For each g = [g(s0),...,9(sn—1)] € PP, the cylinder of all permutations in [l
that extend g is

[9] = {h € | h(s0) = g(s0),---,h(sn-1) = g(sn-1)}-

For measure in 1, we are taking the uniform distribution on the set of all I1,, of length-preserving
permutations for all n. Our basic open sets are {[[¢g] | ¢ € PPM}. Suppose g € PP has |[g] = 2" —1
for some n > 0. Then, following Bennett and Gill [5], the measure

n—1 1
1(lg]) = H w
k=0

is easy to define because the distribution is uniform over the (2¥)! permutations at each length. If
2" —1 < |g| < 2" — 1, let m = |g| — 2" + 1 and then

n—1 1 2" _m)! n-l 1 1
n(la]) = (H (Qk)!> ( (27)! ) - (H (Qk)!> P27, m)’

k=0 k=0




where P(n, k) = (n
commonly write u(g) = p([g]).

Let Fn = o(PPI) be the o-algebra generated by the collection of all [g] where g € PPI.
By Carathéodory’s extension theorem, p extends uniquely to JFp, yielding the probability space
(N, Fn, 1). We will work in this probability space. Because p is outer regular, we have the typical
open cover characterization of measure zero:

k), denotes the number of k-permutations on n elements. For convenience, we

Theorem 3.4. A class X C I1 has measure 0 if and only if for every e > 0, there is an open
covering G = {go,91,- .., } C PP such that

Zu(gi) <e and X C U[[QZH
i=0

1=0

3.2 Permutation Martingales

In resource-bounded measure in Cantor Space, a martingale is a function d : ¥* — [0, 0co) such that
for all w € ¥*, we have the following averaging condition:

d(w0) + d(wl) .

d(w) = 5

A martingale in Cantor space may be viewed as betting on the membership of strings in a language.
The standard enumeration of {0, 1}*is sg = A, 51 = 0,52 = 1,53 = 00, 54 = 01,. ... In the i'" stage of
the game, the martingale has seen the membership of the first ¢ strings and bets on the membership
of s; in the language. The martingale’s value is updated based on_the outcome of the bet. For
further background on resource-bounded measure, we refer to [, 7, 11, 20, 21].

A permutation martingale operates similarly, but instead of betting on the membership of a
string in a language it bets on the next function value of the permutation. Instead of seeing the
characteristic string of a language, a permutation martingale sees a prefiz partial permutation,
which is a list of permutation function values g = [g(s0), .., g(si—1)] satisfying |g(s;)| = |s;| for all
i. The permutation martingale will bet on the next function value g(s;). The current betting length
is the length of the next string 5|y in the standard enumeration: I(g) = |s|4/|. The set of free strings
available for the next function value is

free(g) = {2 € {0,1}'9) | z is not in g}.

For example, free([A]) = {0, 1}, free([A,1,0,11]) = {00,01,10}, and free([A, 1,0, 11,00, 01]) = {10}.

We now introduce our main conceptual contribution, permutation martingales.

Definition 3.5. A permutation martingale is a function d : PPIT — [0,00) such that for every
prefix partial permutation g € PPTI,

d(g) =

\free Z dlg,x

zefree (9)
where (g, z) is the result of appending z to g.

Success is defined for permutation martingales analogously to success for classical martingales.



Definition 3.6. Let d be a permutation martingale. We say d succeeds on f € I if

limsupd(f[N) = oo.

N—oo

The success set of d is
S®[d] ={f € N | d succeeds on f}

and the unitary success set of d is the set
Stdl={f en|(3En)d(fIn) > 1}.

In the remainder of this section, we establish the analogue of Ville’s theorem [31] for measure
in 1 and permutation martingales.

Theorem 3.7. The following statements are equivalent for every X CT1:
1. X has measure 0.
2. For every e > 0, there is a permutation martingale d with d(\) < € and X C S*[d].
3. There is a permutation martingale d with X C S*°[d].
First, we need a few lemmas.

Lemma 3.8. If g € PP, then there is a permutation martingale d, with dyg(\) = p(g) and
S'(dg) = [9]-

Proof. Let N = |g| and define dy(x) = |h||3 N[g | x © hl], where we choose h € PPI of length N
uniformly at random. O

A premeasure on I is a function p : PPIN — [0, 1] such that p(A) =1 and for all g € PPI,

p9) = Y plg,w).

wefree(g)
A prefix set in PPl is a set W C PPI1 such that no element of W is a prefix of any other element.

Lemma 3.9. If W C PPI is a prefiz-free set and p is any premeasure on I, then

> nlg) < 1.

gew

Proof. Because W provides a disjoint collection of cylinders, the total measure of the cylinders is
at most 1. (A rigorous proof may be given using induction.) O

Lemma 3.10. If W is a prefiz-free set and d is any permutation martingale, then

> ulg)d(g) < d([]).

geWw

Proof. The function p(g)d(g) is a premeasure on I, so this follows from O
For k > 1, let S*[d] = {m € N | 3n)d(7 [n) > k}.



Lemma 3.11. For any permutation martingale and k > 1,

(st < 40

and there is an open cover Wy, with u(Wy) = u(S*[d]).

Proof. Let d be a permutation martingale. Define for each k > 1,
Wi ={g € PPN | d(g) > k and d(h) < k for all proper prefixes h of g}.

Then
Sl = | [l

gEW)

50 j1(Wi) = p(S*[d]). By [Lemma 3.1,
d() = Y wgdlg) = Y. wgk=k Y plg) = ku(W).

geWy geWy, geWy,

We are now ready to prove .

Proof of . Suppose 1 is true. Let G be a covering of X with p(G) < e. Then define d

by d = ) d4 where each d; comes from . We have d(\) = u(G) < e and X C S1[d].
geG

Suppose 2 is true. For each k € N, let dj be a martingale with dj(\) < 27% and X C S'[d}].
Without loss of generality, we assume that if di(g) > 1, then di(h) = di(g) for all g C h. Define

dbyd= > dip. Let A € X. For every k, there exists nj such that di(A [ng) > 1. Let my =
keN
max{niy,...,ng}. Then d(A[my) > k. Since k is arbitrary, A € S*°[d]. Therefore X C S*[d].

Suppose 3 is true. Let d be a martingale with d(\) =1 and X C S*°|[d]. Let ¢ > 0 and let k£ > 1
such that % < e. Let By be the set of all shortest g with d(g) > k. Then X C By, By is an open
set, and pu(By) < § < € by . O

3.3 A Permutation Martingale Example

We construct a permutation martingale d that succeeds on any length-preserving permutation
whose restriction to length n is a cycle permutation for all but finitely many n. We partition the
initial capital into infinitely many shares a; = 1/i2. For each i, the share a; is used to bet on the
event that, for all n > ¢, the length-n restriction of the permutation is a cycle permutation.

