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Abstract

Quantifying and understanding the complexity of mathematical proofs is a fundamental question
in proof complexity. At the qualitative level, bounded arithmetic formalizes the notion of feasible proofs,
where all functions implicit in proofs are from certain complexity classes. For instance, Cook’s theory PV
(STOC’75) captures proofs using only polynomial-time computable functions. Analogous to the relation-
ship between algorithms and circuits, there is a tight connection between proofs in bounded arithmetic
and propositional proofs via the propositional translation: If a statement is provable in a bounded theory
(e.g. PV), then the family of propositional formulas formalizing the statement admits polynomial-length
propositional proofs in its corresponding propositional proof system (e.g. Extended Frege).

The paper proposes a theory for the quantitative time complexity of arithmetic proofs. For any proof π
in Cook’s theory PV, its time complexity is a function of the input length of the variables in its conclusion,
defined as the size of the propositional proofs obtained via a fixed propositional translation. In other
words, the time complexity of arithmetic proofs is a uniform counterpart of proposition proof size, which
is analogous to computational complexity theory, where the time complexity of algorithms is a uniform
counterpart of circuit size.

Our main result is a feasibility hierarchy theorem, which shows that proofs with higher time complexity
are strictly more powerful than those with lower time complexity. In other words, one cannot hope to
generically reduce the time complexity of proving certain PV equations by writing longer and more com-
plicated PV proofs. This theorem reveals the internal structure of the theory PV, suggesting the existence
of a rich theory for the time complexity of proofs. Motivated by the feasibility hierarchy theorem, we
propose a new proof complexity conjecture, which implies the unprovability of NP = coNP in Cook’s
theory PV. This contributes to a recent line of work on the unprovability of complexity conjectures.
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1 Introduction

Understanding the complexity of mathematical proofs is a fundamental challenge in proof complexity. In
the context of propositional logic, Cook and Reckhow [CR79] studied the length of proofs in propositional
proof systems and its connection to the separation NP ̸= coNP in computational complexity theory. Since
then, extensive research has established upper and lower bounds on proof length in various propositional
proof systems (see, e.g., [Kra19, BN21] and references therein).

Similarly, researchers have also studied the complexity of arithmetic proofs (e.g. proofs in Peano Arith-
metic and its fragments). A natural complexity measure is the size or length of the arithmetic proofs,
and an early result is Gödel’s speed-up theorem [Göd36] (see also [Bus94, Bus95a]).1 The size or length
of (first-order) arithmetic proofs is also discussed in several papers by Krajı́ček and Pudlák (see, e.g.,
[Pud86, KP88, Pud96]).2

Beyond proof length, another, and more widely used, approach to analyzing proof complexity origi-
nates from the tradition of constructive mathematics (see, e.g., [BPI22]). At a high level, the complexity of
proofs is typically determined by the complexity of the functions they employ. This includes both explicitly
defined function symbols and functions implicit in axioms and rules; for instance, using induction on a
property φ implicitly requires a function to locate counterexamples.

Example 1.1 (functions implicit in arithmetic proofs). Suppose that a proof uses the induction principle
on a property φ, i.e., φ(0) → ∀n (φ(n) → φ(n + 1)) → ∀n φ(n), which can be equivalently stated as

∀n ∃n′ (φ(0) ∧ ¬φ(n) → (φ(n′) ∧ ¬φ(n′ + 1))),

then the proof implicitly uses a function n 7→ n′ satisfying that if φ(0) and ¬φ(n) are true, then φ(n′) is
true and φ(n′ + 1) is false.

In this regard, there are two main lines of work: the program of reverse mathematics (see, e.g., [Sim09,
Sti20, DM22]) classifies proofs by the computability of functions, while the area of bounded arithmetic classi-
fies them based on the computational complexity of functions. We focus on the latter approach.

Bounded arithmetic refers to a collection of fragments of Peano Arithmetic corresponding to functions
in complexity classes (ranging from AC0 to PSPACE, and beyond) based on the functions used in its proofs.
Here, we highlight three representative theories (see [Kra95, CN10] for further examples).

• Parikh [Par71] introduced the first bounded theory known as I∆0, which corresponds to the linear-
time hierarchy (see, e.g., [Bus99]).

• Following Skolem’s primitive recursive arithmetic [Sko23] and Cobham’s machine-independent char-
acterization of polynomial-time computation [Cob65], Cook [Coo75] introduced an equational theory
called PV. This theory corresponds to FP, the class of polynomial-time computable functions.

• Independently, Buss [Bus86] defined theories Si
2 and Ti

2 for i ∈ N corresponding to levels of the
polynomial-time hierarchy, where the lowest level T0

2 is equivalent to Cook’s theory PV [Jeř06].

Notably, bounded theories are closely related to propositional proof systems through propositional
translations. Cook [Coo75] proved that if a statement ϕ(x) is provable in PV, the formula formalizing
∀x ∈ {0, 1}n ϕ(x) admits a polynomial-size proof in Extended Frege EF, which can be efficiently gener-
ated from the PV proof π (see, e.g., [Kra95, Kra19]). Similar connections are known for Parikh’s I∆0
[PW85, Ajt83] and Buss’s theories [KP90, KT90].

The missing corner: quantitative complexity analysis. There is an extensive line of work on super-
polynomial separations between different propositional proof systems or their uniform counterpart, sepa-
rations of different bounded theories (see Section 1.6). A central theme of this research is the classification

1In particular, Gödel proved that for any recursive function h : N → N, there exists an infinite family of statements ϕk such that
ϕk can be proved in k steps in second-order arithmetic but requires h(k) steps to prove within first-order arithmetic.

2Friedman (unpublished) and Pudlák [Pud86] proved that the “finitistic consistency sentence”, namely “there is no proof of
inconsistency within size n”, requires nΩ(1) size. This can be viewed as an exponential size lower bound, as it requires O(log n) bits
to describe the finitistic consistency sentence when n is encoded in binary.
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of proof systems — both propositional proof systems and bounded theories — based on their qualitative
strength. The significance of such a classification is evident: it aligns with the Cook-Reckhow program
toward proving NP ̸= coNP [CR79] and guides the design of automated SAT solvers (see, e.g., [BN21]),
which are widely used in practice.

However, despite extensive research in proof complexity, the quantitative complexity of proofs remains
largely unexplored. For propositional proof systems, there has been little interest in improving the con-
crete exponent of polynomial-size proof complexity upper bounds (see, e.g., [CR79, Bus87, Bus15]). More-
over, no formal attempt has been made, to our knowledge, to define the notion of “time complexity” of
proofs in bounded theories, such as Cook’s theory PV, as a uniform counterpart of propositional proof
size. This stands in sharp contrast to the field of algorithms and computational complexity, where study-
ing the quantitative time complexity of classical problems across various computational models has been
a central research focus for decades (see, e.g., [Knu97, CLRS22]), alongside the development of computa-
tional complexity theory (see, e.g., [Gol08, AB09, Wil18]).

1.1 Intuition of Time Complexity of Proofs

The main contribution of this paper is the formal definition of the time complexity of proofs in bounded
theories, along with an investigation of its fundamental properties. We focus on Cook’s equational theory
PV [Coo75], which corresponds to polynomial-time computation, though our results are likely to extend
to other bounded theories.

• (Time Complexity of Proofs). We define the time complexity of a PV proof π as the length of the
corresponding Extended Frege proof generated by Cook’s propositional translation [Coo75]. The
time complexity measure satisfies desired closure properties, and it is nontrivial in that it does not
directly correspond to proof length — PV proofs of the same length can vary significantly in time
complexity.

• (A Hierarchy Theorem). The main technical result of the paper is the feasibility hierarchy theorem, which
asserts that PV proofs with higher time complexity prove strictly more equations than those with
lower time complexity.

• (A New Proof Complexity Conjecture). Inspired by the hierarchy theorem, we introduce a new proof
complexity conjecture. The conjecture is an analogue of a circuit lower bound proved using the
time hierarchy theorem. We show that the proof complexity conjecture implies that NP = coNP is
unprovable in PV1, a major open problem in meta-mathematics of complexity theory.

1.1.1 What is the Time Complexity of Proofs?

In a nutshell, the time complexity of a PV proof π is defined as the size of the Extended Frege proof
obtained from π via a fixed and standard propositional translation [Coo75]. For readers familiar with
computational complexity theory, this is analogous to defining the time complexity of an algorithm by the
size of the circuits obtained via a fixed and standard transformation from algorithm to circuits.

In (slightly) more detail, let π be a PV proof concluding an equation e and x⃗ denotes the variables in e,
the time complexity of π is defined as a function µTC

π (⃗n) such that for any input length n⃗ for the variables
x⃗, µTC

π (⃗n) is the size of the Extended Frege proof obtained from π via a fixed and standard propositional
translation on the input length n⃗. Throughout this paper, we denote the EF proof by [π ]⃗nCook, and the
conclusion of the Extended Frege proof, denoted by [e]⃗nCook, formalizes the statement ∀x⃗ ∈ {0, 1}n⃗ e(x⃗).

We make three remarks about the definition of time complexity of proofs.
First, the time complexity of PV proofs is a different measure from the size of the proof. The former

measure is similar to the time complexity of algorithms, while the latter one is similar to the size of
programs. The definition of time complexity emphasizes the view that arithmetic proofs are uniform
propositional proofs, and measures the complexity of arithmetic proofs via the size of corresponding
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propositional proofs. We find this approach natural and fundamental, as it provides a uniform counterpart
of the established theory of propositional proof complexity.

Second, the notion of time complexity is meaningful only with respect to some fixed standard proposi-
tional translation. One could define a strange propositional translation that trivializes the notion; we will
give an example below. Fix a standard propositional translation [·]⃗nCook, and let

ℓ(⃗n, k) := max
|π|

{|[π]n⃗Cook| | π is a PV proof of size k}, (1.1)

that is, the size of the largest possible propositional translation of size-k PV proofs. We can define a new
propositional translation ⟨·⟩ as follows: Given any PV proof π and input lengths n⃗, the corresponding
propositional proof is obtained by obtaining [π ]⃗nCook and then padding meaningless equations so that the
proof is of size ℓ(⃗n, k). The time complexity of PV proofs with respect to this new propositional translation
is essentially a more complex way of expressing the size of proofs.

Nevertheless, we argue that this is also the case for computational complexity: The notion of time
complexity only makes sense if we choose a fixed and standard way to simulate the machines. If one were
to define the time complexity of an algorithm as its running time on a machine that stalls unpredictably,
there would be no meaningful complexity theory.

Finally, the time complexity of PV proofs is not intended to capture the minimum size of the Extended
Frege proofs — the fixed and standard propositional translation is not necessarily an optimal one. This is,
to some extent, a concession to our current lack of knowledge in proof complexity, as it is consistent with
our knowledge that every sequence of tautology {ϕn}n∈N can be proved by O(|ϕn|3)-size Extended Frege
proofs [Kra95, Chapter 13]. Similarly, the time complexity of algorithms is not intended to capture the
minimum circuit size to implement the algorithm — it is consistent with our knowledge that DTIME[2n] ⊆
SIZE[O(n)] [LY22, FGHK23].

1.1.2 Which Propositional Translation to Choose?

As noted, the choice of propositional translation is crucial in the definition of time complexity of proofs. For
instance, the definition would be meaningless if the time complexity became a mere alias for the proof’s
length (see Equation (1.1)).

In this paper, we define a particular propositional translation that we argue is best suited for the study
of time complexity of proofs. At a high level, it satisfies the following good properties:

• (Computational Efficiency). Given a proof π and input lengths n1, . . . , nk in binary, the size of its
propositional translation [π]

n1,...,nk
Cook can be computed in time f (|π|) · polylog(n1, . . . , nk) for some

function f — there exists an FPT algorithm for computing the time complexity of proofs. When
n1, . . . , nk ≫ |π|, this is much more efficient than generating [π]

n1,...,nk
Cook . This suggests that we can

analyze time complexity without generating the propositional proofs.

• (No Obvious Asymptotic Redundancy). It is not hard to imagine that appropriate padding is necessary
for the computational efficiency of the time complexity. Nevertheless, we argue that the padding
does not seem to incur an obvious asymptotic overhead.3

• (Nontrivial). The propositional translation does not make the time complexity an alias of PV proof
length: For every large k ∈ N, PV proofs of length k could have time complexity as large as n2Ω(k)

,
or as small as O(k · n). In other words, we are not padding too much (as in Equation (1.1)) that
trivializes the time complexity of proofs.

• (Closure Properties). It satisfies desired closure properties. For instance, if α → β can be proved in
time t1 and α can be proved in time t2, β can be proved in time O(t1 + t2).

3Again, it is impossible to argue that there is no overhead at all, as it is consistent with our knowledge that every tautology ϕ can
be proved by O(|ϕ|3)-size Extended Frege proofs.
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The last three bullets are arguably desired properties, but at this point, it is not clear why the compu-
tational efficiency of time complexity is important. Indeed, the computational efficiency, along with a few
other properties, is crucial for the proof of the hierarchy theorem. That is a property that we expect from
any complexity measure.

1.1.3 How to Fairly Compare the Time Complexity of Statements?

In addition to the complexity of a proof (an analogy of runtime of algorithms), it is important to define
and study the complexity of proving a statement (an analogy of time complexity of a language). Naturally,
we can define that a PV equation e(x⃗) is provable in time t(⃗n) if there is a PV proof π concluding e(x⃗) that
has time complexity µπ (⃗n) ≤ t(⃗n).

We argue that this definition is unsatisfactory, as it cannot be used to fairly compare the complexity
of proving two different statements. This is because the time complexity of PV proofs is a function of
the input length rather than the description length of the statements — if the description length of the
statement is long, one cannot expect a shorter proof, as the statement itself is part of the proof.

Example 1.2. For a concrete example, we can consider the following two statements e1 and e2:

• e1 states that M1(x) = M1(x), where M1 is a fixed algorithm running in time n1000.
• e2 states that M2(x) = M2(x), where M2 is a fixed algorithm running in time n.

These two statements are equally trivial to prove as any string is equal to itself. However, it is impossible
to prove e1 with time complexity smaller than n1000 (whereas e2 can be proved in, e.g., n2 time), as the
equation e1 will be the last line of the proof, and its propositional translation has size at least n1000.

Note that for the same reason, it is common to measure proof complexity as a function of the formula
size rather than the number of variables in the formula in the context of propositional proof complexity.

This calls for the definition of time complexities of describing PV equations as a basis of comparing
time complexities of proving different equations. For a PV equation e, we use the function βTCe (⃗n) to
denote the time complexity to merely write down the equation e as conclusion. That is, βTCe (⃗n) denotes
the complexity overhead necessary for any proof concluding e.

Consequently, we can define the time complexity of proving e as follows: It is said to admit a time-µ
proof if there is a proof π such that

µTC
π (⃗n) ≤ µ(βTCe (⃗n)).

We will use µ(β) to denote the time complexity of proving an equation — the variable β denotes βTCe (⃗n),
the time complexity of describing the equation e. For instance, both equations e1 and e2 in Example 1.2
will admit µ(β) = O(β) time (i.e. linear-time) PV proofs.

1.1.4 What is βTCe (⃗n)? Is It Just the Size of [e]⃗nCook?

At first glance, one might assume that βe (⃗n), the time complexity of describing the equation e, is exactly
the size of its propositional translation [e]⃗nCook.

There is no doubt that βTCe (⃗n) is at least the size of its propositional translation [e]⃗nCook. Recall that
for any PV proof π of e, its propositional translation, [π ]⃗nCook, is an Extended Frege proof that concludes
[e]⃗nCook. As we have defined µπ (⃗n) as the size of [π ]⃗nCook, the size of its conclusion [e]⃗nCook is a part of the
unavoidable time overhead for any proof concluding e.

Let β+
e (⃗n) be the size of [e]⃗nCook. It turns out that it is necessary to define βTCe (⃗n) as the summation

of β+
e (⃗n) and another term that, at a high level, describes the time complexity of the “time complexity

analysis” of functions used in e. It accounts for the time complexity of proofs that are necessary to define
the functions in e. For readers familiar with the theory PV, recall that only provably polynomial-time
functions are allowed, and such proofs will necessarily present before writing down the equation e.
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The necessity is for both conceptual and technical reasons; in particular, it allows us to prove a “feasible
translation theorem” (see Section 6.2) that is used in the proof of the hierarchy theorem. Because this is
quite subtle and related to the exact formulation of PV, we postpone the detailed discussion to Section 1.3,
Section 2 and technical sections.

1.1.5 What is the Hierarchy Theorem, and Why is it Nontrivial?

Recall that the time hierarchy theorem [HS65, HS66] shows that for every d ∈ N, there is a language Ld
that is decidable in time O(nd+1), and is not decidable in time O(nd). Our feasibility hierarchy theorem
is an analogy of it: For every d ∈ N, there is a PV equation ed that is provable in time βO(d), but is not
provable in time O(βd). This means that PV-provable equations form a non-collapsing infinite hierarchy
based on the time complexity of their proofs.

We note that the hierarchy theorem is nontrivial as the lower bound states that ed is not provable
within O(βd) time, regardless of the length of the proof. This shows that one cannot hope for generically
speeding up arithmetic proofs (in terms of time complexity) by writing more sophisticated proofs, just as
one cannot hope for generically speeding up algorithms by writing more sophisticated programs.

1.2 Technical Motivations of the Work

The primary goal of this paper is to develop a theory of the quantitative (time) complexity of arithmetic
proofs. Beyond its intrinsic philosophical interest, this work is motivated by two recent lines of research
in theoretical computer science.

1.2.1 Meta-mathematics of Complexity Theory

Bounded theories such as PV [Coo75] and S1
2 [Bus86] formalize a substantial portion of results in algo-

rithms, combinatorics, and complexity theory (see Section 1.6 for related work). Therefore, the unprov-
ability of complexity conjectures (e.g. P vs NP) in bounded theories provides a formal barrier. Indeed,
unconditional unprovability results have been known for circuit upper bounds [CKKO21, ABM23] and
strong complexity lower bounds [PS21, LO23].

The most prominent technique in proving strong unprovability results is the witnessing theorem (see,
e.g., [Oli25]), and other techniques either apply to only weak theories (see, e.g., [Kra11a, ABM23]) or
are only known for specific sentences (see [KP89]). However, an inherent limitation of the witnessing
theorems is it does not fully explored the proof complexity structure of the theories; indeed, witnessing
theorems usually hold even for the true universal theory, which barely has any structure (see, e.g., [LO23]).
As Krajı́ček [Kra24] mentions, relying solely on witnessing theorems is insufficient because they do not
change even when the true universal theory is added:

“... we need to leave theory TPV4 aside and work with theories PV or S1
2. This implies that an argument

cannot rely just on witnessing theorems as they do not change if TPV is added.”

In particular, it is unlikely that the witnessing theorem is sufficient to prove the unconditional unprovabil-
ity of any statement formalized as a universal sentence, e.g., P = NP.5 This calls for the exploration of
new techniques from logic that works on strong theories such as PV.

We suggest that the study of time complexity of PV proofs may lead to new techniques for proving
strong unprovability results. As a proof-of-concept, we introduce a new conjecture under which it is easy
to show the unprovability of NP = coNP. This conjecture can be seen as a proof-complexity analogue of
P ⊈ P-uniform SIZE[nk], which, intriguingly, is proved using the time hierarchy theorem [SW14].

4TPV stands for the true universal theory in the language of PV.
5It is well-known that “the algorithm A solves search-SAT” can be formalized as the following universal sentence: For any

propositional formula φ that has a satisfying assignment x, A(φ) outputs a satisfying assignment of φ. Note that this is without loss
of generality, as the search-to-decision reduction of SAT can be formalized in PV.
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1.2.2 Cryptography via Feasible Arithmetic Proofs

Recently, bounded arithmetic and its connection to propositional proof systems have been used as a crucial
technical component in the construction of advanced cryptographic primitives, such as indistinguishabil-
ity obfuscation [JJ22, MDS25, JJMP25] and SNARGs [JKLV24, JKLM25]. The efficiency of cryptographic
primitives is closely tied to the size of certain propositional proofs (see, e.g., [MDS25, Theorem 1.1]). Thus,
improving the concrete size of these proofs could lead to more efficient cryptographic systems.

One might suspect that cryptographic constructions are only concerned with the size of the propositional
proofs, and thus there is no need to study the complexity of arithmetic proofs. Perhaps surprisingly, the
notion of the time complexity of arithmetic proofs naturally popped up in recent research on building
succinct cryptography primitives, most importantly, iO for Turing machines [JJ22, JJMP25] and SNARGs
with short common reference strings (CRS) [JKLM25].

Before further extending on this line of work, we need to review some basic definitions in cryptography.
A randomized algorithm iO(1λ, ·) is said to be an indistinguishability obfuscation for circuits if it satisfies the
following conditions:

• (Correctness). For all circuit C of size poly(λ), one can evaluate C(x) given iO(1λ, C) and x.
• (Security). iO(1λ, C1) and iO(1λ, C2) are computationally indistinguishable against poly(λ) size ad-

versaries for functionally equivalent circuits C1, C2 of size poly(λ).

One of the main results of [JJ22] is that, if we relax the security condition to hold only on circuits that
are provably equivalent in polynomial-sized EF, there is a construction of iO from polynomial security
assumptions, whereas other constructions (see, e.g., [JLS24]) need sub-exponential security assumptions.

A main disadvantage of iO for circuits is that it only allows evaluation on a particular input length, and
the size of the obfuscated circuit grows with the input length. Motivated by both practical and theoretical
applications of iO (e.g. SNARG [SW21]), a major open problem is to obfuscate a program that supports
evaluation on any input lengths up to poly(λ). This allows to make the size of the obfuscated program a
fixed polynomial in λ — rather than a polynomial in the input length, an unbounded polynomial in λ.

Extending their construction of iO for circuits, Jain and Jin [JJ22] provided a construction of iO for
Turing machines that are PV provably equivalent from standard assumptions. A closer look at the con-
struction reveals that both the size and the time complexity of the PV proof matter in the construction:

• The PV proof is hard-coded in the obfuscation, and therefore the size of the obfuscated program grows
with the size of the PV proof.

• The evaluation time complexity of obfuscated programs grows with the size of the propositional trans-
lation of the PV proof — or, as we defined, the time complexity of the PV proof.

Note that both the size and evaluation time complexity of obfuscated programs are crucial for down-
stream applications, see, e.g., [MDS25, JJMP25] for detailed exposition. In particular, the evaluation time
complexity in [MDS25] is (quasi-)linear in the time complexity of the PV proofs — the time complexity of
PV proofs becomes the bottleneck for achieving obfuscations with efficient evaluation.

Therefore, it will be instructive to study time-bounded PV proofs for understanding the capability and
limitation of the Jain-Jin framework. For instance, one may wonder whether any PV provable equation can
be proved in a fixed polynomial time complexity, and thus the evaluation time complexity of the Jain-Jin
iO for Turing machines will always be a fixed polynomial. Specifically, suppose there is a time-t size-s PV
proof π, is it always possible to find a time-t′ size-s′ PV proof π′ such that t′ ≪ t, with the overhead that
s′ > s? Our feasibility hierarchy theorem shows that this is impossible, just as one cannot simulate any
polynomial time algorithm in a fixed polynomial-time by writing a more sophisticated program.

1.3 Our Results, in More Detail

We focus on the equational theory PV for simplicity in propositional translations. All statements in PV
are of the form t1(x⃗) = t2(x⃗), where the open variables x⃗ are considered to be universally quantified (see
Section 3 and Appendix A for more details).
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Definition of the complexity measures. Let e : t1(x⃗) = t2(x⃗) be an PV equation and π be a PV proof con-
cluding e. Recall that by Cook’s propositional translation [Coo75], for any input length n⃗ = (n1, . . . , nk) of
the variables x⃗ = (x1, . . . , xk) in the conclusion e, we can generate a proof [π ]⃗nCook of length poly(n1, . . . , nk)

in Extended Frege concluding a propositional formula [e]⃗nCook formalizing:

∀x1 ∈ {0, 1}n1 ∀x2 ∈ {0, 1}n2 . . . ∀xk ∈ {0, 1}nk t1(x⃗) = t2(x⃗).

We show that there is a standard propositional translation [·]⃗nPV of PV equations and proofs such that
the following holds:

Theorem 1.1 (informal). Let π be a PV proof and e be a PV equation. There are complexity measures µTC
π (⃗n),

β+
e (⃗n), βTCe (⃗n) such that the following properties hold:

• (Efficiently computable). There are fixed-parameter tractable (FPT) algorithms6 computing µTC
π (⃗n), β+

e (⃗n),
and βTCe (⃗n) given π or e and the binary encoding of the input length n⃗, where the length of π and e are
parameters (see Section 5).

• (Size). |[e]⃗nCook| = β+
e (⃗n) ≤ βTCe (⃗n) and |[π ]⃗nCook| = µTC

π (⃗n) (see Theorem 4.3).

• (No Obvious Asymptotic Redundancy). Unnecessary padding is introduced in the propositional translations
[·]PV for proofs and equations to ensure efficient computation of complexity measures. Nevertheless, the size
of padding is linear in the size of the propositional translation without padding (see Section 4.5).

• (Nontrivial). For k ≥ 1, there are PV proofs π1, π2 of length O(k) such that

µTC
π1

(n) = O(k · n) and µTC
π2

(n) = Ω(n2k
).

That is, proof length does not directly determine time complexity (see Section 4.6).

The meaning of β+
e (⃗n) and µTC

π (⃗n) are clearly stated by the theorem: β+
e (⃗n) is the size of [e]⃗nCook (the

propositional translation of the equation), while µTC
π (⃗n) is the size of [π ]⃗nCook (the propositional translation

of the proof). We define the function µTC
π (⃗n) as the time complexity of the proof π.

Recall that the complexity measure βTCe (⃗n) denotes the unavoidable time complexity overhead for
any PV proof of e (see Section 4.6), and is used to fairly compare the time complexity of proving different
equations. As mentioned in Section 1.1.4 and the second bullet of Theorem 1.1, βTCe (⃗n) ≥ β+

e (⃗n). In
this paper, we call β+

e (⃗n) the propositional complexity of e, and βTCe (⃗n) the time complexity of e. The exact
definition of βTCe (⃗n) is deferred to Section 2 due to space limits.

Remark 1.1. It is worth mentioning that when the length of π and e are sufficiently small, the FPT algo-
rithms allow us to compute the complexity measures for π and e in polylog(⃗n) time, which is significantly
more efficient than actually generating the propositional translation of e and π on input length n⃗. The
computational complexity difference between computing the time complexity measures and generating
the propositional translation of formulas and proofs is a key technical observation to prove our main
theorem.

1.3.1 Feasible Deduction Theorem

As the definition of the time complexity of proofs is quite technical, it is important to develop technical
tools that simplify the time complexity analysis of proofs.

We prove the feasible deduction theorem — analogous to computational composition, applying Modus
Ponens incurs minimal time complexity overhead. Formally:

6Fix a search problem and a function k(·) such that for each input x, k = k(x) is said to be the parameter of the input x. An
algorithm of the search problem is said to be an FPT algorithm if there is a function f such that for any input x, the running time of
the algorithm is at most f (k(x)) · poly(|x|); see, e.g., [CFK+15].
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Theorem 1.2 (informal, see Theorem 6.2). There is a constant d such that the following holds. Let e1(x⃗), e2(x⃗)
be PV equations, and e1(x⃗) ⇒ e2(x⃗) be an equation formalizing that “for any x⃗, e1(x⃗) is true implies e2(x⃗) is true”.
Suppose that π1 is a PV proof of e1(x⃗) and π⇒ is a PV proof of e1(x⃗) ⇒ e2(x⃗), then there is a PV proof π2 of e2(x⃗)
such that

µTC
π2

(⃗n) ≤ d · (µTC
π1

(⃗n) + µTC
π⇒ (⃗n)).

1.3.2 Feasible Proof Generation Theorem

Theorem 1.1 shows that the time complexity of a proof tightly matches the size of its propositional trans-
lation. The feasible proof generation theorem further states that for any proof π, the time complexity of the
correctness proof of its propositional translation matches the its time complexity.

Theorem 1.3 (informal, see Theorem 6.4). There is a constant d ≥ 1 such that the following holds. Let π be a
PV proof concluding e(x⃗). Then there is a PV proof πgen of the following statement:

For all n⃗, [π ]⃗nCook (i.e. the propositional translation of π on the input length n⃗) is a valid Extended
Frege proof concluding [e]⃗nCook (i.e. the propositional translation of e on the input length n⃗).

Moreover, µTC
πgen

(⃗n) = O((µTC
π (⃗n))d).

Here, O(·) hides a constant that depends on π, while d is a fixed constant. This theorem essentially
shows that the correctness proof of the propositional translation [Coo75] can be formalized in PV, and the
correctness proof incurs only a fixed polynomial-time complexity overhead.

Remark 1.2. It might be instructive to think of the feasible proof generation theorem as a proof complexity
analogue of the following result in computational complexity: For any Turing machine A(x) that runs in
time T(n), there is a Turing machine G(1n) that runs in time O((T(n))2) and outputs the description of
the circuit C : {0, 1}n → {0, 1} such that A(x) = C(x) for every x ∈ {0, 1}n [AB09, Section 6].

1.3.3 Feasible Translation Theorem

Recall that at a high level, βTCe (⃗n) captures the unavoidable time complexity overhead for any PV proof of e.
The feasible translation theorem shows that it indeed corresponds to the time complexity of the correctness
proof of the feasible translation:

Theorem 1.4 (informal, see Theorem 6.3). There is a constant d ≥ 1 such that the following holds. Let e(x⃗) be
an equation in PV. Then there is a PV proof πtr of the following statement:

∀x⃗ e(x⃗) if and only if for every n⃗, [e]⃗nCook is a tautology.

Moreover, µTC
πtr

(⃗n) = O((βTCe (⃗n))d).

Remark 1.3. Note that in Theorems 1.2 to 1.4, we only analyze the time complexity overhead of particular
formalizations of the statements. For instance, the equation e1(x⃗) ⇒ e2(x⃗) in Theorem 1.2 follows from a
construction in [CU93]. Similar results are expected to hold for other reasonable formalizations, possibly
with a slightly greater time complexity overhead.

1.3.4 Uniform Proof Complexity Classes

Similar to the complexity classes DTIME[t(n)] and NTIME[t(n)], we may define proof complexity classes as
sets of equations that can be proved with bounded time complexity.

Definition 1.4 (informal, see Definition 7.3). Let s : N → N be a function. EqTIME[s] is defined as the set
of PV equations e(x⃗) that have proofs π such that µTC

π (⃗n) = O(s(βTCe (⃗n))).
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The proof complexity classes are defined based on the time complexity of proofs as a function of
the time complexity of equations rather than the input length of variables. This is similar to the proof
complexity in propositional proof systems: The proof length is considered as a function of the formula size
rather than the number of variables, as formula size denotes the complexity to describe the question. As
mentioned in Section 1.1.4, we use time complexity βTCe (⃗n) of an equation as the variable of s(β), rather than
its propositional complexity β+

e (⃗n), because complexity analysis of functions in e should also be considered
as a part of the description of the question.

1.4 Main Theorem: Feasibility Hierarchy Theorem

We are now ready to state the feasibility hierarchy theorem:

Theorem 1.5 (Corollary 7.8). There is c ≥ 1 such that for every d ≥ 1, EqTIME[βd] ⊊ EqTIME[βcd].

