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Abstract
We formalize AI alignment as a multi-objective optimiza-
tion problem called ⟨M,N, ε, δ⟩-agreement, in which a set
of N agents (including humans) must reach approximate (ε)
agreement across M candidate objectives, with probability at
least 1− δ. Analyzing communication complexity, we prove
an information-theoretic lower bound showing that once ei-
ther M or N is large enough, no amount of computational
power or rationality can avoid intrinsic alignment overheads.
This establishes rigorous limits to alignment itself, not merely
to particular methods, clarifying a “No-Free-Lunch” princi-
ple: encoding “all human values” is inherently intractable and
must be managed through consensus-driven reduction or pri-
oritization of objectives. Complementing this impossibility
result, we construct explicit algorithms as achievability cer-
tificates for alignment under both unbounded and bounded ra-
tionality with noisy communication. Even in these best-case
regimes, our bounded-agent and sampling analysis shows that
with large task spaces (D) and finite samples, reward hack-
ing is globally inevitable: rare high-loss states are systemati-
cally under-covered, implying scalable oversight must target
safety-critical slices rather than uniform coverage. Together,
these results identify fundamental complexity barriers—tasks
(M ), agents (N ), and state-space size (D)—and offer princi-
ples for more scalable human-AI collaboration.

1 Introduction
Rapid progress in artificial intelligence (AI) technologies,
increasingly deployed across critical economic and societal
domains, underscores the importance of ensuring these sys-
tems align with human intentions and values—a challenge
known as the value alignment problem (Russell, Dewey, and
Tegmark 2015; Amodei et al. 2016; Soares 2018). Current
alignment research frequently addresses immediate prac-
tical concerns, such as preventing jailbreaks in large lan-
guage models (Ji et al. 2023; Guan et al. 2024; Hubinger
et al. 2024). While essential, these approaches largely fo-
cus on specific AI architectures and lack general, theoreti-
cally proven guarantees for alignment as systems approach
human-level general capability.

Existing theoretical frameworks, notably AI Safety via
Debate (Irving, Christiano, and Amodei 2018; Brown-
Cohen, Irving, and Piliouras 2023, 2025) and Cooper-
ative Inverse Reinforcement Learning (CIRL) (Hadfield-
Menell et al. 2016), have significantly advanced our un-

derstanding by providing formal guarantees of alignment
in specific scenarios. Debate effectively leverages interac-
tive proofs to isolate misalignment through zero-sum de-
bate games, though it relies critically on exact verification
by a correct and unbiased human judge and computational
tractability constraints. CIRL successfully formulates align-
ment as a cooperative partial-information game reducible
to a POMDP, allowing an elegant characterization of opti-
mal joint policies under shared uncertainty (Hadfield-Menell
et al. 2016). However, CIRL implicitly assumes common
priors and employs a Markovian assumption, potentially
limiting agents’ ability to leverage richer historical contexts
for alignment. While these methods represent important
theoretical progress, their simplifying assumptions restrict
broader applicability and leave open questions about align-
ment scenarios involving diverse knowledge states, richer
agent interactions, or more complex objectives. This un-
derscores a crucial theoretical gap: no unified framework
currently addresses alignment under minimal assumptions
while rigorously identifying intrinsic barriers independent
of specific modeling choices. We propose that prior align-
ment approaches implicitly rely on underlying conceptual
foundations involving iterative reasoning, mutual updating,
common knowledge, and convergence under shared frame-
works.

To bridge this gap, we explicitly formalize these elements
within an assumption-light framework called ⟨M,N, ε, δ⟩-
agreement (§3), which models alignment as a multi-
objective optimization problem involving minimally capa-
ble agents and allows us to rigorously analyze alignment in
highly general contexts. In ⟨M,N, ε, δ⟩-agreement, a group
of agents (including humans) must achieve approximate
consensus across multiple objectives with high probability.
We show in Table 1 that our framework generalizes previous
alignment approaches by relaxing their strong assumptions,
thus enabling analysis under a broad set of conditions.

We then rigorously establish intrinsic, method-
independent complexity-theoretic barriers to alignment,
formalizing a fundamental “No-Free-Lunch” principle
in Proposition 1: attempting to encode all human values
inevitably incurs alignment overheads, regardless of agent
computational power or rationality. Complementing this
impossibility result, we also provide explicit algorithms
in §5, not as prescriptions, but as achievability certificates
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Figure 1: Mapping our ⟨M,N, ε, δ⟩-agreement to current RLHF/DPO/Constitutional AI pipelines.

Framework No-CPA Approx Multi-M Multi-N Hist. Bnd. Asym. Noise Upper Lower

Aumann (1976) × × × × ✓ × × × × ×
Aaronson ⟨ε, δ⟩ (2005) × ✓ × ✓ ✓ ✓ × ✓ ✓ ✓
Almost CP (Hellman and Samet 2012; Hellman 2013) ✓ × × ✓ ✓ × × × × ×
CIRL (Hadfield-Menell et al. 2016) × ✓ × × × ✓ × ✓ ✓ ×
Iterated Amplification (Christiano et al. 2018) ✓ ✓ × × ✓ ✓ × ✓ ✓ ×
Debate (Irving et el. 2018; Cohen et al. 2023, 2025) ✓ × × × ✓ ✓ × ✓ ✓ ×
Tractable Agreement (Collina et al. 2025) ✓ ✓ × ✓ ✓ ✓ × × ✓ ×
⟨M,N, ε, δ⟩-agreement (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Positive capabilities (✓) across frameworks. No-CPA: no common-prior assumption (CPA); Approx: allows
ε-approximate agreement; Multi-M / Multi-N : supports multiple tasks / many agents; Hist.: handles rich (non-Markovian)
histories; Bnd.: works for computationally bounded agents; Asym.: tolerates asymmetric evaluation or interaction costs; Noise:
robust to noisy messages or judgments; Upper: provides explicit upper bounds (algorithms)—these can be useful as achiev-
ability certificates rather than prescriptions; Lower: proves lower bounds. Our ⟨M,N, ε, δ⟩-agreement satisfies every criterion.

for both computationally unbounded and bounded rational
agents, alongside closely matching lower bounds in §4.
Taken together, our results yield guidelines (§6) clarifying
the overall landscape of alignment and providing practical
pathways for more scalable human-AI collaboration.

2 Related Work
We summarize the key assumptions and features of previous
alignment and agreement frameworks in Table 1, positioning
our ⟨M,N, ε, δ⟩-agreement framework within the literature.
Where earlier methods typically require common priors, ex-
act agreement, single-objective settings, or Markovian dy-
namics, our framework drops these assumptions, scales to
many tasks and agents, tolerates noisy non-Markovian ex-
changes, and supports bounded, cost-asymmetric partici-
pants. Because it operates at the scalar-reward level that
dominates real-world AI-safety work, it can absorb any
previous protocol—including two-agent, no-common-prior
schemes such as Collina et al. (2025)—and lift them to our
more general multi-task, multi-agent, asymmetric, noisy set-
ting, obtaining universal lower bounds and closely matching

upper bounds for broad classes of natural protocols.

3 ⟨M,N, ε, δ⟩-Agreement Framework
Setup. For M tasks [M ] := {1, . . . ,M} and N agents
(humans and AIs) [N ] := {1, . . . , N}, each task j ∈ [M ]
has finite state-space Sj with |Sj | = Dj , bounded1 objective
fj : Sj → [0, 1], and probability simplex ∆(Sj) ⊆ RDj .

Each agent i ∈ [N ] begins with an individual prior P i
j

over Sj ; we do not assume a common prior (CPA). The
prior distance, as introduced by Hellman (2013), is:

νj = min
⟨x1,x2⟩∈Pi

j×Pk
j , p∈∆(Sj)

∥x1 − p∥1 + ∥x2 − p∥1 (1)

measures disagreement between any pair of priors; νj = 0
iff a true common prior exists. Note by the triangle inequal-
ity, νj ≥ ∥Pi

j − Pk
j ∥1 if these priors are sets of prior dis-

tributions per agent, and holds with equality for the typical
setting of single prior distributions per agent. This notion of
prior distance captures the smallest change in beliefs needed

1Since Sj is finite, note that any fj : Sj → R can be rescaled
to [0, 1].



for agents to share a common prior—a measure of how close
the agents already are to agreement.

Information flow. At round t ≥ 0 each agent i holds
a knowledge partition Πi,t

j =
{
C i,t

j,k

}
k

of Sj . Each cell

C i,t
j,k ⊆ Sj is a set of states, so Πi,t

j (sj) is the set of states
in Sj that agent i finds possible at time t, given that the
true state of the world is sj ∈ Sj . Agents broadcast real-
valued messages mi,t

j ∈ [0, 1] and refine their partitions:
Πi,t+1

j ⊆ Πi,t
j , and update their posterior belief distribu-

tions τ i,tj , giving rise to the type profile across the N agents
τ tj = (τ1,tj , . . . τN,t

j ). All knowledge partitions are common
knowledge, ensuring the standard Aumann (1976, 1999) up-
date semantics, but without assuming CPA. Please see Ap-
pendix §B for full details.

⟨M,N, ε, δ⟩-Agreement Criterion. Fix tolerances
εj , δj ∈ (0, 1). After T rounds, the agents ⟨M,N, ε, δ⟩-
agree if:

Pr
(∣∣EPi

j

[
fj | Π i,T

j

]
− EPk

j

[
fj | Π k,T

j

]∣∣ ≤ εj) > 1− δj ,

∀i, k ∈ [N ] ∀j ∈ [M ].
(2)

Exact agreement is the special case εj = δj = 0.

Why this “best-case” model matters. ⟨M,N, ε, δ⟩ sub-
sumes classical exact (and inexact) agreement results and all
prior alignment formalisms that we examine in Table 1 (vi-
sualized in Figure 1). If alignment is hard even here—with
fully rational and computationally unbounded agents, ideal
message delivery, and no exogenous adversary—then prac-
tical settings with bounded rationality, noisy channels, or
strategic misreporting can only be harder (therefore we want
to avoid them). §5.2 quantifies exactly how much harder.

Notation. Let D := maxj∈[M ]Dj when used in the con-
text of upper bounds (and D := minj∈[M ]Dj for lower
bounds), let ε := minj∈[M ] εj , and write P,E for prob-
ability and expectation. The power-set function is P(·).
All omitted proofs and implementation details—e.g. explicit
message formats, the spanning-tree protocol for refinement,
and the LP procedure CONSTRUCTCOMMONPRIOR used in
§5.2—are provided in the Appendix.

4 Lower Bounds
Below is the best lower bound we can prove for
⟨M,N, ε, δ⟩-agreement, across all possible communication
protocols:
Proposition 1 (General Lower Bound). There exist func-
tions fj , input sets Sj , and prior distributions {Pi

j}i∈[N ]

for all j ∈ [M ], such that any protocol among N agents
needs to exchange Ω

(
M N2 log (1/ε)

)
bits2 to achieve

⟨M,N, ε, δ⟩-agreement on {fj}j∈[M ], for ε bounded below
by minj∈[M ] εj .

2Note, unlike our upper bounds in Theorem 1 and Proposition 4,
we use bits in the lower bound in order to apply to all possible pro-
tocols (continuous or discrete), regardless of how many bits are

Thus, by Proposition 1, there does not exist any
⟨M,N, ε, δ⟩-agreement protocol (deterministic or random-
ized) that can exchange less than Ω

(
M N2 log (1/ε)

)
bits

for all fj , Sj , and prior distributions {Pi
j}i∈[N ]. For if it did,

then we would reach a contradiction for the particular con-
struction in Proposition 1. Note that the linear dependence
on M can mean an exponential number of bits in the lower
bound if we have that many distinct tasks (or agents), e.g. if
M = Θ(D) for a large task state space D.

By considering the natural subclass of smooth pro-
tocols—where agents’ posterior beliefs at ⟨M,N, ε, δ⟩-
agreement time must not diverge more than their initial
priors, measured in total variation distance—we obtain a
strictly improved lower bound:
Proposition 2 (“Smooth” Protocol Lower Bound). Let the
number of tasks M ≥ 2, and for each task j ∈ [M ], let
the task state space size Dj > 2, ε ≤ εj , δj < ν/2, and
0 < ν ≤ 1. Furthermore, assume the protocol is smooth
in that the total variation distance of the posteriors of the
agents once ⟨M,N, ε, δ⟩-agreement is reached is ≤ cν for
c < 1

2 −
δj
ν . There exist functions fj , input sets Sj , and

prior distributions {Pi
j}i∈[N ] with prior distance νj ≥ ν,

such that any smooth protocol among N agents needs to ex-
change:

Ω
(
M N2 (ν + log (1/ε))

)
bits to achieve ⟨M,N, ε, δ⟩-agreement on {fj}j∈[M ].

Both lower bounds in Propositions 1 and 2 demonstrate
that gaining consensus on a small list of M values that we
want AI systems to have, will be essential for scalable align-
ment.

Finally, we consider a related smoothness condi-
tion—namely, the broad class of bounded-Bayes-factor
(BBF) protocols—in which each message bit alters message
likelihoods by at most a constant multiplicative factor. This
assumption naturally captures realistic message-passing be-
havior, since rational and bounded agents typically update
their beliefs incrementally rather than abruptly shifting pos-
terior distributions after receiving a single message. Under
this mild condition, we examine a natural setting: agents ini-
tially separated by prior distance ν first establish a common
prior by satisfying the canonical equalities of Hellman and
Samet (2012) (displayed in Algorithm 2 in Appendix §G.3),
and subsequently condition on this shared prior to achieve
⟨M,N, ε, δ⟩-agreement. They showed that for tight and con-
nected knowledge partitions (defined below), these canon-
ical equalities are automatically preserved under standard
Bayesian updating; hence, our construction needs no further
behavioral constraints beyond standard Bayesian rationality.