The betting strategy is simple: when moving from length n — 1 to n, the martingale wagers
all relevant capital on the image of the n-bit string 17~10. In the final step of forming a cycle of
length 27, there are exactly two choices for the image of 1"~10. One choice yields a cycle of length
2™; the other does not. Since it is a binary choice, the martingale places its entire stake a; (for all
i < n) on the cycle outcome, thereby doubling its capital whenever the cycle is formed.

Hence, on any permutation whose restriction to length n is a cycle permutation for all but
finitely many n, infinitely many of these bets succeed. Consequently, each of those corresponding
shares a; grows without bound, and so the overall martingale d succeeds on all such permutations.

10



3.4 Permutation Martingales as Random Variables

Hitchcock and Lutz [13] showed how the martingales used in computational complexity are a
special case of martingales used in probability theory. We explain how this extends to permutation
martingales. Given a martingale d : {0,1}* — [0,00), Hitchcock and Lutz define the random
variable &4, : C — [0,00) by &3,(S) = d(S [n) for each n > 0. Let M,, = o({Cy, | w € {0,1}"})
be the o-algebra generated by the cylinders of length n. Then the sequence (&g, | n > 0) is a
martingale in the probability theory sense with respect to the filtration (M,, | n > 0): for alln > 0,

El¢an+1 | Mn] = Ean.-
Similarly, given a permutation martingale d : PPl — [0,00), for each N we can define the
random variable X, n : 1 — [0,00) by Xgq n(f) = d(f[N) for each N > 0. Let

Gy =o({l[g] | g € PPM and |g| = N})

be the o-algebra generated by the cylinders in PPI of length N. Then (Xyn | N > 0) is a
martingale in the probability theory sense with respect to the filtration (Gy | N > 0): for all
N >0, E[Xgn+1 | Gn] = Xan.

3.5 Resource-Bounded Permutation Measure

We follow the standard notion of computability for real-valued functions [20] to define resource-
bounded permutation martingales.

Definition 3.12. Let d : PP — [0,00) be a permutation martingale.

1. dis computable in time t(n) if there is an exactly computable d : PPM x N — Q such that for
all f € PPMand r € N, |d(f) —d(f,r)| <277 and d(f,r) is computable in time ¢(|f| + 7).

2. d is computable in space s(n) if thqre is an exactly cqmputable d:PPMxN — Q such that
forall f € PPMand r € N, |d(f)—d(f,r)| <27" and d(f, r) is computable in space s(|f|+7).

3. If d is computable in polynomial time, then d is a p-permutation martingale.

4. If d is computable in quasipolynomial time, then d is a p,-permutation martingale.

5. If d is computable in polynomial space, then d is a pspace-permutation martingale.

6. If d is computable in quasipolynomial space, then d is a p,space-permutation martingale.
We are now ready to define resource-bounded permutation measure.

Definition 3.13. Let A € {p, p,, pspace, p,space}. Let X C N and X¢ = N— X be the complement
of X within I1.

1. X has A-measure 0, written pa(X) = 0, if there is a A-computable permutation martingale
d with X C S*[d].

2. X has A-measure 1, written ua(X) =1, if ua(X¢) =0

Definition 3.14. Let A € {p, p,, pspace, p,space}. A permutation = € Il is A-random if 7 is not
contained in any A-measure 0 set.

Equivalently, 7 is A-random if no A-martingale succeeds on 7.
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3.6 Permutation Betting Games

Originated in the field of algorithmic information theory, betting games are a generalization of
martingales [24, 25], which were introduced to computational complexity by Buhrman et al. [[7].
Similar to martingales, betting games can be thought of as strategies for betting on a binary
sequence, except that with betting games we have the additional capability of selecting which
position in a sequence to bet on next. In other words, a betting game is permitted to select strings
in a nonmonotone order, with the important restriction that it may not bet on the same string
more than once (see Buhrman et al. [[7] for more details).

A permutation betting game is a generalization of a permutation martingale, implemented by
an oracle Turing machine, where it is allowed to select strings in nonmonotone order. Prefixes of
permutation betting games can be represented as ordered partial permutations defined below.

Definition 3.15. An ordered partial permutation is a list g = [(z1,y1),-.., (Tn,yn)] of pairs of
strings for some n > 0 where for all 1 < i < j < n, 2; # x; and y; # y;, and |z;| = |y;| for all
1 <7 < n. We let OPIT denote the class of all ordered partial permutations.

For a permutation betting game, the averaging condition takes into consideration the length of
the next string to be queried as follows. Let w € OPI1 be the list of queried strings paired with
their images, and a € {0, 1}" be the next string the betting game will query. Define free(w, n) to be
the set of length-n strings that are available for the next function value, i.e., length-n strings that
are not the function value of any of the queried strings. Then the following averaging condition
over free strings of length n must hold for the permutation betting game d : OPIN — [0, c0)

_ d(wla, b))
dw) = free(w, n)|
befree(w,n)

where wla, b] is the list w appended with the pair (a,b).

Definition 3.16. A betting game is a t(n)-time betting game if for all n, all strings of length n
have been queried by time ¢(2").

We define betting game measure 0 and betting game randomness analogously.
Definition 3.17. Let A € {p, p,, pspace, p,space}.

1. A class X C I has A-betting-game measure 0 if there is a A-computable permutation betting
game d with X C S*>°[d].

2. A permutation 7 € I1 is A-betting game random if no A-betting game succeeds on 7.

3.7 Measure Conservation

Lutz’s Measure Conservation Theorem implies that resource-bounded measure gives nontrivial no-
tions of measure within exponential-time complexity classes: pp(E) # 0 and pp, (EXP) # 0. Let
PermE be the class of length-preserving permutations that can be computed in 20 time and
PermEXP be the class of length-preserving permutations that can be computed in 2m%" time. We
show that our notions of permutation measure have conservation theorems within these classes of
exponential-time computable permutations.

