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Abstract

Suppose we are given an infinite sequence of input cells, each initialized with a uniform random
symbol from [n]. How hard is it to output a sequence in [n]n that is close to a uniform random
permutation? Viola (SICOMP 2020) conjectured that if each output cell is computed by making d
probes to input cells, then d ≥ ω(1). Our main result shows that, in fact, d ≥ (logn)Ω(1), which
is tight up to the constant in the exponent. Our techniques also show that if the probes are
nonadaptive, then d ≥ nΩ(1), which is an exponential improvement over the previous nonadaptive
lower bound due to Yu and Zhan (ITCS 2024). Our results also imply lower bounds against
succinct data structures for storing permutations.
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1 Introduction

Randomly shuffling the elements of an array is one of the most basic primitives in randomized
algorithms. It is a simple programming exercise to implement this in linear time [Dur64]. Doing it
much faster, with a parallel algorithm, has been studied extensively [Rei85, MV91, CK00, Czu15].
In particular, array shuffling is possible even in constant-time in a parallel RAM model [Hag91].

An analogous problem in probability theory is the question of card shuffling, which dates back
to Markov [Mar06]. For example, one of the long-standing challenges in card shuffling has been
to determine how many Thorp shuffles (explained in Figure 1 below) are sufficient to produce a
nearly uniform permutation over n cards. A sequence of works [Mor08, MT06, Mor09, Mor13] has
culminated in a result showing that O(log3 n) shuffles are enough. An interesting feature of this
shuffle (which has found applications, e.g., in cryptography [MRS09]) is its obliviousness: the final
position of each card can be computed by accessing only a few bits of randomness (formally, the
shuffle is given by a shallow “switching network”).

Cell-probe model. A widely-studied computational model that captures oblivious shuffling (and
much more) is the cell-probe model [Yao81]. In this model, we are given a sequence of s input cells,
each storing a symbol from [n]. A cell-probe algorithm then produces an output sequence in [n]m

where each output cell is computed by making d probes (queries) to input cells. That is, the
algorithm computes a function f : [n]s → [n]m, where the i-th output cell fi is computed by a
depth-d arity-n decision tree. Such cell-probe algorithms are also called depth-d decision forests.
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Figure 1: (Left): Three iterations of the Thorp shuffle [Tho73] as computed by a network of switches. In a
single iteration, we take cards i and n/2+ i and place them in positions 2i−1 and 2i in the order determined
by a coin toss rj ∈ {0, 1}. (Right): The shuffle can be simulated by a cell-probe algorithm (aka decision
forest) that probes the coin tosses rj [Vio12b, Lemma 6.4]. Drawn here is the decision tree that finds the
5th output element.
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Sampling permutations. We study cell-probe algorithms that solve sampling problems. Here
we are given a uniform random input u ∼ [n]s (even for infinite s = N := {0, 1, 2, . . .}) and the goal
is to produce a prescribed output distribution f(u). In this paper, we focus on producing an output
distribution that is close to a uniform random permutation. More formally, we denote the set of
permutations by Sn ⊆ [n]n, a uniform random permutation by π ∼ Sn, and the statistical (total
variation) distance between random variables x and y by ∆(x,y) := maxE |Pr[x ∈ E]−Pr[y ∈ E]|.

Our research question becomes:

Question 1. What is the smallest depth d of a decision forest f such that ∆(π, f(u)) ≤ 1%?

Upper bounds on d follow from oblivious shuffles. Indeed, Figure 1 illustrates how d iterations
of the Thorp shuffle can be simulated by a depth-d decision forest. It then follows from the
aforementioned work on Thorp shuffle convergence that d ≤ O(log3 n) suffices. Better still, using
an oblivious shuffle constructed by Czumaj [Czu15] one can obtain d ≤ O(log2 n). (In fact, Czumaj
conjectures that even d ≤ O(log n) is possible.)

Lower bounds on d are our main focus. The lower-bound question for sampling permutations
with cell-probes was first raised by Viola [Vio20, §5], who conjectured that d ≥ ω(1) is necessary.
In an accompanying seminar talk [Vio18], Viola points out that, while d = 1 is easy to rule out,
existing techniques in the sampling literature (surveyed in Section 1.2) do not even rule out d = 2,
surprisingly enough. Our main result is to confirm Viola’s conjecture by proving the first non-trivial
lower bounds on d. Moreover, our lower bound turns out to match the upper bounds from oblivious
shuffles up to polynomial factors.

Theorem 1 (Main result). Suppose that f : [n]N → [n]n is a decision forest of depth (log n)1/2−ε

for some constant ε > 0. Then for u ∼ [n]N and π ∼ Sn we have

∆(π, f(u)) ≥ 1− exp(n−Ω(1)).

The conclusion here gives a robust impossibility result, saying that the output of a shallow
decision forest is extremely far from a uniform permutation. Such 1 − o(1) distance bounds are
known to imply lower bounds against succinct data structures for storing permutations. We discuss
these corollaries in Section 1.3.

Nonadaptive algorithms. En route to Theorem 1 we develop new lower-bound techniques that
are also able to show improved lower bounds against nonadaptive algorithms. We say that a function
f : [n]N → [n]n is k-local if every output cell depends on at most k input cells. That is, every fi
makes at most k nonadaptive probes to the input cells. Viola [Vio20] proved that permutation
sampling requires Ω(log log n) nonadaptive probes, and this was subsequently improved to Ω̃(log n)
by Yu and Zhan [YZ24]. Our second result gives another exponential improvement:

Theorem 2. Suppose that f : [n]s → [n]n is a nε-local function for a constant ε ≤ 10−3. Then
for u ∼ [n]s and π ∼ Sn we have

∆(π, f(u)) ≥ 1− exp(−n1−O(ε)).

In particular, permutation sampling exhibits an (log n)O(1)-vs-nΩ(1) separation between adaptive
and nonadaptive cell-probe complexities. The only previous such separation for sampling problems
was O(1)-vs-Ω̃(log n) by Yu and Zhan [YZ24]. The sampling problem they considered was somewhat
artificial (defined for the sole purpose of obtaining a separation), whereas permutation sampling is
an extremely natural problem. It remains open to prove an O(1)-vs-nΩ(1) separation.
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1.1 Cell-probes vs. bit-probes

For sampling permutations, it is important that we allow the full power of the cell-probe model,
with input cells coming from a large alphabet [n] corresponding to O(log n)-bit word length. If
we only allowed bit-probes—that is, we restricted the input cells to be bits {0, 1}—then sampling
lower bounds would not meaningfully translate to data structure lower bounds (as discussed in Sec-
tion 1.3). In fact, bit-probe lower bounds for permutations are trivial to prove: Intuitively, each
symbol in a random permutation is uniform over [n] and so requires Ω(logn) bits to generate, and
this intuition is easy to turn into a formal proof of an Ω(logn) bit-probe lower bound.1

Many prior works have studied the bit-probe model. For example, by now, it is known that
most distributions over {0, 1}n that are symmetric (invariant under permuting coordinates) cannot
be sampled with O(1) bit-probes [Vio23, FLRS23, KOW24, KOW25]. The key difference between
bit-probes and cell-probes is that the output of a cell-probe algorithm need not be k-local for any
nontrivial k. Indeed, an n-ary decision tree of depth dmay depend on nd−1 many input cells. This is
why locality lower bounds even as high as k ≥ nΩ(1) do not rule out cell-probe algorithms with d = 2.
Our results contribute new tools that get beyond this “locality barrier”; such techniques are quite
rare as only the prior work [Vio23] (discussed below in Section 1.2) has specifically targeted the
(adaptive) cell-probe model. Finally, we note that while there are even more powerful techniques
to show sampling lower bounds against AC0-circuits (a model stronger than cell-probes), these do
not apply for permutations as they are easy to sample for AC0 [Vio12b].

1.2 Other related work

Our results contribute to the systematic study of the complexity of sampling distributions. Classi-
cally, computational complexity seeks hard-to-compute functions. In a seminal work, Viola [Vio12b]
proposed a program to find hard-to-sample distributions for various computational models. This
program has been extremely fruitful for many areas, such as pseudorandom generators [Vio12a,
LV12, BIL12], randomness extractors [Vio14, CZ16, CS16], error-correcting codes [SS24], and data-
structure lower bounds [Vio12b, LV12, BIL12, Vio20, CGZ22, Vio23, YZ24, KOW24, KOW25].
Especially for quantum–classical separations, a distribution is a natural witnessing object, and a
line of work [WP23, KOW24, GKM+25] has shown quantum advantage for sampling problems.

The complexity landscape for sampling looks quite different from that for computation. Opti-
mistically, one might hope to relate the complexity of computing f : {0, 1}n → {0, 1} in some circuit
class C to the complexity of sampling the input–output pair (u, f(u)) for u ∼ {0, 1}n with a (multi-
output) circuit from C. Sampling input–output pairs is never harder than computing the function,
but sometimes it can be dramatically easier. The classical example is Xor(x) := x1 ⊕ · · · ⊕ xn.
It is known since [FSS84] that Xor is hard to compute with an AC0-circuit. On the other hand,
(u,Xor(u)) can be sampled with an NC0-circuit [Bab87], in fact, with a 2-local function

y1, . . . , yn 7→ y1, y1 ⊕ y2, y2 ⊕ y3, . . . , yn−1 ⊕ yn, yn.

Kane, Ostuni, and Wu [KOW25] show that (u,Xor(u)) is the only non-trivial symmetric distribu-
tion that can be sampled with an NC0-circuit. On the other hand, Viola [Vio12a] building on the
permutation-sampling algorithm by [MV91, Hag91] shows that for every symmetric f input–output
pairs can be approximately sampled with an AC0-circuit.

The class AC0 is the frontier for sampling lower bounds: The works [LV12, BIL12] show that
sampling a uniform codeword from a good error-correcting code is hard for an AC0-sampler. Vi-

1In a depth-d binary decision forest, each tree has range 2d. Thus the support size of the output of a forest is
only 2dn, which is negligible compared to |Sn| = n! = 2Θ(n logn) when d ≤ o(logn).
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ola [Vio20] exhibits a function f whose input–output pairs cannot be sampled in AC0 with distance
significantly smaller than 1/2.

Despite all this lower-bound progress for AC0-sampling, our understanding of the class remains
quite coarse. Studying cell-probe algorithms, a model intermediate between NC0 and AC0, can give
us a more refined picture. The only prior work showing lower bounds specifically against (adaptive)
cell-probe samplers is by Viola [Vio23]. He proves a separator theorem, which states that any cell-
probe sampler f such that f(u) is close to a uniform distribution over some set, we can restrict
the domain of f to some set R such that y := (f(u) | u ∈ R) retains most of its entropy, and the
coordinates of y are almost pairwise independent (the marginal distribution of every two output
cells is close to the product of the individual margins). He used this theorem to separate AC0 and
cell-probe algorithms for sampling problems. However, the separator theorem cannot immediately
be used to prove lower bounds for sampling permutations: the coordinates of a permutation are
almost pairwise independent, so there is no contradiction to y enjoying the same property.

1.3 Succinct data structure lower bounds

Our results have direct implications for succinctly storing permutations. A succinct data structure
stores an object (for us, a permutation π ∈ Sn) with the number of bits close to the information
theoretic minimum (for us, logn! bits), while supporting interesting queries. For permutations, it is
natural to support querying the values π(i) and possibly the inverses π−1(i). The paper [MRRS12]
constructs a data structure for permutations with log n! + n/ log2−o(1) n bits of memory that can
answer both π(i) and π−1(i)-queries with Õ(logn) adaptive cell probes. For such a data structure,
[Gol09] gives an almost matching lower bound.

Are there succinct data structures with better space/cell-probe complexity that only sup-
port π(i)-queries? The best lower bound for this problem before this work followed from the
sampling lower bound of [YZ24]. They proved that every data structure for supporting π(i)-queries
with o(logn/ log log n) nonadaptive probes must use at least log n! +n1−o(1) bits. By a very simple
reduction from [Vio12b] (also in [Vio20]), our Theorems 1 and 2 imply the following.

