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Abstract

We characterize the symmetric distributions that can be (approximately) generated by shal-
low Boolean circuits. More precisely, let f : {0, 1}m → {0, 1}n be a Boolean function where each
output bit depends on at most d input bits. Suppose the output distribution of f evaluated on
uniformly random input bits is close in total variation distance to a symmetric distribution D
over {0, 1}n. Then D must be close to a mixture of the uniform distribution over n-bit strings of
even Hamming weight, the uniform distribution over n-bit strings of odd Hamming weight, and
γ-biased product distributions for γ an integer multiple of 2−d. Moreover, the mixing weights
are determined by low-degree, sparse F2-polynomials. This extends the previous classification
for generating symmetric distributions that are also uniform over their support.
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1 Introduction

One of the most celebrated results in complexity theory is H̊astad’s proof [H̊as86] that AC0 circuits1

require an exponential number of gates to compute the parity function. Surprisingly, the weaker
circuit class NC0 suffices to perform a very similar task. In particular, mapping uniformly random
bits (x1, x2, . . . , xn) to (x1⊕x2, x2⊕x3, . . . , xn−1⊕xn, xn⊕x1) produces the uniform distribution over
n-bit strings of even parity, or equivalently, over input-output pairs (x,PARITY(x)) [Bab87, BL87].
This observation begs the question: what computational resources are required to (approximately)
generate specific distributions, as opposed to the traditional task of computing specific functions?

A fundamental question in its own right, the complexity of sampling from distributions also has
numerous applications. For example, results on the hardness of sampling can be translated to data
structure lower bounds [Vio12b, LV11, BIL12, Vio20, CGZ22, Vio23, YZ24, KOW24, AGM+25],
provide input-independent quantum-classical separations [WP23, Vio23, KOW24, GKM+25], and
are key components to the construction of explicit codes [SS24]. Moreover, techniques and intuition
developed in this setting have successfully been applied to pseudorandom generators [Vio12b, LV11,
BIL12] and extractors [Vio12c, DW12, Vio14, CZ16, CS16].

While the general problem was considered in early work (see, e.g., [JVV86]), a focus on
generating distributions via shallow circuits was advocated for more recently by Viola [Vio12b].
Since then, the field has seen a number of exciting developments (see, e.g., the recent works
[FLRS23, Vio23, KOW24, SS24, KOW25, AGM+25] and references therein). One notable takeaway
from prior works is that NC0 circuits can sample very few uniform symmetric distributions (i.e.,
uniform distributions over a symmetric support), even allowing for small errors. In particular, the
line of work [Vio12b, FLRS23, Vio23, KOW24, KOW25] recently culminated in the following clas-
sification result, which confirmed a conjecture of Filmus, Leigh, Riazanov, and Sokolov [FLRS23].
For a function f : {0, 1}m → {0, 1}n, let f(Um) be the distribution resulting from applying f to
x ∼ Um, the uniform distribution over {0, 1}m.

Theorem 1.1 ([KOW25]). Let ε ∈ [0, 1] be arbitrary. Assume f : {0, 1}m → {0, 1}n is computable
by an NC0 circuit of constant depth and f(Um) is ε-close in total variation distance to a uni-
form symmetric distribution where n is sufficiently large. Then f(Um) is O(ε)-close to one of the
following six special uniform symmetric distributions:

• Point distribution on 0n,

• Point distribution on 1n,

• Uniform distribution over {0n, 1n},
• Uniform distribution over n-bit strings with even Hamming weights,

• Uniform distribution over n-bit strings with odd Hamming weights,

• Uniform distribution over all n-bit strings.

We emphasize that Theorem 1.1 works with uniform symmetric distributions, which does not
capture, for example, the (1/4)-biased product distribution that is symmetric and easily sampleable
by NC0 circuits.

1Recall that these are (families of) Boolean circuits of constant depth and unbounded fan-in gates. They may be
contrasted with NC0 circuits, which are also of constant depth, but have bounded fan-in gates.
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1.1 Our Result

In this paper, we extend Theorem 1.1 to handle arbitrary symmetric distributions. Let the locality
of a Boolean function be the largest number of input bits that any output bit depends on. Note
that NC0 is precisely the class of sequences of functions with bounded locality.

Theorem 1.2 (Informal version of Theorem 4.1). Let d ≥ 0 be an integer. For any ε ∈ (0, 1], there
exists some δ such that δ → 0 as ε → 0 and the following holds.

Suppose f : {0, 1}m → {0, 1}n is a d-local function and f(Um) is ε-close in total variation
distance to a symmetric distribution where n is sufficiently large in terms of d and ε. Then f(Um)
is δ-close to some mixture of

1. The uniform distribution over n-bit strings of even Hamming weight,

2. The uniform distribution over n-bit strings of odd Hamming weight, and

3. γ-biased product distributions on n bits for γ an integer multiple of 2−d.

Moreover, the mixing weights are determined by degree-Od(1) F2-polynomials with Od(n) monomi-
als.

The “moreover” conclusion implies this mixture can be exactly produced by Od(1)-local func-
tions (see Remark 4.2).

Learning Structured Distributions. The reconstruction of an unknown probability density
function based on observed data is a fundamental problem in both statistics and computer science.
The typical setting is the PAC-learning model [Val84, BEHW89, KMR+94]: given access to in-
dependent samples of an unknown distribution D, the goal is to output a hypothesis distribution
D′ close to D. Much research has been carried out for Gaussian mixtures [DK14], log-concave
distributions [DR09], monotone distributions [Bir87], sums of independent integer random vari-
ables [DDO+13], junta distributions [ABR16], mixtures of structured distributions [Lin95], and
more. The interested reader may wish to consult the survey [Dia16] by Diakonikolas for additional
background and references.

A black-box use of Theorem 1.2 in this setting is to learn symmetric distributions that are locally
sampleable. Let D be a symmetric distribution over {0, 1}n. Assume D is produced by a d-local
function, i.e., D = f(Um) for some d-local function f : {0, 1}m → {0, 1}n. Then for any ε > 0 with
n sufficiently large in terms of d and ε, Theorem 1.2 and the standard cover method [Yat85] (see
also [Dia16, Theorem 1.5.1]) imply that we can efficiently learn D up to ε-error in total variation
distance with Od(1/ε

2) samples with high probability. We believe this should hold for all ε > 0.
Indeed, in Subsection 1.2 we propose Conjecture 1.4 for an exact classification of locally sampleable
symmetric distributions, which, if true, would imply the desired learning theoretic result.

1.2 Open Problems

Recall that Theorem 1.2 does not work for the case of ε = 0, i.e., exact sampling. Indeed, we
cannot conclude mixtures of the form given by Theorem 1.2 are the only distributions that can be
exactly sampled by NC0 circuits. We identify the following example, which illustrates that this is
not simply a weakness in our analysis, but rather there are other symmetric distributions that can
be sampled exactly.

4



Example 1.3. Let Un
1/4 be the (1/4)-biased product distribution over {0, 1}n. Additionally, let

evens and odds denote the uniform distribution over n-bit strings of even Hamming weight and
odd Hamming weight, respectively. The distribution2

P = Un
1/4 + 2−n−1evens− 2−n−1odds

is not of the form given by Theorem 1.2, yet it can be sampled exactly by a bitwise AND of
evens and the uniform distribution over {0, 1}n, which is 3-local. The full details can be found in
Appendix A.

Additionally, we suspect that, similarly to the uniform symmetric case [KOW25], one can take
the upper bound in Theorem 1.2 to be linear in ∥f(Um)−D∥TV without any dependency on d.
Combining with the previous discussion, we conjecture the following strengthening of Theorem 1.2
holds. Observe that Conjecture 1.4 captures Example 1.3.

Conjecture 1.4. For every d ∈ N, ε ∈ (0, 1), and n large enough in terms of d, if f : {0, 1}m →
{0, 1}n is a d-local function and f(Um) is ε-close in total variation distance to a symmetric distri-
bution, then f(Um) is O(ε)-close to some mixture

M =
∑
i

αi · gi(D(i)
1 , . . . ,D(i)

d ),

where each gi is a bitwise function and each D(i)
j is either the uniform distribution over n-bit strings

of even Hamming weight or over n-bit strings of odd Hamming weight. Moreover, the mixing weights
are determined by degree-Od(1) F2-polynomials with Od(n) monomials, as in Theorem 4.1.

Note the bitwise condition on the above gi’s guarantees the output distribution is symmetric.

Paper Organization. We provide an overview of the proof of Theorem 1.2 in Section 2, as well
as a brief comparison of our techniques to those of prior literature. Background material and useful
results are collected in Section 3. The bulk of our work is in Section 4, where we state and prove
Theorem 4.1, the full version of Theorem 1.2. The appendices contain a number of deferred proofs.

2 Proof Overview

In this section, we sketch the proof of Theorem 1.2 before discussing how the details compare to
prior work.

2.1 Proof Overview of Theorem 1.2

We begin with a useful observation from [KOW25]: the total variation distance between the dis-
tribution f(Um) and any symmetric distribution P over {0, 1}n is, up to constant factors, equal
to the distance between the corresponding Hamming weight distributions of f(Um) and P plus
the distance between f(Um) and its symmetrization (i.e., the distribution resulting from randomly
permuting the coordinates of a string x ∼ f(Um)). Expressed symbolically, we have

∥f(Um)− P∥TV = Θ(∥|f(Um)| − |P|∥TV + ∥f(Um)− f(Um)sym∥TV). (1)

2More formally, P is the distribution that assigns x probability Un
1/4(x) + 2−n−1evens(x)− 2−n−1odds(x).
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The proof is straightforward, and it essentially follows from several applications of the triangle
inequality which show that the two ways f(Um) can be far from P are a weight mismatch or f(Um)
being far from symmetric, itself (see Lemma 3.4).

By assumption, we know f(Um) is ε-close to a symmetric distribution D. Thus, (1) implies
∥f(Um)− f(Um)sym∥TV = O(ε). Hence, it suffices to prove a weaker version of Theorem 1.2 that
only compares the weight distributions (Lemma 4.26). More precisely, we want to show that for
some δ tending to 0 with ε, the Hamming weight distribution of f(Um), denoted |f(Um)|, is δ-close
to a mixture M of

1. The binomial distribution Bin(n, γ) with n trials and success probability γ for γ an integer
multiple of 2−d,

2. The binomial distribution Bin(n, 1/2) conditioned on the outcome being even, and

3. The binomial distribution Bin(n, 1/2) conditioned on the outcome being odd.

Moreover, we want the mixing weights to be determined by low-degree F2-polynomials with few
monomials. (It will later become clear what “determined” means in this context.) We first prove
a weaker version of this result that does not include mixing weight information (Lemma 4.24).
Afterwards, we will discuss how to obtain the desired control over the weights. Before proceeding
to the details, we first give a brief, high-level overview of the four main steps of the proof and how
they fit together.

In the first step, we show that any fixing of the values of input bits which affect many output
bits results in the bias of the output weight distribution of f(Um) concentrating around a fixed
dyadic rational3 γ multiple of n. This allows us to represent the weight distribution |f(Um)| as
a mixture of distributions produced by the restricted functions. We then argue in step two that
after grouping the parts of the mixture which concentrate around the same γ, each group assigns
roughly the same amount of mass to any contiguous interval as the binomial distribution with
success probability γ. The third step is to prove a continuity result for each grouped part of the
mixture; namely, that the mass assigned to some weight w and to w +∆ for a small integer ∆ are
roughly equal. (There is a slight subtlety here in the case of γ = 1/2, but we will defer its discussion
to later in the proof overview.) This allows us to conclude in the fourth and final step that most
output weights are assigned comparable mass by the part of the mixture of |f(Um)| concentrated
around γ and the corresponding binomial distribution. In particular, our weight distribution is
close in total variation distance to a mixture of binomial distributions, which is what we wanted to
show.

Step 1: Removing Large Influences. In an extremely ideal setting, we might wish that all of
f ’s output bits are roughly independent with bias around γ = a/2d for some integer 0 ≤ a ≤ 2d;
in this case the output weight would resemble the binomial distribution Bin(n, γ). Of course, this
is far too much to assume. In actuality, it may be that one specific input bit affects the value of
every output bit, so none of them are independent.

To progress toward this dream scenario, we follow in the footsteps of many prior works (e.g.,
[Vio12b, LV11, BIL12, Vio20, Vio23, FLRS23, KOW24, KOW25, GKM+25]) by strategically con-
ditioning on certain input bits to express the distribution as a mixture of more structured sub-
distributions. In particular, we will condition on all “high degree” input bits that affect more than
n/A output bits for some A to be chosen later. The goal is now to argue that the function resulting
from each conditioning produces a distribution which is roughly of the form we originally sought.
Note that this will not depend on the actual values that the input bits are set to in the conditioning.

3Recall a dyadic rational is a number that can be expressed as a fraction whose denominator is a power of two.
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We start with a result from [KOW24]: let Dq be the uniform distribution over n-bit strings of
Hamming weight q. If q/n is far from every integer multiple of 2−d, then any d-local function must
produce a distribution far (in total variation distance) from Dq. This essentially follows from the
fact that the input bits determining any fixed output bit can only be set in 2d equally likely ways.
Observe that symmetric distributions are simply mixtures of Dq for different q’s. Thus we can show
(Lemma 4.8) that if f(Um) is close to a symmetric distribution D, then for a typical x ∼ Um, the
normalized output weight |f(x)|/n has distance at most n−1/(800d) from an integer multiple of 2−d.
Note that the closest multiple may be different for different inputs; however, after each conditioning
ρ ∈ {0, 1}S on the set of high degree input bits S ⊆ [m] := {1, 2, . . . ,m}, we can strengthen this
result (Lemma 4.9) to say that for a typical x ∼ U [m]\S , the normalized output weight |f(x, ρ)|/n
is close to the same integer multiple of 2−d. Here, we will only need “high degree” to correspond
to affecting more than n/Od(1) many output bits (i.e., can take A = Od(1)), although later we will
obtain other constraints on how we must set A. Henceforth, we will shorthand f(x, ρ) by fρ(x) for
clarity.

At a high level, the proof uses the second-moment method. By conditioning on the high
degree input bits, we ensure that the variance of the resulting distribution is small, and thus we
have concentration around a particular weight. Moreover, this weight must be close to an integer
multiple of n/2d, or else our previous insights imply f(Um) cannot be close to D. To be slightly
more precise, a direct second-moment argument by itself is insufficient to rule out the case that
some non-negligible fraction of the time the output weight is close to some other multiple of n/2d.
However, one can show (Claim 4.14) that if this occurs, fρ(U [m]\S) would also have to assign decent
probability mass to weights between these integer multiples, which would again imply f(Um) cannot
be close to D.

Finally, we combine these deductions to prove that for each conditioning ρ ∈ {0, 1}S of the
bits in S, there exists a set T := Tρ ⊆ [n] of size |T | ≤ Od,k(1) such that every k-tuple of output
bits in [n] \ T has marginal distribution Uk

γρ , the γρ-biased product distribution over {0, 1}k, for γρ
an integer multiple of 2−d (see Proposition 4.5). Here, k is some parameter at most Od(log(1/ε)).
The proof operates by constructing a degree-k multilinear polynomial Pi : {0, 1}n → {0, 1} for each
k-tuple with the “wrong” distribution, where the expectation of Pi over fρ(U [m]\S) is larger than
over the γ-biased product distribution Un

γ by at least an additive 2−kd term. Note this follows

from using our locality bound to view Pi(fρ(U [m]\S)) as a polynomial of degree kd in the input
bits. Summing the polynomials together into P =

∑
i Pi magnifies the difference in expectations,

and if the number of terms (i.e., number of bad k-tuples) is too large, we end up contradicting the
assumption that f(Um) is close to a symmetric distribution.

Step 2: Kolmogorov Distance. We now group the restricted functions according to their
biases, defining Fγ(U [m]\S) = Eρ:γρ=γ [fρ(U [m]\S)] for each γ. In this second step, we aim to show
that every contiguous interval of output weights is assigned roughly the same amount of mass by
|Fγ(U [m]\S)| and Bin(n, γ). Since this difference in probability mass is convex over mixtures, it
suffices to consider the individual distributions |fρ(U [m]\S)|. Moreover, it is enough to provide a
bound on the Kolmogorov distance

max
t

∣∣∣∣Pr
[
|fρ(U [m]\S)| ≥ t

]
−Pr [Bin(n, γ) ≥ t]

∣∣∣∣.
In a sentence, the bound follows from combining the k-wise independence of most output co-

ordinates with the fact that T is too small to have much of an effect. In the case of γ = 1/2 and
|T | = 0, Diakonikolas, Gopalan, Jaiswal, Servedio, and Viola [DGJ+10] gave an upper bound of

7



roughly 1/
√
k using techniques from approximation theory. (In fact, their result holds for arbitrary

threshold functions.) This was generalized by Gopalan, O’Donnell, Wu, and Zuckerman [GOWZ10]
to include the case of arbitrary γ ∈ (0, 1). In our case, |T | will likely not be 0, but it is small enough
that a similar result (Proposition 4.16) still holds. In the edge cases of γ ∈ {0, 1}, we can no longer
use [DGJ+10, GOWZ10], nor would the size of T be negligible even if we could, but these special
cases can be addressed later via simple arguments (see, e.g., the proof of Lemma 4.23).

For reasons that will become apparent in the subsequent step, we will also need a comparable
bound in the case of γ = 1/2, even accounting for the parity of the output weight. That is, we wish
to show

Pr
[
|fρ(U [m]\S)| ≥ t and |fρ(U [m]\S)| is even

]
≈ Pr [Bin(n, 1/2) ≥ t] ·Pr

[
|fρ(U [m]\S)| is even

]
.

Our analysis here is similar to the previous case, but we now crucially rely on [CHH+20, Theorem
3.1]. In our context, it implies that there is a small set of input bits R ⊆ [m] \ S such that re-
randomizing over R typically re-randomizes the parity of fρ’s output weight. Moreover, since R is
small and we have already conditioned on input bits of large degree, the vast majority of output
bits are unaffected by R. Thus, we can compare Pr

[
|fρ(U [m]\S)| ≥ t

]
to Pr [Bin(n, 1/2) ≥ t] using

these unaffected output bits as a proxy for the entirety of the output bits. We briefly note that for
the error bounds on the “parity Kolmogorov distance” to be meaningful given our choice of k, we
need to take our degree threshold A to be Od,ε(1) – larger than is necessary for Step 1.

Step 3: Approximate Continuity. Our third step is to argue that for each bias γ, the distri-
bution Fγ(Um) can be expressed as a mixture λ ·Eγ +(1−λ) ·Wγ , where λ is small and Wγ assigns
similar probability mass to similar weights. Once again, it suffices to analyze the distributions
produced by the individual restricted functions fρ(U [m]\S). Here, we show that fρ(U [m]\S) can be
written as a mixture of distributions E and W , where E is extremely far from every symmetric
distribution supported on strings of Hamming weight γn± n2/3, and the weight distribution of W
satisfies a certain continuity property (see Proposition 4.21). More specifically, for positive integers
w and ∆, the probability that W ’s output weight is w differs by no more than Od (∆/n) from the
probability that W ’s output weight is w+∆. Since f(Um) is close to D, one can show that Fγ(Um)
is close to D conditioned on the output weight being γn ± n2/3 (see Claim 4.25). Thus, proving
the above result for fρ(U [m]\S) implies minimal mass will typically be assigned to the E part of the
mixtures, and so λ (in the mixture defining Fγ(Um)) will be small, as desired.

