
Strong ETH Holds for Bounded-Depth Resolution over Parities

Klim Efremenko∗1 and Dmitry Itsykson†1,2

1Ben-Gurion University of the Negev, Israel
2On leave from Steklov Institute of Mathematics at St. Petersburg

November 20, 2025

Abstract

Strong lower bounds of the form 2(1−ϵ)n, where n is the number of variables and ϵ > 0 is arbitrarily
small (i.e., bounds consistent with the Strong ETH), are exceptionally rare in proof complexity. The
seminal work of Beck and Impagliazzo (STOC 2013) achieved such a bound for regular resolution, and
the strongest extension known prior to our work was proved for O(ϵ)-regular resolution by Bonacina and
Talebanfard (Algorithmica, 2017).

We establish similar lower bounds for a significantly stronger proof system — a fragment of resolution
over parities (Res(⊕)). This fragment captures Depth-n Res(⊕), and thus our result implies SETH-type
lower bounds for both tree-like and regular Res(⊕). The core of our approach is a lossless lifting achieved
by assigning distinct, randomly chosen gadgets to each variable.

Our result also yields a SETH-type lower bound for Depth-n resolution — a result that was previously
unknown. We additionally provide a direct and simplified proof for this special case, which may be of
independent interest.

1 Introduction

The Strong Exponential Time Hypothesis (SETH) [19] states that for every ϵ > 0, there exists a sufficiently
large k such that k-SAT cannot be solved in time 2n(1−ϵ). This hypothesis has become a starting point of
fine-grained complexity theory, as assuming it allows us to show that the fastest known algorithms for many
fundamental problems in P are essentially optimal [1, 4, 11, 12, 24]. From the other side, Williams [32, 33]
demonstrated that any improvement in the exponent for certain satisfiability problems would lead to new
circuit lower bounds. Building on this line of work, Jahanjou, Miles, and Viola [23] further established that
refuting SETH itself would also imply circuit lower bounds.

Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, and Schneider [14] introduced the Nondeterministic
Strong Exponential Time Hypothesis (NSETH), which asserts that for every ϵ > 0, there exists a sufficiently
large k such that the set of tautologies in k-DNF cannot be decided in nondeterministic time 2n(1−ϵ) for
unbounded k. Equivalently, NSETH states that the set of Boolean tautologies does not admit propositional
proof systems capable of producing proofs significantly shorter than those obtained by brute-force enumer-
ation of all possible variable assignments. The authors further showed that assuming NSETH leads to new
fine-grained lower bounds, whereas refuting it would imply circuit lower bounds. In contrast, Williams [31]
demonstrated that the analogue of NSETH for proof systems whose proofs can be verified in randomized
time (i.e., MA-proof systems) does not hold — in other words, MASETH is false.

One might hope that SETH-type lower bounds could be established unconditionally for certain restricted
classes of algorithms and proof systems. However, even for such specific classes, only a few SETH-type

∗e-mail: klimefrem@gmail.com. Supported by European Research Council Grant No. 949707.
†e-mail: dmitrits@gmail.com. Supported by European Research Council Grant No. 949707.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 188 (2025)

lower bounds are currently known. Pudlák and Impagliazzo [27] established an SETH-type lower bound
for tree-like resolution, and consequently for DPLL algorithms. Scheder, Tang, Chen, and Talebanfard [29]
proved SETH-type lower bounds for PPSZ algorithms [26, 25]. A major breakthrough was achieved by
Beck and Impagliazzo [5], who constructed formulas requiring resolution width at least (1 − ϵ) times the
number of variables and used this result to derive an SETH-type lower bound for regular resolution, where
all resolved variables along any path must be distinct. Subsequently, Bonacina and Talebanfard [10] slightly
strengthened this result by proving a SETH-type lower bound for δ-regular resolution — a relaxed version
of regular resolution in which, along any path from an initial clause to a contradiction, at most a fraction
δ of variables may be resolved more than once. It is worth noting that a lower bound of 2(1−ϵ)n can be
established for δ-regular refutations with δ = O(ϵ).

Our goal is to substantially broaden the class of proof systems for which SETH-type lower bounds can
be established unconditionally. Specifically, we aim to extend such results from subsystems of resolution to
subsystems of resolution over parities (Res(⊕)) [21, 22] — an extension of resolution that allows reasoning
with linear equations over F2.

1.1 Resolution over parities

A linear clause is defined as a disjunction of linear equations over F2 (equivalently, as the negation of a
system of F2-linear equations). A Res(⊕) refutation of an unsatisfiable CNF formula φ is a sequence of
linear clauses C1, C2, . . . , Cs satisfying the following conditions: 1) Cs is the empty clause (i.e., identically
false); 2) for every i, the linear clause Ci is either a clause of φ, or derived from earlier linear clauses Cj , Ck

with j, k < i by the resolution rule, or derived from a linear clause Cj with j < i by the weakening rule.
The resolution rule allows deriving a linear clause C ∨D from C ∨ (f = 0) and D ∨ (f = 1), where C and
D are linear clauses and f is a linear form. The weakening rule permits deriving D from C whenever C
semantically implies D. The classical resolution system is recovered as a special case of Res(⊕) when all
linear clauses are restricted to be disjunctions of literals.

For unrestricted Res(⊕), no superpolynomial lower bounds on proof size are currently known. The system
Res(⊕) forms a particularly simple and natural subsystem of AC0[2]-Frege (the constant-depth Frege system
with parity gates). Establishing superpolynomial lower bounds for Res(⊕) would therefore represent a major
breakthrough, marking significant progress toward the long-standing goal of proving superpolynomial lower
bounds for AC0[2]-Frege and, ultimately, for stronger propositional proof systems.

Superpolynomial lower bounds on proof size are currently known only for certain subsystems of Res(⊕),
such as tree-like, regular, and bounded-depth refutations. In this paper, we do not attempt to broaden the
class of subsystems for which superpolynomial lower bounds are known. Instead, we focus on strengthening
these bounds to the level predicted by SETH. We believe that achieving this goal will also provide new
techniques that may prove useful for establishing size lower bounds for unrestricted Res(⊕).

The most extensively studied fragment of Res(⊕) is that of tree-like refutations, in which the proof has a
tree structure. Tree-like Res(⊕) refutations of a CNF formula φ are equivalent to parity decision trees that,
given an assignment, search for a clause of φ falsified by that assignment [21].

Parity decision trees have also been extensively studied outside of proof complexity as a model for
representing Boolean functions. Exponential lower bounds of the form 2n(1−ϵ), where n is the number of
variables, are known for parity decision trees computing certain Boolean functions. In particular, consider an
affine disperser [6] — a Boolean function f : {0, 1}n → {0, 1} that is nonconstant on every affine subspace
of dimension at least ϵn. It is then straightforward to observe that no branch of a parity decision tree
computing f can terminate in fewer than (1− ϵ)n steps.

This approach, however, does not carry over directly to search problems, because a clause of width k can
be falsified by an affine subspace of dimension k, and therefore, affine dispersers have no natural analog for
search problems.

Current lower bounds for tree-like Res(⊕) remain far from reaching SETH. The strongest known lower
bound follows from the lifting theorem of Chattopadhyay, Mande, Sanyal, and Sherif [15], which states
that if a formula φ has resolution depth d and is lifted via a k-stiffling gadget g, then any tree-like Res(⊕)
refutation of the lifted formula φ ◦ g has size at least 2dk. Unfortunately, k-stiffling gadgets must have size

2

at least 2k + 1, which implies that the resulting lower bound in terms of the total number of variables N
cannot exceed 2N/2. Consequently, obtaining a SETH-type lower bound for tree-like Res(⊕) via lifting would
require a lossless lifting method, in which the complexity of the lifted formula scales as 2(1−ϵ)N , where N is
the number of variables in the lifted formula.

Efremenko, Garlik, and Itsykson [16] made the first progress beyond tree-like Res(⊕) by proving an
exponential lower bound for regular Res(⊕) under a natural notion of regularity. Building on this, Alekseev
and Itsykson [2] established an exponential lower bound for a stronger model, for Res(⊕) refutations of
depth at most n log log n, where n denotes the number of variables, using a technique based on random
walks with restarts. Subsequent works [17, 13, 7, 20] extended this approach. In particular, Bhattacharya
and Chattopadhyay [7] achieved superpolynomial lower bounds for depths up to o(n2/ log n), although this
method appears unlikely to extend beyond this threshold.

Our goal is to establish a SETH-type lower bound for Res(⊕) refutations of depth at most n. Why
focus on this particular subsystem? It is a relatively powerful proof system: it simulates all forms of regular
Res(⊕), and hence also tree-like Res(⊕). While lower bounds are known for larger depths, they come at the
cost of significantly weaker size lower bounds, which are insufficient for deriving SETH-type bounds.

1.2 Our contribution

We say that a Res(⊕) refutation contains an (a, b)-path if its graph contains a node v such that there are
paths from v to the empty clause and from an initial clause to v, where the linear forms resolved along the
path from v to the empty clause span a space of dimension at least a, and those resolved along the path
from the initial clause to v span a space of dimension at least b.

Theorem 1.1 (Corollary 8.4). For any ϵ > 0 for all large enough n there exists m = O(log n · poly(1/ϵ))
and N = O(n log n/ϵ) and an unsatisfiable m-CNF formula φ over N variables and of size npoly(1/ϵ) such
that

• any Res(⊕) refutation of φ has width at least N(1− ϵ);

• any Res(⊕) refutation of φ that is free of ((1− ϵ)N, 2ϵN)-paths has size at least 2(1−
7
2 ϵ)N .

This theorem implies that SETH holds for Res(⊕) proofs whose depth is bounded by the number of
variables, and consequently for regular Res(⊕) (under any reasonable notion of regularity) as well as for
tree-like Res(⊕).

The lower bound proof relies on the random walk approach, similar to that used in [16] and subsequent
works. We employ a modified version of the random walk with restarts technique by Alekseev and Itsykson
[2]: after the first execution of a random walk, we either obtain a sufficiently strong size lower bound or can
proceed slightly deeper into the proof graph. A crucial ingredient of our argument is the use of lossless lifting,
which we achieve by assigning distinct, randomly chosen gadgets to different variables. Random gadgets were
previously used by Bonacina and Talebanfard [9] to obtain strong lower bounds on resolution width, but to
the best of our knowledge, this is the first setting where employing different gadgets for different variables
is essential.

Theorem 1.1 also yields new results for resolution. We further simplify the approach and present a direct,
self-contained proof of a slightly stronger statement for resolution. The notion of an (a, b)-path is defined
consistently as follows: there exist a node v such that there is a path from v to the empty clause and a path
from an initial clause to v, the set of variables resolved along the path from v to the empty clause has size
at least a, and the set of variables resolved along the path from the initial clause to v has size at least b.

Theorem 1.2 (Corollary 2.10). For all large enough ℓ for infinitely many N there exists an unsatisfiable
formula φ in ℓ-CNF that depends on N variables such that every its resolution refutation that is free of

((1− δ)N, 2δN)-paths has size at least 2(1−Θ̃(ℓ−1/4))N , where δ = Θ̃(ℓ−1/4).

This theorem implies that SETH holds for resolution proofs whose depth is bounded by the number
of variables, as well as for δ/2-regular resolution refutations. Hence, Theorem 1.2 can be regarded as an

3

extension of the result of Bonacina and Talebanfard [10]. Moreover, Theorem 1.2 relies on the same family
of formulas as used in [10].