In other words, PV proofs with higher time complexity can prove strictly more equations than those
with lower time complexity: there are PV equations that can be proved with time complexity O(βcd), but
do not have PV proofs with time complexity O(βd), regardless of the length of proofs. There is an infinite
hierarchy of PV-provable equations that does not collapse, based on the time efficiency of their proofs.

Explicit witness: self-referential sentences. Indeed, the separation in Theorem 1.5 for d ≥ 1 is achieved
by an explicit equation ed, which is a modification of the self-referential sentence used in the proof of
Gödel’s (first) incompleteness theorem [Göd31] (see also [Coo75] for Gödel’s incompleteness theorem for
PV). At a high level, ed asserts that itself does not admit a proof with time complexity at most (βTCed

(⃗n))d+1.
Analogous to Gödel’s second incompleteness theorem, we prove that another equation Cond, called the

bounded feasibility consistency sentence, is also a witness of Theorem 1.5 for sufficiently large d. At a high
level, Cond states that there is no PV proof of time complexity βd that derives a contradiction.

It is worth noting that both the self-referential sentence ed and the bounded feasibility consistency
sentence Cond have fixed polynomial time complexity in their input length, i.e., the exponent is independent
of d. That is, both statements have time complexities asymptotically independent of d, while the time
complexities of their proofs increase rapidly in d.

Comparison to time hierarchy theorem. The proof of Theorem 1.5 is involved, and is deferred to Sec-
tion 7; see also Section 2.4 for an overview of the proof. To get a glimpse of our technique, we compare
Theorem 1.5 with the time hierarchy theorem [HS65, HS66].

Recall that the proof of the time hierarchy theorem has two main components: a time-bounded adap-
tation of Turing’s diagonalization argument [Tur37] and an efficient universal Turing machine. The proof
of Theorem 1.5 follows a similar methodology using tools from logic:

• (Lower bound). The lower bound adapts Gödel’s incompleteness theorem [Göd31, Coo75] to the
time-bounded setting, as discussed above.

• (Upper bound). The upper bound is proved by formalizing Cook’s consistency proof of PV [Coo75]
in PV. This may seem paradoxical, as Gödel’s second incompleteness theorem states that PV cannot
prove its own consistency (see [Coo75, Theorem 4.4]). We note, however, that following Cook’s
consistency proof of PV, the bounded feasibility consistency Cond of PV is provable in PV, and this
proof is efficient in the sense that it incurs only a fixed polynomial time complexity overhead.

Analogously to our upper bound, the acceptance problem for unrestricted Turing machines is un-
decidable, whereas for Turing machines with an explicit time bound, it becomes decidable with a fixed
polynomial time overhead. Note that there are additional technical issues in formalizing the self-referential
statements for the upper bound, which we will explain in Section 2.4.

9



1.5 Uniformity vs Nonuniformity in Proof Complexity

Inspired by the feasibility hierarchy theorem, we propose two proof complexity conjectures that formalize
quantitative separations between uniform (i.e. bounded arithmetic) and non-uniform proofs (i.e. proposi-
tional proof systems).

1.5.1 Fixed Polynomial Lower Bound against Extended Frege

Our first conjecture is a fixed polynomial lower bound against Extended Frege for PV:

Conjecture 1.1 (informal, see Conjecture 8.1). For every k ≥ 1, there is a family of formulas {φn}n∈N that
can be generated by a polynomial-time algorithm A(1n) such that φn is a PV-provable tautology, and for
every constant c ≥ 1, φn requires Extended Frege proofs of size at least c · |φn|k for infinitely many n.

Conjecture 1.1 is stronger than Cook’s conjecture that Extended Frege is not p-bounded7: it states that
Extended Frege is not p-bounded, and that for every fixed k ≥ 1, there is an explicit PV-provable sentence
φn witnessing that PV is not O(|φn|k)-size bounded. In a sense, it can be viewed as a proof complexity
analog of the conjectured circuit lower bound P ⊈ SIZE[nk] for any k ≥ 1.

Although Conjecture 1.1 is not directly related to the theory of time complexity for PV, we argue that
the feasibility hierarchy theorem provides evidence for this conjecture. Suppose that Conjecture 1.1 is
false. Then there is a constant k such that PV proofs with arbitrarily high polynomial time complexity are
as strong as O(|φn|k)-size Extended Frege proofs. This will be an unexpected collapse in proof complexity.

In particular, we further conjecture that for any k ≥ 1, there is a d ≫ k such that the propositional
translation {φn}n∈N of the witness ed (or Cond) of the feasibility hierarchy theorem requires ω(|φn|k)-size
Extended Frege proofs.

1.5.2 Fixed Polynomial Lower Bound againt “Uniform EF”

Since Conjecture 1.1 is stronger than the longstanding open problem of proving that Extended Frege is
not p-bounded, it may not be within reach of current techniques. To address this, we introduce a weaker
conjecture that establishes a lower bound against “uniform” Extended Frege proofs.

Conjecture 1.2 (informal, see Conjecture 8.2). For every k ≥ 1, there is a family {φn}n∈N that can be
generated by a polynomial-time algorithm A(1n) such that the following holds.

• PV proves: for every n ∈ N, φn is a tautology;
• For every c ≥ 1, PV cannot prove: for every n ∈ N, φn admits an Extended Frege proof of size at

most c · |φn|k.

This conjecture is weaker than Conjecture 1.1 as it only asserts that φn does not PV-provably admit
short Extended Frege proofs. It allows φn to have short EF proofs that cannot be generated efficiently
by polynomial-time algorithms. Alternatively, such proof generation algorithms may exist, but their cor-
rectness proof cannot be formalized in PV. Similar to Conjecture 1.1, we further conjecture that explicit
witnesses of the feasibility hierarchy theorems are also witnesses of Conjecture 1.2.

1.5.3 Application: Unprovability of NP = coNP

Beyond its intrinsic interest, we show that proving Conjecture 1.2 yields a breakthrough unprovability
result in the meta-mathematics of complexity theory:

Theorem 1.6 (informal, see Theorem 8.2). Under Conjecture 1.2, PV1 cannot prove NP = coNP.

7A Cook-Reckhow propositional proof system V(ϕ, π) is said to be p-bounded if there is a constant k such that for every tautology
ϕ, there is a proof π of size O(|ϕ|k) such that V(ϕ, π) = 1; see, e.g., [CR79, Kra19].
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We note that Theorem 1.6 is robust to changes to the exact formalization in PV (see Section 8 for more
details). Moreover, since P = NP implies NP = coNP under any reasonable formalization, it follows
that P = NP is also unprovable in PV under Conjecture 1.2. In other words, the complexity conjecture
NP ̸= coNP is consistent with PV — there is a (possibly nonstandard) model of PV in which NP ̸= coNP.

Theorem 1.6 builds on the main theorem of [Coo75] (see also Theorem 3.3), which essentially follows
from the propositional translation of PV.

This result contributes to a line of recent work on the unprovability of complexity upper bounds
[KO17, BM20, BKO20, CKKO21, ABM23]. It is worth noting that existing unconditional unprovability
results focus on circuit upper bounds such as P ⊆ SIZE[nk] [CKKO21] and NEXP ⊆ P/poly [ABM23]. As
far as we know, there is no straightforward way to generalize these techniques to the unprovability of
uniform upper bounds (e.g. P = NP or NP = coNP), which is particularly relevant to the goal of proving
the independence of P ̸= NP in PV. We hope that Theorem 1.6 could bring new insights to showing the
unprovability of uniform upper bounds.

1.6 Related Works

Super-polynomial separations in proof complexity. There is a rich literature on proving conditional and
unconditional super-polynomial separations in proof complexity. Here we provide an incomplete survey.

• (Unconditional super-polynomial lower bound). For instance, Urquhart [Urq87] proved that there is
an explicit family of formulas that admit polynomial-size Frege proofs but require exponential-size
Resolution proofs (see [Hak85, Bus87] for an alternative proof). Interested readers are referred to
[BN21] for a comprehensive exposition of known lower bounds. We also note that a recent line of
work highlights a connection between separations of propositional proof systems and subclasses of
TFNP, see, e.g., [dRGR22, GHJ+24].

• (Candidates hard formulas for stronger systems). As super-polynomial lower bounds against strong
proof systems such as Frege or Extended Frege seem out of reach of current techniques, people
introduced candidate hard formulas, including reflection principles (see, e.g., [Kra19, Section 19.2])
and proof complexity generators (see, e.g., [Raz15, Kha22, Kra24]).

• (Separations of bounded theories). Separations of bounded theories can be viewed as proof complexity
analogs of complexity class separations. Unconditional separations are known in certain relativzed
settings [Tha05, Jeř07b]. Buss [Bus95b] proved that the S2, T2 hierarchy does not collapse unless
the polynomial-time hierarchy collapses. Several other separations are known under cryptographic
assumptions [KP98, CT06, ILW23] and complexity-theoretic assumptions [Kra24].

Quantitative results in proof complexity. As far as we know, the only non-trivial quantitative proof
complexity lower bound against strong systems is a quadratic lower bound against natural Frege systems
due to Krajı́ček [Kra95, Chapter 13]. The exact exponents of polynomial-size proofs are sometimes ana-
lyzed (see, e.g., [Kra95, Chapter 13] and [Bus87]), but there has been little progress in optimizing the exact
exponents.

Gödel’s incompleteness in proof complexity. The problem of proving Gödel’s incompleteness theorems
for bounded theories was proposed by Parikh (see [Bus99]). This was later established for several bounded
theories [Coo75, WP87, Bus86, Nel14].

A result of Naumov [Nau08] is in some sense a “dual” of our result: Instead of defining the complexity
of arithmetic proofs via the size of its propositional translation, Naumov defines the complexity of propo-
sitional proofs via the size of the shortest arithmetic description of the proof (in, say, Peano Arithmetic).
A lower bound for this measure is proved via a self-referential sentence. Note that our results are signifi-
cantly more involved as we use bounded theories rather than Peano Arithmetic. Also, we prove an upper
bound that matches our lower bound, up to a fixed polynomial time complexity overhead.
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Our hierarchy theorem is quite similiar to an early result of Friedman (unpublished) and Pudlák
[Pud86]. They proved that for standard first-order arithmetic theory that allows binary encoded numbers,
there are sentences that can be described in O(log n) symbols, provable in nO(1) symbols, and requires
at least nΩ(1) symbols to prove. Their result can be viewed as a hierarchy theorem for arithemtic proof
size, whereas our result is a hierarchy theorem for time complexity — size of propositional translations.
It may not be surprising that these two results use very similar techniques, i.e., Gödel-style self-referential
sentences. Nevertheless, the feasibility hierarchy theorem is significantly more involved as it is harder and
less intuitive to analyze the time complexity of proofs.

Meta-mathematics of algorithm and complexity theory. There are two main lines of work in the meta-
mathematics of algorithm design and complexity theory:

• (Bounded reverse mathematics). The program of bounded reverse mathematics aims to formalize results
in algorithm design [Ngu08, HS08, LC11, CN10, Jeř23], combinatorics [Oja04], and complexity theory
[Raz95, Jeř05, Jeř07a, Pic14, Pic15b, Pic15a, MP20, CLO24b, AT24, LLR24, CKK+25] in fragments of
bounded arithmetic. In several cases, natural statements about algorithms and complexity theory
are indeed equivalent to fundamental principles such as variants of the pigeonhole principle [Jeř05,
CLO24b, AT24].

• (Unprovability of complexity conjectures). Another direction is to unconditionally prove the unprov-
ability of complexity upper bounds [KO17, BKO20, BM20, CKKO21, ABM23] or complexity lower
bounds [Kra11b, PS21, LO23, CLO24a, CG25]. The unprovability of lower bounds (that are believed
to be true) can be viewed as a barrier to proving the lower bounds. On the other hand, the unprov-
ability of upper bounds (that are believed to be false) can be viewed as a necessary intermediate step
towards proving the lower bounds, as proving a lower bound is also a way to prove the unprovability
of its negation.

We refer readers to [Oli25] for more detailed discussions.
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2 Technical Overview

In this section, we provide an overview of our main results: our definition of time complexity (see Theo-
rem 1.1), two basic properties of time complexity (see Theorems 1.3 and 1.4), and the feasibility hierarchy
theorem (see Theorem 1.5). Theorem 1.6 is relatively simple; interested readers are referred to Section 8
for a self-contained proof.

2.1 Definition of Time Complexity of Proofs

Recall that in Theorem 1.1, the complexity measures β+
e (⃗n) and µTC

π (⃗n) are defined to be the size of a
standard propositional translation of e and π [Coo75], respectively. We defer the definition of βTCe (⃗n) to
our discussion of the feasible translation theorem in Section 2.2. We will focus on the time efficiency of
computing β+

e (⃗n) and µTC
π (⃗n).
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Let e be an equation and π be a proof. For simplicity, we assume that e, defined as t1(x) = t2(x),
has only one variable x. The formal definition of the propositional translation [·]Cook is technical (see
Section 4.4 and [Kra19]), but it follows a simple idea:

• (Equations). For the PV equation e, both t1(x) and t2(x) are explicitly defined polynomial-time
functions. Thus for any fixed n ∈ N, we can construct, by the standard translation of algorithms
to circuits (see [AB09, Chapter 6]), circuits C1, C2 : {0, 1}n → {0, 1} that are equivalent to t1 and t2
on the input length n. By introducing auxiliary variables for each gate in the circuit, we construct a
formula ϕn such that C1 ≡ C2 if and only if ϕn is a tautology.

• (Proofs). Suppose that π is a proof concluding the equation e : t1(x) = t2(x), and n ∈ N, our goal is
to prove in Extended Frege that the formula ϕn constructed above is a tautology. If e is introduced by
a deduction rule with premises e1 (⃗y1), . . . , ek (⃗yk) in π, it can be verified that there are input lengths
m⃗1, . . . , m⃗k for the variables y⃗1, . . . , y⃗k and an explicit polynomial-size Extended Frege proof

(πe) :
[e1]

m⃗1
Cook [e2]

m⃗2
Cook . . . [ek]

m⃗k
Cook

[e]nCook
.

That is, we can deduce [e]nCook from [e1]
m⃗1
Cook, . . . , [ek]

m⃗k
Cook with a polynomial-size Extended Frege

proof. Therefore, we can recursively generate the translation of the proofs concluding e1, . . . , ek on
the input lengths m⃗1, . . . , m⃗k and append the proof πe to obtain a proof of ϕn = [e]nCook.

Suppose that π and e are fixed, it can be verified that there are polynomial-time algorithms generating
[e]nCook and [π]nCook given 1n, where the exponent of the polynomial depends on π and e.

However, directly defining β+
e (n) and µTC

π (n) as the size of [e]nCook and [π]nCook may not satisfy the
efficiency requirement in Theorem 1.1: Both β+

e (n) and µTC
π (n) should be computable in time polylog(n)

(rather than poly(n)), and the exponent of the running time should be independent of π and e. The main
technical issue comes from the induction rule and the function introduced by limited recursion; we take the
latter one as an example. Suppose that f (y) is a function introduced as

f (ε) := c; f (si(y)) := hi(y, f (y)) (i ∈ {0, 1}),

where h0, h1 are existing functions. (We ignore the functions k0, k1 that upper bounds the growth rate of
the recursion scheme, see Appendix A.1.) Let ℓ f (n) be an output length upper bound of f on the input
length n. In the propositional translation of f on the input length n, we need to recursively obtain the
propositional translation of hi(y, z) on the following input lengths:

(1) |y| = 0, |z| = ℓ f (0);
(2) |y| = 1, |z| = ℓ f (1);

...
...

(n) |y| = n − 1, |z| = ℓ f (n − 1).

To compute its size, we need to take a summation over n terms corresponding to the size of the proposi-
tional translation of hi on these n pairs of input lengths. This requires O(n) ≫ polylog(n) time. A similar
issue occurs for computing the size of [π]nCook with the induction rule.

Let S(my, mz) be the size of the propositional translation of hi on the input length |y| = my, |z| = mz.
The idea to resolve the problem is simple: Instead of taking a summation over n terms, we pad the
propositional translation to size exactly n · S(n, ℓ f (n)). Note that this is an obvious size upper bound as
both S and ℓ f are non-decreasing functions. On the other hand, as both S and ℓ f are polynomials, we have

n−1

∑
i=0

S(i, ℓ f (i)) ≥
n
2
· S
(n

2
, ℓ f

(n
2

))
= Ω(n · S(n, ℓ f (n))),
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which means that the upper bound is tight asymptotically.
Let β+

e (n) and µTC
π (n) be the size for [e]nCook and [π]nCook (with the padding above). By a tedious but

straightforward time complexity analysis, we can further prove that there are FPT algorithms computing
these two measures: The time complexity of computing β+

e (n) is exp(exp(O(|e|))) · polylog(n), and the
time complexity of computing µTC

π (n) is exp(exp(O(|π|))) · polylog(n).

Links to formal proofs. The formal definition of the time complexity can be found in Section 4 (see Sec-
tion 4.3 for a self-contained definition). A detailed complexity analysis of the FPT algorithms is available
in Section 5.

2.2 Feasible Translation Theorem

Let e : t1(x) = t2(x) be an equation (with one variable x for simplicity). The feasible translation theorem
(see Theorem 1.4) states that the time complexity of the correctness proof of the propositional translation
of e is a fixed polynomial in βTCe (n), i.e., the time complexity of e.

As we mentioned before, the difference between the time complexity βTCe (n) of e and its propositional
complexity β+

e (n) is that βTCe (n) takes into account (the time complexity of) the complexity analysis of
functions in e. Indeed, for the standard formalization of PV, this only happens for functions introduced
by limited recursion. To introduce a function f (y) by

f (ε) := c; f (si(y)) := hi(y, f (y)) (i ∈ {0, 1})

from existing functions h0, h1, it is required that there are functions k0, k1 and valid proofs of an equation
formalizing

|hi(y, z)| ≤ |z|+ |ki(y)| (i ∈ {0, 1}). (2.1)

This ensures the output length f (y) is most

| f (y)| ≤ |c|+ ∑
0≤i<|y|

|ki(y≤i)|, (2.2)

which is a polynomial in |y|.
We note that the proof of Equation (2.1) is not considered in the propositional complexity β+

e (n), but
it is an unavoidable time complexity overhead to state the equation e, so it should be taken into account in
βTCe (n). Also, it is crucial in the correctness proof of the propositional translation. As we mentioned in
Section 2.1, the propositional translation of e : t1(x) = t2(x) first converts t1, t2 into circuits C1, C2 and
produces a formula formalizing C1 ≡ C2. Suppose that a function f , introduced by limited recursion,
is used in one of the terms (say t1). To define the circuit C corresponding to the function f on an input
length, we calculate the output length based on the upper bound induced by Equation (2.2). To prove the
correctness of the circuit in PV, however, we will have to make use of the PV proof of Equation (2.1).

Let ℓ f (n) be the maximum output length of f on the input length n (called the bounding value, see
Appendix A.3). Informally, for every function call to the function symbol f on the input length |y| = my
in the equation e, we need to take into account the time complexity of the proof of Equation (2.1) on the
input length |y| = my and |z| = ℓ f (my) in βTCe (n). Similar to β+

e (n) and µTC
e (n), one can verified that

there is an FPT algorithm to compute βTCe (n) given the equation e and the input length n encoded in
binary.

The proof of the feasible translation theorem follows directly from formalizing the standard correctness
proof of the propositional translation of equations (see, e.g., [Coo75, Kra19]) in PV and analyzing its time
complexity.

One technical issue is that the statement

“∀x⃗ e(x⃗) if and only if for every n⃗, [e]⃗nCook is a tautology”
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in Theorem 1.4 is not a universal sentence and therefore cannot be directly formalized in PV. Nevertheless,
one can notice that the sentence can be formalized as the conjunction of two universal sentences that are
both provable in PV with small time complexity overhead:

• (Completeness). For every x⃗ = (x1, . . . , xk) such that e(x⃗) does not hold, Assigne(x⃗) outputs a falsifying
assignment of [e]|x1|,...,|xk |

Cook , where Assigne(x⃗) is a PV function that depends on e.
• (Soundness). For every assignment w to [e]x⃗Cook such that the input variables encode x⃗, if w is a

satisfying assignment, then e(x⃗) holds.

Links to formal proofs. The formal proof of the feasible translation theorem can be found in Section 6.2;
the time complexity analysis crucially relies on the feasibility deduction theorem (see Theorem 6.2), which
we cannot cover here due to page limitation.

2.3 Feasible Proof Generation Theorem

Similar to the feasible translation theorem, the feasible proof generation theorem can also be proved
by formalizing the standard correctness proof (see, e.g., [Coo75, Kra19]) in PV and analyzing the time
complexity of that correctness proof. Instead, we provide an alternative approach that proves a more
general version of the theorem.

Let π be a proof (with one variable x for simplicity). Recall that the time complexity µTC
π (n) of a proof

π can be computed in time f (|π|) · polylog(n), where f (k) = exp(exp(O(k))). Suppose that π is given as
an input and is encoded by ⟨π⟩ := π ◦ 1 ◦ 0 f (π), i.e., padding sufficiently many 0’s, the computation of
µTC

π (⃗n) takes polynomial time in its input length (see Sections 5.7 and 6.3.1 for more details).
Although the generation of [π]nCook may take super-polynomial time, it can be verified that if µTC

π (⃗n) ≤
m, the generation algorithm halts in fixed polynomial time in m. Similarly, the generation algorithm of
[e]nCook halts in fixed polynomial time in m if βTCe (⃗n) ≤ m. Furthermore, both these properties can be
formalized and proved in PV if π and e are encoded by padding sufficiently many 0’s. As a result, we can
formalize the following statement in PV:

(∇) : for every padded ⟨π⟩, 1m, and 1n, if π is a valid PV proof concluding e, and µTC
π (⃗n) ≤ m, then

[π]nCook is a valid PV proof concluding [e]nCook.

This statement can be proved in PV by formalizing the standard correctness proof.
We can now derive the feasibility hierarchy theorem from the provability of (∇). For any fixed proof

π∗, the correctness proof of the propositional translation of π can be formalized by substituting ⟨π⟩ by
⟨π∗⟩ and m by µTC

π∗ (⃗n) in (∇). (One can also choose an alternative formalization, but any straightforward
formalization should be provably equivalent to this formalization with fixed polynomial time complexity
overhead.) Subsequently, the correctness proof for π∗ follows directly from the correctness proof of (∇).

Moreover, as the time complexity of the proof of (∇) is a fixed polynomial in its input length |⟨π⟩|+
m + n, the time complexity of the correctness proof for π∗, which follows by a simple substitution, is at
most

(|⟨π∗⟩|+ µTC
π∗ (n) + n)O(1) = Oπ∗

(
µTC

π∗ (n)
)O(1)

,

where O(1) hides an absolute constant and Oπ∗ hides a constant depending on π∗. This completes the
time complexity analysis of the correctness proof for the propositional translation of π.

Links to formal proofs. The proof of the feasible proof generation theorem is in Section 6.3. The algo-
rithms for computing the propositional translation [π]nCook and [e]nCook when π, e are given as the input
are explained in Section 6.3.1. The formalization and proof of (∇) is in Section 6.3.2.
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2.4 Feasibility Hierarchy Theorem

At a high level, ed is a modification of a self-referential sentence: there is no PV proof π concluding ed
with time complexity βd+1, where β denotes the time complexity of the equation ed. It can be verified
that the standard self-referential construction [Coo75] incurs a minor time complexity overhead (see Sec-
tion 7). However, there are subtle technical issues with the encoding of π and the comparison of its time
complexity — both the time complexity of π and ed are functions of their input lengths, and it is unclear
how we should compare these two functions.

Self-referential sentence. We now describe the self-referential sentence ed in more details. The equation
ed will have two variables: a proof π and a string x. The string x will be used in two places:

• (Input length for complexity comparison). Recall that µTC
π (nπ , nx) and µTC

ed
(nπ , nx) denotes the time

complexity of π and ed. Instead of comparing these two functions, we will compare the values of
these two functions on the input length nπ = |x| and nx = |x|.

• (Time bound). Note that µTC
π (|x|, |x|) may not be efficiently computable when π is given as an input.

We will try to compute µTC
π (|x|, |x|) and use the length of |x| as a time bound.

Therefore, the sentence ed indeed formalizes:

for every π and x, we attempt to compute µTC
π (|x|, |x|) by running the algorithm for |x| steps, then

either µTC
π (|x|, |x|) does not halt in |x| steps, or µTC

π (|x|, |x|) ≥ (βTCed
(|x|, |x|))d+1, or π is not a

valid PV proof concluding ed.

Proof of the lower bound. The lower bound for ed is a simple adaption of the proof of Gödel’s first
incompleteness theorem [Göd31, Coo75]. Let β = βTCed

(nπ , nx) be the time complexity of ed. Assume for
contradiction that ed has a PV proof π∗ that has time complexity O(βd).

• Recall that the algorithm computing µTC
π (|x|, |x|) runs in time exp(exp(O(|π|))) · polylog(|x|), which

is much smaller than |x| when |π| = O(1). Therefore, there is an n0 ∈ N such that for every n ≥ n0,
µTC

π (1n, 1n) halts in at most n steps.

• Moreover, as π∗ has time complexity O(βd), there is an n′
0 ∈ N such that for every n ≥ n′

0,

µTC
π∗ (1n, 1n) ≤ (βTCed

(1n, 1n))d+1.

Since ed is a provable sentence in PV, we know by the soundness of PV that it is true in the stan-
dard model. Subsequently, ed(π/π∗, x/1n) is a true equation for every n. Therefore, if we choose
n ≥ max(n0, n′

0) such that the two bullets above hold, it must be the case that π∗ is not a valid PV
proof concluding ed. This yields a contradiction.

Proof of the upper bound. The upper bound proof for ed is significantly more involved. Due to page
limitations, we will only explain a brief intuition of the proof.

The key technical ingredient of the upper bound is a PV equation Cond called the bounded feasibility
consistency sentence. It states that there is no PV proof of contradiction with time complexity at most nd. In
more detail, Cond(π, x) has two variables π and x, and it states that

for every π and x, either π is not a PV proof concluding s0(x) = s1(x), or µTC
π (|x|, |x|) ≥ d · |x|d.

Similar to the definition of ed, µTC
π (|x|, |x|) may not be efficiently computable. This can be resolved by the

same trick of running the algorithm computing µTC
π (|x|, |x|) for |x| steps, which we omit here.

The proof of the upper bound involves two steps:
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• (Efficient proof of Cond). We show that there is a PV proof of Cond(π, x), and, in addition, the time
complexity of the proof is a fixed polynomial in (|π|+ |x|)d. Indeed, the PV proof of Cond(π, x) for-
malizes Cook’s consistency proof of PV in [Coo75, Corollary 2.17] in the setting that π has bounded
time complexity. In more detail, Cook’s consistency proof of PV combines two technical tools:

(i) (Propositional translation). The first tool is the correctness of the propositional translation: Given
a proof π of s0(x) = s1(x) and an input length n, we can produce an EF proof concluding
the propositional translation of s0(x) = s1(x), which can further derive a contradiction ⊥. In
the setting that π has bounded time complexity, this is exactly the generalized version of the
feasible proof generation theorem, as we mentioned in Section 2.3.

(ii) (Soundness of EF). The second tool is the soundness of EF, namely, there is no EF proof of ⊥.
This is known to be provable in PV (see Theorem 3.2).

In addition, one can verify that each part incurs a fixed polynomial time complexity overhead.

• (Reduction from ed to ConO(d)). We then prove that there is a reduction from ed to ConO(d), namely
there is a constant c ≥ 1 such that if ed is provable, Conc·d is also provable with a fixed polynomial
time complexity overhead. This is proved by adapting Gödel’s proof that the self-referential sentence
(in Peano Arithmetic) is implied by the consistency of Peano Arithmetic [Göd31] (see also [Coo75,
Equation 4.10] for the proof in PV).

By combining these two parts, we can prove ed by first proving ConO(d) and applying the reduction. Each
of the steps has a fixed polynomial running time in (βTCe (nπ , nx))d, and therefore the total time complexity
is at most a fixed polynomial in (βTCe (nπ , nx))d.

Another explicit witness. Note that by the time-efficient reduction from ed to ConO(d) and the lower
bound for ed, we can also derive a time complexity lower bound for the bounded feasibility consistency
sentence. This, combined with the efficient proof of Cond, shows that the feasibility consistency sentence
is also an explicit witness of the feasibility hierarchy theorem.

Links to formal proofs. The proof of the feasibility hierarchy theorem is in Section 7: In Section 7.1 we
prove an time complexity upper bound for proving the bounded feasibility consistency sentence; both
the upper and lower bounds for ed are proved in Section 7.2; in Section 7.3, we prove that the bounded
feasibility consistency sentence is also an explicit witness of the feasibility hierarchy theorem.

3 Preliminaries

We assume basic familiarity with bounded arithmetic (see, e.g., [Kra95, Bus86]), proof complexity (see,
e.g., [Kra19, BN21]), and computational complexity (see, e.g., [AB09]).

Notation. Let N := {0, 1, . . . , n, . . . } be the set of natural numbers, [n] = {1, 2, . . . , n}. We use 1n to
denote the all-1 string of length n.

For a string x, we use |x| to denote the length of the string, and x≤i (resp. x<i) to denote the prefix of
x of length i (resp. i − 1). We use x⃗ as shorthand of a vector of variables (x1, . . . , xk), and n⃗ ∈ N⃗ as the
shorthand of a vector of numbers (n1, . . . , nk). We use the standard notation x ∈ Log to denote that x is an
abbreviation of |X| for another variable X; in particular, ∀x ∈ Log φ(x) is an abbreviation of ∀X φ(|X|),
and ∃x ∈ Log φ(x) is an abbreviation of ∃X φ(|X|).

For a formula ϕ and term t, we use ϕ[x/t] to denote the formula obtained by substituting all free
occurrences of x to the term t.

For a function f (⃗n), we use O( f (⃗n)) to denote a function g(⃗n) satisfying that there are constants
c, n0 ≥ 1 such that for n⃗ = (n1, . . . , nk) satisfying that n1, . . . , nk ≥ n0, we have f (⃗n) ≤ c · g(⃗n). We use
Od( f (⃗n)) to emphasize that the constant c may depend on another constant d.
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3.1 Equational Theory PV

We will primarily use Cook’s formalization of the PV as an equational theory [Coo75], see Appendix A for
more detail. Our results are robust with respect to formalizations and should applied to any equivalent
formalizations of PV. However, the time complexity measure might differ up to a fixed polynomial.

We will use the standard notation PV ⊢ s = t to denote that there is a PV proof of the equation s = t.
The equational theory PV is defined as the set of equations with PV proofs.

3.2 First-Order Theory PV1

The theory PV1 is the first-order extension of PV. In more details, the language of PV1 consists of all PV
function symbols, and for every provable equation s(x⃗) = t(x⃗) in PV, ∀x⃗ s(x⃗) = t(x⃗) is an axiom of PV1.
We refer readers to [Kra95] for more detailed discussions.

Theorem 3.1 (witnessing theorem, see, e.g., [Kra95]). Let φ(x⃗, y) be a quantifier-free formula in the language
of PV1, and x⃗, y be the variables of φ. Suppose that PV1 ⊢ ∀x⃗ ∃y φ(x⃗, y), then there is a PV-function f such that
PV1 ⊢ ∀x⃗ φ(x⃗, f (x⃗)).