Corollary 3. Every data structure storing a permutation π ∈ Sn and supporting π(i)-queries with

♦ (log n)1/2−ε adaptive cell probes must use log n! + nΩ(1) bits of space;
♦ nε nonadaptive cell probes must use log n! + n1−O(ε) bits of space.

We emphasize that such a lower bound is not obviously true at the outset, as surprising con-
structions of succinct data structures exist. For example, for the dictionary problem of storing a
set of key–value pairs, there exists a data structure that stores only a polylogarithmically many
bits above the information-theoretic minimum with constant-time access [Yu20].

1.4 Structure

The rest of the paper is organized as follows: In Section 2 we review our techniques and give a full
proof of Theorem 2. In Section 3 we give the proof of Theorem 1 modulo three important technical
tools. The three subsequent sections establish those tools: Section 4 handles average Lipschitzness,
the ingredient that differentiates Theorem 1 from Theorem 2; in Section 5 we prove a containment
lemma that brings the statistical distance bounds exponentially close to 1; in Section 6 we prove
a collision lemma, the main technical differentiator between Theorem 2 and the previous work
[Vio20, YZ24]. We conclude with open question in Section 7.
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2 Techniques

In this section we discuss the proof of our main result. We start by giving in Section 2.1 a proof
of Theorem 2 with constant statistical distance bound, and introducing the technical ideas shared
between both of the proofs. In Section 2.2 we overview the additional ingredients needed for
Theorem 1. Finally in Section 2.3 we show how to boost the statistical distance bound to be
exponentially close to 1 in both cases.

2.1 Proof of Theorem 2

In this section, we give a proof of Theorem 2 modulo two technical lemmas. The informal idea
for both our proofs is the following dichotomy: if the (Shannon) entropy of f(u) is low, then a
random permutation π ∼ Sn lands in the support of f(u) with low probability, and if the entropy
of f(u) is high, then whp two of its symbols coincide, which never happens with a permutation.
Here Shannon entropy of a random variable x is H(x) :=

∑
x∈supp(x) Pr[x = x] log(1/Pr[x = x]).

Low entropy case. If we only shoot for a constant statistical distance bound, we can get away
with a very simple proof in this case without using any properties of the sampler apart from the
entropy of f(u).

Lemma 4. Suppose that H(x) ≤ k. Then there exists a set E of size 22k such that Pr[x ∈ E] ≥ 1/2.

Proof. Let p(x) := Pr[x = x] be the probability function of x so that H(x) = E[log(1/p(x))]. We get
from Markov’s inequality that Pr[log(1/p(x)) ≥ 2k] ≤ 1/2. Thus for E := {x | log(1/p(x)) < 2k}
we have Pr[x ∈ E] ≥ 1/2. Observe that x ∈ E iff p(x) > 2−2k, then since the total probability is
at most 1 we get |E| ≤ 22k.

We can now conclude the low-entropy case almost immediately. If H(f(u)) ≤ (n log n)/4,
then by Lemma 4 we find E of size nn/2 such that Pr[f(u) ∈ E] ≥ 1/2. On the other hand
Pr[π ∈ E] ≤ |E|/n! = o(1), which implies ∆(π, f(u)) ≥ 1/2− o(1).

High entropy case. We would like to show that if H(f(u)) > (n log n)/4, then some two symbols
of f(u) coincide whp. The first step is to show this in the case the coordinates of f(u) are
independent. We formalize this in the following collision lemma:

Lemma 5. Let z1, . . . ,zm be independent random variables over [n] such that H(z1, . . . ,zm) ≥
(m logn)/8 for m ≥ n0.99. Then Pr[∃i ̸= j ∈ [m] : zi = zj ] ≥ 1− o(1).

This lemma (proved in Section 6) and its generalizations will be one of the main technical
ingredients in the proof of Theorem 1 as well.2

Bounded influence. The remaining piece of the proof is the intermediate notion between local
functions and a collection of independent output cells: we say that f : [n]s → [n]n is (ℓ, k)-local if
it is k-local and every input cell affects only ℓ output cells. We make two simple observations. The
first makes a step from k-locality to (k2, k)-locality, and the second makes a step from (ℓ, k)-locality
to independence.

2It might seem that Lemma 5 is a standard birthday paradox. Usually, the proofs of such results go as follows:
split z into halves z1, . . . ,zm/2 and zm/2+1, . . . ,zm, fix z≤m/2 = α and show that zj ∈ A = {α1, . . . , αm/2} with
noticeable probability for many j > m/2. Then apply Hoeffding’s inequality. Observe that this is false, since it could
happen that supp(zj) ∩A = ∅ for all j > m/2.
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(O1) For every k-local f the distribution f(u) is a mixture of nn/k distributions fα(u) where fα is
(k2, k)-local. Indeed, let I ⊆ [s] be the set of inputs in f that influence more than k2 output
cells. Since the number of input–output cell pairs such that the output cell depends on the
input is at most n · k, the size of I is at most n/k. Hence for every α ∈ [n]I , fixing the inputs
in I according to α yields fα.

(O2) For every (ℓ, k)-local function f there is a set J ⊆ [n] of size n/(ℓk) of output cells such that
{fj(u)}j∈J are independent. Indeed, populate J greedily: add an output cell j ∈ [n] to J
and “delete” all other output cells that share an input with j, and repeat this until all output
cells are deleted. At each step at most kℓ output cells are deleted and one of them is added
to J , so |J | ≥ n/(ℓk).

Proof of Theorem 2 with constant distance. We will show that in the setting of Theorem 2
we have ∆(f(u),π) ≥ 1/2 − o(1). We first apply (O1) to get a set I ⊆ [s] of size n1−ε and a
collection {fα}α∈[n]I of (n2ε, nε)-local functions such that (f(u) | uI = α) ≡ fα(u). Consider an

arbitrary α ∈ [n]I . The function fα : [n][s]∖I → [n]n defined by restricting the inputs in I according
to α is still nε-local and each input cell affects at most n2ε output cells.

We now apply the entropy dichotomy for fα(u):

1. Low entropy case: H(fα(u)) ≤ (n logn)/4. Then by Lemma 4 there exists an event Eα such
that Pr[fα(u) ∈ Eα] ≥ 1/2 with |Eα| ≤ nn/2.

2. High entropy case: H(fα(u)) ≥ (n log n)/4. Then using the chain rule for Shannon entropy,
we have

∑
i∈[n]H(f

α
i (u)) ≥ H(fα(u)) ≥ (n log n)/4. Therefore, there exists a set J ⊆ [n] of

size n/8 such that for each j ∈ J we have H(fα
j (u)) ≥ log n/8. Now apply (O2) to find J ′ of

size at least n1−3ε/8 ≥ n0.99 such that fα
j (u) are independent for j ∈ J ′. Applying Lemma 5

to fα
J ′(u) we get that Pr[∃i ̸= j ∈ J ′ : fi(u) = fj(u) | uI = α] ≥ 1− o(1).

Finally we are ready to define an event that witnesses the statistical distance between f(u) and π.
Suppose L ⊆ [n]I is the set of assignments α such that the entropy of fα(u) is low. Then define
F := ([n]n∖supp(π))∪

⋃
α∈LEα. That is, F is the event that the output sequence has a collision or

belongs to one of the container events for the low-entropy case. Then Pr[π ∈ F ] ≤ n|I| · nn/2/n! =
o(1). On the other hand by the total probability law

Pr[f(u) ∈ F ] ≥Pr[uI ∈ L] · Pr

[
f(u) ∈

⋃
α∈L

Eα | uI ∈ L

]
+ Pr[uI ̸∈ L] · Pr[f(u) has a collision | uI ̸∈ L]

≥ 1/2.

Comparison to [Vio20]. The idea of low-vs-high entropy dichotomy was originally introduced
in [Vio20] to get Ω(log logn) locality lower bound for sampling permutations. The main reason
our lower bound is much stronger is Lemma 5. In [Vio20] the dichotomy was established for a
much stronger notion of entropy. That caused the low-entropy case to be much more complicated,
rendering Lemma 4 inapplicable.

2.2 What is missing for the adaptive case?

The proof of Theorem 1 follows the same high-level recipe, but the steps are much more involved.
The proof of the nonadaptive case has three steps:
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(Step 1) Fix some of the input cells so that the rest affect few output cells.
(Step 2) If the output has low entropy, argue that it is significantly contained in a small set.
(Step 3) If the output has high entropy, argue that there is likely a collision by greedily choosing

output cells that do not have common inputs.

The constant-probability version of (Step 2) does not suffer from the introduction of adaptivity,
however the distance-boosting (see Section 2.3) in the adaptive case gets more involved. (Step
1) and (Step 3) break completely even in the constant-distance regime. The issue is that even a
depth-2 decision forest can have arbitrary locality, and every input cell may influence every output
cell. So, the key change is to devise an alternative intermediate notion between bounded-depth and
independence.

Average Lipschitzness. Although low-depth decision trees are not local, they are local for every
particular input. Similarly we can ask that a decision forest has bounded influence in expectation:

Definition 1 ([BIL12]). Let f : [n]s → [n]n be a decision forest. Let θj denote the number of trees
in f that query j on the input u ∼ [n]s. We then say that f is average-µ-Lipschitz if E[θj ] ≤ µ for
every j ∈ [s]. We say that f is (µ, δ)-Lipschitz if Pr[θj > µ] ≤ δ for every j ∈ [s].

The high-level plan of the proof of Theorem 1 is to implement (Step 1) and (Step 3) above
with average Lipschitzness replacing bounded influence. Both adaptations come with challenges:
In (Step 1) fixing input cells that have high average Lipschitzness might increase the average
Lipschitzness for other input cells. In (Step 3) the greedy choice of independent output cells as in
(O2) fails completely3, since average Lipschitzness offers no global independence properties.

Average Lipschitzness implies Lipschitzness almost everywhere. At first, it seems that
(µ, δ)-Lipschitzness (or Lipschitzness almost everywhere) is a much stronger property than average
Lipschitzness. Remarkably, it turns out that these properties are almost equivalent:

Lemma 6. If f : Λs → Σm is an average-µ-Lipschitz depth-d decision forest, then for every ε > 0
the forest f is (3µd2 log(1/ε), ε)-Lipschitz.

This lemma constitutes the crucial structural property of Lipschitz forests that we exploit in
our proofs. It implies that many functions of the output of a decision forest concentrate well around
their expectations. In particular, we show this for the conditional entropy (Section 4.2), and the
Hamming distance to a set (Section 5).

The Lipschitz property of decision forests (with a different notation) was used very successfully
by Beck, Impagliazzo, and Lovett [BIL12]4. They prove [BIL12, Theorem 1.7] a result very similar
(but incomparable) to Lemma 6. Unfortunately, we cannot use their result directly, as it only
implies (ω(

√
s), ·)-Lipschitzness and we need the first parameter to be polynomially small in n.

Establishing average Lipschitzness. In the adaptive case we solve the issue with (Step 1) by
fixing the inputs adaptively. We exhaustively fix inputs that violate the condition E[θj ] ≤ µ and
observe that in expectation over the value we fix the j-th input cell to, this reduces the average depth
of the whole decision forest by µ. Then we analyze the stopping time of the input fixing process to
say that on average it terminates in nd/µ steps for a depth-d decision forest. See Section 4.3 for
the proof.

3We remark that the greedy approach must fail, since we do have depth-O(log2 n) decision forests sampling
permutations [Czu15, Vio20].