Under these reasonable conditions, our lower bound
strengthens to include an extra multiplicative factor of D :=
minj Dj , the smallest state-space size across the M tasks.
Thus, this refined lower bound more closely matches the
general upper-bound results from §5 (cf. Algorithm 1) for

encoded per message. The upper bounds have to use messages
(rounds) to describe either a continuous protocol (potentially in-
finitely many bits) as in Theorem 1, or a discrete protocol as in
Proposition 4.



this protocol class within an additive polynomial term in
M,N, ε, and δ.

Proposition 3 (Canonical-Equality BBF Protocol Lower
Bound). Let M ≥ 2 be the number of tasks and let each
task j have a finite state-space Sj with size Dj > 2. For
every j, let the initial knowledge profiles of the N agents,
(Π1,0

j , . . . ,ΠN,0
j ), be

1. connected: the alternation graph on states is connected,
i.e.
∧

i Π
i,0
j = {Sj}, so every two states are linked by an

alternating chain of states; and
2. tight: that graph becomes disconnected if any edge is re-

moved (unique chain property).

Assume the message-passing protocol is BBF(β) for some
β > 1: every b-bit message mi,t

j satisfies β−b ≤ Pr[mi,t
j |

sj ,Π
i,t−1
j (sj)]/Pr[m

i,t
j | s′j ,Π

i,t−1
j (s′j)]≤ β b. Then there

exist payoff functions fj : Sj→ [0, 1] and priors {P i
j}i∈[N ]

with pairwise distance νj ≥ ν, 0 < ν ≤ 1, such that any
BBF(β) protocol attaining ⟨M,N, ε, δ⟩-agreement via the
canonical equalities of Hellman and Samet (2012) must ex-
change at least

Ω
(
M N2 [Dν + log(1/ε) ]

)
, D := min

j∈[M ]
Dj ,

bits in the worst case (implicit constant = 1/ log β), where
the accuracy parameter 0 < ε ≤ εj < 1.

5 Convergence of ⟨M,N, ε, δ⟩-agreement
Given these lower bounds, a natural question is whether
⟨M,N, ε, δ⟩-agreement is achievable at all—especially
since the agents begin without a common prior. In this sec-
tion, we demonstrate that it is indeed achievable, providing
explicit algorithms and upper bounds on convergence not
only for idealized, unbounded agents but also under realis-
tic constraints such as message discretization and computa-
tional boundedness. Here we prove the general upper bound:

Theorem 1. N rational agents will ⟨M,N, ε, δ⟩-agree with
overall failure probability δ across M tasks, as defined in

(2), after T = O

(
MN2D +

M3N7

ε2δ2

)
messages, where

D := maxj∈[M ]Dj and ε := minj∈[M ] εj .

For an explicit algorithm, see Algorithm 1—we detail the
reasoning behind this algorithm below.

First, we need to figure out at most how many messages
need to be exchanged to guarantee at least one proper refine-
ment. To do so, we will have the N agents communicate us-
ing the “spanning-tree” protocol of Aaronson (2005, §3.3),
which we generalize to the multi-task, no common prior, set-
ting below:

Lemma 1 (Proper Refinement Message Mapping Lemma).
If N agents communicate via a spanning-tree protocol for
task j, where gj ∈ N is the diameter of the chosen spanning
trees, then as long as they have not yet reached agreement,
it takesO(gj) = O(N) messages before at least one agent’s
knowledge partition is properly refined.

Algorithm 1: ⟨M,N, ε, δ⟩-Agreement

Require: N agents with initial partitions {Πi,0
j }Ni=1 for

each task j ∈ [M ]; protocolP; CONSTRUCTCOMMON-
PRIOR defined in Algorithm 2; ⟨ε, δ⟩-agreement proto-
col A

Ensure: Agents reach ⟨εj , δj⟩-agreement for all M tasks
1: for j ← 1 to M do
2: t← 0
3: repeat
4: t← t+ 1
5: for all agent i ∈ [N ] do
6: send mi,t

j via P
7: Πi,t

j ← REFINEPARTITION
(
Πi,t−1

j ,m·,t
j

)
8: end for
9: CPj ← CONSTRUCTCOMMONPRIOR

(
{Πi,t

j }Ni=1,

10: {τ i,tj }Ni=1

)
11: until CPj ̸= INFEASIBLE
12: Condition all agents on CPj

13: RUNCPAGREEMENT (A,P,CPj , fj , εj , δj)
14: end for

Proof. Let Gj be a strongly connected directed graph with
vertices v ∈ [N ] (one per agent), enabling communication
of expectationsEi,t

j along edges. (We need the strongly con-
nected requirement on Gj , since otherwise the agents may
not reach agreement for trivial reasons if they cannot reach
one another.) Without loss of generality, let SP 1

j and SP 2
j

be minimum-diameter spanning trees of Gj , each rooted at
agent 1, with SP 1

j pointing outward from agent 1 and SP 2
j

inward toward agent 1, each of diameter at most gj .
Define orderings O1

j (resp. O2
j ) of edges in SP 1

j (resp.
SP 2

j ) so each edge (i → k) appears only after edges
(ℓ → i), except when i is the root (or leaf, in inward trees).
Construct AgentOrderingj by cycling throughO1

j ,O2
j , . . . ,

where in each round t the tail agent of AgentOrderingj(t)
sends its current expectation. Thus, every block of O(gj)
transmissions forwards each agent’s updated message along
both trees, reaching all others.

Consequently, disagreement between any agents i and k
leads to at least one agent receiving a “surprising” message
within these O(gj) transmissions (worst-case occurs when
i, k are on opposite ends of Gj), causing a partition refine-
ment. Thus, without agreement, at least one refinement oc-
curs every O(gj) messages.

Note gj = O(N) if Gj is a worst-case ring topology;
more favorable topologies yield gj ≪ N , but we assume
worst-case generality to subsume any specific cases.

Next, we prove an important (for our purposes) lemma,
which is an extension of Hellman (2013, Theorem 2)’s re-
sult on almost common priors to our M -function message
setting:
Lemma 2 (Common Prior Lemma). If N agents have prior
distance νj , as defined in (3), for a task j ∈ [M ] with task
state space Sj , then after O

(
N2Dj

)
messages, they will



have a common prior CPj with probability 1 over their type
profiles.

Once the agents reach a common prior CPj , they can then
condition on that for the rest of their conversation to reach
the desired 1 − δj εj-agreement threshold (cf. Step 12 of
Algorithm 1). We assume this is O(1) to compute for now
as the agents are computationally unbounded, but we will
remove this assumption in §5.2, and instead use Algorithm 2
(Appendix §G.3) for an efficient explicit construction via LP
feasibility of posterior belief ratios.

Therefore, for each task j, we have reduced the problem
now to Aaronson’s ⟨ε, δ⟩-agreement framework (Aaronson
2005), and as he shows, the subsequent steps conditioning
on a common prior become unbiased random walks with
step size roughly εj . With some slight modifications, this
allows us to give a worst-case bound on the number of re-
maining steps in our ⟨M,N, ε, δ⟩-agreement setting:

Lemma 3. For all fj and CPj , the N agents will globally

⟨εj , δj⟩-agree after O
(
N7/(δjεj)

2
)

additional messages.

Proof. By Aaronson (2005, Theorem 10), the N agents will
pairwise ⟨εj , δj⟩-agree afterO

((
Ng2j

)
/(δjεj)

2
)

messages
when they condition on CPj , where gj is the diameter of
the spanning-tree protocol they use. Furthermore, we will
need to have them

〈
εj , δj/N

2
〉
-agree pairwise so that they

globally ⟨εj , δj⟩-agree. Taking gj = O(N) for the worst-
case ring topology gives us the above bound.

By Lemmas 2 and 3, for each j ∈ [M ], we need

O

(
N2Dj +

N7

(δjεj)
2

)
messages for the N agents to reach

⟨M = 1, N, εj , δj⟩-agreement. Next, select a uniform δ
such that δj ≤ δ/M , for all j ∈ [M ]. Therefore, by a union
bound, we get the full upper bound in Theorem 1 with to-
tal probability ≥ 1 − δ, across all M tasks, by maximiz-
ing the bound above by taking D := maxj∈[M ]Dj and
ε := minj∈[M ] εj , and scaling by M .

5.1 Discretized Extension
A natural extension of Theorem 1 is if the agents do not
communicate their full real-valued expectation (which may
require infinitely many bits), but a discretized version of the
current expectation, corresponding to whether it is above
or below a given threshold (defined below), e.g. “High”,
“Medium”, or “Low” (requiring only 2 bits). We prove con-
vergence in this case, and show that the bound from The-
orem 1 remains unchanged in this setting. Discretization is
important to show convergence and complexity analysis for,
since this most closely matches real-world constraints (e.g.
LLM agents use discrete, real-valued tokens), as opposed to
infinite-bit real valued messages.

Proposition 4 (Discretized Extension). If N agents
only communicate their discretized expectations, then
they will ⟨M,N, ε, δ⟩-agree with overall failure prob-
ability δ across M tasks as defined in (2), after

T = O

(
MN2D +

M3N7

ε2δ2

)
messages, where D :=

maxj∈[M ]Dj and ε := minj∈[M ] εj .
Our discretized three-bucket protocol itself is general and

imposes no BBF constraint—in Appendix §F we show it can
be made BBF(3)-compliant with small overhead. Thus, by
the lower bound from Proposition 3, for the broad and nat-
ural class of canonical-equality BBF protocols, our upper
bound in Proposition 4 is tight up to an additive polynomial
term after converting from messages to bits.

5.2 Computationally Bounded Agents
Thus far, we analyzed computationally unbounded agents,
implicitly assuming O(1) time for constructing and sending
messages, finding common priors, and sampling distribu-
tions. Even under these idealized conditions, the linear scal-
ing in Theorem 1 becomes significant if the task space D or
number of tasks M is exponentially large.

However, realistic agents, such as current LLMs, are com-
putationally bounded, and message passing may be noisy,
e.g., due to obfuscated intent (Barnes and Christiano 2020).
Thus, we now analyze the complexity of N computationally
bounded rational agents. Moreover, since querying humans
typically costs more than querying AI agents, we differenti-
ate between q humans (each taking TH time steps) andN−q
AI agents (each taking TAI time steps), encompassing recent
multi-step reasoning models (Jaech et al. 2024; DeepMind
2024). Without loss of generality, we assume uniform times
within these two groups and analyze complexity based on
two basic subroutines:
Requirement 1 (Basic Capabilities of Bounded Agents).
We expect the agents to be able to:
1. Evaluation: The N agents can each evaluate fj(sj) for

any state sj ∈ Sj , taking time Teval,a steps for a ∈
{H,AI}.

2. Sampling: The N agents can sample from the uncondi-
tional distribution of any other agent, such as their prior
Pi
j , taking time Tsample,a steps for a ∈ {H,AI}.

We treat these subroutines as black boxes: agents
lack explicit descriptions of fj and distributions, learning
about them solely through these operations. Analogous to
CIRL (Hadfield-Menell et al. 2016), this setup captures re-
alistic alignment scenarios where the correctness of a task
outcome can be verified without specifying each interme-
diate step. Consequently, our complexity results are broadly
applicable, expressed in terms of Teval,H , Teval,AI , Tsample,H ,
and Tsample,AI .

These minimal subroutines enable agents to estimate each
other’s expectations, an essential capability for alignment.
Importantly, exact computation is unnecessary; probabilistic
evaluation in polynomial time suffices (as will become clear
in the proof of Theorem 2, due to the exponential blow-up).
The sampling subroutine further serves as a bounded version
of the standard assumption that agents know each other’s
knowledge partitions through shared states (Aumann 1976,
1999). This corresponds to agents possessing a bounded
“theory of mind” (Ho, Saxe, and Cushman 2022) about one
another.



Finally, as we can no longer assume O(1) time com-
plexity for constructing a common prior (unlike in the un-
bounded agent setting), we introduce an explicit randomized
polynomial-time algorithm for doing so with high probabil-
ity, Algorithm 2. We refer the reader to Appendix §G.3 for
proofs related to Algorithm 2. Specifically, Lemma 7 (cor-
rectness), Lemma 8 (runtime analysis), and Lemma 9 (inex-
act posterior access setting).

In what follows, define
TN,q := q Tsample,H + (N − q)Tsample,AI

+ q Teval,H + (N − q)Teval,AI .

The above considerations lead to the following theorem in
the bounded agent setting:
Theorem 2 (Bounded Agents Eventually Agree). Let there
be N computationally bounded rational agents (consisting
of 1 ≤ q < N humans and N − q ≥ 1 AI agents), with
the capabilities in Requirement 1. The agents pass mes-
sages according to the sampling tree protocol (detailed in
Appendix §G.2) with branching factor of B ≥ 1/α, and
added triangular noise of width ≤ 2α, where ε/50 ≤ α ≤
ε/40. Let δfind CP be the maximal failure probability of the
agents to find a task-specific common prior across all M
tasks, and let δagree CP be the maximal failure probability
of the agents to come to ⟨M,N, ε, δ⟩-agreement across all
M tasks once they condition on a common prior, where
δfind CP + δagree CP < δ. For the N computationally bounded
agents to ⟨M,N, ε, δ⟩-agree with total probability ≥ 1− δ,
takes time

O

(
M TN,q

(
BN2D

ln

(
δfind CP/(3MN2D)

)
ln(1/α) + B

9M2N7

(δagree CPε)2

))
.