Lemma 3.18. For any t(2")-time permutation martingale D, we can construct a O(227t(2"+2%7))-
time permutation that is not succeeded on by D.
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Proof. Let @ be a Turing machine that operates as follows on input « € {0,1}"”. The machine @
simulates the permutation martingale D on prefix partial permutations starting from the empty
list and ending when the image of x is added to the list. During the simulation, whenever D bets
on a string y, () maps y to the first string to which no other string has been mapped, and for
which D’s capital decreases the most, up to an additive error of 272", After this simulation ends,
D outputs the string assigned to = by this simulation. Note that when computing Q(z), we first
compute Q(y) for all y < z.
Clearly, @ computes a permutation on which D’s capital never exceeds its initial value plus

oo o0
o> =y o=,
n=1

n=1ze{0,1}"

so D cannot succeed on this permutation. The runtime of @ on input z is O(22"t(2" + 227)),
since finding the image that minimizes D’s capital on a length-n string = requires scanning O(2")
candidates for each of the O(2") strings preceding x, and each evaluation of the martingale’s value
(to within an additive error of 272") takes (2" + 22") time. O

The following theorem follows from .

Theorem 3.19. 1. PermE does not have p-permutation measure 0.
2. PermEXP does not have pa-permutation measure 0.

Proving similar results for betting games turns out to be more challenging, given that they are
allowed to bet on strings in an adaptive order. To address this, we define the following class of
honest betting games.

Definition 3.20. A log(t(2"))-honest t(n)-permutation betting game is a t(n)-time permutation
betting game such that for all languages A, for all n, all non-zero bets by time ¢(2") are for strings
of length at most log(¢(2")).

We use this definition in the following lemma.

Lemma 3.21. For any log(t(2"))-honest t(2")-permutation betting game G, we can construct a
O(t(2™)2 t(t(2™) + t(2™)?)) -time permutation that is not succeeded on by G.

Proof. This proof is similar to the proof of . So we focus on the main difference between
the proofs.

We construct a DTIME(¢(2")?¢(¢(2") + ¢(2")?)) permutation using the same strategy as was
used in the previous proof. The only difference is when the simulated betting game G queries a
string of length greater than m = log(#(2")). In this case, the betting game answers the query with
the first string of length m that has not yet been made an image. This step takes O(#(2")) time.
Since the betting game does not bet on this string, its capital is unaffected. When the betting
game queries strings of length at most m, it behaves just like it did in the previous proof, it finds
a string that minimizes the betting game’s capital within an additive factor of 2727,

It is easy to see that the betting game does not succeed on this permutation. This permutation
can be computed in O(£(2")? t(¢(2")+t(2")?)). This is because on input = € {0,1}", the simulation
queries at most ¢(2") strings, for each queried string it examines at most #(2") strings to be its
image, and it takes O(t(2°8(4(2") 4 22108(t(2")y = O(¢(¢(2") 4 t(2™)?) time to evaluate the betting
on each image within the appropriate margin of error. O
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Theorem 3.22. 1. PermE does not have O(n)-honest p-permutation betting game measure 0.
2. PermEXP does not have O(n*)-honest pa-permutation betting game measure 0.

Since pspace-permutation martingales can simulate O(n)-honest p-betting-games, and p,space-
permutation martingales can simulate O(n*)-honest p,-betting-games, we have the following:

Proposition 3.23. Let m be a permutation.
1. If w is a pspace-random permutation, then m is O(n)-honest p-betting game random.

2. If 7 is a p,space-random permutation, then 7 is O(n*)-honest p,-betting game random.

4 Elementary Properties of Random Permutations

In this section, we explore fundamental properties of random permutations that provide insights
into how permutation martingales and betting games operate. Understanding these properties is
crucial for applying permutation randomness in computational complexity. We show that random
permutations are computationally difficult to compute and to invert. We then investigate the
relationship between random permutations and random oracles, showing how random permutations
can generate random oracles.

4.1 Intractability of Random Permutations

Definition 4.1. A permutation 7 € I is noticeably polynomial time if there are polynomials p, ¢
and TM M such that for infinitely many n, M computes 7 on at least 2" /p(n) strings of length n
in g(n) time for each string.

Theorem 4.2. The set X = {7 € M | m, is noticeably polynomial time} has p-permutation measure
0.

The proof uses a simple averaging argument: we partition the set of length-n strings into
2" /nl8™ subintervals, each of size n'¢™. By the noticeably-polynomial-time property of the permu-
tations in X, at least one subinterval contains superpolynomially many strings whose images are
computable. The martingale then identifies a sufficiently small subset of these strings and makes
correct predictions often enough to succeed.

Proof of . We design a polynomial-time permutation-martingale game that succeeds

on X. The martingale succeeds on X by going through all polynomial time TMs and finding a
size-n'/? subset of {0,1}" where it wins enough bets to succeed.

This martingale operates in stages. In stage n, the martingale uses the first n polynomial TMs
to bet on {0,1}". We partition {0,1}" into 2/n'8™ subsets of size n'8". For each partition, we
consider all its size-n'/2 subsets. Then we run the n TMs on each size-n'/2 subset of each partition.
So, in total we consider N,, = (2" /n'8") (’:Lllg/Z) = 29(") subsets. We use the TMs outputs to predict
the permutation we are betting on. Each size-n'/2 subset and TM is given capital ﬁ to make
its bet. Next, we show that for any m € X, for infinitely many n, there is a subset that increases
its capital to w(1).

We now specify how the martingale bets in stage n. First, we naturally partition {0,1}" into
2" /n'8™ contiguous subsets T; = [0" + in'8", 0" + (i + 1)n'8™), for i € [0,2"/n'8™). For each T}, the
martingale examines all its size-n!/2 subsets. It then runs each size-n'/2 subset on the first n TMs,

14



Mj, for k € [1,n]. Let M, ;; denote the image of the jth size-n!/? subset of T} under the function
computed by M. As mentioned before, we use 1 ~ to bet with each M; ;. The martingale uses

—~— to bet that each M; ;y is correct, if ]\/[z gk 1S 1ncorrect the martingale loses all its capital
reserved for betting on M, ; 1, otherwise, its capital increases by a factor described later.

We now argue that for each m € X, there are infinitely many n, such that the capital of the
martingale after betting on {0,1}" is w(1). Suppose that m, is computable by at least one of the
first n polynomial time TMs on a noticeable subset of {0,1}" i.e., 7, is computed on a subset of
size at least 2" /n* for some positive constant k. Let us call such a TM, a good TM. Using a simple
averaging argument, we can see that there must be some size-n'8"™ subset T; where a good TM
computes 7, correctly on a subset of size at least n'8"/n*. For sufficiently large n, n'8"% > nl/2.
Therefore, for sufficiently large n, we can always find size-n'/2 subsets where a good TM computes
7. In fact, for sufficiently large n, there are Q(2"/n'8"**) subsets, T}, with at least n/2 strings
that are computed by a good TM.