4They asked in Open Problem 1 if their results could be used elsewhere. To the best of our knowledge, our work
is the first such usecase.
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Entropy-retaining depth reduction. For the nonadaptive case in (Step 3) we used that after
the restriction the input–output cell dependency graph has low degree. In the adaptive case, even
after establishing Lipschitzness almost everywhere, we still have potentially pairwise-dependent
output cells. We resolve this by further restricting the inputs and removing some output cells in
order to reduce the depth of the forest. The key challenge here is to establish that after such
restriction the entropy rate of the remaining output cells does not decrease much. Specifically
we will show that such procedure only decreases the entropy rate by a factor 1 − O(1/d) when
reducing the depth of the forest from d to d − 1. Hence, after we are done, we are going to
have some m output cells that are computed with a depth-1 decision forest and with entropy
Ω(m logn/d). Depth-1 decision forest is nonadaptive, so we can again choose independent output
cells greedily. Our procedure shrinks the number of output cells by a poly(log n)-factor at each
step, so in order to apply (generalized) Lemma 5 we need poly(log n)d = o(n1/d), hence we choose
d = o(

√
logn/ log logn).

In order to show that whp over the input restrictions the entropy is retained we show that
conditional Shannon entropy H(f(u) | uI = α) concentrates around H(f(u) | uI) wrt the random
choice of α ∼ [n]I when f is an average-Lipschitz decision forest. The corresponding property is
almost immediate formin-entropy regardless of the structure of the random variable f(u). However,
for us it is crucial to work with Shannon entropy, since assuming that min-entropy is low does not
imply any global properties of the distributions, so the analogue of Lemma 4 for min-entropy is
completely false.

2.3 Boosting distance

Theorem 2 and Theorem 1 both claim that the statistical distance from a cell-probe sampler to π
is exponentially close to 1. This bound is crucial for the application to succinct data structures. In
this section, we show how to boost the distance in the nonadaptive case.

In the high-entropy case we actually do not need any changes, since Lemma 5 implies that prob-
ability of not seeing a collision in a high-entropy collection of independent variables is exponentially
low. Thus, it remains to address the low-entropy case where we want to show that for a (n2ε, nε)-
local function g there exists an event E such that |E| ≤ n3n/4 and Pr[g(u) ∈ E] ≥ 1−exp(−n1−10ε).

Let F be the event given by Lemma 4: Pr[g(u) ∈ F ] ≥ 1/2 and |F | ≤ nn/2. The main idea is to
consider a neighborhood of F as the new witnessing event: Nk(F ) := {x | miny∈F dist(x, y) ≤ k},
where dist(·, ·) is the (n-ary) Hamming distance. The probability bound Pr[g(u) ∈ F ] ≥ 1/2 is
equivalent to |g−1(F )| ≥ ns/2. If x ∈ Nk(g

−1(F )) then g(x) ∈ Nk·n2ε(F ), since changing one
symbol in the input to g changes at most n2ε output cells. We then need to choose k such that
Nk(g

−1(F )) contains almost all points of [n]s, yet E := Nk·n2ε(F ) is small as shown in Figure 2.
For the former, we use a fact from combinatorics, that is essentially due to Harper [Har66].

Theorem 7. For an arbitrary set S ⊆ [n]s and u ∼ [n]s we have

Pr[u ∈ Nk(S)] ≥ 1− exp(−k2/(2s logn))
Pr[u ∈ S]

.

Proof. For the boolean alphabet (n = 2) the claim is shown in [McD89, Proposition 7.7]. We give
a simple reduction to this case. Consider the natural bijection b : [n]s → {0, 1}s logn that encodes
every [n]-symbol as logn bits. Then Pr[u ∈ Nk(S)] ≥ Pr[b(u) ∈ Nk(b(S))], which implies the
claim.

In order to achieve high probability in Theorem 7 we choose k = n1−4ε. Wlog we may assume
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Figure 2: The picture illustrates the process of boosting the distance from 1/2 to almost 1 by expanding
the witnessing event to its neighborhood.

that s ≤ n1+ε for a nε-local function. Hence we get Pr[u ∈ Nk(g
−1(F ))] ≥ 1−exp(−n1−9ε/2 logn)/2.

On the other hand |Nk·n2ε(F )| ≤ |F |·
(

s
k·n2ε

)
nkn2ε ≤ nn/2 ·exp(3k ·n2ε log s) ≤ nn/2 ·n3n1−2ε ≪ n3n/4.

Boosting distance in the adaptive case: containment lemma. The problem with the
proof of (Step 2) above is that in the adaptive case the input space might have the dimension up
to nd+1, which prevents us from using Theorem 7 to boost the error probability: the radius of the
neighborhood that we would have to use is at least

√
nd+1, which is larger than the dimension of the

output space. Thus we prove a dimension-free version of Theorem 7 for sets that can be recognized
by bounded-depth decision trees:

Theorem 8 (simplified version of Lemma 30). Suppose that T : [n]s → {0, 1} is a decision tree of
depth d such that |T−1(1)| ≥ µ · ns. Then

E
u∼[n]s

[dist(u, T−1(1))] = O(
√
d log(1/µ)).

For every depth-d decision forest every property of its output can be computed with a depth-nd
decision tree, so with Theorem 8 we can reduce the effective dimension to nd. On the other hand, the
expectation bound we get is not quite enough to establish the exponentially low probability of being
outside the neighborhood. Thus, in Section 5 we boost Theorem 8 using average Lipschitzness.

3 Proof of the Main result

In this section, we give the proof of the lower bound for the adaptive case and formally introduce
all the technical tools needed.

3.1 Warm-up: the case of bucketed queries

We start by proving the theorem in the special case where the queries of the decision forest are
structured: every tree takes its first query from a set I1, the second query from the set I2, and so
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on [s] = I1 ⊔ · · · ⊔ Id. We say that such a forest is bucketed. The goal of this section is to present
the high-level structure of the general proof and introduce the primary technical tools that will be
utilized throughout. We remark that instead of the domain [n]N used in the intro, we use a domain
[n]s for some integer s: a depth-d decision forest (bucketed or not) consisting of n trees can query
at most nd+1 distinct input cells, so we may assume wlog that the indices of these cells are [s].

Theorem 9. Suppose f : [n]s → [n]n is a bucketed depth-o(log n/ log log n) decision forest with
buckets I1, . . . , Id and let ui ∼ [n]Ii for each i ∈ [d]. Let π ∼ Sn be the uniform random permutation.
Then

∆(f(u1, . . . ,ud),π) ≥ 1− exp(−nΩ(1)).

As announced in Section 2.2, on the high level, this proof follows the plan of the proof of
Theorem 2 with bounded influence replaced with bounded average Lipschitzness (see Definition 1).
Let us first consider two cases: when H(f(u)) ≥ n logn/4 and when H(f(u)) ≤ n log n/4.

High entropy case. Suppose that H(f(u)) ≥ n logn/4. Ideally, in this case we want to show
that probability of a collision is

Pr[∃i ̸= j ∈ [n] : fi(u) = fj(u)] ≥ 1− exp(−nΩ(1)),

and thus, almost always, we will not generate a permutation. The main idea is to reduce the
problem to the case where the output cells of f are independent, and apply a collision lemma
similar to Lemma 5. Here we will use the following version:

Lemma 10. Let u ∼ [n]s and f : [n]s → [n]n be a depth-1 decision forest. Suppose that H(f(u)) ≥
4(n log log n). Then Pr[∃i ̸= j ∈ [n] : fi(u) = fj(u)] ≥ 1− exp(−Ω(n/poly(log n))).

Observe that with a stronger guarantee on the entropy this would follow from Theorem 2, since
depth-1 decision forests are 1-local functions. We prove this lemma in Section 6.2.

In the bucketed case the reduction from a depth-d to a depth-1 decision forest is quite straight-
forward: fix all input buckets, except for one. Thus, we need to find a bucket Ii such that after
fixing inputs in all other buckets the output of the resulting forest typically retains some entropy.
The following simple fact says that after such conditioning the entropy is retained in expectation:

Fact 1. Suppose x1, . . . ,xℓ are independent and y = f(x1, . . . ,xℓ) then H(y) ≤
∑

i∈[ℓ]H(y | x[ℓ]∖i).

The proof of this fact is a simple chain rule computation and can be found in Section 3.3. We
then find that there exists i ∈ [d] such that

H(f(u) | u[d]∖i) ≥ (n log n/4)/d≫ n log logn. (1)

As observed before, for any β ∈ [n]s and j ∈ [d], function x 7→ f(β[s]∖Ij , xIj ) can be computed with
a depth-1 decision forest, hence if we proved that

Pr
β∼[n]s

[
H(f(u) | u[d]∖i = β[s]∖Ii) ≥ 4(n log logn)

]
≥ 1− exp(−nΩ(1)), (2)

we would be able to immediately apply Lemma 10 and finish the proof in the high-entropy case.
Unfortunately, (1) does not imply the probability lower bound by itself. However, for an average

Lipschitzness forest f , retaining a high entropy under restriction typically is implied by having a
high conditional entropy:
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Lemma 11. Let f : [n]s → Σm be an average-n0.3-Lipschitz depth-logO(1) n decision forest. Suppose
that m ≤ n and |Σ| = O(n). Let I ⊆ [s] be a subset of the input cells. Then for r and u uniformly
distributed over [n]s we have

Pr
[
|H(f(u) | uI = rI)−H(f(u) | uI)| > n0.9

]
≤ exp(−nΩ(1)).

We prove this lemma in Section 4.2. Combined with (1) this lemma implies (2) finishing the
proof in the high-entropy case for average Lipschitz functions. We will see how to get rid of this
assumption shortly.

Low entropy case. Now suppose that H(f(u)) ≤ n log n/4. Observe that here, analogously to
the nonadaptive case in Theorem 2 the would have been resolved with Lemma 4 had we aimed for
the constant distance bound. For the strong bounds we need to boost the distance. To this end,
we prove the following lemma in Section 5:

Lemma 12. Suppose f : [n]s → [n]m is an average-n0.1-Lipschitz depth-d decision forest with m ≥
n0.99, d = logO(1) n, u ∼ [n]s, and H(f(u)) ≤ m log n/4. Then there exists a set F ⊆ [n]m of size
n3m/4 such that

Pr[f(u) ∈ F ] ≥ 1− exp(−nΩ(1)).

Final step: enforcing average Lipschitzness. The only obstacle that remains for the proof of
Theorem 9 is the failure of average Lipschitzness for f . Similar to the nonadaptive case we enforce
it by restricting the values of input cells that are queried too many times in expectation.

We need some additional notation to state this result. Each leaf of a decision tree can be
naturally identified with a partial assignment ℓ ∈ ([n]∪{⋆})s, where the non-⋆ symbols correspond
to the input cells queried in the path to the leaf and ⋆-symbols correspond to all the remaining
symbols. A random leaf ℓ of a decision tree is defined as the leaf reached by the computation on
the random input u ∼ [n]s. For a decision forest f : [n]s → [n]m and a partial assignment ℓ, f |ℓ
denotes the decision forest f after restricting the input cells according to ℓ.

Lemma 13. Suppose f : [n]s → [n]m is an arbitrary depth-d decision forest. There exists a 2nd/µ ·
log(1/ε)-depth decision tree T querying symbols of [n]s such that for a random leaf ℓ of T , f |ℓ is
average-µ-Lipschitz with probability 1− ε.

We then can derive a simple corollary (along the lines of the proof of Theorem 2) that imme-
diately implies Theorem 9.

Corollary 14. Suppose that f : [n]s → [n]n is such that for any partial assignment ℓ ∈ ([n]∪ {⋆})s
that makes f |ℓ average-n0.1-Lipschitz, and for u ∼ [n]s we have either

♦ (Collision): Pr[∃i ̸= j ∈ [n] : (f |ℓ)i(u) = (f |ℓ)j(u)] ≥ 1− exp(−nΩ(1)).
♦ (Containment): There is a set Fℓ of size n3n/4 such that Pr[f |ℓ(u) ∈ Fℓ] ≥ 1− exp(−nΩ(1)).

Then ∆(f(u),π) ≥ 1− exp(−nΩ(1)), where π ∼ Sn.