In other words, just in the first term alone, exponential in
the task space size D and number of agents N (and expo-
nential in the number of tasks M in the second term). So if
the task space size is in turn exponential in the input size,
then this would already be doubly exponential in the input
size!

We now clarify why we let B be a parameter, and give a
concrete example of how bad this exponential dependence
can be. Intuitively, we can think of B as a “gauge” on
how distinguishable the bounded agents are from “true” un-
bounded Bayesians, and will allow us to give an explicit de-
sired value for B. Recognizing the issue of computational
boundedness of agents in the real world, Hanson (2003) in-
troduced the notion of Bayesian wannabes: agents who es-
timate expectations as if they had sufficient computational
resources. He showed that disagreement among Bayesian
wannabes stems from computational limitations rather than
differing information. Extending this idea, Aaronson (2005)
proposed a protocol ensuring that bounded agents appear
statistically indistinguishable from true Bayesians to an ex-
ternal referee—effectively a “Bayesian Turing Test” (Turing
1950) for rationality. Thus, B explicitly quantifies this no-
tion of bounded Bayesian indistinguishability.

We consider the M -function, N -agent generalization of
this requirement (and without common priors (CPA)), which
we call a “total Bayesian wannabe”:

Definition 1 (Total Bayesian Wannabe). Let the N agents
have the capabilities in Requirement 1. For each task j ∈
[M ], let the transcript of T messages exchanged between N
agents be denoted as Γj :=

〈
m1

j , . . . ,m
T
j

〉
. Let their initial,

task-specific priors be denoted by {Pi
j}i∈[N ]. Let B(sj) be

the distribution over message transcripts if the N agents are
unbounded Bayesians, and the current task state is sj ∈ Sj .
Analogously, let W(sj) be the distribution over message
transcripts if the N agents are “total Bayesian wannabes”,
and the current task state is sj ∈ Sj . Then we require for all
Boolean functions3 Φ(sj ,Γj),∥∥∥∥∥∥∥∥

PΓj∈W(sj)
sj∈Sj

[
Φ(sj ,Γj) = 1

]
− PΓj∈B(sj)

sj∈Sj

[
Φ(sj ,Γj) = 1

]
∥∥∥∥∥∥∥∥
1

≤ ρj , ∀j ∈ [M ],

where Sj := {P i
j}i∈[N ]. We can set ρj ∈ R as arbitrarily

small as preferred, and it will be convenient to only consider
a single ρ := minj∈[M ] ρj without loss of generality (corre-
sponding to the most “stringent” task j).

We will show in Appendix §G.3 that matching this re-
quirement amounts to picking a large enough value for B,
giving rise to the following corollary to Theorem 2:

Corollary 1 (Total Bayesian Wannabes Agree). Let there be
N total Bayesian wannabes, according to Definition 1 (e.g.
consisting of 1 ≤ q < N humans andN−q ≥ 1 AI agents).
Let the branching factor of the sampling tree protocol be
the same as before, B ≥ 1/α, with added triangular noise
of width ≤ 2α, where ε/50 ≤ α ≤ ε/40. Let δfind CP be
the maximal failure probability of the agents to find a task-
specific common prior across all M tasks, and let δagree CP

be the maximal failure probability of the agents to come to
⟨M,N, ε, δ⟩-agreement across all M tasks once they con-
dition on a common prior, where δfind CP + δagree CP < δ.
For theN “total Bayesian wannabes” to ⟨M,N, ε, δ⟩-agree
with total probability ≥ 1− δ, takes time

O
(
M TN,q

(
BN2D

ln

(
δfind CP/(3MN2D)

)
ln(1/α)

+ (11/α)
729M6N21

(δagree CPε)6 ρ
− 18M2N7

(δagree CPε)2
))
.

In other words, exponential time in the task space D, and by
(18), and with a large base in the second term if the “total
Bayesian wannabe” threshold ρ is made small.

Sharing a common prior amounts to removing the first
term, yielding upper bounds that are still exponential in ε
and δ.

The proofs of Theorem 2 and Corollary 1 are quite tech-
nical (spanning 7 pages), so we defer them to Appendix
§G for clarity. The primary takeaway here is that computa-
tional boundedness can result in a severely exponential time
slowdown in the agreement time, and especially so if you
want the bounded agents to be statistically indistinguishable

3Without loss of generality, we assume that the current task
state sj and message transcript Γj are encoded as binary strings.



in their interactions with each other from true unbounded
Bayesians.

For example, even forN = 2 agents with a common prior
and liberal agreement threshold of ε = δ = 1/2 and “total
Bayesian wannabe” threshold of ρ = 1/2 on one task (M =
1), then α ≥ 1/100, the number of subroutine calls (not
even total runtime) would be around:

O

(
(1100)

1528823808
(1/4)6

(1/2)
2304

(1/4)2

)
≈ O

(
1010

13.27979
)
,

would already far exceed the estimated (Munafo 2013, pg.
19) number of atoms in the universe (∼ 4.8 × 1079)! This
illustrates the power of the unbounded Bayesians we consid-
ered earlier in §4, and why the lower bounds there are worth
paying attention to in practice.

Finally, note that in general under a sampling tree proto-
col, this exponential blow-up in task state space size D is
unavoidable (e.g. for rare, potentially unsafe, events):
Proposition 5 (Needle-in-a-Haystack Sampling Tree Lower
Bound). Let TN,q,sample := qTsample,H + (N −
q)Tsample,AI . For any sampling-tree protocol, a single task
and a single pair of agents can be instantiated so that the two
agents’ priors differ by prior distance ≥ ν, yet the protocol
must pre-compute at least Ω

(
ν−1

)
unconditional samples

before the first online message. Consequently, for a partic-
ular “needle” prior construction of ν = Θ

(
e−D

)
, we get

lower bounds that are exponential in the task state space
size D, needing Ω

(
M TN,q,sample e

D
)

wall-clock time.

6 Discussion
Why study a “Bayesian best-case” at all? One may ob-
ject that real AI systems—and certainly humans—are not
perfectly Bayesian reasoners, nor do they interact through
ideal, lossless channels. That is precisely the point: our
results constitute an ideal benchmark, before we build
and deploy capable agents. If alignment is information- or
communication-theoretically hard even for computationally
unbounded, rational Bayesians exchanging noiseless mes-
sages, then relaxing rationality and unboundedness assump-
tions, adding noise, strategic behavior, or adversarial tam-
pering can exacerbate the difficulty, as we showed in §5.2.
Our takeaways for AI safety are:

1. Too many alignment values drives alignment cost.
Our matched lower and upper bounds (tight up
to polynomial terms in M,N, ε, δ) demonstrate a
“No-Free-Lunch” principle: encoding an exponentially
large or high-entropy set of human values forces at least
exponential communication even for unbounded agents.
As a result, progress on value alignment / preference
modeling should prioritize objective compression, dele-
gation, or progressive disclosure rather than attempting
one-shot, full-coverage specification.

2. Reward hacking is globally inevitable. Proposition 5
shows that in large state spaces and with bounded agents,
reward hacking arises unavoidably from finite sampling.
By Proposition 3, this even happens for unbounded
agents in large state spaces who communicate finite bits

and update their expectations smoothly. Scalable over-
sight is therefore not about uniform alignment, but about
focusing on the parts of the state space that matter most.
The engineering task ahead of us then is the mechanism
design problem of benchmarks and interactive proto-
cols that target these safety-critical slices—via adversar-
ial sampling, objective compression, and per-slice ⟨ε, δ⟩
budgets—to certify coverage where it counts.

3. Robustness depends on bounded rationality, mem-
ory, and theory of mind. Introducing bounded agents
or even mild triangular noise can exponentially increase
costs when protocols cannot exploit additional structure
or restrict the task state space (Ball and Haupt 2025); yet
these assumptions were necessary to prove any alignment
guarantees at all. Robust alignment must account for im-
perfect agents and noisy or obfuscated channels—but as
we show in §5.2, real-world agents with these three prop-
erties can degrade gracefully rather than catastrophically.

4. Tight bounds inform governance thresholds. For
broad and natural protocol classes, our lower bounds are
closely matched (up to polynomial terms) by constructive
algorithms, enabling principled risk thresholds.

Limitations and future work. Our results justify cautious
optimism: alignment is tractable in principle, yet only when
we restrain objectives and exploit task structure with care.
“No-Free-Lunch” does not preclude lunch—it simply forces
wise menu choices. At least three directions stand out:

1. Minimal value sets. Our lower bounds imply that having
too many objectives is the surest route to inefficiency. A
key open question is which small, consensus-worthy util-
ity families guarantee high-probability safety. In concur-
rent follow-up work (Nayebi 2025), we identify such a
small value set for corrigibility as defined by Soares et al.
(2015), which was open for a decade.

2. Structure-exploiting interaction protocols. Design
multi-turn agent interaction protocols (beyond single-
shot RLHF) and evaluation benchmarks that stress-test
the portions of state space most relevant for safety during
deployment. This can also be done at the post-training
stage, and can augment existing RLHF pipelines.

3. Beyond expectations under noise. (i) Can agreement on
specific risk measures cut communication costs relative
to full-expectation alignment? We note that agreement
on full expectations is not always required; given a task-
specific utility function Uj , our framework already cov-
ers agreement on optimal actions, argmaxa E[Uj(a)] by
having fj be the optimal action indicator. Our framework
also models rare events (Appendix §C). (ii) We found
bounded derivative in the noise model was crucial for
convergence (e.g. uniform noise does not suffice). Study-
ing richer obfuscation (e.g. learned steganography) will
be essential for informing other robust safety thresholds.
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man, J.; and Mané, D. 2016. Concrete problems in AI safety.
arXiv preprint arXiv:1606.06565.
Aumann, R. J. 1976. Agreeing to Disagree. The Annals of
Statistics, 4(6): 1236–1239.
Aumann, R. J. 1999. Interactive epistemology I: knowledge.
International Journal of Game Theory, 28: 263–300.
Ball, S.; and Haupt, A. 2025. Don’t Walk the Line:
Boundary Guidance for Filtered Generation. arXiv preprint
arXiv:2510.11834.
Barnes, B.; and Christiano, P. 2020. Debate Update: Ob-
fuscated Arguments Problem. https://www.lesswrong.com/
posts/PJLABqQ962hZEqhdB/debate-update-obfuscated-
arguments-problem.
Brown-Cohen, J.; Irving, G.; and Piliouras, G. 2023. Scal-
able AI safety via doubly-efficient debate. arXiv preprint
arXiv:2311.14125.
Brown-Cohen, J.; Irving, G.; and Piliouras, G. 2025. Avoid-
ing Obfuscation with Prover-Estimator Debate. arXiv
preprint arXiv:2506.13609.
Christiano, P.; Shlegeris, B.; and Amodei, D. 2018. Super-
vising strong learners by amplifying weak experts. arXiv
preprint arXiv:1810.08575.
Collina, N.; Goel, S.; Gupta, V.; and Roth, A. 2025.
Tractable agreement protocols. In Proceedings of the 57th
Annual ACM Symposium on Theory of Computing, 1532–
1543.
DeepMind, G. 2024. Gemini 2.0 Flash: Advancing AI Ca-
pabilities. https://tinyurl.com/4szdruva. Released: 2024-12-
14.
Guan, M. Y.; Joglekar, M.; Wallace, E.; Jain, S.; Barak, B.;
Heylar, A.; Dias, R.; Vallone, A.; Ren, H.; Wei, J.; et al.
2024. Deliberative alignment: Reasoning enables safer lan-
guage models. arXiv preprint arXiv:2412.16339.
Hadfield-Menell, D.; Russell, S. J.; Abbeel, P.; and Dragan,
A. 2016. Cooperative inverse reinforcement learning. Ad-
vances in neural information processing systems, 29.
Hanson, R. 2003. For Bayesian wannabes, are disagree-
ments not about information? Theory and Decision, 54:
105–123.
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A Notational Preliminaries
We will use asymptotic notation throughout that is standard
in computer science, but may not be in other fields. The
asymptotic notation is defined as follows:
• F (n) = O(G(n)): There exist positive constants c1 > 0

and c2 > 0 such that F (n) ≤ c1+ c2G(n), for all n ≥ 0.
• F (n) = Õ(G(n)): There exist positive constants c1, c2,

and k > 0 such that F (n) ≤ c1 + c2G(n) log
k n, for all

n ≥ 0.
• F (n) = Ω(G(n)): Similarly, there exist positive con-

stants c1 and c2 such that F (n) ≥ c1 + c2G(n), for all
n ≥ 0.

• F (n) = Θ(G(n)): This indicates that F (n) = O(G(n))
and F (n) = Ω(G(n)). In other words, G(n) is a tight
bound for F (n).

For notational convenience, let

Ei,t
j (sj) := EPi

j

[
fj | Πi,t

j (sj)
]
,

which is the expectation of fj of agent i at timestep t, con-
ditioned on its knowledge partition by then, starting from its
own prior Pi

j . To simplify notation, we drop the argument
sj ∈ Sj .