In our analysis, we will require a structural result about hypergraphs from [KOW24]. Observe
that we can associate any function g : {0, 1}m → {0, 1}n to a hypergraph on the vertex set [n]
with an edge for each input bit b containing all of the output bits that depend on b. In the case
that g is d-local, this hypergraph has maximum degree at most d. We follow standard hypergraph
terminology in defining the neighborhood of a vertex v to be the set of vertices sharing an edge
with v. We additionally call two neighborhoods N1, N2 connected if there exist two adjacent (i.e.,
contained in the same edge) vertices v1 ∈ N1, v2 ∈ N2.

By [KOW24, Corollary 4.11], we can find a collection of r = Ωd(n) non-connected neighborhoods
in H of size Od(1) by only removing Od(n) (with a small implicit constant) edges. Translating the
result to fρ, we find that there exists a not-too-large set B ⊆ [m] \ S of input bits such that any
conditioning σ ∈ {0, 1}B yields a sub-function fρ,σ : {0, 1}[m]\(S∪B) → {0, 1}n with many small,
pairwise independent collections of output bits. We will define E and W according to the behavior
of these neighborhoods, similarly to the arguments in [KOW24, KOW25, GKM+25].

Suppose for at least r/2 of the r non-connected neighborhoods N1, . . . , Nr, we have that
fρ,σ(U [m]\(S∪A)) restricted to the neighborhood Ni has a marginal distribution which differs from
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the γ-biased product distribution over Ni, denoted UNi
γ . Since UNi

γ is pointwise close to the uniform
distribution over strings of Hamming weight around γn, the marginal distributions of these neigh-
borhoods (in fρ,σ) must also differ from the marginal distributions of the symmetric distribution
D. We can then accumulate these errors via concentration bounds to show that fρ,σ(U [m]\(S∪B)) is
far from D (see Lemma 3.2).

We now set E to be the mixture over all conditions of the bits in B where most resulting
neighborhoods differ from the corresponding γ-biased product distribution, and set W to be the
mixture over the remaining conditionings. Since each sub-distribution in the mixture E is far from
D by the previous paragraph, a union bound argument implies E, itself, must also be far from D
(see Lemma 3.3). It remains to show the continuity property for W .

Suppose the r non-connected neighborhoods are generated by v1, v2, . . . , vr ∈ [n] in the sense
that all bits in the i-th neighborhood Ni are either vi or in an edge that also contains vi. We further
condition on all input bits that do not affect any of v1, . . . , vr, so that the value of every output
bit outside of N1 ∪ · · · ∪ Nr is fixed. In this way, the output weight of fρ,σ(U [m]\(S∪B)) becomes
a fixed integer (corresponding to the fixed bits outside of the neighborhoods) plus the sum of the
neighborhoods’ output weights. Since we are in the case where most neighborhoods are extremely
structured, we can show that for each 2 ≤ ℓ ≤ t, the output weight distribution modulo ℓ of Ni is
not constant for a constant fraction of the Ni’s with high probability (see Claim 4.22). Finally, we
can obtain our desired continuity result through known density comparison theorems for sums of
independent, non-constant integer random variables, such as [KOW25, Theorem A.1], which relies
on classical anticoncentration tools.

There is one important exception to the above analysis: the case of ℓ = 2 and γ = 1/2. Here, we
are not guaranteed to typically get many non-connected neighborhoods with variable output weight
modulo 2 (even if most of them have the “correct” marginal distribution). To better understand
where our reasoning breaks down, consider one of the most surprising examples in this area of work.
Define h : {0, 1}n → {0, 1}n to be

h(x1, . . . , xn) = (x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn ⊕ x1),

so that h(Un) is the uniform distribution over n-bit strings of even Hamming weight. Observe that
h is extremely simple, only requiring two bits of locality. Additionally, the marginal distribution
onto any k ≤ n− 1 coordinates is exactly the product distribution Uk

1/2.

Let us focus on a particular output bit yi = xi ⊕ xi+1. (For simplicity, assume i is not too close
to 1 or n.) Its neighborhood is yi−1 = xi−1⊕xi, yi, and yi+1 = xi+1⊕xi+2, so its Hamming weight
modulo 2 is

(xi−1 ⊕ xi)⊕ (xi ⊕ xi+1)⊕ (xi+1 ⊕ xi+2) = xi−1 ⊕ xi+2.

If we follow our earlier analysis and fix the value of the input bits that do not affect yi (i.e., xi−1

and xi+2), the neighborhood’s Hamming weight modulo two is fixed, regardless of the values of xi
and xi+1.

At a high level, the reason for this exceptional case is that it is the only setting of ℓ and γ
for which the binomial distribution Bin(t, γ) mod ℓ can equal Bin(t − 1, γ) mod ℓ. In other words,
the weight distribution modulo ℓ of Uk

γ conditioned on the first bit being 0 is different than that
distribution conditioned on the first bit being 1, unless ℓ = 2 and γ = 1/2. This difference means
that in the case of ℓ = 2 and γ = 1/2, we can only derive a continuity result for weights that are
an even distance apart. Hence, we must be cognizant of the output weight’s parity throughout
much of our analysis, which explains the required parity version of our Kolmogorov distance result
mentioned earlier in the proof overview.
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Step 4: Putting It Together. At this point, all that remains is to combine the pieces. Recall we
have already conditioned on high degree (i.e., larger than n/Od,ε(1)) input bits to find sub-functions
{fρ}ρ, each producing a distribution with some approximate bias γρ. Additionally, the mixtures

Fγ(U [m]\S) obtained by grouping the sub-functions around their biases each satisfy a Kolmogorov
distance bound and approximate continuity.

We partition {0, 1, . . . , n} into consecutive intervals of length c
√
n for some small c > 0, and

restrict our attention to the O(log(1/α)) of them that contain all but O(α) of the mass. By our
Kolmogorov distance result (Lemma 4.15), we have that |Fγ(U [m]\S)| and the binomial distribution
Bin(n, γ) assign similar mass to each of these intervals. Moreover, our continuity result (Proposi-
tion 4.21) implies the mass in a fixed interval is almost uniformly distributed. Thus for most weights
w, |Fγ(U [m]\S)| assigns roughly the same mass to w as Bin(n, γ) does. Summing over all weights
provides an upper bound on the total variation distance between the two weight distributions. We
remark that there is a slight complication in the case of γ = 1/2, as there Proposition 4.21 only lets
us compare weights that are an even distance apart. However, by further subdividing each interval
we consider into its even and odd parts, we are able to carry out a similar argument as before.

Finally, we recall that f(Um) is a mixture of the distributions Fγ(U [m]\S). Since the weight
distribution of each Fγ(U [m]\S) is close to the weight distribution corresponding to one from The-
orem 1.2, their mixture |f(Um)| naturally is close to a mixture of those weight distributions (see
Lemma 4.24). We conclude by recalling that (1) implies it was sufficient to classify the output
weight distribution.

Mixing Weights. The above argument shows that f(Um) is close to a mixture M of the form
specified in Theorem 1.2, but without the additional control on the mixing weights. The reason for
this shortcoming is that the threshold A at which we consider an input bit “high degree” depends
not just on d, but also on ε, and so the mixing weights in the obtained mixture also depend on ε.
If we instead chose a threshold that only depended on d, we would not have been able to obtain an
effective error bound in the Kolmogorov distance step (i.e., Proposition 4.16) when γ = 1/2.

The key observation is that the arguments of Step 1 only require conditioning on input bits of
degree larger than n/Od(1). In other words, if we perform some different conditioning κ on the
set of input bits S′ ⊆ [m] above the weaker threshold n/Od(1), the distributions generated by the
restricted functions will still have output weights which strongly concentrate around some integer
multiple of n/2d. Moreover, the mixing weights in this setting are integer multiples of 2−Od(1).

It remains to argue that the mixing weights on M, the mixture we proved f(Um) is close to by
the stronger conditioning ρ, correspond to the mixing weights derived from the weaker conditioning
κ (see Lemma 4.26). Since both conditionings produce mixtures of the same distribution, we have∑

γ

Pr
ρ
[γρ = γ] · E

ρ:γρ=γ
fρ(U [m]\S) = f(Um) =

∑
γ

Pr
κ

[γκ = γ] · E
κ:γκ=γ

fκ(U [m]\S′
).

By standard concentration bounds, the probability that x ∼ f(Um) has Hamming weight close
to γn is almost entirely determined by the mass assigned to the distributions whose output weight
concentrates around γ. In other words, we know Prρ [γρ = γ] ≈ Prκ [γκ = γ] for each γ. By our
earlier analysis and the assumption that f(Um) is close to D, it must be that the mixing weight
on Bin(n, γ) in M is roughly Prρ [γρ = γ], so it must also be close to Prκ [γκ = γ], which has the
form we sought.

The analysis in the case of γ = 1/2 is similar, but as always, we need to keep track of the output
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weight’s parity. Here, the analogous equivalence is

Pr
ρ
[γρ = 1/2 ∧ |f(Um)| is even] ≈ 1

2|S′|

∑
κ:γκ=1/2

Pr
x∼U [m]\S′

[|fκ(x)| is even] . (2)

Since f is d-local with n output bits, the parity of |fκ(x)| can be represented as a degree-d F2-
polynomial with Od(n) monomials. Thus, the mixing weight for the uniform distribution over n-bit
strings of even Hamming weight in M must be close to the right-hand side of (2), which is the
precise sense in which the mixing weights are “determined by low-degree F2-polynomials”. The
odd parity case is essentially identical. This concludes the proof overview of Theorem 1.2.

2.2 Technical Comparison to Prior Works

We now briefly survey the approaches of related prior works. To avoid an overly verbose digression,
we attempt to focus only on the most relevant papers and do not hope to be exhaustive. Similarly,
we restrict our attention within the mentioned works to the results and techniques most pertinent
to our own; most, if not all, of the papers discussed contain a number of other interesting results.

The study of the complexity of sampling goes back to at least the 1980s in the influential work
of Jerrum, Valiant, and Vazirani [JVV86]. In the context of shallow circuits, several clever sampling
constructions (including the one in the introduction) were devised in [Bab87, BL87, IN96], while the
first serious treatment of the complexity of sampling (with shallow circuits) appeared in [Vio12b].
There, Viola proved an assortment of sampling-related results, but we will confine our attention to
two on the hardness of approximately generating Dn/2, the uniform distribution over n-bit strings
of Hamming weight n/2. (This specific choice is purely for simplicity, and both results also apply
to the setting of Dαn for α ∈ (0, 1).)

The first result we will mention [Vio12b, Theorem 1.6] is an unconditional lower bound of
2−O(d)−O(1/n) on the distance between f(Um), where f : {0, 1}m → {0, 1}n is a d-local4 function,
and Dn/2. The proof, much like our own (see Step 2), relies on a Kolmogorov distance bound
obtained from a k-wise independence assumption [DGJ+10, GOWZ10]. If the output distribution
f(Um) is k-wise independent for some large integer k, then [GOWZ10, Theorem I.5] implies it has
the wrong Hamming weight with constant probability, and we are done. Otherwise, there exists
a k-tuple T ⊆ [n] of output bits that are not uniformly distributed over {0, 1}k. In this case, one
observes that the probability assigned to any element of {0, 1}k is an integer multiple of 2−kd, so
the marginal distribution over T must be at least 2−kd-far from uniform. The proof concludes by
noting that the marginal distribution of Dn/2 onto T is very close to uniform. Note that we use
similar granularity ideas in the proof of Proposition 4.5 (in Step 1).

The second result [Vio12b, Theorem 1.3] provides a much stronger lower bound of 1−1/poly(n)
for the distance between f(Um) and Dn/2 for any O(log n)-local function f , but is conditional on the
input size m not substantially exceeding the information-theoretic minimum required to generate
the target distribution. The proof begins by partitioning the input bits u of f as u = (x, y) and
expressing

f(u) = f(x, y) = h(y) ◦ g1(x1, y) ◦ · · · ◦ gs(xs, y),

where each gi may depend arbitrarily on y but only on the single bit xi of x. Additionally, each
gi(xi, y) ∈ {0, 1}O(d). By a greedy approach, this can be accomplished with s ≥ Ω(n/d2) =
n/polylog(n). The argument proceeds by conditioning on certain input bits (in this case y) and
splitting into two scenarios depending on the amount of concentration; this strategy has been
employed by several later works, including this one.

4In fact, the result is proven for an adaptive version of locality.
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In the “concentrated” case where at least
√
n many gi’s become fixed, the output distribution

of f(x, y) has small support. Even taking the union over all choices of such y, one finds that many
elements in the support of Dn/2 cannot be obtained. Note that this is where the input length
restriction originates. Alternatively, at least s−

√
n = n/polylog(n) of the gi’s take multiple values.

One would like to apply standard anticoncentration results to argue the output weight is too spread
out, but as noted earlier in the proof overview (see Step 3), it may be that the Hamming weight of
a gi is fixed, even if the output is not. Viola circumvents this issue by adding an additional “test”
to determine whether at most 2

√
n many gi’s can output the all zeros string; in this case, taking

two or more values implies the weight cannot be fixed, and thus anticoncentration inequalities can
be applied.

We now turn to the recent work of Filmus, Leigh, Riazanov, and Sokolov [FLRS23], who
addressed the case of Dk for k = o(n). They proved [FLRS23, Theorem 1.2] that Ω̃(log(n/k))
bits of locality (even adaptively chosen) are required to generate Dk to constant error. Moreover,
the same result holds for the uniform distribution over strings whose Hamming weight lies in a
set S, where maxs∈S s = k. Their proof first reduces to the case of considering D1, and then
proceeds via a hitting set vs independent set dichotomy. This can again be viewed as fitting into
the concentration vs anticoncentration paradigm. If there are O(d2d) input bits that together affect
every output bit, then one can afford to condition on them and induct on the remaining (d−1)-local
sub-distributions. Bounds from these distributions can eventually be recombined to deduce bounds
on the full distribution using some version of a union bound, such as Lemma 3.3. Otherwise, there
are Ω(2d) independent output bits, and one can argue it is very likely that two of these bits evaluate
to 1, since each (nonzero) output bit is 1 with probability at least 2−d. Interestingly, the authors are
able to use the robust sunflower lemma [Ros14, ALWZ21] from extremal combinatorics to improve
their quantitative bounds; we refer the reader to their original paper for details.

Also recently, strong unconditional locality lower bounds for sampling Dαn where α is a non-
dyadic rational were proven independently in [Vio23, KOW24]. At a very high level, both proofs
follow from the observation (recorded in [Vio12a]) that the marginal distribution on any output
bit of a d-local function f must have probabilities that are integer multiples of 2−d, which cannot
accurately approximate (say) 1/3, corresponding to the marginal distribution for Dn/3. We begin
by describing the approach of Viola [Vio23, Theorem 25], continuing to focus on the case of α =
1/3 for simplicity. First assume by contradiction

∥∥f(Um)−Dn/3

∥∥
TV

≤ 1 − ε for some ε to be
determined. The proof proceeds by arguing that there must exist a large subset R ⊆ {0, 1}m of
the inputs, such that f(U(R)), f evaluated on inputs drawn uniformly at random from R, lands
entirely in the support of Dn/3 and has almost full min-entropy.5 The so-called fixed-set lemma of
Grinberg, Shaltiel, and Viola [GSV18] then implies that R can be further restricted to a large subset
R′ ⊆ R whose uniform distribution is nearly indistinguishable by d-local functions from a product
distribution where each bit is either fixed or uniform. Then the large min-entropy of f(U(R)) (and
thus f(U(R′))) combined with the fact that the distribution is contained in the support of Dn/3

implies there must be at least one output bit whose marginal distribution is extremely close to
1/3. This, however, contradicts the fact that 1/3 cannot accurately be approximated by an integer
multiple of 2−d.

The proof in [KOW24] instead operates very similarly to the details of Step 3. Through a graph-
theoretic lemma [KOW24, Corollary 4.8], they show that there must be a set of at most r/2d many
input bits upon whose conditioning results in r many independent output bits for r ≈ n/2d

2
. As

previously noted, each of these output bits inevitably incurs some error from mismatched marginal
distributions, and these errors can be aggregated via standard concentration inequalities (as in

5Recall the min-entropy of a random variable X is log(1/maxx∈supp(X) Pr[X = x]).
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Lemma 3.2). Bounds from the individual sub-distributions can once again be recombined via a
union bound result like Lemma 3.3.

The work [KOW24] also contains locality bounds for Dαn when α is a dyadic rational. The
proof has strong similarities to the non-dyadic case, except that now the marginal distributions
on output bits of f do not necessarily disagree with those of the target distribution. The authors
overcome this issue by turning to the familiar concentration vs. anticoncentration paradigm. The
details have almost entirely been spelled out already in Step 3, as our analysis is nearly identical
at that part. We briefly note that the quantitative dependencies here are much worse than in the
non-dyadic case, essentially for the reason that one needs to obtain a much richer structure than
simply independent output bits, and so the analogous graph-theoretic lemma in this case has poor
bounds.6

Finally, let us mention the predecessor of this work [KOW25], which classifies what uniform
symmetric distributions can be sampled by functions of bounded locality, confirming a conjecture of
[FLRS23]. In broad strokes, it follows similarly to the proof overview, so we will be brief. Through
a strategic conditioning of input bits, one may reduce to the case where no input bits have large
degree and almost all the output bits are k-wise independent. Then one can show the resulting
Hamming weight distribution is close in Kolmogorov distance to the binomial distribution, and it
satisfies a continuity-type property. Combining these steps together, one classifies the Hamming
weight distribution, which is enough to classify the actual distribution, since we assume f(Um) is
close to a uniform symmetric distribution. Much of the present work is an extension of the ideas in
[KOW25] to the general symmetric case, although there are several parts (e.g., much of the analysis
in Step 1 and the finer control on the mixing weights) that require substantially new ideas.

We conclude by noting that several works [LV11, BIL12, Vio14, Vio20, CGZ22] prove hardness
results against the more powerful classes of AC0 circuits or read-once branching programs. There
is a reasonable overlap in the techniques used with those discussed above, but the proofs of all
these results rely on the special properties of certain pseudorandom objects like good codes [LV11,
BIL12, CGZ22] or extractors [Vio12c, Vio20].

3 Preliminaries

For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We use R to denote the set of
real numbers, use N = {0, 1, 2, . . .} to denote the set of natural numbers, and use Z to denote the
set of integers. For a binary string x, we use |x| to denote its Hamming weight. We use log(x)
and ln(x) to denote the logarithm with base 2 and e respectively. For a, b ∈ R≥0, we use a ± b to
shorthand a number in the interval [a− b, a+ b].