Proof. We apply Lemma 13 with ε = exp(−n.01) and µ = n.1 to get a depth-n.99 decision tree.
Consider a leaf ℓ of this tree. By the assumption for each ℓ such that f |ℓ is average-µ-Lipschitz,
we either get a collision with probability 1 − exp(−nΩ(1)), or there exists a set Fℓ of size at most
n3n/4 such that Pr[f(u) ∈ Fℓ | u ∈ ℓ] ≥ 1 − exp(−nΩ(1)). The total number of leaves is bounded
by nn.99 ≪ nn/20. Thus, the size of the union of all Fℓ over all leaves that fall in the containment
case is at most nn/20 · n3n/4 ≤ n4n/5.
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Finally, we see that with probability 1−exp(−nΩ(1)) a uniformly random u lands in a leaf ℓ such
that f |ℓ is average-n.1-Lipschitz. If that happens, then either the sequence that we sample does not
constitute a permutation, or it belongs to

⋃
Fℓ. Given that Pr[π ∈ ∪ℓFℓ] ≤ n4n/5/n! = exp(−Ω(n)),

this immediately implies that ∆(f(u),π) ≥ 1− exp(−nΩ(1)).

3.2 The general proof

In this section we finalize the proof of Theorem 1. The only missing structural piece is the treatment
of the high-entropy case. It is formalized as follows:

Lemma 15. Suppose f : [n]s → [n]m is a depth-d average-µ-Lipschitz decision forest such that
d = o(

√
log n/ log logn), µ = n0.1, and m = Ω(n). Suppose that H(f(u)) ≥ m log n/4. Then

Pr[∃i ̸= j ∈ [m] : fi(u) = fj(u)] ≥ 1− exp(−nΩ(1)).

Assuming this lemma, we can finish the proof.

Proof of Theorem 1. Consider a partial assignment ℓ ∈ ([n]∪{⋆})s, suppose that f |ℓ is average-n0.1-
Lipschitz. Then either H(f |ℓ(u)) ≥ n log n/4, in which case we have a collision whp by Lemma 15,
or H(f |ℓ(u)) ≤ n log n/4, so we have a small container set by Lemma 12. We now apply Corollary 14
and finish the proof.

We now proceed to the proof of Lemma 15.

3.2.1 Sharper tools

So far, we have stated two simplified versions of our collision lemma: Lemma 5 and Lemma 10.
The general adaptive case requires a stronger version (proved in Section 6):

Lemma 16. Let u ∼ [n]s and f : [n]s → ([n] ∪ {⊥})m be a depth-1 decision forest. Suppose that
H(f(u)) ≥ δ ·m log n, and (δ2/4)m ≥ n1−ε for δ = δ(n) ≥ max(4 log logn/ logn, 8ε). Then

Pr[∃i ̸= j ∈ [m] : fi(u) = fj(u) ̸= ⊥] ≥ 1− exp(−Ω(δ4m3/n2)).

In the warm-up section we hid under the rug the need to use (µ, δ)-Lipschitzness, instead of
average Lipschitzness. Although by Lemma 6 we can always assume average Lipschitzness, oper-
ating with almost-everywhere Lipschitzness directly comes in handy in the general proof, because
the latter is preserved under restrictions:

Lemma 17. Suppose f : Λs → Σm is a (µ, δ)-Lipschitz decision forest. Let T be a decision tree
querying symbols of a string in Λs. For α be a leaf of T where a uniformly random assignment
lends, and let f |α be the forest with the input cells restricted according to α. Then

Pr[ f |α is (µ,
√
δ)-Lipschitz ] ≥ 1−

√
δ.

Proof. Fix some j ∈ [s]. Let Q(α, x) be the number of trees in f |α that query the cell j on the input
x. Let E be the event “f |α is not (µ,

√
δ)-Lipschitz”. Suppose for contradiction that Pr[E] >

√
δ.

Consequently we get

Pr
α,u

[Q(α,u) > µ] ≥ Pr[E] · Pr[Q(α,u) > µ | E] >
√
δ ·
√
δ = δ.

Since Q(α, x) is also the number of trees in f that query the cell j on the joint input (α, x) we have
a contradiction with (µ, δ)-Lipschitzness of f .
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A helpful trick for dealing with Lipschitz decision forests is to turn an unlikely undesirable
event (say an input cell is queried too many times) into an impossible event by terminating the
computation of a tree if it is about to do something undesirable (e.g. query that too popoular input
cell). The following fact helps to argue that such terminations do not affect entropy too much.

Fact 2. Let x be a random variable supported over (Σ∪{⊥})n and let b : (Σ∪{⊥})n → Z≥0 be the
function that counts non-⊥ elements in the input. Then H(x) ≤ log(n+ 1) + E[b(x)] log(n|Σ|).

Proof. Observe that H(x | b(x) = ℓ) ≤ ℓ log(n|Σ|), since the support size of (x | b(x) = ℓ) is at
most (n|Σ|)ℓ. We then write by the chain rule:

H(x) = H(b(x),x)

= H(b(x)) + H(x | b(x))
= H(b(x)) + E

ℓ∼b(x)
[H(x | b(x) = ℓ)]

≤ H(b(x)) + E
ℓ∼b(x)

[ℓ log(n|Σ|)]

≤ log(n+ 1) + E[b(x)] · log(n|Σ|).

3.2.2 Handling the high-entropy case.

In this section, we prove Lemma 15. The proof proceeds by repeatedly reducing the depth of the
forest until the depth is 1, so we are in a position to apply Lemma 16.

In what sense do we reduce the depth? We will find a set I ⊆ [s] and a set J ⊆ [m] such that
whp over the assignment to I the projection fJ after assigning the input cells in I has high entropy
and depth at most d− 1. This is formalized in the following key lemma:

Lemma 18. Suppose f : [n]s → ([n] ∪ {⊥})m is a depth-d average-µ-Lipschitz decision forest with
m ≥ n0.99, and µ ≤ n0.3. Suppose that for u ∼ [n]s we have H(f(u)) ≥ cm logn with c =
ω(1/ log n). Then there exists a set I ⊆ [s], a set J ⊆ [m] of size |J | ≥ m/ log6(n) and a forest
g : [n]s → ([n] ∪ {⊥})J such that for every j ∈ J and all x ∈ [n]s we have gj(x) ∈ {fj(x),⊥} and
one of the following conditions holds:

(C1) With probability 1 − exp(−nΩ(1)) over β ∼ [n]I , H(g(u) | uI = β) ≥ (1 − 3/d)c|J | log n and
g has depth d− 1 after any assignment to the input cells in I.

(C2) With probability 1− exp(−nΩ(1)) over β ∼ [n]I , H(g(u) | uI = β) ≥ (1/(3d))c|J | log n and g
has depth 1 after any assignment to the input cells in I.

Proof of Lemma 15 given Lemma 18. We apply Lemma 6 to get that for every δ > 0 we have that
f is (3µd2 log(1/δ), δ)-Lipschitz. We take δ := exp(−µ), so f is (3(µd)2, δ)-Lipschitz. Then we will
iterate Lemma 18 until the restricted f is depth-1 according to the following algorithm.

Input: f : [n]s → ([n] ∪ {⊥})m
Output: f ′ : [n]R → ([n] ∪ {⊥})J of depth 1. A partial assignment α to [n]s

1: Let f ′ ← f with R← [s] and J ← [m].
2: α be an empty assignment.
3: while Depth of f ′ is larger than 1 do
4: Apply Lemma 18 to get g : [n]R → ([n] ∪ {⊥})J ′

, J ′ ⊆ J and I ⊆ R.
5: Sample β ∼ [n]I .
6: α← α ∪ β.
7: Update f ′ ← g|β; R← R∖ I; J ← J ′.
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8: if f ′ is not ((3µd)2,
√
δ)-Lipschitz then

9: fail
10: end if
11: end while

By Lemma 17 the line (9) is executed at any point in the algorithm with probability at most
√
δ

over α. With probability (1 − exp(−nΩ(1)))d over the random assignment α the entropy of f ′(u)
satisfies for some j ∈ [d]

H(f ′(u))

|J | logn
≥

d∏
i=j

(1−O(1/i)) · Ω(1/j) ≥ Ω(1/d) = ω(log log n/
√
log n).

On the other hand |J | ≥ m(log6 n)−d = n · 2o(
√
logn).

Now we reduced the problem to the case d = 1, so we can apply Lemma 16 to get that fJ
has a non-⊥ collision with probability 1 − exp(−nΩ(1)) over u ∼ [n]R. Hence with probability
(1−

√
δ)(1− exp(−nΩ(1))) there is a collision in f(α,u) as required.

3.2.3 Proof of Lemma 18

The proof goes as follows:

1. We are going to identify sets I ⊆ [s] and J ⊆ [m] such that the first queries in trees fJ always
come from I and only some o(|J |) trees query I after their first query whp over the input.

2. We will prune the trees fJ into gJ such that gJ never query I after the first query at the
expense of sometimes returning ⊥.

3. By Fact 1 we have that either H(gJ(u) | uI) ≥ H(gJ(u)) · (1 − 1/d) or H(gJ(u) | u[s]∖I) ≥
H(gJ(u)) · (1/d), so in the former case (C1) is satisfied and in the latter (C2) is.

In the steps (1) and (2) we need to make sure that the entropy rate of gJ(u) does not drop too much
compared to the entropy rate of f(u). In the step (3) the key is to use the fact that the conditional
entropy concentrates i.e. not only conditioning on a random variable uI does not reduce it too
much, but conditioning on the event uI = β also does not reduce it too much whp over β ∼ uI .

First step: isolating first queries. First, we are going to choose some trees in fi such that the
set of input cells I that are queried first by fi is unlikely to be queried as a non-first query by any
of the chosen trees.

Let us partition f1, . . . , fm into subsets J1 ⊔ · · · ⊔ Jℓ = [m] such that trees indexed with Ji
first query the input cell i (wlog we may assume that the first queries form the set [ℓ]). By the
Lipschitzness assumption we have that |Ji| ≤ 2µ for every i ∈ [ℓ], hence ℓ ≥ m/(2µ). Now let
I ⊆ [ℓ] be a random set where each element from [ℓ] is included independently with probability
α = 1/ log6 n. Let J :=

⋃
i∈I Ji be the set of output cells that first query an input cell from I.

We would like to argue that the expectation over I of the expectation over u of the number of
non-first queries fJ make to I is low, see Figure 3 for the illustration. Let pij := Pr[fi(u) queries j].
Then

E

 ∑
a̸=b∈I

∑
(i,j)∈Ja×Jb

pij

 =
∑

a̸=b∈[ℓ]

Pr[a ∈ I] Pr[b ∈ I]
∑

(i,j)∈Ja×Jb

pij ≤ α2md.

We now argue that there exists I ⊆ [ℓ] and corresponding J :=
⋃

i∈I Ji satisfying three conditions:

(R1) H(fJ(u)) ≥ (1− 1/d) · αH(f(u)).
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[n]s

[n]m

I

J1 Jℓ/2 Jℓ

Figure 3: The picture illustrates the choice of J . We first sample the set I ⊆ [ℓ] of input cells and take to
J only the trees that query a symbol in I as their first query. The undesirable events for us are non-first
queries from J to I, it is represented as the red line in the picture. The main point is that for a fixed i ∈ [ℓ]
and j ∈ [m] this happens with probability α2, but the expected size of J is an α-fraction of [m]. Hence, the
subsampling procedure sparsifies the undesirable events.

(R2) |J | ≤ (1 + 1/d) · αm.
(R3) E[ number of non-first queries to I that fJ make ] ≤ α−1/2d · α2md.

Claim 19. Conditions (R1)-(R3) are satisfied by I and J with positive probability.

Proof. By Markov’s inequality I satisfies the condition (R3) with probability 1−
√
α/d.

Let us compute the probability that (R2) is not satisfied by J . For an event A, let JAK denote
the random variable that is 1 if A occurs and 0 otherwise. Then

Pr[|J | > (1 + 1/d)αm] = Pr

∑
i∈[ℓ]

|Ji|Ji ∈ IK > (1 + 1/d)αm


= Pr

∑
i∈[ℓ]

|Ji|Ji ∈ IK− E[|J |] > 1/d · αm


(Hoeffding’s inequality) ≤ exp(−Ω((α/d)2 ·m2/

∑
i∈[ℓ]

|Ji|2))

= exp(−Ω(α2m/(µd)2))

(since m ≥ n0.99, and µ ≤ n0.3) = exp(−nΩ(1)).