B ⟨M,N, ε, δ⟩-Agreement Setup and
Dynamics

The framework we consider for alignment generalizes Au-
mann agreement (Aumann 1976) to probabilistic ⟨ε, δ⟩-
agreement (Aaronson 2005) (rather than exact agreement),
across M agreement objectives and N agents, without the
Common Prior Assumption (CPA). The CPA dates back to
at least Harsányi (1967–1968) in his seminal work on games
with incomplete information. This is a very powerful as-
sumption and is at the heart of Aumann’s agreement the-
orem that two rational Bayesian agents must agree if they
share a common prior (Aumann 1976). As a further illus-
tration of how powerful the CPA is from a computational
complexity standpoint, Aaronson (2005) relaxed the exact
agreement requirement to ⟨ε, δ⟩-agreement and showed that
even in this setting, completely independent of how large the
state space is, two agents with common priors will need to
only exchange O(1/(δε2)) messages to agree within ε with
probability at least 1− δ over their prior. However, the CPA
is clearly a very strong assumption for human-AI alignment,
as we cannot expect that our AIs will always start out with
common priors with every human it will engage with on ev-
ery task. In fact, even between two humans this assumption
is unlikely! For other aspects of agreement and how they re-
late more broadly to alignment, we defer to the Discussion
(§6) for a more detailed treatment.

In short, ⟨M,N, ε, δ⟩-agreement represents a “best-case”
scenario that is general enough to encompass prior ap-
proaches to alignment (cf. Table 1), such that if something is
inefficient here, then it forms a prescription for what to avoid
in practice, in far more suboptimal circumstances. As ex-
amples of suboptimality in practice, we will consider com-
putational boundedness and noisy messages in §5.2, to ex-

actly quantify how the bounds can significantly (e.g. expo-
nentially) worsen.

Dispensing with the CPA, we now make our ⟨M,N, ε, δ⟩-
agreement framework more precise. For illustration, we con-
sider two agents (N = 2), Alice (human) and “Rob” (robot),
denoted by A and R, respectively. Let {Sj}j∈[M ] be the col-
lection of (not necessarily disjoint) possible task states for
each task j ∈ [M ] they are to perform. We assume each
Sj is finite (|Sj | = Dj ∈ N), as this is a standard assump-
tion, and any physically realistic agent can only encounter
a finite number of states anyhow. There are M agreement
objectives, f1, . . . , fM , that Alice and Rob want to jointly
estimate, one for each task:

fj : Sj → [0, 1], ∀j ∈ [M ],

to encompass the possibility of changing needs and differ-
ing desired {⟨εj , δj⟩}j∈[M ]-agreement thresholds for those
needs (which we will define shortly in (2)), rather than op-
timizing for a single monolithic task. Note that setting the
output of fj to [0, 1] does not reduce generality. Since Sj is
finite, any function Sj → R has a bounded range, so one can
always rescale appropriately to go inside the [0, 1] domain.

Alice and Rob have priors PA
j and PR

j , respectively, over
task j’s state space Sj . Let νj ∈ [0, 1] denote the prior dis-
tance (as introduced by Hellman (2013)) between PA

j and
PR
j , defined as the minimal L1 distance between any point
xj ∈ Xj = PA

j × PR
j and any point pj ∈ Dj = {(pj , pj) |

pj ∈ ∆(Sj)}, where ∆(Sj) ∈ RDj is the probability sim-
plex over the states in Sj . Formally,

νj = min
xj∈Xj ,pj∈Dj

∥xj − pj∥1, ∀j ∈ [M ]. (3)

It is straightforward to see that there exists a common prior
CPj ∈ Dj between Alice and Rob for task j if and only if
the task state space Sj has prior distance νj = 0. (Lemma 2
will in fact show that it is possible to find a common prior
with high probability, regardless of the initial value νj .)

For every state sj ∈ Sj , we identify the subset Ej ⊆ Sj

with the event that sj ∈ Sj . For each task j ∈ [M ], Al-
ice and Rob exchange messages4 from the power set P(Sj)
of the task state space Sj , as a sequence m1

j , . . . ,m
T
j :

P(Sj) → [0, 1]. Let Πi,t
j (sj) be the set of states that agent

i ∈ {A,R} considers possible in task j after the t-th mes-
sage has been sent, given that the true state of the world
for task j is sj . Then by construction, sj ∈ Πi,t

j (sj) ⊆
Sj , and the set {Πi,t

j (sj)}sj∈Sj
forms a partition of Sj

(known as a “knowledge partition”). As is standard (Au-
mann 1976, 1999; Aaronson 2005; Hellman 2013), we as-
sume for each task j, the agents know each others’ ini-
tial knowledge partitions {Πi,0

j (sj)}sj∈Sj
. The justification

for this more broadly (Aumann 1976, 1999) is that a given
state of the world sj ∈ Sj includes the agents’ knowledge.

4These messages could be as simple as communicating the
agent’s current expectation of fj , given (conditioned on) its cur-
rent knowledge partition. For now, we assume the messages are
not noisy, but we will remove this assumption in §5.2.



In our setting, it is quite natural to assume that task states
for agents coordinating on a task will encode their knowl-
edge. As a consequence, every agents’ subsequent partition
is known to every other agent, and every agent knows that
this is the case, and so on5. This is because with this assump-
tion, since the agents receive messages from each other,
then Πi,t

j (sj) ⊆ Πi,t−1
j (sj). In other words, subsequent

knowledge partitions {Πi,t
j (sj)}sj∈Sj

refine earlier knowl-
edge partitions {Πi,t−1

j (sj)}sj∈Sj
. (Equivalently, we say

that {Πi,t−1
j (sj)}sj∈Sj coarsens {Πi,t

j (sj)}sj∈Sj .) Proper
refinement is if for at least one state sj ∈ Sj , Πi,t

j (sj) ⊊
Πi,t−1

j (sj), representing a strict increase in knowledge.
To illustrate this more concretely, first Alice computes

m1
j

(
ΠA,0

j (sj)
)

and sends it to Rob. Rob’s knowledge parti-
tion then becomes refined to the set of messages in his orig-
inal knowledge partition that match Alice’s message (since
they are now both aware of it):

ΠR,1
j (sj) =

{
s′j ∈ ΠR,0

j (sj) | m1
j

(
ΠA,0

j (s′j)
)

= m1
j

(
ΠA,0

j (sj)
)}
,

from which Rob computes m2
j

(
ΠR,1

j (sj)
)

and sends it to
Alice. Alice then updates her knowledge partition similarly
to become the set of messages in her original partition that
match Rob’s message:

ΠA,2
j (sj) =

{
s′j ∈ ΠA,0

j (sj) | m2
j

(
ΠR,1

j (s′j)
)

= m2
j

(
ΠR,1

j (sj)
)}
,

and then she computes and sends the message
m3

j

(
ΠA,2

j (sj)
)

to Rob, etc.
⟨M,N, ε, δ⟩-Agreement Criterion: We examine here the

number of messages (T ) required for Alice and Rob to
⟨εj , δj⟩-agree across all tasks j ∈ [M ], defined as

Pr
(∣∣∣EPA

j

[
fj | ΠA,T

j (sj)
]
− EPR

j

[
fj | ΠR,T

j (sj)
]∣∣∣ ≤ εj)

> 1− δj , ∀j ∈ [M ].
(4)

In other words, they agree within εj with high probability
(> 1 − δj) on the expected value of fj with respect to their
own task-specific priors (not a common prior!), conditioned6

on each of their knowledge partitions by time T .
Extending this framework to N > 2 agents (consisting of

1 ≤ q < N humans and N − q ≥ 1 AI agents), is straight-
forward: we can have their initial, task-specific priors be
denoted by {Pi

j}i∈[N ], and we can have them
〈
εj , δj/N

2
〉
-

agree pairwise so that they globally ⟨εj , δj⟩-agree.
5This can be implemented via a “common knowledge” set,

C
(
{Πi,t

j }i∈[N ]
)

, which is the finest common coarsening of the
agents’ partitions (Aumann 1976).

6For completeness, note that for any subset Ej ⊆ Sj and
distribution P, EP[fj | Ej ] :=

∑
sj∈Ej

f(sj)P[sj | Ej ] =∑
sj∈Ej

f(sj)P[sj ]∑
sj∈Ej

P[sj ]
.

C Modeling Tail Risk
We note in this section that our ⟨M,N, ε, δ⟩-agreement
framework can also model tail risk/rare events. For expo-
sition convenience, we use the “loss” convention (higher =
worse), so the Expected Shortfall (ES)/Conditional Value at
Risk (CVaR) at level τ ∈ (0, 1] uses the upper quantile/tail.
Specifically, for a catastrophe indicator fj := Z ∈ {0, 1}
with E [fj ] = Pr[Z = 1] = p, the ES/CVaR at a given level
τ is

ESτ (Z) =
1

τ

∫ 1

1−τ

qu(Z)du,

where for Z ∼ Bernoulli(p), the quantile is defined as:

qu(Z) =

{
0, u ≤ 1− p,
1, u > 1− p.

Therefore,

ESτ (Z) =
1

τ

∫ 1

1−τ

1{u > 1− p} du

=
1

τ

∣∣(1− τ, 1] ∩ (1− p, 1]
∣∣

=
1

τ
min{τ, p}

= min
{
1,
p

τ

}
.

Hence, if two models agree on p within ε, their ES values
differ by at most ε/τ . For a general bounded loss fj := X ∈
[0, 1], the Rockafellar and Uryasev (2000, Eq. 4) representa-
tion

ESτ (X) = inf
c∈[0,1]

(
c+

1

τ
E[(X − c)+]

)
shows that ES is the minimum over expectations of bounded
transforms ψc(x) = c+ 1

τ (x− c)+. Then

ESτ (X) = inf
c∈[0,1]

E[ψc(X)] .

Consequently, for two distributions P,Q over X ∈ [0, 1],∣∣ESτP (X)− ESτQ(X)
∣∣

≤ sup
c∈[0,1]

∣∣EP [ψc(X)]− EQ[ψc(X)]
∣∣

≤ 1

τ
sup

c∈[0,1]

∣∣EP [(X − c)+]− EQ[(X − c)+]
∣∣.

Thus, any ⟨M,N, ε, δ⟩-agreement bounds controlling ex-
pectations of bounded functions directly yield correspond-
ing bounds on ES (scaled by 1/τ ).

D Proofs of Lower Bounds
D.1 Proof of Proposition 1
Proof. For each task j ∈ [M ], let the input tuple to the N
agents be

⟨x1,j , x2,j , . . . , xN,j⟩ ∈ Sj ,



where Sj is defined by

Sj :=
{
⟨x1,j , . . . , xN,j⟩

∣∣ xi,j ∈ {(j − 1) 2n + 1, . . .

j 2n}, ∀i ∈ [N ]
}
.

Thus, each xi,j is an integer7 in an interval of size 2n that
starts at (j − 1) · 2n + 1. We endow Sj with the uniform
common prior CPj (which will be necessarily difficult by
the counting argument below), and define

fj
(
x1,j , . . . , xN,j

)
=

∑N
i=1 xi,j
2n+1

.

Observe that
∑N

i=1 xi,j is minimally N ((j − 1) 2n + 1)
and maximally N j 2n. Hence, the image of fj is contained
within [

N
(
(j − 1)2n + 1

)
2n+1

,
Nj2n

2n+1

]

=

[
N(j − 1)

2
+

1

2n+1
,
Nj

2

]
.

Therefore, for j ≥ 1, each instance fj is structurally the
same “shifted” problem, but crucially non-overlapping for
each j ∈ N. So it suffices to show that for each j, each in-
stance individually saturates the Ω

(
N2 log(1/εj)

)
bit lower

bound, which we will do now:
Two-Agent Subproblem for N Agents. Because all agents

must ⟨εj , δj⟩-agree on the value of fj , it follows that in par-
ticular, every pair of agents (say (i, k)) must have expecta-
tions of fj that differ by at most εj with probability at least
1− δj . But for any fixed pair (i, k), we can treat (xi,j , xk,j)
as a two-agent input in which all other coordinates xℓ,j for
ℓ ̸= i, k are “known” from the perspective of these two, or do
not affect the difficulty except to shift the sum8. Hence, for
each j and each pair (i, k), there is a two-agent subproblem.
We claim that these two agents alone already face a lower
bound of Ω(log(1/εj)) bits of communication to achieve
⟨εj , δj⟩-agreement on fj .

Suppose agent k sends only t < log2

(
1−δj
εj

)
bits to agent

i about its input xk,j . Label the 2t possible message se-
quences by m = 1, . . . , 2t, with probability pmj each. Since
xk,j is uniform in an interval of size 2n, then conditioned on
message m, there remain at least 2npmj possible values of
xk,j . Each unit change in xk,j shifts fj by 1/2n+1, so even
if agent i’s estimate is optimal, the fraction of xk,j values
producing |Ek,t

j − E
i,t
j | ≤ εj is at most

2n+1 εj
2n pmj

=
2 εj
pmj

.

7One could encode them as binary strings of length at least
n + ⌈log2 j⌉, but in this proof we do not need the explicit binary
representation: the integer range sizes themselves suffice to carry
out the communication complexity lower bound.

8Equivalently, imagine the other N − 2 agents are “dummy”
participants, and we fix their inputs from the perspective of the
(i, k) pair.

Hence, the total probability of agreement (over all messages
m) is bounded by

2t∑
m=1

pmj ·
2 εj
pmj

= 2 εj 2
t.

If 2 εj 2t < 1 − δj , the agents fail to ⟨εj , δj⟩-agree. Equiv-

alently, t ≥ log2

(
1−δj
2 εj

)
. Since every pair (i, k) needs

Ω (log (1/εj)) bits for each of the M tasks, and there are(
N
2

)
= Θ(N2) pairs, the total cost is

Ω
(
M N2 log (1/ε)

)
,

where ε := minj∈[M ] εj , corresponding to the most “strin-
gent” task j.