We present the proof of Theorem 1.2 separately in Section 2, in a self-contained form, as it may be of
independent interest.

1.3 Proof outline and overview of techniques

We first present the outline of the proof of Theorem 1.1. The proof of Theorem 1.2 proceeds analogously,
with Res(⊕) replaced by resolution.

1. We start with the family of CNF formulas ψn over n variables that require resolution width w ≥ (1−ϵ)n
[5, 10].

To handle them, we use the game-theoretic characterization of resolution width due to Atserias and
Dalmau [3]. In this game, two players Prover and Adversary play on an unsatisfiable formula φ. They
maintain a partial assignment ρ, which is initially empty. In each move, Prover may either erase some
values from ρ or select an unassigned variable and ask Adversary to assign it a value. The game ends
as soon as ρ falsifies a clause of φ. It is known [3] that φ has no resolution refutation of width smaller
than w if and only if Adversary has a winning strategy in the following sense: there exists a nonempty
set of partial assignments (called winning positions) such that 1) none of them falsify φ, 2) each has size
at most w, 3) the set of winning positions is closed under erasure, and 4) from any winning position of
size less than w, Adversary can always respond in a way that ensures the next position is also winning.

2. We apply a lifting of size ℓ to the formula ψn. By lifting we mean the following transformation: each
variable of ψn is replaced by a gadget — that is, a Boolean function g : {0, 1}ℓ → {0, 1} defined on
ℓ fresh variables — and the resulting formula is then converted into CNF form. Typically, the same
gadget is used for all variables, but in our construction we allow different gadgets for different variables.
We denote the lifted formula by Lift(ψn); it depends on N := nℓ variables.

3. A similar game characterization of width is known for Res(⊕) [18, 2], in which winning positions
are systems of F2-linear equations rather than partial assignments, and the Prover queries the values
of linear forms. We show that for the formula Lift(ψn), Adversary has a winning strategy in the
Res(⊕)-game with width parameter W ≥ (1− ϵ)ℓw ≥ (1− 2ϵ)N .

4. Moreover, we show that Adversary’s winning strategy allows a remarkable degree of flexibility, which
we refer to as the freedom property : for most linear forms f , a winning position in the game can be
extended to another winning position under both assignments f = 0 and f = 1. Formally, we prove
that along any sequence of moves extending winning positions by one linear form at a time, only an
ϵ-fraction of these extensions are forced—that is, in at most an ϵ fraction of cases Adversary cannot
choose the opposite value of the linear form without leaving the set of winning positions.

5. We consider the random full assignment σ of the formula Lift(ψn) and traverse a refutation from the
empty clause, each time we go from linear clause to a premise that is falsified by σ. We finish the path
if we go through at least W linearly independent linear forms that are used in resolution rules or if we
reach a clause of the initial formula.

6. By the freedom property of Adversary’s winning strategy, with probability at least 2−ϵW , the random
walk reaches a linear clause C whose negation corresponds to a winning position.

7. Assume that the width of C is less than (1 − 5ϵ)W . Then we can construct a path starting from C
that passes through the negations of winning positions. This path can be extended until it contains
5ϵW linearly independent linear forms. Hence, the refutation must contain a (W, 5ϵW)-path. Under
the assumption that the refutation does not contain any ((1− 2ϵ)N, 4ϵN)-paths, we conclude that the
width of C is at least (1− 5ϵ)W .

4

8. The probability that a random assignment σ falsifies a clause C of width t is exactly 2−t. Therefore,
the refutation must contain at least 2−ϵW /2−(1−5ϵ)W = 2(1−6ϵ)W ≥ 2(1−8ϵ)N distinct linear clauses.

In Section 2, we apply the above plan to the resolution case and prove Theorem 1.2. Here, all variables
are lifted using the same gadget—the ℓ-bit parity function ⊕ℓ with ℓ = 1/ϵ. The proof closely follows the
general scheme, with only minor adjustments required for the resolution setting.

In the case of Res(⊕), the proof is considerably more technical, with the key challenge being the lifting.
Lifting of strategies from the game characterizing resolution width to game characterizing Res(⊕) width

was obtained by Alekseev and Itsykson [2]; this was achieved by 1-stifling gadgets. But in that result the
Res(⊕)-width of the lifted formula is at least the resolution-width of the initial formula, but the number of
variables increases in the size of the gadget. Thus, to fulfill item 3 of the above plan, we need to construct
lossless lifting.

The lifting construction of Alekseev and Itsykson [2] is essentially based on the notion of closure intro-
duced in [16]. We work in the standard lifting setting, where the initial variables are Y = {y1, y2, . . . , yn}
and the lifted variables are X = {xi,j | i ∈ [n], j ∈ [ℓ]}. The lifted variables are partitioned into n blocks,
each block corresponding to a distinct index i of the original variable yi.

In Section 4, for every integer k ∈ [ℓ], we define the notion of k-closure, which generalizes the concept of
closure in the sense that the standard closure corresponds to the case k = 1.

The notion of closure is based on the concept of safeness. We introduce the notion of k-safe matrices,
which extends the concept of safe matrices. A matrix over the lifted variables is said to be k-safe if there
exists a basis among its columns such that each block contains at most k basis elements. For k = 1, this
definition coincides with the notion of safe matrices from [16]. The set of solutions of a linear system with
a k-safe matrix has the following structure: variables that do not belong to the basis are free variables,
while the variables corresponding to the basis are dependent and are expressed as affine functions of the free
variables.

The main useful property of safe matrices and 1-stifling gadgets is the following [8, 2]: for every assignment
to the unlifted variables, and for every satisfiable linear system over the lifted variables with a safe matrix,
there exists a solution of the system that induces the initially chosen values on the unlifted variables via the
gadget.

Our goal is to extend this property to k-safe matrices. Specifically, we construct gadgets with a property
we call k-surjectivity : for every satisfiable linear system whose coefficient matrix is k-safe, every assignment
to the unlifted variables can be realized by an appropriate solution of the system. When k < ℓ/2, we can
employ majority gadgets: in this case, the majority can be fixed by free variables only, allowing us to fix the
unlifted variables arbitrarily by an appropriate choice of the free variables.

However, to make our lifting lossless, we need k = (1− ϵ)ℓ. It is easy to see that when k ≥ ℓ/2, we must
use different gadgets for different variables in the lifting. Indeed, consider two blocks and assume that the
first ℓ− k variables in the first block are free, while the second ℓ− k variables in the second block are free.
Suppose further that each dependent variable in the second block is equal to the variable in the first block
with the same index. If both variables are dependent, this means that we assign the same affine function
to them; if one variable is free and the other is dependent, then the dependent variable is set equal to that
free variable (that is, to an affine function coinciding with the value of that free variable). Finally, assume
that the dependent variables in the first block are equal to the corresponding variables in the second block.
Then, if we use identical gadgets for these two blocks, their values will coincide, and consequently, not all
combinations of unlifted variable assignments will be realizable.

The above argument also implies that the gadget’s size ℓ cannot be a constant. Indeed, if we have n blocks,
then n must be greater than the number of Boolean functions on ℓ variables; otherwise, there would exist
two blocks using the same gadget. Therefore, we obtain ℓ ≥ log log n. In Section 5, we present a randomized
construction of a family of gadgets with ℓ = O(log n/ϵ), which satisfy the property of k-surjectivity.

In Section 6, we lift resolution width to Res(⊕) width by lifting strategies in the corresponding games,
using the ideas of Itsykson and Alekseev [2] adapted to k-closure and our lifting. This realizes item 3 of the
above plan.

5

In Section 7, we establish the freedom property of the lifted strategy, thus realizing item 4 of the plan. The
proof is technically very similar to the proof of the tree-like Res(⊕) lower bound for the binary pigeonhole
principle from [16].

Finally, we conclude the proof in Section 8, thereby realizing items 5–8 of the plan.

1.4 Further research

We outline two potential directions for strengthening our results:

• Increasing depth. For instance, even establishing a SETH-type lower bound for Depth-2n resolution
appears to require new ideas.

• Reducing width. It would be interesting to prove a 2(1−ϵ)n lower bound for Depth-n Res(⊕), or at
least for tree-like Res(⊕), on k-CNF formulas where k depends only on ϵ and is independent of n.

2 SETH Holds for Bounded-Depth Resolution

2.1 Resolution and decision DAG

Let φ be an unsatisfiable CNF formula. A resolution refutation of φ is a sequence of clauses C1, C2, . . . , Cs

such that Cs is the empty clause (i.e., identically false) and for every i ∈ [s] the clause Ci is either a clause
of φ or is obtained from previous clauses by the resolution rule that allows us to derive a clause C ∨D from
clauses C ∨ x and D ∨ ¬x.

The size of a resolution refutation is the number of clauses in it. The depth of a resolution refutation is
the length of the longest path between the empty clause and the clause of the original formula. The width
of a resolution refutation is the maximal size of a clause from the refutation. The resolution width of an
unsatisfiable CNF formula φ is the minimal possible width over all resolution refutations of φ.

A decision DAG for an unsatisfiable CNF formula φ is a directed acyclic graph with a single source and
several sinks, satisfying the following properties:

• Each node v of the DAG is labeled with a partial ρv assignment over the variables of φ.

• The source is labeled with the empty assignment.

• For every sink v, there exists a clause C of φ such that ρv falsifies C.

• Every non-sink node v is additionally labeled with a splitting variable xv and has two children v0 and
v1. The edge (v, v0) is labeled by the assignment xv := 0, and the edge (v, v1) is labeled by xv := 1.
Moreover, for each α ∈ {0, 1}, the assignment ρvα is a subassignment of ρv ∪ {xv := α}.

The size of a parity decision DAG is its number of vertices, the depth is the length of the longest
source-to-sink path, and the width is the maximum size of the assignments ρv.

It is known [28] that every resolution refutation of a formula φ can be efficiently transformed into a
decision DAG for φ without increasing its size, depth, or width. The transformation is straightforward: the
decision DAG has the same underlying graph as the refutation, but with all edges reversed. The empty clause
becomes the source, while the clauses of the original formula become the sinks. Each node is labeled with
the negation of the corresponding clause, and the splitting variables are exactly those used in the resolution
steps.

A resolution refutation is called regular if, along every path in the associated decision DAG, all splitting
variables are distinct. A resolution refutation of an n-variable formula is called δ-regular [10] if, along every
path from the source to a sink in the decision DAG, all but at most δn of the splitting variables occur at
most once.

6

2.2 Game characterization of resolution width

Atserias and Dalmau proposed a game characterization of resolution width [3]. Let φ be an unsatisfiable
CNF formula. A w-winning resolution strategy for φ is a non-empty family H of partial truth assignments,
none of which falsify any clause of φ, such that:

• For every ρ ∈ H, we have |ρ| ≤ w.

• If ρ ∈ H and τ ⊆ ρ, then τ ∈ H.

• If ρ ∈ H, |ρ| < w and x is a variable, then there exists a ∈ {0, 1} such that ρ ∪ {x := a} ∈ H.

The following lemma characterizes the connection between resolution width and winning resolution strate-
gies:

Lemma 2.1 ([3]). Let φ be a CNF formula and W an integer. Then φ admits no resolution refutation of
width W if and only if there exists a (W + 1)-winning resolution strategy for φ.