Now we turn to (R1). The key step is to show that the entropy is retained in expectation:
EJ [H(fJ (u))] ≥ αH(f(u)). This holds by Shearer’s inequality:

Lemma 20 (Shearer’s Inequality [CGFS86]). Suppose S ⊆ [n] is a distribution over subsets of [n]
such that for every i ∈ [n] Pr[i ∈ S] ≥ κ. Then for any random variable x ∼ Σn we have

H(x) ≤ 1

κ
E[H(xS)].
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On the other hand

EJ [H(fJ (u))] ≤ Pr[H(fJ (u)) < (1− 1/d) · αH(f(u))] · (1− 1/d) · αH(f(u))

+ Pr[H(fJ (u)) ≥ (1− 1/d) · αH(f(u)) ∧ |J | ≤ 2αm] · 2αm log n

+ Pr[|J | > 2αm] ·H(f(u))
≤ (1− 1/d) · αH(f(u)) + p · 2αm logn+ exp(−nΩ(1)),

where p := Pr[H(fJ (u)) ≥ (1− 1/d) · αH(f(u))]. By rearranging we get

H(f(u))/d− exp(−nΩ(1))

2m logn
≤ p.

Since H(f(u)) = cm logn we then get p ≥ c/3d = ω(1/(d logn)), so since ω(1/(d logn))−
√
α/d−

exp(−nΩ(1)) = ω(1/(d log n)) > 0 there exists I satisfying (R1), (R2), (R3).

Second step: pruning the trees. Having I ⊆ [ℓ] and J ⊆ [m] satisfying the conditions (R1)-
(R3) we now define trees gj : [n]

s → [n] ∪ {⊥} for each j ∈ J as follows: gj follows the behavior of
fj until it is about to query an input cell from I in which case it returns ⊥.

Claim 21. H(gJ(u)) ≥ H(fJ(u))−O(α3/2md2 log n) ≥ (1− 1/d)H(fJ(u)).

Proof. The second inequality is satisfied since

α3/2md2 log n = αmd2/ log2 n ≤ αm/ log n = o(αcm log n/d) = o(H(fJ(u))/d).

We now prove the first inequality. Consider a random variable b ∈ ([n]∪{⊥})J such that bj = ⊥
if gj(u) ̸= ⊥ and bj = fj(u) if gj(u) = ⊥. Then fJ(u) is uniquely determined by b and gJ(u), so
H(fJ(u)) ≤ H(gJ(u)) + H(b). Then, since the expected number of non-⊥ symbols in b is bounded
by (R3), we conclude since by Fact 2 H(b) ≤ logn(2 + 2α3/2md2).

Third step: restricting the inputs. By Fact 1 we either have H(gJ(u) | uI) ≥ H(gJ(u)) ·
(1 − 1/d) or H(gJ(u) | u[s]∖I) ≥ H(gJ(u)) · (1/d). Suppose that the former holds, then, since g is
average-µ-Lipschitz and µ ≤ n0.3, Lemma 11 implies

Pr
r∼u

[H(gJ(u) | uI = rI) ≥ (1− 2/d)H(gJ(u))] ≥

Pr
r∼u

[|H(gJ(u) | uI = rI)−H(gJ(u) | uI)| ≤ (1/d)H(gJ(u))] ≥

Pr
r∼u

[|H(gJ(u) | uI = rI)−H(gJ(u) | uI)| ≤ n0.9] ≥ 1− exp(−nΩ(1)).

The second inequality holds since H(gJ(u))/d ≥ m/poly(log n) ≫ n0.9. If H(gJ(u) | u[s]∖I) ≥
H(gJ(u)) · (1/d) holds we apply Lemma 11 analogously. Then either (C1) or (C2) is satisfied since
H(gJ(u)) ≥ (1− 1/d)H(fJ(u)) by Claim 21.

3.3 Entropy after assignment

In this section, we prove Fact 1, the proof is a simple chain rule computation.

Fact 1. Suppose x1, . . . ,xℓ are independent and y = f(x1, . . . ,xℓ) then H(y) ≤
∑

i∈[ℓ]H(y | x[ℓ]∖i).

We first prove it in the special case of ℓ = 2:
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Fact 3. Suppose x1, x2, and z are independent and y = f(x1,x2, z) then

H(y | z) ≤ H(y | x1, z) + H(y | x2, z).

Proof. We write

H(x1 | z) + H(x2 | z) = H(x1,x2 | z)
= H(x1,x2,y | z)

(chain rule for Shannon entropy) = H(y | z) + H(x1 | y,z) + H(x2 | y,x1, z)

(entropy decreases with conditioning) ≤ H(y | z) + H(x1 | y,z) + H(x2 | y,z)
= H(y,x1 | z) + H(y,x2 | z)−H(y | z)

By applying H(y,xi | z) = H(y | xi, z) + H(xi | z) for i ∈ {1, 2} and rearranging we get the
claim.

Now we can derive Fact 1.

Proof of Fact 1. Applying Fact 3 with empty z we get:

H(f(x)) ≤ H(f(x) | x1) + H(f(x) | x[d]∖1).

Then we continue to rewrite H(f(x) | x1) ≤ H(f(x) | x1,x2) + H(f(x) | x1,x[n]∖{1,2}) again using
Fact 3 with z = x1. We then get the claim by a simple induction.

4 Lipschitz Decision Forests

Two of our technical lemmas are in fact some form of concentration, Lemma 11 is precisely the
concentration of conditional entropy, and Lemma 12 can be seen as the concentration of distance
from a random point to a set. In both cases we reduce the question to the McDiarmid’s inequality.

McDiarmid’s inequality. A function f : Λs → R has c-bounded differences over S ⊆ Λs if for
every x, x′ ∈ S that differ in one coordinate we have |f(x)− f(x′)| ≤ c.

The following concentration inequality is well-known and can be found, for example, in [Com15].

Lemma 22 (McDiarmid’s inequality). Suppose f : Λs → R has c-bounded differences over S and
for u ∼ [n]s we have Pr[u ∈ S] = 1− δ. Then

Pr[|f(u)− E[f(u) | u ∈ S]| ≥ λ+ δcs] ≤ 2(δ + exp(−Ω(λ2/(c2s))).

The bounded difference property is very similar in spirit to Lipschitzness, the topic of this
section. We restate the definition for convenience:

Definition 1 ([BIL12]). Let f : [n]s → [n]n be a decision forest. Let θj denote the number of trees
in f that query j on the input u ∼ [n]s. We then say that f is average-µ-Lipschitz if E[θj ] ≤ µ for
every j ∈ [s]. We say that f is (µ, δ)-Lipschitz if Pr[θj > µ] ≤ δ for every j ∈ [s].

This concept was studied (with somewhat different notation) by Beck, Impagliazzo, and Lovett
[BIL12], who proved a concentration inequality for Lipschitz forests.
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Theorem 23 ([BIL12, Theorem 1.7]). Suppose that f : {0, 1}s → {0, 1}m is an average-µ-Lipschitz
depth-d decision forest. Then

Pr
u∼{0,1}s

∣∣∣ ∑
i∈[n]

fi(u)− E
[ ∑
i∈[n]

fi(u)
]∣∣∣ > d ·

√
µ · n · log(d4/ε)

 ≤ ε.

Unfortunately, we cannot use their results in a black-box way, the first reason is that they
are stated only for the binary alphabet, whereas we need it for exponential-size alphabet, and
the second is because of the

√
n multiplier in the deviation bound. We would like to apply such

concentration bound in the case of low expectation, so this multiplier would be too weak. For these
reasons we prove the following simpler deviation bound:

Lemma 24. Suppose that f : Λs → [0, 1]m is a depth-d average-µ-Lipschitz decision forest. Then

if κ := E
[∑

i∈[m] fi(u)
]
, we have for every ε > 0

Pr

∑
i∈[m]

fi(u) ≥ 2(κ+ log(1/ε)dµ)

 ≤ ε.

As a corollary of Lemma 24 we get, following the simplified proof of [BIL12, Corollary 1.8] that

Lemma 6. If f : Λs → Σm is an average-µ-Lipschitz depth-d decision forest, then for every ε > 0
the forest f is (3µd2 log(1/ε), ε)-Lipschitz.

Proof. As above, for every j ∈ [s] let θj be number of trees in f querying j on the input u. Let gℓ,ji

be the depth-ℓ decision tree that returns 1 if the ℓ-th query of fi is to j and 0 otherwise. Clearly
gℓ,j is obtained by pruning f up to the ℓ-th layer and replacing all j-labels with 1 and all others
with 0.

Then θj =
∑

ℓ∈[d]
∑

i∈[n] g
ℓ,j
i (u). The forest gℓ,ji for fixed j and ℓ ∈ [d] , i ∈ [n] is average-dµ-

Lipschitz, since every tree in the forest is obtained by pruning a tree in f and every tree from f
corresponds to d trees in the forest. Thus, by Lemma 24 we have

Pr[θj ≥ 2(µ+ log(1/ε)d2µ)] ≤ ε,

which implies the claim.

4.1 Proof of Lemma 24

We denote τi(u) ∈ (Λ× [s])d the transcript of running fi on u (the queries and the outcomes). We
abuse notation to denote by fi(α) the value of fi given the transcript α ∈ (Λ× [s])d.

We now estimate the k-th moment of
∑

i∈[m] fi(u) by induction on k. We are going to prove the

statement by induction on k. Let F (κ, k) be the maximum of E[(
∑

i∈[m] hi(u))
k] over all depth-d

average-µ-Lipschitz decision forests h with E[
∑

i∈[m] hi(u)] = κ. The base of induction is k = 1
where trivially F (κ, 1) = κ.

E

( ∑
i∈[m]

fi(u)
)k

 =
∑

i,j1,...,jk−1∈[m]

E[fi(u)fj1(u) · · · · · fjk−1
(u)]

=
∑
i∈[m]

∑
α∈(Λ×[s])d

Pr[τi(u) = α]fi(α) · E

( ∑
j∈[m]

fj(u)
)k−1

∣∣∣∣∣∣ τi(u) = α


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Let us now estimate E
[
(
∑

j∈[m] fj(u))
k−1 | τi(u) = α

]
for fixed i, α. Consider a decision forest gα

such that gαi is a copy of fi where all queries to α are replaced with leaves labeled with 1, in other
words, when we are about to query something in α, we return 1 instead. Such a transformation
will preserve the µ-Lipschitz property, as for every j, the number of queries can only decrease. We
then further estimate the expectation

E

( ∑
j∈[m]

fj(u)
)k−1

∣∣∣∣∣∣ τi(u) = α

 ≤ E

( ∑
j∈[m]

gαj (u)
)k−1

∣∣∣∣∣∣ τi(u) = α


(as gαj never query α) = E

( ∑
j∈[m]

gαj (u)
)k−1


≤ F

E

 ∑
j∈[m]

gαj (u)

 , k − 1


Now let us compute the new expectation:

E

 ∑
j∈[m]

gαj (u)

 = E

 ∑
j∈[m]

(gαj (u)− fj(u))

+ κ

≤ dµ+ κ.

Here we use that (gαj (u)−fj(u)) ̸= 0 only if fj queries α, hence the expectation of the sum of these
over j ∈ [n] is bounded by the expected number of queries to α, which is at most dµ. Putting all
together we get

E

( ∑
i∈[m]

fi(u)
)k

 ≤ F (dµ+ κ, k − 1) ·
∑

i∈[m]; α∈(Λ×[s])d

fi(α) Pr[τi(u) = α]

≤ F (dµ+ κ, k − 1) · κ
≤ (κ+ kdµ)k.