D.2 Proof of Proposition 2
Proof. We divide the M ≥ 2 tasks into two types of payoff
functions fj as follows, each covering the first ⌊M/2⌋ tasks
and the last set of ⌈M/2⌉ tasks, respectively:

Type I Tasks. For the first set of ⌊M/2⌋ tasks, we let the
state space be Sj := {s(j−1)D, s(j−1)D+1, . . . , sjD−1}. Let
the k-th element of Sj be denoted as sk,j := s(j−1)D+k.
Next, choose a sign vector bj ∈ {+1,−1}N with N/2 plus
signs, and set each element of it, bij , as follows to define the
prior distributions for some 0 < p ≤ 1

2 −
ν
4 as:

β :=
p

D − 2
, Pi

j(s0,j) =
1
2 −

bijν

4 −
(D−2)β

2 ,

Pi
j(s1,j) =

1
2 +

bijν

4 −
(D−2)β

2 , Pi
j(sk,j) = β (k ≥ 2).

If bij ̸= bkj the agent pair (i, k) has L1 distance ν, and there-
fore prior distance ≥ ν by definition.

Let Tj(ωj) denote the number of bits exchanged on task
j when the initial world state is ωj ∈ Sj and the agents
follow some message-passing protocol. We consider the ex-
pectation E[Tj ] := Eωj

[Tj(ωj)] over all initial world states
ωj ∈ Sj with respect to the hard prior distributions speci-
fied above. Note that for the purpose of a lower bound, we
only need to consider the mismatched agent pairs, since for
non-mismatched agents, Tj ≥ 0, trivially.

Given a task index j and a mismatched agent pair (i, k),
let W t

j denote the total variation distance between the
agents’ posterior distributions, τ i,tj and τk,tj , at time t:

W t
j := 1

2

∥∥τ i,tj − τ
k,t
j

∥∥
1
, W 0

j = ν/2.

Define the “good” event for task j as

Gj :=
∣∣Ei,T

j − Ek,T
j

∣∣ ≤ ε,
which holds with probability at least 1 − δj by the
⟨εj , δj⟩-agreement condition. Conditioned on Gj , our as-
sumption implies WTj

j ≤ cν for c < 1
2 −

δj
ν ; on Gj we only

know the trivial upper bound on total variation of WTj

j ≤ 1.
Hence,

E
[
W

Tj

j

]
< (1− δj) · cν + δj · 1 < cν + δj < ν/2.



Since we have that:

Tj =

Tj−1∑
t=0

1 ≥
Tj−1∑
t=0

(W t
j −W t+1

j ) =W 0
j −W

Tj

j ,

by telescoping. Thus, E[Tj ] ≥W 0
j − E[WT

j ] = Ω(ν), since
δj < ν/2. Hence, each mismatched pair pays Ω(ν) bits on
task j in expectation. By a pigeonhole argument, for every
initially mismatched agent pair, there exists an initial world
state ωj ∈ Sj that attains at least that length transcript length
Tj ; this is the worst-case for task j. With Θ(N2) such agent
pairs, the mismatch cost per task is Ω

(
N2ν

)
, giving a to-

tal worst case bit cost of Ω
(
M N2 ν

)
across the first set of

⌊M/2⌋ tasks.
Type II Tasks. For the remaining set of ⌈M/2⌉ tasks, we

use the hard instance fj (and its correspondingN -tuple state
space) in Proposition 1 for each task, with a uniform com-
mon prior.

Thus, any deterministic transcript that ⟨εj , δj⟩-agrees on
every task must concatenate M independent sub-transcripts
across the Type I and Type II tasks, giving the final

Ω
(
M N2

(
ν + log 1

ε

))
bit lower bound.

D.3 Proof of Proposition 3
Proof. We split the M tasks exactly as in Proposition 2:
Type I: first ⌊M/2⌋ tasks, and Type II: remaining ⌈M/2⌉
tasks.

Only Type I needs modification; Type II reuses Proposi-
tion 1 verbatim and costs Ω

(
N2 log(1/ε)

)
bits per task.

We consider the following “uniform-slope” hard pri-
ors for the Type I tasks: We use the same state-space
as in Proposition 2’s Type I tasks, namely Sj :=
{s(j−1)D, s(j−1)D+1, . . . , sjD−1}. For notational conve-
nience, fix such a task j and relabel its D := Dj states
Sj = {s0, . . . , sD−1}, and therefore drop the j subscript.

The priors are defined as follows for agents i and k:

Pi(sm) =
λm

S
, Pk(sm) =

λ−m

S′ ,

S =

D−1∑
q=0

λq, S′ =

D−1∑
q=0

λ−q, λ :=
1 + ν/2

1− ν/2
> 1.

We now show the prior distance for any agent pair (i, k) is
≥ ν. By definition of prior distance, the triangle inequality
shows that ∥Pi − Pk∥1 lower bounds the prior distance (for
set-valued priors per agent, and for single prior distributions
per agent it holds with equality), so it suffices to show that
∥Pi − Pk∥1 ≥ ν. We have that

∥Pi − Pk∥1 := 2
∑

m: Pi(sm)>Pk(sm)

(
Pi(sm)− Pk(sm)

)
≥ 2

∣∣Pi(s0)− Pk(s0)
∣∣

= 2

∣∣∣∣∣ 1∑D−1
q=0 λq

− 1∑D−1
q=0 λ−q

∣∣∣∣∣ = 2(λ− 1)(λD−1 − 1)

λD − 1

≥ 2(λ− 1)

1 + λ
= ν,

where the last inequality follows from the fact that λD−1 −
λ ≥ 0 since λ > 1 and D ≥ 2, and the last equality directly
follows from the definition of λ.

Canonical chain gap at t = 0. Connectedness of the ini-
tial profile implies that for any two states there exists at least
one alternating chain of states (Hellman and Samet 2012,
Proposition 2). In particular, the pair (s0, sD−1) used in the
hard prior is linked by a chain c⋆ = (s0, s1, . . . , sD−1);
tightness makes this chain unique and ensures it visits ev-
ery state exactly once. We let τ i,t denote agent i’s posterior
distribution at time t, with τ i,0 ≡ Pi. Set

Lt :=

∣∣∣∣∣∣log
∏

(s,s′)∈c⋆

τ i,t(s′)

τ i,t(s)
− log

∏
(s,s′)∈c⋆

τk,t(s′)

τk,t(s)

∣∣∣∣∣∣ .
At t = 0,∏

(s,s′)∈c⋆

τ i,0(s′)

τ i,0(s)
= λD−1,

∏
(s,s′)∈c⋆

τk,0(s′)

τk,0(s)
= λ−(D−1)

Thus, we have that

L0 = 2(D − 1) | log λ|
= 2(D − 1)

∣∣log (1 + ν
2

)
− log

(
1− ν

2

)∣∣
= 2(D − 1)

∣∣∣ν + ν3

12 + . . .
∣∣∣ = Θ(Dν),

(5)

where the second to last equality follows by the standard
Taylor expansions of log(1+x) and log(1−x), since ν/2 ≤
1.

Per timestep increment. Let the message sent in round t
contain bt bits, and assume the protocol is BBF(β), i.e. for
every agent a and all states s, s′, the message likelihoods are
bounded as such:

β−bt ≤ Pr[ma,t | s,Πa,t−1(s)]

Pr[ma,t | s′,Πa,t−1(s′)]
≤ β bt .

Then we will show that the canonical gap satisfies:

|Lt − Lt−1| ≤ 2bt log β. (6)

To see this, for convenience we denote qat (s) := Pr[ma,t |
s,Πa,t−1(s)] for the message likelihood at time t.

Bayes’ rule then gives, for any states s, s′,

τa,t(s′)

τa,t(s)
=

τa,t−1(s′)

τa,t−1(s)
· q

a
t (s

′)

qat (s)
. (7)

Next, define:

Ξa
t = log

D−2∏
m=0

τa,t(sm+1)

τa,t(sm)
=

D−2∑
m=0

log
τa,t(sm+1)

τa,t(sm)
(8)

We fix the canonical chain c⋆ once for convenience—any
path would serve, since we will show that the bound in (6)
depends only on the BBF(β) likelihood-ratio condition and
is independent of the particular chain selected.



It follows from (7) and (8) that

Ξa
t =

D−2∑
m=0

[
log

τa,t−1(sm+1)

τa,t−1(sm)
+ log

qat (sm+1)

qat (sm)

]

=

D−2∑
m=0

log
τa,t−1(sm+1)

τa,t−1(sm)︸ ︷︷ ︸
= Ξa

t−1

+

D−2∑
m=0

log
qat (sm+1)

qat (sm)︸ ︷︷ ︸
telescopes

= Ξa
t−1 + log

qat (sD−1)

qat (s0)
= Ξa

t−1 + ∆a
t .

Because Lt = |Ξi
t−Ξk

t |, we have by the triangle inequal-
ity:

|Lt − Lt−1| =
∣∣ |A+B| − |A|

∣∣ ≤ |B|,
A := Ξi

t−1 − Ξk
t−1, B := ∆i

t −∆k
t .

Hence, |Lt − Lt−1| ≤ |∆i
t −∆k

t |.
By BBF(β), each agent alone obeys

∣∣∆a
t

∣∣ = ∣∣∣∣log qat (sD−1)

qat (s0)

∣∣∣∣ ≤ bt log β, a ∈ {i, k}.

Hence, by the triangle inequality,∣∣∆i
t −∆k

t

∣∣ ≤ ∣∣∆i
t

∣∣+ ∣∣∆k
t

∣∣ ≤ 2 bt log β,

giving rise to the desired inequality (6).

Per task cost. Let Bagree be the total number of bits ex-
changed by the time the agents agree, and letBcp be the total
bits exchanged when the common prior is reached. Clearly
Bagree ≥ Bcp, so it suffices to lower bound Bcp.

Set BT :=
∑T

t=1 bt, so BT is the cumulative bit count
up to round T . By Hellman and Samet (2012, Proposition 4)
we have LT = 0 once the common prior is attained. Tele-
scoping and (6) then gives

L0 − LT =

T∑
t=1

(
Lt − Lt−1

)
≤

T∑
t=1

∣∣Lt − Lt−1

∣∣
≤ 2 log β

T∑
t=1

bt = 2 log β BT .

Hence, by (5), any BBF(β) protocol must transmit at least
Ω (Dν) bits before the priors coincide, and therefore at least
that many bits before ⟨M,N, ε, δ⟩-agreement.

Aggregating costs. There are Θ(N2) mismatched pairs
and ⌊M/2⌋ Type I tasks, so the total Type I cost in bits is
Ω
(
M N2Dν

)
. Type II contributes Ω

(
M N2 log(1/ε)

)
bits,

hence the overall lower bound in bits is

Ω
(
MN2[Dν + log(1/ε)]

)
,

with constant 1/ log β, completing the proof.

E Proof of Lemma 2
Proof. As before, let {Pi

j}i∈[N ], be the priors of the agents.
The “type profile” τ tj is the set of the agent’s posterior belief
distributions over states sj ∈ Sj at time t. Thus, at time 0,
τ0j will correspond to the prior distributions over the states
in the knowledge partition Πi,0

j . Since for each agent its type
profile distribution is constant across the states in its knowl-
edge partition Πi,t

j (sj) (as they are indistinguishable to the
agent, by definition), then the total size of the type profile at
time t is

|τ tj | =
N∑
i=1

∣∣∣Πi,t
j

∣∣∣ . (9)

We make use of the following result of Hellman and Samet
(2012, Proposition 2), restated for our particular setting: Let
C
(
{Πi,t

j }i∈[N ]
)

denote the common knowledge set (finest
common coarsening) across the agents’ knowledge parti-
tions at time t. If the knowledge partitions reach a total size
across the N agents that satisfies:

N∑
i=1

∣∣∣Πi,t
j

∣∣∣ = (N − 1)Dj + C
(
{Πi,t

j }
i∈[N ]

)
, (10)

then any type profile τ tj over {Πi,t
j }i∈[N ] has a common prior

CPj . Now, note that
∣∣∣C ({Πi,t

j }i∈[N ]
)∣∣∣ ≤ Dj as it forms

a partition over the task state space Sj , so the set of sin-
gleton sets of each element sj ∈ Sj has the most compo-
nents to saturate the upper bound. Therefore, the desired size∑N

i=1

∣∣∣Πi,t
j

∣∣∣ ≤ NDj .

Now, starting from an initial type profile |τ0j |, the num-
ber of proper refinements needed to get to the desired size∑N

i=1

∣∣∣Πi,t
j

∣∣∣ in (10) is given by at most:

N∑
i=1

∣∣∣Πi,t
j

∣∣∣− |τ0j |+ 1 = O (NDj) .

Thus, since9 trivially |τ0j | ≥ 0, then O(NDj) is the most
number of proper refinements we need to ensure there is a
common prior with probability 1, by (10). By Lemma 1, this
amounts to O(N2Dj) messages in the worst case.