We now examine how much capital the martingale gains after betting with a good TM. A
correct prediction on a string s € T; = [0" + in'8™ 0" + (i + 1)n'8™) increases the amount bet on s
by a factor of at least 2" — (i + 1)n'8™ + 1 for any i € [0,2"/n'8"*%). In the worst case, some T;
with i = O(2"/n'8"+*) will have n'/? strings that are correctly predicted by a good TM. Therefore
the capital wagered on a the good TM increases by a factor of at least

2 1.4

(2" — (i + DnlE™ + 1)"% = 27 (1 — (i + 1)27mnlsm 271 = y(2n' ).

The last equality follows because k > 0 and i = O(2"/n'8"+F).

Since this value grows much faster than n2£\fn = w(27117) the value reserved for betting on
each M; j, we see that our martingale succeeds on X.

Finally, we argue that our martingale operates in linear exponential time. The most time
consuming step of the martingale is the simulation of n polynomial time TMs that are run on
N,, = 29" gubsets with n'/2 length-n strings. Clearly this can be done in 2™ time. O

Corollary 4.3. If m € 1 is p-random, then any polynomial-time TM will be able to compute m on
at most a 1/poly fraction for all sufficiently large n.

Similarly, we can show that random permutations are hard to invert on a noticeable subset
infinitely often. The main difference is that we search for TMs inverting the permutation rather
than TMs that compute the permutation.

Definition 4.4. A permutation w € [ is noticeably invertible if there is a polynomial-time TM M
and a polynomial p such that for infinitely many n, [{z € {0,1}" | M (7w (x)) = z}| > 2"/p(n).

Theorem 4.5. The set X = {m € | m, is noticeably invertible} has p-permutation measure 0.

Proof. This proof closely mirrors the argument for Theorem 4.2. The key difference is that we treat
the outputs of the TMs as preimages rather than images of the permutation. Specifically, given a
size-n'/? subset S = {x1,..., 2,12} C {0,1}", we run each TM M on z; and interpret the output
M (z;) (if it is length-n) as a prediction that w(M(z;)) = ;.

The martingale allocates capital to each subset—TM pair and places bets accordingly. It only
bets when the outputs M (z;) are all distinct and of length n. As in Theorem 4.2, noticeable
invertibility ensures that for infinitely many n, there exists a TM making sufficiently many correct
inversion predictions. In such cases, the martingale’s capital grows superpolynomially, and hence
it succeeds. O
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4.2 Random Permutations versus Random Oracles

Bennett and Gill used random permutations, rather than random languages, to separate P from
NP N coNP. Tt is still unknown whether random oracles separate P from NP N coNP. In this
section, we examine how random permutations yield random languages. We show that a p-random
permutation can be used to generate a p-random language. All of the results in this section are
stated for p-randomness. They also hold for p,-randomness.

Given a permutation 7w € I, we define the language

Ly = {z | the first bit of 7(0%7lz) is 1}.
For a set of permutations X C I, we define the set of languages
Lx ={L,|meX}.

Lemma 4.6. For any set of permutations X C I, if a p-computable martingale d succeeds on the
set of languages Lx = {L, | m € X}, then there is a p-computable permutation martingale that
succeeds on X.

Proof. We will use d to design a p-computable permutation martingale D, that succeeds on any
me X.

The main idea behind D’s design is to use the capital of the martingale d to bet on the images
of strings that affect the membership of strings in L,. The bet placed by D on each possible image
of the string being bet on is proportional to the bet placed by d on the membership in L, of the
string whose membership is determined by the image. For example, the bet placed by D on the
image of 02/*lz being 1y is proportional to the bet placed by d on z being in L.

The permutation martingale D only bets on strings of form 0*"z, where z € {0,1}" and n > 0
(this is the string that determines the membership of x in L;). Given a string w, let 7 [ w be
the prefix list of v, that consists of the images of all the strings less than w. We let free(w [ w)
be the (nonempty) set of length-n strings that have not yet appeared in the image of the prefix
partial permutation 7 [ w. Where n is the smallest integer for which there exists strings of length
n that have not been mapped to any string. For b € {0, 1}, free(w | w)p is the set of strings of
free(m | w) that have b as their first bit. Let F(7 [ w) and F (7 [ w);, denote the size of free(m | w)
and free(m | w)p, respectively. Finally, let L(7w [ w) be a prefix of the characteristic sequence of L,
it includes the characteristic bits for all strings whose membership can be determined from 7 [ w.
For example, if w = 031 then L(7 | w) is the characteristic prefix for the subset L, that consists
of all string of length at most n.

We now define D. As mentioned previously, D only bets on strings that have the from 0?7z,
where x € {0,1}" and n > 0. These are the strings that determine the membership of strings in L.
The martingale D starts with initial capital d(\), the initial capital of the martingale that succeeds
on L,. Without loss of generality, we assume that d is non-zero. When betting on the images of
string w = 02%lz with z € {0,1}", for each length-3n string beginning with bit b, the martingale

Wagers o LCESFLM(I)%)(IQW% fraction of its current capital. The term % is the fraction of d’s

current capital used to bet on the characteristic bit of « in L, being b. We then divide this term
by F(m | x)p, the number of length-3n strings that make the characteristic bit of x in L, to be b.

It is easy to see that D is computable in p if d is also computable in p. Given 7 [ w, it takes
linear time to compute the string L(7 [ w) and the number F(m [ w). It takes p-time to compute
d(L(m | w)b) and 2d(L(w [ w)). All that is left after that is to perform a multiplication and a
division, both of which requires p-time.
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We now argue that D succeeds on L,. Let us examine the martingale’s capital after bet-
ting on string w = 0%%lz. After betting on w, the martingale’s capital multiplied by a factor of

QCEI((LL(& [Fﬁ)%)g(%%)b. Since I} = % represents the factor by which d’s capital increases while

% doesn’t reduce Fj
b

by much, so that if d succeeds on L, D also succeeds on m. We note that F'(7 [ w) (the number
of length-3n strings whose images have yet to be queried) is at least 23" — 2" and F(m | w),

(the number of the previously counted strings that begin with bit b) is at most 23"~1. Therefore,
F(r|w) 25 9n 1 _ 9—2n
2F (rlw), = 2x23n-1

D’s capital is the same as d’s capital after betting on length-n strings multiplied by a factor of at

least (1 —272")2" & ¢=27". This implies that D’s capital after betting on length-3n strings grows

by approximately the same factor by which d’s capital grows after betting on length-n strings.

Therefore, if d succeeds on L., D succeeds on 7. ]

betting on L., we only need to show that the remaining factor F» =

. Hence, after betting on all length-3n strings of the form 02z,

Corollary 4.7. If m is a p-random permutation, then L, is a p-random language.

