
The Oracle Derandomization Hypothesis is False (And More)

Assuming No Natural Proofs

November 18, 2025

Abstract

Razborov and Rudich’s natural proofs barrier roughly says that it is computationally hard to certify
that a uniformly random truth table has high circuit complexity. In this work, we show that the natural
proofs barrier (specifically, Rudich’s conjecture that there are no NP-constructive natural properties
against P/poly) implies the following important consequences in derandomization, proof complexity, and
cryptography.

1. Derandomization: Fortnow and Santhanam’s Oracle Derandomization Hypothesis is false.
In particular, this means that one cannot use the hardness-versus-randomness paradigm to deran-
domize data structures, at least in the straightforward way. Our result is the first direct evidence
that the Oracle Derandomization Hypothesis is false. As a corollary, we also get the first average-
case hardness result for the Circuit Range Avoidance Problem (Avoid).

2. Proof Complexity: There is a single non-uniform proof complexity generator secure
against all proof systems. This is the first construction of such a proof complexity genera-
tor under any complexity assumption. Indeed, it was previously not clear whether such an object
should exist.

3. Cryptography: In the non-uniform setting, zero-knowledge does not require interaction.
We construct a non-uniform, truly non-interactive prover and verifier where the verifier is perfectly
sound and the prover has every “falsifiable” consequence of being zero-knowledge. Thus, in the
non-uniform setting, we bypass a classical impossibility result of Goldreich and Oren that says
zero-knowledge proofs require interaction. This is the first construction of such an object.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 190 (2025)

1 Introduction

A central question in complexity theory is to understand the power of randomness. For example, are there
problems that have fast randomized algorithms but no fast deterministic algorithms (i.e., is P ̸= BPP)?
Historically, many researchers believed that the answer should be yes, i.e., P ̸= BPP.1

Indeed, it is easy to think of settings where randomness gives exponential power over deterministic
algorithms. For example, imagine you have query access to the bits of a string x ∈ {0, 1}2n , and you want
to distinguish whether x is all zero or is at least half ones. A randomized algorithm can query x on poly(n)
random indices and distinguish the two cases with exponentially small failure probability. On the other
hand, a deterministic algorithm must make Ω(2n) queries to distinguish the two cases.

Today, researchers generally believe that the example above gives the wrong intuition and that BPP
actually equals P. This reversal is in large part due to the discovery of the hardness-versus-randomness
paradigm [NW94]. For instance, one can utilize the truth table of a function f : {0, 1}n → {0, 1} that has
large circuit complexity to deterministically generate bits that — despite not being random — look random
to computationally bounded adversaries. In a celebrated result, Impagliazzo and Wigderson [IW97] use this
approach to show that P = BPP if E requires circuits of size 2Ω(n).

Thus, it may appear that, assuming one believes that sufficiently strong lower bounds hold, then hardness-
versus-randomness lets us more-or-less completely understand the power of randomness. But that is not quite
true. For instance, consider the setting of randomized data structures. In this setting, there is a data structure
D ∈ {0, 1}⋆ and a randomized algorithm A that solves some task given query access to D. Ideally, one wants
to replace A with a similarly efficient deterministic algorithm.

Can we do this using hardness-versus-randomness? It turns out that the natural way to do so requires
one to come up with a function f such that

• f is hard to compute even given oracle access to D, and

• the truth table of f is significantly shorter than |D| (this is needed for the derandomization overhead
to be efficient).

A random function f of the appropriate length will have both of these properties with high probability. But
if we want to derandomize the data structure, we want to generate such f deterministically. Can this be
done? In other words, given D ∈ {0, 1}⋆, can we quickly and efficiently generate such an f?

Fortnow and Santhanam’s [FS11] Oracle Derandomization Hypothesis hypothesizes that the answer is
yes. To aid readability, we state a slightly weaker informal version of the hypothesis below. Here CC(f | g)
denotes the size of the smallest circuit computing f with g-oracle gates. Throughout this paper we identify
a function f : {0, 1}n → {0, 1} and its 2n-bit truth table.

Hypothesis 1.1 (The Oracle Derandomization Hypothesis (Informal Version of Hypothesis 3.1)). There is
a deterministic polynomial time algorithm G that, given a 2n-bit string x, outputs a 2.01n-bit string y such
that CC(x|y) = 2Ω(n).

Fortnow and Santhanam use the Oracle Derandomization Hypothesis to rule out the existence of certain
types of PCPs (assuming the hypothesis is true). They also feel that the hypothesis is valuable for “test[ing]
our intuitions of which kinds of derandomization are plausible and which are not.” Indeed, its importance is
further bolstered by the aforementioned connection to derandomizing data structures.2 A frontier question
in derandomization is whether or not this hypothesis is true.

Question 1.2. Is the Oracle Derandomization Hypothesis true? Is there a plausible assumption under
which it is true or false?

1For one example, see the discussion of RP in [GMR85].
2This data structures perspective was suggested to us by Lijie Chen.

2

1.1 Our Results

We show that the natural proofs barrier [RR97] (specifically, Rudich’s conjecture [Rud97] that there are
no NP-constructive natural properties against P/poly, which we will explain soon) implies that the Oracle
Derandomization Hypothesis is false. We interpret this as strong evidence that the Oracle Derandomization
Hypothesis is indeed false and hence that using hardness-versus-randomness to derandomize data structures
does not work, at least in the most straightforward way.