Asymptotics. We use the standard O(·),Ω(·),Θ(·) notation, and emphasize that in this paper
they only hide universal positive constants that do not depend on any parameter. Occasionally
we will use subscripts to suppress a dependence on particular variable (e.g., Od(1)). The notation
poly(·) is also sometimes used to denote a quantity that is polynomial with an unspecified exponent.
That is, poly(n) = Θ(nc) for some c > 0.

Locality and Hypergraphs. Let f : {0, 1}m → {0, 1}n. We say f is a d-local function if each
output bit i ∈ [n] depends on at most d input bits. Unless otherwise stated, n,m, d are positive
integers.

6Moreover, the bounds in this graph-theoretic lemma are essentially best possible; see [KOW24, Appendix A].
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We sometimes take an alternative view, using hypergraphs to model the dependency relations
in f . Let G = (V,E) be an (undirected) hypergraph. For each i ∈ V , we use IG(i) ⊆ E to denote
the set of edges that are incident to i. We say G has maximum degree d if |IG(i)| ≤ d holds for all
i ∈ V . Define NG(i) = {i′ ∈ V : IG(i) ∩ IG(i

′) ̸= ∅} to be the neighborhood of i. We visualize the
input-output dependencies of a function f : {0, 1}m → {0, 1}n as a hypergraph on the output bits
[n] with an edge for each input bit containing all of the output bits that depend on it. Note that
a d-local function corresponds to a hypergraph with maximum degree d.

Probability. Let P be a (discrete) distribution. We use x ∼ P to denote a random sample x
drawn from the distribution P. If P is a distribution over a product space, then we say P is a
product distribution if its coordinates are independent. In addition, let S be a non-empty set. If S
indexes P, we use P[S] to denote the marginal distribution of P on coordinates in S. We reserve
U to denote the uniform distribution over {0, 1}.

For a deterministic function f , we use f(P) to denote the output distribution of f(x) given a
random x ∼ P. For every event E , we define P(E) to denote the probability that E occurs under
distribution P. In addition, we use P(x) to denote the probability mass of x under P, and use
supp (P) = {x : P(x) > 0} to denote the support of P.

Let Q be a distribution. We use ∥P −Q∥TV = 1
2

∑
x |P(x)−Q(x)| to denote their total varia-

tion distance.7 We say P is ε-close to Q if ∥P(x)−Q(x)∥TV ≤ ε, and ε-far otherwise.

Fact 3.1. Total variation distance has the following equivalent characterizations:

∥P −Q∥TV = max
event E

P(E)−Q(E) = min
random variable (X,Y )

X has marginal P and Y has marginal Q

Pr [X ̸= Y ] .

Let P1, . . . ,Pt be distributions. Then P1 × · · · × Pt is a distribution denoting the product of
P1, . . . ,Pt. We also use Pt to denote P1 × · · · × Pt if each Pi is the same as P. For a finite
set S ⊆ [t], we use PS to denote the distribution Pt restricted to the coordinates of S. We say
distribution P is a mixture (or convex combination) of P1, . . . ,Pt if there exist α1, . . . , αt ∈ [0, 1]
such that

∑
i∈[t] αi = 1 and P(x) =

∑
i∈[t] αi · Pi(x) for all x in the sample space. When it is clear

from context, we will occasionally write mixtures more simply as P =
∑

i∈[t] αi · Pi. In the case
where the Pi are all of the form fi(Um) for deterministic functions f1, . . . , ft : {0, 1}m → {0, 1}n,
we will occasionally abuse notation by writing F (Um) for the mixture F =

∑
i∈[t] αi · fi(Um).

We collect two useful probabilistic results from prior work. The first says that two distributions
must be far apart if many of their marginals do not match.

Lemma 3.2 ([KOW24, Lemma 4.2]). Let P, Q, and W be distributions over an n-dimensional
product space, and let S ⊆ [n] be a non-empty set of size s. Assume

• P[S] and W[S] are two product distributions,

• ∥P[{i}]−W[{i}]∥TV ≥ ε holds for all i ∈ S, and

• W(x) ≥ ν · Q(x) holds for some ν > 0 and all x.

Then
∥P −Q∥TV ≥ 1− 2 · e−ε2s/2/ν.

The second allows us to reason about the distance between a fixed distribution and a mixture
by reasoning about the individual distributions composing the mixture.

7To evaluate total variation distance, we need two distributions to have the same sample space. This will be clear
throughout the paper and thus we omit it for simplicity.
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Lemma 3.3 ([Vio20, Corollary 4.2]). Let P1, . . . ,Pt and Q be distributions. Assume there exists a
value ε such that ∥Pi −Q∥TV ≥ 1− ε for all i ∈ [t]. Then for the balanced mixture P =

∑
i
1
t · Pi,

we have
∥P −Q∥TV ≥ 1− t · ε.

Weight Distributions and Symmetrization. If P is a distribution over {0, 1}n, we use |P|
to denote the distribution over weights. That is, |P|(w) =

∑
x:|x|=w P(x). We additionally define

the symmetrized distribution Psym to be the distribution resulting from randomly permuting the
coordinates of a string x ∼ P.

We will require the following lemma, which lets us control the distance between two distributions
via the distance between their weight distributions, assuming one distribution is symmetric and
the other is close to being symmetric.

Lemma 3.4 ([KOW25, Lemma 4.8]). Let P and Q be two distributions on {0, 1}n with Q sym-
metric. Then

∥P −Q∥TV = Θ(∥|P| − |Q|∥TV + ∥P − Psym∥TV).

Binomials and Entropy. Let H(x) = x · log
(
1
x

)
+ (1 − x) · log

(
1

1−x

)
be the binary entropy

function. We will use the following estimate regarding binomial coefficients and the entropy func-
tion.

Fact 3.5 (See e.g., [CT06, Lemma 17.5.1]). For 1 ≤ k ≤ n− 1, we have(
n

k

)
≥ 2n·H(k/n)√

8k(1− k/n)
.

For positive integer n and parameter γ ∈ [0, 1], define Bin(n, γ) to be the binomial distribution
of n bits and bias γ, i.e., x ∼ Bin(n, γ) is a random integer between 0 and n with probability density
function

(
n
x

)
γx(1 − γ)n−x. We need the following standard estimates, the proofs of which can be

found in Appendix B.

Fact 3.6. Let γ ∈ (0, 1), a < b ∈ R, and n ∈ N≥1. Then the binomial distribution Bin(n, γ) satisfies

Pr [Bin(n, γ) ∈ [a, b]] ≤ O

(
⌈b− a⌉√
γ(1− γ)n

)
.

Fact 3.7. Let γ ∈ (0, 1), a, b ∈ N, and n ∈ N≥1. Then the binomial distribution Bin(n, γ) satisfies

|Pr [Bin(n, γ) = a]−Pr [Bin(n, γ) = b] | ≤ O

(
|b− a|

γ(1− γ)n

)
.

Concentration and Anti-concentration. We need the following standard (anti-)concentration
bounds.

Fact 3.8 (Hoeffding’s Inequality). Assume X1, . . . , Xn are independent random variables such that
a ≤ Xi ≤ b holds for all i ∈ [n]. Then for all δ ≥ 0, we have

max

Pr

 1

n

∑
i∈[n]

(Xi − E[Xi]) ≥ δ

 ,Pr

 1

n

∑
i∈[n]

(Xi − E[Xi]) ≤ −δ

 ≤ exp

{
− 2nδ2

(b− a)2

}
.
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Fact 3.9 (Chernoff’s Inequality). Assume X1, . . . , Xn are independent random variables such that
Xi ∈ [0, 1] holds for all i ∈ [n]. Let µ =

∑
i∈[n] E[Xi]. Then for all δ ∈ [0, 1], we have

Pr

∑
i∈[n]

Xi ≤ (1− δ)µ

 ≤ exp

{
−δ2µ

2

}
.

Fact 3.10 (See e.g., [DFKO06, Lemma 2.9]). Assume f : {0, 1}n → R is a degree k polynomial.
Let µ = Ex∼{0,1}n [f(x)]. Then

Pr
x∼{0,1}n

[f(x) ≥ µ] ≥ 2−O(k).

Recall that random variables X1, . . . , Xn over some domain D are called k-wise independent if
for any values d1, . . . , dk ∈ D and indices i1, . . . , ik ∈ [n], we have

Pr [Xi1 = d1, . . . , Xik = dk] =

k∏
j=1

Pr
[
Xij = dj

]
.

Fact 3.11 (See e.g., [BR94, Lemma 2.2]). Let k ≥ 4 be an even integer. Suppose X1, . . . , Xn are
k-wise independent random variables taking values in [0, 1]. Let X = X1 + · · · + Xn and t > 0.
Then,

Pr [|X − E[X]| ≥ t] ≤ Ck ·
(
nk

t2

)k/2

,

where Ck = 2
√
πk · e1/(6k) · e−k/2 ≤ 1.0004.

4 The Characterization

In this section, we prove our main result. Recall evens and odds denote the uniform distribution
over n-bit strings of even Hamming weight and odd Hamming weight, respectively.

Theorem 4.1. Let f : {0, 1}m → {0, 1}n be a d-local function. Assume f(Um) is ε-close to a
symmetric distribution D over {0, 1}n. Then if n is sufficiently large in terms of d and ε, f(Um)

is Od

(
1

log(1/ε)

)1/5
-close to a distribution of the form∑

a∈[0,2d]∩Z
a̸=2d−1

ca · Un
a/2d + ce · evens+ co · odds,

where each ca = c′a/2
C for some integer 0 ≤ c′a ≤ 2C and a fixed integer C = Od(1). Moreover,

there exist at most 2C many degree-d F2-polynomials {pi : Fm
2 → F2}, each with Od(n) monomials,

such that

ce =
1

2C
·
∑
i

Pr
x∼Um

[pi(x) = 0] and co =
1

2C
·
∑
i

Pr
x∼Um

[pi(x) = 1] .

Before proceeding to the proof, we make several remarks.

Remark 4.2. Any distribution of this form can be exactly produced by an NC0 function (with
additional input bits and locality):
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• Use C bits of locality to select either a product distribution Un
a/2d

or one of the F2-polynomials

pi : Fm
2 → F2.

• If some Un
a/2d

is selected, we can sample from it with an additional d bits of locality.

• Otherwise an F2-polynomial pi : Fm
2 → F2 is selected. In this case, we wish to produce the

distributions evens and odds with probability Prx∼Um [pi(x) = 0] and Prx∼Um [pi(x) = 1],
respectively. Arbitrarily partition the Od(n) monomials of pi into n bins of size Od(1), and
set y ∈ {0, 1}n to have the j-th coordinate equal to the sum of the monomials in the j-th bin.
Since pi has degree d, this can be done with Od(1) bits of locality. Note that y has the right
weight distribution, but it may not be symmetric. To remedy this, we sample z ∼ evens

(with fresh randomness) and output y ⊕ z.

Remark 4.3. An alternative formulation of the last conclusion of Theorem 4.1 is that there exists
a degree-Od(1) F2-polynomial P (x, y) =

∑
i 1(x = i) · pi(y)8 with Od(n) monomials such that

ce = 2−C · Prz [P (z) = 0] and co = 2−C · Prz [P (z) = 1]. In this formulation, we can still exactly
produce distributions of this form via a similar algorithm to the one in Remark 4.2, only now each
output bit requires larger locality to compensate for P ’s larger degree.

Remark 4.4. We have chosen to focus on the most commonly studied setting where the random
bits fed to f are unbiased. For readers interested in more general input biases, we note that a
similar result to Theorem 4.1 (with the biases of the product distributions and the mixing weights
appropriately adjusted) should be provable using the techniques presented here. It is important,
however, that the input bits are identically distributed, as the first of our four main steps (see
Subsection 4.1) requires the possible output biases to lie in a discrete set.

Our proof will proceed via the four steps outlined in Section 2, each corresponding to its own
subsection.

4.1 Removing Large Influences

Our first step is to argue that after conditioning on the high degree input bits of f , almost any
small collection of output bits looks identical to those of a γ-biased distribution Un

γ , where γ is an

integer multiple of 2−d.

Proposition 4.5. Let f : {0, 1}m → {0, 1}n be a d-local function, and let A ≥ 2100d be a parameter.
Assume f(Um) is ε-close to a symmetric distribution over {0, 1}n for some ε < 2−cdA, where c > 0
is a sufficiently large absolute constant. Further assume that n is sufficiently large in terms of d.
Define S ⊆ [m] to be the set of input bits with degree at least n/A.

Let k ≤ log(1/ε)/Cd be an arbitrary integer, where Cd ≥ 1 is a sufficiently large constant
depending only on d. Then for each conditioning ρ ∈ {0, 1}S on the bits in S, there exists a subset
Tρ ⊆ [n] of size |Tρ| ≤ Od,k,A(1) such that every k-tuple of output bits in [n] \ Tρ has distribution
Uk
γρ, where γρ = aρ/2

d and 0 ≤ aρ ≤ 2d is an integer.

In our analysis, we will often need to consider the distance between some bias and its closest
integer multiple of 2−d, so we introduce the following notation.

Definition 4.6 (Binary Representation Error). For each d ∈ N, we use err(γ, d) to denote the
minimum distance of γ to an integer multiple of 2−d. In particular, given a binary representation

8In an abuse of notation, we identify an integer i with its binary representation.
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of γ as γ =
∑

i∈Z ai · 2i where each ai ∈ {0, 1}, we have

err(γ, d) = min

{∑
i<−d

ai · 2i,
∑
i<−d

(1− ai) · 2i
}
.

The proof of Proposition 4.5 involves a number of similar looking estimates, so we provide a
brief overview of the remainder of the section before continuing. It is known from previous work
[KOW24] that local functions cannot accurately sample Dk, the uniform distribution over n-bit
binary strings of Hamming weight k, so long as k/n has large binary representation error.

Lemma 4.7 ([KOW24, Theorem 5.7]). Let f : {0, 1}m → {0, 1}n be a d-local function, and let
1 ≤ k ≤ n− 1 be an integer. If err(k/n, d) ≥ δ for some δ > 0, then

∥f(Um)−Dk∥TV ≥ 1− 4
√
2n · exp

{
−n · δ40d

}
.

This implies that with high probability, the output weight |f(x)| is close to some dyadic rational
multiple of n, at least to the degree that f is symmetric (Lemma 4.8). In order to ensure |f(x)|
is concentrated around a fixed dyadic rational, we condition on input bits of degree at least n/A.
This bounds the variance of the weight of f to provide good concentration (Lemma 4.9). However,
there is still a chance that some non-negligible fraction of the time, the output weight is close to
a different dyadic rational multiple of n. In this case, we can show (Claim 4.14) that the weight
distribution must also assign decent probability mass to the weights between these dyadic multiples,
which by Lemma 4.7 would contradict our original assumption on the distance between f(Um) and
D.

Now we proceed toward proving Proposition 4.5. Recall that any symmetric distribution D is
simply a mixture of Dk for different values of k. Thus, if f(Um) is close to a symmetric distribution,
Lemma 4.7 implies most of the output weight must have bias close to some multiple of 2−d.

Lemma 4.8. Let f : {0, 1}m → {0, 1}n be a d-local function. Assume f(Um) is ε-close to a sym-
metric distribution D over {0, 1}n. Then

Pr
x∼Um

[
err

(
|f(x)|
n

, d

)
≥ 1

n1/(800d)

]
≤ O

(
ε+ e−n0.9

)
, (3)

where we recall that err(γ, d) is the minimum distance between γ and integer multiples of 2−d.

Proof. Without loss of generality, assume n is sufficiently large. If

Pr
z∼D

[
err
( z
n
, d
)
≥ 1

n1/(800d)

]
≤ 100 ·

(
ε+ e−n0.9

)
, (4)

then (3) holds due to the assumption on f(Um). Now we assume (4) does not hold.
For each 0 ≤ k ≤ n, recall that Dk is the uniform distribution over Hamming weight k strings.

Then D is a mixture of {Dk}, i.e., D =
∑

k αk · Dk. We say k is bad if err(k/n, d) ≥ n−1/(800d).
Then the violation of (4) is equivalent to∑

bad k

αk > 100 ·
(
ε+ e−n0.9

)
. (5)

By Lemma 4.7, for each bad k, there is an event Ek such that
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• under f(Um), it happens with probability at most 4
√
2n · e−n0.95

;

• under Dk, it happens with probability at least 1− 4
√
2n · e−n0.95 ≥ 1/2.

Hence considering E =
∨

bad k Ek, we have

• under f(Um), it happens with probability at most 4n
√
2n · e−n0.95

which is at most e−n0.9
,

since we assumed n is sufficiently large;

• under D, it happens with probability at least∑
bad k

αk ·
(
1− 4

√
2n · e−n0.95

)
≥ 50 ·

(
ε+ e−n0.9

)
.

This means f(Um) is not ε-close to D, a contradiction.

By conditioning on the high degree input bits, we can reduce the variance of the output weight
distribution to obtain a version of Lemma 4.8 where the output weight is concentrated around a
fixed dyadic rational multiple of n.

Lemma 4.9. Let f : {0, 1}m → {0, 1}n be a d-local function with d ≥ 1, and let A ≥ 2100d be a
parameter. Assume f(Um) is ε-close to a symmetric distribution over {0, 1}n for some ε < 2−cdA,
where c > 0 is a sufficiently large absolute constant. Further assume that n is sufficiently large
in terms of d. Define S ⊆ [m] to be the set of input bits with degree at least n/A. Then for each
conditioning ρ ∈ {0, 1}S on bits in S, there exists an integer 0 ≤ aρ ≤ 2d such that

Pr
x∼U [m]\S

[∣∣∣∣ |f(x, ρ)|n
− aρ

2d

∣∣∣∣ ≥ 1

n1/(800d)

]
≤ poly(ε).

For clarity, we prove Lemma 4.9 through a series of claims, the most routine of which have their
proofs deferred to Appendix C. The high-level idea is to use the second moment method to show
that for any restriction ρ on the high degree input bits, the Hamming weight of f(x, ρ) is typically
close to its expectation, which by the previous lemma must be close to a multiple of 2−d. We then
turn to a more involved argument to boost the quantitative behavior of these bounds.

Proof. First note that |S| ≤ dA. Fix an arbitrary ρ ∈ {0, 1}S and define g : {0, 1}m−|S| →
{0, 1, . . . , n} by g(x) = |f(x, ρ)|. Then g(x) =

∑n
i=1 gi(x), where each gi : {0, 1}m−|S| → {0, 1}

is a d-junta (i.e., depends on at most d of its input bits) and every input bit appears in at most
n/A different gi’s. Therefore

Var[g] =
∑

i,j∈[n]

Cov (gi, gj)

≤
∑
i∈[n]

# {j ∈ [n] | gj correlates with gi} (since each gi is Boolean)

≤ n · dn/A ≤ dn2/2100d. (since A ≥ 2100d)

Define p = E[g]/n. Then by Chebyshev’s inequality, we have

Pr
x∼{0,1}[m]\S

[∣∣∣∣ |f(x, ρ)|n
− p

∣∣∣∣ > 2−30d

]
= Pr

[∣∣∣∣g(x)n
− p

∣∣∣∣ > 2−30d

]
≤ d

240d
≤ 1

4
. (6)

Combining the above fact that |f(x, ρ)|/n is typically close to p with the fact that it must also
typically be close to an integer multiple of 2−d (by Lemma 4.8), we obtain the following claim.
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Claim 4.10 (Proved in Appendix C). err(p, d) ≤ 2 · 2−30d.