We now extend the previous lemma to honest p-permutation betting games. By Lemma ,
honest p-permutation betting games do not cover PermE and honest ps-permutation betting games
do not cover PermEXP.

Lemma 4.8. For any set of permutations X C I, if an honest p-betting game g succeeds on the
set of languages Lx = {Lr | m € X}, then there is an honest p-permutation betting game G that
succeeds on X.

Proof. The proof follows the same strategy as the previous lemma. We use the betting game g to
construct G, a permutation betting game that succeeds on 7 € X. The main difference from the
previous lemma is in the order that the strings are queried. The order will be directed by simulating
the betting game g. Whenever g queries any nonempty string z, G responds by querying the image
of 02*lz. The permutation betting game G then bets on the first bit of the image of 021*lz using
g’s bets on the membership of z to determine the proportion placed on the two possible outcomes,
just like we did in the previous lemma. Since G will not bet on strings that do not have the form
021l2, those strings can be queried after g queries all strings of length n. Because ¢ is an honest
p-betting game, it is easy to see that G will be an honest p-permutation betting game.

The arguments for G’s capital and runtime are almost identical to that of the previous lemmas,
the only difference is that we maintain a list of strings that may not be in the standard lexicographic
order. O

Corollary 4.9. Ifw is an honest p-betting game random permutation, then L, is an honest p-betting
game random language.

Definition 4.10. Given a language L, we define Ny, to be set of permutations

for all n > 0 and = € {0,1}",
N, =<{ 7€ N| n(0*x) = by for some y € {0,1}3"*
if and only if L[z] = b

Given a set of languages X, we define MNx as the set of permutations My = (Jzcx MNz-
The next lemma is a weak converse to Lemma @

Lemma 4.11. For any set of languages X C {0,1}°°, if a p-computable permutation martingale d
succeeds on the set of permutations Mx, then there is a p-computable martingale that succeeds on
X.
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Proof. This proof follows the same general strategy as the proof of . So, we will focus
on where the proofs differ.

We will use the permutation martingale d to construct a martingale D, that succeeds on the
set of languages X. The martingale D operates by simulating d and using d’s bets on strings of the
form 021%l2 to bet on the membership of z in the language D is betting on. Let L be the language
D is betting on and let 7y be some language in ;. We will specify how 7y, is constructed when
we examine the success set of D.

We now analyze how D bets on all nonempty strings; it does not bet on the empty string. Let
D7 (1) denote the portion of D’s current capital placed on « € {0,1}" being a member of L and
D7 (0) denote the portion placed on x not being a member of L. We set D7 (1) to be the portion d
places on the first bit of 7., (0?"z) being 1 and D% (0) to be the portion d places on the first bit of
71,(0%"x) being 0. For simplicity, we use w to denote the string 77, | (02"z). Therefore,

Zsefreeb(w) d(ws)

D) = |free(w)|d(w)

where free,(w) is the set of strings in free(w) that begin with bit b. Let s’ € freey(w) be a string
that minimizes d(ws). Then,

3n—1 _ on / !
2(2 2)d(ws):11 1 d(ws)

|free, (w)| d(ws')
> Thres P dw) 2 m) g

~ |free(w)| d(w)

Di(b)

The first inequality follows by our choice of s’, the second follows because any string of the
form 0%"z is among the first 2" string of {0, 1}%". After betting that x’s characteristic bit is b, the

martingale’s capital is multiplied by a factor of 2D7 (b) > (1 — 22”%1) d(gq(ulj;) As we have previously

shown, the factor (1 — 22”%1) so small that it only contributes a constant factor after betting on all

string. So, we only have to focus on the factor d&”j;). This factor is the factor by which d’s current

capital grows after betting on z’s characteristic bit being b.

We now specify how 7y, is constructed. When generating the string w = 7y | (02|x‘a:) which
is polynomially longer than L | z, we choose images of strings that do not have the form 01z to
be any string that minimizes the current capital of the permutation martingale, d. Now we show
that D succeeds on any language L € X. It is not hard to see that m; € My C Mx. Therefore,
d succeeds on 7y, by the hypothesis of this theorem. By the construction of 7y, the only time d’s
capital could increase while betting on it, is when it is betting on strings of the form 0/*lz. The

factor by which d’s current capital is multiplied is déz(qu;)’ the same factor by which D is multiplied

after betting on L[x] being b. Therefore, if d succeeds on 7, then D also succeeds on L. Since L
is an arbitrary language in Ny, the theorem follows. O

Corollary 4.12. If L is a p-random langauge, then Il does not have p-permutation measure 0.

5 Random Permutations for NP N coNP

Bennett and Gill [5] studied the power of random oracles in separating complexity classes. In
particular, they showed that P4 # NP4 relative to a random oracle with probability 1. How-
ever, they were not able to separate P from NP N coNP relative to a random oracle. They also
made the observation that if P4 = NP4 N coNP4 for a random oracle A, then P4 must include
seemingly computationally hard problems such as factorization. They also proved that any non-
oracle-dependent language that belongs to P4 with probability 1, also belongs to BPP. As a result,
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if PA = NP4 N coNP# for a random oracle A with probability 1, then these difficult problems in
NP N coNP would be solvable in BPP. To achieve a separation between P# and NP4 N coN PA, they
considered length-preserving permutations on {0, 1}* and showed that P™ £ NP™ N coNP™ for every
random permutation 7.

Using resource-bounded permutation betting games on the set of all length preserving per-
mutations of {0,1}*, we strengthen the Bennett-Gill permutation separation, proving that P™ #
NPT NcoNP™ for any p-betting-game random permutations 7. More generally, we show that the set
of permutations 7 such that, NP™ is not DTIME” (2¥")-bi-immune has p-permutation-betting-game
measure 0. Recall that a language L is bi-immune to a complexity class C' if no infinite subset of
L or its complement is decidable in C' [3, 9].

The following is our main theorem where its first part states that relative to a p-betting-game
random permutation m, there is a language L in NLIN™ N coNLIN™ such that no infinite subset of L
or its complement is DTIME™ (2¥")-decidable.

Theorem 5.1. 1. If w is a p-betting-game random permutation, then NLIN™ NcoNLIN™ contains
a DTIME™(2F")-bi-immune language for all k > 1.

2. If ™ is a p,-betting-game random permutation, then NP™ N coNP™ contains a DTIME”(Q”k)—
bi-immune language for all k > 1.

Our headline result is a corollary of .

Corollary 5.2. If 7 is a p-betting-game random permutation, then P™ = NP™ N coNPT”.