2.3 Lifting by a parity

We denote by ⊕k the parity function {0, 1}k → {0, 1} that maps (a1, a2, . . . , ak) to a1 + a2 + · · ·+ ak mod 2.
For every CNF formula φ over the variables Y = {y1, y2, . . . , ym} and we define a CNF formula Φ ◦ ⊕k

with variables X = {xi,j | i ∈ [m], j ∈ [k]} representing in CNF ϕ(x1,1 ⊕ x1,2 ⊕ · · · ⊕ x1,k, x2,1 ⊕ x2,2 ⊕ · · · ⊕
x2,k, . . . , xm,1 ⊕ xm,2 ⊕ · · · ⊕ xm,k) (i.e. we substitute to every variable of φ the function ⊕k applied to k
fresh variables).

For every partial assignment ρ to the variables of the formula φ ◦ ⊕k we define the partial assignment
induced⊕(ρ) to the variables of φ as follows:

• induced⊕(ρ) is defined on yi, if and only if ρ is defined on all xi,1, xi,2, . . . , xi,k;

• induced⊕(ρ)(yi) =
⊕k

j=1 ρ(xi,j).

Let A be a set of partial assignments for the variables of φ.
Based on the formula φ ◦ ⊕k we define a set A⊕k that consists of partial assignments ρ to variables of

φ ◦ ⊕k such that induced⊕(ρ) ∈ A.

Lemma 2.2. If A is w-winning resolution strategy for φ, then A⊕k is wk-winning resolution strategy for
φ ◦ ⊕k.

Proof. Consider ρ ∈ A⊕k , every clause of φ ◦ ⊕k is a clause of C ◦ ⊕k, where C is a clause of φ. Since
induced⊕(ρ) doesn’t falsify C, there is a variable yj of C such that induced⊕(ρ) is not defined on yj . Hence,
there is i ∈ [k] such that ρ is not defined on xj,i, hence ρ doesn’t falsify C ◦ ⊕k.

It follows by the construction of A⊕k that all elements of A have size at most kw.
Consider ρ ∈ A⊕k and let ρ′ ⊆ ρ. By the definition, induced⊕(ρ

′) ⊆ induced⊕(ρ). Since induced⊕(ρ) ∈ A,
then induced⊕(ρ

′) ∈ A, then ρ′ ∈ A⊕k .
Let ρ ∈ A⊕k such that |ρ| < wk, let xi,j be a variable not from domain of ρ. If the domain of ρ doesn’t

contain all xi,t for t ∈ [k]\{j}, then we can arbitrarily extend ρ on xi,j , since in this case induced⊕(ρ∪{xi,j :=
a}) = induced⊕(ρ) for all a ∈ {0, 1}.

Consider the second case, where the domain of ρ contains all xi,t for t ∈ [k] \ {j}. Since |ρ| < wk,
|induced⊕(ρ)| < w, and yi does not belong to the domain of induced⊕(ρ). By the properties of w-winning
strategy A there exists a ∈ {0, 1} such that induced⊕(ρ) ∪ {yi := a} belongs A. So we can choose the value
b := a⊕

⊕
t∈[k]\{j} ρ(xi,j) and extend ρ by xi,j := b and then induced⊕(ρ∪{xi,j := b}) = induced⊕(ρ)∪{yi :=

a}.

7

Consider an unsatisfiable CNF formula φ and a set A of partial assignments over the variables of φ such
that (i) every assignment in A does not falsify any clause of φ, and (ii) A is closed under restrictions. We
refer to such sets of assignments as proper. We define the (φ,A)-game between Prover and Delayer. In this
game, two players, Prover and Delayer, maintain a partial assignment ρ for variables of φ; initially, ρ is
empty. On every move, Prover chooses a variable x, and Delayer has two options:

• Delayer can earn a white coin and reports ∗. Then, Prover chooses a Boolean value a of x.

• Delayer can earn a white coin and pay a black coin to choose a Boolean value a of x by himself.

The current assignment ρ is updated: ρ := ρ ∪ {x := a}. The game ends when ρ /∈ A.

Lemma 2.3. Let A be w-winning resolution strategy for φ. Then in the (φ ◦ ⊕k,A⊕k)-game there is a
strategy of Delayer that guaranties him to earn at least wk white coins while paying at most w black coins.

Proof. The lemma is in fact established in the proof of Lemma 2.2. The only instance in which the Delayer is
required to assign a variable himself arises when xi,j is the last unassigned variable. Throughout wk rounds
of the game, the number of such instances does not exceed w.

2.4 Lower bound

We say that a resolution refutation contains an (a, b)-path if, in the decision DAG associated with the
refutation, there exists a node v such that the path from the source to v passes through at least a distinct
variables, and the path from v to a sink passes through at least b distinct variables.

Lemma 2.4. Let φ be an unsatisfiable CNF formula and let w be the minimal width of resolution refutations
of φ. Then any resolution refutation of φ ◦ ⊕k has either size 2(k−3)w or contains (wk, 2w) path.

Proof. Consider a resolution refutation of φ and its associated decision DAG. Suppose that the refutation
does not contain any (wk, 2w)-path. Let τ be a random full assignment to the variables of φ ◦ ⊕k. We
define a path in the decision DAG as follows: starting from the source, at each step we follow the outgoing
edge whose label is consistent with τ . The path terminates once wk distinct variables have been queried, or
earlier if a sink is reached. The random variable of interest is the partial assignment labeling the node at
which this path terminates. An equivalent way to generate this distribution is as follows. Starting from the
source, if the queried variable is new, we follow a uniformly random outgoing edge; if it has been queried
before, we deterministically follow the edge consistent with its previously chosen value. Thus, we obtain two
equivalent views of the same random process: in the first, a random full assignment τ is sampled in advance;
in the second, the values of variables are chosen randomly only when they are queried.

By Lemma 2.1, there exists a w-winning resolution strategy A for φ. By Lemma 2.3, in the (φ◦⊕k,A⊕
k)-

game Delayer has a strategy that guarantees him at least wk white coins while paying at most w black
coins.

Under the second view of the random process, the existence of the Delayer’s strategy implies that, with
probability at least 2−w, the partial assignment encountered along the path is consistent with the Delayer’s
strategy. Consequently, with probability at least 2−w, the partial assignment ρ defined by the edges of
the random walk belongs to A⊕k . Moreover, the assignment σ labeling the endpoint of the path is a
subassignment of ρ; hence, in this case, we also have σ ∈ A⊕k .

Claim 2.5. Assume that a node v of the decision DAG is at distance wk from the source and is labeled
with a partial assignment ρv ∈ A⊕k . Then the size of ρv is at least w(k − 2).

Proof. By Lemma 2.2, A⊕k is a wk-winning resolution strategy for φ ◦ ⊕k. Consider a path in the decision
DAG starting from a node v, where at each step we move from a vertex u along the edge labeled by xu := a
such that ρu ∪ {xu := a} ∈ A⊕k . Let u′ denote the endpoint of this edge. Then, by the properties of a
winning strategy, ρu′ ∈ A⊕k . Since A⊕k is a wk-winning strategy, we can construct a path whose edges
involve at least wk − |ρv| distinct variables. As the decision DAG does not contain (wk, 2w)-paths, there

8

is no path from v that contains at least 2w distinct variables. It follows that wk − |ρv| ≤ 2w, and, thus,
|ρv| ≥ w(k − 2).

Any partial assignment of size at least w(k−2) is consistent with a random assignment τ with probability
at most 2−w(k−2). Since with probability at least 2−w the endpoint of the random path satisfies the conditions
of Claim 2.5 (we refer to this as a lucky event), the number of distinct nodes that can serve as endpoints of

the random path in lucky events is at least 2−w

2−w(k−2) = 2(k−3)w.

We say that a resolution refutation is (a, b)-path-free if it does not contain any (a, b)-paths.

Proposition 2.6. If depth of a resolution refutation is less than a+ b, then it is (a, b)-path-free.

Proof. The proof is straightforward,

Proposition 2.7. If a resolution refutation is δ-regular, then it is ((1−δ′)n, 2δ′n)-path-free for every δ′ > δ.

Proof. Assume that there exists a δ-regular resolution refutation containing a ((1− δ′)n, 2δ′n)-path for some
δ′ > δ. Then there exist a node v, a sink s of the decision DAG, a path from the source to v that passes
through at least (1− δ′)n distinct variables, and a path from v to s that passes through at least 2δ′n distinct
variables. Consequently, along the concatenated path source–v–s, at least δ′n variables appear more than
once, contradicting δ-regularity of the refutation.

Theorem 2.8. Let φ be an unsatisfiable CNF formula with n variables such that φ requires resolution width
at least (1− δ)n. Let k be integer such that δ(k + 1) < 1. Then any ((1− δ)nk, 2δnk)-path-free resolution
refutation of φ ◦ ⊕k has size at least 2(1−δ−3/k)nk.

Proof. Notice that if δ(k+1) < 1, then δk < (1− δ). By Lemma 2.4, any resolution refutation of φ ◦⊕k has
either size at least 2(1−δ)n(k−3) ≥ 2(1−δ−3/k)nk or contains ((1− δ)nk, 2(1− δ)n)-path, the second option is
impossible since we consider only ((1− δ)nk, 2δnk)-paths free refutations.

We use the standard tilde notation that suppresses logarithmic factors. Specifically, f(n) = Õ(g(n))
means that there is a constant c such that f(n) = O (g(n) · logc n), and f(n) = Θ̃(g(n)) means that both
f(n) = Õ(g(n)) and g(n) = Õ(f(n)) hold.

Lemma 2.9 ([9]). For large enough m and n there exists an unsatisfiable formula ψ in m-CNF such that
resolution width of ψ is at least (1− δ)n, where δ = Θ̃(m−1/3).

Corollary 2.10. For all large enough ℓ for infinitely many N there exists an unsatisfiable formula φ in
ℓ-CNF that depends on N variables such that every its ((1 − δ)N, 2δN)-path-free resolution refutation has

size at least 2(1−Θ̃(ℓ−1/4))N , where δ = Θ̃(ℓ−1/4)).

Proof. By Lemma 2.9, for large enough m and n there exists an unsatisfiable formula ψ in m-CNF with n
variables such that resolution width of ψ is at least (1− δ)n, where δ = Θ̃(m−1/3). Let us choose k such that
δ(k + 1) < 1 and k = Θ̃

(
m1/3

)
. We define φ := ψ ◦ ⊕k. Then φ is mk-CNF formula, where k = Θ̃

(
m1/3

)
.

Let us denote N = nk and ℓ = mk, then δ = Θ̃
(
ℓ−1/4

)
and k = Θ̃

(
ℓ1/4

)
. By Theorem 2.8 we get that any

((1− δ)N, 2δN)-path-free resolution refutation of φ has size at least 2(1−δ−3/k)N = 2(1−Θ̃(ℓ−1/4))N .

3 Resolution Over Parities

Here and after, all scalars are from the field F2. Let X be a set of variables taking values in F2. A linear
form in variables from X is a homogeneous linear polynomial over F2 in variables from X or, in other words,
a polynomial

∑n
i xiai, where xi ∈ X is a variable and ai ∈ F2 for all i ∈ [n]. A linear equation is an equality

f = a, where f is a linear form and a ∈ F2.

9

A linear clause is a disjunction of linear equations:
∨t

i=1(fi = ai). Note that over F2 a linear clause∨t
i=1(fi = ai) may be represented as the negation of a linear system: ¬

∧t
i=1(fi = ai + 1).

For a linear clause C we denote by L(C) the set of linear forms that appear in C; i.e. L
(∨t

i=1(fi = ai)
)
=

{f1, f2, . . . , ft}. The same notation we use for linear systems: if Ψ is a F2-linear system, L(Ψ) denotes the
set of all linear forms from Ψ.