F Proof of Proposition 4
Proof. The N agents will communicate with the spanning
tree protocol (cf. Lemma 1) for each task j ∈ [M ], but
now with discrete, rather than continuous, messages. The
discretized protocol is as follows: Let there be a node Fj that
is globally accessible to all N agents. This intermediary is
allowed its own prior and will see all messages between the
agents (but not their inputs). Thus, ΠFj ,0

j (sj) = Sj for all

states sj ∈ Sj , and
{
Π

Fj ,t
j (sj)

}
sj∈Sj

coarsens the knowl-

edge partitions at time t of the N agents, so all of the agents
9For example, for N agents that start with maximally unrefined

knowledge partitions, |τ0
j | =

∑N
i=1

∣∣Πi,t
j

∣∣ = ∑N
i=1 1 = N .



can therefore compute EFj ,t
j . When agent i wants to send a

message to its neighbor agent k, then agent i sends “High”
if Ei,t

j > E
Fj ,t
j + εj/4, “Low” if Ei,t

j < E
Fj ,t
j − εj/4, and

“Medium” if otherwise. After agent i sends its message to
agent k, agent k then refines its knowledge partition (and Fj

also refines its partition), before agent k sequentially sends
its message relative to the current EFj ,t+1 to the next agent
down the spanning tree. This process of proper refinement
is continued until there is a common prior by Lemma 2,
which the N + 1 agents (including Fj) then condition on
to reach ⟨M,N + 1, ε, δ⟩-agreement (hence the N + 1 fac-
tor in the first term to ensure there are enough proper refine-
ments between the N + 1 agents). This generalizes Aaron-
son (2005, Theorem 6)’s discretized protocol to N > 2
agents (and M > 1 tasks), which shows that between any
pair of agents with a common prior, the number of mes-
sages needed for them to ⟨εj , δj⟩-agree remains unchanged
from the full protocol, where each pair leverages the in-
termediary agent Fj . Therefore, by applying the spanning
tree construction from Lemma 3, we get the same bound in
the discretized case as before of O(((N + 1)g2j )/(δjεj)

2)
messages before the N + 1 agents pairwise ⟨εj , δj⟩-agree,
and therefore O(((N + 1)5g2j )/(δjεj)

2) messages until all(
N+1
2

)
pairs of agents globally ⟨εj , δj⟩-agree, thereby ensur-

ing that the originalN agents agree. Following the rest of the
proof of our Theorem 1 yields the per-task upper bound of

O

(
(N + 1)2Dj +

(N + 1)7

ε2jδ
2
j

)
, where we took the worst-

case value of gj = O(N +1). Subsuming lower-order terms
in the big-O gives us the stated upper bound.

BBF(3)-compliant extension. Note that this discretized
protocol can be made BBF(3)-compliant via the following
simple modification: pick any buffer parameter 0 < θ ≤ 1

3

(setting θ = 1
4 suffices) and, after the sender has determin-

istically selected the bucket B ∈ {High,Medium,Low} ac-
cording to the thresholds ±εj/4 around EFj ,t

j , let the noisy
channel transmit the matching 2-bit codeword with proba-
bility 1 − 2θ and each of the two non-matching codewords
with probability θ, i.e. Pr[mi,t

j | sj ,Π
i,t−1
j (sj)] = θ + (1−

3θ)1{mi,t
j = mi,t,⋆

j (B)}. Because every codeword now has
probability either 1− 2θ or θ under every state, the message
likelihood ratio is always in the range

[
θ

(1−2θ) ,
(1−2θ)

θ

]
, so

the channel is BBF(β) with β = (1 − 2θ)/θ ≤ 3 when
θ ≥ 1

5 .
We have the agents communicate first, as usual, for

O((N + 1)D2
j ) messages per task until they reach a com-

mon prior and condition on it, by Lemma 2. Thus, the anal-
ysis that remains is how many more messages are needed to
reach convergence to ⟨M,N + 1, ε, δ⟩-agreement. A round
is called informative when the sender’s bucket is an outer
one (High or Low) and the channel outputs the matching
codeword; this occurs with probability at least (1− 2θ) δ/2,
and in that event EFj ,t

j moves by at least εj/4, so the
potential Ψt := ∥EFj ,t∥22 increases by at least (εj/4)

2.

Hence, E[Ψt+1 − Ψt] ≥ (1 − 2θ) δj(εj/4)
2/2, giving a

per-round drift κθ = Θ
(
(1 − 2θ) ε2jδj

)
. Define the cen-

tered process Zt := Ψt − κθt; then {Zt} is a martingale
with one-step differences bounded by 2, so the Azuma-
Hoeffding inequality can be applied directly to Zt. Since
Ψt ≤ 1, the additive-drift (optional-stopping) theorem im-
plies E[T ] ≤ O (1/κθ) = O

(
(1− 2θ)−1ε−2

j δ−1
j

)
for one

pair of agents. We write δ := maxj∈[M ] δj and, for the
high-probability bound, simply divide this budget evenly:
each task gets δ/M and each of its

(
N+1
2

)
= O(N2)

pairs gets η := δ/(M
(
N+1
2

)
). Azuma-Hoeffding with this η

yields O
(
ln(MN2/δ)/(1− 2θ)ε2j (δ/M)

)
rounds per pair,

so a union bound over all M
(
N+1
2

)
pairs leaves total failure

probability ≤ δ. Plugging the same δ/M everywhere in the
multi-task bookkeeping of Proposition 4 gives

T = O
(
MN2D +

M3N7 ln(MN2/δ)

(1− 2θ)ε2δ

)
,

valid with probability at least 1− δ, with ε := minj∈[M ] εj .

G Proofs of Theorem 2 and Corollary 1
Here we prove both Theorem 2 and Corollary 1. We do
this by generalizing Aaronson (2005, §4)’s computational-
boundedness treatment from 2 agents to N agents (specifi-
cally, N − q agents and q humans that have differing, rather
than equal, query costs) andM functions (rather than 1), us-
ing a message-passing protocol that combines his smoothed
and spanning tree protocols, all without the Common Prior
Assumption (CPA).

G.1 Message-Passing Protocol
This is the multi-task generalization of Aaronson (2005,
§4.1)’s “smoothed standard protocol”, additionally extended
to the multi-agent setting a spanning tree the agents use to
communicate their messages.

Let bj = ⌈log2( C
εj
)⌉ be a positive integer we will spec-

ify later with a specific constant value C > 0, in (18). The
N computationally bounded agents follow the ⟨M,N, ε, δ⟩-
agreement algorithm (Algorithm 1), passing O(bj)-bit mes-
sages according to the following protocol P:

Protocol P description (for each task j ∈ [M ]):
1. Current posterior expectation. The sending agent
i ∈ [N ] has at timestep t − 1 a real value
Ei,t−1

j (sj) ∈ [0, 1], which is its conditional expec-
tation of fj ∈ [0, 1] given its knowledge partition
Πi,t−1

j (sj) and the current task state sj ∈ Sj . (Recall

that Ei,t−1
j (sj) := EPi

j

[
fj | Πi,t−1

j (sj)
]
.) The knowl-

edge partition Πi,t−1
j (sj) is formed after updating this

expectation using Bayes’ rule, after having received the
earlier message at time t− 2.

2. Draw an integer rj via a triangular distribution.
Agent i picks an integer offset

rj ∈ {−Lj , −Lj + 1, . . . , Lj}



according to a (continuous) triangular distribution
∆tri( · ; αj) that places its mass in the discrete set of val-
ues {−Lj , . . . , Lj}, and has effective width 2αj . These
discrete offsets rj ensure that the messages will be dis-
crete as well. Concretely,

P[rj = x] =
Lj − |x|

Lj∑
z=−Lj

(
Lj − |z|

)

=
Lj − |x|
L2
j

, x ∈ {−Lj , . . . , Lj},

where Lj is chosen so that 2−bjLj = αj to bound the
messages, as explained in the next step below. Note that
the form above is chosen so that the “peak” of the dis-
cretized triangular distribution is at rj = 0. In other
words, the form above is maximized in probability when
the offset rj = 0 (which means that no noise is added to
the messages with the highest probability).

3. Form the message with noise. The agent then sets

mt
j

(
Πi,t−1

j (sj)
)

= round
(
Ei,t−1

j (sj)
)

+ 2−bjrj ,

where round
(
Ei,t−1

j (sj)
)

denotes rounding Ei,t−1
j (sj)

to the nearest multiple of 2−bj (thereby keeping it in the
[0, 1] interval). This ensures that the message mt

j is it-
self a multiple of 2−bj (thereby being encodable inO(bj)

bits), and is offset by ±αj from round
(
Ei,t−1

j (sj)
)
,

since |2−bjrj | ≤ 2−bjLj = αj , by construction. Hence,
each mt

j ∈ [−αj , 1 + αj ].

4. Broadcast. This message mt
j

(
Πi,t−1

j (sj)
)

is then broad-
cast (either sequentially or in parallel) to the relevant
agents via an edge of the two spanning trees SP 1

j ∪SP
2
j

each of diameter gj , just as in Lemma 1, who update their
knowledge partitions accordingly to Step 1.

G.2 Sampling-Tree Construction and Simulation
for Each Task j ∈ [M ]

In our framework, each agent logically refines its knowledge
partition {Πi,t

j (sj)}sj∈Sj
upon seeing a new message (Step

7 of Algorithm 1). However, given that the agents are com-
putationally bounded, while refinement is allowed, the is-
sue is with their belief updating. By Requirement 1, they
have no direct ability to sample from the conditioned pos-
terior distributions τ i,tj = Pi

j(· | Π
i,t
j (sj)) at run time, in

order to compute the expectation in Step 1 of the protocol in
§G.1. In other words, they cannot simply call “Sample

(
Pi
j |

Πi,t
j (sj)

)
” in a black-box manner. Thus, before any mes-

sages are exchanged, each agent constructs a sampling tree
T i
j offline of unconditional samples from the priors Pi

j
(which they are able to do by Subroutine 2 in Require-
ment 1). The idea is to precompute enough unconditional
draws so that each new message can be simulated via “walk-
ing down” the relevant path in the tree that is consistent with

the current message history (including that new message),
rather than enumerating or sampling from the newly refined
partition directly.

That is the intuition. We now explain in detail how each
agent can use sampling trees to simulate this protocol in
a computationally bounded manner. This follows Aaron-
son (2005, §4.2)’s approach of dividing the simulation into
two phases—(I) Sampling-Tree Construction (no communi-
cation) and (II) Message-by-Message Simulation—but ex-
tended here to our multi-task and multi-agent setting.

(I) Sampling-Tree Construction (General N -Agent Ver-
sion). For each task j ∈ [M ], and for each agent i ∈ [N ],
that agent i builds a sampling tree T i

j of height Rj and
branching factor Bj . We fix an ordering of the O (Rj)
messages for task j (so that we know which agent is
“active” at each level). Formally, let ActiveAgentj :
{0, . . . , Rj − 1} → [N ] denote the function specify-
ing which agent sends the message at each round ℓ =
0, . . . , Rj − 1. For instance, since the spanning tree pro-
tocol cycles through the N agents in a consistent or-
der, then ActiveAgentj(0) = i0, ActiveAgentj(1) =
i1, . . . , and so on, up to Rj total rounds.

• Let root ij be the root node of T i
j . We say that the level

of the root node is 0, its children are at level 1, grand-
children at level 2, etc., until depth Rj . Each node will
be labeled by a sample in task j’s state space Sj , drawn
from whichever agent’s unconditional prior distribu-
tion Pk

j (·) is active at that level.
• Concretely, for ℓ = 0, . . . , Rj − 1:

(a) Let aj := ActiveAgentj(ℓ) be the agent whose dis-
tribution we want at level ℓ (i.e. the agent who sends
the ℓ-th message).

(b) Every node vj at level ℓ is labeled by some previ-
ously chosen sample (if ℓ = 0 and vj is the root,
we can label it trivially or treat i’s perspective by a
do-nothing step).

(c) Each of the Bj children w ∈ Children(vj) at
level ℓ+ 1 is labeled with a fresh i.i.d. sample drawn
from Pa

j (·), i.e. from the unconditional posterior of
agent aj .

(d) We continue until levelRj is reached, yielding a total
of

Bj+B
2
j+· · ·+B

Rj

j =
Bj

Rj+1 − 1

Bj − 1
−1 = O

(
B

Rj

j

)
(11)

newly drawn states from the unconditional prior dis-
tributions {Pk

j }k∈[N ] at the appropriate levels.

Thus, node labels alternate among the N agents’ uncon-
ditional draws, depending on which agent is active at
each level (timepoint in message history) ℓ in the even-
tual message sequence for task j. All of this is done of-
fline by each agent, requiring no communication among
the agents. Once constructed, each agent i holds T i

j for
personal use.

(II) Message-by-Message Simulation. After building these
sampling-trees {T i

j }i∈[N ] (for each task j), the N agents



enact the protocol in §G.1 in real time, but whenever
an agent i needs to “update its posterior” after receiv-
ing a message, it does not sample from τ i,tj = Pi

j(· |
new messages). Instead, it uses the precomputed nodes
in T i

j as follows:

• Initial estimate. At time t = 0, agent i approximates
E i,0

j (sj) (its prior-based expectation of fj) by an em-
pirical average of the Bj children of the root node
root ij ∈ T i

j . This becomes agent i’s initial posterior
in the offline sense.

• At each round t = 1, . . . , Rj:
(a) The agent who is “active” (i.e. is about to send the t-

th message) consults its sampling-tree, summing over
the relevant subtree that corresponds to the newly re-
ceived messagesm1

j , . . . ,m
t−1
j , so as to approximate

E i,t−1
j (sj).

(b) It picks an integer offset rj ∈ {−Lj , . . . , Lj} via the
discrete triangular distribution (defined in §G.1), and
then sends the t-th message:

mt
j = round

(
⟨E i,t−1

j (·)⟩i
)
+ 2−bj rj .

(c) The other agents, upon receivingmt
j via the spanning

tree protocol, update node-weights in their own sam-
pling trees (via the ∆-update equations in (Aaronson
2005, §4.2)). This effectively “follows” the branch in
their sampling trees consistent with mt

j so they ap-
proximate Πi,t

j (·) without enumerating or sampling
from the conditioned distribution.