To prove , we first define the following test languages. For each k > 1, define the
“half range” test languages

HRNGT = {z | 3y € {0, 1}F1#1=1 7 (0y) = 2*}
={x |V y e {0, 1} x(1y) #2*},

and

Ik—l

POLYHRNG] = {z | 3y € {0, 1}F"~1) (0y) = 2l*
={z | Vye {01}, n(1y) # 2k

}
1.

A string z € {0,1}" belongs to HRNG] if the preimage of 2* (k copies of x) in {0, 1}*" begins
with 0. If 2 does not belong to HRNG7, then the preimage of 2* begins with 1. In either case, the

preimage serves as a witness for z. The language POLYHRNG] is similar, but we are looking for a
k—1
n

|k—1

preimage in {0,1}"" of 2" ( copies of z). It follows that

HRNG} € NLIN™ N coNLIN™

and
HRNG] € NTIME™(n*) N coNTIME™ (n")

for all £ > 1.

The following lemma implies .

Lemma 5.3. Let k£ > 0.
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1. The set X = {m € N | HRNG], 4 is not DTIME(2*")™—immune} has O(n)-honest p-permutation-
betting-game measure 0.

2. The set X = {m € N | POLYHRNG[, is not DTIME(2"")™—immune} has O(n*)-honest p, -
permutation-betting-game measure 0.

Proof. We design a betting game that can succeed on two classes of permutations. The argument
breaks down into two main cases.

The betting game succeeds on permutations 7 that do not map strings of the form 1y to z*+3.
These permutations are relatively straightforward, because one can easily compute the probability
that, for all y, w(1y) # 0k+3)n j e On & HRNGy 3. This calculation merely requires examining the
status of all length-(k + 3)n strings that have been queried. In particular, the order in which the
betting game queries strings does not affect its ability to wager on this event, making the betting
strategy simpler in this case.

We then consider the complementary class of permutations that do map some string ly to a
string of the form z¥3. Here, y is a potential witness string. Unlike the previous case, we exploit
the betting game’s ability to query strings out of order. In particular, we know there exists some
permutation TM capable of predicting events of the form 7(1y) = z**3. Accordingly, our betting
game attempts all TMs by simulating them on all length-n strings. It is precisely this universal
simulation that triggers queries on (potential) witness strings in arbitrary orders. Whenever the
simulation would query a witness string, the betting game places a bet on that string first.

We show that if, for infinitely many n, a witness string is indeed queried during the simulation,
then the betting game wins unbounded capital. On the other hand, if none of the potential witness
strings are queried, then there is a TM that makes infinitely many correct predictions of the form
7(0y) = 2¥+3, thereby allowing another betting strategy to succeed.

We now formalize the above outline and construct the required betting game in detail. Frist,
partition X into the two sets

X1 = {m € X |HRNG, 3 is finite} and X, = {7 € X | HRNGf,; is infinite}.

We now design an honest p-permutation-betting game, G, that succeeds on all permutations in Xy
as well as in Xs. To do this, we split G’s initial capital into infinitely many sub-shares according
toa; =b; =¢; = i%,i =1,2,.... The sub-shares {a;} are used to bet on permutations in X;, while
the sub-shares {b;, ¢;} are reserved for betting on those in Xs.

Succeeding on X;. For a randomly selected permutation 7, consider the event A,, that
0" & HRNGg 5 i.e., m(ly) = 0"(k+3) " for some string y. The probability of A,, is 1/2 and it only
depends on images of length-(k + 3)n strings. To keep track of which length-(k + 3)n strings have
been queried, we let w € ({{0,1}(+3)n} U {*})2(k+3>n encode the current status of each strings.
Specifically, if the ith length-(k + 3)n string has already been queried and mapped to some string
2, then we set w[i] = z € {0, 1}*+3)7; otherwise, if it has not been queried yet, we set w[i] = *.

Recall that G is our overall betting game, which updates its capital shares a; through a “sub-
game” Gy, whenever ¢ > n. We define
a;

Pr(A,)

Let w?? denote the string w with its ith component replaced by b € {{0,1}*+3)7} U {x}. We
define free(w) to be the set of all length-(k + 3)n strings available as an image. It is routine to
verify that:

Gai (w) =

Pr(An ‘ w).

Go (W) = S — Z G (W).

‘free(w i%*) ‘ b € free(w %)
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Hence, the summation of all G, forms a betting game.
Since Pr(A,,) = %, it is easy to verify that whenever w represents a configuration in which A,
is true, we have
Gai (w) = 2&1'.

Thus every time A,, occurs, the subgame G, doubles its capital from a; to 2a;. For every per-
mutation 7 € X1, A, holds for all but finitely many n, so infinitely many a;’s grow unboundedly.
Therefore, GG succeeds on all m € X7.

The “subgame” Gy, can be computed in 0(2(k+3)") time by examining the mapping of every
string of length (k + 3)n. Moreover, the order in which G' queries length-2n strings has no impact
on its success for m € X;. As we shall see next, this changes when dealing with permutations in Xs.

Succeeding on X,. Given m € Xo, we know HRNG], 5 is not DTIME(2%")™immune. Thus
there is some DTIME(2")™ oracle TM that recognizes an infinite subset of HRNGJ 13- Astring y €
{0, 1} D=1 ig a witness for the membership of a length-n string z in HRNGE 5 if 7(0y) = g(k+1),
We simulate the first 7 such DTIME(2%")™ machines on all length-n strings. Two cases arise:

(1) We query witnesses of some 2 € HRNGJ, 5 for infinitely many n during the simulation phase.
Let @, C {0, 1}(‘“3)"*1 be the set of strings that might witness membership of any length-n string x
queried in the simulation. We use a portion of b, to bet on the event that y € @, is indeed a witness
to € HRNGJ, 5. For large n, |Q,| < n? 2(k+1n hecause each of the n rounds simulates at most
n distinct DTIME(2*")™ machines on all length-n inputs. We split b, evenly among the 2" x |Q,|
possible string-witness pairs; a winning bet multiplies that share by at least o(k+3)n _ 2 o(k+2)n
(because the TMs running so far could have queried at most n?2( 2" length-(k + 3)n strings).
Hence the capital used per event jumps to (%)(2%*3)” — n22k+2)n) — w(20'9"), and since
one of these events arises infinitely often, the betting game succeeds.