Now we define the proof system resolution over parities (Res(⊕)) [22].
Let φ be an unsatisfiable CNF formula. A Res(⊕) refutation of φ is a sequence of linear clauses C1, C2,

. . . , Cs such that Cs is the empty clause (i.e., identically false) and for every i ∈ [s] the clause Ci is either a
clause of φ or is obtained from previous clauses by one of the following inference rules:

• Resolution rule allows us to derive a linear clause C ∨D from linear clauses C ∨ (f = a) and D ∨ (f =
a+ 1).

• Weakening rule allows us to derive from a linear clause C any linear clause D in the variables of φ
that semantically follows from C (i.e., any assignment satisfying C also satisfies D).

The size of a Res(⊕) refutation is the number of linear clauses in it. The depth of a Res(⊕) refutation
is the maximal number of resolution rules applied on a path between a clause of the initial formula and the
empty clause. The width of a linear clause C is the rank of the linear system ¬C. The width of a Res(⊕)
refutation is the maximal width of a linear clause in it.

A parity decision DAG (also known as an affine DAG) for an unsatisfiable CNF formula φ is a directed
acyclic graph with a single source and several sinks, satisfying the following properties:

• Each node v of the DAG is labeled with an F2-linear system Φv over the variables of φ.

• The source is labeled with the empty system (i.e., identically true).

• For every sink v, there exists a clause C of φ such that Φv is inconsistent with C.

• Every non-sink node v is additionally labeled with a linear form fv and has two children v0 and v1.
The edge (v, v0) is labeled by the equation fv = 0, and the edge (v, v1) is labeled by fv = 1. Moreover,
for each α ∈ {0, 1}, the system Φv ∧ (fv = α) semantically implies Φvα .

The size of a parity decision DAG is its number of vertices, the depth is the length of the longest
source-to-sink path, and the width is the maximum rank of the systems Φv.

Similarly to the case of resolution, it is known [16] that every Res(⊕) refutation of φ can be efficiently
transformed into a parity decision DAG for φ without increasing its size, depth, or width.

4 The k-Closure and Its Properties

In this section, we define the notion of k-closure, which generalizes the closure introduced by Efremenko,
Garlik, and Itsykson [16]; in particular, 1-closure coincides with their definition. Since the proofs of all
statements closely follow those in [16], we defer them to Appendix A.

We consider the set of propositional variables X = {xi,j | i ∈ [m], j ∈ [ℓ]}. The variables from X are
divided into m blocks by the value of the first index. The variables xi,1, xi,2, . . . , xi,ℓ form the ith block, for
i ∈ [m].

Consider sets of linear forms using variables from X over the field F2. The support of a linear form
f = xi1,j1 + xi2,j2 + · · ·+ xis,js is the set {i1, i2, . . . , is} of blocks of variables that appear in f with non-zero
coefficients. We denote the support by supp(f). The support of a set of linear forms F is the union of the
supports of all linear forms in this set. We denote it by supp(F). Let k be a natural number. We say that
a linearly independent set of linear forms F is k-dangerous if |F | > k|supp(F)|. We say that a set of linear
forms F is k-safe if ⟨F ⟩ does not contain a k-dangerous set. If F is linearly dependent but ⟨F ⟩ contains a
k-dangerous set, instead of saying that F is k-dangerous, we say it is not k-safe.

10

Every linear form corresponds to a vector of its coefficients indexed by the variables from the set X.
Given a list of linear forms f1, f2, . . . , fs, one may consider their coefficient matrix of size s × |X| in which
the i-th row coincides with the coefficient vector of fi.

Theorem 4.1. Let f1, f2, . . . , fs be linearly independent linear forms and let M be their coefficient matrix.
Then the following conditions are equivalent.

(1) The set of linear forms f1, f2, . . . , fs is k-safe.

(2) For every set T ⊆ [m], the dimension of the span of the set of columns of M corresponding to the
variables with support in T is at least k|T | − (km− s).

(3) One can choose s variables such that for every block at most k variables are chosen from this block and
the columns of M corresponding to the s chosen variables are linearly independent. Since the rank of
M is s, the chosen columns form the basis of the span of M ’s columns.

Let S ⊆ [m] be a set of blocks; for a linear form f we denote by f [\S] a linear form obtained from f by
substituting 0 for all variables with support in S. In other words, f [\S] is the projection of f to the linear
space of all forms with support in [m] \ S. Being a projection, [\S] is a linear operator for every S ⊆ [m].

For a set of linear forms F we will use the notation F [\S] = {f [\S] | f ∈ F}.

Lemma 4.2 ([16]). Let F be a set of linear forms and T be a subset of [m]. Then

dim⟨F ⟩ = dim⟨F [\T]⟩+ dim⟨{f ∈ ⟨F ⟩ | supp(f) ⊆ T}⟩.

A k-closure of a set of linear forms F is any inclusion-wise minimal set S ⊆ [m] such that F [\S] is k-safe.

Lemma 4.3. (Uniqueness) For any F its k-closure is unique.

Let us denote the unique k-closure of F by Cl(k)(F).

Lemma 4.4. (Monotonicity) If F1 ⊆ F2, then Cl(k)(F1) ⊆ Cl(k)(F2).

Proof. F1[\Cl(k)(F2)] ⊆ F2[\Cl(k)(F2)], hence F1[\Cl(k)(F2)] is k-safe. Consider an inclusion minimal set

S ⊆ Cl(k)(F2) such that F1[\S] is k-safe. Then S is a k-closure of F1 and, by the uniqueness, Cl(k)(F1) =

S ⊆ Cl(k)(F2).

Lemma 4.5. (Span invariance) Cl(k)(F) = Cl(k)(⟨F ⟩).

Proof. Since [\S] is a linear operator, ⟨F ⟩[\S] = ⟨F [\S]⟩. Hence for every S, the set F [\S] is k-safe iff

⟨F ⟩[\S] is k-safe, and so Cl(k)(F) = Cl(k)(⟨F ⟩).

Lemma 4.6. (Size bound) k|Cl(k)(F)|+ dim⟨F [\Cl(k)(F)]⟩ ≤ dim⟨F ⟩, and hence |Cl(k)(F)| ≤ 1
k dim⟨F ⟩.

Lemma 4.7. (Increment) Let F be a set of linear forms and f be a linear form such that Cl(k)(F ∪{f}) ̸=
Cl(k)(F). Then

dim⟨F [\Cl(k)(F)]⟩ − dim⟨(F ∪ {f})[\Cl(k)(F ∪ {f})]⟩ = k(|Cl(k)(F ∪ {f})| − |Cl(k)(F)|).

11

5 Lifting by k-Surjective Collection of Gadgets

Let φ(y1, y2, . . . , ym) be a CNF formula, and let g1, g2, . . . , gm : {0, 1}ℓ → {0, 1} be Boolean functions. We
define the lifting of φ with respect to (g1, g2, . . . , gm), denoted by Liftg1,g2,...,gm(φ) as the CNF formula
obtained from

φ(g1(x1,1, x1,2, . . . , x1,ℓ), g2(x2,1, x2,2, . . . , x2,ℓ), . . . , gm(xm,1, xm,2, . . . , xm,ℓ))

by converting the resulting expression into CNF in the following way: for each clause of φ, we substitute the
corresponding functions gi, transform the resulting formula into CNF in any fixed manner, and finally take
the conjunction of all such CNFs over all clauses of φ. We refer to the set Y = y1, y2, . . . , ym as the unlifted
variables, and to the set X = {xi,j | i ∈ [m], j ∈ [ℓ]} as the lifted variables.

5.1 Definitions of k-special affine spaces and k-surjective collection of gadgets

Observe that every affine subspace of Fn of dimension k can be represented as follows: one selects k coor-
dinates, called free, while the remaining coordinates are dependent, meaning they are determined by affine
functions of the free coordinates.

Definition 5.1. Consider the vector space Fmℓ
2 , whose coordinates are partitioned into m blocks of size

ℓ. The coordinates of the i-th block are denoted by xi,1, xi,2, . . . , xi,ℓ. We say that a subspace L ⊆ Fmℓ
2 is

k-special if there exists a representation of L in which each block contains at least ℓ− k free coordinates.

The following proposition establishes that linear systems containing k-safe linear forms define k-special
affine spaces.

Proposition 5.2. Assume that a set of linear forms F over variables X is k-safe. Then, for every satisfiable
linear system Φ whose set of linear forms is F , the solution space of Φ is k-special.

Proof. By Theorem 4.1, the matrix of Φ contains a basis among its columns such that each block contains at
most k basis elements. The general solution of Φ can then be described as follows: the variables corresponding
to non-basis elements may be assigned arbitrarily (these are the free variables), while the values of the basis
variables are uniquely determined as affine functions of the free variables.

We call a collection of gadgets g1, g2, . . . , gm : {0, 1}ℓ → {0, 1} k-surjective if, for every k-special affine
subspace L ⊆ Fmℓ

2 and every tuple (b1, b2, . . . , bm) ∈ {0, 1}m, there exists an element x ∈ L such that for all
i ∈ [m],

gi(xi,1, xi,2, . . . xi,ℓ) = bi.

Let g1, g2, . . . , gm : {0, 1}ℓ → {0, 1} be a collection of gadgets. For every full assignment τ to the lifted
variables X, we define the induced assignment inducedg1,g2,...,gm(τ) as the assignment σ to the unlifted
variables such that, for each i ∈ [m], σ(yi) = gi(τ(xi,1), τ(xi,2), . . . , τ(xi,ℓ)).

5.2 Lifting and k-closure

In this subsection, we present the main technical tools that enable combining k-closure with lifting. The
following lemmas are analogous to those in [8, 2], except that we employ lifting by a k-surjective collection
of gadgets instead of 1-stifling gadgets and use the notion of k-closure in place of closure.

The next lemma states that for a satisfiable linear system whose set of linear forms is k-safe, every
assignment to the unlifted variables can be induced by some solution of the system.

Lemma 5.3. Let Ψ be a satisfiable linear system in the lifted variables X and L(Ψ) be k-safe. Let
g1, g2, . . . , gm : {0, 1}ℓ → {0, 1} be an k-surjective collection of gadgets. Then for any full assignment σ
to the unlifted variables Y there exists a full assignment τ to the lifted variables X such that τ satisfies Ψ
and inducedg1,g2,...,gm(τ) = σ.

12

Proof. By Proposition 5.2, the affine space of solutions of Ψ is k-special. Then the lemma follows by the
definition of a k-surjective collection of gadgets.

The next lemma shows that for a satisfiable linear system, by varying its solution, one can arbitrarily
change the values of unlifted variables outside the k-closure.

Lemma 5.4. Let Ψ be a satisfiable linear system in the lifted variables X. Let g1, g2, . . . , gm : {0, 1}ℓ →
{0, 1} be k-surjective collection of gadgets. Suppose

• σ is a full assignment to lifted variables X satisfying Ψ.

• π is a full assignment to unlifted variables Y such that π|Cl(k)(L(Ψ)) = inducedg1,g2,...,gm(σ)|Cl(k)(L(Ψ)).

Then there exists a full assignment τ to the lifted variables X such that τ satisfies Ψ and
inducedg1,g2,...,gm(τ) = π.