Finally, by Markov inequality

Pr

∑
i∈[m]

fi(u) ≥ a

 = Pr

( ∑
i∈[m]

fi(u)
)k
≥ ak

 ≤ E
[(∑

i∈[m] fi(u)
)k

]
ak

≤
(
κ+ kdµ

a

)k

and we get the desired inequality by substituting a = 2(κ+ dµ · log(1/ε)) and k = log(1/ε).

4.2 Conditional entropy concentration

The main property of Lipschitz forests is that conditional entropy concentrates in the following
sense:

Lemma 25. Suppose f : [n]s → Σm is an (µ, δ)-Lipschitz depth-d decision forest with µ = mΘ(1)

and δ = exp(−mΩ(1)). Let I ⊆ [s] be a subset of the input cells. Then for r and u uniformly
distributed over [n]s we have

Pr[|H(f(u) | uI = rI)−H(f(u) | uI)| > λ log(m|Σ|)
√

µmd] ≤ exp(−Ω(λ2)) + exp(−mΩ(1)).
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Before proceeding to the proof of this lemma, let us derive a simpler form that we use in
Section 3:

Lemma 11. Let f : [n]s → Σm be an average-n0.3-Lipschitz depth-logO(1) n decision forest. Suppose
that m ≤ n and |Σ| = O(n). Let I ⊆ [s] be a subset of the input cells. Then for r and u uniformly
distributed over [n]s we have

Pr
[
|H(f(u) | uI = rI)−H(f(u) | uI)| > n0.9

]
≤ exp(−nΩ(1)).

Proof. Wlog we may assume m = n by adding n − m trivial decision trees to f . Then, taking
λ = n0.1, we get λ log(m|Σ|)

√
µmd = poly(log n) · n0.75 ≪ n0.9.

The key step in the proof of Lemma 25 is to show that the conditional entropy has bounded
differences:

Lemma 26. Suppose f : Λs → Σm is an average-µ-Lipschitz decision forest. Then for y ∼ Λ,
z ∼ Λs−1, and every y ∈ Λ we have with o := f(y, z) that

|H(o | y = y)−H(o)| ≤ log(m+ 1) + µ log(m|Σ|).

Proof. Fix some y ∈ Λ and let o′ := f(y,z). Let a ∈ (Σ ∪ {⊥})m be the random variable such
that for each i ∈ [m] we have ai = o′

i if the first input cell was queried by fi and ai = ⊥ if
it was not. Then H(o′) ≤ H(o,a) ≤ H(o) + H(a), since o′ is uniquely determined by o and a.
We then observe that the expected number of non-⊥ elements in a is at most µ in expectation:
indeed f is average-µ-Lipschitz and fixing the first input cell does not change the expected number
of queries to it, since the trees in f query each symbol at most once. Then by Fact 2 we get
H(a) ≤ log(m + 1) + µ log(m|Σ|) Hence H(o | y = y) ≤ H(o) + log(m + 1) + µ log(m|Σ|). The
reverse direction is proved analogously.

Corollary 27. Suppose f : Λs → Σm is a (µ, δ)-Lipschitz decision forest, with δ = exp(−mΩ(1)),
and µ = mΘ(1). Let I ⊆ [s] be a subset of input cells, and let a function h : ΛI → R map
y 7→ H(f(u) | uI = y). Then there exists a set S ⊆ ΛI such that Prr∼ΛI [r ∈ S] ≥ 1− |I| ·

√
δ and

h has O(µ log(m|Σ|))-bounded differences over S.

Proof. Let us fix some i ∈ I and show that there exists a set Si with Pr[r ∈ Si] ≥ 1−
√
δ such that

h has bounded differences in the i-th coordinate in the set Si. The claim then follows by the union
bound.

Let Si be set of r ∈ ΛI such that frI∖{i} is (µ,
√
δ)-Lipschitz, by Lemma 17 the forest f |rI∖{i}

is (µ,
√
δ)-Lipschitz with probability 1 −

√
δ over the choice of r ∼ ΛI . Then gr := f |rI∖{i} is also

average-(µ +
√
δm)-Lipschitz. Since

√
δm = O(µ), an application of Lemma 26 implies that for

every y ∈ Λ
|H(gr(y, z) | y = y)−H(gr(y, z))| ≤ O(µ log(m|Σ|)),

where y ∼ Λ{i} and z ∼ Λ[s]∖I . Then notice that h(x, y) = H(gy(y, z) | y = y), so the above shows
that h has O(µ log(m|Σ|))-bounded differences in Si for the i-th coordinate, as required.

Proof of Lemma 25. First we reduce the number of the input cells in I: we cluster it and increase
the alphabet, so each cluster becomes a single symbol. The challenge is to do it so that average-µ-
Lipschitzness does not suffer. Let θi for i ∈ [s] be the number of queries to the input cell i the trees
in f collectively make on the input u ∼ [n]s. Observe that E[

∑
i∈[s] θi] ≤ md, since each tree makes

at most d queries on the given input. Let I1, . . . , Iℓ be the partition of I such that
∑

i∈Ij E[θi] ≤ µ
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for every j ∈ [ℓ] and ℓ is minimized. Then no two sets in I1, . . . , Iℓ can be united so the property is
satisfied, hence

∑
i∈Ij E[θi] ≥ µ/2 for all j ∈ [ℓ] except perhaps one, thus ℓ ≤ 2md/µ+1 ≤ 3md/µ.

Then we set Λ := [n]maxj∈[ℓ] |Ij | and for every tree in f replace each query to the input cell i ∈ I
with the query to the cluster Ij ∋ i. This does not affect the depth of the trees and each new input
cell is queried at most µ times in expectation. Thus, the obtained forest f ′ : Λℓ× [n][s]∖I → [n]m is
average-µ-Lipschitz depth-d decision forest such that f(u) ≡ f ′(y, z) for y ∼ Λℓ, z ∼ [n][s]∖I .

Let h : Λℓ → R map y ∈ Λℓ to H(f ′(y,z)) = H(f(y′,u[s]∖I)), where y′ ∈ [n]I is the unclustered
version of y. Then E[h(r)] = H(f(u) | uI).

By Corollary 27 we have that h has O(µ log(m|Σ|)-bounded differences on a set S ⊆ Λℓ with
probability mass 1− ℓ

√
δ. So by Lemma 22 we have

Pr
r∼[n]I

[|h(r)− E
y∼r

[h(y)]| ≥ λ+ o(1)] = Pr
r∼[n]I

[|h(r)− E
y∼r

[h(y)]| ≥ λ+O(δℓµ log(m|Σ|)) · ℓ
√
δ]

(by Lemma 22) ≤ 2 exp

(
−Ω

(
λ2

c2ℓ

))
+ 2ℓ
√
δ

≤ exp

(
−Ω

(
λ2

µ log2(m|Σ|)md

))
+ exp(−mΩ(1)).

Replacing λ with λ′ := λ+ o(1) we get the claimed inequality.

4.3 Enforcing average Lipschitzness: proof of Lemma 13

In this section we show that exhaustively fixing input cells that violate average Lipschitzness even-
tually to random values eventually makes any bounded depth decision forest average-Lipschitz. In
[BIL12, Claim 3.10] it is shown for average-

√
n-Lipschitzness and above, we show it for the values

below
√
n. We need the following classical fact:

Lemma 28 (Expected stopping time, see e.g. [KK18]). Suppose {xi}i∈Z>0 is a sequence of random
variables. Define the stopping time to be t := min{t ∈ Z>0 | xi ≥ N}, and assume it is finite. Then
whenever E[xi − xi−1 | x<i, i ≤ t] ≥ ε, we have E[t] ≤ N/ε.

We first show a weaker version of the lemma, we will then see how to easily boost it to get
exponential success probability.

Lemma 29. Suppose f : [n]s → [n]m is an arbitrary depth-d decision forest. There exists a nd/(εµ)-
depth decision tree T querying symbols of [n]s such that for a random leaf ℓ of T , f |ℓ is average-µ-
Lipschitz with probability 1− ε.

Proof. We define the tree by describing a random walk from its root to a leaf. Let a1,a2, · · · ∈ [s] be
the random variables describing what input cells are fixed at each step of the walk and b1, b2, · · · ∈
[n] describe the values they are fixed to. All bi are independent and uniform over [n]. Let fa<i,b<i

denote the forest with the input cell aj is fixed to bj for all j < i. Then ai is defined as an element
of [n] ∖ {a1, . . . ,ai−1} such that the expectation of the number of queries to it by fa<i,b<i

is the
largest (breaking ties arbitrarily). If that value is less than µ the process stops, so in that case
t = i− 1.

Let pi be the expected number of queries made by fa≤i,b≤i
on a uniform random input u ∼

[n][s]∖{a1,...,ai}. We claim that E[pi−1 − pi | a<i, b<i] ≥ µ. Let qi,S be the expected number of
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queries to S ⊆ [s] made by fa≤i,b≤i
on a uniform random input, so pi = qi,[s]. Then

E[pi−1 − pi | a<i, b<i] = pi−1 − E[qi,[s]∖ai
+ qi,ai | a<i, b<i]

(ai is already assigned) = pi−1 − E[qi,[s]∖ai
| a<i, b<i]

= E[qi−1,[s]∖ai
− qi,[s]∖ai

+ qi−1,ai | a<i, b<i]

(expected number of queries decreases) ≥ E[qi−1,ai | a<i, b<i]

≥ µ.

Applying Lemma 28 to p0 − pi we get that E[t] ≤ p0/µ ≤ nd/µ. Hence, the expected depth of
a leaf of the tree is at most nd/µ. Let us then prune all branches of the tree at depth more than
nd/(εµ) and get observe that we cut just ε-fraction of the leaves by Markov’s inequality on t.

We are now ready to prove the stronger version.

Lemma 13. Suppose f : [n]s → [n]m is an arbitrary depth-d decision forest. There exists a 2nd/µ ·
log(1/ε)-depth decision tree T querying symbols of [n]s such that for a random leaf ℓ of T , f |ℓ is
average-µ-Lipschitz with probability 1− ε.

Proof. Applying Lemma 29 with ε = 1/2 we get that there exists a tree of depth 2nd/µ-depth deci-
sion tree T0 such that for its random leaf ℓ we have that f |ℓ is average-µ-Lipschitz with probability
1/2. We say that a leaf ℓ is successful if f |ℓ is average-µ-Lipschitz, otherwise it is failed. Let us
construct the tree T1 by taking T0 and for its every leaf ℓ such that f |ℓ is not average-µ-Lipschitz
hang a tree T ′ obtained by applying Lemma 29 to f |ℓ with ε = 1/2. Define T2, . . . , Tlog(1/ε) the
same way: Ti is obtained from Ti−1 by hanging trees given by Lemma 29 to all its failed leaves.

Then consider a random walk down Tlog(1/ε): with probability 1/2 it ends in a successful leaf of
T0, conditioned on it passing through a failed leaf of T0 with probability 1/2 it ends in a successful
leaf of T1. Hence with probability 1 − 2− log(1/ε) = 1 − ε the walk down Tlog(1/ε) terminates in a
successful leaf.

5 Containment Lemma

In this section we prove a lemma that formalizes the intuition that if the sampled distribution has
low entropy it must be very far from the target high-entropy distribution. While this is always true
in a weak sense (see Lemma 4), for Lipschitz functions the distance can be boosted to exponentially
close to 1.

Lemma 12. Suppose f : [n]s → [n]m is an average-n0.1-Lipschitz depth-d decision forest with m ≥
n0.99, d = logO(1) n, u ∼ [n]s, and H(f(u)) ≤ m log n/4. Then there exists a set F ⊆ [n]m of size
n3m/4 such that

Pr[f(u) ∈ F ] ≥ 1− exp(−nΩ(1)).