3.3 Simulation of Proof Systems by EF

Definition 3.1. Let M be a PV function and k, m0 ≥ 1 be integers. We define UBk,n0
M be conjunction of two

sentences Soundk,m0
M and Completek,m0

M , where

Soundk,m0
M := ∀n, m ∈ Log, m ≥ m0, ∀ formula φ ∈ {0, 1}m with n variables such that:

∀ assignment x ∈ {0, 1}n : φ(x) = 1 or ∀ witness π of size at most mk : M(φ, π) = 0;

Completek,m0
M := ∀n, m ∈ Log, m ≥ m0, ∀ formula φ ∈ {0, 1}m with n variables such that:

∃ assignment x ∈ {0, 1}n : φ(x) = 0 or ∃ witness π of size at most mk : M(φ, π) = 1.

In particular, let VEF(φ, π) be a straightforward PV function that verifies whether π is an EF proof of
φ, i.e., it outputs 1 (resp. 0) if π is (resp. is not) a valid EF proof of the formula φ, then Complete

O(1),Θ(1)
VEF

means that EF is p-bounded.

Theorem 3.2 ([Coo75]). PV1 ⊢ Soundk,m0
VEF

for any constants k, m0 ≥ 1.

Note that PV1 is a conservative extension of PV [Coo75, Kra95]; any PV1 provable equations in the
language of PV are also provable in PV. Therefore, if we formalize Soundk,m0

VEF
as a PV equation in a

straightforward way, it is also provable in PV.
The main theorem of [Coo75] shows that a proof system is provably sound in PV if and only if it is

PV-provably p-simulated by M.

Theorem 3.3 ([Coo75]). Let M be a PV function. Then PV1 ⊢ Soundk,m0
M if and only if PV1 proves that EF

p-simulates M. That is, there are constants k′, m′
0 such that PV1 proves the following statement: For every formula

φ and proof π such that |φ| ≥ m′
0, |π| ≤ |φ|k, if M(φ, π) = 1, there is a EF proof πEF such that VEF(φ, πEF) = 1

and |πEF| ≤ |π|k′ .

4 Formal Definition of the Time Complexity of PV

In this section, we formally define the time complexity of PV equations and proofs.
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• In Section 4.1, we propose a definition (called Cook complexity) based on Cook’s propositional trans-
lations. Cook complexity is indeed a class of complexity measures — every propositional translation
induces corresponding Cook complexity measures. We need to deal with two technical issues men-
tioned in Section 4.2.

• In Section 4.3, we provide a self-contained formal definition of time complexity that formalizes the
time complexity of PV equations and proofs.

• We prove in Section 4.4 that time complexity can be viewed as Cook complexity for a natural propo-
sitional translation. This propositional translation involves unnecessary padding. Nevertheless, we
prove in Section 4.5 that the padding does not incur a super-constant overhead.

• In Section 4.6, we provide examples that proofs of the same length differ significantly in terms of
their time complexity. This shows that time complexity is not a trivial measure derived from the
length of the proof.

4.1 High-Level Idea: Complexity Measure from Cook’s Translation

Cook’s propositional translation [Coo75] for PV consists of two translations. Let k ∈ N be the number of
variables and s(x⃗) = t(x⃗) be a PV equation.

• First, a translation from PV equations s(x⃗) = t(x⃗) to families of polynomial-size propositional formulas
{φn⃗}n⃗∈Nk , denoted by [s = t]⃗nCook, is defined such that φn⃗ is a formula that is a tautology if and only
if s(x⃗) = t(x⃗) for any x⃗ = (x1, x2, . . . , xk) ∈ {0, 1}n1 × {0, 1}n2 × · · · × {0, 1}nk .

• Then it is proved that given any PV proof π of the equation s = t and any n⃗ ∈ Nk, there is a
polynomial-size EF proof of φn⃗. For simplicity, we also denote the EF proof by [π ]⃗nCook.

These two translations reveal two aspects of the feasibility of PV. The first translation can be interpreted
as the efficiency of verification: Given any input u⃗ = (u1, . . . , uk) such that ui ∈ {0, 1}ni , there is an algorithm
in poly(⃗n) time, namely evaluating the formula [s = t]⃗nCook that determines whether s(u⃗) = t(u⃗). The
second translation can be interpreted as the efficiency of a proof : If s(x⃗) = t(x⃗) admits a PV proof π, given
any input length n⃗ ∈ Nk, there is a uniform mean of verification in poly(⃗n) time, namely verifying the EF

proof [π ]⃗nCook, that the formula [s = t]⃗nCook is a tautology.
Fix any standard propositional translation [·]Cook for equations and functions. We can introduce the

propositional complexity and the proof length complexity corresponding to [·]Cook as follows:

Definition 4.1 (propositional complexity). Let e : s(x⃗) = t(x⃗) be a PV equation. The propositional complexity

of the equation under the translation [·]Cook is the function βCooke , where βCooke (⃗n) is the bit-length of the
proposition formula [e]⃗nCook.

Definition 4.2 (proof length complexity). Let e be a PV equation and π be a PV proof of e. The proof

length complexity of π under the translation [·]Cook is defined as the function µCook
π , where µCook

π (⃗n) is the
bit-length of the EF proof [π ]⃗nCook.

For simplicity, we use the name Cook complexity for both propositional and proof length complexity
measure: The propositional complexity of a PV equation e and the proof length complexity π of a PV
proof are called the Cook complexity of e and π, respectively.

Remark 4.3. Note that Cook complexity is a class of complexity measures, as one can choose to work
with different propositional translation [·]Cook. These complexity measures may differ drastically; indeed,
as mentioned in Section 1.1.1, one can add unnecessary padding so that the size of the propositional
translation depends only on the size of the PV proof.

We make two additional remarks on the definition.
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1. In this paper, we will not consider the encoding scheme for propositional formulas or EF proofs.
Our theorems are robust with respect to formalizations, though the exact constants in our theorems
will depend on the particular formalization we will use — it remains an interesting open problem
to optimize the constants with efficient encoding schemes (see also Section 4.4 for more discussion).

2. It is clear that the EF proof [π ]⃗nCook of the propositional formula φn⃗ := [e]⃗nCook should at least contain
φn⃗ in any reasonable encoding schemes. Therefore, µCook

π (⃗n) ≥ βCookπ (⃗n). Given that the proposi-
tional complexity is a lower bound of the proof length complexity, it might be possible to measure
the proof length complexity as a function of the propositional complexity of its conclusion. For
instance, we may say that a PV proof π of the equation e has proof complexity O(βc) if there are
constants n0, c′ such that for n1, n2, . . . , nk ≥ n0,

µCook
π (n1, . . . , nk) ≤ c′ ·

(
βCookπ (n1, . . . , nk)

)c
.

It follows immediately from Cook’s theorem of propositional translation [Coo75] that the Cook com-
plexity of any PV equation or proof is always bounded by a polynomial.

Proposition 4.1. For every valid PV equation e, βCooke (⃗n) = O((n1 + · · ·+ nk)
c) for some constant c ∈ N.

Proposition 4.2. For every valid PV proof π, µCook
e (⃗n) = O((n1 + · · ·+ nk)

c) for some constant c ∈ N.

4.2 Technical Issues

Cook complexity serves as a natural definition of the complexity of PV proofs. Nevertheless, there are
technical issues that we need to take into account to ensure that the complexity measure admits desired
mathematical properties.

Lack of feasible translation property. At a high level, the time complexity of an equation e : s(x⃗) = t(x⃗)
characterizes the total cost to verify the equation on any particular input u⃗. The Cook complexity of
an equation interprets the cost of verifying the equation as the size of its propositional translation [e]⃗nCook.
Such interpretation does not match with the informal notion unless the correctness of propositional translation
can be proved with little cost. In particular, the statement

∀x⃗ s(x⃗) = t(x⃗) ↔ [e]|x1|,...,|xk |
Cook is a tautology (4.1)

should be provable, and the proof should not incur significant overhead in terms of the time complexity
of proofs.

To be more specific, let βe(·) be a complexity measure for equations and µe(·) be a complexity measure
for proofs, we say that the pair of measures (βe, µπ) admit feasible translation property if there is a fixed
constant d ∈ N such that for any equation e : s(x⃗) = t(x⃗), Equation (4.1) admits a proof π such that
µπ (⃗n) = O((βe (⃗n))d). In more detail, Equation (4.1) should be formalized as two PV equations:

• (Completeness). For every x⃗ such that s(x⃗) ̸= t(x⃗), Assigne(x⃗) outputs a falsifying assignment of
[e]|x1|,...,|xk |

Cook , where Assigne(x⃗) is a PV function that depends on e.

• (Soundness). For every assignment w such that the input variables encode x⃗, if w is a satisfying
assignment of [e]|x1|,...,|xk |

Cook , then s(x⃗) = t(x⃗).

The formalizations of both equations are straightforward.
We now argue informally that Cook complexity (µCook

π , βCookπ ) may not have feasible translation prop-
erty. Assume for contradiction that Cook complexity has feasible translation property with translation
overhead d ∈ N. Let f (x⃗, y) be a PV function introduced by limited recursion via other PV functions g(x⃗),
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hi(x⃗, y, z), ki(x⃗, y), i ∈ {0, 1}, where ki(x⃗, y) is used to bound the output length of the recursion scheme
hi(x⃗, y, z) by a PV proof of

ITR(hi(x⃗, y, z), z ◦ ki(x⃗, y)) = ε. (4.2)
In general, it could be the case that the computational complexity of ki is much larger than the computa-
tional complexity of f , g, and hi, as the efficiency of an efficient algorithm may require inefficient proofs.
For a concrete example, the following algorithm runs in polynomial time under Cramér’s conjecture,
which might be true but not feasibly provable:

• Given 1n, enumerate n, n + 1, n + 2, . . . and run the AKS algorithm [AKS04] to find a prime number.

For simplicity, we assume that f , g, hi, ki do not have any additional parameter x⃗. Suppose that we want
to prove a certain property of f (y), say e : f (y) = p(y) for another PV function p(y). As the propositional
translation of the equation e : f (y) = p(y) does not take into account the complexity of ki(y), it could be
the case that the computational complexity of ki(y) is Ω(βe(y)d+1) for i ∈ {0, 1}. Moreover, the proof πk

i
of Equation (4.2) may have time complexity µπk

i
(y) = Ω(βe(y)d+1) as it is also not taken into account.

To add more detail, the propositional translation of the function f (y) consists of intermediate variables
intended to encode the output of f (ε), f (y1), f (y1y2), . . . , f (y), where y = y1y2 . . . yn. The output length
of f (y≤i) is bounded by

mj(y) := |g|+ ∑
0≤j<i

k0(y≤j) + ∑
0≤j<i

k0(y≤j),

and thus the total number of intermediate variables is m0(y) +m1(y) + · · ·+mn(y). (Note that other inter-
mediate variables and constraints will need to be introduced to ensure the correctness of the computation.)
However, to prove that the propositional translation is correct (as required by the feasible translation prop-
erty), we also need to prove that the output length of f (y≤j) is indeed at most mj(y). This may require a
white-box inspection of the computation k0(y≤j), k1(y≤j) as well as the proof of Equation (4.2), while both
of them may have complexity Ω(βe(y)d+1) ≫ βe(y)d.

Inefficiency of computing Cook complexity. One of the key characteristics of the Cook complexity
measures is that they are efficiently computable for fixed equations and proofs. Let n⃗ = (n1, . . . , nk) ∈ Nk.
For any fixed equation e : s(x⃗) = t(x⃗), there is a polynomial-time algorithm Eβ(1n1+···+nk ) that outputs
βe
Cook (⃗n). Similarly, there is a polynomial-time algorithm Eµ(1n1+···+nk ) that outputs µe

Cook (⃗n). These two
properties are easy corollaries of the fact that Cook’s translations for both equations and proofs, namely
the functions

(1n1 , . . . , 1nk ) 7→ [e]n⃗Cook, (1n1 , . . . , 1nk ) 7→ [π]n⃗Cook,

are polynomial-time computable for any PV equation e and proof π. Indeed, for any fixed PV equation e
and proof π, it is proved in [Coo75] that there are straightforward PV functions that compute these two
functions (and thus also Eβ and Eµ).

However, a technical issue of Cook complexity is that if we parameterize the proof length k = |π|, the
algorithm may not be efficient. Recall that Cook complexity of equations and proofs is defined with respect
to a fixed propositional translation [·]Cook. Depending on the exact definition of [·]Cook, the algorithm in
[Coo75] may take O(n f (k)) time to compute the Cook complexity of a proof π for some function f , where
n = n1 + · · ·+ nk denotes the sum of input lengths. This means that given any proof π of super-constant
length, it is impossible to even formalize the statement

“π has Cook complexity at most n10”

in PV, as the computation of Cook complexity is infeasible.
It could be much more interesting if the complexity measure is efficiently computable given proofs as

input, say in poly(k, n⃗) time, or at least f (k) · poly(n) time for some function f (i.e. there is an FPT algorithm
to compute the complexity measure). In the latter case, the statement “π has Cook complexity at most n10”
could be formalized for a proof π of super-constant length by padding f (k) dummy bits after the proof π
of length k.
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Time complexity of proofs and equations: a bird’s eye view. We will define time complexity of PV
equations and proofs by modifying Cook complexity to address the two technical issues above. Our
modification can be summarized as follows at a high level:

• (Feasible Translation Property). We will define the complexity of an equation e by taking into account
both the size of its propositional translation [e]⃗nCook as well as the correctness proof of the transla-
tion. For our formalization of PV, this includes the complexity of bounding functions ki for limited
recursions and their correctness proof.

• (Computational Efficiency). We will carefully choose a particular formalization of the propositional
translation [·]Cook such that there is an FPT algorithm to compute the Cook complexity under the
propositional translation. This propositional translation has obvious redundancy in dealing with
recursively defined functions and the induction rule, but it can be proved that such redundancy
does not incur a super-linear blowup.

4.3 Time Complexity of Proofs and Equations

We now define the time complexity (TC) of equations and proofs that resolve the technical issues we
mentioned above. We provide a self-contained definition here for completeness.

Let ℓt(x1, . . . , xk) be the bounding value of the term t(x1, . . . , xk), i.e., the output of t(x1, . . . , xk) is of
length at most ℓt(|x1|, . . . , |xk|) (see Appendix A.3 for more detail). Let c = O(1) be a constant to be
determined later, which is called the formalization overhead.

4.3.1 Additional Time Complexity

We will first define the additional time complexity (ATC) of an equation or a proof line in the context of a
proof π as follows.

• (ATC of Equations). Let π be a valid PV proof consisting of proof lines e1, . . . , em, and e : t1(x1, . . . , xk) =
t2(x1, . . . , xk) be an equation such that each function symbol in e has been defined in the proof π.
We will define the ATC of the equation e in the context π as a function β+

e,π(n1, . . . , nk), where ni
denotes the length of xi.

• (ATC of Proof Lines). Let π be a valid PV proof consisting of proof lines e1, . . . , em, e be a valid proof
line after π, and x1, . . . , xk be the variables in e. We will define the ATC of the new proof line e in
the context of π as a function µ+

e,π(n1, . . . , nk), where ni denotes the length of xi.

Let π be a PV proof and e1, e2, . . . , em be the proof lines in π. Each ei is introduced either by axioms or
from previous equations by deduction rules. Let e : t1(x⃗) = t2(x⃗) be a new equation, x⃗ = (x1, . . . , xk).

ATC of Equations. We will define the ATC of the terms t1(x⃗) and t2(x⃗) in the context of π, denoted by
β+

t1,π (⃗n) and β+
t2,π (⃗n) and define the ATC of the equation e as β+

e,π (⃗n) := β+
t1,π (⃗n) + β+

t2,π (⃗n) + c · (ℓt1 (⃗n) +
ℓt2 (⃗n)); the last term is to consider the complexity of comparing the output of t1 and t2.

Let t ∈ {t1, t2}. We define β+
t,π by structural induction on the definition of t.

• (Base Case). If t is ε, x, s0(x), s1(x), or TR(x), β+
t,π(n) := c · n. Otherwise, i.e., t is ITR(x1, x2) or

◦(x1, x2), β+
t,π(n) := c · n1 · n2.

• (Functions via Composition). If t is a function introduced by composition, i.e., ft′(x⃗) = t(x⃗) for some
valid term t′ in the context of π, β+

t,π (⃗n) := β+
t′ ,π (⃗n).
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• (Functions via Limited Recursion). Suppose that t is a function f (u⃗, v) introduced by limited recur-
sion from g(u⃗), hi(u⃗, v, z), ki(u⃗, v), i ∈ {0, 1}, u⃗ = (u1, . . . , ui), v are variables (i.e. u1, . . . , ui, v ∈
{x1, . . . , xk}). Let m1, . . . , mi, mv be the input length of u1, . . . , ui, v, respectively. The ATC of t is

β+
t,π(m1, . . . , mi, mv)

:= c ·

β+
g,π(m1, . . . , mi) + mv · ∑

σ∈{0,1}
β+

hσ ,π(m1, . . . , mi, mv, ℓ f (m1, . . . , mi, mv))

 . (4.3)

where ℓ f is the bounded value of f .

• (Composition). Suppose that t is of form f (s1, . . . , si) for a function f and terms s1, . . . , si. The ATC of
t is defined as

β+
t,π (⃗n) := c ·

β+
f ,π(ℓs1 (⃗n), . . . , ℓsi (⃗n)) + ∑

j∈[i]
β+

si ,π (⃗n)

 ,

where ℓs1 , . . . , ℓsi are the bounding values of s1, . . . , si, respectively.

Remark 4.4. In the definition of ATC for functions introduced via limited recursion (see Equation (4.3)),
the second term mv · β+

h,π(m1, . . . , mi, mv, ℓ f (m1, . . . , mi, mv)) is to capture the complexity of the recursive
computation of f (u⃗, v):

f (u⃗, ε) = g(u⃗),
f (u⃗, v1) = hv1(u⃗, v1, f (u⃗, ε)),
. . .
f (u⃗, v1v2 . . . vmv) = hvmv (u⃗, v1v2 . . . vmv−1, f (u⃗, v1v2 . . . vmv−1)).

In this procedure, we need to evaluate h for mv times, each of which is on input length at most m1, m2,
. . . , mi, mv, ℓ f (m1, . . . , mi, mv) for its i + 2 variables.

We note that this estimation has obvious redundancy. If we attempt to evaluate f , we may find out
that the actual input lengths are much smaller, and thus the actual computational complexity is smaller
than the estimation in Equation (4.3). Nevertheless, we argue that Equation (4.3) is a good definition as it
only incurs a small overhead (see Theorem 4.4).

ATC of Proof Lines. Suppose that e is a new proof line after π, we will define the ATC of proof line e in
the context of π. Consider the axiom or deduction rule that we use to introduce the new line e.

• (Axioms for Functions). Suppose that e is a proof line introduced as an axiom for the functionality of
initial functions or introduced functions, we define µ+

e,π (⃗n) := c · β+
e,π (⃗n). For instance, if ei is one of

TR(si(x)) = x, ITR(x, ε) = x, x ◦ ε = x, (i ∈ {0, 1}),

the ATC of e is defined as µ+
e,π(n) := c · n.

• (Function Introduction). Suppose that e is a proof line that introduces a function symbol by the
composition rule or the limited recursion rule the time complexity of e is defined as 0.

• (Logical Rules). Suppose that e is derived from a logical rule. If the logical rule is (L1), (L2), or (L3),
we simply define µ+

e,π (⃗n) := c · β+
e,π (⃗n).

If the logical rule is (L4), i.e., e is of form s1[y/s3] = s2[y/s3], where s1, s2, s3 are PV terms such that
e′ : s1 = s2 is in π, and y is a variable. Assume without loss of generality that y is different from
x1, . . . , xk and y has at least one occurrence in e′. In such case, variables in s3 are among x1, . . . , xk.
Let n1, . . . , nk be the input length of x1, . . . , xk, and ny be the input length of y. We define

µ+
e,π(n1, . . . , nk) := c ·

(
β+

e′ ,π(n1, . . . , nk, ny := ℓs3(n1, . . . , nk)) + β+
s3,π(n1, . . . , nk)

)
.
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• (Induction). Suppose that e is derived from the induction rule. Without loss of generality, we assume
that xk is the induction variable. Let f1(x⃗), f2(x⃗), g(x1, . . . , xk−1), hi(x⃗, z) be PV function symbols
that have been introduced in π. Moreover, for σ ∈ {1, 2}, i ∈ {0, 1}, the equations

e′g : f1(x1, . . . , xk−1, ε) = f2(x1, . . . , xk−1, ε) (4.4)

e′σ,i : fσ(x1, . . . , xk−1, si(xk)) = hi(x1, . . . , xk−1, xk, fσ(x1, . . . , xk)) (4.5)

are in π. Let nz be the length of z in hi. The ATC of e is defined as

µ+
e,π (⃗n) := c ·

β+
e′g ,π(n1, . . . , nk−1) + ∑

σ∈{1,2}
∑

i∈{0,1}
nk · β+

e′σ,i ,π
(n1, . . . , nk−1, nk)

 . (4.6)

Remark 4.5. The definition of ATC of new proof lines for the induction rule consists of two terms: The
first term β+

e′g ,π(n1, . . . , nk−1) captures the cost of the proof in the base case

f1(x1, . . . , xk−1, ε) = g(x⃗) = f2(x1, . . . , xk, ε),

and the second term
∑

σ∈{1,2}
∑

i∈{0,1}
nk · β+

e′σ,i ,π
(n1, . . . , nk−1, nk)

captures the additional cost in the induction case:

f1(x1, . . . , xk−1, σ1) = hσ1(x1, . . . , xk−1, fi(x1, . . . , xk−1, ε)) = f2(x1, . . . , xk−1, σ1)

f1(x1, . . . , xk−1, σ1σ2) = hσ2(x1, . . . , xk−1, fi(x1, . . . , xk−1, σ1)) = f2(x1, . . . , xk−1, σ1σ2)

...
f1(x1, . . . , xk−1, σ1 . . . σnk ) = hσnk

(x1, . . . , xk−1, fi(x1, . . . , xk−1, σ1 . . . σnk−1)) = f2(x1, . . . , xk−1, σ1 . . . σnk ),

where σ1σ2 . . . σnk = xk. Each of these nk lines requires a copy of the proof of e′σ,i in Equation (4.5) on
an input length upper bounded by |x1| ≤ n1, . . . , |xk−1| ≤ nk−1, |xk| ≤ nk. Similar to Remark 4.4, there
is obvious redundancy as the input length upper bound is not tight — the actual input length to xk is at
most j in the i-th line. Nevertheless, this only incurs a small overhead as we will prove in Theorem 4.4.

We also note that the additional cost is simply for applying the transitivity of equality; it does not
include the cost of proving the instances of the equations e′σ,i in Equation (4.5), e.g., the first equation

f1(x1, . . . , xk−1, σ1) = hσ1(x1, . . . , xk−1, fi(x1, . . . , xk−1, ε)).

The cost of proving the equations e′σ,i is considered as the additional cost of previous lines.

4.3.2 Acquired Input Lengths

The ATC of an equation or proof line e in the context of a proof π formalizes the additional cost to verify
or prove the equation e when π is considered “known”. To fully verify or prove the equation e from π,
we may need to verify or prove one or more lines in π on one or more input lengths. This motivates the
definition of acquired input lengths in π to verify or prove e.

Let π be a PV proof consisting of lines e1, . . . , em, and e be a PV equation. We define the set of acquired
input lengths (AIL) of ei by an equation e on the input lengths n⃗ as β-AILe,ei (⃗n) ⊆ N⃗, and the set of acquired
input lengths of ei by a new proof line e on the input lengths n⃗ as µ-AILe,ei (⃗n) ⊆ N⃗.
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AIL of equations. Intuitively, the AIL of a proof line ei by an equation e is the set of input lengths for
ei we need to obtain to verify the equation e. This only happens if there is a function f in the equation e
defined via limited recursion from (g, h0, h1, k0, k1) such that ei is ITR(hi(x⃗, y, z), z ◦ ki(x⃗, y)) = ε, i.e., the
upper bound of the recursion scheme hi. The formal definition is as follows.

We first define the AIL of a PV term t, denoted as β-AILt,ei (⃗n), by structural induction on t. The AIL of
an equation e : t1 = t2 is defined as β-AILe,ei (⃗n) := β-AILt1,ei (⃗n) ∪ β-AILt2,ei (⃗n). In the base case, if t is ε, a
variable, or an initial function, β-AILt,ei (⃗n) := ∅.

• (Functions via Composition). If t is a function introduced by composition, i.e., ft′(x⃗) = t for some term
t′, we define β-AILt,ei (⃗n) := β-AILt′ ,ei

(⃗n).

• (Functions via Limited Recursion). Suppose that t is a function f (x⃗, y) introduced by limited recursion
from g(x⃗), hσ(x⃗, y, z), kσ(x⃗, y), σ ∈ {0, 1}, where x⃗ = (x1, . . . , xk). Let n⃗ = (n1, . . . , nk) be the input
lengths of x1, . . . , xk, and ny be the input length of y. Let ℓ f be the bounding value of f , we define

∆(⃗n, ny) := β-AILg,ei (⃗n) ∪ β-AILh0,ei
(⃗n, ny, ℓ f (⃗n, ny)) ∪ β-AILh1,ei

(⃗n, ny, ℓ f (⃗n, ny)). (4.7)

If ei is not ITR(hσ(x⃗, y, z), z ◦ kσ(x⃗, y)) = ε for some σ ∈ {0, 1}, β-AILt,ei (⃗n, ny) := ∆(⃗n, ny). Otherwise,

β-AILt,ei (⃗n, ny) := ∆(⃗n, ny) ∪ {(⃗n, ny, ℓ f (⃗n, ny))},

where the tuple (⃗n, ny, ℓ f (⃗n, ny)) means that the acquired input lengths of x⃗, y, and z in the equation
ei : ITR(hσ(x⃗, y, z), z ◦ kσ(x⃗, y)) = ε are n⃗, ny, and ℓ f (⃗n, ny), respectively.

• (Composition). Suppose that t is of form f (s1, . . . , sj) for a function f and terms s1, . . . , sj. The AIL of
t is defined as

β-AILt,ei (⃗n) := β-AIL f ,ei
(⃗n) ∪

⋃
j′∈[j]

β-AILsj′ ,ei (⃗n). (4.8)

AIL of new proof lines. Suppose that e is a valid new proof line after π, we will define the AIL of ei by
e on the input lengths n⃗, denoted as µ-AILe,ei (⃗n), by considering what axiom or deduction rule is used to
introduce e.

• (Axioms). If e is introduced by axioms, including axioms for initial functions and axioms for intro-
duced functions, µ-AILe,ei (⃗n) := β-AILe,ei (⃗n).

• (Function Introduction). If e is to introduce a function symbol via the composition or the limited
recursion rule, µ-AILe,ei (⃗n) := ∅.

• (Logical Rules). Suppose that e is derived from a logical rule. If ei is not a premise of the logical rule,
we define µ-AILe,ei (⃗n) := β-AILe,ei (⃗n).

– If e : t1 = t2 is derived from (L1), (L2), or (L3), and ei is one of the premises, we define
µ-AILe,ei (⃗n) := β-AILe,ei (⃗n) ∪ {⃗n}.

– Suppose that e : t1[xj/v] = t2[xj/v] is derived from (L4) and ei : t1 = t2 is the premise, where v is
a term. Let ℓv (⃗n) be the bounding value of the term v and n⃗′ := (n1, . . . , nj−1, ℓv (⃗n), nj+1, . . . , nk).
We define µ-AILe,ei (⃗n) := β-AILe,ei (⃗n) ∪ {⃗n′}.

• (Induction). Suppose that e is derived from the induction rule. Without loss of generality, we assume
that xk is the induction variable. Let f1(x⃗), f2(x⃗), g(x1, . . . , xk−1), hi(x⃗, z) be PV function symbols
that have been introduced in π. Moreover, for σ ∈ {1, 2}, j ∈ {0, 1}, the equations

e′g : f1(x1, . . . , xk−1, ε) = f2(x1, . . . , xk−1, ε)

e′σ,j : fσ(x1, . . . , xk−1, sj(xk)) = hj(x1, . . . , xk−1, xk, fσ(x1, . . . , xk))

are in π. Consider the following cases.
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– If ei is e′g, we define µ-AILe,ei (⃗n) := β-AILe,ei (⃗n) ∪ {(n1, . . . , nk−1, 0)}.
– If ei is e′σ,j, we define

µ-AILe,ei (⃗n) := β-AILe,ei (⃗n) ∪ {(n1, . . . , nk−1, nk)}.

– Otherwise, we define µ-AILe,ei (⃗n) := β-AILe,ei (⃗n).

Acquisition closure. Let π : e1, . . . , em be a PV proof. A set S is said to be an acquisition map if each
element in S is a pair (ej, n⃗′), where ej is the j-th proof line of π, and let x1, . . . , xkj

be the variables in ej,

then n⃗′ = (n′
1, . . . , n′

kj
) ∈ N⃗.

We define the acquisition extension of the acquisition map S: For a pair (ej1 , m⃗′
1) in the set, j2 < j1, and

m⃗′
2 ∈ µ-AILej1

,ej2
(m⃗′

1), we add (ej2 , m⃗′
2) in to the set. The acquisition closure of S, denoted by µ-AMπ(S), is

defined as the minimal set containing S that is closed under acquisition extension.

4.3.3 Time Complexity of Proofs and Equations

We are finally ready to define the time complexity of proofs and equations by taking the summation over
the time cost (i.e. the ATC) of all equations or proof lines on all acquired input lengths.

Definition 4.6 (time complexity of proofs). Let π be a PV proof with proof lines e1, . . . , em, where em is the
conclusion of π. The time complexity (TC) of the proof π concluding em, denoted by µTC

π (⃗n), is defined as

µTC
π (⃗n) := ∑

(ei ,⃗l)∈µ-AMπ({(em ,⃗n)})
µ+

ei ,π<i
(⃗l), (4.9)

where π<i := e1, . . . , ei−1.

Definition 4.7 (time complexity of equations). Let e be a PV equation and π be a PV proof (called the
context) such that all function symbols in e are introduced in π. Let e1, . . . , em are the proof lines in π. The
time complexity (TC) of the equation e in the context of π, denoted by βTCe,π (⃗n), is defined as

βTCe,π (⃗n) = β+
e,π (⃗n) + ∑

(ei ,⃗l)∈µ-AMπ(β-AIL∗e,π (⃗n))

µ+
ei ,π<i

(⃗l), (4.10)

where π<i := e1, . . . , ei−1, and β-AIL∗e,π (⃗n) is defined as

β-AIL∗e,π (⃗n) :=
⋃

i≤m

{
(ei, l⃗) | l⃗ ∈ β-AILe,ei (⃗n)

}
.

Remark 4.8. We note that Equation (4.10) formalizes the intuition mentioned in Section 1.1.4 and Sec-
tion 2.2. The first term considers the size of the propositional translation of e, while the second term
considers the proof complexity of all lines in the context π, in which we define the function symbols used
in the equation e and prove any necessary properties. As the context π will present in any proof π′ of e,
the second term of Equation (4.10) will necessarily contribute to µTC

π′ (⃗n) as defined in Equation (4.9).