Proof. Let T be the set of all lifted variables with support in Cl(k)(L(Ψ)). Let σ0 be the restriction of σ to
T . The linear system (Ψ)|σ0 is satisfiable, and its set of linear forms is k-safe by the definition of closure. By
Lemma 5.3, there exists an assignment γ to the lifted variables Vars(Ψ) \ T that satisfies (Ψ)|σ0 and such
that inducedg1,g2,...,gm(σ0 ∪ γ) = π. Thus, we can take τ = σ0 ∪ γ.

In most applications, we will only need the following consequence of Lemma 5.4.

Lemma 5.5. Let Ψ be a satisfiable linear system in the lifted variables X. Let g1, g2, . . . , gm : {0, 1}ℓ →
{0, 1} be k-surjective set of gadgets. Suppose there exists a full assignment σ to lifted variables X satisfying
Ψ such that inducedg1,g2,...,gm(σ)|Cl(k)(L(Ψ)) does not falsify any clause of φ. Then, Ψ does not contradict
any clause of Liftg1,g2,...,gm(φ).

Proof. Consider a clause C ′ from Liftg1,g2,...,gm(φ) and a clause C from φ such that C ′ is a clause from
Liftg1,g2,...,gm(C).

Since inducedg1,g2,...,gm(σ)|Cl(k)(L(Ψ)) does not falsify any clause of φ, there exists a full assignment of
unlifted variables π that extends inducedg1,g2,gm(σ)|Cl(k)(L(Ψ)) and satisfies C. By Lemma 5.4, there exists an
assignment τ of the lifted variables that satisfies Ψ and such that inducedg1,g2,gm(τ) = π. Hence, τ satisfies
Liftg1,g2,...,gm(C) and, thus, τ satisfies C ′.

5.3 Existence of k-surjective gadget collections when k ≈ ℓ/2

Let k < ℓ. A gadget g : {0, 1}ℓ → {0, 1} is called k-stifling [15] if for every A ⊂ [ℓ] of size k for every
c ∈ {0, 1} there exists a ∈ {0, 1}ℓ such that for every b ∈ {0, 1}ℓ if a and b agree on set of indices [ℓ] \A, then
g(b) = c.

It is easy to see that the majority function Maj2k+1 : {0, 1}2k+1 → {0, 1} is k-stifling.

Remark 5.6. If all g1, g2, . . . gm : {0, 1}ℓ → {0, 1} are k-stifling, then g1, g2, . . . gm are k-surjective.

Proof. Since all gadgets are k-stifling, any block can be fixed arbitrarily using only free variables.

Notice that if g : {0, 1}ℓ → {0, 1} is k-stifling, then necessarily 2k + 1 ≤ ℓ. In what follows, we prove the
existence of a k-surjective collection of gadgets for the regime k ≥ (1− ϵ)ℓ, where ϵ ≤ 1

2 .

5.4 Existence of k-surjective gadget collections when k is close to ℓ

Proposition 5.7. The total number of affine subspaces of Fn
2 is at most 2n

2+n.

Proof. Every affine subspace of Fn
2 can be described as the solution set of a linear system Ax = b, where

A ∈ Fn×n
2 and b ∈ Fn

2 . Since there are exactly 2n
2

choices for A and 2n choices for b, the total number of

such systems is 2n
2+n.

13

Theorem 5.8. Assume that 2ϵℓ > (ℓm)2 + ℓm + m and k ≤ (1 − ϵ)ℓ. Then there exists a k-surjective
collection of gadgets g1, g2, . . . gm : {0, 1}ℓ → {0, 1}.

Proof. We prove by induction on n that for every n ∈ [m] there exists a k-surjective collection of gadgets
g1, g2, . . . gn : {0, 1}ℓ → {0, 1}. The base of induction is n = 1. The number of k-special subspaces of Fℓ

2 can

be estimated from above as the total number of affine subspaces that is at most 2ℓ
2+ℓ by Proposition 5.7.

Every k-special subspace of Fℓ
2 contains one block with at least ℓ − k free variables, hence its size is at

least 2ℓ−k. Let us choose g1 uniformly at random from the set of all functions {0, 1}ℓ → {0, 1}. For

every k-special subspace, the probability that g1 is constant on this subspace is at most 2−2ℓ−k+1. Since

2ℓ
2+ℓ2−2ℓ−k+1 ≤ 2ℓ

2+ℓ+1−2ϵℓ < 1, there exists g1 that is not constant on any k-special subspace of Fℓ
2.

Induction step. Assume that there exist a k-surjective collection of gadgets g1, g2, . . . , gn, where n < m.
Let us show that we can extend this set by gn+1.

Let L be a k-special affine subspace of F(n+1)ℓ
2 . Suppose that the last block of L contains t free variables;

by definition, we have t ≥ ℓ−k. There are 2t ways to assign values to these t variables. Each such assignment
induces a k-special affine subspace on the first nℓ coordinates, which we index by a string α ∈ {0, 1}t and
denote by Lα.

We take gn+1 uniformly at random from the set of all functions {0, 1}ℓ → {0, 1}.
Consider arbitrary bits b1, b2, . . . , bn ∈ {0, 1}. By the induction hypothesis, for every α ∈ {0, 1}t, there

exists x(α) ∈ Lα such that

gi

(
x
(α)
i,1 , x

(α)
i,2 , . . . , x

(α)
i,ℓ

)
= bi for all i ∈ [n].

Let y(α) ∈ L be the element whose projection onto the first n blocks coincides with x(α) and whose t free

coordinates in the last block are exactly α. Notice that for distinct α, the strings y
(α)
n+1,1y

(α)
n+1,2 . . . y

(α)
n+1,ℓ are

different. Therefore, the probability that g1 is constant on all these strings is at most 2−2t+1 ≤ 2−2ϵℓ+1.
Hence, the probability that g1, g2, . . . , gn, gn+1 fail to form a k-surjective collection of gadgets is at most

2−2ϵℓ+1 × (number of affine subspaces L)× (number of choices for b1, . . . , bn).

Using Proposition 5.7, this probability is at most 2−2ϵℓ+1 · 2(ℓ(n+1))2+(n+1)ℓ+n ≤ 2−2ϵℓ+1 · 2(ℓm)2+mℓ+m−1 <
1.

6 Lossless lifting from resolution width to Res(⊕) width

In this section, we generalize the lifting result of Itsykson and Alekseev [2] from resolution width to Res(⊕)
width. Our approach replaces 1-stifling gadgets with a k-surjective collection of gadgets. Consequently, the
width of the lifted formula increases by a factor of k relative to the original formula. Using the construction
from Theorem 5.8, where k is nearly equal to the gadget size, we ensure that the width-to-variable ratio of
the lifted formula remains nearly the same as in the original formula.

In Section 2 we presented the game-theoretic characterization of resolution width due to Atserias and
Dalmau [3]. A similar width characterization is known for Res(⊕) [18, 2]. We follow the construction from
[2], which is slightly more convenient for our purposes.

Let φ be an unsatisfiable CNF formula. A w-winning Res(⊕) strategy for φ is a non-empty family G of
linear systems over the variables of φ such that:

• For every Φ ∈ G and every clause C in φ, there exists a solution of Φ that satisfies C.

• For every Φ ∈ G, we have rk(Φ) ≤ w.

• If Φ ∈ G and Φ semantically implies Ψ, then Ψ ∈ G.

• If Φ ∈ G and rk(Φ) ≤ w− 1 and f is a linear form, then there exists a ∈ F2 such that Φ∧{f = a} ∈ G.

Analogously to Lemma 2.1, the following holds:

14

Lemma 6.1 ([2]). Let φ be an unsatisfiable CNF formula. If there exists a (W +1)-winning Res(⊕) strategy
for φ, then φ has no Res(⊕) refutation of width at most W .

Definition 6.2. Let A be a set of partial assignments to the variables Y , and let g1, g2, . . . , gm : {0, 1}ℓ →
{0, 1} be a collection of gadgets. We define S(A; g1, g2, . . . , gm) to be the set of linear systems Φ over
the lifted variables X such that there exists a solution τ to Φ with the property that the restriction of
inducedg1,g2,...,gm(τ) to Cl(k)(L(Φ)) belongs to A.

The following lemma extends Theorem 3.1 of [2] to the setting of lifting with a k-surjective collection of
gadgets.

Lemma 6.3. Let H be a w-winning resolution strategy for an unsatisfiable CNF formula φ(y1, y2, . . . , ym).
Let g1, g2, . . . , gm be a k-surjective collection of gadgets. Define G := {Φ ∈ S(H; g1, g2, . . . , gm) | rk(Φ) ≤ wk}.
Then G is a wk-winning Res(⊕) strategy for Liftg1,g2,...,gm(φ).

Proof. Let us verify that G satisfies all the properties of wk-winning Res(⊕) strategy:

• By definition, for every Φ ∈ G, rk(Φ) ≤ wk.

• By Lemma 5.5, for every Φ ∈ G and every clause C ′ from Liftg1,g2,...,gm(φ), there exists a solution of
Φ that satisfies C ′.

• Let us show that if Ψ is a linear system and for some Φ ∈ G, Φ semantically implies Ψ, then Ψ ∈ G.
Indeed, since Φ semantically implies Ψ, L(Ψ) ⊆ ⟨L(Φ)⟩. Then by Lemmas 4.4 and 4.5, Cl(k)(L(Ψ)) ⊆
Cl(k)(L(Φ)). Clear that rk(Ψ) ≤ rk(Φ) ≤ wk. Since, Φ ∈ G there exist τ ∈ H and there is a solution σ

of Φ such that inducedg1,g2,...,gm(σ) coincides with τ on Cl(k)(L(Φ)). Notice that σ is also a solution

of Ψ and inducedg1,g2,...,gm(σ) coincides with h on Cl(k)(L(Ψ)). Hence Ψ is in G.

• Finally, we need to show that for any Φ ∈ G with rk(Φ) < wk and for every linear form f , there exists
a constant a ∈ F2 such that Φ ∧ (f = a) ∈ G.
There exist τ ∈ H and a solution σ of Φ such that inducedg1,g2,...,gm(σ) coincides with τ on Cl(L(Φ)).

W.l.o.g., assume that the domain of τ is precisely Cl(L(Φ)). By Lemma 4.6, |(Cl(k)(L(Φ) ∪ {f}))| ≤
(rk(Φ) + 1)/k ≤ w. By the properties of H there is π ∈ H such that τ ⊆ π and π is defined on

Cl(k)(L(Φ) ∪ {f}); indeed, we can extend τ for all variables from Cl(k)(L(Φ) ∪ {f}) \Cl(L(Φ)) one by
one. Using Lemma 5.4, we can find a solution θ of Φ such that inducedg1,g2,...,gm(θ) coincides with
π on Cl(L(Φ) ∪ {f})). Let a be a value of linear form f on the solution θ. Then θ clearly satisfies
Φ ∧ {f = a}. On the other hand, inducedg1,g2,...,gm(θ) coincides with π on Cl(L(Φ) ∪ {f})). Thus
Φ ∧ {f = a} ∈ G.

7 Freedom in the lifted world

In this section, we demonstrate that the wk-winning Res(⊕)-strategy obtained through the lifting in
Lemma 6.3 enjoys a high degree of freedom. Consider a sequence of winning positions Φ1,Φ1, . . . ,Φwk+1,
where Φ0 is the empty position and Φi+1 = Φi∧ (fi+1 = ai+1). We show that in the regime k ≈ ℓ, for almost
all indices i ∈ [wk], the current position Φi can be extended to a winning position for either assignment of
the next linear form fi+1.