Our starting point is Lemma 4: since H(f(u)) ≥ m logn/4, the lemma implies that there exists
an event G ⊆ [n]m of size nm/2 such that Pr[f(u) ∈ G] ≥ 1/2. In other words, at least half of the
elements in [n]s are mapped to a set of outputs of size at most nm/2. Our goal is to enlarge this
preimage so that it covers almost the entire [n]s, while keeping the image size relatively small, as
shown in Figure 2. To proceed further, we will need the following lemma, which we will prove later:
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Lemma 30. Let T : ΣM → {0, 1} be a depth-k decision tree with µ := Prx∼ΣM [T (x) = 1]. Then,
there exists 2-dimensional distribution D with marginals uniform over ΣM and T−1(1) respectively
such that

E
(x,y)∼D

[dist(x,y)] ≤ O
(√

k log(1/µ)
)
.

The set f−1(G) can be recognized by a decision tree T ′ : [n]s → {0, 1} of depth nd: T (x) just
computes fi(x) one by one and then accepts iff the resulting vector (f1(x), . . . , fn(x)) is in G. Then
we are in a position to apply Lemma 30 with µ := 1/2: let (u,y) be coupled with u ∼ [n]s,
y ∼ f−1(G) and

r := O(
√
nd) ≥ E [dist(u,y)] ≥ E

[
min

y∈f−1(G)
dist(u, y)

]
= E[dist(u, f−1(G))], (3)

At this point we use Lipschitzness. First, we apply Lemma 6 to get that f is in fact (n0.2, δ)-
Lipschitz for δ = exp(−nΩ(1)). We now claim that we can use Lipschitzness to say that f(u) is
close to G in expectation.

Claim 31. E[dist(f(u), G)] = E[mino∈G dist(f(u), o)] ≤ O(n0.8).

Proof. Let E ⊆ [n]s be the set of inputs where (n0.2, δ)-Lipschitzness is violated, i.e. some input cell
i ∈ [s] is queried by more than n0.2 trees of f . We then have Pru∼[n]s [u ∈ E] ≤ sδ = exp(−nΩ(1)).
Consider any x ̸∈ E and y ∈ [n]s. Then on the input x the set of input cells {i ∈ [s] | xi ̸= yi} is
queried by at most n0.2 ·dist(x, y) trees in f . Let Dx ⊆ [m] be the set of these trees. The output of
the trees outside Dx does not change when we replace the input x with y: f[n]∖Dx

(x) = f[n]∖Dx
(y).

Consequently dist(f(x), f(y)) ≤ n0.2 · dist(x, y). Thus, we write

E [dist(f(u), G)] ≤ E
[
n0.2 · dist(u, f−1(G))

∣∣u ̸∈ E
]
+ s · Pr[u ∈ E] = O(n0.8).

Let µ = n0.1 be the average Lipschitzness parameter of f . Following the same strategy of
clustering coordinates as in Lemma 25, we get a partition I1, I2, . . . , Iℓ of [s] with property∑

i∈Ij

E[θj ] ≤ 2µ

for every j ∈ [ℓ] (θj here, as before, denotes number of trees querying j on input u), with ℓ ≤ 3md/µ.
Let f ′ : [n]I1 × [n]I2 × . . . × [n]Iℓ → [n]m be the clustered version of f . By construction, it is
average-2µ-Lipschitz, so we apply Lemma 6 (setting the input alphabet Λ := [n]maxi∈[ℓ] |Ii|) and
find that f ′ is (6µd2 log(1/δ), δ)-Lipschitz, i.e. (n0.2, δ)-Lipschitz for δ = exp(−nΩ(1)). We will
abuse the notation and write f ′(x) for x ∈ [n]s meaning f ′(xI1 , xI2 , . . . , xIℓ), and identify [n]s with
[n]I1 × [n]I2 × . . .× [n]Iℓ .

Let us define the function h : [n]I1 × [n]I2 × . . .× [n]Iℓ → R as follows:

h(x) := dist(f ′(x), G) = min
o∈G

dist(f ′(x), o).

Let S ⊆ [n]s be the set of inputs, such that every position of f ′ is queried at most n0.2 times.
By the definition of Lipschitzness, Pru∼[n]s [u ∈ S] ≥ 1 − sδ. Analogously to Claim 31, h has
n0.2-bounded differences over S, so we apply Lemma 22 and get

Pr
u∼[n]s

[
|h(u)− E

u∼[n]s
[h(u) | u ∈ S]| ≥ λ+ sδ · n0.2 · 2md

µ

]
≤

≤ 2sδ + 2 exp

(
−Ω

(
λ2

n0.4 ·md/µ

))
.
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So, substituting λ = n0.8 and noting that |E[h(u) | u ∈ S]− E [dist(f(u), G)]| ≤ sδm, we get
Pr

[
f(u), G) ≥ Cn0.8

]
≤ exp(−nΩ(1)) for a large enough constant C > 0.

Finally, we define F := NCn0.8(G), where Nr(P ) := {x | ∃y ∈ P dist(x, y) ≤ r}. We can upper
bound the size of F as |F | ≤ |G| ·

(
n

Cn0.8

)
· nCn0.8 ≤ n3m/4 and for such F , we have Pr[f(u) ∈ F ] ≥

1− exp(−nΩ(1)).

5.1 Proof of Lemma 30

Recall that the statistical (total variation) distance between two distributions ν1 and ν2 can be
defined through optimal couplings:

∆(ν1, ν2) = min

{
Pr

a,b∼C
[a ̸= b]

∣∣∣∣ C : distribution with marginals ν1, ν2

}
.

We say that C that achieves this minimum5 is the optimal coupling of ν1 and ν2.
The coupling D claimed by Lemma 30 is basically a composition of couplings C for each pair of

symbols in x and y: for each node of T querying i we enforce that the distributions of xi and yi

conditioned on both x and y passing through the node are optimally coupled, see Algorithm 1.

Wlog we assume that T is a full depth-k decision tree, and at any path, it does not query the
same input cell twice. Let x ∼ ΣM . We denote by path(r) the computation path of r in T . We
construct y ∈ T−1(1) using Algorithm 1.

Algorithm 1 The algorithm defining the coupling D.
1: y ← x.
2: v ← root of T .
3: while v is not a leaf do
4: Let i ∈ [M ] be the coordinate queried by v, and {wi}i∈Σ be its children.
5: Let D be the optimal coupling of xi and (zi | path(z) ∋ v) where z ∼ T−1(1).
6: Define (yi | path(y) ∋ v) such that (xi, (yi | path(y) ∋ v)) is distributed according to C.
7: v ← wyi .
8: end while

Let z ∼ T−1(1). By definition for every internal node v of T that queries i, the distributions
(yi | path(y) ∋ v) and (zi | path(z) ∋ v) coincide. Thus, the next branch taken from v on path(y)
has the same conditional distribution as for z; by backward induction over the depth, path(y)
is uniform over accepting paths. The coordinates not queried by T remain uniform (yj = xj),
therefore y is uniform over T−1(1).

Now it remains to bound dist(x,y). Let p = (p1, . . . ,pk) ∈ Σk encode a uniformly random
accepting root-to-leaf path in T , and for τ ∈ {0, 1}j let v(τ) denote the node in T that is reached
by going from the root according to τ . At a node v querying i let

δv := Pr[yi ̸= xi | path(x) ∋ v ∧ path(y) ∋ v] = ∆(xi, (yi | path(y) ∋ v)).

Then
E[dist(x,y)] ≤

∑
j∈[k]

E[δv(p≤j)].

5We work with variables over a finite support, so the minimum always exists.
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Pinsker’s inequality (see [CT06, Lemma 11.6.1]) applied to (yi | path(y) ∋ v) and the uniform
distribution u ∼ Σ (i.e. the distribution of xi) states

δ2v = ∆((yi | path(y) ∋ v),u)2 ≤ 2 ln 2(H(u)−H(yi | path(y) ∋ v)),

so log |Σ| − δ2v/2 ln 2 ≥ H(yi | path(y) ∋ v). The event “path(y) ∋ v” is equivalent to “p<j = α”,
and pj is determined by yi. Hence, we have

H(pj | p<j = α) ≤ log |Σ| − δ2v(α)/2 ln 2.

Taking the expectation over α, and summing over j, we obtain

k log |Σ| −
( ∑

j∈[k]

E[δ2v(p≤j)
]
)
/2 ln 2 ≥

∑
j∈[k]

H(pj | p<j) = H(p) = k log |Σ| − log(1/µ).

By Jensen’s and Cauchy–Schwarz’s inequalities we get,

2 ln 2 · log(1/µ) ≥
∑
j∈[k]

E[δ2v(p≤j)
] ≥

∑
j∈[k]

(
E[δv(p≤j)]

)2
≥ 1

k

( ∑
j∈[k]

E[δv(p≤j)]
)2

Therefore,

E[dist(x,y)] ≤
∑
j∈[k]

E[δv(p≤j)] ≤ O
(√

k log(1/µ)
)
.

6 Collision Lemma

In this section, we prove the general version of our collision lemma. We first prove the version
for the independent random variables (that directly generalizes Lemma 5) and then will derive
Lemma 16, which is a simple corollary of the independent variables case.

Lemma 32. Let z1, . . . ,zm be independent random variables supported over [n] ∪ {⊥}. Assume
that for every i we have H(zi) ≥ δ ·m log n and m ≥ n1−ε and δ = δ(n) ≥ max(2 log log n/ log n, 4ε).
Then

Pr[∃i ̸= j ∈ [m] : zi = zj ̸= ⊥] ≥ 1− exp(−Ω(δ4m3/n2)).

6.1 Proof of Lemma 32

Our goal is to show that with high probability there exists a collision among the zi’s. We visualize
the setting with a complete bipartite graph H = ([m], [n]∪ {⊥}, [m]× ([n]∪ {⊥})) in Figure 4, the
upper part nodes correspond to the variables z1, . . . ,zm, the lower part nodes correspond to their
values in [n] ∪ {⊥}, every edge (i, k) is labeled with the probability pik := Pr[zi = k].

Then every value z1, . . . , zm ∈ ([n] ∪ {⊥})m corresponds to a set of edges {(i, zi) | i ∈ [m]}
in H. We then have a collision iff there is a node k ∈ [n] with a degree at least 2 in the edges
{(i, zi) | i ∈ [m]}. We define the function f as a smoothed version of counting the number of nodes
in [m] of degree at least 2.

f(z1, . . . , zm) :=
∑
k∈[n]

max
(
0,
∣∣{i ∈ [m] | zi = k}

∣∣− 1
)
, (4)

Then by definition there is a collision if and only if the value of f is non-zero:

Pr[∃i ̸= j : zi = zj ̸= ⊥] = Pr[f(z1, . . . ,zm) ̸= 0],

25



thus it suffices to show that f(z1, . . . ,zm) is nonzero with high probability. The key feature of thus
defined f is that it satisfies the 2-bounded differences property over its entire domain: indeed if z
and z′ differ in a coordinate i ∈ [m] then the only summands in (4) that may change are k ∈ {zi, z′i},
each of those can change by at most by one. Therefore McDiarmid’s inequality applies:

Pr[f(z) = 0] ≤ Pr[f(z) ≤ E[f(z)]/2] = exp(−Ω(E[f(z)]2/m)).

Thus, the main technical part of the proof is to show that E[f(z)] = Ω(δ2m2/n).

Bounding the expectation. By the definition of f we have E[f(z)] ≥
∑

k∈[n] Pr[∃i ̸= j ∈
[m] : zi = zj = k]. For each k ∈ [n] the probability that there exist zi = zj = k can be computed
explicitly: indeed we have independent events “zi = k” and the probability we bound is that at
least two of these events occur. If all Pr[zi = k] are small enough, we can use the following simple
bound:

Claim 33. Suppose events E1, . . . , Eℓ are independent, each Ei occurs with probability qi ≤ α such
that q̄ :=

∑
i∈[ℓ] qℓ ≤ 1/8. Then

Pr
[∑
i∈[ℓ]

JEiK ≥ 2
]
≥ q̄2/4− 2αq̄.