By Claim 4.10, there exists an integer 0 ≤ a ≤ 2d such that |p − a/2d| ≤ 2 · 2−30d. Now it
suffices to show

Pr
x∼{0,1}[m]\S

[∣∣∣∣ |f(x, ρ)|n
− a

2d

∣∣∣∣ > 1

n1/(800d)

]
≤ poly(ε). (7)

We start with two primitive bounds. The first follows from combining Lemma 4.8 with the obser-
vation that any event is assigned at most 2|S| times more mass by f(U [m]\S , ρ) than by f(Um).

Claim 4.11 (Proved in Appendix C).

Pr
x∼{0,1}[m]\S

[
err

(
|f(x, ρ)|

n
, d

)
>

1

n1/(800d)

]
≤ poly(ε).

Claim 4.12.

Pr
x∼{0,1}[m]\S

[∣∣∣∣ |f(x, ρ)|n
− a

2d

∣∣∣∣ > 3

230d

]
≤ 1

4
.

Proof of Claim 4.12. This follows directly from (6) and Claim 4.10.

Define

δ := Pr
x∼{0,1}[m]\S

[∣∣∣∣ |f(x, ρ)|n
− a

2d

∣∣∣∣ > 4−d

]
.

Then by Claim 4.11, we can relate the LHS of (7) to δ, because it is very unlikely that |f(x, ρ)|/n
is between n−1/(800d)- and 4−d-close to a/2d.

Claim 4.13 (Proved in Appendix C).

Pr
x∼{0,1}[m]\S

[∣∣∣∣ |f(x, ρ)|n
− a

2d

∣∣∣∣ > 1

n1/(800d)

]
≤ δ + poly(ε).

Claim 4.12 implies a constant 1/4 upper bound on δ. To further improve it, we prove the
following claim.

Claim 4.14.

Pr
x∼{0,1}[m]\S

[
8−d ≤

∣∣∣∣ |f(x, ρ)|n
− a

2d

∣∣∣∣ ≤ 4−d

]
≥ δ/220d.

Such a claim is true, because if |f(x, ρ)|/n is typically close to a/2d but has a δ probability
of being far from it, then there must be a decent probability that |f(x, ρ)|/n is close, but not too
close, to a/2d, since |f(x, ρ)|/n is roughly continuous in x. Formally, the proof of Claim 4.14 will
operate via a coupling argument. We consider two independent inputs x and z where |f(x, ρ)|/n
is close to a/2d but |f(z, ρ)|/n is not. By slowly changing x into z by flipping bits of x on which
they disagree in a random order, we can find inputs y where |f(y, ρ)|/n is in the range in question.

Proof of Claim 4.14. Let π be a uniformly random permutation on [m] \ S. Pick t uniformly at
random among 0, 1, . . . ,m− |S| and sample r ∼ Bin(m− |S|, 1/2) (i.e., Pr[r = s] = 2|S|−m

(
m−|S|

s

)
for all s = 0, 1, . . . ,m). Define y ∈ {0, 1}[m]\S as x with the first t bits in π flipped; and define
z ∈ {0, 1}[m]\S as x with the first r bits in π flipped. Since y has the same distribution as x, it
suffices to show

Pr
x,z,π,t

[
8−d ≤

∣∣∣∣ |f(y, ρ)|n
− a

2d

∣∣∣∣ ≤ 4−d

]
≥ δ/220d. (8)
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Observe that z is uniform over {0, 1}[m]\S and is independent of x. Define Ex to be the event

that
∣∣∣ |f(x,ρ)|n − a

2d

∣∣∣ > 4−d and Ez to be the event that
∣∣∣ |f(z,ρ)|n − a

2d

∣∣∣ ≤ 3/230d. Then by independence

and Claim 4.12, we have

Pr
x,z

[Ez | Ex] ≥
3

4
. (9)

Recall we wish to show that if Ex and Ez both hold, there is a good probability (over t) that
|f(y, ρ)|/n is between 8−d- and 4−d-close to a/2d. Note that changing t by 1 only changes |f(y, ρ)|
by at most the degree of the relevant input. Since |f(y, ρ)| must pass through the “bad” region, (8)
holds as long as it does not pass through too quickly. This is captured by the following event Eπ.

Denote m′ = m − |S| and for each j ∈ [m′] we use degπ(j) to denote the degree of the j-th
input bit under π. Define L =

⌊
m′/210d

⌋
. Let Eπ be the event that no L consecutive (under π)

input bits starting at a multiple of L have degree sum larger than n/25d; or more formally that∑L
j=1 degπ(L · i + j) ≤ n/25d holds for each i = 0, 1, . . . , ⌊m′/L⌋. Whenever Eπ holds, we know

that any L consecutive (under π) bit flips of x will only change the output weight of f by at most
2·n/25d, since any length L interval can only intersect two length L intervals that start at a multiple
of L (as in the definition of Eπ). For i = 0, we have

E
π

 L∑
j=1

degπ(j)

 = L · E
π
[degπ(1)] ≤

dnL

m′ ≤ dn

210d

as the total degree is at most dn. Define the indicator variable Ii to denote that the i-th input bit
(in the standard order) is in π(1), . . . , π(L). Let deg(i) be the degree of the i-th input bit (in the
standard order). Then we also have

Var
π

 L∑
j=1

degπ(j)

 = Var
π

[
m′∑
i=1

deg(i) · Ii

]
=
∑
i

deg(i)2Var
π

[Ii] +
∑
i ̸=i′

deg(i) deg(i′) Cov [Ii, Ii′ ]

≤
∑
i

deg(i)2 ·Var
π

[Ii] (since Cov [Ii, Ii′ ] =
L(L−1)

m′(m′−1) −
(

L
m′

)2 ≤ 0)

≤ L

m′

∑
i

deg(i)2 (since Varπ [Ii] ≤ Prπ [Ii = 1])

≤ L

m′ ·max
i

deg(i) ·
∑
i

deg(i) ≤ L

m′ ·
n

2100d
· dn,

since deg(i) ≤ n/A ≤ n/2100d and
∑

i deg(i) ≤ dn. Therefore

Pr
π

 L∑
j=1

degπ(j) ≥ n/25d

 ≤ Pr
π

 L∑
j=1

degπ(j)− E

 L∑
j=1

degπ(j)

 ≥ n/25d+1


(since 2−5d − d · 2−10d ≥ 2−5d/2 for d ≥ 1)

≤
Varπ

[∑L
j=1 degπ(j)

]
4n2 · 2−10d

(by Chebyshev inequality)

≤ d · L
4 · 290d ·m′ .
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Note that the same estimate works for all i = 1, . . . , ⌊m′/L⌋. Hence by independence and a union
bound

Pr
x,π

[Eπ | Ex] = Pr
π

[Eπ] ≥ 1−
(
1 +

⌊
m′

L

⌋)
· dL

4 · 290d ·m′ ≥ 1− d

220d
≥ 7

8
. (10)

Combining (9) and (10), we have Prx,z,π [Eπ ∧ Ez | Ex] ≥ 5/8 by a union bound. Since Prx [Ex] =
δ, we have

Pr
x,z,π

[Ex ∧ Ez ∧ Eπ] ≥
5δ

8
. (11)

Recall that z is x with the first r bits (in the order of π) flipped. Assuming Ex and Ez, we
know that

∣∣∣ |f(x,ρ)|n − a
2d

∣∣∣ > 4−d and
∣∣∣ |f(z,ρ)|n − a

2d

∣∣∣ ≤ 3/230d. For each i = 0, 1, . . . ,m′, we use z(i) to

denote the string x with the first i bits (in the order of π) flipped. Then z(0) = x and z(r) = z. Note
that the Hamming difference between f(z(i), ρ) and f(z(i−1), ρ) is upper bounded by the degree of
the i-th input bit (under π), which is further upper bounded by n/2100d by our construction. Since
4−d > 6−d > 3/230d, there exists some i∗ ∈ {0, 1, . . . , r} such that

6−d ≤

∣∣∣∣∣
∣∣f(z(i∗), ρ)∣∣

n
− a

2d

∣∣∣∣∣ ≤ 6−d + 2−100d.

Assuming Eπ, for each j = i∗, i∗ − 1, . . . , i∗ − L the Hamming difference between f(z(j), ρ) and
f(z(i

∗), ρ) is upper bounded by the total degree of input bits from i∗ to i∗ − L, which is at most
2 · n/25d. Hence for each such j, we have

8−d ≤ 6−d − 2−5d+1 ≤

∣∣∣∣∣
∣∣f(z(j), ρ)∣∣

n
− a

2d

∣∣∣∣∣ ≤ 6−d + 2−100d + 2−5d+1 ≤ 4−d.

In particular, this implies i∗−L > 0 as
∣∣∣ |f(z(0),ρ)|n − a

2d

∣∣∣ = ∣∣∣ |f(x,ρ)|n − a
2d

∣∣∣ > 4−d. At this point, recall

that y = z(t) where t ∼ {0, 1, . . . ,m′}. Hence

Pr
x,z,π,t

[
8−d ≤

∣∣∣∣ |f(y, ρ)|n
− a

2d

∣∣∣∣ ≤ 4−d

∣∣∣∣ Ex ∧ Ez ∧ Eπ
]

≥ Pr
x,z,π,t

[i∗ − L ≤ t ≤ i∗ | Ex ∧ Ez ∧ Eπ]

=
L+ 1

m′ ≥ 2−10d. (by independence)

This, combined with (11), proves (8) and completes the proof of Claim 4.14.

Given Claim 4.14, we can put a much tighter upper bound on δ, as demanded in Claim 4.13.

Observe that 8−d ≤
∣∣∣ |f(x,ρ)|n − a

2d

∣∣∣ ≤ 4−d implies that
∣∣∣ |f(x,ρ)|n − a′

2d

∣∣∣ ≥ 2−d − 4−d ≥ 8−d holds for

any integer a′ ̸= a. Hence when the event in Claim 4.14 happens, we have

err

(
|f(x, ρ)|

n
, d

)
≥ 8−d.

Claim 4.11 implies this should happen with probability at most poly(ε). Hence by Claim 4.14,
this means δ ≤ poly(ε). Therefore (7) follows directly by Claim 4.13. This completes the proof of
Lemma 4.9.
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We now have the requisite tools to prove Proposition 4.5, the main result of Subsection 4.1. We
restate it below for convenience.

Proposition 4.5. Let f : {0, 1}m → {0, 1}n be a d-local function, and let A ≥ 2100d be a parameter.
Assume f(Um) is ε-close to a symmetric distribution over {0, 1}n for some ε < 2−cdA, where c > 0
is a sufficiently large absolute constant. Further assume that n is sufficiently large in terms of d.
Define S ⊆ [m] to be the set of input bits with degree at least n/A.

Let k ≤ log(1/ε)/Cd be an arbitrary integer, where Cd ≥ 1 is a sufficiently large constant
depending only on d. Then for each conditioning ρ ∈ {0, 1}S on the bits in S, there exists a subset
Tρ ⊆ [n] of size |Tρ| ≤ Od,k,A(1) such that every k-tuple of output bits in [n] \ Tρ has distribution
Uk
γρ, where γρ = aρ/2

d and 0 ≤ aρ ≤ 2d is an integer.

Proof. Fix an arbitrary ρ and shorthand T = Tρ, γ = γρ. Assume there is a maximal set of R
disjoint k-tuples of output bits with the wrong distribution. Then it suffices to show R = Od,k,A(1),
since we can set T to be the union of these output bits, and every k-tuple that does not have
distribution Uk

γ must intersect T by maximality. Moreover, |T | ≤ k ·R = Od,k,A(1).
Now for the i-th k-tuple with the wrong distribution, we have a degree-k multilinear polynomial

Pi : {0, 1}n → {0, 1} such that

E
x∼{0,1}[m]\S

[Pi(f(x, ρ))] ≥ E
z∼Un

γ

[Pi(z)] + 2−kd. (12)

To see this, let W ⊆ {0, 1}k witness the total variation distance δ between Uk
γ and the k-tuple

output in f(U [m]\S , ρ), i.e.,

Pr
x∼{0,1}[m]\S

[the k-tuple output of f(x, ρ) ∈ W ] ≥ Pr
z∼Uk

γ

[z ∈ W ] + δ. (13)

Then we define the polynomial Pi : {0, 1}n → {0, 1} as the indicator function that the k-tuple
output lies in W . This is a k-junta and is naturally of degree k. Since γ is an integer multiple of
2−d, we know that the probability density function of Uk

γ has granularity 2−kd. In addition, since f

is d-local, the probability density function of the k-tuple output of f(U [m]\S , ρ) also has granularity
2−kd. As the two distributions are different, their total variation distance is δ ≥ 2−kd. Putting this
into (13) gives (12).

Given the constructions of Pi’s, we define P =
∑

i∈[R] Pi. Then by (12), we have

E
x∼{0,1}[m]\S

[P (f(x, ρ))] ≥ E
z∼Un

γ

[P (z)] + 2−kd ·R.

Since each Pi is a degree k polynomial of the output bits of f and f is d-local, P is a degree k
polynomial of the output bits of f , and P (f(x, ρ)) is degree k · d polynomial of x. By Fact 3.10,
with probability at least 2−O(kd) over x ∼ {0, 1}[m]\S , we have

P (f(x, ρ)) ≥ E
x
[P (f(x, ρ))] ≥ E

z∼Un
γ

[P (z)] + 2−kd ·R.

Thus by Lemma 4.9 and a union bound, with probability at least 2−O(kd) − poly(ε), we have

P (f(x, ρ)) ≥ E
z∼Un

γ

[P (z)] + 2−kd ·R and

∣∣∣∣ |f(x, ρ)|n
− γ

∣∣∣∣ ≤ 1

n1/(800d)
.
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Recall that |S| ≤ dA. Hence by randomizing also the coordinates in S, with probability at least
2−dA

(
2−O(kd) − poly(ε)

)
over y ∼ {0, 1}m, we have

P (f(y)) ≥ E
z∼Un

γ

[P (z)] + 2−kd ·R and

∣∣∣∣ |f(y)|n
− γ

∣∣∣∣ ≤ 1

n1/(800d)
.

Since f(Um) is ε-close to a symmetric distribution D over {0, 1}n, we also have that with probability
at least 2−dA

(
2−O(kd) − poly(ε)

)
− ε over w ∼ D,

P (w) ≥ E
z∼Un

γ

[P (z)] + 2−kd ·R and
∣∣∣w
n

− γ
∣∣∣ ≤ 1

n1/(800d)
. (14)

Call an input w ∈ {0, 1}n large if

P (w) ≥ E
z∼Un

γ

[P (z)] + 2−kd ·R.

We will show that it is very unlikely for w ∼ D to be large while having weight close to γn.
Recall that T is the union of the output bits in each of the R k-tuples with the wrong distribution,
and define the distribution D∗ to be the marginal distribution of D on T conditioned on w ∼ D
satisfying ∣∣∣∣ |w|n − γ

∣∣∣∣ ≤ 1

n1/(800d)
. (15)

Then by sequentially coupling the t := |T | = Rk bits based on their marginals, we have

∥∥UT
γ −D∗∥∥

TV
≤

t∑
i=1

max
0≤j≤i−1

∣∣∣∣γ − |w| − j

n− i+ 1

∣∣∣∣ (by union bound)

≤
t∑

i=1

(∣∣∣∣γ − |w|
n

∣∣∣∣+ ∣∣∣∣ |w|n − |w| − i+ 1

n− i+ 1

∣∣∣∣)

≤
t∑

i=1

(∣∣∣∣γ − |w|
n

∣∣∣∣+ t

n− t+ 1

)
≤ t

n1/(800d)
+

t2

n− t+ 1
. (by (15))

Recall that P =
∑

i∈[R] Pi where the Pi : {0, 1}n → {0, 1} are supported on disjoint sets of k-tuples.
Thus Fact 3.8 implies

Pr
x∼Un

γ

[x is large] = Pr
x∼Un

γ

∑
i∈[R]

Pi(x)− E
z∼Un

γ

[Pi(z)] ≥ 2−kd ·R

 ≤ exp

{
− R

22kd

}
.

Observing that
∑

i Pi only depends on the bits in T , we can upper bound the event in (14) by

Pr
w∼D

[
w is large ∧

∣∣∣w
n

− γ
∣∣∣ ≤ 1

n1/(800d)

]
≤ Pr

w∼D

[
w is large

∣∣∣∣ ∣∣∣wn − γ
∣∣∣ ≤ 1

n1/(800d)

]
≤ Pr

x∼Un
γ

[x is large] +
∥∥UT

γ −D∗∥∥
TV

≤ exp

{
− R

22kd

}
+

t

n1/(800d)
+

t2

n− t+ 1
.
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Combining with the lower bound from (14), we have

exp

{
− R

22kd

}
+

Rk

n1/(800d)
+

(Rk)2

n−Rk + 1
≥ 2−dA

(
2−O(kd) − poly(ε)

)
− ε.

By our assumptions on the size of n, k, and ε, we have R ≤ Od,k,A(1) as desired. This completes
the proof of Proposition 4.5.

4.2 Kolmogorov Distance

Our second step toward proving Theorem 4.1 is to show that the output weight distribution of
f(Um) is close in Kolmogorov distance9 to some binomial distribution Bin(n, γ), where γ is an
integer multiple of 2−d. Moreover in the case of γ = 1/2, we will show that these distributions are
close even accounting for parity.

We will require the fact that biased k-wise independence fools a simple type of threshold func-
tion. In particular, we will use the following special case of [GOWZ10, Theorem I.5].

Lemma 4.15. Let γ ∈ (0, 1), k ∈ N, and t ∈ R≥0. If D is a distribution on {0, 1}n such that every
k-tuple of bits in [n] has distribution Uk

γ , then∣∣∣∣Pr
x∼D

[x1 + · · ·+ xn ≥ t]− Pr
x∼Un

γ

[x1 + · · ·+ xn ≥ t]

∣∣∣∣ ≤ O

(
polylog(k)√

k · poly(min {γ, 1− γ})

)
.

We now leverage Lemma 4.15 to show the output weight of f(Um) is close in Kolmogorov
distance to a certain binomial distribution. Note the following can be viewed as a generalization of
Lemma 5.2 in (the arXiv version of) [KOW25] to arbitrary biases and mixtures. The proof there
holds with minor modifications, but we reproduce it for completeness.

Proposition 4.16. Let k ≥ 2 and ℓ ≥ 1 be integers, and let f1, . . . , fℓ : {0, 1}m → {0, 1}n be d-local
functions. For each fi, suppose no input bit affects more than n/A output bits, and suppose there
exists a subset Ti ⊆ [n] of size |Ti| ≤ Od,k,A(1) such that every k-tuple of output bits in [n] \ Ti

has distribution Uk
γ , where γ = a/2d for some fixed integer 0 < a < 2d. If n is sufficiently large in

terms of d, k, and A, then any mixture F of the fi’s and any t ∈ R satisfy

|Pr [|F (Um)| ≥ t]−Pr [Bin(n, γ) ≥ t]| ≤ O

(
polylog(k)√

k · poly(min {γ, 1− γ})

)
.