(2) Witness strings are queried only finitely many times. Eventually, none of the TMs ever
queries a witness string. At that stage, after simulating the TMs on length-n strings, the betting
game employs ¢; to wager on any DTIME(2*")™ TM M; that has not made a mistake and accepts
some z € {0,1}". Let B, be the event 2 € HRNG] 5, i.e. there exists y with 7(0y) = z++D For a

random permutation, Pr(B,) = % After simulating all TMs on length-n strings without querying

. s .- . (k+3)n _ 2 o(k+2)
any witness for x, the conditional probability of B, remains at least 2 ;(kf?))i s % Hence

the betting game approximately doubles ¢; each time M;(z) is accepted. Because we are guaranteed
that some M; correctly decides an infinite subset of HRNGJ, 5, this betting also succeeds.

Clearly, this construction is implementable in DTIME(2°9("). Notice moreover that while query-
ing strings of length n, the betting game places wagers only on strings of length (k + 3)n, making
it an (k + 3)n-honest p-permutation betting game.

Sketch for part (2). The second statement uses POLYHRNG ; in place of HRNGF, 5, and the
class DTIME(Q"IC)7r replaces DTIME(2¥")™. One repeats the same betting-game strategy but scales
the length parameters and the honesty parameter accordingly; the resulting game is O(n**!)-honest
in DTIME(2”O<1)). All other details are essentially unchanged. Therefore, the set of permutations

for which POLYHRNGY_; is not DTIM E(2”k )™-immune has p,-permutation-betting-game measure 0.
O

By symmetry of NLIN® NcoNLIN™ and NTIME™ (%) NcoNTIMET (n*), also applies to
the complement of HRNGJ, 3 and POLYHRNGE, ;. Therefore, both languages are bi-immune and
[heorem 5.1

follows.
Combining lLemma 5.ﬂ with lProposition 3.231 also gives the following corollary. In the next
section we will prove more results about pspace-random permutations.
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Corollary 5.4. 1. If w is a pspace-random permutation, then NLIN™ N coNLIN™ contains a
DTIME™(28")-bi-immune language for all k > 1.

2. If m is a p,space-random permutation, then NP™ NcoNP™ contains a DTII\/IE“(Z”k)—bi—Z'mmune
language for all k > 1.

6 Random Permutations for NP N coNP versus Quantum Compu-
tation

Bennett, Bernstein, Brassard, and Vazirani [4] showed that NP™ N coNP™ ¢ BQTIME™ (o(2"/3))
relative to a random permutation 7 with probability 1. In this section we investigate how much of
their result holds relative to individual random oracles at the space-bounded level.

We begin with a general lemma about test languages and QTMs. We write PPlN<,, = {g €
PPN | |g| < 2"*t! — 1} for all prefix partial permutations defined on strings in {0,1}=". For a
string s; in the standard enumeration, we write g [ s; for the length 7 prefix of g. In other words,

glsi=1[g(s0)---,9(si-1)]

Lemma 6.1. Let w be a permutation with an associated test language L, and let p(n) be a linear
function (polynomial function, respectively). If for some oracle QTM M the following conditions
hold, then 7 is not a pspace-random (p,space-random, respectively) permutation.

1. The membership of 0" in L, depends on the membership of the strings of length at most p(n).

2. MT™ decides Ly with error probability §, for some constant 0 < § < 1, and queries only strings
of length at most p(n).

3. For any partial prefix permutation p € PPT<y ), the conditional probability

vin\ n
P [ = 2 [ pE vl

is computable in O(2°M) space (0(2”0(1)) space, respectively).

4. For some constant 1 > € > & and for all but finitely many n,

ony — n n B
ik [M (0") = Ly(0") | =10 ;w} <l-e

Proof. Let nyg < m1 < ng < --- be a sequence of numbers such that p(n;) < n;q1 for all i >

0. Based on the statement of the lemma, MY¥(0™-1) cannot query any string of length n; and

the membership of 0"-1 does not depend on the membership of any string of length greater

than n;. Let n; be the first number in the sequence above such that for any n > n; we have
Pr [MY(0") = Ly(0") | 10" C )] <1 — € and define the following martingale:

[|=L(n)
dp)=1" if [p] < 2mtt —1
P) =1 dplonit e o, | ,
el D) Pe(y | ) i 20071 <[] < 2% 1, for some j >

where Pr(t|v) is the probability that M¥(0") = L,(0") given that v = 1. The third condition in
the statement of the lemma implies that this martingale is pspace computable (p,space computable,
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respectively). Now consider a permutation 7 that satisfies the conditions of the lemma. Then for

7 > k we have:

d(m [Qni-1)
1—c¢

d(m[0™) = d(r [0%7))

= B [ foren IO

(1-9)

The last inequality holds because it follows from the first two conditions of the lemma that
Pr(¢y | m[0™) > 1 — 4. By repeating this process, we can see that d succeeds on .
O

In the following theorem, we use to extend the result by Bennett, Bernstein, Bras-
sard, and Vazirani [4] to p,space-random permutations.

Theorem 6.2. If 7 is a p,space-random permutation, then NLIN™ N coNLIN™ is not contained in
BQP™.

Proof. Let M be a BQP oracle machine running in time ¢(n). From Bennett et al. [4] it follows
that that relative to a random permutation m, M fails to decide whether 0" is in HRNG] with
probability at least 1/8. We can compute

Pr |MY¥(0™) = HRNGY(0™) | p C
P [t (0") | pC o]

in space 2n°") The Theorem follows from . O

We now refine the previous result by considering more restricted quantum machines that only
query strings of O(n) length. This restriction allows us to extend the result to machines with
running time o(2"/%), analogous to the result of Bennett et al. [4]. Whether this extension holds
without the restriction on query length remains an open problem.

Theorem 6.3. If w is a pspace-random permutation and T(n) = o(2"/?), then NLIN™ N coNLIN™
is not contained BQTIMETO(n)-honest )y

Proof. Under the honesty condition, we can compute the necessary conditional probability in 20
space and apply . O

Together, these theorems extend the classical separation of Bennett et al. [4] to individual
space-bounded random permutations, both in the general and the honest-query setting.

7 Random Oracles for NP N coNP and 0-1 Laws for Measure in EXP

Tardos [29] used the characterizations
BPP = ALMOST-P = {A|Prg [A € PF] =1} [5]

and
AM = ALMOST-NP = {A |Prp [4 € NPT| =1} [26]

to prove the following conditional theorem separating P from NPMNcoNP relative to a random oracle.

Theorem 7.1. (Tardos [29]) If AM N coAM # BPP, then PR 2 NP® N coNPE for a random oracle
R with probability 1.
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Recently, Ghosal et al. [10] used non-interactive zero-knowledge (NIZK) proofs to prove a
similar conditional theorem.

Theorem 7.2. (Ghosal et al. [10]) If UP € RP, then PE # NP® N coNP® for a random oracle R
with probability 1.