Let p̄k :=
∑

i∈[n] p
i
k. If Claim 33 applied for every k ∈ [n] with a negligible α, we would get that

E[f(z)] is at least (1 − o(1)) ·
∑

k∈[n] p̄
2
k. Since

∑
k∈[n] p̄k ≈ m, we could apply Cauchy-Shwartz’s

inequality to get the desired bound. We face two technical problems: p̄k might be too large, and
pik (and thus α) may not be negligible. We fix both of those directly: remove too large pik and split
the node k in the graph H into several nodes so that the p̄-value for each of the nodes does not
exceed 1/8.

⊥

[n]

[n]m

k

Gk
zi zjz1 zm

n−δ/2 heavy supp of zi

pik

p
j
k

Figure 4: This picture illustrates the approach to prove that the probability of having collision value k is
significant, i.e. p := Pr[∃i ̸= j ∈ [m] : zi = zj = k] is bounded away from zero. The key technical step in the
proof is to remove “heavy” edges from the graph—the ones with pik > n−δ/2. Gk denotes the neighborhood
of k in H with all heavy edges removed.

In the first step we remove from H all edges with too large pik, the following claim implies that
we retain significant probability mass after this removal:

Claim 34. Let a be a random variable over [n] with H(a) ≥ c log n, where c = c(n) > 4/n. Then
with p : [n]→ [0, 1] being the probability function of a, we have

Pr[p(a) ≤ n−c/2] =
∑

p(i)≤n−c/2

p(i) ≥ c/8.
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Applying Claim 34 with a = zi, c = δ we get that
∑

(i,k)∈[m]×([n]∪{⊥}) p
i
k ≥ δm/8. Observe that

we can now remove the node ⊥ and still retain most of the probability mass:∑
i∈[m] : pi⊥≤n−δ/2

pi⊥ ≤ mn−δ/2 ≤ m/ log n ≤ δm/16.

The last two inequalities utilize δ ≥ 2 log logn/ logn. Thus, we get∑
(i,k)∈[m]×[n] : pik≤n−δ/2

pik ≥ Ω(δm).

Let G ⊆ [m] × [n] be the set of the light edges of H defined as G := {(i, k) | pik ≤ n−δ/2} and
for every k ∈ [n] let Gk := {i ∈ [m] | (i, k) ∈ G} and p̄k :=

∑
i∈Gk

pik. In order to force p̄k ≤ 1/8,

we split Gk into the smallest number of parts G1
k, . . . G

tk
k with the property

∀h ∈ [tk]
∑
i∈Gh

k

pik ≤ 1/8.

It is possible, since n−δ/2 ≤ 1/8, and we will get tk ≤ 16p̄k +1, so the total number of parts will be
O(n). Clearly,

E[f(z1, . . . ,zm)] ≥
∑
k∈[n]

∑
h∈[tk]

Pr[∃i ̸= j ∈ Gh
k : zi = zj = k].

Now we denote p̄kh =
∑

i∈Gh
k
pik and get by Claim 33 applied to the events “zi = k” for i ∈ Gh

k

that:
Pr[∃i ̸= j ∈ Gh

k : zi = zj = k] ≥ p̄2kh/4− 2n−δ/2p̄kh.

Finally, we obtain

E[f(z1, . . . ,zm)] ≥ 1

4

∑
k∈[n]

∑
h∈[tk]

p̄2kh − 2n−δ/2
∑
k∈[n]

∑
h∈[tk]

p̄kh

(by Cauchy–Schwarz’s inequality) ≥

∑
k∈[n]

∑
h∈[tk]

p̄kh

2

/O(n)− 2n−δ/2
∑
k∈[n]

∑
h∈[tk]

p̄kh

(using δ ≥ 4ε) ≥ 1

2

∑
k∈[n]

∑
h∈[tk]

p̄kh

2

/O(n) ≥ Ω(δ2m2/n).

6.1.1 Proof of Claim 33

Let p := Pr[
∑

i∈[ℓ]JEiK ≥ 2]. The event “
∑

i∈[ℓ]JEiK ≥ 2” does not occur iff none of Ei occur, or
exactly one of them occurs. Thus

p = 1−
∏
i∈[ℓ]

(1− qi)−
∑
i∈[ℓ]

qi/(1− qi) ·
∏
i∈[ℓ]

(1− qi).

We then rewrite using qi ≤ α: 1 − p ≤
∏

i∈[ℓ](1 − qi) · (1 + q̄/(1 − α)). Since the geometric mean
does not exceed the arithmetic mean, we have

∏
i∈[ℓ](1 − qi) ≤ (

∑
i∈[ℓ](1 − qi)/ℓ)

ℓ = (1 − q̄/ℓ)ℓ.
Moreover, since α ≤ q̄ < 1/2 we have 1/(1− α) ≤ 1 + 2α. Then

1− p ≤ (1− q̄/ℓ)ℓ(1 + q̄(1 + 2α)).

Now we use a simple analytical fact to bound the first multiplier:
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Fact 4. For x ∈ (0, 1) and n ≥ 2 the inequality (1− x)n ≤ 1− nx+ (nx)2/2 holds.

Proof. By Taylor’s theorem [Rud76, Theorem 5.15] for (1− x)n at x0 = 0 we get that there exists
ξ ∈ (0, x) such that (1− x)n = 1− nx+ n(n− 1)/2 · (1− ξ)n−2x2 ≤ 1− nx+ (nx)2/2.

Then by Fact 4 we conclude:

1− p ≤ (1− q̄ + q̄2/2)(1 + q̄(1 + 2α))

= 1− q̄2/2 + 2αq̄ + q̄3α+ q̄3/2− 2αq̄2

(since q̄ ≤ 1/8) ≤ 1− q̄2/4 + 2αq̄.

6.1.2 Proof of Claim 34∑
p(i)>n−c/2

−p(i) log p(i) ≤
∑

p(i)>n−c/2

c

2
· log n · p(i) ≤ c log n/2,

Function x 7→ −x log x is ascending at [0, 1/e], so∑
p(i)<n−2

−p(i) log p(i) ≤ n · n−2 · log n = log n/n ≤ c log n/4.

Combining the above inequalities with H(a) ≥ c logn, we get∑
n−2≤p(i)≤n−c/2

p(i) ≥
∑

n−2≤p(i)≤n−c/2

−p(i) log p(i)

2 logn
≥ c logn/4

2 logn
= c/8

6.2 Depth-1 decision forests

In this section we prove a natural corollary of Lemma 32: virtually the same bound holds for
functions that are computable with depth-1 decision forests.

Lemma 16. Let u ∼ [n]s and f : [n]s → ([n] ∪ {⊥})m be a depth-1 decision forest. Suppose that
H(f(u)) ≥ δ ·m log n, and (δ2/4)m ≥ n1−ε for δ = δ(n) ≥ max(4 log logn/ logn, 8ε). Then

Pr[∃i ̸= j ∈ [m] : fi(u) = fj(u) ̸= ⊥] ≥ 1− exp(−Ω(δ4m3/n2)).

Proof. In order to apply Lemma 32 we need to choose a subset I ⊆ [m] such that the output cells in
I are independent and the entropy rate is not reduced too severely. All trees in f can be partitioned
into subsets J1⊔· · ·⊔Jℓ = [m] where in each Ji the trees query the same input cell, which is different
for different sets. Observe that H(fJi(u)) ≤ log n. Thus, we have that ℓ ≥ H(f(u))/ log n ≥ δm.

We first form I ′ by taking a representative ji ∈ Ji that maximizes H(fji(u)) for each i ∈ [ℓ].
We use the following simple fact

Fact 5. For a1, . . . , an, b1, . . . , bn ∈ R≥0 we have
∑

i∈[n](ai/bi) ≥ (
∑

i∈[n] ai)
2/(

∑
i∈[n] aibi).

Proof. We first rewrite ∑
i∈[n]

ai
bi

=
( ∑

i∈[n]

ai

)
·
∑
i∈[n]

ai∑
i∈[n] ai

· 1
bi
.

Then applying Jensen inequality for the function 1/x we get that the right multiplier is at least
(
∑

i∈[n] ai)/(
∑

i∈[n] aibi), which concludes the proof.
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Then we get

H(fI′(u)) =
∑
i∈[ℓ]

H(fji(u)) ≥
∑
i∈[ℓ]

H(fJi(u))

|Ji|
Fact 5
≥

(H(f(u)))2∑
i∈[ℓ] |Ji|H(fJi(u))

≥ (δm logn)2

log n ·m
= δ2m logn ≥ δℓ log n.

Now we pick I ⊆ I ′ of i ∈ I ′ such that fi(u) ≥ δ log n/2. Then δℓ log n ≤ H(fI′(u)) ≤ |I| logn +
(ℓ−|I|)δ logn/2, so |I| ≥ δℓ(1−δ/2)/2 ≥ δℓ/4. Then we apply Lemma 32 to fI , so m′ = (δ2/4) ·m,
and H(fi(u)) ≥ (δ/2) log n, so we need δ/2 ≥ max(2 log logn/ logn, 4ε), which is what we have by
the assumption.

6.3 Simplified collision lemmas

In this section, we derive Lemmas 5 and 10.

Lemma 5. Let z1, . . . ,zm be independent random variables over [n] such that H(z1, . . . ,zm) ≥
(m logn)/8 for m ≥ n0.99. Then Pr[∃i ̸= j ∈ [m] : zi = zj ] ≥ 1− o(1).

Proof. We apply Lemma 16 with δ = 1/8, and ε = 1/64. It is easy to check that (δ2/4)m ≥ n1−ε

for large enough n since (δ2/4)m = n0.99/256 and n1−ε = n1−1/64 = o(n0.99).

Lemma 10. Let u ∼ [n]s and f : [n]s → [n]n be a depth-1 decision forest. Suppose that H(f(u)) ≥
4(n log log n). Then Pr[∃i ̸= j ∈ [n] : fi(u) = fj(u)] ≥ 1− exp(−Ω(n/poly(log n))).

Proof. We apply Lemma 16 with δ = 4 log log n/ logn, ε = log log n/(16 logn), and m = n
Then (δ2/4)m = 4n(log logn)2/ log2 n, and n1−ε = n · exp(− log n · log logn/(16 log n)) = n ·
exp(− log log n/16) = n · log−1/16 n. Thus, the conditions of Lemma 16 are satisfied.

7 Open questions

Quantitative improvements. Our lower bounds can potentially be quantitatively improved in
many ways:

♦ Can the adaptive cell-probe bound be improved to, say Ω(logn/ log logn)?
♦ Can the distance bound be improved to 1− exp(−n1−o(1))?
♦ What is the right bound for the number of nonadaptive probes in Theorem 2?

Our lower bound actually works for sampling m = n1−ε distinct elements that can be sampled with
O(logn) adaptive bit-probes [Czu15]. Can one show a better upper bound for cell-probes in that
case, say O(logn/ log logn)?

Can any of the lower bounds be improved if s is bounded? That would be sufficient for improving
the data structure lower bounds in Corollary 3.

Other distributions. What symmetric distributions in {0, 1}n are samplable in O(1) nonadap-
tive cell-probes to [n]N? [KOW25] show that essentially the only nontrivial distribution that can be
sampled with nonadaptive bit-probes is uniform over odd Hamming weight vectors. For the large
input alphabet, this does not hold. For example, one can sample the uniform distribution over

([n]
k

)
with k nonadaptive cell-probes (as well as any distribution uniform over a set of size nk). On the
other hand, it is hard even with o(log(n/k)/ log log(n/k)) adaptive bit probes [FLRS23].
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We conjecture that the uniform distribution over
( [n]
n/2

)
requires ω(1) adaptive cell-probes to

sample. Showing this even in the nonadaptive case for a fixed constant number of nonadaptive
probes is open.

An intermediate challenge is to show that permutation matrices are hard to sample with adaptive
cell-probes. The target distribution is M ∈ {0, 1}n×n and M is uniform over matrices with exactly
one 1-entry in every row and column. An efficient cell-probe sampler for M is not directly ruled out
by our theorems even for the nonadaptive case, but we think that the technique should translate
for that case as well.
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