Moreover if a = 2d−1, then there exists an η ∈ [0, 1] such that for any δ ∈ (0, 1/2) and t ∈ R, we
have

|Pr [|F (Um)| ≥ t and |F (Um)| is even]− ηPr [Bin(n, 1/2) ≥ t]|

and
|Pr [|F (Um)| ≥ t and |F (Um)| is odd]− (1− η)Pr [Bin(n, 1/2) ≥ t]|

are at most

O

(
log(1/δ)O(d)d

√
Aδ

+
polylog(k)√

k
+ δ

)
.

9Recall the Kolmogorov distance between two distributions P, Q is given by supt∈R |Prx∈P [x ≥ t]−Pry∈Q[y ≥ t]|.
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Proof. It suffices to prove both results for arbitrary fi, henceforth denoted f . We also use T to
denote Ti in this simpler setting.

We will first handle the general case, assuming γ ≤ 1/2 for notational simplicity, and afterwards
address the γ = 1/2 case. Our main tool will be Lemma 4.15. By assumption, each k-tuple of
output bits in [n] \ T has distribution Uk

γ under f(Um), so Lemma 4.15 implies

Pr [|f(Um)| ≥ t] ≥ Pr [|f(Um)[[n] \ T ]| ≥ t]

≥ Pr [Bin(n− |T |, γ) ≥ t]−O

(
polylog(k)√
k · poly(γ)

)
(by Lemma 4.15)

≥ Pr [Bin(n, γ) ≥ t+ |T |]−O

(
polylog(k)√
k · poly(γ)

)
= Pr [Bin(n, γ) ≥ t]−Pr [t ≤ Bin(n, γ) < t+ |T |]−O

(
polylog(k)√
k · poly(γ)

)
≥ Pr [Bin(n, γ) ≥ t]−O

(
γ|T |√

γ(1− γ)n
+

polylog(k)√
k · poly(γ)

)
(by Fact 3.6)

≥ Pr [Bin(n, γ) ≥ t]−O

(
polylog(k)√
k · poly(γ)

)
,

where the final inequality follows from our assumption that n is sufficiently large. A similar upper
bound follows from comparing the complement distribution 1n−f(Um) to the binomial distribution
with bias 1− γ. This concludes the proof of the general case.

We now turn to the case of γ = 1/2. The proof will proceed similarly, but with some additional
technical work. Here, we require a structural result about low degree F2-polynomials. The following
is essentially [CHH+20, Theorem 3.1].

Theorem 4.17. Let p be a degree-d polynomial over Fn
2 and δ ∈ (0, 1/2). There exists a subset

R ⊆ [n] with |R| ≤ log(1/δ)O(d)d such that if we write p(x) = p(xRc , xR) where xR and xRc are the
coordinates in R and not in R respectively, then with probability at least 1− δ over the choice of a
random value of xRc we have that∣∣∣∣Pr

xR

[p(xRc , xR) = 1]−Pr
x

[p(x) = 1]

∣∣∣∣ < δ. (16)

In words, Theorem 4.17 says that we can (with high probability) re-randomize the output of
the polynomial p by simply re-randomizing the input coordinates of a small set R.

Define p : {0, 1}m → {0, 1} by p(x) = |f(x)| mod 2 (i.e., the parity of f ’s output). Applying

Theorem 4.17 yields a set R of at most log(1/δ)O(d)d input bits. Let S ⊆ [n] be the set of output
bits in T or affected by input bits in R. Note that

|S| ≤ n|R|
A

+ |T | ≤ n log(1/δ)O(d)d

A
+Od,k,A(1) =

n log(1/δ)O(d)d

A
,

where we used the fact that n is sufficiently large in terms of d, k and A for the last equality.
We will set η = Prx∼Um [p(x) = 0] = Pr[|f(Um)| is even] and show

Pr [|f(Um)| ≥ t and |f(Um)| is even]− ηPr [Bin(n, 1/2) ≥ t]

≥ O

(
log(1/δ)O(d)d

√
Aδ

+
polylog(k)√

k
+ δ

)
.

26



The case of odd |f(Um)| is almost identical, and as above, a similar upper bound follows from
analyzing the complement distribution 1n − f(Um).

Before proceeding further, we define several variables and events for the sake of future clarity.
Let

C :=
|S|
2

−
√

|S|
δ

− |T | ≥ |S|
2

−
√
n · log(1/δ)O(d)d

√
Aδ

, (17)

where we again used the fact that n is sufficiently large in terms of d, k, and A. Let EVEN be
the event that |f(Um)| is even (and similarly for ODD). Additionally, let BIG be the event that
|f(Um)[[n] \ S]| ≥ t − C. Finally, let GOOD be the event that xRc satisfies (16) (and BAD be the
complement event). We have

Pr [|f(Um)| ≥ t and EVEN] ≥ Pr [BIG and |f(Um)[S]| ≥ C and EVEN]

= Pr [BIG and EVEN]−Pr [BIG and |f(Um)[S]| < C and EVEN]

≥ Pr [BIG] ·Pr
[
EVEN

∣∣ BIG]−Pr [|f(Um)[S]| < C] . (18)

By assumption, each k-tuple of output bits in [n]\T has distribution Uk
1/2. Since T ⊆ S, Lemma 4.15

implies

Pr [BIG] ≥ Pr [Bin(n− |S|, 1/2) ≥ t− C]−O

(
polylog(k)√

k

)
. (19)

Now let X ∼ Bin(n− |S|, 1/2) and Y ∼ Bin(|S|, 1/2). Then X + Y ∼ Bin(n, 1/2) and

Pr [Bin(n− |S|, 1/2) ≥ t− C]

= Pr [X ≥ t− C] = Pr [X + Y ≥ t− C + Y ]

= Pr[X + Y ≥ t]−Pr[t ≤ X + Y < t− C + Y ]

= Pr[Bin(n, 1/2) ≥ t]− E
Y

[
Pr
X
[t ≤ X + Y < t− C + Y ]

]
≥ Pr[Bin(n, 1/2) ≥ t]−O

(
E
Y

[
(Y − C) · 1Y≥C√

n

])
(by Fact 3.6 and independence of X,Y )

= Pr[Bin(n, 1/2) ≥ t]−O

(
E
Y

[
Y − C√

n

]
+ E

Y

[
(C − Y ) · 1Y <C√

n

])
≥ Pr[Bin(n, 1/2) ≥ t]−O

(
E
Y

[
Y − C√

n

]
+ E

Y

[
|Y − |S|/2|√

n

])
(since C ≤ |S|/2)

≥ Pr[Bin(n, 1/2) ≥ t]−O

(
(|S|/2− C) +

√
|S|√

n

)
(since Y ∼ Bin(|S|, 1/2))

= Pr[Bin(n, 1/2) ≥ t]−O

(
|S|/2− C√

n

)
(since C ≤ |S|/2−

√
|S|/δ)

≥ Pr[Bin(n, 1/2) ≥ t]−O

(
log(1/δ)O(d)d

√
Aδ

)
. (by (17))

Combining with (19), we have

Pr [BIG] ≥ Pr [Bin(n, 1/2) ≥ t]−O

(
log(1/δ)O(d)d

√
Aδ

+
polylog(k)√

k

)
. (20)

To lower bound the conditional probability Pr
[
EVEN

∣∣ BIG], it will be slightly more convenient
to upper bound Pr

[
ODD

∣∣ BIG]. For this, observe that the events BIG and GOOD depend only
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on input bits in Rc. Hence by Theorem 4.17, conditioned on events BIG and GOOD, event ODD
(which rerandomizes input bits in R) happens with probability at most 1− η+ δ. Moreover, event
BIG itself happens with probability at most δ. Therefore

Pr
[
ODD

∣∣ BIG] = Pr
[
GOOD

∣∣ BIG] ·Pr
[
ODD

∣∣ GOOD and BIG
]

+Pr
[
BAD

∣∣ BIG] ·Pr
[
ODD

∣∣ BAD and BIG
]

≤ Pr
[
ODD

∣∣ GOOD and BIG
]
+Pr

[
BAD

∣∣ BIG]
≤ Pr

[
ODD

∣∣ GOOD and BIG
]
+

Pr [BAD]

Pr [BIG]

≤ 1− η + δ +
δ

Pr [BIG]
≤ 1− η +

2δ

Pr [BIG]
.

Combining with (20), we have that

Pr [BIG] ·Pr
[
EVEN

∣∣ BIG] ≥ ηPr [Bin(n, 1/2) ≥ t]−O

(
log(1/δ)O(d)d

√
Aδ

+
polylog(k)√

k
+ δ

)
.

In light of (18) and to complete our proof, it remains to bound Pr [|f(Um)[S]| < C]. We have

Pr [|f(Um)[S]| < C] ≤ Pr

[
|f(Um)[S \ T ]| < |S|

2
−
√

|S|
δ

− |T |

]

≤ Pr

[
|f(Um)[S \ T ]| < |S \ T |

2
−
√

|S \ T |
δ

]
< δ,

where the final inequality follows from Chebyshev’s inequality and the observation that the outputs
in S \ T are 2-wise independent.

4.3 Approximate Continuity

Our third step in proving Theorem 4.1 is a type of continuity result for the output weight of
f(Um). The argument will require three ingredients from prior works. The first allows us to find
many independent collections of output bits. Recall we may view the input-output dependencies
of a d-local function f : {0, 1}m → {0, 1}n as a hypergraph on the vertex set [n] with one edge for
each of the m input bits containing all the output bits it affects. By the locality assumption, no
vertex has degree more than d.

Lemma 4.18 ([KOW24, Corollary 4.11]). Let G be a hypergraph on n vertices with maximum
degree at most d. For any increasing function F : N → N, there exists a set S of edges in G
whose removal yields at least10 r = n/Od,F (1) vertices in G whose neighborhoods have size at most
t = Od,F (1) and are pairwise non-adjacent, and satisfies |S| ≤ r/F (t).

The neighborhoods from Lemma 4.18 appear in our context as collections of independent groups
of output bits. When we analyze the behavior of their Hamming weight, they become a sum of
independent integer random variables. This sum has a “continuous” output distribution unless
almost all of the integer random variables are nearly constant modulo some integer s ≥ 2. In
fact, a similar property holds even if the integer random variables are only noticeably non-constant
modulo s for s ≥ 3, except now the continuity only holds for weights that are an even distance
apart. More formally, we will use following density comparison result, which is a special case of
[KOW25, Theorem A.1].

10Recall Od,F (1) denotes a quantity whose value is constant once d and F are fixed.
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Lemma 4.19 ([KOW25, Theorem A.1]). Let t ≥ 1 be an integer, and let X1, . . . , Xn be inde-
pendent random variables in {0, 1, . . . , t}. For each i ∈ [n] and integer s ≥ 1, define ps,i =
maxx∈ZPr [Xi ≡ x (mod s)]. Suppose for some L > 0,∑

i∈[n]

(1− ps,i) ≥ L · n holds for all s ∈ {2, 3, . . . , t}.

Then for any x ∈ Z and ∆ ∈ Z, we have

Pr

∑
i∈[n]

Xi = x

−Pr

∑
i∈[n]

Xi = x+∆

 ≤ OL,t

(
|∆|
n

)
.

If instead
∑

i∈[n](1− ps,i) ≥ L ·n only holds for s ∈ {3, 4, . . . , t}, the same conclusion still holds for
any even ∆ ∈ Z.

In order to satisfy the variability assumption of Lemma 4.19, we will need to exploit the fact
that two coupled, γ-biased random vectors have different Hamming weight distributions, as long
as part of their entries are independent. The following is essentially [KOW24, Lemma 4.4].

Lemma 4.20. Let (X,Y, Z,W ) be a random variable where X,Z ∈ {0, 1} and Y,W ∈ {0, 1}t−1.
Let q ≥ min {3, t+ 1} be an integer.11 Assume

• X is independent from (Z,W ) and Z is independent from (X,Y ), and

• (X,Y ) and (Z,W ) have distribution U t
γ for some γ ∈ (0, 1).

Then we have
Pr [X + |Y | ≡ Z + |W | (mod q)] < 1.

Moreover, the same conclusion holds for q ≥ 2 when γ ̸= 1/2.

We remark that the “moreover” part of the conclusion is not explicitly stated in [KOW24],
but the proof can be easily modified to show this. For completeness, we include the full details in
Appendix C.

We can now state and prove the main result of this subsection.

Proposition 4.21. Let f : {0, 1}m → {0, 1}n be a d-local function with n sufficiently large in terms
of d, and let γ ∈ (0, 1) be an integer multiple of 2−d. Then the distribution f(Um) can be written
as a mixture of distributions E and W , where

1. ∥E −D∥TV ≥ 1 − exp {−Ωd(n)} for any symmetric distribution D over {0, 1}n with weights
γn± n2/3, and

2. For all w ∈ {0, 1, . . . , n} and ∆ ∈ Z if γ ̸= 1/2 (or even ∆ ∈ Z if γ = 1/2), we have∣∣∣∣Pr [|W | = w]−Pr [|W | = w +∆]

∣∣∣∣ ≤ Od

(
|∆|
n

)
.

The above proposition is very similar to [KOW25, Proposition 4.9], and our proof largely follows
the one present there. At a high level, we proceed by using Lemma 4.18 to obtain many independent
output neighborhoods. We then classify these neighborhoods according to whether their marginal
distributions differ from the γ-biased product distribution or not. The former situation corresponds
to the first conclusion of Proposition 4.21, while the latter corresponds to the second.

11If q ≥ t + 1, then one may instead apply Lemma 4.20 with modulus t + 1, since X + |Y | ≡ Z + |W | (mod q) is
equivalent to X + |Y | = Z + |W | for q ≥ t+ 1.
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Proof. Let S ⊆ [m] be the set of input coordinates promised by Lemma 4.18, taking F (t) to be
a sufficiently large multiple of 22dt. For each conditioning ρ ∈ {0, 1}S , consider the restricted
function fρ : {0, 1}[m]\S → {0, 1}n defined by fρ(x) = f(x, ρ). We call a ρ good if at least half of
the r non-adjacent neighborhoods {Ni} (of size at most t ≤ Cd) promised by Lemma 4.18 satisfy
fρ(Um)[Ni] = UNi

γ . Set

E := E
ρ : ρ is not good

fρ(U [m]\S) and W := E
ρ : ρ is good

fρ(U [m]\S),

so that f(Um) = νE + (1− ν)W where ν ∈ [0, 1] is the fraction of good ρ.
We first prove conclusion 1. Suppose ρ ∈ {0, 1}S is not good. Let N be one of the at least r/2

non-adjacent neighborhoods with fρ(Um)[N ] ̸= UN
γ . Since N depends on at most dt many input

bits and γ is an integer multiple of 2−d, fρ(Um)[N ] is at least 2−dt-far from UN
γ . Moreover, define

ν := min
x∈supp(D)

Un
γ (x)

D(x)
.

Let k = γn ± n2/3 be such that D assigns at least 1/
(
n
k

)
probability mass on strings of Hamming

weight exactly k. Note that such k exists since we assumed that D is symmetric and supports on
strings of weight γn± n2/3. Then by choosing an arbitrary x with weight k, we have

ν ≥ γk(1− γ)n−k

1/
(
n
k

) ≥ 2nH( k
n
)√

8k(1− k
n)

· γk(1− γ)n−k (by Fact 3.5)

=
1√

8|x|(1− k
n)

·

(
γ
k
n

)k(
1− γ

1− k
n

)n−k

=
1√

8|x|(1− k
n)

·
(

γ

γ ± n−1/3

)k ( 1− γ

1− γ ∓ n−1/3

)n−k

≥ Θd(n
−1/2) ·

(
1

1 +Od(n−1/3)

)n

≥ exp
{
−Od(n

2/3)
}
, (21)

where we used the fact that k = γn ± n2/3 and n sufficiently large for the last line. Noting that
the non-adjacency of the neighborhoods implies the distributions fρ(Um)[Ni] and fρ(Um)[Nj ] are
independent for i ̸= j, we can apply Lemma 3.2 to conclude

∥fρ(Um)−D∥TV ≥ 1− 2 exp
{
−r2−2dt−1

}
/ν.

Then Lemma 3.3 and our choice of F (t) = Ω(22dt) sufficiently large imply

∥E −D∥TV ≥ 1− 2|S| ·
(
2 exp

{
−r2−2dt−1

})
/ν

≥ 1− 2

(
exp

{
r

F (t)
− r

22dt+1

})
/ν

≥ 1− exp {−Ωd (n)} · exp
{
Od(n

2/3)
}
≥ 1− exp {−Ωd (n)} . (by (21))

It remains to verify conclusion 2. Fix an arbitrary good ρ for the remainder of the argument. We
assume without loss of generality that for some r′ ≥ r/2, the neighborhoods N(1), . . . , N(r′) ⊆ [n]
satisfy fρ(U [m]\S)[Ni] = UNi

γ .
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Let B ⊆ [m] \ S be the set of input bits that do not affect any central elements (i.e., the r′

output bits that generate N(1), . . . , N(r′)), which we henceforth refer to as extraneous inputs. For
each conditioning σ ∈ {0, 1}B, we define the restricted functions fρ,σ : {0, 1}[m]\(S∪B) → {0, 1}n by
fρ,σ(x) = f(x, ρ, σ), so that

fρ = E
σ∈{0,1}B

[fρ,σ] .

Observe that the value of every output bit in [n] \ (N(1) ∪ · · · ∪N(r′)) is fixed for all fρ,σ, and the
weight of the output bits of each neighborhood becomes a random variable

Xσ,i :=
∑

j∈N(i)

fρ,σ(U [m]\(S∪B))[{j}].

In particular, the total weight of the output of fρ,σ(U [m]\(S∪B)) is some constant plus the sum of
the Xσ,i’s, which are independent. We would like to claim that Lemma 4.19 can be applied to this
situation with high probability.

From here, we proceed similarly to [KOW24, Claims 5.16 & 5.23]. For each integer s ≥ 2, define

pσ,s,i = max
x∈Z

Pr [Xσ,i ≡ x (mod s) | ρ, σ] ,

where recall we previously fixed a good ρ.

Claim 4.22. For any i ∈ [r′] and s ≥ 3, there exists some σ ∈ {0, 1}B satisfying pσ,s,i < 1 (i.e.,
Xσ,i is not constant modulo s). Moreover if γ ̸= 1/2, the same is true for s = 2.