Remark 4.9. We emphasize that the definition is the same when there is no variables. In such case, the
input length n⃗ is replaced by a placeholder ∅, where |∅| := 0, and the ATC β+

e,π(∅) will be a constant.
We also note that even if n⃗ = ∅, the acquisition map µ-AMπ({(em,∅}) may contain pairs (ei, l⃗) for l⃗ ̸= ∅,
as the intermediate step ei may have variables.
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4.4 Connection to Cook Complexity

Now we show that the complexity measures µTC
π (⃗n) and β+

e,π (⃗n) are Cook complexity measures for a
fixed propositional translation. That is, there is a propositional translation [·]Cook such that if we set the
formalization overhead c to be sufficiently large, µTC

π (⃗n) = |[π ]⃗nCook| and β+
e,π = |[e]⃗nCook|. Formally:

Theorem 4.3. There is a constant c ≥ 1 and a fixed propositional translation [·]Cook such that µTC
π (⃗n) = |[π ]⃗nCook|

and βTCe,π (⃗n) ≥ β+
e,π (⃗n) = |[e]⃗nCook| when the formalization overhead is chosen to be c.

Proof. Let c be a constant to be determined later. We will describe the propositional translation [·]Cook of
equations and proof and specify the constant c at the same time. Note that we will prove that µTC

π (⃗n) ≥
|[π ]⃗nCook| and β+

e,π (⃗n) ≥ |[e]⃗nCook|, as we can pad the propositional translation.

Translation to propositional formulas. We first verify that β+
e,π (⃗n) ≥ |[e]⃗nCook|. Indeed, we will describe

an algorithm GenPropπ,e (⃗n) such that for every valid proof π and equation e in the context, any input
length n⃗ for x⃗, it produces a propositional formula that is a tautology if and only if ∀x t1(x⃗) = t2(x⃗).

Specifically, we first translate the terms t1(x⃗) and t2(x⃗) on input length n⃗ to propositional formulas; in
more detail, for each term t ∈ {t1, t2}, the propositional translation [t]⃗nCook of t is defined by introducing
variables and constraints as follows:

• (Input Variables). We introduce n1 + · · · + nk + k variables x1,0, x1,1, . . . , x1,n1 , . . . , xk,0, xk,1, . . . , xk,nk
encoding the input x1, . . . , xk. That is, for each j ∈ [k], xj,0, . . . , xj,nj ∈ {0, 1} encodes a string of
length at most nj that is supposed to substitute the variable xj.

• (Output Variables). We introduce ℓt (⃗n) variables encoding the output of the term t(x⃗), where ℓt (⃗n) is
the bounding value of t.

• (Internal Variables and Constraints). We introduce internal variables and constraints to ensure that
given any input x⃗ encoded by the input variables:

– if all constraints are satisfied, the output variables must encode t(x⃗);
– there is a satisfying assignment such that the output variables encode t(x⃗).

These variables and constraints are defined by induction on the structure of t. Without loss of
generality, we may assume that constraints are represented by a 3-CNF.

Next, we introduce additional variables and constraints to compare the output of t1(x⃗) and t2(x⃗). In more
detail, these variables and constraints encodes the following statement:

• (⋆): If t1 and t2 are given the same input, and all constraints for the internal computation of t1 and
t2 are satisfied, the output variables of t1 and t2 must be the same.

We can see that ∀x⃗ t1(x⃗) = t2(x⃗) if and only if the statement above is a tautology.
Note that the statement (⋆) can be formalized as a formula of form ϕ → ψ, where ϕ is a 3-CNF

encoding the constraints to input and the internal computation of t1 and t2, and ψ is a 3-CNF encoding
the comparison to the output variables of t1 and t2. The generation of ψ, so it suffices to generate ϕ, which,
in turn, reduces to the problem of generating [t]⃗nCook.

The algorithm is defined by structural induction on [t]⃗nCook. Meanwhile, we will prove that [t]⃗nCook is a
formula of size at most β+

t,π (⃗n).

• (Base Case). If t is ε, x, s0(x), s1(x), or TR(x), we can generate an explicit linear-size formula cor-
responding to the computation of t. The size is bounded by β+

t,π (⃗n) = c · n if the formalization
overhead c is chosen as a sufficiently large constant. Similarly, if t is ITR(x, y) or ◦(x, y), we can
generate an explicit O(|x| · |y|)-size formula and the size is bounded by β+

t,π (⃗n) = c · |x| · |y| if the
formalization overhead c is chosen as a sufficiently large constant.
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• (Functions via Composition). If t is a function introduced by composition, i.e., ft′(x⃗) = t(x⃗) for some
valid term t′ in the context of π, [t]⃗nCook is simply defined as [t′ ]⃗nCook, and by induction hypothesis, it
is of size at most β+

t′ ,π (⃗n) = β+
t,π (⃗n).

• (Functions via Limited Recursion). If t is a function f (x⃗) introduced by limited recursion from g, hi,
ki, i ∈ {0, 1}. Without loss of generality, assume that xk is the recursion variable, x⃗ = (x1, . . . , xk),
and n1, . . . , nk denotes the input length of x1, . . . , xk. The formula [t]⃗nCook consists of the following
components.

(i) the translation of g on the input length n1, . . . , nk−1;
(ii) nk copies of the translation of hσ(x⃗, z) on the input length n1, . . . , nk, |z| = ℓ f (n1, . . . , nk);

(iii) corresponding intermediate variables such that the nk copies of the translation of hσ(x⃗, z) sim-
ulate the following computation:

z0 := g(x1, . . . , xk−1) = f (x1, . . . , xk−1, ε)

z1 := hσ1(x1, . . . , xk−1, ε, z0) = f (x1, . . . , xk−1, σ1)

...
...

znk := hσnk
(x1, . . . , xk−1, σ1σ2 . . . σnk−1, znk−1) = f (x1, . . . , xk−1, σ1σ2 . . . σnk ) (4.11)

where xk = σ1σ2 . . . σnk , and each zi is of length ℓ f (x1, . . . , nk).

By the induction hypothesis, the first part is of size β+
g,π(n1, . . . , nk−1), and the second part is of size

nk · β+(n1, . . . , nk, ℓ f (n1, . . . , nk)). It can be verified that the third part incurs a linear-size overhead.
Therefore, the overall size of the formula is bounded by

O(β+
g,π(n1, . . . , nk−1) + nk · β+(n1, . . . , nk, ℓ f (n1, . . . , nk))) ≤ β+

t,π (⃗n)

if c is sufficiently large.

• (Composition). If t is of form f (s1, . . . , sm) for a function f and terms s1, . . . , si, its propositional
translation consists of the following components:

(i) for each s ∈ {s1, . . . , sj}, the propositional translation of s on the input length x⃗;
(ii) the propositional translation of f (z1, . . . , zj), where |z1| = ℓs1 (⃗n), . . . , |zj| = ℓsj (⃗n);

(iii) corresponding intermediate variables that ensure the output variables of s1, . . . , sj are equal to
the input variables of f (z1, . . . , zj).

By the induction hypothesis, the first part is of size β+
s,π (⃗n) for each s ∈ {s1, . . . , sj}, and the sec-

ond part is of size β+
f ,π(ℓs1 (⃗n), . . . , ℓsj (⃗n)). It can be verified that the third part incurs a linear-size

overhead, and therefore the overall size of the formula is at most

O

β+
f ,π(ℓs1 (⃗n), . . . , ℓsi (⃗n)) + ∑

j∈[i]
β+

si ,π (⃗n)

 ≤ β+
t,π (⃗n)

if c is sufficiently large.

In summary, for any equation e : t1 = t2 and its propositional translation ϕ → ψ, the formula ϕ is of
size at most β+

t1,π (⃗n) + β+
t2,π (⃗n), and the formula ψ is of linear size in the output length of t1 and t2. The

total size of ϕ → ψ is at most

O(β+
t1,π (⃗n) + β+

t2,π (⃗n) + ℓt1(x⃗) + ℓt2(x⃗)) ≤ β+
e,π (⃗n)

when c is sufficiently large.
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Translation to EF proofs. Next, we verify that µTC
π (⃗n) ≥ µCook

π (⃗n) by proposing an algorithm GenProofπ (⃗n)
such that for every proof π concluding e, it outputs an EF proof of [e]⃗nCook of size µTC

π (⃗n).
Let π : e1, . . . , em, ∆ = µ-AMπ({(em, n⃗)}) be the acquisition map, and ∆i := {(ei, p⃗) ∈ ∆ | p⃗ ∈ N}.

In the i-th round, our algorithm will generate EF proofs of [ei]
p⃗
Cook for each p⃗ ∈ ∆i, and we will verify

that the total length of new proofs lines added for p⃗ ∈ ∆i in the i-th round is at most µ+
ei ,π<i

( p⃗), where
π<i := e1, . . . , ei−1.

Now fix any i ∈ [m] and p⃗ ∈ ∆i. The algorithm considers the deduction rule that introduces the proof
line ei after π<i = e1, . . . , ei−1.

• (Axioms for Functions). Suppose that ei is a proof line introduced as an axiom for the functionality
of initial functions or introduced functions. It can be verified that in such cases, there is an explicit
EF proof of [ei]

p⃗
Cook, and the size of the proof is linear in the size of [ei]

p⃗
Cook. The algorithm outputs

the EF proof of size at most O(β+
ei ,π( p⃗)) ≤ c · β+

ei ,π( p⃗) = µ+
ei ,π( p⃗), where the inequality holds if c is a

sufficiently large constant.

• (Function Introduction). Suppose that ei is a proof line that introduces a function symbol by the com-
position rule or the limited recursion rule, it is not an equation and thus does not have a propositional
translation.

• (Logical Rules). Suppose that ei is derived from a logical rule. Assume that the rule is (L1), i.e., derive
ei : t = s from ej : s = t for some j < i. We know by the definition of AILs and acquisition closure
that p⃗ ∈ ∆j, as p⃗ ∈ ∆i and { p⃗} ∈ µ-AILei ,ej( p⃗). Subsequently, by the induction hypothesis, we have

already generated the EF proof of [ej]
p⃗
Cook in the j-th round. It can be verified that from [ej]

p⃗
Cook, we

can prove [ei]
p⃗
Cook in EF, and the size of the EF proof is linear in the size of [ei]

p⃗
Cook. In such case, the

new proofs lines are of length at most O(β+
ei ,π( p⃗)) ≤ c · O(β+

ei ,π( p⃗)) ≤ µ+
ei ,π( p⃗).

The proof is similar if the rule is (L2), (L3), or (L4) — it can be verified that from the existing EF
proofs generated in previous rounds, we can prove the propositional translation of ei on the input
length p⃗ in EF, and the total length of new proof lines is at most µ+

ei ,π( p⃗).

• (Induction). Suppose that ei is derived from the induction rule. Without loss of generality, we assume
that xk is the induction variable and x⃗ = (x1, . . . , xk). Let f1(x⃗), f2(x⃗), g(x1, . . . , xk−1), hi(x⃗, z) be
PV function symbols that have been introduced in π<i. Moreover, for σ ∈ {1, 2}, b ∈ {0, 1}, the
equations

e′g : f1(x1, . . . , xk−1, ε) = f2(x1, . . . , xk−1, ε)

e′σ,b : fσ(x1, . . . , xk−1, sb(xk)) = hb(x1, . . . , xk−1, xk, fσ(x1, . . . , xk))

are in π<i. Note that as p⃗ ∈ ∆i, by the definition of AILs and the induction hypothesis, we know
that the algorithm has produced EF proofs of e′g on the input length (p1, . . . , pk−1) and e′σ,i on the
input length p⃗. It suffices to prove in EF the propositional translation of e on the input length p⃗ from
e′g and e′σ,i, and the total length of the new proof lines is at most µ+

e,π( p⃗).

The EF proof is as follows:

– For each j ∈ {0, 1, . . . , pk}, we introduce auxiliary variables zj,1, . . . , zj,ℓ, where ℓ := ℓ f ( p⃗).
– For each j ∈ {0, 1, . . . , pk}, let ϕj be a 3-CNF that includes the constraints such that if ϕj is

satisfied, then

zj =

{
f1(x1, . . . , xk−1, ε) if i = 0;
hσi (x1, . . . , xk, zj−1) otherwise.

where σi is the i-th leftmost bit of xk.
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– For each j ∈ {0, 1, . . . , pk}, let ψj be a 3-CNF that is satisfied if and only if

zj = f1(x1, . . . , xk−1, xk,≤j) = f2(x1, . . . , xk−1, xk,≤j),

where xk,≤j denotes the prefix of xk of length j. We prove that αj := ϕ1 ∧ · · · ∧ ϕj → ψj. The
case for α0 follows from the proof of the propositional translation of e′g, and the case for αj+1
follows from the case for αj and the proof of the propositional translation of e′1,xj

and e′2,xj
.

We note that e′1,xj
and e′2,xj

might be an overkill as the input length xk for ψj is j, while e′1,xj
and

e′2,xj
work when xk is of length at most pk ≥ j. Nevertheless, this is not an issue as we also

assumed such relaxation when we define the ATC of proofs (see Remark 4.5).

The total length of new proof lines to prove αj is linear in the size of the formula αj, which is in turn
at most O(β+

e′g ,π(p1, . . . , pk−1)) for j = 0, or O(β+
e′1,xj

(p1, . . . , pk, ℓ) + β+
e′1,xj

(p1, . . . , pk, ℓ)) when j ≥ 1.

Therefore, the total length of new proof lines is bounded by

O(β+
e′g ,π(p1, . . . , pk−1)) + O(β+

e′1,xj
(p1, . . . , pk, ℓ) + β+

e′1,xj
(p1, . . . , pk, ℓ)) ≤ µ+

e,π( p⃗),

where the inequality holds when c is sufficiently large.

Since n⃗ ∈ ∆m, in the m-th round, the algorithm will output an EF proof of [em ]⃗nCook, and the total size
of the proof is at most

∑
(ei ,⃗p)∈∆

µ+
ei ,π<i

( p⃗) = µTC
π (⃗n).

This completes the proof.

4.5 Redundancy in the Definition of Time Complexity

Theorem 4.3 shows that the time complexity of equations and proofs are upper bounds of Cook complexity
for a specific propositional translation. This does not rule out the possibility that there are much better
propositional translations under which the Cook complexity is much smaller than the time complexity.
In particular, as mentioned in Remarks 4.4 and 4.5, we indeed relax the upper bound to ensure that the
computation of the time complexity is efficient.

In this subsection, we show that the relaxation in Remarks 4.4 and 4.5 does not incur a super-linear
overhead. Let µ′TC

π (⃗n) and β′TC
e,π (⃗n) be the complexity measure following the same definition as the time

complexity, but with the following two modification:

• In the ATC of equations: Suppose that f (u⃗, v) is a function introduced by limited recursion from
g(u⃗), hi(u⃗, v, z), ki(u⃗, v), i ∈ {0, 1}, u⃗ = (u1, . . . , ui), v are variables. Let m1, . . . , mi, mv be the input
length of u1, . . . , ui, v, respectively. We define the ATC of f as

β′+
f ,π(m1, . . . , mi, mv)

:= c ·

β′+
g,π(m1, . . . , mi) +

mv−1

∑
j=0

∑
σ∈{0,1}

β′+
hσ ,π(m1, . . . , mi, mv, ℓ f (m1, . . . , mi, j))

 . (4.12)

• In the ATC of proof lines: Suppose that e is derived from the induction rule. Without loss of
generality, we assume that xk is the induction variable. Let f1(x⃗), f2(x⃗), g(x1, . . . , xk−1), hi(x⃗, z)
be PV function symbols that have been introduced in π. Moreover, for σ ∈ {1, 2}, i ∈ {0, 1}, the
equations

e′g : f1(x1, . . . , xk−1, ε) = f2(x1, . . . , xk−1, ε) (4.13)

e′σ,i : fσ(x1, . . . , xk−1, si(xk)) = hi(x1, . . . , xk−1, xk, fσ(x1, . . . , xk)) (4.14)
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are in π. Let nz be the length of z in hi. The ATC of e is defined as

µ′+
e,π (⃗n) := c ·

β′+
e′g ,π(n1, . . . , nk−1) +

nk−1

∑
j=0

∑
σ∈{1,2}

∑
i∈{0,1}

β′+
e′σ,i ,π

(n1, . . . , nk−1, j)

 . (4.15)

Moreover, we choose the constant c = 1 is the definition of µ′TC
π and β′TC

e,π .
As we removed the relaxation in Remarks 4.4 and 4.5 and set the constant c = 1, it can be verified

that µ′
π is a size lower bound of the propositional translation of π (using [·]Cook from the proof of Theo-

rem 4.3), and β′+
e,π is a size lower bound of the propositional translation of e (using [·]Cook from the proof

of Theorem 4.3). We will prove that µ′TC
π (⃗n), β′TC

e,π (⃗n) are equivalent to µTC
π (⃗n), βTCe,π (⃗n) asymptotically.

Theorem 4.4. For any proof π and equation e in the context π, µTC
π (⃗n) = Oπ(µ′

π (⃗n)) and βTCe,π (⃗n) = Oπ,e(β′
e,π (⃗n)).

Proof Sketch. We only sketch the proof of βTCe,π (⃗n) = O(β′
e,π (⃗n)). Indeed, as the two measures share the

same definition of AILs, it suffices to prove that for any term t(⃗n) in the context π, β+
t,π (⃗n) = O(β′+

t,π (⃗n)).
We prove this by induction on t. The base case is trivial, as the two measures share the same definition

of the ATC of variables, ε, and initial functions. Suppose that t is not a function introduced by limited
recursion on notation, β+

t,π (⃗n) = O(β′+
t,π (⃗n)) follows directly from the induction hypothesis.

Suppose that t is a function f (u⃗, v) introduced by limited recursion from g, h0, h1, k0, k1, where m1, . . . , mi
denotes the input length of u⃗, and mv denotes the input length of v. Then we can see that

β+
t,π(m1, . . . , mi, mv)

= O

β+
g,π(m1, . . . , mi) + mv · ∑

σ∈{0,1}
β+

hσ ,π(m1, . . . , mi, mv, ℓ f (m1, . . . , mi, mv))


≤ O

β′+
g,π(m1, . . . , mi) + mv · ∑

σ∈{0,1}
β′+

hσ ,π(m1, . . . , mi, mv, ℓ f (m1, . . . , mi, mv))


≤ O

β′+
g,π(m1, . . . , mi) +

mv

2 ∑
σ∈{0,1}

β′+
hσ ,π

(
m1, . . . , mi, mv, ℓ f

(
m1, . . . , mi,

mv

2

))
≤ O

β′+
g,π(m1, . . . , mi) +

mv−1

∑
j=mv/2

∑
σ∈{0,1}

β′+
hσ ,π

(
m1, . . . , mi, mv, ℓ f (m1, . . . , mi, j)

)
≤ O(β′+

t,π(m1, . . . , mi, mv)).

Here, the constants hidden in O(·) may depend on the proof π, e as well as the formalization overhead
c. The second inequality follows from the induction hypothesis, the third inequality follows from the fact
that both ℓ f and β′+

hσ ,π are polynomials in m1, . . . , mi, mv, and fourth inequality follows from the fact that
the bounding value ℓ f is a monotone function.

4.6 Time Complexity and Length of Proof

As a sanity check, we show that time complexity is not a trivial measure based on the length of proofs by
showing that the time complexity of proofs of the same length could vary drastically.

Proposition 4.5. For k ∈ N, there is a PV proof of length O(k) that is of time complexity O(k · n).

Proof. Let s(k)0 (x) be a shorthand recursively defined as

s(0)0 (x) = x; s(k+1)
0 (x) = s0(s

(k)
0 (x)).

31



We will show that there is a constant c independent of k such that the equation ek : x ◦ s(k)0 (ε) = s(k)0 (x)
admits a PV proof of length c · k that is of time complexity µ(n) ≤ c · k · n. Note that the size of the
equation ek is O(1), so it suffices to consider the number of lines in the proof.

We prove this by induction on k in the meta-theory, where the base case is trivial. In the induction case
k ≥ 1, we know by the induction hypothesis that ek−1 admits a PV proof of length c · (k − 1) that is of time
complexity c · (k − 1) · n. Notice that the following PV proof concludes ek:

1. (Induction hypothesis): ek−1 : x ◦ s(k−1)
0 (ε) = s(k−1)

0 (x)

2. (L3 from 1): s0(x ◦ s(k−1)
0 (ε)) = s(k)0 (x)

3. (Definition Axiom of ◦): x ◦ s0(y) = s0(x ◦ y).
4. (L4 from 3) x ◦ s(k)0 (ε) = s0(x ◦ s(k−1)

0 (ε)).

5. (L2 from 2, 4): x ◦ s(k)0 (ε) = s(k)0 (x).

Note that the length of the proof is c · (k − 1) + O(1), which is at most c · k for sufficiently large c. Now
we calculate the time complexity of the new proof. Note that by the definition, we can see that the set of
acquired input lengths of each part of the proof is {n}. The time complexity of the proof is therefore the
sum of two terms:

• The time complexity of the proof of ek−1 on the input length n, which is ≤ c · (k − 1) · n.
• The ATC of the five new proofs lines, which is O(n).

Therefore, the time complexity of the proof is at most c · (k − 1) · n + O(n), which is at most c · k · n when
c is sufficiently large. This completes the induction proof.

Proposition 4.6. For k ∈ N, there is a PV proof of length O(k) that is of time complexity Ω(n2k
).

Proof. Let #(x, y) be the function defined as

x # ε := ε, x # si(y) := x ◦ (x # y)

by the rule of limited recursion on notation. That is, x # y outputs the string obtained by concatenating
|y| copies of x. Let f0(x) := x # x, f1(x) := f0(x) # f0(x), . . . , fk(x) := fk−1(x) # fk−1(x). Note that these
functions can be defined in a proof of length O(k) by the composition rule. We conclude with a proof line
fk(x) = fk−1(x) # fk−1(x) by the definition axiom of fk.

Note that by Theorem 4.3, the time complexity of the proof is at least the Cook complexity of the
equation fk(x) = fk−1(x) # fk−1(x), which is in turn at least the computational complexity of the function
fk(x). By induction on k, we can prove that the output length of fk(x) is n2k

, which also means that the
computational complexity of fk(x) is at least n2k

.

5 FPT Algorithms for Time Complexity of Proofs and Equations

A crucial property of the time complexity is that there is an efficient algorithm computing the time com-
plexity of a proof of equation given the encoding of a proof or equation as its input.

In more detail, fix a standard encoding of PV proofs π, PV equations, there are algorithms Aµ(π, n⃗),
Aβ(π, e, n⃗), and a function f (p) = exp(exp(O(p))) such that

• Aµ(π, n⃗): If π encodes a PV proof and n⃗ = n1, . . . , nk is the binary encoding of input lengths
to variables in the conclusion of π, Aµ(π, n⃗) outputs the binary representation of µTC

π (⃗n) in time
f (|π|) · polylog(n1 + · · ·+ nk).

• Aβ(π, e, n⃗): If π encodes a PV proof, e encodes an equation, and n⃗ = (n1, . . . , nk) is the binary
encoding of input lengths to variables in e, Aβ(π, e, n⃗) outputs the binary representation of βTCe,π (⃗n)
in time f (|π|+ |e|) · polylog(n1 + · · ·+ nk).
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That is, there is an FPT algorithm for computing the time complexity of proofs and equations, where the
length of the PV proof π is considered as a parameter.

Despite that f (p) is a rapidly growing function, the FPT algorithms computing the time complexity
of proofs and equations are more efficient than the functions definable in the proofs. Recall that in
Proposition 4.6, we define functions f1(x) = x # x, f2(x) = f1(x) # f1(x), . . . , fk(x) = fk−1(x) # fk−1(x) in a
proof of size O(k), where x # y is defined as

x # ε := ε, x # si(y) := x ◦ (x # y).

Then the function fk(x) outputs a string of length |x|2k ≫ exp(exp(O(k))) · polylog(|x|) for large k and
large input length |x|.

5.1 Preparations

Before describing the algorithms, we define notions that will be useful in the analysis of the algorithms:
The postfix representation of PV proofs and equations, and the height of an occurrence of a term t in a proof
or equation.

Postfix representation. We will define the postfix representation of terms, equations, proof lines, and
proofs as a sequence of strings as follows.

The postfix representation of a term t, denoted by [t]pf is defined as follows.

• If t = ε or t is a variable, [t]pf := ⟨t⟩
• If t is a composition of a function f and terms t1, . . . , tk, [t]pf := ⟨[t1]pf , . . . , [tk]pf , t⟩.

The postfix representation of an equation e : t1 = t2 is defined as [e]pf := ⟨[t1]pf , [t2]pf⟩.
Let e be a proof line. Suppose that e is an equation, the postfix representation of the proof line e is

defined as its postfix representation as an equation. Otherwise e is a proof line that introduces a new
function symbol f , and we define [e]pf as follows:

• If f is introduced by the composition rule from a term t′, we define [ f ]pf := ⟨[t′]pf , f (x⃗)⟩.
• If f is introduced by the limited recursion rule, we define [ f ]pf := ⟨ f (x⃗)⟩.
Let π : e1, . . . , em be a PV proof. The postfix representation of π, denoted by [π]pf , is defined as the

concatenation of [e1]pf , . . . , [em]pf in this order. Moreover, let e be an equation, we define [π, e]pf := as
⟨[π]pf , [e]pf⟩, i.e., the concatenation of [π]pf and [e]pf .

Height of an occurrence. Let π : e1, . . . , em be a PV proof, e be an term, and t be a term that occurs in
(π, e). For each occurrence of t in (π, e), there is a corresponding entry containing t in the list [π, e]pf . The
height of an occurrence of t in (π, e) is defined as the index of the corresponding entry in the list [π, e]pf .

Example 5.1. Consider the proof following π : e1, e2, e3, e4, e5 and equation e : f1(ε) = ε.

e1 : f1(x) := ε ◦ x [e1]pf := ⟨ f1⟩
e2 : f1(x) = ε ◦ x [e2]pf := ⟨x, f1(x), ε, x, ε ◦ x⟩
e3 : f1(ε) = ε ◦ ε [e3]pf := ⟨ε, f1(ε), ε, ε, ε ◦ ε⟩
e4 : x ◦ ε = ε [e4]pf := ⟨x, ε, x ◦ ε, ε⟩
e5 : ε ◦ ε = ε [e5]pf := ⟨ε, ε, ε ◦ ε, ε⟩

The postfix representation of e is [e]pf := ⟨ε, f1(ε), ε⟩. The term f1(ε) has two occurrences in (π, e): The
first occurrence is in e3 and has height 8, and the second occurrence is in e and has height 21.

Notation. Let x⃗ = (x1, . . . , xk) be a sequence of variables, we define |⃗x| := |x1|+ |x2|+ · · ·+ |xk|.
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5.2 Algorithm for Bounding Values

Lemma 5.1. There is a constant c ≥ 1 such that the following holds. Let π be a valid PV proof and e be an equation
such that every function symbol in e has been defined in π. Let t be a term that occurs in (π, e). The bounding value
ℓt (⃗n) satisfies the inequality log ℓt (⃗n) ≤ exp(exp(c · (|π|+ |e|))) · log(|⃗n|) (when ℓt (⃗n) > 0).

Proof. Fix an occurrence of t in (π, e) and denote the height by ht, we will prove by induction on ht that
log ℓt (⃗n) ≤ exp(exp(ch · ht)) · log(|⃗n|) for some large constant ch ≥ 1, which suffices as ht = O(|π|+ |e|).
The base case is trivial as if ht = 1, t must either be ε or a variable xi. In the former case ℓt (⃗n) = 0, and in
the latter case log ℓt (⃗n) = log(ni) ≤ log(|⃗n|).

For the induction case, we consider the structure of the term t. Suppose that t is ε or a variable, we
have ℓt (⃗n) ≤ log(|⃗n|) as in the base case. Otherwise, let f be an l-ary function, t1, . . . , tl be terms, and
t ≡ f (t1, . . . , tl). Note that the earliest occurrences of t1, . . . , tl must be of height at most ht − 1, so by
induction hypothesis, we have

log ℓt1 (⃗n), . . . , log ℓtl (⃗n) ≤ exp(exp(ch · (ht − 1))) · log(|⃗n|). (5.1)

Consider how the function symbol f is introduced. Suppose that f is an initial function, then ℓ f (⃗n) ≤
|⃗n|2, and in such case we have

log ℓt (⃗n) ≤ log

(
l

∑
i=1

ℓti (ni)

)2

≤ 2ht · exp(exp(ch · (ht − 1)) · log(|⃗n|),

which is bounded by exp(exp(ch · ht)) · log(|⃗n|) for a sufficiently large constant ch. (Note that the second
inequality follows from l ≤ ht.) Otherwise, the function symbol f is introduced by either the composition
rule or the limited recursion rule.

• (Composition). Suppose that f is introduced by the composition rule, there is a term t′, a proof line
f := t′, such that the earliest occurrence of t′ is of height at most ht − 1. By the induction hypothesis,
we know that

log ℓt′ (⃗n) ≤ exp(exp(ch · (ht − 1))) · log(|⃗n|).
Also, as ℓt (⃗n) := ℓt′(ℓt1 (⃗n), . . . , ℓtl (⃗n)) by the definition of bounding values, we have

log ℓt (⃗n) = log ℓt′(ℓt1 (⃗n), . . . , ℓtl (⃗n))

≤ exp(exp(ch · (ht − 1))) · log

(
l

∑
i=1

ℓti (⃗n)

)
≤ ht · exp(exp(ch · (ht − 1))) · exp(exp(ch · (ht − 1))) · log(|⃗n|)
≤ exp(exp(ch · ht)) · log(|⃗n|),

where the second line follows from l ≤ ht and Equation (5.1), and the third line follows when ch is a
sufficiently large constant.

• (Limited Recursion). Suppose that f is introduced by the limited recursion rule from g, h0, h1, k0, k1,
where the earliest occurrences of g, h0, h1, k0, k1 must be of height at most ht − 1. By the induction
hypothesis, we have

ℓg (⃗n), ℓk0 (⃗n), ℓk1 (⃗n) ≤ exp(exp(ch · (ht − 1))) · log(|⃗n|).

Let ny be the input length of the recursion variable, we know by the definition of bounding values
that ℓt (⃗n) := ny · (ℓk0 (⃗n) + ℓk1 (⃗n)) + ℓg (⃗n). Subsequently,

log ℓt (⃗n) ≤ log(|⃗n| · (ℓk0 (⃗n) + ℓk1 (⃗n)) + ℓg (⃗n))

≤ log(|⃗n|) + 3 · exp(exp(ch · (ht − 1))) · log(|⃗n|)
≤ exp(exp(ch · ht)) · log(|⃗n|).
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We can then set ch to be a sufficiently large constant such that the proof above follows.

Next, we prove that there is an efficient FPT algorithm computing the bounding value of terms. Indeed,
the algorithm simply recursively computes the bounding value according to the definition.

Lemma 5.2 (algorithm for bounding values). There is an algorithm L(π, e, t, n⃗) that works as follows.

• (Input). The encoding of a valid PV proof π, an equation e such that all equations have been defined in π, a
term t in (π, e), and n⃗ = (n1, . . . , nk), where n1, . . . , nk denotes the input lengths of all variables x1, . . . , xk
in the term t.