Let A be a set of partial assignments for the variables of φ. We assume that A is proper for φ, that is,
it satisfies the following properties:

• for all ρ ∈ A and σ ⊆ ρ, σ ∈ A (closure under restrictions);

• for all σ ∈ A, σ does not falsify any clause of φ.

15

We introduce the (φ,A)-game of Prover and Adversary. The game proceeds as follows: the players
maintain a partial assignment ρ to the variables of φ, starting from the empty assignment. In each move,
Prover chooses a variable x, after which Adversary earns one coin and selects a Boolean value a for x. The
assignment is updated to ρ := ρ ∪ {x := a}. The game ends once ρ leaves the set A. The Adversary’s goal
is to collect as many coins as possible.

Proposition 7.1. Let A be a w-winning resolution strategy for φ. Then A is proper, and in the (φ,A)-game
Adversary has a strategy that guarantees him at least w coins.

Proof. The proof is straightforward.

Let φ be an unsatisfiable CNF formula and let G be a set of linear systems over the variables of φ. By
analogy, we say that G is proper if it satisfies the following conditions:

• Every linear system in G is consistent with all clauses of φ;

• For every Φ ∈ G, any linear system Ψ such that Φ |= Ψ also belongs to G.

Similar to Prover-Delayer games from Section 2, we define a (φ,G)-⊕-game of Prover and Delayer. In
this game, two players, Prover and Delayer, maintain a linear system Φ in variables of φ that initially is
the empty linear system (i.e., constant true). On every move, Prover chooses a linear form f that does not
belong to ⟨L(Φ)⟩, and Delayer has two options:

• Delayer can earn a white coin and reports ∗. Then, Prover chooses a Boolean value a of f .

• Delayer can earn a white coin and pay a black coin to choose a Boolean value a of f by himself.

The current linear system Φ is updated: Φ := Φ ∧ {f = a}. The game ends when Φ /∈ G.

Lemma 7.2. Let φ(y1, y2, . . . , ym) be an unsatisfiable CNF formula, and let A be a proper set of partial
assignments for φ. Suppose the Adversary has a strategy in the (φ,A)-game that guarantees him to earn at
least w coins. Let g1, g2, . . . , gm be a k-surjective collection of gadgets, and define G := S(A; g1, g2, . . . , gm) as
in Definition 6.2. Then, in the Prover–Delayer Res(⊕)-game for (Liftg1,g2,...,gm(φ),G), Delayer has a strategy
that allows him to earn at least wk white coins while paying at most (ℓ− k)w black coins.

Proof. Let us describe the Delayer’s strategy. In parallel, we will play the (φ,A)-game using the Adversary’s
strategy. Let Φ be the current linear system in the (Liftg1,g2,...,gm(φ),G)-game, and let ρ be the current
partial assignment in the (φ,A)-game. Initially, Φ is the empty linear system and ρ is the empty assignment.
Denote F := L(Φ). We maintain the following invariant: there exists a solution τ to Φ such that

inducedg1,g2,...,gm(τ)|Cl(k)(F) = ρ.

The Delayer continues the game until dim⟨F ⟩ ≤ wk, which guarantees him wk white coins, since every
request made by the Prover is linearly independent of all previous ones.

To describe Delayer’s strategy, consider a step in which Prover requests the value of a linear form f .

• If Cl(k)(F) = Cl(k)(F ∪ {f}) and f [\Cl(k)(F)] is in ⟨F [\Cl(k)(F)]⟩, then Delayer chooses a value f [τ]
and pays a black coin.

• If Cl(k)(F) = Cl(k)(F ∪ {f}) and f [\Cl(k)(F)] is not in ⟨F [\Cl(k)(F)]⟩, then Delayer answers ∗. In
this case, a ∈ {0, 1} is choosen by Prover. Let ρ denote the restriction of τ to variables with support

Cl(k)(F). The new linear system Φ ∧ (f = a) has the solution with the same values of variables from
the domain of ρ as the solution τ since we just added a linearly independent equation to the satisfiable
linear system Φ|ρ.

16

• In the last case, we have Cl(k)(F∪{f})\Cl(k)(F) = T for some nonempty set T . If |Cl(k)(F∪{f})| ≤ w,
we extend ρ to a partial assignment ρ′ on Cl(k)(F ∪ {f}) according to the Adversary’s strategy. By
Lemma 5.4, there exists a solution τ ′ of Φ such that

inducedg1,g2,...,gm(τ ′)
∣∣
Cl(k)(F∪{f}) = ρ′.

Delayer then selects a value a = f [τ ′], pays one black coin, and updates the state as follows:

Φ := Φ ∧ (f = a), ρ := ρ′, τ := τ ′.

If instead |Cl(k)(F ∪{f})| > w, Delayer gives up, ensuring that Cl(k)(F) always remains of size at most
w.

We claim that at any time before Delayer gives up, the quantity k|Cl(k)(F)|+dim⟨F [\Cl(k)(F)]⟩ records
the number of answers ∗. We prove this by induction on the number of moves made. The base corresponds
to the start of the game, and the statement is trivial.

If Cl(k)(F) = Cl(k)(F ∪ {f}) and f [\Cl(k)(F)] is in ⟨F [\Cl(k)(F)]⟩, then Delayer does not answer ∗,
dim⟨F [\Cl(k)(F)]⟩ and Cl(k)(F) are not changed.

If Cl(k)(F) = Cl(k)(F ∪ {f}) and f [\Cl(k)(F)] is not in ⟨F [\Cl(k)(F)]⟩, then Delayer answers ∗,
dim⟨F [\Cl(k)(F)]⟩ increases by one, and Cl(k)(F) does not change.

If T = Cl(k)(F ∪ {f}) \ Cl(k)(F) ̸= ∅, then Delayer does not earn a coin, Cl(k)(F) increases by |T | and,
by Lemma 4.7, dim⟨F [\Cl(F)]⟩ decreases by k|T |. This finishes the inductive step.

At the moment when Delayer gives up, the number of black coins paid equals the number of answers
different from ∗. This quantity is

dim⟨F ⟩ − k|Cl(k)(F)| − dim⟨F [\Cl(k)(F)]⟩,

which, by Lemma 4.2, is equal to

dim{f ∈ ⟨F ⟩ | supp(f) ⊆ Cl(k)(F)} − k|Cl(k)(F)|.

Since this is at most (ℓ− k)|Cl(k)(F)| ≤ w(ℓ− k), the claim follows.

The proof of Lemma 7.2 is very similar to the proof of the tree-like Res(⊕) lower bound for the binary
pigeonhole principle from [16].

8 SETH-Type Lower Bound for Bounded-Depth Res(⊕)
In this section, we prove our main result.

We say that a Res(⊕) refutation contains an (a, b)-path if, in the parity decision DAG associated with the
refutation, there exists a node v such that the path from the source to v passes through at least a linearly
independent linear forms, and the path from v to a sink passes through at least b linearly independent linear
forms.

We say that a Res(⊕) refutation is (a, b)-path-free if it does not contain any (a, b)-paths.

Proposition 8.1. If depth of a Res(⊕) refutation is less than a+ b, then it is (a, b)-path-free.

Proof. The proof is straightforward.

Theorem 8.2. Let φ(y1, y2, . . . , ym) be an unsatisfiable CNF formula whose minimal resolution width w
satisfies w ≥ (1 − δ)m. Let g1, g2, . . . , gm : {0, 1}ℓ → {0, 1} form a k-surjective collection of gadgets, where
ℓ− k ≤ ϵℓ. Then

17

• the width of any Res(⊕) refutation of Liftg1,g2,...,gm(φ) is at least mℓ(1− ϵ− δ);

• every ((1 − ϵ − δ)mℓ, 2(ϵ + δ)mℓ)-path-free Res(⊕) refutation of Liftg1,g2,...,gm(φ) has size at least
2mℓ(1−4ϵ−3δ).

Proof. By Lemma 2.1, there exists a w-winning resolution strategy A for φ. Define

G := {Φ ∈ S(A; g1, g2, . . . , gm) | rk(Φ) ≤ wk},

where S is as in Definition 6.2. Then, by Lemma 6.3, G forms a wk-winning Res(⊕) strategy for
Liftg1,g2,...,gm(φ). Consequently, by Lemma 6.1, the width of any Res(⊕) refutation of Liftg1,g2,...,gm(φ)
is at least wk ≥ (1− ϵ− δ)mℓ.

Consider a Res(⊕) refutation of Liftg1,g2,...,gm(φ) of depth at most mℓ, together with its associated parity
decision DAG. Let τ be a random full assignment to the lifted variables X. We define a path in the parity
decision DAG induced by τ as follows: we start at the source and, at each step, follow the outgoing edge
whose labeling linear equation is satisfied by τ . We proceed the path until we meet wk linearly independent
linear forms, if a sink is reached before, the path terminates there. The random variable of interest is the
linear system labeling the node at the end of this path.

The same distribution can be generated by the following random process. We start at the source.
Whenever the queried linear form is linearly independent of all previous queries along the current path, we
follow a uniformly random outgoing edge. If instead the queried linear form is linearly dependent on the
previous ones, we deterministically follow the edge dictated by the linear system defined by the labels of the
edges already traversed.

Consider a (φ,A)-game of Prover and Adversary. By Proposition 7.1, in the (φ,A)-game Adversary has
a strategy that guarantees him at least w coins. By Lemma 7.2, in the (Liftg1,g2,...,gm(φ),G)-game Delayer
has a strategy that guarantees him at least wk white coins while paying at most w(ℓ− k) black coins.

Under the second view of the random process, the existence of the Delayer’s strategy implies that, with
probability at least 2−w(ℓ−k), the linear system encountered along the path is consistent with the Delayer’s
strategy. Consequently, with probability at least 2−w(ℓ−k), the linear system Ψ defined by the edges of the
random walk belongs to G. Moreover, the linear system Φ labeling the endpoint of the path is a semantic
consequence of Ψ; hence, in this case, we also have Φ ∈ G.

Claim 8.3. Assume that a node v of the parity decision DAG is at distance wk from the source and is
labeled with a linear system Φv ∈ G. Then the rank of Φv is at least ml(1− 3ϵ− 3δ).

Proof. Consider a path in the parity decision DAG starting from a node v, where at each step we move from
a vertex u along the edge labeled by fu := a such that Φu ∪ {fu := a} ∈ G. Let u′ denote the endpoint of
this edge. Since G is a winning Res(⊕) strategy and by the properties of the parity decision DAG, Φu′ ∈ G.
Since G is a wk-winning Res(⊕) strategy, we can construct a path that contains at least wk− rk(Φv) linearly
independent linear forms. As the parity decision DAG does not contain ((1 − ϵ − δ)mℓ, 2(ϵ + δ)mℓ)-path,
wk − rk(Φv) ≤ 2(ϵ+ δ)mℓ, hence rk(Φv) ≥ wk − 2(ϵ+ δ)mℓ ≥ ml(1− 3ϵ− 3δ).

Note that any linear system of rank at least t is satisfied by a random assignment τ with probability at
most 2−t. Since, with probability at least 2−w(ℓ−k), the endpoint of a random path satisfies the conditions
of Claim 8.3 (we refer to this as a lucky event), the number of distinct nodes that can appear as endpoints
of the random path in lucky events is at least

2−w(ℓ−k)

2−mℓ(1−3ϵ−3δ)
≥ 2mℓ(1−4ϵ−3δ).