Proof. Consider the neighborhood N := N(i) of size ti ≤ t, and let I be the set of input bits that
the output bit i depends on. Note |I| ≤ d. We randomly sample σ ∈ {0, 1}B and two independent
λ, λ′ ∈ {0, 1}I . Since fρ[N ] only depends on the bits in B∪I, we can define (V,Z) = fρ((σ, λ)) and
(V ′, Z ′) = fρ((σ, λ

′)), where V, V ′ ∈ {0, 1} are the values of N ’s center and Z,Z ′ ∈ {0, 1}ti−1 are
the values of the remaining bits in N . Observe that V is independent from (V ′, Z ′) and likewise
V ′ is independent from (V,Z), so we may apply Lemma 4.20 to conclude

Pr
[
V + |Z| ≡ V ′ + |Z ′| (mod s)

]
< 1.

In particular, there must exist some σ where Xσ,i is not constant modulo s.

For our fixed good ρ and some fixed 2 ≤ s ≤ t (or 3 ≤ s ≤ t if γ = 1/2), let Ei be the event
that Xσ,i is at least 2−d-far from constant modulo s. Since Xσ,i depends on at most d input bits
(namely, the bits i depends on), if it is not constant modulo s, it must be at least 2−d-far from
constant. Furthermore, the bits in the neighborhood N(i) depend on at most dt input bits, so

Pr
σ∈{0,1}B

[Ei] ≥ 2−dt.

Recall that the neighborhoods are non-adjacent (after removing the edges in S), so the extraneous
bits used to determine Xσ,i are disjoint from those used to determine Xσ,j for i ̸= j. Thus, whether
or not Xi is constant modulo s is independent of whether Xj is. Applying Chernoff’s inequality
(Fact 3.9) with δ = 1/2, we have

Pr
σ∈{0,1}B

∑
i∈[r′]

Ei ≤ 2−dt−1r′

 ≤ exp

{
−r′

8

}
≤ exp

{
− r

16

}
= exp {−Ωd(n)} .
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Now call a σ ∈ {0, 1}B fluid if
∑

i Ei ≥ 2−dt−1r′ for every 2 ≤ s ≤ t (or 3 ≤ s ≤ t if γ = 1/2).
By a union bound and the fact that t = Od(1), we find

Pr
σ∈{0,1}B

[σ is fluid] = 1− exp {−Ωd(n)} . (22)

Note any fluid σ satisfies∑
i∈[r′]

(1− pσ,s,i) ≥ 2−dt−1 · r′ · 2−d ≥ 2−d(t+1)−1 · r ≥ Ωd(n),

so we can apply Lemma 4.19 to find for any w ∈ Z and ∆ ∈ Z (or even ∆ ∈ Z if γ = 1/2) that∣∣∣∣ Pr
x∼U [m]\(S∪B)

[|fρ,σ(x)| = w]− Pr
x∼U [m]\(S∪B)

[|fρ,σ(x)| = w +∆]

∣∣∣∣ ≤ Od

(
|∆|
n

)
. (23)

Taking the mixture over all such subfunctions, we have∣∣∣∣Pr [|W | = w]−Pr [|W | = w +∆]

∣∣∣∣
=

∣∣∣∣ E
good ρ

[
Pr

x∼U [m]\S
[|fρ(x)| = w]

]
− E

good ρ

[
Pr

x∼U [m]\S
[|fρ(x)| = w +∆]

] ∣∣∣∣
≤ E

good ρ
σ

∣∣∣∣ Pr
x∼U [m]\(S∪B)

[|fρ,σ(x)| = w]− Pr
x∼U [m]\(S∪B)

[|fρ,σ(x)| = w +∆]

∣∣∣∣ (by triangle inequality)

≤ e−Ωd(n) + E
good ρ
fluid σ

∣∣∣∣ Pr
x∼U [m]\(S∪B)

[|fρ,σ(x)| = w]− Pr
x∼U [m]\(S∪B)

[|fρ,σ(x)| = w +∆]

∣∣∣∣ (by (22))

≤ e−Ωd(n) +Od

(
|∆|
n

)
. (by (23))

If ∆ = 0, then

∣∣∣∣Pr [|W | = w] − Pr [|W | = w +∆]

∣∣∣∣ is trivially at most Od

(
|∆|
n

)
. Hence we may

assume |∆| ≥ 1, in which case e−Ωd(n) +Od

(
|∆|
n

)
≤ Od

(
|∆|
n

)
. This concludes the proof.

4.4 Putting It Together

In this final subsection, we combine our earlier results to prove Theorem 4.1. Recall Lemma 3.4
gives that the distance between f(Um) and any symmetric distribution P is

∥f(Um)− P∥TV = Θ
(
∥|f(Um)| − |P|∥TV + ∥f(Um)− f(Um)sym∥TV

)
, (24)

where the symmetrization f(Um)sym is the distribution resulting from randomly permuting the
coordinates of a string x ∼ f(Um). Under the assumption f(Um) is ε-close to a symmetric distri-
bution D, (24) implies ∥f(Um)− f(Um)sym∥TV ≤ O(ε). Thus it remains to show that the weight
distribution of f(Um) is close to the weight distribution of a mixture of the form specified in The-
orem 4.1. We first prove the simpler case where no input bit of f affects many output bits, the
output distribution of f restricted to (almost) any small set of output bits looks like a γ-biased
product distribution, and the symmetric distribution D is supported on weights around γn.
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Lemma 4.23. Let k ≥ 2 and ℓ ≥ 1 be integers, and let f1, . . . , fℓ : {0, 1}m → {0, 1}n be d-local
functions. For each fi, suppose no input bit affects more than n/A output bits, and suppose there
exists a subset Ti ⊆ [n] of size |Ti| ≤ Od,k,A(1) such that every k-tuple of output bits in [n] \ Ti has
distribution Uk

γ , where γ = a/2d for some fixed integer 0 ≤ a ≤ 2d.
Furthermore, assume there is some mixture F of the fi’s such that F (Um) is ε-close to a

symmetric distribution D over {0, 1}n which is supported on strings of weight γn ± n2/3. Then if
γ ̸= 1/2 and n is sufficiently large in terms of d, k, A, and ε, we have

∥|F (Um)| − Bin(n, γ)∥TV ≤ Od(ε+ k−1/5).

Moreover if γ = 1/2, then there exists a mixture Q = η|evens|+ (1− η)|odds| satisfying

∥|F (Um)| − Q∥TV ≤ Od

ε+ k−1/5 + log(k)

√
log(A)O(d)d

A1/3
+

polylog(k)√
k

 .

Much of the following proof overlaps with [KOW25, Section 5.3]. The overall idea is to use
Proposition 4.21 to argue that the output weight of (most of) f(Um) satisfies a continuity prop-
erty: weights at distance ∆ apart are assigned mass that differs by at most Od(∆/n). Since
Proposition 4.16 shows any contiguous weight interval is given roughly the same probability as a
binomial distribution, our continuity property implies that the output weight of f(Um) behaves
similarly to a binomial distribution pointwise. In the case of γ = 1/2, we can combine the precise
control Proposition 4.16 provides on the probability of being in a fixed interval and even/odd with
the parity continuity of Proposition 4.21 to carry out a similar argument.

Proof. We first address the case of γ ∈ {0, 1}, where several of the tools we have developed (e.g.,
Proposition 4.16 and Proposition 4.21) do not apply. We will show the argument for γ = 0; the
case of γ = 1 is essentially identical. Let T =

⋃
i Ti, and observe that by assumption, all output

bits in [n] \ T are identically zero. Thus,

∥|F (Um)| − Bin(n, 0)∥TV = Pr
[
F (Um)[T ] ̸= 0T

]
. (25)

Let us briefly consider the symmetrized distribution F (Um)sym. For clarity, let t = |T |. Since any
string x ∼ F (Um) has Hamming weight |x| ≤ t ≤ ℓ ·Od,k,A(1), we have

Pr
[
F (Um)sym[T ] ̸= 0T

]
≤ 1−

(
n−t
t

)(
n
t

) = 1−
t−1∏
i=0

n− t− i

n− i

≤ 1−
(
1− t

n− t

)t

≤ 1− exp

{
− 2t2

n− t

}
≤ ε, (26)

since n is sufficiently large in terms of d, k, ℓ, A, and ε. By Lemma 3.4 and our initial assumption,
we know that

Pr
[
F (Um)[T ] ̸= 0T

]
−Pr

[
F (Um)sym[T ] ̸= 0T

]
≤ ∥F (Um)− F (Um)sym∥TV = O(ε).

Combining with (25) and (26) yields the desired upper bound of

∥|F (Um)| − Bin(n, 0)∥TV ≤ Pr
[
F (Um)sym[T ] ̸= 0T

]
+O(ε) = O(ε).

We now turn to the case of γ ̸∈ {0, 1/2, 1}, assuming for notational convenience that γ ≤
1/2. Afterwards, we will describe the necessary modifications to handle the remaining γ = 1/2
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case. Define κ :=
√
polylog(k)/(

√
k · poly(γ)) with the exponents on the polylog(k) and poly(γ)

corresponding to those in Proposition 4.16, and partition {0, 1, . . . , n} into (consecutive) intervals
of length Θ(κ

√
n). Observe that for any such interval I, Proposition 4.16 implies

|Pr [|F (Um)| ∈ I]−Pr [Bin(n, γ) ∈ I]| = O(κ2). (27)

Next, we apply Proposition 4.21 to each fi to write fi(Um) = λiEi + (1− λi)Wi, where

1. ∥Ei −D∥TV ≥ 1− exp {−Ωd(n)}, and
2. For all w ∈ {0, 1, . . . , n} and ∆ ∈ Z, we have∣∣∣∣Pr [|Wi| = w]−Pr [|Wi| = w +∆]

∣∣∣∣ ≤ Od

(
|∆|
n

)
. (28)

Since F is a mixture of the fi’s, there exist c1, . . . , cℓ such that

F (Um) =
∑
i

ciλiE +

(
1−

∑
i

ciλi

)
W,

where

E =
1∑
i ciλi

·
∑
i

ciλiEi and W =
1

1−
∑

i ciλi
·
∑
i

ci(1− λi)Wi.

For each i ∈ [ℓ], our distance bound between Ei and D (Item 1) guarantees an event Ei with mass
at least 1− exp {−Ωd(n)} in Ei, but mass at most exp {−Ωd(n)} in D. Thus if we define E = ∪Ei,
then

ε ≥ ∥F (Um)−D∥TV ≥
∑
i

ciλi(1− exp {−Ωd(n)})− ℓ · exp {−Ωd(n)} .

In particular,
∑

i ciλi ≤ O(ε), and

∥W − F (Um)∥TV ≤ O(ε). (29)

By expanding the definition of total variation distance, we find

∥|W | − Bin(n, γ)∥TV =
1

2

n∑
w=0

|Pr [|W | = w]−Pr [Bin(n, γ) = w]|

=
1

2

∑
I

∑
w∈I

|Pr [|W | = w]−Pr [Bin(n, γ) = w]|

≤
∑
I

w∈I

∣∣∣∣Pr [|W | = w]− Pr [|W | ∈ I]
|I|

∣∣∣∣+ ∣∣∣∣Pr [|W | ∈ I]−Pr [Bin(n, γ) ∈ I]
|I|

∣∣∣∣
+

∣∣∣∣Pr [Bin(n, γ) = w]− Pr [Bin(n, γ) ∈ I]
|I|

∣∣∣∣ .
For any δ ∈ (0, 1), Fact 3.8 implies that all but O(δ) of the mass of Bin(n, γ) is supported on
O(log(1/δ)/κ) intervals, which we call big (and the remaining intervals small). Moreover, |W | also
only assigns C · (ε + κ log(1/δ) + δ) mass to small intervals for some sufficiently large constant
C > 0, as otherwise we obtain the contradiction

C · (ε+ κ log(1/δ)) ≤ C · (ε+ κ log(1/δ) + δ)−O(δ)
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≤
∑

small I

∑
w∈I

Pr [|W | = w]−
∑

small I

∑
w∈I

Pr [Bin(n, γ) = w]

=
∑
big I

∑
w∈I

Pr [Bin(n, γ) = w]−
∑
big I

∑
w∈I

Pr [|W | = w]

≤
∑
big I

∑
w∈I

|Pr [Bin(n, γ) = w]−Pr [|W | = w]|

≤
∑
big I

∑
w∈I

(
|Pr [Bin(n, γ) = w]−Pr [|F (Um)| = w]|

+ |Pr [|F (Um)| = w]−Pr [|W | = w]|
)

≤ O(κ log(1/δ)) + 2 ∥|F (Um)| − |W |∥TV ≤ O(ε+ κ log(1/δ)),

where the final two inequalities follow from (27) and (29), respectively. Hence,

∥|W | − Bin(n, γ)∥TV

≤ O(ε+ κ log(1/δ) + δ) +
∑
big I

∑
w∈I

∣∣∣∣Pr [|W | = w]− Pr [|W | ∈ I]
|I|

∣∣∣∣
+

∣∣∣∣Pr [|W | ∈ I]−Pr [Bin(n, γ) ∈ I]
|I|

∣∣∣∣+ ∣∣∣∣Pr [Bin(n, γ) = w]− Pr [Bin(n, γ) ∈ I]
|I|

∣∣∣∣ . (30)

Clearly, ∑
w∈I

∣∣∣∣Pr [|W | ∈ I]−Pr [Bin(n, γ) ∈ I]
|I|

∣∣∣∣
= |Pr [|W | ∈ I]−Pr [Bin(n, γ) ∈ I]|
≤ |Pr [|W | ∈ I]−Pr [|F (Um)| ∈ I]|+ |Pr [|F (Um)| ∈ I]−Pr [Bin(n, γ) ∈ I]|
≤ |Pr [|W | ∈ I]−Pr [|F (Um)| ∈ I]|+O(κ2). (by (27))

Summing over all big intervals, the first term is at most 2 ∥W − F (Um)∥TV ≤ O(ε) by (29), and
the second term is at most O (κ log(1/δ)).

Additionally, note that (28) and the triangle inequality implies∣∣∣∣Pr [|W | = w]− Pr [|W | ∈ I]
|I|

∣∣∣∣ ≤ max
y∈I

|Pr [|W | = w]−Pr [|W | = y]| ≤ Od

(
κ√
n

)
.

Summing over all w ∈ I gives an upper bound of Od(κ
2), and further summing over big intervals

gives Od(κ log(1/δ)). The sum of the∣∣∣∣Pr [Bin(n, γ) = w]− Pr [Bin(n, γ) ∈ I]
|I|

∣∣∣∣
terms can be bounded similarly, since

max
y∈I

|Pr [Bin(n, γ) = w]−Pr [Bin(n, γ) = y]| ≤ O

(
κ
√
n

γ(1− γ)n

)
= Od

(
κ√
n

)
. (see Fact 3.7)

Combining these inequalities together with (30), we find

∥|W | − Bin(n, γ)∥TV ≤ Od(ε+ δ + κ log(1/δ)).
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Set δ = k−1/5 and recall κ =
√

polylog(k)/(
√
k · poly(γ)). Again applying (29), we conclude

∥|F (Um)| − Bin(n, γ)∥TV ≤ ∥|F (Um)| − |W |∥TV + ∥|W | − Bin(n, γ)∥TV = Od(ε+ k−1/5).

We now consider the case of γ = 1/2. The proof is almost identical to the previous case, so we
only highlight the relevant differences. In this setting, Proposition 4.21 only provides a continuity
guarantee on weights differing by an even integer. Hence, we refine the previously considered
intervals into their even and odd parts. Note this only changes the number of intervals in our
analysis by a factor of two. Moreover, Proposition 4.16 (applied with δ = A−1/3) now provides a
bound on the Kolmogorov distance between |f(Um)| and a mixture M = η|evens|+ (1− η)|odds|
of

O

(
log(A)O(d)d

A1/3
+

polylog(k)√
k

)
:=κ2.

Carrying out the remaining steps with δ set to k−1/5 as before, we conclude

∥|F (Um)| −M∥TV ≤ ∥|F (Um)| − |W |∥TV + ∥|W | −M∥TV
= Od(ε+ δ + κ log(1/δ))

= Od

ε+ k−1/5 + log(k)

√
log(A)O(d)d

A1/3
+

polylog(k)√
k

 .

We now use Lemma 4.23 to prove the general case. To obtain that lemma’s required assump-
tions, we first condition on all input bits of large degree. This will certainly result in the setting
where no input bit affects many output bits, but using Proposition 4.5, it also lets us conclude the
restricted functions generate distributions which resemble γ-biased product distributions. For the
final condition of Lemma 4.26, we need the symmetric distribution D to be supported on weights
around γn. Through a somewhat laborious but straightforward calculation, we show in Claim 4.25
that the restrictions of f(Um) with bias roughly γ are relatively close to D conditioned on its output
weight being γn± n2/3, as desired.

Lemma 4.24. Let f : {0, 1}m → {0, 1}n be a d-local function. Assume f(Um) is ε-close to a
symmetric distribution D over {0, 1}n where n is sufficiently large in terms of d and ε, and ε
is sufficiently small in terms of d. Then the distribution over the Hamming weight of f(Um) is

Od

(
1

log(1/ε)

)1/5
-close to a convex combination of the form∑

a∈[0,2d]∩Z
a̸=2d−1

ca · Bin(n, a/2d) + ce · |evens|+ co · |odds|.

Proof. Let k be the largest even integer less than log(1/ε)/Cd, where Cd ≥ 1 is a sufficiently large
constant depending only on d. By choosing ε small enough, we may assume k ≥ 4 (in order to
later apply Fact 3.11). Define S ⊆ [m] to be the set of input bits with degree at least n/k. Note
that by the locality assumption, |S| ≤ dk. For each conditioning ρ ∈ {0, 1}S on the bits in S,
Proposition 4.5 guarantees a subset Tρ ⊆ [n] of size |Tρ| ≤ Od,k(1) and a bias γρ = aρ/2

d, where
0 ≤ aρ ≤ 2d is an integer, such that every k-tuple of output bits in [n] \ Tρ has distribution Uk

γρ .
We proceed by grouping the restricted functions according to their biases. More formally, we

write f(Um) as the mixture

f(Um) =
∑
γ

Pr
ρ
[γρ = γ] · fγ(U [m]\S) where fγ(U [m]\S) := E

ρ

[
f(U [m]\S , ρ)

∣∣∣ γρ = γ
]
.
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Similarly, we let Dγ denote the distribution D conditioned on the Hamming weight being γn±n2/3.
Since f(Um) is close to D by assumption, fγ(U [m]\S) should be close to Dγ . We formalize this
intuition in the following claim.

Claim 4.25. If Prρ [γρ = γ] > 0, then
∥∥fγ(U [m]\S)−Dγ

∥∥
TV

≤ Od(ε).