• (Output). The binary encoding of the bounding value ℓt (⃗n).

• (Efficiency). The algorithm runs in time exp(exp(O(|π|+ |e|))) · polylog(|⃗n|).

Proof Sketch. We compute ℓt (⃗n) naı̈vely according to its definition (see Appendix A.3) using a recursion
algorithm. The analysis of the algorithm is similar to the proof of Lemma 5.1, and thus we will only sketch
the proof.

Let t be a term. We define T(h, n) be the time complexity of computing ℓt (⃗n), where h is the height of
the earliest occurrence of t in (π, e), and n := |⃗n|. In the base case, we can see that T(1, n) ≤ polylog(n) as
in such case t must either be ε or a variable. Otherwise, it can be verified that for some constant c ≥ 1,

T(h, n) ≤ h · T(h − 1, ℓ(h, n)) + exp(exp(c · h)) · logc(n), (5.2)

where ℓ(h, n) := exp(exp(exp(c · h)) · log n). In more detail, this is because we will make at most h
recursive calls, each of which is on a term with smaller height, and the input length is at most the
bounding value ℓt′ (⃗n) of a term t′ in π, e; after the recursive calls, the additional time complexity is a
polynomial in the bit-length of ℓt (⃗n), which is upper bounded in exp(exp(O(ht))) · log n as proved in
Lemma 5.1.

We then prove by induction that for some sufficiently large constant c′,

T(h, n) ≤ exp(exp(c′ · h)) · (log n)c′ .

The base case is trivial. For the induction case, we can see that

T(h, n) ≤ h · T(h − 1, ℓ(h, n)) + exp(exp(c · h)) · logc(n)

≤ h · exp(exp(c′ · (h − 1))) · (exp(exp(c · h)) · log n)c′ + exp(exp(c · h)) · logc(n)

≤ exp(exp(c′ · h)) · (log n)c′ ,

where the last inequality follows for a sufficiently large constant c′. The theorem then follows as for any
term t, the height of occurrences of t is at most O(|π|+ |e|).

5.3 Algorithms for ATC

Next, we show that there are efficient algorithms for computing the ATC of equations and proof lines, i.e.,
β+

e,π (⃗n) and µ+
e,π (⃗n).

Lemma 5.3. There is a constant c ≥ 1 such that the following holds. Let π be a valid PV proof and e be an equation
such that every function symbol in e has been defined in π. Let t be a term that occurs in (π, e). The ATC of the
term β+

t,π (⃗n) satisfies the inequality log β+
t,π (⃗n) ≤ exp(exp(c · (|π|+ |e|))) · log(|⃗n|).

Proof. The proof is almost identical to the proof of Lemma 5.1 and is omitted.

Lemma 5.4 (algorithm for ATC of equations). There is an algorithm Aβ+(e, π, n⃗) as follows:
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• (Input). The encoding of a PV equation e, proof π, and n⃗ = (n1, . . . , nk), where n1, . . . , nk denotes the input
lengths of all variables x1, . . . , xk in the equation e.

• (Output). The binary encoding of β+
e,π (⃗n).

• (Efficiency). The algorithm runs in time exp(exp(O(|π|+ |e|))) · polylog(⃗n).

Proof Sketch. The algorithm follows the definition of β+
e,π (⃗n) straightforwardly. Let e : t1 = t2, we calculate

β+
t,π (⃗n) for t ∈ {t1, t2} using a brute-force recursive algorithm Aβ+(t, n⃗). In more detail, the algorithm

Aβ+(t, n⃗) considers the structure of the term t:

• If t is an initial function, it outputs c · n if t is s0, s1 or TR, and outputs c · n1 · n2 if it is ◦ or ITR.

• If t is a function introduced by the composition or the limited recursion rule, it recursively searches
the ATC of at most two terms on corresponding input lengths. For instance, if t is a function
ft′ introduced by composition from the term t′, the algorithm recursively searches Aβ+(t′, 1⃗n) and
outputs the answer.

• Otherwise, t is the composition of a function f and terms t1, . . . , ti. The algorithm recursively
searches the ATC of i + 1 terms — f and s1, . . . , si — on corresponding input lengths.

The correctness of the algorithm is trivial. The analysis of the algorithm is similar to Lemma 5.2, so we
will only sketch the proof.

Let T(h, n) be the time complexity of Aβ+(t, n⃗) when the earliest occurrence of t in (π, e) is of height h
and n := n1 + · · ·+ nk, where n⃗ := (n1, . . . , nk). The function T(h, n) satisfies T(1, n) ≤ polylog(n) and for
h > 1,

T(h, n) ≤ h · T(h − 1, ℓ(h, n)) + exp(exp(c · h)) · logc(n),

for some constant c, where ℓ(h, n) := exp(exp(exp(c · h)) · log n). This is the same as Equation (5.2) and
thus we can conclude that T(h, n) ≤ exp(exp(O(h))) · polylog(n) following the proof of Lemma 5.2.

Lemma 5.5 (algorithm for ATC of new proof lines). There is an algorithm Aµ+(e, π, n⃗) as follows:

• (Input). The encoding of a proof π, a new proof line e, and n⃗ = (n1, . . . , nk), where n1, . . . , nk denotes the
input lengths of all variables x1, . . . , xk in e.

• (Output). The binary encoding of µ+
e,π (⃗n).

• (Efficiency). The algorithm runs in time exp(exp(O(|π|+ |e|))) · polylog(|⃗n|).

Proof Sketch. The algorithm computes µ+
e,π (⃗n) by definition — it considers how the new proof line e is

introduced after π and makes at most |π|+ |e| queries to the algorithm Aβ+(π, e, n⃗′), where log(|⃗n′|) ≤
exp(exp(O(|π|+ |e|))) · log(|⃗n|). The time complexity of the algorithm follows from Lemma 5.4.

5.4 Algorithm for AIL

We now design and analyze algorithms for computing the AIL of equations β-AILe,ei (⃗n), AIL of new proof
lines µ-AILe,ei (⃗n), as well as the acquisition closure of an acquisition map.

Lemma 5.6 (algorithm for AIL of equations). There is an algorithm Aβ-AIL(e, π, i, n⃗) as follows:

• (Input). The encoding of a proof π : e1, . . . , em, an equation e, an index i ∈ [m], and n⃗ = (n1, . . . , nk), where
n1, . . . , nk denotes the input lengths of variables x1, . . . , xk in e.

• (Output). The binary encoding of the set β-AILe,ei (⃗n).

• (Efficiency). The algorithm runs in time exp(exp(O(|π|+ |e|))) · polylog(|⃗n|).
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Proof Sketch. The algorithm simply computes β-AILe,eI (⃗n) according to the definition. In more detail, let e :
t1 = t2, the algorithm will compute β-AILt1,ei (⃗n) and β-AILt2,ei (⃗n) and then take the union of these two sets.
Let t ∈ {t1, t2}, we will compute β-AILt,ei (⃗n) using a brute-force recursive algorithm Aβ-AIL(t, e, π, i, n⃗). In
more detail, the algorithm considers the structure of the term t:

• If t is ε, a variable, or an initial function, the algorithm outputs ∅.

• If t is a function symbol introduced by composition, i.e., t = ft′ for some term t′, the algorithm
recursively computes Aβ-AIL(t′, e, π, i, n⃗).

• If t is a function symbol introduced by limited recursion from g, hσ, kσ for σ ∈ {0, 1}, the algorithm
makes at most three recursive calls and computes their union ∆(⃗n, ny) according to Equation (4.7).
If ei is not ITR(hσ(x⃗, y, z), z ◦ kσ(x⃗, y)) = ε for some ε ∈ {0, 1}, the algorithm simply outputs ∆(⃗n, ny).
Otherwise, it outputs ∆(⃗n, ny)∪{(⃗n, ny, ℓ f (⃗n, ny))}, where ℓ f (⃗n, ny)) can be computed by Lemma 5.2.

• If t is a composition of a function f and terms s1, . . . , sj, the algorithm makes j + 1 recursive calls
and outputs the union of their outputs; see Equation (4.8).

It remains to analyze the time complexity of the algorithm. As the analysis is similar to the algorithm
in Lemma 5.2 and Lemma 5.4, we will only sketch the proof.

We can see that the algorithm maintains the invariant that for each recursive call to the algorithm
Aβ-AIL(t, e, π, i, n⃗), t must be a term that occurs in (π, e), and the height of the earliest occurrence of t in
(π, e) must strictly decrease in any recursive call. Moreover, if t is of height t, the algorithm makes at most
h recursive calls.

Let T(h, n) be the time complexity of Aβ-AIL(t, e, π, i, n⃗) when the earliest occurrence of t is of height h
and n = |⃗n|. The function T(h, n) must satisfies T(1, n) ≤ polylog(n) and for h > 1,

T(h, n) ≤ h · T(h − 1, ℓ(h, n)) + exp(exp(c · h)) · logc(c)

for some constant c, where ℓ(h, n) := exp(exp(exp(c · h)) · log n). This is the same as Equation (5.2), and
it follows that T(h, n) = exp(exp(O(h))) · polylog(n). The lemma follows as h ≤ |π|+ |e|.

Lemma 5.7 (algorithm for AIL of new proof lines). There is an algorithm Aµ-AIL(e, π, i, n⃗) as follows:

• (Input). The encoding of a proof π : e1, . . . , em, a new proof line e following π, an index i ∈ [m], and
n⃗ = (n1, . . . , nk), where n1, . . . , nk denotes the input lengths of variables x1, . . . , xk in e.

• (Output). The binary encoding of µ-AILe,ei (⃗n).

• (Efficiency). The algorithm runs in time exp(exp(|π|+ |e|)) · polylog(|⃗n|).

Proof Sketch. The algorithm computes µ-AILe,ei (⃗n) according to the definition. It considers how the new
proof line e is introduced after π, and in each case, it makes at most one call to the algorithm in Lemma 5.6
to compute β-AILe,ei (⃗n). The analysis is straightforward.

5.5 Algorithm for Acquisition Closure

Before describing the algorithm for acquisition closure, we first prove an upper bound on the size of the
set of acquired input lengths.

Proposition 5.8. Let π : e1, . . . , em be a PV proof. For an equation e, i ∈ [m], and any n⃗ ∈ N⃗, |β-AILe,ei (⃗n)| ≤
exp(O(|π|)). Similarly, for a new proof line e, i ∈ [m], and any n⃗ ∈ N⃗, |µ-AILe,ei (⃗n)| ≤ exp(O(|π|+ |e|)).
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Proof. It suffices to prove the first upper bound |β-AILe,ei (⃗n)| ≤ exp(O(|π|)), as the second upper bound
follows from the fact that |µ-AILe,ei (⃗n)| ≤ |β-AILe,ei (⃗n)|+ 1.

Indeed, we will prove by induction on h that for any t that has a height-h occurrence in (π, e),
|β-AILt,ei (⃗n)| ≤ exp(c · h) for some constant c ≥ 1. This suffices as for the equation e : t1 = t2, we
have

|β-AILe,ei (⃗n)| ≤ |β-AILt1,ei (⃗n)|+ |β-AILt2,ei (⃗n)|,
and the height of t is at most O(|π|+ |e|).

The base case is trivial as for h = 1, the term t can only be ε, a variable, or an initial function, which
implies that β-AILt,ei (⃗n) = ∅. In the induction case, we notice that β-AILt,ei (⃗n) is the union of at most
3 sets of form β-AILt′ ,ei

(⃗n′) and a set of size 1. In addition, the (at most) 3 sets of form β-AILt′ ,ei
(⃗n′)

satisfy that the earliest occurrence of t′ must have height at most h − 1, and thus by induction hypothesis,
|β-AILt′ ,ei

(⃗n′)| ≤ exp(c · (h − 1)). We can then prove that

|β-AILt,ei (⃗n)| ≤ 3 · exp(c · (h − 1)) + 1 ≤ exp(c · h)

by fixing c to be sufficiently large.

Now we are ready to describe the algorithm for acquisition closure.

Lemma 5.9 (algorithm for acquisition closure). There is an algorithm Aµ-AM(π, S) as follows:

• (Input). The encoding of a proof π : e1, . . . , em and an acquisition map S ⊆ {e1, . . . , em} × N⃗.

• (Output). The encoding of the acquisition closure µ-AMπ(S).

• (Efficiency). The algorithm runs in exp(exp(O(|π|)) · |S| · polylog(n).

Proof Sketch. It can be verified that µ-AMπ(S) =
⋃

τ∈S µ-AM({τ}), so it suffices to consider the case that
S contains only one pair (ej, n⃗j). Consider the following recursive algorithm Aµ-AM(ej, n⃗j) that computes
µ-AM{(ej, n⃗j)}: It enumerates over j′ < j and n⃗j′ ∈ µ-AILej ,ej′ (⃗nj), recursively calls Aµ-AM(ej′ , n⃗j′), and
outputs the union of all recursive calls. The correctness of the algorithm is trivial, so it suffices to analyze
its time complexity.

Let T(h, n) be the time complexity of Aµ-AM(ej, n⃗) where ej occurs at height h and |⃗n| ≤ n. It satisfies
that T(1, n) ≤ polylog(n), and for j > 1,

T(j, n) ≤ exp(c · h) · T(j − 1, ℓ(h, n)). (5.3)

for ℓ(h, n) = exp(exp(exp(c · h)) · log(n)), where c ≥ 1 is a constant. To see this, notice that the algorithm
will make at most ∣∣∣∣∣∣⋃j′<j

µ-AMe′j ,ej
(⃗n)

∣∣∣∣∣∣ ≤ h · exp(O(h)) ≤ exp(O(h)), (5.4)

recursive calls, and each of the query Aµ-AM(ej′ , n⃗′) made by Aµ-AM(ej, n⃗) satisfies that j′ ≤ j − 1 and
|⃗n′| ≤ ℓ(h, |⃗n|). Note that the first inequality in Equation (5.4) follows from Proposition 5.8.

We prove by induction on j that for some sufficiently large constant c′ ≥ 1,

T(j, n) ≤ exp(exp(c′ · j) · logc′ n.

The base case is straightforward. For the induction case where j > 1, we have

T(j, n) ≤ exp(c · h) · T(h − 1, ℓ(n))

≤ exp(c · h) · exp(exp(c′ · (h − 1))) · logc′(exp(exp(exp(c · h)) log n))

≤ exp(exp(c′ · h)) · logc′(n),

where the inequalities hold when c′ is sufficiently large. This completes the proof as h ≤ |π|.
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5.6 Algorithm Aµ and Aβ

Building on the algorithms above, we can finally present the algorithms for computing the time complexity
of proofs and equations.

Theorem 5.10 (algorithm for time complexity of proofs). There is an algorithm Aµ(π, n⃗) as follows:

• (Input). The encoding of a PV proof π : e1, . . . , em and the binary encoding of n⃗ ∈ N⃗, where n⃗ = (n1, . . . , nk)
denotes the input lengths of variables x1, . . . , xk in the conclusion em of π.

• (Output). The binary encoding of µTC
π (⃗n).

• (Efficiency). The algorithm runs in time exp(exp(O(|π|))) · polylog(|⃗n|).
Proof. Let n = |⃗n|. The algorithm first computes µ-AMπ({em, n⃗}) using the algorithm in Lemma 5.9 in
exp(exp(O(|π|))) · polylog(n) time. For each pair (ei, l⃗) ∈ µ-AMπ({em, n⃗}), we can compute µ+

ei ,π<i
(⃗l)

using the algorithm in Lemma 5.5 in time

exp(exp(O(|π|))) · polylog(exp(exp(exp(O(|π|))) · polylog(n)))
≤ exp(exp(O(|π|))) · polylog(n),

where the term exp(exp(exp(O(|π|))) · polylog(n)) is an upper bound of |⃗l|. We then outputs the summa-
tion of µ+

ei ,π<i
(⃗l) for all such pairs.

Theorem 5.11 (algorithm for time complexity of equations). There is an algorithm Aβ(π, e, n⃗) as follows:

• (Input). The encoding of a PV proof π (called the context), an equation e such that all function symbols in e
are introduced in π, and the binary encoding of n⃗ ∈ N⃗, where n⃗ = (n1, . . . , nk) denotes the input lengths of
variables x1, . . . , xk in e.

• (Output). The binary encoding of βTCe,π (⃗n).

• (Efficiency). The algorithm runs in time exp(exp(O(|π|+ |e|))) · polylog(|⃗n|).
Proof. Let n = |⃗n|. Recall that

βTCe,π (⃗n) = β+
e,π (⃗n) + ∑

(ei ,⃗l)∈µ-AMπ(β-AIL∗e,π (⃗n))

µ+
ei ,π<i

(⃗l),

where π<i := e1, . . . , ei−1, and β-AILe,π (⃗n) is defined as

β-AIL∗e,π (⃗n) :=
⋃

i≤m

{
(ei, l⃗) | l⃗ ∈ β-AILe,ei (⃗n)

}
.

The first term can be computed by calling the algorithm in Lemma 5.4 in time exp(exp(O(|π|+ |e|))) ·
polylog(n), and therefore it suffices to compute the second term.

The algorithm first computes S = β-AIL∗e,π (⃗n) in time exp(exp(O(|π| + |e|))) · polylog(n) using the
algorithm in Lemma 5.6. Then it calls the algorithm in Lemma 5.9 to compute the acquisition closure of S
in time

T1 := |S| · exp(exp(O(|π|+ |e|))) · polylog(n) = exp(exp(O(|π|+ |e|))) · polylog(n).

For each pair (ei, l⃗) ∈ µ-AMπ(S), we can compute µ+
ei ,π<i

(⃗l) using the algorithm in Lemma 5.5 in time

T2 := exp(exp(O(|π|+ |e|))) · polylog(exp(exp(exp(O(|π|+ |e|))) · polylog(n)))
= exp(exp(O(|π|+ |e|)) · polylog(n).

The algorithm then outputs the summation over all such pairs. The total time complexity of the algorithm
is poly(T1, T2) = exp(exp(O(|π|+ |e|))) · polylog(n).
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5.7 Formalization in PV

We now argue that the algorithms above — L, Aβ+ , Aµ+ , Aβ-AIL, Aµ-AIL, Aµ-AM — can be formalized in PV

naturally. We only demonstrate the formalization of L(π, e, t, n⃗) for bounding values, and the formalization
of other algorithms is similar.

Recall that the algorithm L(π, e, t, n⃗) runs in time exp(exp(c · (|π|+ |e|)) · logc(|⃗n|) for some constant
c (see Lemma 5.2). As functions in PV must run in polynomial time, we formalize L as a PV function
fL(π, e, t, n⃗, N) that takes an additional string N of length exp(exp(c · (|π|+ |e|))) · logc(|⃗n|). That is, the
PV function fL(π, e, t, n⃗, N) simulates the algorithm L(π, e, t, n⃗) for |N| steps:

• If L does not halt after |N| steps, fL(π, e, t, n⃗, N) outputs ε.
• Otherwise, fL(π, e, t, n⃗, N) outputs L(π, e, t, n⃗) encoded in a binary string.

In more detail, let ML be the Turing machine for the algorithm L, we can define fL(π, e, t, n⃗, N) using the
limited recursion rule on the variable N from g, hσ, kσ, σ ∈ {0, 1}, where

• (Base Case). g(π, e, t, n⃗) outputs the initial configuration of ML(π, e, t, n⃗, N).
• (Recursion). For σ ∈ {0, 1}, hσ(π, e, t, n⃗, N, z) parses z as a configuration of ML(π, e, t, n⃗), simulates

ML for one step, and outputs the configuration of ML after this step.
• (Length Bound). As simulating a Turing machine for one step will increase the length of the configu-

ration by at most O(1), and the property can be proved in PV, we can define kσ(π, e, t, n⃗, N) = 0cM

for a sufficiently large constant cM. The equation ITR(hσ(π, e, t, n⃗, N, z), z ◦ ki(π, e, t, n⃗, N)) = ε can
be proved in PV assuming standard encoding of Turing machines and their configurations.

We note that this formalization indeed works for any computable function: For every Turing machine
M(x), the PV function f (x, N) constructed above computes M(x) provided as N is longer than the running
time of M(x).

In addition, we will prove the time complexity upper bound of L in PV by proving that fL(π, e, t, n⃗, N) ̸=
ε if |N| ≥ exp(exp(c · (|π|+ |e|)) · logc(|⃗n|). More formally:

Lemma 5.12. Let UBL(N, π, e, t, n⃗) be the PV function that outputs 1 if (π, e, t, n⃗, N) is a valid input instance of
L and |N| ≥ exp(exp(c · (|π|+ |e|)) · logc(|⃗n|), and outputs 0 otherwise; ITE(u, x, y) be the PV function that
outputs x if the last bit of u is 1, and outputs y otherwise; IsNotEps(x) be the PV function that outputs 1 if x ̸= ε,
and outputs 0 otherwise.

Then PV proves the equation

ITE(UBL(N, π, e, n⃗), IsNotEps( fL(π, e, t, n⃗, N), 1) = 1. (5.5)

Proof Sketch. We formalize the proof of Lemma 5.1 and Lemma 5.2 in PV. For instance, we need to prove
the function T(h, n) satisfying that T(1, n) = polylog(n) and

T(h, n) ≤ h · T(h − 1, ℓ(h, n)) + exp(exp(c · h)) · logc(n), (5.6)

where ℓ(h, n) := exp(exp(exp(c · h)) · log n), and n := |⃗n|. This is proved by induction on h, which is
directly not available in PV as T is not a polynomial-time computable function.

However, as in Equation (5.5), we are allowed to take as input a string N, we can perform a case study
on whether UBL(N, π, e, n⃗) = 1 or UBL(N, π, e, n⃗) = 0. In the former case, we have |N| ≥ exp(exp(c · (|π|+
|e|))) · |⃗n|, and we can reformulate Equation (5.6) as an induction on the length of N that is available in
PV. In the latter case, the LHS of Equation (5.5) will simply output 1. This completes the proof.

Remark 5.1. Following the convention in bounded arithmetic literature (see, e.g., [Coo75, Bus86, Kra95,
Jeř05, Oja04, Lê14, Pic14]), we will not attempt to formally write down the PV functions such as fL. Such
formalization is straightforward following the intuition we presented here, though the actual formalization
could be extremely tedious.

Following any such formalization, the functions should satisfy Lemma 5.12 as well as other proper-
ties we will explain later. Most properties we will need are obvious provided that the formalization is
straightforward, and we will explain the properties that need to be handled carefully.
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6 Basic Properties of Time Complexity

Now we are ready to explore the basic properties of time complexity of proofs and equations. This section
is organized as follows:

• In Section 6.1, we will prove that the feasible deduction theorem, which intuitively means that if φ → ψ
and φ are provable with time complexity µ1 and µ2, respectively, then ψ is provable with time
complexity (roughly) O(µ1 + µ2). This is helpful when we need to prove time complexity upper
bounds of complicated proofs.

• In Section 6.2, we will prove that time complexity satisfies the feasible translation property. That is, the
correctness proof of the propositional translation [e]⃗nCook of an equation e with time complexity β can
be proved with time complexity βO(1).

• In Section 6.3, we will prove the feasible proof generation theorem, namely the correctness proof of
the propositional translation [π ]⃗nCook of a proof π with time complexity µ can be proved with time
complexity µO(1).

6.1 Feasible Deduction Theorem

To formalize the feasible deduction theorem, we first clarify the formalization of the implication connective
φ → ψ, which is not directly available in the language of PV. For instance, we can use the formalization
of conditional equations introduced in [CU93]:

Definition 6.1 (conditional equation). Let s(x⃗) be a PV term and t1(x⃗) = t2(x⃗) be a PV equation. The
conditional equation s(x⃗) ⇒ t1(x⃗) = t2(x⃗) is the abbreviation of the equation

ITE(s(x⃗), t1(x⃗), t2(x⃗)) = t2(x⃗),

where ITE(u, x, y) is the function defined by

ITE(ε, x, y) := ε, ITE(s0(z), x, y) := y, ITE(s1(z), x, y) := x,

using the rule of limited recursion.

The conditional equation s(x⃗) ⇒ t1(x⃗) = t2(x⃗) formalizes the following statement: For any x⃗, if s(x⃗)
is true (i.e. the last bit of s(x⃗) is 1), then t1(x⃗) = t2(x⃗). The case that s(x⃗) = ε is considered undefined. It
satisfies the desired properties of implication:

Proposition 6.1 ([CU93]). Let s(x⃗), t1(x⃗), t2(x⃗) are PV terms. Then:

• (Modus Ponens). If PV proves s(x⃗) = 1 and s(x⃗) ⇒ t1(x⃗) = t2(x⃗), then PV proves t1(x⃗) = t2(x⃗).
• (Explosion). PV proves s0(z) ⇒ t1(x⃗) = t2(x⃗).
• (Contraposition). PV proves s(x⃗) ⇒ t1(x⃗) = t2(x⃗) iff PV proves EQ(t1(x⃗), t2(x⃗)) ⇒ LastBit(s(x⃗)) = 1,

where: EQ(x, y) outputs 1 if x = y and 0 otherwise; LastBit(x) outputs the last bit of x if x ̸= ε or ε if x = ε.

We note that although conditional equations do not allow the condition s(x⃗) to be an equation e :
s1(x⃗) = s2(x⃗), we can always formalize the statement “e implies t1 = t2” by the conditional equation

EQ(s1(x⃗), s2(x⃗)) ⇒ t1(x⃗) = t2(x⃗),

where EQ is the PV function that checks whether two strings are the same. For simplicity, we denote this
conditional equation by s1(x⃗) = s2(x⃗) ⇒ t1(x⃗) = t2(x⃗).

Moreover, we can formalize implication with two premises — s1(x⃗) = 1 and s2(x⃗) = 1 imply t1(x⃗) =
t2(x⃗) — by the conditional equation

s1(x⃗) ⇒ (s2(x⃗) ⇒ t1(x⃗) = t2(x⃗)).

For simplicity, we may drop the parenthesis by assuming that “⇒” is right-associative.
The feasible deduction theorem can then be formalized as follows:
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Theorem 6.2 (feasible deduction theorem). There is a constant dMP ∈ N such that the following holds. Let
s(x⃗), t1(x⃗), t2(x⃗) be PV terms. Suppose that s(x⃗) = 1 admits a PV proof πs of time complexity µ1 (⃗n), and
s(x⃗) ⇒ t1(x⃗) = t2(x⃗) admits a PV proof πs⇒t of time complexity µ2 (⃗n), then t1(x⃗) = t2(x⃗) admits a PV proof πt
of time complexity µ3 (⃗n) such that

µ3 (⃗n) ≤ dMP · (µ1 (⃗n) + µ2 (⃗n)).

Proof. The existence of the proof πt follows from the first bullet of Proposition 6.1, and thus it suffices to
analyze the feasibility of πt. The proof πt is the concatenation of πs, πs⇒t, and the following steps:

• (Rewrite): From s(x⃗) = 1 (the conclusion of πs) and ITE(s(x⃗), t1(x⃗), t2(x⃗)) = t2(x⃗) (the conclusion of
πs⇒t), we will conclude that ITE(1, t1(x⃗), t2(x⃗)) = t2(x⃗). This part is denoted by πrw. In more detail,
this can be decomposed into the following steps:

(1) Introduce a function symbol f (x⃗, y) = ITE(y, t1(x⃗), t2(x⃗)) by the composition rule.
(2) Derive the definition axiom f (x⃗, y) = ITE(y, t1(x⃗), t2(x⃗)) of f .
(3) From (L3) and s(x⃗) = 1, conclude that f (x⃗, s(x⃗)) = f (x⃗, 1).
(4) From (2), conclude that f (x⃗, s(x⃗)) = ITE(s(x⃗), t1(x⃗), t2(x⃗)) with (L4).
(5) From (2), conclude that f (x⃗, 1) = ITE(1, t1(x⃗), t2(x⃗)) with (L4).
(6) From (3), (4), (5), and ITE(s(x⃗), t1(x⃗), t2(x⃗)) = t2(x⃗), conclude that ITE(1, t1(x⃗), t2(x⃗)) = t2(x⃗)

with (L1) and (L2).

• (Simplify): Prove that ITE(1, x, y) = x. Then, by substituting x/t1(x⃗) and y/t2(x⃗), we can conclude
that ITE(1, t1(x⃗), t2(x⃗)) = t1(x⃗) with (L3). This part is denoted by πsimp.

• (Equality): From ITE(1, t1(x⃗), t2(x⃗)) = t1(x⃗) and ITE(1, t1(x⃗), t2(x⃗)) = t2(x⃗), we conclude that t1(x⃗) =
t2(x⃗) using logical rules (L1) and (L2). This part is denoted by πEQ.

We now analyze the the time complexity of the proof πt by considering the contribution of πEQ, πsimp,
πrw, πs⇒t, and πs in this order.

Let e1, . . . , em be the proof lines in πt. For each line ei, the set of acquired input lengths (AILs) of the
line ei, denoted by S(ei), is defined as the set of l⃗ ∈ N⃗ such that (ei, l⃗) ∈ µ-AMπt(em, n⃗). Recall that the
time complexity of the proof πt is defined as the summation of the ATC of ei on the input length l⃗ for
each i ∈ [m] and each l⃗ ∈ S(ei). Therefore, we need to consider S(ei) for each line ei, and its contribution
to time complexity (i.e. ATC of ei on all input lengths l⃗ ∈ S(ei)).

The proof πEQ. The proof πEQ involves only (L1) and (L2), which propagates the AIL n⃗ to the premises.
Thus the set of AILs of each line is simply {⃗n}. As all lines are introduced by (L1) and (L2), the ATC of
each line ei is proportional to its AIL as an equation (i.e. β+

ei ,πt (⃗n)).
We next show that the ATC of each line as an equation is linearly bounded by the ATC β(⃗n) of

s(x⃗) ⇒ t1(x⃗) = t2(x⃗), which is subsequently upper bounded by O(µ2 (⃗n)). In more detail, let the ATC of
t1, t2 on the input length n⃗ be β1 (⃗n), β2 (⃗n), respectively, consider the proof line

t1(x⃗) = ITE(1, t1(x⃗), t2(x⃗)).

Its ATC as an equation on the input length n⃗ is the summation of four terms:

1. The ATC of t1(x⃗) from the LHS on the input length n⃗, which is β1 (⃗n).
2. The ATC of t1(x⃗) from the RHS on the input length n⃗, which is β1 (⃗n).
3. The ATC of t2(x⃗) from the RHS on the input length n⃗, which is β2 (⃗n).
4. The ATC of ITE(1, u, v) on the input length |u| = ℓt1 (⃗n) and |v| = ℓt1(x⃗). By the definition of ATC

of initial functions, this is at most c · (|u|+ |v|) ≤ c · (β1 (⃗n) + β2 (⃗n)), where c is the formalization
overhead. The inequality follows from ℓt (⃗n) ≤ β+

t,π (⃗n).

Thus the total ATC is at most (c + 2) · (β1 (⃗n) + β2 (⃗n)) ≤ (c + 2) · β(⃗n). Therefore, the total contribution
to time complexity is upper bounded by O(µ2 (⃗n)).
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The proof πsimp. We first consider the AILs. Note that there are only two lines in πsimp: ITE(1, x, y) = y
and ITE(1, t1(x⃗), t2(x⃗)) = t2(x⃗). The set of AILs of the second line is {⃗n} — propagated from πEQ as
it is used as premises of (L1) and (L2). The set of AILs of the first line contains only one input length:
|x| = ℓt1 (⃗n) and |y| = ℓt2 (⃗n), which is propagated from the second line of πsimp as it is used as a premise
of (L3). Similar to the case of πEQ, it can be verified that the ATC of each line is at most O(µ2 (⃗n)).