Corollary 8.4. For any ϵ > 0 for all large enough n there exists m = O(log n ·poly(1/ϵ)) and N = O(n logn
ϵ)

and an unsatisfaible m-CNF formula φ over N variables and of size npoly(1/ϵ) such that

18

• any Res(⊕) refutation of φ has width at least N(1− ϵ);

• any Res(⊕) refutation of φ that is free of ((1− ϵ)N, 2ϵN)-paths has size at least 2(1−
7
2 ϵ)N .

Proof. Let us choose δ = ϵ/2.
By Lemma 2.9, there exists m1 = Õ(1/δ3) such that for large enough n there exists an unsatisfiable

formula ψ in m1-CNF over n variables such that resolution width of ψ is at least (1− δ)n.
Let us choose ϵ′ = ϵ/2 and ℓ = O(logn

ϵ) such that 2ϵ
′ℓ/2 > (ℓn)2 + ℓn+n and there exists integer number

k such that (1− ϵ′)ℓ ≤ k ≤ (1− ϵ′/2)ℓ. Then by Theorem 5.8, there exists a k-surjective collection of gadgets
g1, g2, . . . gn : {0, 1}ℓ → {0, 1}.

Let φ = Liftg1,g2,...,gn(ψ) and let N := nℓ denote the number of variables of φ. By Theorem 8.2,

• any Res(⊕) refutation of φ has width at least N(1− ϵ1 − δ) = N(1− ϵ);

• any ((1− ϵ)N, 2ϵN)-path-free Res(⊕) refutation of φ has size at least 2N(1− 7
2 ϵ).

The number of variables of φ is N = nℓ = O(n log n/ϵ). The CNF representation of Liftg1,g2,...,gn(ψ) is
constructed as follows. For each clause C of ψ, we translate Liftg1,g2,...,gn(C) into CNF and then take the
conjunction of all these translations over all clauses C of ψ.

The formula Liftg1,g2,...,gn(C) involves ℓm1 = log n · poly(1/ϵ) variables. Hence, for any clause C of ψ,
the formula Liftg1,g2,...,gn(C) can be represented as an O(log n · poly(1/ϵ))-CNF formula of size npoly(1/ϵ).
Since ψ is an m1-CNF formula, it contains at most npoly(1/ϵ) clauses. Therefore, Liftg1,g2,...,gn(ψ) can be
represented as an O(log n · poly(1/ϵ))-formula of overall size npoly(1/ϵ).

A Proofs of facts about k-closure

A.1 Proof of Theorem 4.1

The following theorem generalizes the classical Hall’s theorem.

Theorem A.1 ([30]). Suppose that L is a vector space, V1, V2, . . . , Vn are sets of vectors from L such that for
every A ⊆ [n] the dimension of ⟨∪i∈AVi⟩ is at least |A|. Then there exist vectors v1 ∈ V1, v2 ∈ V2, . . . , vn ∈ Vn
such that v1, v2, . . . , vn are linearly independent.

Corollary A.2. Suppose that L is a vector space, V1, V2, . . . , Vn are sets of vectors from L and s ∈ [n] is
such that for every A ⊆ [n] the dimension of ⟨∪i∈AVi⟩ is at least k|A| − s. Then there exist pairwise disjoint
sets U1, U2, . . . , Un such that for every j ∈ [n], Uj ⊆ Vj , |Uj | ≤ k, all vectors from the set

⋃
i∈[n] Ui are

linearly independent, and
∑n

i=1 |Ui| = kn− s.

Proof. The proof proceeds by a reduction to Theorem A.1. First, choose a set S of s linearly independent
vectors that is also independent of ⟨

⋃n
i=1 Vi⟩. If L does not contain such s vectors, we embed L into a larger

vector space and locate these s vectors there. Now construct nk sets as follows: for each i ∈ [n], take k copies
of Vi∪S. By construction, these nk sets satisfy the assumptions of Theorem A.1, and therefore we can select
linearly independent representatives, one from each set. Finally, discard those representatives that lie in S.
Since at most s of them can come from S, the remaining representatives form the desired family.

Theorem 4.1. Let f1, f2, . . . , fs be linearly independent linear forms and let M be their coefficient matrix.
Then the following conditions are equivalent.

(1) The set of linear forms f1, f2, . . . , fs is k-safe.

(2) For every set T ⊆ [m], the dimension of the span of the set of columns of M corresponding to the
variables with support in T is at least k|T | − (km− s).

19

(3) One can choose s variables such that for every block at most k variables are chosen from this block and
the columns of M corresponding to the s chosen variables are linearly independent. Since the rank of
M is s, the chosen columns form the basis of the span of M ’s columns.

Proof of Theorem 4.1. Let us prove the equivalence of the first two conditions. Consider an arbitrary set of
blocks T ⊆ [m]. Consider a submatrix MT of M that contains only the columns indexed by variables with
support in T . Consider the vector space VT ⊆ {0, 1}s consisting of all vectors that have zero inner product
with every column of MT . The dimension of VT equals s − rk(MT). Consider the space HT = ⟨

∑
αifi |

α ∈ VT ⟩. Notice that HT = {g ∈ ⟨f1, f2, . . . , fs⟩ | supp(g) ⊆ [m] \ T}. Since f1, f2, . . . , fs are linearly
independent, dimHT = dimVT = s− rk(MT).

The set f1, f2, . . . , fk is k-safe if and only if for every T ⊆ [m], dimHT ≤ k(m− |T |) which is equivalent
to rk(MT) ≥ s− k(m− |T |). Thus, items (1) and (2) are equivalent.

Now assume (2) and let us prove (3). Consider sets of vectors V1, V2, . . . , Vm, where Vi consists of
columns of M corresponding to the block i (i.e. to variables with support {i}). By Corollary A.2 applied
to V1, V2, . . . , Vm and (km− s), there exist pairwise disjoint sets U1, U2, . . . , Um such that for every j ∈ [m]
Uj ⊆ Vj , |Uj | ≤ k, all vectors from the set

⋃
i∈[m] Ui are linearly independent, and

∑m
i=1 |Ui| = s. Let us

choose variables corresponding to the columns from ∪i∈[m]Ui, the number of chosen variables is s, every
block contains at most k chosen variables, and all columns corresponding to them are linearly independent.
Thus, the third condition holds.

Finally, assume that the third condition holds and there are s chosen linearly independent columns of
M such that each block contains at most k chosen columns. Let T ⊆ [m]. At most km− k|T | of the chosen
columns have their corresponding block in [m] \ T , hence there are at least s − km + k|T | of the chosen
columns with their corresponding block in T . Therefore, the dimension of the span of the set of columns
of M corresponding to variables with support in T is at least k|T | − (km − s). I.e., the second condition
holds.

A.2 Uniqueness of k-closure

A set of linear forms F is minimally k-dangerous if it is k-dangerous and ⟨F ⟩ does not contain a k-dangerous
set with strictly smaller support than the support of F . Recall that a k-dangerous set is necessarily linearly
independent.

Lemma A.3. Let H be a minimally k-dangerous set and S be a strict subset of supp(H). Then H[\S] is
not k-safe.

Proof. Because H is k-dangerous, dim⟨H⟩ = |H| > k|supp(H)|. Since H is minimally k-dangerous, k|S| ≥
dim⟨{h ∈ ⟨H⟩ | supp(h) ⊆ S}⟩. By Lemma 4.2, dim⟨H[\S]⟩ = dim⟨H⟩ − dim⟨{h ∈ ⟨H⟩ | supp(h) ⊆ S}⟩ >
k|supp(H)| − k|S|. Hence a basis of H[\S] is k-dangerous.

Lemma 4.3. (Uniqueness) For any F its k-closure is unique.

Proof. Let S1 and S2 be two different k-closures of F . Then S1 ∩ S2 is not a closure. Hence ⟨F [\(S1 ∩ S2)]⟩
contains a k-dangerous set and hence it contains a minimally k-dangerous set H. Since supp(H) ⊆ [m] \
(S1 ∩ S2), either S1 or S2 does not contain supp(H). W.l.o.g. assume that S1 does not contain supp(H).
Then by Lemma A.3, the set H[\S1] = H[\(S1 ∩ supp(H))] is not k-safe. Since H ⊆ ⟨F [\(S1 ∩ S2)]⟩, we
have H[\S1] ⊆ ⟨F [\S1]⟩. This is a contradiction since S1 is a k-closure of F and so ⟨F [\S1]⟩ (and hence all
its subsets) has to be k-safe.

A.3 Size bound on k-closure

Lemma A.4. Let S ⊆ Cl(k)(F) and let ⟨F [\S]⟩ contain a minimally k-dangerous set H. Then supp(H) ⊆
Cl(k)(F).

20

Proof. Assume that supp(H) ̸⊆ Cl(k)(F), then (Cl(k)(F) ∩ supp(H)) ⊊ supp(H). By Lemma A.3,

H[\(Cl(k)(F) ∩ supp(H))] = H[\Cl(k)(F)] is not k-safe. Since H ⊆ ⟨F [\S]⟩, we have H[\Cl(k)(F)] ⊆
⟨F [\Cl(k)(F)]⟩ and this is a contradiction, since ⟨F [\Cl(k)(F)]⟩ and all its subsets have to be k-safe by the
definition of the k-closure.

Algorithm A.5. Input: a set of linear forms F .

1. S ← ∅;

2. While ⟨F [\S]⟩ contains k-dangerous sets:

• Find a minimally k-dangerous set in ⟨F [\S]⟩. Let T be its support.

• S ← S ∪ T .

3. Return S.

Corollary A.6. Algorithm A.5 computes Cl(k)(F).

Proof. Each iteration of the loop increases S. Since S ⊆ [m], the algorithm stops in a finite number of steps.
Let S′ ⊆ [m] be the output of the algorithm.

Let us prove by induction that S ⊆ Cl(k)(F) at every moment during the execution of Algorithm A.5.
Initially, S := ∅, so the assertion holds. The induction step follows by Lemma A.4.

It follows that S′ ⊆ Cl(k)(F). We also know that F [\S′] is k-safe. Thus, S′ = Cl(k)(F).

Lemma 4.6. (Size bound) k|Cl(k)(F)|+ dim⟨F [\Cl(k)(F)]⟩ ≤ dim⟨F ⟩, and hence |Cl(k)(F)| ≤ 1
k dim⟨F ⟩.

Proof. We prove by induction that during the execution of Algorithm A.5 the following inequality holds:
k|S|+ dim⟨F [\S]⟩ ≤ dim⟨F ⟩. Since the algorithm outputs S = Cl(k)(F), we get the required inequality.

At the start of the algorithm, the inequality holds. Let us show that it holds after each step. Suppose
the algorithm has found in ⟨F [\S]⟩ a minimally k-dangerous set H with support T . As H ⊆ {f ∈ ⟨F [\S]⟩ |
supp(f) ⊆ T}, we have dim{f ∈ ⟨F [\S]⟩ | supp(f) ⊆ T} ≥ dim⟨H⟩ > k|T |.

By Lemma 4.2, dim{f ∈ ⟨F [\S]⟩ | supp(f) ⊆ T} = dim⟨F [\S]⟩ − dim⟨F [\(S ∪ T)]⟩. Therefore,
dim⟨F [\(S ∪ T)]⟩ < dim⟨F [\S]⟩ − k|T |.

Finally, k|S ∪ T |+dim⟨F [\(S ∪ T)]⟩ < k|S|+ k|T |+dim⟨F [\S]⟩ − k|T | = k|S|+dim⟨F [\S]]⟩ ≤ dim ⟨F ⟩.
In the last inequality, we use the inductive hypothesis.