The proof of Claim 4.25 is routine but rather tedious, so we defer the details to Appendix C.
For each γ, we combine Claim 4.25 and Lemma 4.23 to deduce∥∥∥|fγ(U [m]\S)| − Pγ

∥∥∥
TV

≤ Od

ε+ k−1/5 + log(k)

√
(log(k))O(d)d

k1/3
+

polylog(k)√
k


≤ Od

(
ε+

(
1

log(1/ε)

)1/5
)

(since k = Θd(log(1/ε)))

≤ Od

(
1

log(1/ε)

)1/5

, (31)

where

Pγ =

{
Bin(n, γ) if γ ̸= 1/2

η|evens|+ (1− η)|odds| if γ = 1/2

for some η ∈ [0, 1]. Define the mixture P :=
∑

γ Prρ [γρ = γ] · Pγ . Writing the output weight of f
as a convex combination of the conditionings, we find

∥|f(Um)| − P∥TV =

∥∥∥∥∥∑
γ

Pr
ρ
[γρ = γ] · |fγ(U [m]\(S∪R))| −

∑
γ

Pr
ρ
[γρ = γ] · Pγ

∥∥∥∥∥
TV

≤
∑
γ

Pr
ρ
[γρ = γ]

∥∥∥|fγ(U [m]\(S∪R))| − Pγ

∥∥∥
TV

(by triangle inequality)

≤ Od

(
1

log(1/ε)

)1/5

. (by (31))

This completes the proof of Lemma 4.24.

Lemma 4.24 states that the weight distribution of f(Um) must be close to a mixture of spe-
cific distributions. The following lemma provides additional information about this mixture by
describing the structure of the mixing weights.

Lemma 4.26. Let f : {0, 1}m → {0, 1}n be a d-local function. Assume f(Um) is ε-close to a
symmetric distribution D over {0, 1}n where n is sufficiently large in terms of d and ε, and ε
is sufficiently small in terms of d. Then the distribution over the Hamming weight of f(Um) is

Od

(
1

log(1/ε)

)1/5
-close to a convex combination of the form∑

a∈[0,2d]∩Z
a̸=2d−1

ca · Bin(n, a/2d) + ce · |evens|+ co · |odds|,

where each ca = c′a/2
C for some integer 0 ≤ c′a ≤ 2C and a fixed integer C = Od(1). Moreover,

there exist at most 2C many degree-d F2-polynomials {pi : Fm
2 → F2}, each with Od(n) monomials,

such that

ce =
1

2C
·
∑
i

Pr
x∼Um

[pi(x) = 0] and co =
1

2C
·
∑
i

Pr
x∼Um

[pi(x) = 1] .
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Proof. We know from Lemma 4.24 that f(Um)’s weight distribution is Od

(
1

log(1/ε)

)1/5
-close to a

convex combination of the form

P =
∑

a∈[0,2d]∩Z
a̸=2d−1

ca · Bin(n, a/2d) + ce · |evens|+ co · |odds|,

so it remains to reason about the mixing weights. To this end, let S ⊆ [m] be the set of input bits
with degree at least n/2100d. Observe that this is a smaller set than the S used in the proof of
Lemma 4.24; this will ultimately provide stronger control over the mixing weights.

For each conditioning σ ∈ {0, 1}S on the bits in S, Lemma 4.9 guarantees an integer 0 ≤ aσ ≤ 2d

such that

Pr
x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− aσ

2d

∣∣∣∣ ≥ 1

n1/(800d)

]
≤ poly(ε). (32)

This also implies for any integer b ̸= aσ, we have

Pr
x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− b

2d

∣∣∣∣ ≤ 1

n1/(800d)

]
≤ Pr

x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− aσ

2d

∣∣∣∣ ≥ 1

2d
− 1

n1/(800d)

]
≤ Pr

x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− aσ

2d

∣∣∣∣ ≥ 1

n1/(800d)

]
≤ poly(ε). (33)

Define pσ : {0, 1}[m]\S → {0, 1} to be |f(x, σ)| mod 2. Note that pσ is a sum (modulo 2) of n output
bits, each of which depends on at most d input bits. Hence, pσ can be expressed as a degree-d
F2-polynomial with Od(n) monomials. We will show that the conclusion of Lemma 4.26 is satisfied
by

Q =
∑

a∈[0,2d]∩Z
a̸=2d−1

c′a
2|S|

· Bin(n, a/2d) + c′e
2|S|

· |evens|+ c′o
2|S|

· |odds|, (34)

where

c′a = # {σ : aσ = a} , c′e =
∑

σ:aσ=2d−1

Pr
x∼U [m]\S

[pσ(x) = 0] , and c′o =
∑

σ:aσ=2d−1

Pr
x∼U [m]\S

[pσ(x) = 1] .

The proof will proceed in two steps. First, we will show that ca is essentially the probability
that |f(Um)|/n is close to a/2d. Second, we will show that this probability is closely approximated
by the fraction of conditionings which concentrate around a. (As usual, there are some additional
considerations in the a = 2d−1 case.)

For clarity, define ca = ce + co and

• δa = Prx∼Um

[∣∣∣ |f(x)|n − a
2d

∣∣∣ ≤ 1
n1/(800d)

]
,

• δe = Prx∼Um

[∣∣∣ |f(x)|n − 1
2

∣∣∣ ≤ 1
n1/(800d) ∧ |f(x)| is even

]
,

• δo = Prx∼Um

[∣∣∣ |f(x)|n − 1
2

∣∣∣ ≤ 1
n1/(800d) ∧ |f(x)| is odd

]
.

Claim 4.27. For any 0 ≤ a ≤ 2d, we have |ca − δa| ≤ Od

(
1

log(1/ε)

)1/5
. Moreover, the same upper

bound holds on |ce − δe| and |co − δo|.
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Proof of Claim 4.27. We first record a number of consequences of Hoeffding’s inequality (Fact 3.8)
for sufficiently large n. We have

Pr
w∼Bin(n,a/2d)

[∣∣∣w
n

− a

2d

∣∣∣ ≤ 1

n1/(800d)

]
≥ 1− exp

{
−2n1−(1/(400d))

}
≥ 1− e−

√
n

and

Pr
w∼Bin(n,1/2)

[∣∣∣∣wn − 1

2

∣∣∣∣ ≤ 1

n1/(800d)

∣∣∣∣w is even

]
= 1− Pr

w∼Bin(n,1/2)

[∣∣∣∣wn − 1

2

∣∣∣∣ > 1

n1/(800d)

∣∣∣∣w is even

]

≥ 1−
Prw∼Bin(n,1/2)

[∣∣w
n − 1

2

∣∣ > 1
n1/(800d)

]
Prw∼Bin(n,1/2) [w is even]

≥ 1− 2 exp
{
−2n1−(1/(400d))

}
≥ 1− e−

√
n.

Furthermore for b ̸= a,

Pr
w∼Bin(n,b/2d)

[∣∣∣w
n

− a

2d

∣∣∣ ≤ 1

n1/(800d)

]
≤ Pr

w∼Bin(n,b/2d)

[∣∣∣∣wn − b

2d

∣∣∣∣ ≤ 1

2d
− 1

n1/(800d)

]
≤ exp

{
−2n

(
1

2d
− 1

n1/(800d)

)2
}

≤ e−
√
n.

Thus for any 0 ≤ a ≤ 2d, we have

δ′a := Pr
w∼P

[∣∣∣w
n

− a

2d

∣∣∣ ≤ 1

n1/(800d)

]
= ca · Pr

w∼Bin(n,a/2d)

[∣∣∣w
n

− a

2d

∣∣∣ ≤ 1

n1/(800d)

]
+
∑
b ̸=a

cb · Pr
w∼Bin(n,b/2d)

[∣∣∣w
n

− a

2d

∣∣∣ ≤ 1

n1/(800d)

]
≤ ca + e−

√
n.

Similarly, δ′a ≥ ca − e−
√
n. Combining, we find that

|ca − δa| ≤
∣∣ca − δ′a

∣∣+ ∣∣δ′a − δa
∣∣ ≤ e−

√
n + ∥P − |f(Um)|∥TV ≤ Od

(
1

log(1/ε)

)1/5

.

For the case of δe, we have

δ′e := Pr
w∼Bin(n,1/2)

[∣∣∣∣wn − 1

2

∣∣∣∣ ≤ 1

n1/(800d)
∧ w is even

]
= ce · Pr

w∼Bin(n,1/2)

[∣∣∣∣wn − 1

2

∣∣∣∣ ≤ 1

n1/(800d)

∣∣∣∣w is even

]
+
∑

b̸=2d−1

cb · Pr
w∼Bin(n,b/2d)

[∣∣∣∣wn − 1

2

∣∣∣∣ ≤ 1

n1/(800d)
∧ w is even

]

≤ ce +
∑

b ̸=2d−1

cb · Pr
w∼Bin(n,b/2d)

[∣∣∣∣wn − 1

2

∣∣∣∣ ≤ 1

n1/(800d)

]
≤ ce + e−

√
n
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and

δ′e ≥ ce · Pr
w∼Bin(n,1/2)

[∣∣∣∣wn − 1

2

∣∣∣∣ ≤ 1

n1/(800d)

∣∣∣∣w is even

]
≥ ce − e−

√
n.

Thus,

|ce − δe| ≤
∣∣ce − δ′e

∣∣+ ∣∣δ′e − δe
∣∣ ≤ e−

√
n + ∥P − |f(Um)|∥TV ≤ Od

(
1

log(1/ε)

)1/5

.

The analysis of δo is essentially identical.

Recall pσ(x) = |f(x, σ)| mod 2.

Claim 4.28. For any 0 ≤ a ≤ 2d, we have
∣∣∣δa − #{σ:aσ=a}

2|S|

∣∣∣ ≤ poly(ε). Moreover, the same upper

bound holds on∣∣∣∣∣∣δe − 1

2|S|

∑
σ:aσ=2d−1

Pr
x∼U [m]\S

[pσ(x) = 0]

∣∣∣∣∣∣ and

∣∣∣∣∣∣δo − 1

2|S|

∑
σ:aσ=2d−1

Pr
x∼U [m]\S

[pσ(x) = 1]

∣∣∣∣∣∣ .
Proof of Claim 4.28. We can express δa as

1

2|S|

( ∑
σ:aσ=a

Pr
x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− a

2d

∣∣∣∣ ≤ n− 1
800d

]
+
∑

σ:aσ ̸=a

Pr
x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− a

2d

∣∣∣∣ ≤ n− 1
800d

])
.

If aσ = a, then

1− poly(ε) ≤ Pr
x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− a

2d

∣∣∣∣ ≤ 1

n1/(800d)

]
≤ 1

by (32). Additionally, if aσ ̸= a, then

0 ≤ Pr
x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− a

2d

∣∣∣∣ ≤ 1

n1/(800d)

]
≤ poly(ε)

by (33). Thus,

δa ≤ 1

2|S|

(
# {σ : aσ = a}+# {σ : aσ ̸= a} · poly(ε)

)
≤ # {σ : aσ = a}

2|S|
+ poly(ε).

The lower bound on δa follows similarly.
For the case of δe, we have

δe =
1

2|S|

( ∑
σ:aσ=2d−1

Pr
x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− 1

2

∣∣∣∣ ≤ 1

n1/(800d)
∧ |f(x, σ)| is even

]

+
∑

σ:aσ ̸=2d−1

Pr
x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− 1

2

∣∣∣∣ ≤ 1

n1/(800d)
∧ |f(x, σ)| is even

])

≤ 1

2|S|

( ∑
σ:aσ=2d−1

Pr
x∼U [m]\S

[|f(x, σ)| is even] +
∑

σ:aσ ̸=2d−1

Pr
x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− 1

2

∣∣∣∣ ≤ 1

n1/(800d)

])
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≤ 1

2|S|

∑
σ:aσ=2d−1

Pr
x∼U [m]\S

[pσ(x) = 0] + poly(ε)

and

δe ≥
1

2|S|

∑
σ:aσ=2d−1

Pr
x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− 1

2

∣∣∣∣ ≤ 1

n1/(800d)
∧ |f(x, σ)| is even

]

≥ 1

2|S|

∑
σ:aσ=2d−1

(
Pr

x∼U [m]\S
[|f(x, σ)| is even]− Pr

x∼U [m]\S

[∣∣∣∣ |f(x, σ)|n
− 1

2

∣∣∣∣ > 1

n1/(800d)

])
≥ 1

2|S|

∑
σ:aσ=2d−1

Pr
x∼U [m]\S

[pσ(x) = 0]− poly(ε).

The case of δo is essentially identical.

Combining Claim 4.27 and Claim 4.28 gives∣∣∣∣ca − # {σ : aσ = a}
2|S|

∣∣∣∣ ≤ Od

(
1

log(1/ε)

)1/5

for all 0 ≤ a ≤ d, and∣∣∣∣∣∣ce − 1

2|S|

∑
σ:aσ=2d−1

Pr
x∼U [m]\S

[pσ(x) = 0]

∣∣∣∣∣∣ ≤ Od

(
1

log(1/ε)

)1/5

(and similarly for co). Hence |f(Um)| is Od

(
1

log(1/ε)

)1/5
-close to Q (defined in (34)), as desired.

Now that we have the appropriate result for weight distributions, our main result Theorem 4.1
quickly follows from Lemma 3.4. We restate Theorem 4.1 below for convenience.

Theorem 4.1. Let f : {0, 1}m → {0, 1}n be a d-local function. Assume f(Um) is ε-close to a
symmetric distribution D over {0, 1}n. Then if n is sufficiently large in terms of d and ε, f(Um)

is Od

(
1

log(1/ε)

)1/5
-close to a distribution of the form∑

a∈[0,2d]∩Z
a̸=2d−1

ca · Un
a/2d + ce · evens+ co · odds,

where each ca = c′a/2
C for some integer 0 ≤ c′a ≤ 2C and a fixed integer C = Od(1). Moreover,

there exist at most 2C many degree-d F2-polynomials {pi : Fm
2 → F2}, each with Od(n) monomials,

such that

ce =
1

2C
·
∑
i

Pr
x∼Um

[pi(x) = 0] and co =
1

2C
·
∑
i

Pr
x∼Um

[pi(x) = 1] .

Proof. We will prove

∥f(Um)−Q∥TV ≤ Cd ·
(

1

log(1/ε)

)1/5

, (35)

where Q is a distribution of the form in the theorem statement, and Cd ≥ 1 is a sufficiently large
constant depending only on d. (Importantly, we will want 1/Cd to be at most the required upper
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bound on ε in the premise of Lemma 4.26.) We assume ε ≤ 1/Cd, as otherwise the bound in (35)
exceeds 1 and trivially holds. We also assume d ≥ 1, as otherwise f is a constant function, so we
can set Q to be either the 0 or 1-biased product distribution.

Combining our original distance assumption with Lemma 3.4, we have

ε ≥ ∥f(Um)−D∥TV = Θ(∥|f(Um)| − |D|∥TV + ∥f(Um)− f(Um)sym∥TV).

In particular, ∥f(Um)− f(Um)sym∥TV = O(ε). By Lemma 4.26, we have that the distribution over

the Hamming weight of f(Um) is Od

(
1

log(1/ε)

)1/5
-close to a distribution of the form∑

a∈[0,2d]∩Z
a̸=2d−1

ca · Bin(n, a/2d) + ce · |evens|+ co · |odds|,

where the mixing weights have the desired properties. Let M be the symmetric distribution over
{0, 1}n with weight distribution |M| = Q. Again applying Lemma 3.4, we have

∥f(Um)−M∥TV = O
(
∥|f(Um)| − Q∥TV + ∥f(Um)− f(Um)sym∥TV

)
= Od

(
1

log(1/ε)

)1/5

.
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A An Example Towards the Exact Characterization

In this appendix, we provide the full details behind the example described in Subsection 1.2.
Consider the distribution P = Un

1/4 + 2−n−1evens− 2−n−1odds.

Claim A.1. P is not a distribution of the form given by Theorem 4.1.

Proof. Suppose by contradiction there exists a mixture of the form specified by Theorem 4.1:

Q =
∑

a∈[0,2d]∩Z
a̸=2d−1

ca · Un
a/2d + ce · evens+ co · odds (36)
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where P = Q and {ca}, ce, co are nonnegative values summing to 1. For a subset S ⊆ [n], consider
the parity function χS(x) = (−1)

∑
i∈S xi . Observe that for any set S and bias γ, we have

E
x∼Un

γ

[χS(x)] =
∏
i∈S

E
x∼Un

γ

[(−1)xi ] = (1− 2γ)|S| .

Additionally, if |S| < n, we have Ex∼evens[χS(x)] = Ex∼odds[χS(x)] = 0, and otherwise |S| = n,
where Ex∼evens[χS(x)] = 1 and Ex∼odds[χS(x)] = −1. Thus,

E
x∼P

[χS(x)] = E
x∼Un

1/4

[χS(x)] =
1

2|S|

for every S of size smaller than n. In order for P = Q, it must be that for every such S, we have∑
a∈[0,2d]∩Z
a̸=2d−1

ca ·
(
1− a

2d−1

)|S|
= E

x∼Q
[χS(x)] = E

x∼P
[χS(x)] =

1

2|S|
.

Let ba = 1− a
2d−1 . If we consider the left-hand side of the above equation for |S| = 0, 1, . . . , 2d − 1,

this corresponds to the 2d × 2d Vandermonde matrix

V =


1 b0 b20 · · · b2

d−1
0

1 b1 b21 · · · b2
d−1

1

1 b2 b22 · · · b2
d−1

2
...

...
...

. . .
...

1 b2d b2
2d

· · · b2
d−1

2d
.

 .

Note that V does not have a row corresponding to b2d−1 as a = 2d−1 will be handled by evens and
odds. Since the ba’s are all distinct, V is invertible (see, e.g., [Wik25]), so the ca’s are uniquely
determined to be ca = 1 for a = 2d−2 and 0 otherwise. Since we assume (36) is a mixture, we know
that {ca}’s and ce, co are nonnegative values that sum to 1; this enforces ce = co = 0. That is,
Q = Un

1/4, creating the contradiction

1

2n
= E

x∼Un
1/4

[χ[n](x)] = E
x∼Q

[χ[n](x)] = E
x∼P

[χ[n](x)] =
1

2n
+

1

2n+1
− −1

2n+1
=

1

2n−1
.

Claim A.2. P can be sampled exactly by a 3-local function.

Proof. Let all be the uniform distribution over {0, 1}n. Consider the distribution Q defined by
sampling x ∼ evens and y ∼ all, and returning the bitwise AND z = x ∧ y. Clearly, Q can be
sampled with a 3-local function (where x ∼ evens is sampled using the telescoping construction
discussed in the introduction). We will show P = Q.

For a nonnegative integer k, observe that

Pr
z∼Q

[
z = 1k0n−k

]
=

∑
S⊆[n−k]

Pr
x∼evens

[
x = 1kS

]
Pr

y∼all

[
y = 1k · · · , y|S = 0|S|

]
=

∑
S⊆[n−k]

1 + (−1)k+|S|

2n
· 1

2k+|S|
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=
∑

S⊆[n−k]

(
1

2n+k
· 1

2|S|

)
+ (−1)k

∑
S⊆[n−k]

(
1

2n+k

(
−1

2

)|S|
)

=
1

2n+k
·
(
3

2

)n−k

+
(−1)k

2n+k
·
(
1

2

)n−k

=
3n−k + (−1)k

4n
= Pr

z∼P

[
z = 1k0n−k

]
.

Since both P and Q are symmetric distributions, the above calculation implies they must be
equal.

B Missing Proofs in Section 3

B.1 Proof of Fact 3.6

Proof of Fact 3.6. It suffices to assume γ ∈ (0, 1/2] and show for any integer k, we have

Pr [Bin(n, γ) = k] ≤ O(1)
√
γn

. (37)

To this end, we draw samples from Bin(n, γ) in the following way.