The proof πrw. Similarly, we argue that the total contribution to time complexity is at most O(µ2 (⃗n)).
Take line (4) in πrw for example: f (x⃗, s(x⃗)) = ITE(s(x⃗), t1(x⃗), t2(x⃗)). The set of AILs of line (4) is simply
{⃗n} — propagated from line (6), which is subsequently propagated from πEQ as line (6) of πrw is used as
premises of (L1) and (L2).

The ATC of the proof line (4) on the input length n⃗ is defined as the summation of two terms:

• The ATC of line (2) f (x⃗, y) = ITE(y, t1(x⃗), t2 (⃗y)) as an equation on the input length |⃗x| = n⃗ and
|y| = ℓs (⃗n). Subsequently, it is at most two times the ATC of the term ITE(y, t1(x⃗), t2 (⃗y)) on the
input length |⃗x| = n⃗ and |y| = ℓs (⃗n). This is at most O(µ2 (⃗n)), since ITE(s(⃗n), t1(x⃗), t2(x⃗)) occurs as
a term in the conclusion of πs⇒t.

• The ATC of the term s(x⃗) on the input length n⃗. This is at most O(µ1 (⃗n)) as the term s(x⃗) also occurs
in the conclusion of πs.

The proof πs⇒t and πs. First, notice that the set of AILs of the last line in πs⇒t is simply {⃗n}. This is
propagated from line (6) of πrw, which is subsequently propagated from πsimp and πEQ. The AILs of the
other lines in πs⇒t are propagated from the AILs of the last line — this is the same when we compute the
time complexity of the proof πs⇒t on input length n⃗. Therefore, the total contribution to time complexity
is exactly the time complexity of πs⇒t on input length n⃗, which is µ2 (⃗n). Similarly, the contribution to
time complexity by πs is exactly the time complexity of πs on the input length n⃗, which is µ1 (⃗n).

Summary. In total, the time complexity of the proof πt is the summation of O(1) terms of at most
O(µ1 (⃗n)+ µ2 (⃗n)), where O(·) hides absolute constants that are independent of s, t1, t2, πs, πs⇒t. Therefore,
the time complexity of πt is at most dMP · (µ1 (⃗n) + µ2 (⃗n)) if we set dMP to be sufficiently large.

Remark 6.2. The proof of Theorem 6.2 can be summarized as the analysis of two parts: The contribution
to time complexity by the additional lines from πs and πs⇒t to derive the conclusion, and the contribution
to time complexity by the proofs πs, πs⇒t. The first term is small as the additional lines are simple and
highly feasible, which is proved by a line-by-line inspection of the additional lines. The latter term is
exactly the time complexity of πs and πs⇒t, as the additional lines only rely on the conclusion of πs and
πs⇒t on the input length n⃗ — that is, the additional lines neither use lines inside πs, πs⇒t as premises, nor
use the conclusions of πs, πs⇒t on input lengths other than n⃗.

This proof explains the technical detail in the time complexity analysis of proofs — consider AILs and
take summation over the ATC of each line. In the rest of the paper, we will describe the time complexity
analysis of proofs only at a high level; nevertheless, it should be straightforward to fill in the technical
details as we demonstrated in this proof.

6.2 Feasible Translation Theorem

Next, we prove the feasible translation theorem, which intuitively means that for every PV equation e : t1 = t2,
the correctness of the propositional translation of e, i.e., [e]⃗nCook, can be provable in PV, and the proof is
efficient in terms of its time complexity.

We first define some PV functions. EQ(x, y) is the PV function that outputs 1 if x = y, and outputs 0
otherwise; Not(x) outputs 1 if x = 0 and outputs 0 otherwise; Satisfy(φ, x) is the PV function that outputs
1 if x is a satisfying assignment of φ, and outputs 0 otherwise; ValidA(w) outputs 1 if w is a valid encoding
of an assignment, and outputs 0 otherwise; Inputj(w) works as follows: if w is a valid assignment of the
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propositional translation of an equation, and the input variables encode x⃗ = (x1, . . . , xk), then Inputj(w)
outputs xj.

Let Input(w) be the shorthand of (Input1(w), Input2(w), . . . , Inputk(w)). Then:

Theorem 6.3 (feasible propositional translation theorem). There is a constant dtr ∈ N such that the following
holds. For every PV proof π and every equation e such that all function symbols in e : t1(x⃗) = t2(x⃗) have been
defined in π, there is a function Assigne(x⃗) and PV proofs π1

tr, π2
tr of the equations

e1
tr : Not(EQ(t1(x⃗), t2(x⃗))) ⇒ Satisfy([e]|x1|,...,|xk |

Cook ,Assigne(x⃗)) = 0 (soundness)

e2
tr : ValidA(w) ⇒ Satisfy([e]|x1|,...,|xk |

Cook , w) ⇒ t1(Input(w)) = t2(Input(w)) (completeness)

such that for i ∈ {1, 2}:

µTC
π1
tr
(⃗n) = O((βTCe,π (⃗n))

dtr); µTC
π2
tr
(⃗n, nw) = O((βTCe,π (⃗n) + nw)

dtr)

where x⃗ = (x1, . . . , xk) are variables in e, n⃗ denotes the input length of x⃗, and nw denotes the input length of the
variables w in e2

tr. Note that O(·) hides constants that may depend on π, e but are independent of n⃗.

Theorem 6.3 claims that the correctness proof of the propositional translation of equations can be
proved with a fixed polynomial time complexity overhead. We will not attempt to calculate the constant
dtr in this paper as it may be sensitive to the exact formalization in PV. Nevertheless, if we do not care
about the exact constant dtr, our result is robust to formalizations.

6.2.1 Overview of the PV Proof

The proof π1
tr, π2

tr involves three parts. In the first part, we prove the correctness of the translation of
terms, i.e., [t]⃗nCook, including the appropriate formalization of soundness and completeness. We prove in
the second part that e1

tr holds, namely the propositional translation of equations is complete, using the
completeness of propositional translation of terms. We then prove in the third part that e2

tr holds.
We now describe each step in more detail. Note that below we argue in PV.

The first part: correctness of translation of terms. For each t ∈ {t1, t2}, we prove the correctness of the
propositional translation [t]⃗nCook. That is:

• (Soundness). If all constraints are satisfied, the output variables must encode t(x⃗).
• (Completeness). There is a satisfying assignment such that the output variables encode t(x⃗).

These two properties can be formalized by PV equations. The formalization of the first bullet is straight-
forward: We introduce a PV function Output(ϕ, w) such that given a formula ϕ that is the propositional
translation of a term and an assignment w, Output(ϕ, w) is the string encoded by the output variables un-
der the assignment w; and for each j ∈ [k], we introduce a PV function Inputj(ϕ, w) that outputs j-th input
string as encoded by the input variables of ϕ under the assignment w. The first bullet is then formalized
as the conditional equation:

e2
t : Satisfy([t]|x1|,...,|xk |

Cook , w) ⇒ Output([t]|x1|,...,|xk |
Cook , w) = t(Input(w)), (6.1)

where Input(w) is the shorthand of (Input1(w), . . . , Inputk(w)).
To formalize the second bullet, we introduce a PV function AssignTermt(x⃗) that outputs the correspond-

ing satisfying assignment given the input x⃗. The algorithm that finds the satisfying assignment is defined
by induction on t according to the definition of [t]⃗nCook, and can be straightforwardly formalized in PV.
The second bullet is then formalized as a PV equation:

e1
t : AND(Satisfy([t]|x1|,...,|xk |

Cook ,AssignTermt(x⃗)) = 1,EQ(Output([t]|x1|,...,|xk |
Cook ,AssignTermt(x⃗)), t(x⃗))) = 1, (6.2)
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where AND(x, y) = 1 if and only if x = 1 and y = 1, and AND(x, y) = 0 otherwise.
We postpone the proofs of e1

t and e2
t to the analysis of their time complexity, as the complexity analysis

follows closely from the proofs.

The second part: completeness. To prove e1
tr, we first prove that e1

t1
and e1

t2
implies e1

tr, which is formal-
ized as the conditional equation

e1
t1
(x⃗) ⇒ e1

t2
(x⃗) ⇒ e1

tr(x⃗), (6.3)

and apply Modus Ponens twice. At a high level, the proof of the conditional equation is as follows. Re-
call that AssignTermt1

(x⃗) and AssignTermt2
(x⃗) output the corresponding assignments for the propositional

translation of t1(x⃗) and t2(x⃗), respectively. Given these two functions, we can define the PV function
Assigne(x⃗) as follows:

• We assign variables in [t1 ]⃗
n
Cook according to t1(x⃗), and variables in [t2 ]⃗

n
Cook according to t2(x⃗).

• The assignment of other variables, i.e., the intermediate variables for comparing the output variables
of [t1 ]⃗

n
Cook and [t2 ]⃗

n
Cook, can be efficiently computed according after the output variables of [t1 ]⃗

n
Cook

and [t2 ]⃗
n
Cook are fixed.

Assuming e1
tj

, j ∈ {1, 2}, we can prove that the output variables [tj ]⃗
n
Cook encode tj(x⃗) under the assignment

above. Since the premise of e1
tr(x⃗) further ensures that t1(x⃗) = t2(x⃗), we can then conclude that the output

variables of [t1 ]⃗
n
Cook and [t2 ]⃗

n
Cook encode the same string, which further implies that [e]⃗nCook is satisfied by

the assignment.

The third part: soundness. Similarly, the proof of e2
tr follows from the conditional equation

e2
t1
(x⃗) ⇒ e2

t2
(x⃗) ⇒ e2

tr(x⃗) (6.4)

by applying Modus Ponens twice. At a high level, the conditional equation is proved as follows. The
premises of e2

tr(x⃗) imply

ValidA(w) = 1 and Satisfy([e]|x1|,...,|xk |
Cook , w) = 1.

Suppose that w encodes a satisfying assignment x⃗ of the propositional translation of e. Note that the
premises e2

t (x⃗) for t ∈ {t1, t2} imply that the output variables of t1, t2 encodes t1(x⃗) and t2(x⃗), respectively,
under the assignment w. In such case, we have t1(x⃗) = t2(x⃗) as otherwise w cannot be a satisfying
assignment. However, the premise of e2

tr(x⃗) implies that t1(x⃗) ̸= t2(x⃗), which leads to a contradiction.

6.2.2 Time Complexity Analysis of the Proof

Note that the proof of e1
tr(x⃗) and e2

tr(x⃗) are obtained by applying Modus Ponens on Equations (6.2)
and (6.3), Equations (6.1) and (6.4). By feasible deduction theorem (see Theorem 6.2), it suffices to an-
alyze the time complexity of each proof separately.

Time complexity analysis of the first part. The provability of both Equation (6.1) and (6.2) in PV are
proved by induction on the height of the term t in (π, e) (see Section 4.4 for the definition of [·]Cook). Note
that this induction proof happens in meta-theory instead of PV, and we need to ensure dtr is a constant
that does not grow in the induction proof.

In the base case, i.e., t is of height 1 in (π, e), it must be ε, x, or an initial function. Suppose that t is
one of ε, x, s0(x), s1(x),TR(x). Recall that we defined β+

t,π(n) = c · n, and thus βTCe,π (n) ≥ c · n. It is clear
that in such case, both Equation (6.1) and (6.2) are provable in PV. We set dtr to be sufficiently large so
that the feasibility of such PV proofs are bounded by O((c · n)dtr) or O((c · n + nw)dtr). The cases when t
is ITR(x, y) or ◦(x, y) are similar.
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Otherwise, consider the structure of the term t. For each t, we will consider the time complexity con-
tribution of new PV proof lines in the following case study; namely, we do not count the time complexity
contributions of PV proof from the induction hypothesis.

• (Function via Composition). Suppose that t is a function introduced by composition, i.e., t is of form
ft′(x⃗) for some term t′, the term t′ must be of lower height in (π, e). By the induction hypothesis,
we can prove both Equations (6.1) and (6.2) for t′(x⃗). Notice that

[t]|x1|,...,|xk |
Cook = [t′]|x1|,...,|xk |

Cook

by the definition of [·]Cook. This means that Equations (6.1) and (6.2) for the term t are identical to
those for the term t′, therefore Equations (6.1) and (6.2) for the term t can be proved in PV. This step
does not contain any new PV proof lines, and therefore the contribution to time complexity is 0.

• (Function via Limited Recursion). Suppose that t is a function symbol f introduced by limited recursion
from functions g, h0, h1, k0, k1. Without loss of generality, we assume that xk is the induction variable.
Note that these functions as well as the proof of the bounding equation

eσ : ITR(hσ(x1, . . . , xk−1, xk, z), z ◦ kσ(x1, . . . , xk−1, xk)) = ε. (6.5)

are of lower height in (π, e). By the induction hypothesis, we can obtain PV proofs of Equations (6.1)
and (6.2) for g, h0, h1, respectively. Recall that by the definition of [·]Cook, we know that [t]|x1|,...,|xk |

Cook
consists of the following components:

(i) the translation of g on the input length |x1|, . . . , |xk−1|;
(ii) |xk| copies of the translation of hσ(x⃗, z) on the input length |x1|, . . . , |xk|, |z| = ℓ f (|x1|, . . . , |xk|);

(iii) corresponding intermediate variables such that the |xk| copies of the translation of hσ(x⃗, z)
simulate the following computation:

z0 := g(x1, . . . , xk−1) = f (x1, . . . , xk−1, ε)

z1 := hσ1(x1, . . . , xk−1, ε, z0) = f (x1, . . . , xk−1, σ1)

...
...

z|xk | := hσ|xk |
(x1, . . . , xk−1, σ1σ2 . . . σ|xk |−1, z|xk |−1) = f (x1, . . . , xk−1, σ1σ2 . . . σ|xk |)) (6.6)

where xk = σ1σ2 . . . σ|xk |, and each zi is of length ℓ f (|x1|, . . . , |xk|).

In a high level, the PV proof of Equations (6.1) and (6.2) is as follows. We prove by induction on i
that the variables corresponding to zi correctly compute the i-th line of Equation (6.6). This involves
three components:

(i) The base case i = 0. This is provided by Equations (6.1) and (6.2) for the function symbol g.
(ii) In the induction case, we need to prove that the output length of RHS of the (i + 1)-th line is at

most ℓ f (|x1|, . . . , |xk|). This can be proved by Equation (6.5) and another induction in PV. The
total time complexity contribution by Equation (6.5) is at most

(µ+
eσ ,π<

(|x1|, . . . , |xk−1|, |xk|, |z| := ℓ f (|x1|, . . . , |xk|)))O(1) ≤ βTCe,π (⃗n)
O(1), (6.7)

where π< denotes the prefix of the proof π up to the line eσ, and O(1) hides a constant that is
independent of the term t.
": We note that here n⃗ is not necessarily |x1|, . . . , |xk|; indeed, the number of variables in the
term t during the induction proof is not necessarily the same as the number of variables in
e. For instance, we use above Equations (6.1) and (6.2) for the function symbol g, where g
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only has k − 1 variables. The number of variables may also increase, see the (Composition) case
of the proof. Nevertheless, it can be verified that the inequality in Equation (6.7) still holds,
as the changes in the number of variables and the input lengths are carefully captured in the
definitions of ATC and AILs.

(iii) In addition, we need to prove that i-th line implies the (i + 1)-th line. This is implied by the
definition equation of f and Equations (6.1) and (6.2) for function symbols h0 and h1. The total
time complexity contribution by the definition equation is at most

(β+
t (t, π)(|x1|, . . . , |xk|))O(1) ≤ βTCe,π (⃗n)

O(1),

where O(1) hides a constant that is independent of t. The latter equations are available by the
induction hypothesis of the outer induction in meta-theory.

The time complexity contribution of other equations, e.g., auxiliary equations to deal with the encod-
ing and functionality of propositional formulas, is at most a fixed polynomial of βTCe,π (⃗n). Therefore,
if dtr is a sufficiently large constant, the time complexity contribution of new proof lines is at most
O(βTCe,π (⃗n)dtr).

• (Composition). Suppose that t is a composition of a function symbol f and terms s1, . . . , sj. Note that
f , s1, . . . , sj are of lower height in (π, e), and therefore by the induction hypothesis, we can obtain
PV proofs of Equations (6.1) and (6.2) for f , s1, . . . , sj. By the definition of [·]Cook, we know that

[t]|x1|,...,|xk |
Cook consists of the following components:

(i) for each s ∈ {s1, . . . , sj}, the propositional translation of s on the input length x⃗;
(ii) the propositional translation of f (z1, . . . , zj), where |z1| = ℓs1 (⃗n), . . . , |zj| = ℓsj (⃗n);

(iii) corresponding intermediate variables that ensure the output variables of s1, . . . , sj are equal to
the input variables of f (z1, . . . , zj).

The proof of Equations (6.1) and (6.2) for the term t ≡ f (s1, . . . , sj) the following parts.

(i) Equations (6.1) and (6.2) for terms s1, . . . , sj. These are available by the induction hypothesis.
(ii) Equations (6.1) and (6.2) for f (z1, . . . , zj) on the input length |z1| = ℓs1 (⃗n), . . . , |zj| = ℓsj (⃗n),

which is available by the induction hypothesis.
": Note that here the number of variables of the function symbol f is j, which might be
different from k; see related discussion in (Function via Limited Recursion) case of the proof.

(iii) Additional PV proof lines to deal with, e.g., the encoding and functionality of propositional for-
mulas. The total time complexity contribution of these proof lines is at most a fixed polynomial
of βTCe,π (⃗n).

Therefore, if dtr is a sufficiently large constant, the time complexity contribution of new proof lines
is at most O(βTCe,π (⃗n)dtr).

Finally, we can see that the time complexity contribution of each new proof line throughout the induc-
tion proof is at most O(βTCe,π (⃗n)dtr). As there are O(1) lines in total, the time complexity of the entire proof
is at most O(βTCe,π (⃗n)dtr). Note that O(·) hides constants that are independent of n⃗ but may depend on π, e,
which is allowed in the statement of Theorem 6.3.

Time complexity analysis of the last two parts. Next, we analyze the time complexity of the second and
the third parts. The analysis of these two parts is similar, so we will analyze the second part in detail and
only sketch the analysis of the third part.

Recall that in the second part, we need to prove the conditional equation e1
t1
(x⃗) ⇒ e1

t2
(x⃗) ⇒ e1

tr(x⃗); see
Equation (6.3). The premises of the conditional equation include:
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• EQ(Output([t1]
|x1|,...,|xk |
Cook ,AssignTermt1

(x⃗)), t1(x⃗)) in e1
t1

;

• EQ(Output([t2]
|x1|,...,|xk |
Cook ,AssignTermt2

(x⃗)), t2(x⃗)) in e1
t2

;
• EQ(t1(x⃗), t2(x⃗)) in the premise of e1

tr(x⃗).

From these three equations, we can derive

ϕEQ : EQ(Output([t1]
|x1|,...,|xk |
Cook ,AssignTermt1

(x⃗)),Output([t2]
|x1|,...,|xk |
Cook ,AssignTermt2

(x⃗))),

and therefore we can include this equation as an additional premise. Note that this step is of a fixed
polynomial time complexity overhead as we only use the transitivity of equations formalized by the
function EQ(x, y).

Then we prove that
ϕEQ ⇒ Satisfy([e]|x1|,...,|xk |

Cook ,Assigne(x⃗)) = 1. (6.8)

Recall that Assigne(x⃗) simply calls AssignTermt1
, AssignTermt2

and computes the assignment of interme-

diate variables for comparing the output variables of [t1]
|x1|,...,|xk |
Cook and [t2]

|x1|,...,|xk |
Cook . Equation (6.8) that

formalizes the correctness of Assigne (⃗n) can be proved in PV provided AssignTermt for t ∈ {t1, t2} and
Assignt are defined in a straightforward way. Moreover, it can be verified that the time complexity over-
head is a fixed polynomial in the length of the propositional translation of e; in more detail, notice that
Assigne(x⃗),AssignTermt1

(x⃗),AssignTermt2
(x⃗) runs in fixed polynomial time in the size of the propositional

translation of e, and their correctness proofs are straightforward. We can then conclude that the second
part incurs a fixed polynomial time complexity overhead in the size of the propositional translation of e,
which is at most

βCooke (⃗n)O(1) ≤ βTCe,π (⃗n)
dtr

when dtr is chosen to be sufficiently large. The inequality follows by Theorem 4.3.
For the third part, notice that all the functions involved run in a fixed polynomial time in the length

of the propositional translation of e, and the correctness proofs of the functions are straightforward. It
can be verified that the third part incurs a fixed polynomial time complexity overhead in the size of the
propositional translation of e, which is at most

βCooke (⃗n)O(1) ≤ βTCe,π (⃗n)
dtr

when dtr is chosen to be sufficiently large.

6.3 Feasible Proof Generation Theorem

We now proof the feasible proof generation theorem, which shows that if π is a valid PV proof of an equation
e, not only the propositional translation of π is an EF proof of the propositional translation of e, but the
fact is also provable in PV. Moreover, the proof of the fact is feasible in terms of its time complexity.

Let IsEFProof(φ, π) be a straightforward PV function that outputs 1 if π is an EF proof of φ, and
outputs 0 otherwise. The feasible proof generation theorem states that:

Theorem 6.4 (feasible proof generation theorem). There is a constant dgen ∈ N such that the following holds.
Let π be a PV proof concluding e. Then there is a PV proof πgen of the equation

IsEFProof([e]|x1|,...,|xk |
Cook , [π]

|x1|,...,|xk |
Cook ) = 1 (6.9)

such that µTC
πgen

(⃗n) = O((µTC
π (⃗n))dgen), where x⃗ = (x1, . . . , xk) are variables in e.

Similar to Theorem 6.3, Theorem 6.4 can be proved by careful formalization and analysis of the stan-
dard correctness proof of the propositional translation [Coo75]. We will, however, present an alternative
proof that utilizes the FPT algorithms developed in Section 5: Instead of proving Equation (6.9) for each
fixed proof π, we will prove the generalization of Equation (6.9) where both e and π are given as input
variables. Indeed, this proof will lead to a stronger result that will later be the key to proving the feasibility
hierarchy theorem.
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6.3.1 Algorithms for Propositional Translations

To state the more general version of Theorem 6.4, we need to first verify that the propositional translation
[·]Cook of equations and proofs can be efficiently computed when the equations and proofs are given as
input variables.

Recall that in Section 4.4, we presented the algorithm GenPrope,π (⃗n) that generates the propositional
translation of e (in the context of π) and the algorithm GenProofπ (⃗n) that generates the propositional
translation of π. Indeed, it can be verified that both algorithms can be defined even if e, π are given as
input rather than fixed in advance. Moreover, it can be verified that both algorithms run in polynomial
time in their output length. By Theorem 4.3, we can conclude that GenPrope,π (⃗n) runs in time at most
poly(β+

e,π (⃗n)), and GenProofπ (⃗n) runs in time at most poly(µTC
π (⃗n)).

Furthermore, similar to the functions for computing the time complexity of equations and proofs (see
Section 5.7), the time complexity of both algorithms can be verified in PV. Let GenProp(π, e, n⃗, N) be the
algorithm that simulates GenPrope,π (⃗n) for |N| steps:

• If GenPrope,π (⃗n) does not halt in |N| steps, it outputs ε.
• Otherwise, it outputs the output of GenPrope,π (⃗n).

Similarly, let GenProof(π, n⃗, N) be the algorithm that simulates GenProofπ (⃗n) for |N| steps. It is clear that
these two functions can be defined in PV straightforwardly, and the time complexity of the functions is
formulated as:

Lemma 6.5. There is a constant c ≥ 1 such that the following holds. Let UBβ(N, π, e, n⃗) be the PV function that
outputs 1 if (π, e, n⃗, N) is a valid input of GenProp and |N| ≥ (β+

e,π (⃗n))c, where n⃗ is encoded in binary. Let
IsNotEps(x) be the PV function that outputs 1 if x ̸= ε and outputs 0 otherwise. Then PV proves the conditional
equation:

UBβ(N, π, e, n⃗) ⇒ IsNotEps(GenProp(π, e, n⃗, N)) = 1. (6.10)

Similarly, let UBµ(N, π, n⃗) be the PV function that outputs 1 if (π, n⃗, N) is a valid input of GenProof and
|N| ≥ (µTC

π (⃗n))c, then PV proves the conditional equation:

UBµ(N, π, n⃗) ⇒ IsNotEps(GenProof(π, n⃗, N)) = 1. (6.11)

Proof Sketch. We formalize the complexity analysis of GenProp and GenProof in PV. Take Equation (6.10)
for example. We first perform a case study on whether UBβ(N, π, e, t, n⃗) = 1 or UBβ(N, π, e, t, n⃗) = 0. The
latter case can be resolved by the explosion principle (see Proposition 6.1).

For the former case, we prove by induction on |M| that for any M such that |M|c ≤ |N|, after simu-
lating GenPrope,π (⃗n) for |M|c steps, the algorithm has produced the first |M| bits of [e]⃗nCook. This utilizes
length induction on a feasibly checkable property, which is available in PV. Note that both the base
case and the induction case can be proved in PV provided that the formalization of GenProp(e, π, n⃗, N) is
straightforward.

6.3.2 A More General Version

Now we state a more general version of Theorem 6.4. Let GenProp,GenProof be the functions introduced
in Section 6.3.1. Let ValidPV(π, e) be the PV function that outputs 1 if π is a valid PV proof concluding e,
and outputs 0 otherwise. Then:

Theorem 6.6 (feasible proof generation theorem, generalized version).

PV ⊢ ValidPV(π, e) ⇒ IsNotEps(GenProof(π, n⃗, N)) ⇒ IsNotEps(GenProp(π, e, n⃗, N))

⇒ IsEFProof(GenProp(π, e, n⃗, N),GenProof(π, n⃗, N)) = 1. (6.12)

The key observation in the proof of Theorem 6.6 is that N is given as a part of the input. In such case,
we could generate both ϕ := GenProp(π, e, n⃗, N) and πϕ := GenProof(π, n⃗, N) feasibly, and reason about
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the correctness of both algorithms by looking at ϕ, πϕ. This allows us to formalize the standard proof of
the correctness of the propositional translation [Coo75].

Proof. We argue in PV. Fix π, e, n⃗, and N. Suppose that GenProp(π, e, n⃗, N) ̸= ε and GenProof(π, e, n⃗, N) ̸=
ε, i.e., GenProp(π, e, n⃗) and GenProof(π, e, n⃗, N) simulate GenPrope,π (⃗n) and GenProofe,π (⃗n) for |N| steps
and both of them halt. Let ϕ be the output of GenProp(π, e, n⃗) and πϕ be the output of GenProof(π, e, n⃗, N).
Our goal is to prove that πϕ is an EF proof of ϕ.

Let π : e1, . . . , em where em = e, ∆ := µ-AMπ({em, n⃗}) be the acquisition map, ∆i := {(ei, p⃗) ∈ ∆ | m⃗ ∈
N}. Note that both ∆ and ∆i can be computed feasibly as we have N in hand and the running time of the
entire algorithm GenProofe,π (⃗n) is at most |N|.

Recall that in the i-th round of the algorithm GenProofe,π (⃗n), for each p⃗ ∈ ∆i, the algorithm will output
EF proof lines such that:

• All EF proof lines that have been written down by the algorithm form a valid EF proof.
• If ei is an equation (i.e. it is not for the introduction of a new function symbol), the propositional

translation of ei on the input length p⃗ is proved in the EF proof lines.

We will prove by induction on i that these two properties hold. Notice that the induction principle is
available in PV as m ≤ |π|, and both bullets can be verified by straightforward polynomial-time algorithms
given π, i and the EF proof lines written by the algorithm. The base case i = 0 is trivial as there is no EF
proofs that have been written down and no e0.

Now we consider the induction case. Suppose that the algorithm have written down valid EF proof
lines in the first i − 1 rounds, and for any j < i and p⃗ ∈ ∆j, the propositional translation of ej on the input
length p⃗ is proved in the EF proof lines. In the i-th round, the algorithm considers the deduction rule that
introduces the new proof lines ei.

• (Axioms for Functions). Suppose that ei is a proof line introduced as an axiom for the functionality
of initial functions or introduced functions. In all cases, the propositional translation of ei admits an
explicit EF proof, and the algorithm outputs the proof. The correctness of the generated EF proof is
provable in PV provided that it is formalized in a straightforward fashion.

• (Function Introduction). Suppose that ei is a proof line that introduces a function symbol by the
composition rule or the limited recursion rule, the algorithm outputs nothing in this round and the
correctness is trivial.

• (Logical Rules). Suppose that ei : t = s is a proof line derived from a logical rule, say (L1). (The proofs
for other logical rules are similar and therefore omitted.)

In such case, there is a proof line ej : s = t for j < i. We need to prove p⃗ ∈ ∆j, which is deferred to
the end of the proof (see (⋄)). Therefore, by the induction hypothesis, the propositional translation
of ej on the input length p⃗ has been written by the algorithm.

There is an explicit EF proof concluding the propositional translation of ei on the input length p⃗ from
the propositional translation of ej on the input length p⃗, and the algorithm GenProof produces the
proof in the i-th round. The correctness of the algorithm (i.e. the two bullets above) in the i-th round
can be formalized in PV provided that it is formalized straightforwardly.

• (Induction). Suppose that ei is derived from the induction rule. Without loss of generality, we assume
that xk is the induction variable and x⃗ = (x1, . . . , xk) are all variables. Let f1(x⃗) , f2(x⃗), g(x1, . . . , xk−1),
hi(x⃗, z) be PV function symbols that have been introduced in π<i. Moreover, for σ ∈ {1, 2}, b ∈ {0, 1},
the equations

e′g : f1(x1, . . . , xk−1, ε) = f2(x1, . . . , xk−1, ε)

e′σ,b : fσ(x1, . . . , xk−1, sb(xk)) = hb(x1, . . . , xk−1, xk, fσ(x1, . . . , xk))

are in π<i, from which e : f1(x⃗) = f2(x⃗) is derived.
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Suppose that e′g is in the jg-th line of π, e′σ,i is in the jσ,i-th line of π. We first prove that

(p1, . . . , pk−1) ∈ ∆jg , and (p1, . . . , pk) ∈ ∆jσ,b

for every σ ∈ {1, 2} and b ∈ {0, 1}; this is deferred to the end of the proof, see (⋄). Therefore, by the
induction hypothesis, the algorithm has written down the EF proof of the propositional translation
of e′g on the input length (p1, . . . , pk−1), as well as the propositional translation of e′σ,b on the input
length p⃗.