In this section we use and @ to connect the open problem of P versus NP N coNP

relative to a random oracle to open questions about the resource-bounded measure of complexity
classes within EXP. In particular, we relate the problem to measure 0-1 laws and measurability in
EXP. First, we need the following derandomization lemma. The first two parts follow from previous
work, while the third part of the lemma is a new observation as far as we know, though its proof
uses the techniques from the proofs of the first two parts.

Lemma 7.3. 1. If up(NP) # 0, then BPP C NP N coNP = AM N coAM.
2. If pup(UP N coUP) # 0, then BPP C UP N coUP.
3. If pp(FewP) # 0, then BPP C FewP N coFewP.
Proof. 1. pp(NP) # 0 implies NP = AM [17]. Then BPP C AM N coAM = NP N coNP.

2. If up(UPNcoUP) # 0, then the UP-machine hypothesis holds, which implies BPP C UPNcoUP
[14].

3. If pp(FewP) # 0, then there is a p-random language R in FewP [2]. All but finitely many
witnesses for membership in R have high circuit complexity [14, 17]. By the longest runs
theorem [12], there is guaranteed to be a string in R within the first 2n strings of {0,1}",
for all but finitely many n. We guess one of these strings and a witness. If we find a valid
witness, we use it to build a pseudorandom generator [1§, 26] and derandomize BPP [14].
There are at most a polynomial number of witnesses, placing BPP C FewP N coFewP.

O

In the following theorem, we have three hypotheses where a complexity class X is assumed to
be not equal to EXP and the p-measure of a subclass of X is concluded to be 0.

Theorem 7.4. Suppose that PE = NPT N coNP® for a random oracle R with probability 1. Then
all of the following hold:

1. NP # EXP = up(NP N coNP) = 0.
2. UP # EXP = pp,(UP N coUP) = 0.
3. FewP # EXP = pu,(UP) = 0.

Proof. 1. Suppose 1ip(NP N coNP) # 0 and NP # EXP. From we have BPP C
NP N coNP = AM N coAM. Therefore BPP C NP # EXP, so j,(BPP) = 0 by the zero-one law

for BPP [30]. Since AM N coAM and BPP have different p-measures, the classes are not equal.
The result follows from .

2. Suppose pp(UP N coUP) # 0 and UP # EXP. From we have BPP C UP N coUP.
Therefore BPP C UP # EXP, so up(BPP) =0 bi the zero-one law. Therefore UP N coUP ¢

BPP, so UP ¢ RP. The result follows from [Theorem 7.2.
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3. Suppose py(UP) # 0 and FewP # EXP. Since UP C FewP, we have p,(FewP) # 0 and

ILemma 7? implies BPP C FewP N coFewP. Therefore BPP C FewP # EXP, so u,(BPP) =0
by the zero-one law. Therefore UP € BPP, so UP & RP. The result follows from .
O

has the following corollary about measure 0-1 laws in EXP. We recall the definitions
w(X [ EXP) =0 if pp, (X NEXP) =0 and p(X | EXP) = 1 if p, (X[ EXP) = 0 [20].

Corollary 7.5. Suppose that P = NPT 1 coNP® for a random oracle R with probability 1. Then
all of the following hold:

1. (NP ncoNP | EXP) € {0,1}.
2. u(UPNcoUP | EXP) € {0, 1}.
3. w(UP | EXP) =0 or u(FewP | EXP) = 1.
Proof. The two key facts we need in this proof are that for any class X C EXP:

(a) If X is closed under finite union and intersection, then X = EXP if and only if (X | EXP) =1
21, 7).

(b) If pup(X) =0, then (X | EXP) =0 [20].
We write each implication in as a disjunction and apply the above facts:

1. We have NP = EXP < NP N coNP = EXP < (NP N coNP | EXP) = 1 or ju,(NP N coNP) =
0 = (NP N coNP | EXP) = 0.

2. We have UP = EXP < UP N coUP = EXP < u(UP N coUP | EXP) = 1 or 11,(UP N coUP) =
0= p(UP NcoUP | EXP) = 0.

3. We have FewP = EXP < p(FewP | EXP) =1 or pp(UP) = 0 = pu(UP | EXP) = 0.
O

In the third case of , we almost have a 0-1 law for UP. Can a full 0-1 law be
obtained?

The contrapositives of the implications in show that the random oracle question
for P versus NP N coNP is resolved under nonmeasurability hypotheses. A complexity class X is

defined to be not measurable in EXP if p(X | EXP) # 0 and p(X | EXP) # 1 [21], 27].

Corollary 7.6. 1. If NP N coNP is not measurable in EXP, then P % NPE N coNP® for a
random oracle R with probability 1.

2. If UP N coUP is not measurable in EXP, then PE % NPF N coNP® for a random oracle R with
probability 1.

3. If UP and FewP are both not measurable in EXP, then PE % NPE N coNP® for a random
oracle R with probability 1.

On the other hand, if the consequence of can be proved with measure in EXP,
then we would have BPP # EXP, which implies p(BPP | EXP) = 0 by the 0-1 law for BPP [30].

Theorem 7.7. If {A | PA = NPA N coNPA} has measure 0 in EXP, then u(BPP | EXP) = 0.
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Proof. Let A be <%-complete for EXP. Then
NP4 N coNPA C EXP C P4 C NP4 N coNP4,

Therefore the <P-complete sets are a subset of {A | P4 = NP4 N coNP“}, so they have measure 0
in EXP, which implies BPP # EXP [7] and u(BPP | EXP) = 0. d

These results suggest that resolving whether P = NP N coNP¥ relative to a random oracle R
requires a deeper understanding of the resource-bounded measurability within EXP of fundamental
subclasses such as BPP, NP, UP, and FewP.

8 Conclusion

We have introduced resource-bounded random permutations and shown that P™ £ NP™NcoNP™ for
all p-betting-game random permutations. We remark that all of the results in and [ about
NLIN NcoNLIN and NP NcoNP hold for their unambiguous versions ULIN N coULIN and UP NcoUP,
respectively. An interesting open problem is whether our main theorem can be improved from
betting-game random permutations to random permutations.

Question 8.1. Does P™ # NP™ N coNP™ for a p-random permutation %

More generally, the relative power of permutation martingales versus betting games should be
investigated.

Question 8.2. Are polynomial-time permutation martingales and permutation betting games equiv-
alent?

We proved two restricted versions of the Bennett et al. [4] random permutation separation.
Does the full version hold relative to individual random permutations?

Question 8.3. If  is a pspace-random permutation and T(n) = 0(2"/3), is NLIN™ N coNLIN™ not
contained in BQTIME™(T'(n))?
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