A.4 Increment of k-closure

Lemma A.7. Let F be k-safe and f1, f2, . . . , fks be linearly independent elements of ⟨F ⟩ such that
supp(f1, f2, . . . , fks) = T and |T | = s. Then the set F [\T] is k-safe.

Proof. We argue by contradiction. Let g1, g2, . . . , gt be a linearly independent set from ⟨F [\T]⟩ with support
S and k|S| ≤ t− 1. Let g′1, g

′
2, . . . , g

′
t be elements of ⟨F ⟩ such that g′i[\T] = gi.

Then supp({f1, f2, . . . , fks, g′1, . . . , g′t}) ⊆ S ∪ T and the size of S ∪ T is at most s + t−1
k . To get a

contradiction, we verify that all these forms are linearly independent. Indeed, assume that
∑ks

i=1 αifi +∑t
j=1 βig

′
i = 0. By applying [\T] operator to this equation we get

∑t
j=1 βigt = 0, hence βi = 0 for i ∈ [t].

Since f1, f2, . . . , fks are linearly independent, we get that αi = 0 for i ∈ [ks].

Lemma 4.7. (Increment) Let F be a set of linear forms and f be a linear form such that Cl(k)(F ∪{f}) ̸=
Cl(k)(F). Then

dim⟨F [\Cl(k)(F)]⟩ − dim⟨(F ∪ {f})[\Cl(k)(F ∪ {f})]⟩ = k(|Cl(k)(F ∪ {f})| − |Cl(k)(F)|).

21

Proof. Since Cl(k)(F ∪{f}) is strictly greater than Cl(k)(F), the set (F ∪f)[\Cl(k)(F)] is not k-safe. Consider
an arbitrary minimally k-dangerous set of linear forms h1, h2, . . . , hs in ⟨(F∪f)[\Cl(k)(F)]⟩. For every i ∈ [k],

either hi ∈ ⟨F [\Cl(k)(F)]⟩ or hi ∈ f [\Cl(k)(F)] + ⟨F [\Cl(k)(F)]⟩. We can assume that h1, h2, . . . , hs have

been chosen such that I := {i ∈ [s] | hi ∈ f [\Cl(k)(F)] + ⟨F [\Cl(k)(F)]⟩} has the minimum cardinality. We

know |I| ≥ 1, otherwise Cl(k)(F) is not the correct closure. Moreover, it is easy to see that |I| = 1. Indeed,
if i1 ̸= i2 ∈ I, then we can replace the form hi1 in h1, h2, . . . , hk with hi1 + hi2 ; this alters neither the linear

independence nor the support, but hi1 + hi2 ∈ ⟨F [\Cl
(k)(F)]⟩, a contradiction with the minimality of |I|.

W.l.o.g. assume that hi ∈ ⟨F [\Cl(k)(F)]⟩ for i ∈ [s− 1] and hs ∈ f [\Cl(k)(F)] + ⟨F [\Cl(k)(F)]⟩.
Let T = supp(h1, h2, . . . , hs), then T ⊆ [m] \Cl(k)(F). Note that s = |T |k+1, since if the support of the

set h1, h2, . . . , hs were smaller, then the set h1, h2, . . . , hs−1 would be dangerous and in ⟨F [\Cl(k)(F)]⟩.

Claim A.8. f [\(Cl(k)(F) ∪ T)] ∈ ⟨F [\(Cl(k)(F) ∪ T)]⟩.

Proof. Let us apply the linear operator [\T] to the statement f [\Cl(k)(F)] + hs ∈ ⟨F [\Cl(k)(F)]⟩. Since

hs[\T] = 0, we get f [\(Cl(k)(F) ∪ T)] ∈ ⟨F [\(Cl(k)(F) ∪ T)]⟩.

Claim A.9. T = Cl(k)(F ∪ {f}) \ Cl(k)(F).

Proof. By monotonicity, Cl(k)(F) ⊆ Cl(k)(F ∪{f}). Since h1, h2, . . . , hs is minimally k-dangerous, it follows

by Lemma A.4 that T ⊆ Cl(k)(F ∪ {f}). The set h1, h2, . . . , hs−1 is safe, hence |supp({h1, h2, . . . , hs−1})| =
s−1
k , and so supp({h1, h2, . . . , hs−1}) = T . Consequently, Lemma A.7 applied to F [\Cl(k)(F)] and

h1, h2, . . . , hs−1 shows that F [\(Cl(k)(F) ∪ T)] is safe. By Claim A.8, ⟨F [\(Cl(k)(F) ∪ T)]⟩ = ⟨(F ∪
{f})[\(Cl(k)(F) ∪ T)]⟩, hence (F ∪ {f})[\(Cl(k)(F) ∪ T)] is also safe. Thus, Cl(k)(F ∪ {f}) = Cl(k)(F) ∪ T .
As T ⊆ [m] \ Cl(k)(F), the claim follows.

Consider the space {g ∈ ⟨F [\Cl(k)(F)]⟩ | supp(g) ⊆ T}; by the definition of closure its dimension is at
most k|T |, but as it contains all h1, h2, . . . , hs−1, the dimension is exactly k|T |.

By Lemma 4.2, dim⟨F [\Cl(k)(F)]⟩−dim⟨F [\(Cl(k)(F)∪T)]⟩ = dim{g ∈ ⟨F [\Cl(k)(F)]⟩ | supp(g) ⊆ T} =
k|T |. By Claim A.8, ⟨F [\(Cl(k)(F) ∪ T)]⟩ = ⟨(F ∪ {f})[\(Cl(k)(F) ∪ T)]⟩ = ⟨(F ∪ {f})[\Cl(k)(F ∪ {f})]⟩.
Thus,

dim⟨F [\Cl(k)(F)]⟩ − dim⟨(F ∪ {f}) [\Cl(k)(F ∪ {f})]⟩ = k|T | = k(|Cl(k)(F ∪ {f})| − |Cl(k)(F)|).

Acknowledgements The authors are grateful to Jonathan Mosheiff and Sergey Komech for fruitful dis-
cussions on the existence of k-surjective gadget collections, and to Navid Talebanfard for pointing out earlier
uses of random gadgets. The authors also thank Susanna de Rezende for her motivating question, which
ultimately led to substantially strengthening the results of this paper.

References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for LCS and
other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages
59–78. IEEE Computer Society, 2015.

[2] Yaroslav Alekseev and Dmitry Itsykson. Lifting to bounded-depth and regular resolutions over parities
via games. In Michal Koucký and Nikhil Bansal, editors, Proceedings of the 57th Annual ACM Sympo-
sium on Theory of Computing, STOC 2025, Prague, Czechia, June 23-27, 2025, pages 584–595. ACM,
2025.

22

[3] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution width. Journal of
Computer and System Sciences, 74(3):323–334, 2008. Computational Complexity 2003.

[4] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018.

[5] Christopher Beck and Russell Impagliazzo. Strong ETH holds for regular resolution. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 487–494. ACM, 2013.

[6] Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polynomials. SIAM J. Comput.,
41(4):880–914, 2012.

[7] Sreejata Kishor Bhattacharya and Arkadev Chattopadhyay. Exponential lower bounds on the size of
reslin proofs of nearly quadratic depth. Electron. Colloquium Comput. Complex., TR25-106, 2025.

[8] Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvorák. Exponential separation
between powers of regular and general resolution over parities. In Rahul Santhanam, editor, 39th
Computational Complexity Conference, CCC 2024, July 22-25, 2024, Ann Arbor, MI, USA, volume 300
of LIPIcs, pages 23:1–23:32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[9] Ilario Bonacina and Navid Talebanfard. Improving resolution width lower bounds for k-cnfs with ap-
plications to the strong exponential time hypothesis. Inf. Process. Lett., 116(2):120–124, 2016.

[10] Ilario Bonacina and Navid Talebanfard. Strong ETH and resolution via games and the multiplicity of
strategies. Algorithmica, 79(1):29–41, 2017.

[11] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square: On the complexity of some
quadratic-time solvable problems. In Pierluigi Crescenzi and Michele Loreti, editors, Proceedings of the
16th Italian Conference on Theoretical Computer Science, ICTCS 2015, Firenze, Italy, September 9-11,
2015, volume 322 of Electronic Notes in Theoretical Computer Science, pages 51–67. Elsevier, 2015.

[12] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic
algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 661–670. IEEE Computer Society,
2014.

[13] Farzan Byramji and Russell Impagliazzo. Lower bounds for the bit pigeonhole principle in bounded-
depth resolution over parities. Electron. Colloquium Comput. Complex., TR25-118, 2025.

[14] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan
Schneider. Nondeterministic extensions of the strong exponential time hypothesis and consequences for
non-reducibility. In Madhu Sudan, editor, Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 261–270. ACM,
2016.

[15] Arkadev Chattopadhyay, Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif. Lifting to parity decision
trees via stifling. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science
Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of
LIPIcs, pages 33:1–33:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[16] Klim Efremenko, Michal Garĺık, and Dmitry Itsykson. Lower bounds for regular resolution over parities.
SIAM J. Comput., 54(4):887–915, 2025. Preliminary version appeared in Proceedings of STOC 2024.

[17] Klim Efremenko and Dmitry Itsykson. Amortized closure and its applications in lifting for resolution
over parities. In Srikanth Srinivasan, editor, 40th Computational Complexity Conference, CCC 2025,
August 5-8, 2025, Toronto, Canada, volume 339 of LIPIcs, pages 8:1–8:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2025.

23

[18] Svyatoslav Gryaznov, Sergei Ovcharov, and Artur Riazanov. Resolution over linear equations: Combi-
natorial games for tree-like size and space. ACM Trans. Comput. Theory, jul 2024. Just Accepted.

[19] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci.,
62(2):367–375, 2001.

[20] Dmitry Itsykson and Alexander Knop. Supercritical tradeoff between size and depth for resolution over
parities. Electron. Colloquium Comput. Complex., TR25-116, 2025. To appear in Proceedings of ITCS
2026.

[21] Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by linear combinations. In Erzsébet
Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations of Computer
Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014.
Proceedings, Part II, volume 8635 of Lecture Notes in Computer Science, pages 372–383. Springer, 2014.

[22] Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Ann. Pure Appl.
Log., 171(1), 2020.

[23] Hamidreza Jahanjou, Eric Miles, and Emanuele Viola. Local reduction. Inf. Comput., 261:281–295,
2018.

[24] Mihai Pătraşcu and Ryan Williams. On the possibility of faster SAT algorithms. In Moses Charikar,
editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, pages 1065–1075. SIAM, 2010.

[25] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved exponential-time
algorithm for k -sat. J. ACM, 52(3):337–364, 2005.

[26] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chic. J. Theor.
Comput. Sci., 1999, 1999.

[27] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k -sat (preliminary
version). In David B. Shmoys, editor, Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages 128–136. ACM/SIAM, 2000.

[28] Pavel Pudlák. Proofs as games. The American Mathematical Monthly, 107(6):541–550, 2000.

[29] Dominik Scheder, Bangsheng Tang, Shiteng Chen, and Navid Talebanfard. Exponential lower bounds
for the PPSZ k -sat algorithm. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013, pages 1253–1263. SIAM, 2013.

[30] D.J.A. Welsh. Generalized versions of Hall’s theorem. Journal of Combinatorial Theory, Series B,
10(2):95–101, 1971.

[31] Richard Ryan Williams. Strong ETH breaks with merlin and arthur: Short non-interactive proofs of
batch evaluation. In Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May
29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016.

[32] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J. Comput.,
42(3):1218–1244, 2013.

[33] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.

24

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