After all Rj messages for task j, the agents will have
approximated the ideal protocol in §G.1 with high prob-
ability (assumingBj was chosen large enough, which we
will give an explicit value for below in the large-deviation
analysis in §G.3).

Lemma 4 (Sampling Tree Time Complexity). For each task
j, the time complexity of the sampling tree for all N agents
is

O
(
B

Rj

j TN,q

)
. (12)

Proof. As described, we now assume there are N agents,
among which q are humans and N − q are AI agents, each
potentially taking different times for evaluating fj(·) or sam-
pling from the priors (Subroutines 1 and 2 of Requirement 1,
respectively):

Teval,H , Teval,AI , Tsample,H , Tsample,AI .

Specifically, a human agent i ∈ H uses time Teval,H to eval-
uate fj(sj) for a state sj ∈ Sj , and time Tsample,H to sam-
ple from another agent’s prior distribution Pk

j (·) uncondi-
tionally; whereas an AI agent i ∈ AI spends Teval,AI and
Tsample,AI on the same operations.

Sampling Overhead. By (11), we do O
(
B

Rj

j

)
uncondi-

tional draws in total per agent. Each draw is performed by

the agent building the tree, but it might sample from another
agent’s distribution. Hence the time cost per sample is{

Tsample,H if the sampling agent is human,

Tsample,AI if the sampling agent is an AI.

We separate the O
(
q B

Rj

j

)
samples by humans vs.

O
(
(N − q)BRj

j

)
samples by the AI agents, yielding

O
(
q B

Rj

j Tsample,H + (N − q)BRj

j Tsample,AI

)
.

Evaluation Overhead. Each sampled state sj ∈ Sj may
require computing fj(sj). Again, if the labeling agent is a
human, that cost is Teval,H , whereas if an AI agent is per-
forming the labeling, it is Teval,AI . Consequently,

O
(
q B

Rj

j Teval,H + (N − q)BRj

j Teval,AI

)
suffices to bound all function evaluations across all task j
sampling-trees {T i

j }i∈[N ].
During the Actual Rj Rounds. Once messages start

flowing, each round requires partial sums or lookups in
the prebuilt tree T i

j . If agent i is a human in that round,
each node update in the subtree will cost either Teval,H or
Tsample,H (though typically we do not resample, so it may
be just function evaluations or small indexing). Since the
total offline overhead still dominates, summing over Rj

rounds still yields an overall O
(
B

Rj

j (Tsample,· + Teval,·)
)

bound, substituting the index {H,AI} depending on the
category of the agent.

Summing the above together gives us the stated upper
bound in (12).

G.3 Runtime Analysis
Recall that the N agents follow the algorithm for
⟨M,N, ε, δ⟩-agreement (Algorithm 1), which is a “meta-
procedure” that takes in any message protocol we have dis-
cussed thus far (specifically, the one above). We now want
the agents to communicate with enough rounds Rj such that
they can feasibly construct a common prior consistent with
their current beliefs, with high probability (Step 9 of Algo-
rithm 1). We now have to bound Rj .

Recall that in the sampling-tree scenario, agents now no
longer have exact access to each other’s posterior distribu-
tions, but rather approximate them by offline sampling—
thus they cannot do a direct, immediate conditional update
(as they could in the unbounded case). Indeed, triangular
noise does not strictly mask a surprising message; rather,
each agent still can receive an improbable message from
its vantage. However, because these posteriors are only ap-
proximate, we must invoke large-deviation bounds to ensure
that with high probability, a message deemed γ-likely by the
sender but ≤ γ/2 by the neighboring receiver actually ap-
pears within some number of messages (in other words, they
disagree), forcing a proper refinement in their knowledge
partitions. We rely on a probabilistic argument that surprises
still occur on a similar timescale as in the exact setting, with
high probability, thereby prompting a partition refinement:



Lemma 5 (Number of Messages for One Refinement Under
Sampling Trees). Suppose two neighboring agents i and k
have not yet reached ⟨M,N, ε, δ⟩-agreement on a given task
j ∈ [M ]. Therefore, they disagree on some message m∗

j as
follows:

Pr
sj∼Pi

j

rj∼∆tri(αj)

[
round

(
Ei,t−1

j (sj)
)
+ 2−bjrj = m∗

j

]
≥ γ,

(13)
namely, Agent i regards m∗

j as γ-likely.

Pr
s′j∼Pk

j

r′j∼∆tri(αj)

[
round

(
Ek,t−1

j (s′j)
)
+ 2−bjr′j = m∗

j

]
≤ γ

2
,

(14)
namely, Agent k sees m∗

j with probability at most γ/2.
Then the probability of m∗

j failing to be produced in T =

O
(

ln(µj)
ln(1/αj)

)
consecutive rounds is at most µj . In other

words, the neighboring agents will disagree (thereby trig-
gering at least one proper refinement, namely, for agent k)
with probability at least 1−µj after T = O

(
ln(µj)

ln(1/αj)

)
con-

secutive rounds, for µj > 0.

Proof. Note that (13) ensures m∗
j has at least probability γ

from the sender’s perspective, so we can bound how quickly
m∗

j is produced. Specifically, by Aaronson (2005, Lemma
15), we know that solely from the sender’s vantage (and
therefore not assuming a common prior), the probability of
m∗

j not appearing after T consecutive rounds is given by at
most

λ
T/2
j max

{
γ, 1

Bj

}
,

where λj := 4 e
αj

ln (Bj). Therefore, it suffices for T to be

such that λT/2
j max{γ, 1/Bj} ≤ µj . Isolating T gives us:

λ
T/2
j ≤ µj

max{γ, 1/Bj}

=⇒ T

2
lnλj ≤ lnµj − ln

(
max{γ, 1/Bj}

)
.

Hence

T ≤
2
[
lnµj − ln

(
max{γ, 1/Bj}

)]
lnλj

=
2
[
lnµj + ln

(
1/max{γ, 1/Bj}

)]
ln(4e) + ln(1/αj) + lnlnBj

.

As γ is a free parameter, we can obtain a cleaner (albeit
looser) bound on T by subsuming suitably large constants.
A natural choice for γ is γ = αj , since the added noise to
each message is at most αj < 1/40 (via Step 3 in §G.1)
at each round. Therefore, the maximum additive noise is
also the natural threshold for a “surprising” message from
the receiver’s (agent k) point of view. We will also choose
the branching factor Bj to be sufficiently large enough that

1/Bj ≤ αj . Thus, max{γ, 1/Bj} = αj . Hence, for Bj ≥
1/αj , trivially ln ln (Bj) > 0, and we have that

T ≤
2
[
lnµj + ln(1/αj)

]
ln(4e) + ln(1/αj) + lnlnBj

≤
2
[
lnµj + ln(1/αj)

]
ln(1/αj)

= O

(
lnµj

ln(1/αj)

)
.

We are now finally in a position to bound Rj .
Lemma 6 (Common Prior Lemma Under Sampling Trees).
Suppose the N agents have not yet reached ⟨M,N, ε, δ⟩-
agreement on a given task j ∈ [M ]. They will reach a
common prior CPj with probability at least 1 − δj , after

Rj = O

(
N2Dj

ln(δj/(N2Dj))
ln(1/αj)

)
rounds.

Proof. We recall from Lemma 1 that, if every agent had ex-
act access to its posterior distribution, any block of O (gj)
messages in the two-spanning-trees ordering would pass
each agent’s “current expectation” to every other agent pre-
cisely once, guaranteeing that if a large disagreement per-
sists, the receiving agent sees an unlikely message and re-
fines its partition.

In the sampled (bounded) setting, each agent i ap-
proximates its posterior by building an offline tree of
O
(
B

Rj

j

)
unconditional samples, labeling its nodes by un-

conditional draws from the respective priors {Pk
j (·)}. Then,

when agent i must send a message—nominally its exact
posterior—it instead looks up that value via partial averages
in its sampling-tree. This is done in a manner consistent
with message alternation. Specifically, in each round, the
ActiveAgentj function from §G.2 ensures that every agent’s
approximate expectation is routed along SP 1

j and SP 2
j (Step

4 of §G.1) once in every block of O (gj) messages.
Now, in Lemma 5, we assumed the agents were neigh-

bors. Thus, in the more general case of N agents, who com-
municate with spanning trees SP 1

j ∪ SP
2
j each of diameter

gj , if there is a “large disagreement” between some agent
pair (i, k), then from (i → k) or (k → i)’s vantage, the
other’s message is improbable. In the worst case, the agents
are O(gj) hops apart. Hence, once that message arrives in

these O
(
gj

ln(µj)
ln(1/αj)

)
= O

(
N

ln(µj)
ln(1/αj)

)
transmissions, the

probability that the receiving agent still sees it as a surprise
and properly refines its partition is ≥ 1− gjµj ≥ 1−Nµj ,
by a union bound over hops.

These O
(
N

ln(µj)
ln(1/αj)

)
transmissions constitute one

“block” of messages that results in at least one agents’
refinement with high probability. Finally, we will need
O(NDj) refinements by Lemma 2 to reach a common prior.
Partition the total timeline into X = O (NDj) disjoint

“blocks,” each block of O
(
gj

ln(µj)
ln(1/αj)

)
messages. Let Ei



denote the event that “≥ 1 refinement occurs in block i”. By
the single-block argument, P[Ei] ≥ 1−Nµj .

We want P
[⋂X

i=1Ei

]
, the probability that all X blocks

yield at least one refinement. Using a union bound on com-
plements,

Pr
[ X⋂
i=1

Ei

]
= 1− Pr

[ X⋃
i=1

Ec
i

]

≥ 1−
X∑
i=1

Pr
[
Ec

i

]
≥ 1−X N µj

= 1−N2Dj µj .

Thus, after X × O
(
gj

ln(µj)
ln(1/αj)

)
= O

(
N2Dj

ln(µj)
ln(1/αj)

)
rounds, we have converged to a common prior with prob-
ability at least 1 − N2Djµj . Setting δj := N2Djµj gives
us the final result.

Now that we have established that we can converge with
high probability ≥ 1 − δj to a state where there is a con-

sistent common prior after Rj = O

(
N2Dj

ln(δj/(N2Dj))
ln(1/αj)

)
rounds, we now introduce an explicit algorithm for the ef-
ficient searching of the belief states of the agents. This is
given by Algorithm 2, and finds a common prior via linear
programming feasibility of the Bayesian posterior consis-
tency ratios across states.

We first give proofs of correctness (Lemma 7) and runtime
(Lemma 8) in the exact setting, before generalizing it to the
inexact sampling tree setting (Lemma 9).
Lemma 7 (Correctness of “CONSTRUCTCOMMONPRIOR”
(Algorithm 2)). Let Sj be a finite state space, and for each
agent i ∈ [N ] let Πi,t

j be a partition of Sj with correspond-
ing posterior τ i,tj . Then the algorithm CONSTRUCTCOM-
MONPRIOR returns a probability distribution pj on Sj that
is a Bayes-consistent common prior for all τ i,tj if and only if
such a (possibly different) common prior CPj exists in prin-
ciple.

Proof. (=⇒) Suppose first that there is some common
prior CPj over Sj satisfying

CPj

(
sj | Ci,t

j,k

)
= τ i,tj

(
sj | Ci,t

j,k

)
∀ i ∈ [N ], sj ∈ Ci,t

j,k.

That is, the common prior CPj agrees with every agent’s
posterior on every state in each cell Ci,t

j,k.
In particular, for sj , s′j ∈ C

i,t
j,k,

CPj(sj)

CPj(s′j)
=

τ i,tj

(
sj | Ci,t

j,k

)
τ i,tj

(
s′j | C

i,t
j,k

) .
Since the meet partition Π∗

j refines each Πi,t
j , those ratio

constraints must also hold on every meet-cell Zα ⊆ Ci,t
j,k.

Algorithm 2: CONSTRUCTCOMMON-
PRIOR

(
{Πi,t

j , τ
i,t
j }Ni=1

)
Require: Finite state-space Sj of size Dj ; for each agent

i ∈ [N ]: partition Πi,t
j = {Ci,t

j,k}k and posterior
τ i,tj ( · |Ci,t

j,k).
Ensure: Either a distribution pj on Sj Bayes-consistent

with all τ i,tj , or INFEASIBLE.

1: Π∗
j ←

N∧
i=1

Πi,t
j /* intersections */

2: Let Π∗
j = {Z1, . . . , Zr}, each Zα ⊆ Sj .

3: for α← 1 to r do
4: create LP variable pj(Zα) ≥ 0, where pj(Zα) :=∑

sj∈Zα
pj(sj) /* prior mass */

5: end for
6: for all agent i∈ [N ] and cell Ci,t

j,k∈Π
i,t
j do

7: for all Zα ⊆ Ci,t
j,k do

8: for all sj , s′j ∈ Zα do
9: add constraint

pj(sj)

pj(s′j)
=
τ i,tj

(
sj | Ci,t

j,k

)
τ i,tj

(
s′j | C

i,t
j,k

)
10: end for
11: end for
12: end for

13: add normalization constraint
r∑

α=1

pj(Zα) = 1.

14: solve the resulting LP for feasibility
15: if a non-negative solution {pj(Zα)} exists then
16: reconstruct pj on each sj ∈ Zα via the ratio con-

straints
17: return pj
18: else
19: return INFEASIBLE /* no single prior fits all

posteriors */
20: end if

Hence, if we introduce variables for pj(Zα) and enforce
these pairwise ratio constraints (Algorithm 2, Step 6), the
distribution CPj serves as a feasible solution to that linear
system. Furthermore, the normalization (Step 13) is satis-
fied by CPj . Consequently, the algorithm will return some
valid pj .