The algorithm produces new proof lines concluding the propositional translation of e on the input
length p⃗, see Section 4.4. Recall that the EF proof introduces new variables z1, . . . , zpk and the
following constraints: For each j ∈ {0, 1, . . . , pk}, there is a 3-CNF ϕj that ensures that if ϕk is
satisfied, then

zj =

{
f1(x1, . . . , xk, ε) if i = 0;
hσi (x1, . . . , xk, zj−1) otherwise;

where σi is the i-th leftmost bit of xk; ψj be a 3-CNF that is satisfied if and only if

zj = f1(x1, . . . , xk, xk,≤j) = f2(x1, . . . , xk−1, xk,≤j)

where xk,≤j denotes the prefix of xk of length j. Then, the algorithm produces the EF proof of
αj := ϕ1 ∧ · · · ∧ ϕj → ψj for each j ∈ {0, 1, . . . , pk}, where the proof of α0 is explicit, and the EF proof
of αj+1 follows from the proof of αj. This can be formalized in PV with the induction principle, as
the total length of the induction is at most |N|, and the property (i.e. the algorithm produced the EF
proof of αj) can be verified in polynomial time.

Proof of (⋄): AILs and acquisition closure. Finally, we explain how to deal with the acquired input
lengths in previous rounds of the algorithm, which is necessary if ei is introduced by a deduction rule
with premise(s). Take the logical rule (L1) for example. Suppose that ei : t = s and ej : s = t for j < i, we
need to prove that if p⃗ ∈ ∆i, then p⃗ ∈ ∆j.

By induction on the algorithm that generates the acquisition closure ∆ = µ-AMπ({em, n⃗}), we can
prove that ∆ is closed under acquisition extension. This induction proof closely follows the execution of
the algorithm and is therefore available in PV. Notice that if p⃗ ∈ ∆i, ei : t = s, and ej : s = t, by the
definition of AILs, we have p⃗ ∈ µ-AILei ,ej( p⃗). This implies that (ej, p⃗) ∈ ∆ as ∆ is closed under acquisition
extension, which further implies that p⃗ ∈ ∆j by the definition of ∆j.

6.3.3 Proof of Theorem 6.4

Now we prove Theorem 6.4 from the generalized Theorem 6.6. Let dgen ∈ N be a constant to be deter-
mined later. Fix any PV proof π concluding e. We first prove the following lemma:

Lemma 6.7. There are constants d1, d2 ∈ N such that for any π, e, there are constants c1, c2 ∈ N and PV proofs
of the equations:

eπ : GenProof
(

π, n⃗, 1c1·(µTC
π (⃗n))d1

)
= [π]n⃗Cook, ep : GenProp

(
π, e, n⃗, 1c1·(β+e,π (⃗n))d1

)
= [e]n⃗Cook,

where n⃗ is the shorthand of |x1|, . . . , |xk|. Moreover, the PV proofs of eπ and ep are of time complexity at most

c2 · (µTC
π (⃗n))d2 , c2 · (β+

e,π (⃗n))
d2 ,

respectively.

Proof. We only prove the case for eπ as the proof for ep is similar. Recall that the PV function GenProof(π, n⃗, N)

simulates the algorithm generating [π ]⃗nCook for |N| steps. The PV proofs of eπ is as follows:
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• (Time Complexity). By Lemma 6.5, it is provable in PV that

UBµ(N, π, n⃗) ⇒ IsNotEps(GenProof(π, n⃗, N)) = 1. (6.13)

By applying (L4), we substitute N by 1c1·(µTC
π (⃗n))d1 and obtain

UBµ(1c1·(µTC
π (⃗n))d1 , π, n⃗) ⇒ IsNotEps(GenProof(π, e, n⃗, 1c1·(µTC

π (⃗n))d1 )) = 1. (6.14)

• (Correctness). Similar to the proof of Lemma 6.5, we prove in PV the correctness of the algorithm
GenProof, formalized as the following equation:

IsNotEps(GenProof(π, n⃗, N)) ⇒ GenProof(π, n⃗, N) = [π]n⃗Cook, (6.15)

where π is the fixed PV proof in the statement of the lemma (i.e. not a variable), and n⃗ is the
shorthand of |x1|, . . . , |xk|. By applying (L4), we substitute N by 1c1·(µTC

π (⃗n))d1 and obtain

IsNotEps(GenProof(π, e, n⃗, 1c1·(µTC
π (⃗n))d1 )) ⇒ GenProof(π, n⃗, 1c1·(µTC

π (⃗n))d1 ) = [π]n⃗Cook. (6.16)

• (Upper Bound). Next, we prove that

UBµ(1c1·(µTC
π (⃗n))d1 , π, n⃗) = 1, (6.17)

where π is the fixed PV proof in the statement of the lemma rather than a variable.

• (Modus Ponens). We apply Modus Ponens twice on Equations (6.14), (6.16) and (6.17), concluding eπ .

By feasible deduction theorem (see Theorem 6.2), it suffices to analyze the time complexity of Equa-
tions (6.14), (6.16) and (6.17) separately. We argue that in all cases, the time complexity of the PV proofs
are a fixed polynomial independent of π in the running time of the terms (i.e. the LHS and RHS of the
equations).

Take Equation (6.16) as an example. The proof of Equation (6.16) follows from Equation (6.15) by
applying (L4), and therefore the total time complexity is the summation of two terms:

• The ATC of Equation (6.16), which is a fixed polynomial in the running time of the LHS and RHS of
the equation.

• The time complexity of Equation (6.15) on the input length |N| = c1 · (µTC
π (⃗n))d1 . We argue that the

time complexity of Equation (6.15) as a function of (⃗n, N) is polylog(|⃗n|) · Nd′ · (µTC
π (⃗n))d′ for a fixed

constant d′ that is independent of π. To see this, notice that GenProof(π, n⃗, N) is a straightforward
simulation of the algorithm [π ]⃗nCook for |N| steps, and the correctness of the simulation can be proved
by induction on |N|. Provided that the simulation is straightforward, the proof should be of the same
structure for any proof π.

As the running time of the LHS and RHS of Equation (6.16) are both a fixed polynomial in the time
complexity of π, we can conclude that the time complexity of the proof of Equation (6.16) is a fixed
polynomial in the time complexity of π. The lemma follows by choosing c1, c2, d1, d2 to be sufficiently
large constants.

Theorem 6.4 (feasible proof generation theorem). There is a constant dgen ∈ N such that the following holds.
Let π be a PV proof concluding e. Then there is a PV proof πgen of the equation

IsEFProof([e]|x1|,...,|xk |
Cook , [π]

|x1|,...,|xk |
Cook ) = 1 (6.9)

such that µTC
πgen

(⃗n) = O((µTC
π (⃗n))dgen), where x⃗ = (x1, . . . , xk) are variables in e.
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Proof. The PV proof is as follows. Let n⃗ be the shorthand of |x1|, . . . , |xk|. By Lemma 6.7, we first obtain
the proof of the following equations:

eπ : GenProof
(

π, n⃗, 1c1·(µTC
π (⃗n))d1

)
= [π]n⃗Cook, ep : GenProp

(
π, e, n⃗, 1c1·(β+e,π (⃗n))d1

)
= [e]n⃗Cook,

where c1, d1 are constants independent of π. By Lemma 6.5, we can also prove that

eπ,c : IsNotEps
(
GenProof

(
π, n⃗, 1c1·(µTC

π (⃗n))d1
))

= 1;

ep,c : IsNotEps
(
GenProp

(
π, e, n⃗, 1c1·(β+e,π (⃗n))d1

))
= 1.

Note that the time complexity of each proof is a fixed polynomial in c1 · (µTC
π (⃗n))d1 by Lemmas 6.5 and 6.7.

By Theorem 6.6, we can prove in PV the equation:

e′FGT : ValidPV(π, e) ⇒ IsNotEps(GenProof(π, n⃗, N)) ⇒ IsNotEps(GenProp(π, e, n⃗, N))

⇒ IsEFProof(GenProp(π, e, n⃗, N),GenProof(π, n⃗, N)) = 1,

We apply (L4) rule to substitute the variable π by the fixed PV proof π in the statement of the theorem,
e by the fixed PV equation e in the statement, and N by 1c1·(µTC

π (⃗n))d1 . Denote the equation by eFGT. Note
that the time complexity of the proof of eFGT consists of two parts:

• The ATC of the (L4) rule to substitute N by 1c1·(µTC
π (⃗n))d1 , which is a fixed polynomial in 1c1·(µTC

π (⃗n))d1 .
• The time complexity of the proof of e′FGT, which is a fixed polynomial in |π|, |e|, |⃗n|, |N|. On the

input length |N| = 1c1·(µTC
π (⃗n))d1 , the time complexity will be a fixed polynomial in c1 · (µTC

π (⃗n))d1 .

By applying Modus Ponens on eFGT, eπ,c, and ep,c, we can obtain the equation

e′′FGT : IsEFProof
(
GenProof

(
π, n⃗, 1c1·(µTC

π (⃗n))d1
)

,GenProp
(

π, e, n⃗, 1c1·(β+e,π (⃗n))d1
))

= 1.

This step incurs little time complexity overhead by the feasible deduction theorem (see Theorem 6.2).
Finally, we apply the logical rule (L3) to e′′FGT, eπ , and ep to conclude

IsEFProof([e]|x1|,...,|xk |
Cook , [π]

|x1|,...,|xk |
Cook ) = 1.

The time complexity overhead of this step is the ATC of e′′FGT, eπ , and ep, which is a fixed polynomial in
c1 · (µTC

π (⃗n))d1 .
In conclusion, the total time complexity overhead of the proof is a fixed polynomial (i.e. the exponent

is independent of π) in c1 · (µTC
π (⃗n))d1 . This completes the proof if we choose dgen to be a sufficiently large

constant that is independent of π.

7 Feasibility Hierarchy Theorems

We now prove the feasibility hierarchy theorem. Intuitively, it states that there is a constant d such that for
any constant c ≥ 1, there is a PV equation ed with time complexity β such that:

• (Upper Bound). There is a PV proof of ed with time complexity O(βcd).
• (Lower Bound). There is no PV proof of ed of time complexity o(βc).

That is, PV proofs with higher time complexity are strictly stronger than those with lower time complexity.
Indeed, the equation ed is quite simple: it takes two variables, and its time complexity β is a fixed

polynomial, i.e., the exponent is independent of d. More formally:
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Theorem 7.1 (feasibility hierarchy theorem). There are constants c1, c2 ≥ 1 such that the following holds. For
any constant d ≥ 1, there is a PV equation ed : sd(π, x) = td(π, x) and its context πd such that:

1. The time complexity of the statement ed is at most β := βTCed ,πd
(|π|, |x|) = Od((|π|+ |x|)c1).

2. ed admits a PV proof of time complexity Od(βc2·d);
3. ed is unprovable in PV with time complexity o(βd).

7.1 Bounded Feasibility Consistency

Fix d ≥ 1 to be a constant. We consider the following statement: For every PV proof π of concluding
s0(x) = s1(x), the time complexity of π on the input length |x| must be at least d · |x|d. This statement is
called the bounded feasibility consistency of PV, as it can be considered as the consistency of the fragment
of PV with feasibility d · |x|d.

This statement cannot be formalized directly in PV as the computation of the time complexity of π takes
super-polynomial time in |π|. Nevertheless, as there is an FPT algorithm to compute the time complexity
of proofs (see Theorem 5.10) in exp(exp(O(|π|))) · polylog(n) time, the statement can be formalized in PV
if, say, exp(exp(O(|π|))) · polylog(n) ≤ n.

In more detail, let fµ(π, x) be the PV function that simulates the algorithm Aµ(π, |x|) in Theorem 5.10
for |x| steps such that

• If Aµ(π, |x|) does not halt after |x| steps, fµ(π, x) outputs ε.
• Otherwise, it outputs the output of Aµ(π, |x|).

(See Section 5.7 for related discussion.) We define the bounded feasibility consistency statement as follows:

Definition 7.1 (bounded feasibility consistency). Let ValidPV(π, e) be the PV function that outputs 1 if
π encodes a valid PV proof concluding e, and outputs 0 otherwise. Let [[e]] be the encoding of a PV
equation e, and [[π]] be the encoding of a PV proof π. Let UBµ,d be the PV function that outputs 1 if
fµ(π, x) ≤ d · |x|d, and outputs 0 otherwise.

The bounded feasibility consistency statement Cond(π, x) is defined as the following PV conditional equa-
tion:

IsNotEps( fµ(π, x)) ⇒ UBµ,d(π, x) ⇒ ValidPV(π, [[s0(x) = s1(x)]]) = 0.

Proposition 7.2. There is a constant cCon ≥ 1 such that for any d ≥ 1, the time complexity of the equation
Cond(π, x) is at most Od(ncCon), where n = |π|+ |x|.

Proof Sketch. Recall that the time complexity of an equation e in the context π is defined as its ATC β+
e,π (⃗n)

plus the time complexity contribution of proof lines in π — the time complexity of the proofs of the
bounding inequalities for function symbols in e.

We first analyze the first former part. The ATC of β+
e,π (⃗n) is a fixed polynomial in the running time of

the terms in e provided that e is defined straightforwardly. As the running time of Cond(π, x) is a fixed
polynomial (i.e. the exponent is independent of d), the ATC of the equation Cond(π, x) should also be a
fixed polynomial.

It remains to analyze the latter part. Notice that the only occurrence of the constant d is in the term
UBµ,d(π, x) to check whether fµ(π, x) ≤ |x|d, and the complexity analysis of the function UBµ,d (where we
may need to introduce functions via limited recursion) is almost the same for any d. It can then be verified
that the total time complexity contribution of the context of UBµ,d is a fixed polynomial (i.e. the exponent
is independent of d). This completes the proof.

We now prove the key technical lemma that Cond(π, x) can be proved in PV with time complexity at
most nO(d). Formally:

Lemma 7.3 (provability of bounded feasibility consistency). There is a constant c ≥ 1 such that for any d ≥ 1,
the equation Cond(π, x) admits a PV proof πCon of time complexity Od((|π|+ |x|)cd).
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Proof. Let c ≥ 1 be a constant to be determined later. Fix any d ≥ 1. We first describe a PV proof πCon of
Cond(π, x) and then analyze the time complexity of the proof.

Proof of Cond(π, x). We argue in PV. The main idea is as follows. Assume that IsNotEps( fµ(π, x)) = 1,
UBµ,d(π, x) = 1, and ValidPV(π, [[s0(x) = s1(x)]]) = 1, our goal is to derive a contradiction. We can apply
the generalized feasible proof generation theorem (see Theorem 6.4) to obtain an EF proof of [s0(x) =

s1(x)]|x|Cook, which contradicts with the soundness of EF (see Theorem 3.2).
In more detail, the proof consists of the following steps:

(1) Let e⊥ be the equation s0(x) = s1(x). We first show that there is a constant c1 such that

ep : IsNotEps(GenProp(π, e⊥, n, 1c1·nc1 )) = 1,

where n := |x|, and the equation is provable in PV. This is obvious, as the PV function GenProp(π, e⊥, n, c1 ·
nc1) simulates the algorithm computing [e⊥]nCook for c1 · nc1) steps and the simulation should provably
halt in fixed polynomial time provided that GenProp is defined straightforwardly.

(2) We prove that there is a constant c2 ≥ 1 such that PV proves

eπ : IsNotEps( fµ(π, x)) ⇒ UBµ,d(π, x) ⇒ ValidPV(π, e⊥)

⇒ IsNotEps(GenProof(π, n, 1c2·nc2 ·d)) = 1,

where n := |x| and e⊥ := [[s0(x) = s1(x)]].
Indeed, we can prove a more general statement: Let z be a fresh variable, if the time complexity of the
proof π is at most |z|, the algorithm GenProof(π, n, 1c2·|z|c2 ) does not output ε, which means that the
algorithm computing [π]

|z|
Cook halts in c2 · |z|c2 steps. Let e′π be this statement. We can then prove eπ by

applying the logical rule (L4) to substitute the variable z with 1nd
.

The generalized statement e′π can be proved in PV as follows. Recall that GenProof(π, n, |z|) simulates
the algorithm generating [π]nCook for |z| steps. We first prove that during the simulation, the total
length of the proof lines written down by the algorithm is at most the time complexity of π. This can
be proved by formalizing Theorem 4.3 in PV, which is straightforward as the proof closely follows from
the execution of the algorithm GenProof(π, n, |z|). Therefore, as the time complexity of π is at most
|z|, the total length of the proof lines written down by the algorithm simulated by GenProof(π, n, |z|)
is at most |z|. Finally, we show that the simulation is efficient and incurs only a fixed polynomial time
overhead, which is provable in PV provided that GenProof is formalized straightforwardly.

(3) Recall that by Theorem 6.6, PV proves

eFGT : ValidPV(π, e) ⇒ IsNotEps(GenProof(π, n, N)) ⇒ IsNotEps(GenProp(π, e, n, N))

⇒ IsEFProof(GenProp(π, e, n, N),GenProof(π, n, N)) = 1,

where n := |x|. We substitute N with 1c2·nc2 ·d , e with e⊥ := [[s0(x) = s1(x)]], and denote the resulting
equation by e′FGT . Combining ep, eπ , and e′FGT , we can derive that

e′ : IsNotEps( fµ(π, x)) ⇒ UBµ,d(π, x) ⇒ ValidPV(π, e⊥)

⇒ IsEFProof(GenProp(π, e⊥, 1c1·nc1 ·d),GenProof(π, n, 1c2·nc2 ·d)) = 1

(4) Recall that by Theorem 3.2, PV proves the soundness of EF. Assuming any straightforward encoding
of propositional formulas, the propositional translation of e⊥ : s0(x) = s1(x) should imply a contra-
diction. Therefore, we can prove in PV that:

es : IsEFProof(GenProp(π, e⊥, 1c1·nc1 ), τ) = 0,

where n := |x|. Namely, there is no EF proof of the statement e⊥.
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(5) We substitute τ with GenProof(π, n, 1c2·nc2 ·d)) to obtain

e′s : IsEFProof(GenProp(π, e⊥, 1c1·nc1 ), 1c2·nc2 ·d) = 0.

We can then conclude Cond(π, x) by combining e′s and e′.

Time complexity analysis. Now we analyze the time complexity of the proof above by considering the
time complexity contribution of each step. Recall that Cond(π, x) has two variables π and x. Let nπ and
nx be the input length of π and x, respectively.

(1) In the first step, we prove the equation ep that has two variables π and x. The only acquired input
length of ep is |π| = nπ and (n =)|x| = nx. Moreover, as the proof closely follows the computation of
the function GenProp(π, e⊥, n, 1c1·nc1 ), the total ATC of the proof lines should be a fixed polynomial in
the running time of the algorithm, which is a fixed polynomial in nπ and nx (i.e. the exponent does
not depend on d).

(2) In the second step, we prove the equation eπ about the algorithm GenProof(π, n, 1c2·nc2 ·d). The equation
involves two variables π and x, and the only acquired input length is |π| = nπ and |x| = nx. Similar
to the first step, the total ATC of the proof lines should be a fixed polynomial in the running time of
the algorithm, which is a fixed polynomial in nπ and nd

x.

(3) In the third step, we prove the equation eFGT (and e′FGT via substitution). The time complexity con-
tribution of e′FGT is negligible as it is obtained from eFGT via (L4) substitution. The equation eFGT has
four variables π, e, x, N, and the only acquired input length is

|π| = nπ , |e| = O(1), |x| = nx, |N| = c2 · nc2·d. (7.1)

Note that as eFGT admits a PV proof (given in Theorem 6.6) that is independent of d, the time complex-
ity of eFGT is a fixed polynomial in its input length. In this case, i.e., the input length is Equation (7.1),
the total time complexity contribution is a fixed polynomial in (nπ + nx)d.

(4) In the fourth step, we prove the equation es consisting of three variables π, τ, and x. The only acquired
input length is

|π| = nπ , |τ| = ℓGenProof (nπ , nx, c2 · nc2·d
x ), |x| = nx.

Here, ℓGenProof (π, x, c2 · nc2·d is the bounding value of GenProof; as GenProof is a PV function indepen-
dent of d, its bounding value is a fixed polynomial in its input, and thus |τ| is a fixed polynomial in
(nπ + nx)d. Similar to the third step, the total time complexity contribution is a fixed polynomial in its
input length, which is a fixed polynomial in (nπ + nx)d.

(5) The fifth step involves only substitution and logical consequences about conditional equations, and it
can be verified that the total time complexity contribution is at most a fixed polynomial in the running
time of the terms, which is, in turn, a fixed polynomial in (nπ + nx)d.

In summary, the time complexity contribution of each part of the proof is a fixed polynomial in (nπ +
nx)d. This completes the proof if we set the constant c to be sufficiently large.

7.2 Proof of the Feasibility Hierarchy Theorem

Now we are ready to prove the feasibility hierarchy theorem. For any constant d ≥ 1, the equation ed will
be constructed by modifying the self-referential statement in Gödel’s incompleteness theorem [Göd31]
(see also [Coo75] for the construction in PV).

We start by defining a few functions in PV:
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• Let π1, π2 be PV proofs, we use ⟨π1, π2⟩ to denote the concatenation of π1 and π2.

• Let fµ,2(π, x) be the function that simulates Aµ(π, |x|, |x|) in Theorem 5.10 for |x| steps (i.e. it at-
tempts to compute the time complexity of π when the input length of two variables are both |x|).

• Let fβ,2(π, e, x) be the function that simulates Aβ(π, e, |x|, |x|) in Theorem 5.11 for |x| steps (i.e. it
attempts to compute the time complexity of the equation e in the context π when the input length
of two variables are both |x|).

• Let UBµ,d,2(π, τ, x) be the PV function that outputs 1 if τ encodes a pair (πe, e), where e encodes an
equation in the context πe, ⟨πe, π⟩ is a valid PV proof of e, and both fµ,2(⟨πe, π⟩, x) and fβ,2(πe, e, x)
successfully simulates corresponding algorithms, and

fµ,2(⟨πe, π⟩, x) ≤ ( fβ,2(πe, e, x))d.

It outputs 0 otherwise.

• Let Subst(τ) be a straightforward PV function such that

– If τ does not encode a pair (πe, e), where e is a PV equation in the context πe with at least one
variable, we define Subst(πe, e) := ε.

– Suppose τ encodes a pair (πe, e), where e is a PV equation t1(x, y⃗) = t2(x, y⃗) with at least one
variable in the context πe. Let x be the variable with the smallest index,

Subst(τ) := ([[πe]], [[t1(τ, y⃗) = t2(τ, y⃗)]]).

That is, it outputs the encoding of the equation e[x/τ], where x denotes the first variable in e.

Let rd : UBµ,d,2(π,Subst(y), x) = 1 be an equation and pd be its context, where y is the variable with
the smallest index in rd. Let τ be the encoding of the pair (rd, pd), and

qd := Subst(τ) = ([[pd]], [[UBµ,d,2(π,Subst(τ), x) = 1]]).

This means that
qd := ([[pd]], [[UBµ,d,2(π, qd, x) = 1]]);

that is, qd encodes a pair (πe, e), where e is an equation in the context πe that formalizes the statement ϕ:
“for any π and x, π is not a valid PV proof of ϕ with time complexity βd, where β is the time complexity
of the statement ϕ.”

Let πd := pd and ed : UBµ,d,2(π, qd, x) = 1, i.e., qd = ([[πd]], [[ed]]). We now prove that the equation ed
satisfies the properties in Theorem 7.1.

Proposition 7.4 (time complexity of ed). For d ≥ 1, the time complexity of ed in the context of πd is a fixed
polynomial in |π|+ |x|, i.e., the exponent of the polynomial is independent of the d.

Proof Sketch. Note that the only occurrence of the constant d in the definition of ed is in UBµ,d,2(π, τ, x).
Assuming straightforward formalization of the PV function UBµ,d,2, the time complexity of ed should be a
fixed polynomial in the running time of the terms in ed, which is in turn a fixed polynomial in the input
length |π|+ |x|.

7.2.1 Proof of the Lower Bound

Lemma 7.5 (lower bound for ed). For d ≥ 1, there is no PV proof π concluding ed such that the time complexity
of ⟨πd, π⟩ is at most o(βd), where β := βTCed ,πd

(π, x).
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Proof. Fix any d ≥ 1. Suppose, towards a contradiction, that there is a PV proof π∗
1 of the equation ed with

time complexity µ = o(βd). Since the time complexity of the proof ⟨πd, π∗⟩ is at most o(βd), there is a
number n0 ∈ N such that for every n ≥ n0,

µTC
⟨πd ,π∗⟩(n) ≤

(
βTCed ,πd

(n)
)d

. (7.2)

Recall that the algorithms Aµ(⟨πd, π∗⟩, |x|, |x|) in Theorem 5.10 and Aβ(πd, e, |x|) in Theorem 5.11 run
in time at most

exp(exp(|πd|+ |π∗|+ |ed|)) · polylog(|x|) = polylog(|x|) ≪ |x|,
where the first equality follows as |πd|+ |π∗|+ |ed| = O(1). Therefore, there is a number n1 ∈ N such that
for every n ≥ n1, both Aµ(⟨πd, π∗⟩, n, n) and Aβ(πd, e, n, n) halts in at most n steps during the simulation
by fµ,2 and fβ,2 in UBµ,d,2.

Fix n := max(n0, n1) + 1. We can see that

UBµ,d,2([[π
∗]], qd, 1n) = 1 (7.3)

is a true equation in the standard model. In more detail:

• As n ≥ n1, the simulation of Aµ(⟨πd, π∗⟩, n, n) by fµ,2(⟨πe, π⟩, 1n) halts in n steps. By Theorem 5.10,
it outputs µTC

⟨πd ,π∗⟩(n) (in the standard model).

• Similarly, fβ,2(πe, e, 1n) outputs βTCed ,πd
(n) (in the standard model).

• Since n ≥ n0, we know by Equation (7.2) that

fµ,2(⟨πe, π⟩, 1n) ≤
(

fβ,2(πe, e, 1n)
)d ,

which implies that UBµ,d,2([[π
∗]], qd, 1n) = 1 in the standard model by the definition of UBµ,d,2.

Recall that the equation ed is provable in PV. By the soundness of PV, we know that ed is true in the
standard model, and thus

UBµ,d,2([[π
∗]], qd, 1n) = 0

is true in the standard model. This leads to a contradiction with Equation (7.3).

7.2.2 Proof of the Upper Bound

Lemma 7.6. There is a PV function R(π, x) and a constant c ≥ 1 such that the following holds. For every d ≥ 1,
the conditional equation

eed≤Con : Conc·d(R(π, x), z) ⇒ ed(π, x),

where z := 1|x|+|π|, admits a PV proof of time complexity at most Od((|π|+ |x|)c).

Intuitively, this lemma shows that it is feasibly provable in PV that the bounded feasibility consistency
of PV implies the sentence ed. By combining Lemma 7.3, we can conclude the upper bound for ed:

Lemma 7.7 (upper bound for ed). There is a constant c ≥ 1 such that for every d ≥ 1, ed admits a PV proof of
time complexity at most Od(βcd), where β := βTCed ,πd

(π, x).

Proof. Let c′ ≥ 1 be the constant in Lemma 7.3. By Lemma 7.3, PV proves that Conc(π, z), and by applying
the logical rule (L4), PV also proves Conc(R(π, x), z). The proof of ed then follows by Lemma 7.6 and
applying Modus Ponens.

By the feasible deduction theorem (see Theorem 6.2), the time complexity of the proof is the summation
of the time complexity of the proof of Conc′ ·d(R(π, x), z) and the time complexity of the proof of eed in
Lemma 7.6. The latter term is a fixed polynomial in (|π|+ |x|)c′d. The first term involves two parts:
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• The time complexity contribution by Lemma 7.3, which is a fixed polynomial in (|R(π, x)|+ |z|)d.
As R(π, x) is a PV function, its output length is a fixed polynomial in |π|+ |x|. Therefore, the time
complexity contribution is a fixed polynomial in (|x|+ |π|)c′d.

• The time complexity contribution by the logical rule (L4), which is a fixed polynomial in the running
time of terms in Cond(R(π, x), z), and is therefore a fixed polynomial in (|x|+ |π|)c′d.

In summary, the time complexity of the proof is a fixed polynomial in (|π| + |x|)c′d. Recall that by
Proposition 7.4, β := βTCed ,πd

(π, x) is a fixed polynomial in |π| + |x|. We can choose c = Oc′(1) to be
sufficiently large such that the time complexity of the proof is at most Od(βcd).

Proof of Lemma 7.6. Let c ≥ 1 be a constant to be determined later, and R(π, x) be a PV function to be
specified. Recall that ed(π, x) formalizes the statement “π is not a valid feasible PV proof of ed”. The PV
proof of the equation eed≤Con is as follows.

• (Counter-examples). Towards a contradiction, we assume that Conc·d(R(π, x), z) = 1 and ed(π, x) is
not a true equation, which means that there are π∗ and x∗ such that ed(π

∗, x∗) is false, i.e.,

UBµ,d,2([[π
∗]], qd, x∗) = 1,

and Conc·d(R(π∗, x∗), z∗) = 1 is true for z∗ := 1|x
∗ |+|π∗ |.

• (Formalizing Proofs). Note that UBµ,d,2([[π
∗]], qd, x∗) = 1 is a true PV equation with no variable. There-

fore, by unwinding the computation of UBµ,d,2([[π
∗]], qd, x∗), we can obtain a PV proof of the equation

e∗1 : UBµ,d,2([[π
∗]], qd, x∗) = 1.

Denote this proof by π∗
1 .

• (Proof of Contradiction). As we know that UBµ,d,2([[π
∗]], qd, x∗) = 1, by its definition, π∗ is a proof

of the equation UBµ,d,2(π, qd, x) = 0 with time complexity at most βTCed ,πd
(|π|, |x|)d. By applying the

logical rule (L4) after π∗ to substitute π with π∗ and x with x∗, we can obtain a proof π∗
0 that

e∗0 : UBµ,d,2([[π
∗]], qd, x∗) = 0.

Note that from e∗0 and e∗1 , we can derive 0 = 1 and thus s0(z∗) = s1(z∗); denote these new proof lines
by π∗

p. By combining π∗
0 , π∗

1 , and π∗
p, we can obtain a PV proof π∗

in of the equation s0(z∗) = s1(z∗).

• (Formalizing Time Complexity Analysis). In addition, we analyze the time complexity of the proof
π∗

in = ⟨π∗
0 , π∗

1 , π∗
p⟩ concluding s0(z∗) = s1(z∗).

– π∗
0 has time complexity at most βTCed ,πd

(|π∗|, |x∗|)d, as mentioned above. Recall that βTCed ,πd
(|π∗|, |x∗|)

is a fixed polynomial in |π∗|+ |x∗|, and the proof (see Proposition 7.4) can be formalized in PV.
– π∗

1 is simply unwinding the computation of the function UBµ,d,2([[π
∗]], qd, x∗), the time com-

plexity of π∗
1 is a fixed polynomial in the time complexity of the algorithm, and such analysis

can be formalized within PV.
– It can be verified that the time complexity of π∗

p is a fixed polynomial in |z∗|.

Therefore, the time complexity of the proof π∗
in is a fixed polynomial in |z∗|d, and it can be verified

such analysis can be formalized in PV.

• (Bounded Feasibility Consistency). Recall that by the assumption in the first step, Cond(R(π∗, x∗), z∗) =
1. Note that the constant c ≥ 1 and the function R(π, x) are yet to be specified.

– We choose R such that given (π∗, x∗), it will output π∗
in. The computational complexity of the

function will be a fixed polynomial in its input.
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– As mentioned above, π∗
in is a valid PV proof that concludes s0(z∗) = s1(z∗), and the time

complexity of π∗
in is a fixed polynomial in |z∗|d. By choosing c to be sufficiently large, we can

prove (within PV) that UBµ,c·d(π
∗
in, z∗) = 1 and ValidPV(π∗

in, [[s0(z∗) = s1(z∗)]]) = 1.