• For each i ∈ [n], sample an unbiased random coin Bi ∈ {0, 1} and sample an independent
Wi ∈ {0, 1} with probability Pr[Wi = 1] = 2γ and Pr[Wi = 0] = 1− 2γ.

• Define Xi = Wi ·Bi for each i ∈ [n]. Then output
∑

i∈[n]Xi.

Now define E to be the event that
∑

i∈[n]Wi ≤ γn. Then by Fact 3.9 with δ = 1/2 and µ = 2γn,
we have

Pr[E ] ≤ e−γn/4. (38)

For fixed W = (W1, . . . ,Wn) under which E does not happen, let S = {i ∈ [n] : Wi = 1}. Then,

Pr

∑
i∈[n]

Xi = k

∣∣∣∣∣∣W
 = Pr

[∑
i∈S

Bi = k

]
= Pr [Bin(|S|, 1/2) = k] ≤ O(1)√

|S|
≤ O(1)

√
γn

, (39)

where we use |S| ≥ γn for the last inequality.
Now we prove (37):

LHS of (37) = Pr

∑
i∈[n]

Xi = k

 ≤ Pr[E ] +Pr

∑
i∈[n]

Xi = k

∣∣∣∣∣∣¬E


≤ e−γn/4 +
O(1)
√
γn

(by (38) and (39))

≤ O(1)
√
γn

= RHS of (37).
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B.2 Proof of Fact 3.7

Proof of Fact 3.7. By potentially swapping a and b or by replacing (γ, a, b) with (1−γ, n−a, n−b),
we may assume b ≥ a and Pr [Bin(n, γ) = a] ≥ Pr [Bin(n, γ) = b]. From here, we proceed similarly

to the proof of Fact 3.6: define Xi = W
(X)
i ·B(X)

i and Yi = W
(Y )
i ·B(Y )

i , where each B
(·)
i ∈ {0, 1} is

an independent unbiased random coin, and each W
(·)
i ∈ {0, 1} is an independent random variable

satisfying Pr[W
(·)
i = 1] = 2γ and Pr[W

(·)
i = 0] = 1 − 2γ. For each w ∈ {0, 1}n, we additionally

define Sw = {i ∈ [n] : wi = 1}. Then,

Pr [Bin(n, γ) = a]−Pr [Bin(n, γ) = b]

=
∑
w

Pr
[
W (X) = w

]
Pr

∑
i∈[n]

Xi = a

∣∣∣∣∣∣W (X) = w


−
∑
w

Pr
[
W (Y ) = w

]
Pr

∑
i∈[n]

Yi = b

∣∣∣∣∣∣W (Y ) = w


=
∑
w

Pr
[
W (X) = w

](
Pr

[∑
i∈Sw

B
(X)
i = a

]
−Pr

[∑
i∈Sw

B
(Y )
i = b

])
=
∑
w

Pr
[
W (X) = w

]
(Pr [Bin(|Sw|, 1/2) = a]−Pr [Bin(|Sw|, 1/2) = b])

≤Pr
[
W (X) = 0n

]
+
∑
w ̸=0n

Pr
[
W (X) = w

]
·O
(
b− a

|Sw|

)
,

where the final inequality is somewhat standard (see, e.g., [KOW25, Fact A.3]).
For the remainder of the argument we will assume γ ∈ (0, 1/2]; the remaining case is similar.

Define E to be the event that
∑

i∈[n]W
(X)
i ≤ γn. Then by Fact 3.9 with δ = 1/2 and µ = 2γn, we

have
Pr[E ] ≤ e−γn/4,

so we may continue our calculation as follows:

Pr
[
W (X) = 0n

]
+
∑
w ̸=0n

Pr
[
W (X) = w

]
·O
(
b− a

|Sw|

)

≤ Pr[E ] +
∑

w:|Sw|≥γn

Pr
[
W (X) = w

]
·O
(
b− a

|Sw|

)

≤ e−γn/4 +O

(
b− a

γn

)
≤ O

(
b− a

γ(1− γ)n

)
.
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C Missing Proofs in Section 4

C.1 Missing Proofs in Subsection 4.1

C.1.1 Proof of Claim 4.10

Proof of Claim 4.10. Assume err(p, d) > 2 ·2−30d. Then for any x ∈ {0, 1}m−|S| with
∣∣∣ |f(x,ρ)|n − p

∣∣∣ ≤
2−30d, we have err

(
|f(x,ρ)|

n , d
)
≥ 2−30d. Combining with (6), we then have

Pr
y∼{0,1}m

[
err

(
|f(y)|
n

, d

)
≥ 2−30d

]
≥ Pr [yS = ρ] · Pr

x∼{0,1}[m]\S

[∣∣∣∣ |f(x, ρ)|n
− p

∣∣∣∣ ≤ 2−30d

]
≥ 2−|S|−1.

Recall |S| ≤ dA and ε < 2−cdA for some large constant c > 0. Thus for sufficiently large n, this
contradicts Lemma 4.8.

C.1.2 Proof of Claim 4.11

Proof of Claim 4.11. Observe that

Pr
x∼{0,1}[m]\S

[
err

(
|f(x, ρ)|

n
, d

)
>

1

n1/(800d)

]
= Pr

y∼{0,1}m

[
err

(
|f(y)|
n

, d

)
>

1

n1/(800d)

∣∣∣∣ yS = ρ

]
≤ 2|S| · Pr

y∼{0,1}m

[
err

(
|f(y)|
n

, d

)
>

1

n1/(800d)

]
≤ 2dA ·O

(
ε+ e−n0.9

)
(by Lemma 4.8)

≤ poly(ε) (since ε < 2−cdA)

for sufficiently large n.

C.1.3 Proof of Claim 4.13

Proof of Claim 4.13. Observe that the LHS event has the following two cases:

• err
(
|f(x,ρ)|

n , d
)
> n−1/(800d). By Claim 4.11, this happens with probability poly(ε).

• err
(
|f(x,ρ)|

n , d
)

≤ n−1/(800d) but
∣∣∣ |f(x,ρ)|n − a

2d

∣∣∣ > 1
n1/(800d) . Then it means

∣∣∣ |f(x,ρ)|n − a′

2d

∣∣∣ ≤
n−1/(800d) for some a′ ̸= a. Then∣∣∣∣ |f(x, ρ)|n

− a

2d

∣∣∣∣ ≥ 2−d − n−1/(800d) > 4−d

as n is sufficiently large in terms of d. This happens with probability at most δ.

C.2 Missing Proofs in Subsection 4.3

For the convenience of the reader, we include a full proof of Lemma 4.20. We emphasize that aside
from minor modifications to handle the case of γ = 1/2 and relax some quantitative dependencies,
the proof is essentially copied verbatim from [KOW24].
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Proof of Lemma 4.20. We assume without loss of generality γ ∈ (0, 1/2] by flipping the zeros and
ones of (X,Y, Z,W ) if necessary. Observe that this preserves the congruence. If t = 1 then we have
that Pr [X + |Y | = Z + |W |] = Pr [X = Z] as q ≥ 2. Since X and Z are independent copies of U1

γ ,
we find

Pr [X = Z] = Pr [X = 1]2 + (1−Pr [X = 1])2 = γ2 + (1− γ)2 < 1, (40)

where we use the fact that γ ∈ (0, 1/2].
Now we assume t, q ≥ 2. Expand Pr [X + |Y | ≡ Z + |W | (mod q)] as∑

x,z∈{0,1}

Pr [X = x, Z = z]Pr [x+ |Y | ≡ z + |W | (mod q) |X = x, Z = z] . (41)

For fixed x and z, consider the distribution of x + |Y | mod q conditioned on X = x, Z = z. Since
Z is independent from (X,Y ), it is the same as the distribution, denoted by Px, of x+ |Y | mod q
conditioned on X = x. Similarly define Qz as the distribution of z + |W | mod q conditioned on
Z = z (or equivalently, conditioned on Z = z,X = x).

Since (X,Y ) has distribution U t
γ , P0 has distribution D0, the distribution of |V | mod q for

V ∼ U t−1
γ . Similarly, Q1 has distribution D1, the distribution of 1 + |V | mod q for V ∼ U t−1

γ .
Hence by Fact 3.1,

Pr [|Y | ≡ 1 + |W | (mod q) |X = 0, Z = 1] ≤ 1− ∥P0 −Q1∥TV = 1− ∥D0 −D1∥TV .

The same bound holds for Pr [1 + |Y | ≡ |W | (mod q) |X = 1, Z = 0]. Plugging back into (41), we
have

Pr [X + |Y | ≡ Z + |W | (mod q)] ≤ Pr[X = Z] +Pr[X ̸= Z] · (1− ∥D0 −D1∥TV)
= Pr[X = Z] + (1−Pr[X = Z]) (1− ∥D0 −D1∥TV)
= 1− ∥D0 −D1∥TV (1−Pr[X = Z]) .

We know Pr[X = Z] < 1 by (40), so the desired result follows from showing ∥D0 −D1∥TV > 0 for
any choice of q ≥ 3, as well as for q = 2 if γ ̸= 1/2.

For this we use Fourier analysis. Let ωq = e2πi/q be the primitive q-th root of unit. We consider
the following quantity

Q =

∣∣∣∣ E
X∼D0

[
ωX
q

]
− E

X∼D1

[
ωX
q

]∣∣∣∣ .
On the one hand, we have

Q ≤
∑

c∈Z/qZ

∣∣ωc
q · (D0(c)−D1(c))

∣∣ = ∑
c∈Z/qZ

|D0(c)−D1(c)| = 2 · ∥D0 −D1∥TV . (42)

On the other hand, we have

Q =
∣∣∣(1− γ + γ · ωq)

t−1 − ωq · (1− γ + γ · ωq)
t−1
∣∣∣ (by the definition of D0 and D1)

= |1− ωq| · |1− γ + γ · ωq|t−1 . (43)

Let r = sin2
(
π
q

)
. Then

|1− ωq| =

√(
1− cos

(
2π

q

))2

+ sin2
(
2π

q

)
= 2 ·

∣∣∣∣sin(π

q

)∣∣∣∣ = 2
√
r
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and

|1− γ + γ · ωq| =

√(
1− γ + γ · cos

(
2π

q

))2

+ γ2 · sin2
(
2π

q

)

=

√
1− 4γ(1− γ) · sin2

(
π

q

)
=
√
1− 4γ(1− γ)r.

Combining these with (42) and (43), we have

∥D0 −D1∥TV ≥
√

r · (1− 4γ(1− γ)r)t−1,

which is strictly larger than 0 unless γ = 1/2 and q = 2. This completes the proof.

C.3 Missing Proofs in Subsection 4.4

Proof of Claim 4.25. For clarity, we define/recall the following notation:

• E∗(x) is the event that |x| = γn± n2/3,

• pγ = Prρ [γρ = γ],

• Fγ = Eρ

[
f(U [m]\S , ρ)

∣∣ γρ = γ
]
,

• Gγ is f(Um) conditioned on E∗,

• Dγ is D conditioned on E∗.

We will individually bound ∥Fγ − Gγ∥TV and ∥Gγ −Dγ∥TV, and obtain our claim via the triangle
inequality. Throughout the following, let E be an arbitrary event.

We first compare Fγ and Gγ . By definition,

Pr
x∼Gγ

[E(x)] =
Prx∼f(Um) [E(x) ∧ E∗(x)]

Prx∼f(Um) [E∗(x)]
=

∑
α pαPrx∼Fα [E(x) ∧ E∗(x)]∑

α pαPrx∼Fα [E∗(x)]

=
pγ Prx∼Fγ [E(x) ∧ E∗(x)] +

∑
α ̸=γ pαPrx∼Fα [E(x) ∧ E∗(x)]

pγ Prx∼Fγ [E∗(x)] +
∑

α ̸=γ pαPrx∼Fα [E∗(x)]
. (44)

We will separately bound each of the four terms appearing in (44). Note that if α ̸= γ, then
|α− γ| ≥ 2−d. Thus, if |x| is close to γn, it must be reasonably far from αn. That is,

Pr
x∼Fα

[E∗(x)] = Pr
x∼Fα

[∣∣|x| − γn
∣∣ ≤ n2/3

]
≤ Pr

x∼Fα

[∣∣|x| − αn
∣∣ ≥ ∣∣αn− γn

∣∣− n2/3
]

≤ Pr
x∼Fα

[∣∣|x| − αn
∣∣ ≥ 2−dn− n2/3

]
(since |α− γ| ≥ 2−d)

≤ Pr
x∼Fα

[∣∣|x| − αn
∣∣ ≥ 2−d−1n

]
. (since n ≫ d)

Recall for each restricted function fρ(U [m]\S) there exists some subset Tρ ⊆ [n] of size |Tρ| ≤ Od,k(1)
such that every k-tuple of bits in [n]\Tρ sampled from fρ(U [m]\S) has distribution Uk

γρ (i.e., is k-wise
independent for some even k). Define T to be the union over all Tρ in the mixture Fα, and note
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that |T | ≤ ℓ ·Od,k(1). Let x denote the restriction of x to the bits in [n]\T . Then we may continue
the previous chain of inequalities by

Pr
x∼Fα

[E∗(x)] ≤ Pr
x∼Fα

[∣∣|x| − αn
∣∣ ≥ 2−d−1n− |T |

]
≤ Pr

x∼Fα

[∣∣|x| − α(n− |T |)
∣∣ ≥ 2−d−1n− (1 + α)|T |

]
≤ Pr

x∼Fα

[∣∣|x| − E[x]
∣∣ ≥ 2−d−2n

]
(since n ≫ d, k, ℓ)

≤ 2

(
nk

(2−d−2n)
2

)k/2

(by Fact 3.11)

≤
(
22d+5 · k

n

)k/2

. (45)

Now consider pγ Prx∼Fγ [E∗(x)]. We know by assumption that pγ > 0, so there must exist some
setting ρ of the bits in S such that γρ = γ. Hence, we in fact have the stronger lower bound

pγ ≥ 2−|S|. (46)

For the remaining factor, we find

Pr
x∼Fγ

[E∗(x)] = Pr
x∼Fγ

[∣∣|x| − γn
∣∣ ≤ n2/3

]
≥ 1− Pr

x∼Fγ

[∣∣|x| − γ(n− |T |)
∣∣ > n2/3 − (1 + γ)|T |

]
≥ 1− Pr

x∼Fγ

[∣∣|x| − E[x]
∣∣ > n2/3

2

]
(since n ≫ d, k)

≥ 1− 2

(
nk

(n2/3/2)2

)k/2

(by Fact 3.11)

≥ 1−
(

8k

n1/3

)k/2

. (47)

Finally, we consider pγ Prx∼Fγ [E(x) ∧ E∗(x)]. We can again use (46) to lower bound pγ . Addi-
tionally,

Pr
x∼Fγ

[E(x) ∧ E∗(x)] = Pr
x∼Fγ

[E(x)]− Pr
x∼Fγ

[E(x) ∧ ¬E∗(x)]

≥ Pr
x∼Fγ

[E(x)]−
(
1− Pr

x∼Fγ

[E∗(x)]

)
≥ Pr

x∼Fγ

[E(x)]−
(

8k

n1/3

)k/2

, (48)

where the final inequality uses (47). Substituting (45), (46), (47), and (48) into (44), we find that

Pr
x∼Gγ

[E(x)] =
pγ Prx∼Fγ [E(x) ∧ E∗(x)] +

∑
α ̸=γ pαPrx∼Fα [E(x) ∧ E∗(x)]

pγ Prx∼Fγ [E∗(x)] +
∑

α ̸=γ pαPrx∼Fα [E∗(x)]

≤
Prx∼Fγ [E(x)] + 1

pγ
maxα ̸=γ Prx∼Fα [E∗(x)]

Prx∼Fγ [E∗(x)]
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≤
Prx∼Fγ [E(x)] + 2|S|

(
22d+5·k

n

)k/2
1−

(
8k
n1/3

)k/2 .

Rearranging gives

Pr
x∼Gγ

[E(x)]− Pr
x∼Fγ

[E(x)] ≤
(

8k

n1/3

)k/2

+ 2|S|
(
22d+5 · k

n

)k/2

≤ n−k/10, (49)

since n is sufficiently large in terms of d, k, and ε. Similarly, we find that

Pr
x∼Gγ

[E(x)] =
pγ Prx∼Fγ [E(x) ∧ E∗(x)] +

∑
α ̸=γ pαPrx∼Fα [E(x) ∧ E∗(x)]

pγ Prx∼Fγ [E∗(x)] +
∑

α ̸=γ pαPrx∼Fα [E∗(x)]

≥
Prx∼Fγ [E(x) ∧ E∗(x)]

1 + 1
pγ

maxα ̸=γ Prx∼Fα [E∗(x)]

≥
Prx∼Fγ [E(x)]−

(
8k
n1/3

)k/2
1 + 2|S|

(
22d+5·k

n

)k/2 ,

or equivalently

Pr
x∼Fγ

[E(x)]− Pr
x∼Gγ

[E(x)] ≤
(

8k

n1/3

)k/2

+ 2|S|
(
22d+5 · k

n

)k/2

≤ n−k/10. (50)

Combining (49) and (50) yields
∥Fγ − Gγ∥TV ≤ n−k/10. (51)

We now compare Gγ and Dγ . For clarity, define

A

B
:=

Prx∼f(Um) [E(x) ∧ E∗(x)]

Prx∼f(Um) [E∗(x)]
= Pr

x∼Gγ

[E(x)]

and
A′

B′ :=
Pry∼D [E(y) ∧ E∗(y)]

Pry∼D [E∗(y)]
= Pr

x∼Dγ

[E(x)] .

By our initial assumption, we know

max
{
|A−A′|, |B −B′|

}
≤ ∥f(Um)−D∥TV ≤ ε. (52)

Thus, ∣∣∣∣ Pr
x∼Gγ

[E(x)]− Pr
x∼Dγ

[E(x)]
∣∣∣∣ = |AB′ −A′B|

BB′ ≤ A+B

B(B − ε)
· ε (by (52))

≤ 2B

B(B − ε)
· ε

≤ 2ε ·
(

1

pγ Prx∼Fγ [E∗(x)]− ε

)

53



≤ 2ε ·

 1

2−|S|
(
1−

(
8k
n1/3

)k/2)
− ε

 (by (46) & (47))

≤ 2ε ·
(

1

2−2|S| − ε

)
. (since n large in terms of k, ε)

Recall that |S| ≤ dk, where k ≤ log(1/ε)/Cd for some sufficiently large constant Cd > 0 depending
only on d. Hence, ∣∣∣∣ Pr

x∼Gγ

[E(x)]− Pr
x∼Dγ

[E(x)]
∣∣∣∣ ≤ Od(ε). (53)

Combining (51) and (53), we conclude

∥Fγ −Dγ∥TV ≤ ∥Fγ − Gγ∥TV + ∥Gγ −Dγ∥TV ≤ n−k/10 +Od(ε) ≤ Od(ε)

for large enough n.
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