(⇐=) Conversely, if the algorithm’s LP is feasible and
yields

{
pj(Zα)

}r
α=1

with
∑r

α=1 pj(Zα) = 1, then for any
agent i and cell Ci,t

j,k ∈ Πi,t
j , the meet-cells Zα ⊆ Ci,t

j,k sat-
isfy

pj(sj)

pj(s′j)
=

τ i,tj

(
sj | Ci,t

j,k

)
τ i,tj

(
s′j | C

i,t
j,k

) for all sj , s′j ∈ Zα.



Define for each state sj ∈ Zα,

pj(sj) = pj
(
Zα

)
· τ i,tj

(
sj | Ci,t

j,k

)
.

This pj is a proper distribution over Sj (since the pj(Zα)
sum to 1). Moreover,

pj
(
sj | Ci,t

j,k

)
= τ i,tj

(
sj | Ci,t

j,k

)
,

so pj is indeed a common prior that matches each agent’s
posterior distribution.

Remark on the “true” prior vs. the algorithm’s output.
If there were a “true” common prior CPj , the distribution
pj returned by the algorithm need not coincide with CPj

numerically; many distributions can satisfy the same ratio
constraints in each cell. But from every agent’s viewpoint,
pj and CPj induce the same posterior on all cells, and thus
are equally valid as a Bayes-consistent common prior.

Hence CONSTRUCTCOMMONPRIOR returns a valid com-
mon prior if and only if one exists.

Lemma 8 (Runtime of finding a common prior). Given pos-
teriors for N agents over a state space Sj of size Dj , a

consistent common prior can be found in O
(
poly(N D2

j )
)

time.

Proof. Each agent’s partition Πi,t
j divides Sj into at most

Dj cells, so the meet partition

Π∗
j =

N∧
i=1

Πi,t
j ,

has at most Dj nonempty blocks. Labeling each of the Dj

states with its N -tuple of cell indices takes O(N) time per
state, and grouping (using hashing or sorting) can be done in
O(Dj) orO(Dj logDj) time. Hence, constructing Π∗

j takes
Õ(N Dj) time (the Õ subsumes polylogarithmic factors).

Next, for each agent i ∈ [N ] and for each cellCi,t
j,k in Πi,t

j ,
we impose pairwise ratio constraints over states in the same
meet-cell contained in Ci,t

j,k. In the worst case, an agent’s
cell may contain all Dj states, leading to

(
Dj

2

)
= Θ(D2

j )
pairwise constraints for that agent. Summing over N agents
gives a total of O(N D2

j ) constraints.
Standard LP solvers run in time polynomial in the num-

ber of variables (at most Dj) and constraints (O(N D2
j )),

plus the bit-size of the numerical data. Therefore, the over-
all runtime is O

(
poly(N D2

j )
)

.

Having proven the runtime and correctness in the exact
case, we now turn to bounding the runtime in the inexact
sampling tree setting. From here on out, we will define

TN,q,sample := q Tsample,H + (N − q)Tsample,AI . (15)

Lemma 9 (Approximate Common Prior via Sampling
Trees). Assume that each agent approximates its conditional
posterior τ i,tj (· | Ci,t

j,k) using its offline sampling tree T i
j (of

height Rj and branching factor Bj) with per-sample costs
Tsample,H (for the q human agents) and Tsample,AI (for the

N − q AI agents). Suppose that for each cell Ci,t
j,k ⊆ Sj and

for any two states sj , s′j ∈ C
i,t
j,k, the ratio

τ i,tj (sj | Ci,t
j,k)

τ i,tj (s′j | C
i,t
j,k)

can be estimated via the sampling tree using

S = O

(
1

ε2j
ln

1

δj

)
samples per ratio, so that each is accurate within error εj
with probability at least 1− δj (we assume sufficiently large
Bj for this, specifically such that Bj

Rj ≳ S for Rj given by
Lemma 6). Then the overall time complexity in the sampling-
tree setting of CONSTRUCTCOMMONPRIOR is

O

(
1

ε2j
ln
N D2

j

δj
· poly

(
D2

jTN,q,sample

))
.

Proof. For each cellCi,t
j,k and each state sj ∈ Ci,t

j,k, the agent
uses its sampling tree T i

j to compute an empirical estimate
τ̂ i,tj (sj | Ci,t

j,k) of τ i,tj (sj | Ci,t
j,k) by averaging over the leaves

of the appropriate subtree. (Recall that the tree is constructed
offline by drawing O

(
B

Rj

j

)
i.i.d. samples from the uncon-

ditional prior of the active agent at each level, defined by
the ActiveAgentj function.) Thus, for a fixed agent i, cell
Ci,t

j,k ⊆ Sj , and state sj ∈ Ci,t
j,k, define the i.i.d. indicator

random variables X1, . . . , Xm by

Xℓ =

{
1, if the ℓ-th sampled state equals sj ,

0, otherwise.

(Each sample is drawn from the leaves of T i
j restricted to the

cell Ci,t
j,k.) Thus, each Xℓ indicates whether the ℓ-th sample

drawn via the sampling tree lands on the state sj for agent i.
The empirical average

τ̂ i,tj (sj | Ci,t
j,k) =

1

m

m∑
ℓ=1

Xℓ

serves as an estimate for the true probability τ i,tj (sj | Ci,t
j,k).

By the “textbook” additive Chernoff-Hoeffding bound, if
m = O

(
1
ε2j

ln 1
δ′j

)
, then

Pr
[ ∣∣τ̂ i,tj (sj | Ci,t

j,k)− τ
i,t
j (sj | Ci,t

j,k)
∣∣ ≥ εj] ≤ δ′j .

Similarly for s′j , hence the ratio τ̂ i,tj (sj | Ci,t
j,k)
/
τ̂ i,tj (s′j |

Ci,t
j,k) differs by at most ±εj with probability ≥ 1 − 2δ′j ,

as it is computed from two such independent estimates of
τ̂ . Taking δ′j = δj/(2N D2

j ) and union-bounding over all
O(N D2

j ) ratios yields a net success probability ≥ 1− δj .
Finally, each ratio uses O((1/ε2j ) ln(1/δ

′
j)) subtree

draws, each draw in the outer for loop in Step 6 of



Algorithm 2, incurring Tsample,H or Tsample,AI cost de-
pending on whether a human or AI agent (of the N total
agents) built that portion of T i

j . Hence, we replace the N
in Lemma 8’s O

(
poly

(
N D2

j

))
runtime with q Tsample,H +

(N − q)Tsample,AI , and multiply by the per-ratio sampling
overhead of O((1/ε2j ) ln(1/δ

′
j)). This gives us the stated

runtime. Thus, CONSTRUCTCOMMONPRIOR still returns a
valid common prior with probability at least 1− δj .

Now we have reached a state where the N agents have
found a common prior CPj with high probability. In what
follows, note that it does not matter if their common prior is
approximate, but rather that the N agents can consistently
find some common distribution to condition on, which is
what Lemma 9 guarantees as a consequence. By Subrou-
tine 2 of Requirement 1, all N agents can sample from the
unconditional common prior CPj once it is found (Step 12
of Algorithm 1), in total time TN,q,sample.

They will do this and then build their new sampling trees
of height R′

j and branching factor B′
j , post common prior.

We now want to bound R′
j :

Lemma 10. For all fj and CPj , the N agents will glob-
ally ⟨εj , δj⟩-agree on a given a task j ∈ [M ] after R′

j =

O
(
N7/(δjεj)

2
)

rounds under the message-passing proto-
col in §G.1.

Proof. By Aaronson (2005, Theorem 11), when any two
agents use this protocol under a common prior, it suffices to
take R′

j = O
(
1/(δjε

2
j )
)

rounds to reach pairwise ⟨εj , δj⟩-
agreement, which is the same runtime as in the non-noisy
two agent case. We just need to generalize this to N agents
who share a common prior CPj . We take the same approach
as in our Proposition 4, by having an additional node Fj

that is globally accessible to all N agents. The rest of the
proof follows their Theorem 11 for any pair of agents that
use the intermediary Fj , so then by our Lemma 3, under
the spanning tree protocol, it will instead require R′

j =

O
(
(N + 1)7/(δjεj)

2
)

rounds for all
(
N+1
2

)
pairs of N +1

agents (includingFj) to reach global ⟨εj , δj⟩-agreement. We
subsume the lower-order terms in the big-O constant, giving
rise to the above lemma.

Thus, combining Lemma 10 with Lemma 4, reaching
global ⟨εj , δj⟩-agreement with sampling trees will take total
time:

O
(
B′

j
N7/(δjεj)

2

TN,q

)
. (16)

Let 1−δfind CP
j be the probability of converging to a common

prior by Lemma 6, let 1 − δconstruct CP
j be the probability of

constructing a common prior once reaching convergence by
Lemma 9, and let 1 − δagree CP

j be the probability of reach-

ing global
〈
εj , δ

agree CP
j

〉
-agreement when conditioned on a

constructed common prior, then we have that

Pr
[
εj-agreement

]
≥
(
1− δfind CP

j

)(
1− δconstruct CP

j

)(
1− δagree CP

j

)
≥ 1−

(
δfind CP
j + δconstruct CP

j

+ δagree CP
j

)
.

(17)
Hereafter, we set δj := δfind CP

j + δconstruct CP
j + δagree CP

j .
Thus, for a single task j, sufficiently large B′

j , and Bj ≥
max{S1/Rj , 1/αj}, we have that with probability≥ 1− δj ,
the N agents will reach εj-agreement in time:

Õ
(
B

N2Dj

ln

(
δfind CP
j /(N2Dj)

)
ln(1/αj)

j TN,q

+ N2Dj poly
(
D2

j

)
TN,q,sample + TN,q,sample

+ B′
N7

(δ
agree CP
j

εj)
2

j TN,q

)

= O
(
TN,q

[
B

N2Dj

ln

(
δfind CP
j /(N2Dj)

)
ln(1/αj)

j +B′
N7

(δ
agree CP
j

εj)
2

j

])
.

since the logarithmic terms (from Lemma 9) subsumed
by the Õ are on the non-exponential additive terms. This
follows from summing the runtime of computing the sam-
pling tree (Lemma 4), the total runtime of the common prior
procedure in Lemma 9 multiplied by the number of online
rounds Rj in the while loop of Algorithm 1 (Lines 4-
16) given by Lemma 6, and the runtimes of conditioning
and the second set of sampling trees in (15) and (16), re-
spectively. We then take D := maxj∈[M ]Dj , δfind CP :=

maxj∈[M ] δ
find CP
j , δconstruct CP := maxj∈[M ] δ

construct CP
j ,

δagree CP := maxj∈[M ] δ
agree CP
j , α := minj∈[M ] αj , ε :=

minj∈[M ] εj . To ensure an overall failure probability of
at most δ we allocate the budget δ/M per task, split-
ting it equally among the three sub-routines: δfind CP

j =

δconstruct CP
j = δagree CP

j = δ/(3M). (A union bound over all
M tasks and the three sub-routines then bounds the total er-
ror by δ.) Finally, let B := maxj∈[M ] max{Bj , B

′
j} so that

a single base subsumes all exponential terms. Multiplying
the worst-case per-task time by M tasks yields the global
bound of Theorem 2.

To prove Corollary 1, it suffices to explicitly bound B′
j .

This is because for each individual task j, a “total Bayesian
wannabe”, after conditioning on a common prior CPj , as
defined in Definition 1, corresponds to a single “Bayesian
wannabe” in Aaronson (2005, pg. 19)’s sense. Thus, by their
Theorem 20, for εj/50 ≤ αj ≤ εj/40, it suffices to set on a
per-task basis,

B′
j := O

(
(11/αj)

R′
j
2

/ρ2j

)
, bj :=

⌈
log2

R′
j

ρjαj

⌉
+ 2,

(18)
where R′

j is the value for N agents that we found in
Lemma 10. Taking ρ := minj∈[M ] ρj maximizes the bound,
and scaling by M gives rise to what is stated in Corollary 1.



H Proof of Proposition 5
Proof. Hard priors. For a state space S =
{s0, s1, . . . , sD−1} (D ≥ 3), define

Pi(s0) = 0, Pk(s0) = ν/2,

Pi(sm) =
1

D − 1
, Pk(sm) =

1− ν/2
D − 1

(m ≥ 1).

Then ∥Pi − Pk∥1 = ν, which means the prior distance ≥ ν
by the triangle inequality.

Payoff and targets. Let f(s) = 1[s = s0]; thus Ei[f ] =
0, Ek[f ] = ν/2. Set ε = ν/8, δ = 1/4.

One agent, one tree. It suffices to consider only agent
k. Let the sampling tree have L leaves labeled s1, . . . , sL
and define the Bernoulli indicators Xℓ = 1[sℓ = s0]. The
empirical expectation sent in the first message is

Ê[f ] =
1

L

L∑
ℓ=1

Xℓ.

If none of the L samples equals s0, then Ê[f ] = 0 and the
absolute error is |Ê[f ] − Ek[f ]| = ν/2 ≥ 4ε; the protocol
necessarily fails. The probability of that event is

Pr[no s0] = (1− ν/2)L ≥ 1− (ν/2)L

To make it ≤ δ = 1/4, we need 1 − (ν/2)L ≤ 1/4, then
L ≥ 3/(2ν). Because the sampling tree has to be at least of
size L, we complete this part.

Many tasks & agents. Embed an independent copy of the
hard task in each of M task indices, assign P i to N/2 of the
agents and P k to the other N/2 agents, and sum the costs
to get Ω(Mν−1 TN,q,sample) time units once the per-sample
cost of Requirement 1 is applied.
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