This leads to a contradiction with Conc·d(R(π∗, x∗), z∗) = 1.

Moreover, we need to prove that the entire PV proof above has time complexity at most Od((|π|+ |x|)c)
for a fixed constant c that is independent of d.

As the full formalization in PV is tedious, we only focus on three main technical steps: The definition
of the function R(π, x), and formalization of the time complexity analysis of π∗

in within PV (i.e. the 4-th
bullet above), and the time complexity analysis of the entire proof (in meta-theory).

Definition of R(π, x). Recall that we need to define R(π, x) as a polynomial-time function such that
R(π∗, x∗) outputs π∗

in = ⟨π∗
0 , π∗

1 , π∗
p⟩. The function works as follows:

(1) (Proof Check). Given (π∗, x∗), the algorithm first verifies whether π∗ is a valid PV proof of ed (i.e. the
function ValidPV(π∗, ed) outputs 1). If not, the algorithm immediately halts and outputs ε. The time
complexity of this step is a fixed polynomial in |π∗|.

(2) (Counter-example Check). The algorithm then runs UBµ,d,2([[π
∗]], qd, x∗); it immediately halts and out-

puts ε if UBµ,d,2([[π
∗]], qd, x∗) = 0. The time complexity of this step is a fixed polynomial in |π∗|+ |x∗|.

(3) (Producing π∗
1 ). As we have verified that UBµ,d,2([[π

∗]], qd, x∗) = 1, the algorithm produces the PV proof
π∗

1 of the equation UBµ,d,2([[π
∗]], qd, x∗) = 1 with no variable. Note that the size of the proof π∗

1 is a
fixed polynomial in the time complexity of UBµ,d,2([[π

∗]], qd, x∗), which is in turn a fixed polynomial
in |π∗|+ |x∗|.

(4) (Producing π∗
0 ). Recall that π∗ is a valid proof of ed. We append two new proof lines to π∗ with the

logical rule (L4) to obtain a proof π∗
0 of ed[π/π∗, x/x∗]. The time complexity of this step is a fixed

polynomial in |π∗|+ |x∗|.

(5) (Producing π∗
p). Note that π∗

0 is a valid proof concluding UBµ,d,2([[π
∗]], qd, x∗) = 0, and π∗

1 is a valid
proof concluding UBµ,d,2([[π

∗]], qd, x∗) = 1. The algorithm produces proof lines (using logical rules) to
conclude that 0 = 1. Moreover, we can prove s0(x) = s1(x) in PV by induction on x, and the algorithm
produces these proof lines. Finally, the algorithm produces a proof lines concluding s0(x∗) = s1(x∗)
by applying the logical rule (L4) to substitute x with x∗. The time complexity of this step is a fixed
polynomial in |π∗|+ |x∗|.

The time complexity of the function R(π, x) is thus a fixed polynomial in its input length (i.e. the
exponent is independent of d), and the function can be formalized in PV straightforwardly.

Formalization of the time complexity analysis of π∗
in. Next we show that PV proves the conditional

equation
eµ,c : UBµ,d,2(π

∗, qd, x∗) ⇒ UBµ,c·d(π
∗
in, z∗) = 1,

where z∗ := 1|x
∗ |+|π∗| and π∗

in := R(π∗, x∗), and c is a sufficiently large constant to be determined later.
That is, for any π∗ and x∗ such that the equation ed[π/π∗, x/x∗] is false, π∗

in := R(π∗, x∗) is a valid PV
proof with time complexity at most c · |z∗|c.

Recall that UBµ,c(π∗
in, z∗) outputs 1 if fµ(π∗

in, z∗) ≤ c · |z∗|c and outputs 0 otherwise, where fµ(π∗, z∗) is
the PV function that simulates Aµ(π∗

in, |z∗|) in Theorem 5.10 for |z∗| steps, outputs Aµ(π∗
in, |z∗|) if it halts,

and outputs ε otherwise. By the definition of the algorithm R(·, ·), we can see that π∗
in = ⟨π∗

0 , π∗
1 , π∗

p⟩ is
a PV proof concluding s0(z∗) = s1(z∗) — an equation without any variable. We now analyze the time
complexity contribution of each part of πin.

60



• (π∗
p). This part of the proof is explicit: it consists of applications of the logical rules and one applica-

tion of the induction rule. It can be verified that the time complexity of this part is a fixed polynomial
in |z∗|. Moreover, assuming that fµ is a straightforward formalization of Aµ, it can be proved in PV
that the time complexity contribution of π∗

p in fµ(π∗
in, z∗) is a fixed polynomial in |z∗|.

• (π∗
1 ). This part is to prove the equation UBµ,d,2(π

∗, qd, x∗) = 1 by unwinding the computation of
the function UBµ,d,2(π

∗, qd, x∗). The number of lines in the PV proof π∗
1 is a fixed polynomial in

|π∗| + |x∗| (i.e. the exponent is independent of d) as the running time of the function is a fixed
polynomial in its input length. Moreover, the proof only uses definition axioms of initial functions
and introduced functions and the logical rules. Therefore the acquisition map of the proof is simple
and can be computed in fixed polynomial time. Assuming that fµ is a straightforward formalization,
it is provable in PV that the time complexity contribution of π∗

1 is a fixed polynomial in |π∗|+ |x∗|,
which is at most a fixed polynomial in |z∗|.

• (π∗
0 ). Note that π∗

0 consists of π∗ and two new proof lines using the logical rule (L4). The time
complexity contribution of π∗ is at most ( fβ,2(πd, ed, x))d by the premise of the conditional equation
eµ,c, which is a fixed polynomial in |z∗|d = (|π∗|+ |x∗|)d. The time complexity of two new proof
lines is negligible.

Therefore, assuming the premise of eµ,c, the time complexity contribution of each part is at most a fixed
polynomial in |z∗|d. Provided that fµ is a straightforward simulation of Aµ, we can prove in PV that the
total time complexity of π∗

in is a fixed polynomial in |z∗|d. We can then choose c ≥ 1 to be a sufficiently
large constant such that eµ,c is provable in PV.

Time complexity analysis in meta-theory. As the proof involves five steps and each step is complicated,
we will only sketch the analysis of its time complexity.

• The time complexity contribution of the first and last step is a fixed polynomial in |π|+ |x|. This
is because the proof closely follows the computation of the terms, and all terms involved have fixed
polynomial running time.

• The second and third steps are essentially the correctness of the function R(π, x). Note that the
correctness proofs of π∗

0 and π∗
1 closely follow from the computation of R(π, x), and therefore the

time complexity contribution of the proofs is at most a fixed polynomial in the running time of
R(π, x), which is in turn a fixed polynomial in |π| + |x|. The correctness proof of π∗

p involves an
induction on the lengths of z∗, and it can be verified that its time complexity contribution is at most
a fixed polynomial in |z∗|, which is, in turn, a fixed polynomial in |π|+ |x|.

• The fourth step is sketched above. In each of π∗
p, π∗

1 , and π∗
0 , the time complexity of the proof tightly

follows the computation of the functions involved, and it can be verified that the total running time
of the functions involved is a fixed polynomial in |π|+ |x|.

Therefore, the total time complexity of the proof is a fixed polynomial in |π|+ |x|. The lemma follows by
choosing the constant c to be sufficiently large.

Remark 7.2. It might be counterintuitive that the PV proof of eed≤Con is of time complexity at most a fixed
polynomial in its input length, as the statement formalizes properties of PV proofs with time complexity
(|x|+ |π|)d.

We note that the time complexity of the proof of an equation e is not necessarily higher than the
time complexity of the proofs formalized in e. For instance, the time complexity of a proof π concluding
e(x) is at least |x|, while computing the time complexity of the proof π only takes exp(exp(O(|π|))) ·
polylog(n) time (see Theorem 5.10), which could be much smaller than |x| if |π| is small. Similarly,
the time complexity of the equation Cond(π, x) is a fixed polynomial in its input length despite that it
formalizes consistency of proofs with feasibility up to |x|d (see Proposition 7.2).
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In Lemma 7.6, the proof of eed≤Con closely follows from the algorithms that generate π∗
in and compute

its time complexity. The time complexity of the proof is a fixed polynomial time as both algorithms run
in fixed polynomial time.

7.2.3 Putting Things Together

Theorem 7.1 (feasibility hierarchy theorem). There are constants c1, c2 ≥ 1 such that the following holds. For
any constant d ≥ 1, there is a PV equation ed : sd(π, x) = td(π, x) and its context πd such that:

1. The time complexity of the statement ed is at most β := βTCed ,πd
(|π|, |x|) = Od((|π|+ |x|)c1).

2. ed admits a PV proof of time complexity Od(βc2·d);
3. ed is unprovable in PV with time complexity o(βd).

Proof. The theorem follows by combining Proposition 7.4 and lemmas 7.5 and 7.7.

Similar to the common practice of computational complexity theory, we may define proof complexity
classes as sets of equations that can be proved with bounded time complexity. Let s(β) be a function. We
define the proof complexity class EqTIME[s(β)] as follows:

Definition 7.3. EqTIME[s(β)] is the set of pairs (e(x⃗), πe) such that the following holds.

• e(x⃗) is an equation in the context πe.
• There is a PV proof π such that π∗ := ⟨πe, π⟩ is a valid proof of the equation e.
• Let n1, . . . , nk be the input length of variables x⃗ = (x1, . . . , xk) in e(x⃗). There are constants c ≥ 1,

n0 ≥ 1 such that if n1, n2, . . . , nk ≥ n0,

µTC
π∗ (n1, . . . , nk) ≤ c · s

(
βTCe,πe(n1, . . . , nk)

)
.

We may drop the context πe and say e(x⃗) ∈ EqTIME[βd] if there is no ambiguity.

We can then derive the following proof complexity class separation from Theorem 7.1:

Corollary 7.8. There exists a constant c ≥ 1 such that for every d ≥ 1, EqTIME[βd] ⊊ EqTIME[βcd].

7.3 Bounded Feasibility Consistency: Another Explicit Witness

As a corollary of Lemmas 7.3, 7.5 and 7.6, we can also prove that the bounded feasibility consistency
statement Conc(π, x) is also an explicit witness of the feasibility hierarchy theorem when d is sufficiently
large. This can be viewed as a counterpart of Gödel’s second incompleteness theorem. Formally:

Corollary 7.9. There are constants c0, c1, c2, d0 ≥ 1 such that for any constant d ≥ d0:

1. The time complexity of the statement Conc0·d(π, x) is at most β := βTCConc0 ·d
(|π|, |x|) = Od((|π|+ |x|)c1).

2. Conc0·d(π, x) admits a PV proof of time complexity Od(βc2·d).
3. Conc0·d(π, x) is unprovable in PV with time complexity Od(βd).

In particular,
Conc0·d ∈ EqTIME[βc2·d] \ EqTIME[βd].

Proof. Let c0, c1, c2, d0 ≥ 1 to be determined later. Fix any d ≥ d0. The first bullet follows from Propo-
sition 7.2 when c1 = O(1) is sufficiently large. The second bullet follows from Lemma 7.3 by setting
c2 = Oc0(1) to be sufficiently large.

Now we prove the third bullet. Suppose, towards a contradiction, that Conc0·d(π, x) is provable in PV

with time complexity O(βd). Recall that by Lemma 7.6, there is a constant c ≥ 1 (independent of d) such
that

eec1 ·d≤Con : Conc·c1·d(R(π, x), z) ⇒ ec1·d(π, x), (7.4)
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where z := 1|x|+|π|, admits a PV proof of time complexity at most Od((|π|+ |x|)c). Moreover, the output
length of R(π, z) must be Od((|π|+ |x|)c), and thus we can prove in PV the equation

Conc0·d(R(π, x), z := 1|x|+|π|) (7.5)

with time complexity at most O((|π| + |x|)cd). We choose c0 = c · c1 ≥ 1. By the feasibility deduction
theorem (see Theorem 6.2), we can prove ec1·d from Equations (7.4) and (7.5) with time complexity at most

Od((|π|+ |x|)c) + O((|π|+ |x|)cd) = o(βc1·d),

by setting c1 = Oc(1) to be sufficiently large. This leads to a contradiction with Theorem 7.1.

8 Uniformity vs Nonuniformity in Proof Complexity

The feasible hierarchy theorem states that more theorems can be proved if we allow arithmetic proofs to
be less efficient in time complexity. Given the tight quantitative connection between the time complexity
of arithmetic proofs and the size of propositional proofs, it is natural to consider whether propositional
proofs (i.e. non-uniform proofs) could gain surprising power compared to arithmetic proofs (i.e. uniform
proofs) if they have similar levels of feasibility.

8.1 Conjectures of Uniformity vs Nonuniformity Lower Bound

To compare the strength of arithmetic theories and propositional proof systems, we consider the provabil-
ity of a sequence of uniformly generated propositional formulas. Formally:

Definition 8.1. A family φ = {φn}n∈N of propositional formulas with n variables is said to be uniform, if
there is a PV function Φ (called its generator) such that for any n ∈ N, Φ(1n) outputs the encoding of φn.

For simplicity, we always assume that the n-variable propositional formula φn is described by a binary
string of length at least n, and we use |φn| to denote the length of the description of φn.

A concrete example of uniform families of propositional formulas is the formulas [e]nCook obtained from
the propositional translation of a PV equation e(x) with one variable. To be more specific, let ed(π, x) be the
equation in Theorem 7.1, and consider the univariant version e′d(τ) := ed(π/Left(τ), x/Right(τ)), where
Left(τ) and Right(τ) outputs the left and right component of a pair. The propositional translation of e′d(τ)
is a uniform family of formulas φn := [e′d(τ)]

n
Cook, where φn is a tautology if and only if ∀τ ∈ {0, 1}n e′d(τ)

is true.

Definition 8.2 (EF proofs). Let s(m) be a function. A family φ = {φn}n∈N of propositional formulas is
said to admit EF proofs of size s if there is an n0 ≥ 1 such that for every n ≥ n1, there is an EF proof of
φn of size s(|φn|). The set of all families of propositional formulas that admits proofs of size O(s(m)) is
denoted by EF-SIZE[s(m)].

Definition 8.3 (PV proofs). A uniform family φ = {φn}n∈N of propositional formulas with generator Φ
is said to be provable in PV if PV1 proves

∀n ∈ Log ∀x ∈ {0, 1}n Val(Φ, x) = 1, (8.1)

where Val(Φ, x) is the PV function formalizing that φ|x|(x) = 1, φ|x| := Φ(1|x|). That is, PV proves that φn
is a tautology for any n. The set of all families of uniform propositional formulas that admit PV proofs is
denoted by FPV.

Conjecture 8.1. FPV ⊈ EF-SIZE[mk] for any k ≥ 1.

Conjecture 8.1 can be viewed as the proof complexity counterpart of the circuit lower bound conjecture
P ⊈ SIZE[nk] for any k. We also note that the conjecture is stronger than Cook’s conjecture that EF is not
p-bounded (see, e.g., [Coo75]): the latter conjecture only requires the existence of a family φ = {φn}n∈N of
tautologies such that for infinitely many n, φn does not have |φn|k size EF proof, while the former conjecture
further requires that φ is a PV-provable family of tautologies.
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8.2 Lower Bounds against Uniform Propositional Proofs

Next, we introduce a notion of “uniform propositional proofs” as a proof complexity counterpart of
uniform circuits, e.g., P-uniform SIZE[nk]. Formally:

Definition 8.4 (PV-uniform EF proofs). Let s(m) be a PV function. A uniform family φ = {φn}n∈N of
propositional formulas with generator Φ is said to admit PV-uniform EF proofs of size s such that PV1
proves

∀n ∈ Log, n ≥ n0 ∃π (EFSize(π) ≤ c · s(|Φ(1n)|) ∧ IsEFProof(Φ(1n), π) = 1) (8.2)

for some constants c, n0 ≥ 1. The set of all uniform families of propositional formulas that admits PV-
uniform proofs of size s(m) is denoted by PV-uniform EF-SIZE[s(m)].

Equivalently, by the witnessing theorem of PV1, we can define that Φ admit PV-uniform EF proofs of
size s if there is a PV function GenProof such that PV proves

∀n ∈ Log, n ≥ n0 (EFSize(GenProof(1n)) ≤ s(|Φ(1n)|) ∧ IsEFProof(Φ(1n),GenProof(1n)) = 1) (8.3)

for some constant n0 ≥ 1.
One reason to introduce the notion of uniform propositional proofs is that the following theorem,

which is implicit in [Coo75], provides an exact characterization of FPV by formulas provable with uniform
propositional proofs.

Theorem 8.1 (implicit in [Coo75]). FPV = PV-uniform EF-SIZE[mO(1)].

Proof Sketch. (PV-uniform EF-SIZE[mO(1)] ⊆ FPV). Recall that the soundness of EF is provable in PV (see
Theorem 3.2). If PV proves that φn admits an EF proof, PV also proves with the soundness of EF that φn
is a tautology.

(FPV ⊆ PV-uniform EF-SIZE[mO(1)]). Let φ = {φn}n∈N be a uniform family of formulas that are
PV-provably tautologies. Let P be the propositional proof system that accepts only φn for n ≥ 1, then
PV proves that P is a sound propositional proof system. By the main theorem of [Coo75] (see also
Theorem 3.3), PV proves that EF p-simulate the propositional proof system P. In particular, this means
that φn (which admits a linear-size proof in P) also admits a polynomial-size proof in EF. This implies
that φ ∈ PV-uniform EF-SIZE[mO(1)].

We are now ready to introduce the following conjecture that FPV, or equivalently, PV-uniform poly-
nomial size EF proofs, is strictly stronger than PV-uniform EF proofs of fixed polynomial size.

Conjecture 8.2. FPV ⊈ PV-uniform EF-SIZE[mk] for any k ≥ 1.

This conjecture is not directly related to the main results of the paper. Nevertheless, we argue that the
feasibility hierarchy theorem (see Theorem 7.1) provides strong evidence for Conjecture 8.2. Suppose the
conjecture is false for some constant k ≥ 1. Fix any constant d ≫ k, and let e(x) be a PV-provable equation
such that e(x) /∈ EqTIME[βd]. Let φn = [e]nCook be the propositional translation of φn. We know that φn

is unprovable in PV with time complexity O(βd), but it is provable in PV that φn admits EF proofs of size
O(βk) ≪ βd. This indicates that for any statement with high proof complexity in terms of time complexity,
not only does it have short EF proofs, but the proofs are also uniformly constructible and provably correct.

Following the intuition, we further conjecture that the propositional translation of the univariant ver-
sion ed(τ) := ed(Left(τ),Right(τ)) of the statement in Theorem 7.1 or the bounded feasibility hierarchy
statements (see Corollary 7.9) is an explicit witness of the separation in Conjecture 8.2.
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8.3 Conditional Unprovability of Proof Complexity Upper Bounds

Conjecture 8.2 is an interesting conjecture in its own right. In this section, we further show that it implies
strong unprovability results in PV, namely PV cannot prove NP = coNP.

First, we define what we mean by proving NP = coNP in PV1. Recall that UBk,m0
M is a PV function

formalizing that M is a sound, complete, and p-bounded propositional proof system. More formally:

Definition 3.1. Let M be a PV function and k, m0 ≥ 1 be integers. We define UBk,n0
M be conjunction of two

sentences Soundk,m0
M and Completek,m0

M , where

Soundk,m0
M := ∀n, m ∈ Log, m ≥ m0, ∀ formula φ ∈ {0, 1}m with n variables such that:

∀ assignment x ∈ {0, 1}n : φ(x) = 1 or ∀ witness π of size at most mk : M(φ, π) = 0;

Completek,m0
M := ∀n, m ∈ Log, m ≥ m0, ∀ formula φ ∈ {0, 1}m with n variables such that:

∃ assignment x ∈ {0, 1}n : φ(x) = 0 or ∃ witness π of size at most mk : M(φ, π) = 1.

Definition 8.5. We say PV1 ⊢ “NP = coNP” if there is a PV function M and integers k, m0 ≥ 1 such that
PV1 ⊢ UBk,m0

M ; and we say PV1 ⊬ “NP = coNP” if PV1 ⊢ “NP = coNP” is false.

We note that the constants k, m0 are quantified outside of the theory. This makes the unprovability
results weaker, as the provability of NP = coNP when k, m0 quantified within the theory is implied, but
may not imply the provability when they are quantified outside of the theory.

Theorem 8.2. PV1 ⊬ “NP = coNP” under Conjecture 8.2.

The proof of Theorem 8.2 consists of two steps. First, we show that PV1 ⊢ “NP = coNP”, i.e., there is
a polynomially bounded propositional proof system, if and only if PV proves that EF is a polynomially
bounded proof system. We then show that the latter statement is false under Conjecture 8.2.

Let VEF(φ, π) be a straightforward PV function that verifies whether π is an EF proof of φ: it outputs
1 (resp. 0) if π is (resp. is not) a valid EF proof of the formula φ.

Lemma 8.3. PV1 ⊢ “NP = coNP” if and only if there are integers k, m0 ≥ 1 such that PV1 ⊢ UBk,m0
VEF

.

Proof. The (if ) direction is trivial, so it suffices to prove the (only if ) direction.
Suppose that PV1 ⊢ “NP = coNP”, we know by the definition that there is a PV function M and

integers k, m0 ≥ 1 such that PV1 ⊢ UBk,m0
M = Soundk,m0

M ∧ Completek,m0
M , i.e., PV1 proves that M is a sound

and complete proof system for Taut with proof length mk. Our goal is to show that PV1 proves UBkEF,mEF
VEF

for some kEF, mEF ≥ 1, i.e., EF is a sound and p-bounded proof system for Taut; note that the soundness
of EF is known to be provable in PV1 (see Theorem 3.2), it suffices to prove that EF is p-bounded.

Let kEF, mEF be parameters to be determined later. We argue in PV1 that CompletekEF,mEF
VEF

. Let n, m ∈
Log, m ≥ mEF, φ ∈ {0, 1}m be the encoding of a variable with n variables, our goal is to either find a
falsifying assignment of φ or find an EF proof of φ of size mkEF . By Completek0,m0

M , i.e. the completeness
of M, we can either obtain a falsifying assignment of φ or find an M-proof of φ of size mk. In the former
case, we can directly conclude the proof using the falsifying assignment.

Now we consider the latter case. Let πM be the M-proof of φ of size mk. As PV1 ⊢ Soundk,m0
M , we

know by Theorem 3.3 that EF p-simulates M. As πM is an M-proof of φ, we further know that there are
constants k′, m′

0 such that if m ≥ m′
0, there is an EF proof πEF of φ of size |πM|k ≤ mk·k′ . This concludes

the proof if we set mEF := max{m0, m′
0} and kEF = k · k′.

Lemma 8.4. Under Conjecture 8.2, PV1 ⊬ Completek,m0
VEF

for any constants k, m0 ≥ 1.
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Proof. Fix arbitrary constants k, m0 ≥ 1. Suppose, towards a contradiction, that PV1 ⊢ Completek,m0
VEF

and
Conjecture 8.2 is true, i.e., FPV ⊈ PV-uniform EF-SIZE[mk] for some k ≥ 1. Then there is a uniform family
of formulas φ = {φn}n∈N generated by a PV-function Φ such that φ ∈ FPV \ PV-uniform EF-SIZE[mk].
Note that φ ∈ FPV implies that it is provable in PV1 that for any n ∈ Log, φn is a tautology. We will show
that φ ∈ PV-uniform EF-SIZE[mk], which leads to a contradiction.

We argue in PV. We will show that for any n ≥ m0, φn admits an EF proof of size at most |φn|k. Fix
any n ∈ Log such that n ≥ m0 and let m := |φn| ≥ m0. Since PV ⊢ Completek,m0

VEF
, we know that either there

is a falsifying assignment of φn, or there is an EF proof πEF of φn of size at most mk. The former case
leads to a contradiction as φn is a tautology and is provable in PV1. Subsequently, we can obtain an EF
proof πEF of φn of size mk, which completes the proof.
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[Kra11b] Jan Krajı́ček. On the proof complexity of the Nisan-Wigderson generator based on a hard NP
∩ coNP function. Journal of Mathematical Logic, 11(1), 2011.
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A Cook’s Theory PV

A.1 Formal Definition of PV

We first revisit the formalization of PV in [Coo75]. The functions and proofs of PV are defined by simulta-
neous induction, where each function or proof is associated with a number called its order. We first define
the base case that introduces functions of order 0 and proofs of order 0:

• ε be a constant symbol.
• s0(x), s1(x), ◦(x, y),TR(x), ITR(x, y) are function symbols of order 0.
• A term of order i is defined by compositions of order-i functions, the constant symbol, and variables,

e.g., ITR(s0(s1(x)), s1(y)) is a term of order 0, where x, y are variables.
• An equation of order i is of form s = t, where s, t are terms of order i.

The definition axioms of the function symbols are proofs of order 0:

x ◦ ε = x, x ◦ si(y) = si(x ◦ y) i ∈ {0, 1} (A.1)
TR(ε) = ε, TR(si(x)) = x i ∈ {0, 1} (A.2)
ITR(x, ε) = x, ITR(x, si(y)) = TR(ITR(x, y)) i ∈ {0, 1} (A.3)

Function introduction rules. For every i ≥ 1, a function of order i can be introduced according to one
of the following two rules.

• (Composition). If t is an order-(i − 1) term with variables x⃗, f (0)t can be introduced as an order-i
function with the definition axiom f (0)t (x⃗) = t.
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• (Recursion). If g(x⃗), h0(x⃗, y, z), h1(x⃗, y, z), k0(x⃗, y), k1(x⃗, y) are order-(i − 1) functions, and there are
order-(i − 1) proofs πi of the equation: 8

ITR(hi(x⃗, y, z), z ◦ ki(x⃗, y)) = ε (A.4)

for i ∈ {0, 1}, then f (1)Π (where Π := (g, h0, h1, k0, k1, π0, π1)) may be introduced as an order-i function
with the definition axioms:

f (1)Π (x⃗, 0) = g(x⃗) (A.5)

f (1)Π (x⃗, si(y)) = hi(x⃗, y, f (1)Π (x⃗, y)) i ∈ {0, 1} (A.6)

Moreover, any function of order i − 1 is also an order-i function.

Deduction rules. For every i ≥ 1, an order-i proof of an order-i equation s = t is a sequence of order-i
equations (e1, e2, . . . , eℓ) for some ℓ ∈ N, where eℓ = “s = t” and the equations are introduced one by one
following the rules below:

• (Logical Rules). The logical rules for equations follow:

– (L1): If s = t has been introduced, one may introduce t = s.
– (L2): If s = t, t = u have been introduced, one may introduce s = u.
– (L3): If s1 = t1, . . . , sn = tn has been introduced and f (x1, . . . , xn) is an order-i function symbol

with n variables, one may introduce the equation f (s1, . . . , sn) = f (t1, . . . , tn).
– (L4): If s = t has been introduced, v is an order-i term, and x is an variable, one may introduce

s[x/v] = t[x/v], where s[x/v] denote the term obtained from s by substituting all occurrences
of x by v.

• (Definition Axioms). A definition axiom of an order-i function may be introduced without premise.

• (Structural Induction). If g(x⃗), h0(x⃗, y, z), h1(x⃗, y, z) are order i functions, and f1(x⃗, y), f2(x⃗, y) are two
functions satisfying that equations

f1(x⃗, ε) = g(x⃗), f1(x⃗, si(y)) = h(x⃗, y, f1(x⃗, y)), i ∈ {0, 1} (A.7)
f2(x⃗, ε) = g(x⃗), f2(x⃗, si(y)) = h(x⃗, y, f2(x⃗, y)), i ∈ {0, 1} (A.8)

have all been introduced, then one may introduce f1(x⃗, y) = f2(x⃗, y).

This completes the formal definition of PV.

A.2 Representation of PV Equations and Proofs

The standard formalization of the theory PV is sometimes inconvenient as the name of the introduced
functions consists of the information about how it is introduced, and therefore a PV proof may contain
a function symbol whose name consists of another PV proof. In this paper, we prefer the following
formalization of PV proofs and equations.

Definition A.1. A PV proof π is a sequence of proof lines e1, . . . , em, m ≥ 0, where each line is either an
equation or a proof line for function introduction. The validity of π is defined inductively as follows:

• The empty proof π is valid.
• Suppose that π : e1, . . . , em is valid, and e is an equation such that e can be derived by PV rules or

axioms, and all premises have been available in π, then e1, . . . , em, e is a valid PV proof.

8Informally, eq. (A.4) means that: |hi(x⃗, y, z)| ≤ |z ◦ ki(x⃗, y)|
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• Suppose that π : e1, . . . , em is valid, f is a fresh function symbol, and t be a term such that each
function symbol in t is either an initial function or has been introduced in π,

e1, . . . , em, (Composition, f , t)

is a valid PV proof, and f is introduced in the proof. The function symbol f denotes the PV function
introduced by the composition rule using the term t.

• Suppose that π : e1, . . . , em is valid, f is a fresh function symbol, and g, h0, h1, k0, k1 are either initial
functions or introduced function symbols in π. In addition, the equations

e′i : ITR(hi(x⃗, y, z), z ◦ ki(x⃗, y)) = ε

for i ∈ {0, 1} have been available in π. Then

e1, . . . , em, (Recursion, f , g, h0, h1, k0, k1)

is a valid PV proof, and f is introduced in the proof. The function symbol f denotes the PV function
introduced by limited recursion from (g, h0, h1, k0, k1, e′0, e′1).

In this definitions, the names of the function symbols no longer consist of the information about how
it is introduced. Such information is now recorded in the proof lines for function introduction. Similarly,
we define equations in the context of a proof as follows:

Definition A.2. An equation e is said to be a valid PV equation in the context of a proof πe if every
function symbol f in e has been introduced in πe.

A.3 Bounding Values

Let t(x⃗) be a term in PV with k variables x⃗ = (x1, . . . , xk). The bounding value of the term t is a function
ℓt(n1, . . . , nk) provides an upper bound of the output length of t when |x1| ≤ n1, . . . , |xk| ≤ nk. The
bounding value of a term is recursively defined on the definition of t:

• (Initial Functions). ℓε = 0, ℓx(n) = n, ℓsσ (n) = n + 1 for σ ∈ {0, 1}, ℓTR(n) = n − 1, ℓITR(n, m) = n,
ℓ◦(n, m) = n + m.

• (Functions via Composition). Let t be a function symbol introduced by composition using a term t′,
we define ℓt (⃗n) = ℓt′ (⃗n).

• (Functions via Limited Recursion). Let t(x⃗) be a function symbol introduced by limited recursion from
(g, h0, h1, k0, k1), where xk is the induction variable. We define

ℓt (⃗n) := ℓg(n1, . . . , nk−1) + nk · (ℓk0 (⃗n) + ℓk1 (⃗n)).

• (Composition). Suppose that t is the composition of a function symbol f (y1, . . . , yj) and terms
s1(x⃗), . . . , sj(x⃗), i.e., t(x⃗) ≡ f (s1(x⃗), . . . , sj(x⃗)). We define

ℓt (⃗n) := ℓ f (ℓs1 (⃗n), . . . , ℓsj (⃗n)).
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