Before we state our result, we discuss the natural proofs barrier and the precise assumption we use.
The core of Razborov and Rudich’s natural proof barrier is the assumption that there is no “P-constructive
natural property against P/poly.” Intuitively, this assumption says that it is hard to certify in polynomial-
time that a uniformly random 2n-bit truth table has superpolynomial circuit complexity. In follow-up work,
Rudich [Rud97] further conjectured that this hardness even holds for non-deterministic polynomial-time
algorithms.3 The formal definition is as follows.

Definition 1.3 (P and NP-constructive natural properties against P/poly [RR97; Rud97]). A polynomial-
time (respectively, non-deterministic polynomial-time) algorithm A is a P-constructive (respectively, NP-
constructive) natural property against P/poly if there exists an s = nω(1) such that for all sufficiently large n
we have that

• A(T) accepts at least half4 of all 2n-bit truth tables T

• A(T) rejects if T has a circuit of size at most s(n).

Using Rudich’s conjecture, we show that the Oracle Derandomization Hypothesis is false.

Theorem 1.4 (Less Detailed Theorem 3.3). Assume there are no NP-constructive natural properties against
P/poly. Then the Oracle Derandomization Hypothesis is false. In fact, even the Weak Oracle Derandomiza-
tion Hypothesis (defined below) is false.

Our proof refutes even a severe weakening of the Oracle Derandomization Hypothesis that (for lack of
a better name) we call the Weak Oracle Derandomization Hypothesis, which simultaneously weakens the
Oracle Derandomization Hypothesis in four different ways:

• Non-deterministic algorithm: G is now allowed to use non-determinism.

• Deterministic lower bound : We only require a lower bound against deterministic circuits instead of
non-deterministic circuits.

• Superpolynomial lower bound : We require a superpolynomial lower bound instead of an exponential
lower bound.

• Average-case correctness: We only require the algorithm works with zero-error on average on the
uniform distribution with zero-error.

In more detail, we have the following.

Hypothesis 1.5 (The Weak Oracle Derandomization Hypothesis). There is a non-deterministic polynomial-
time algorithm G that, given a 2n-bit string x, either outputs ? or a 2.01n-bit string y such that the smallest
x-oracle circuit for y has size nω(1). Additionally, G(x) ̸=? for at least a 2−2

.01n

fraction of all 2n-bit strings
x.

Besides being interesting in its own right, our refutation of the Weak Oracle Derandomization Hypothesis
has important consequences. As immediate corollaries, it resolves another frontier question in derandom-
ization (average-case hardness for the Circuit Range Avoidance Problem [KKMP21]) and also a frontier
question in proof complexity (a single proof complexity generator secure against all proof systems). We now
discuss these two corollaries and the necessary background.

3In fact, Rudich made the stronger conjecture that there are no NTIME[2poly logn]/poly-constructive natural properties against
P/poly.

4For readers familiar with natural properties, here we have set the largeness density to be half for simplicity.

3

The First Average-Case Hardness for Range Avoidance. The Circuit Range Avoidance Problem
(Avoid) [KKMP21] asks one to find a string y ∈ {0, 1}m that is outside the range of a length-increasing
circuit C : {0, 1}n → {0, 1}m. Since the circuit has more output bits than input bits, such a string must
exist. Indeed, a uniformly random m-bit string works with probability 1− 2n−m.

In recent years, there have been a flurry of works studying Avoid and its applications [Kor21; RSW22;
ILW23; CL24; CHLR23; GGNS23; KP24; CHR24; Li24; GLW25]. One of the main questions in these works
is understanding the complexity of solving Avoid deterministically. Recent work shows that no efficient
deterministic worst-case algorithm for Avoid exists under plausible assumptions [ILW23; CL24].5 It is easy
to see that an efficient deterministic algorithm for Avoid lets one deterministically generate a string with large
x-oracle circuit complexity (run Avoid on the “oracle truth table generator” circuit that maps descriptions
of x-oracle circuits to their truth table). As a result, an immediate corollary of our refutation of the weak
Oracle Derandomization Hypothesis is the first average-case hardness for Avoid.

Corollary 1.6 (Informal Corollary 3.7). Assume there are no NP-constructive natural properties against
P/poly. Then there is an efficiently samplable distribution on which Avoid is zero-error average-case hard
for non-deterministic polynomial-time algorithms.

A Single Proof Complexity Generator Secure Against All Proof Systems. Another (almost
immediate) corollary of our results is the first construction of a single non-uniform proof complexity generator
simultaneously secure against all proof systems.

We now explain what this means. In proof complexity, one is generally interested in understanding how
long proofs of coNP statements must be in various proof systems. In this setting, a proof system [CR79] for a
language L (e.g. L = UNSAT) is just a polynomial-time algorithm V (x, π) that takes as input a “statement”
string x and a “proof of membership in L” string π and either accepts or rejects. V is required to be sound
in the sense that if V (x, π) accepts then x ∈ L. One can also require completeness, but we will not need it.

An important and well-studied (e.g., [Kra01b; Kra04a; Kra04b; Kra05; Kra07; Kra11a; Kra11b; Pic11;
Raz15; RSW22; Kha22; Kra22]) notion in proof complexity is that of a proof complexity generator [ABRW04;
Kra01a]. Specifically, a proof complexity generator against a proof system V is a (possibly non-uniform)
length-increasing circuit Gn : {0, 1}n → {0, 1}m where for every string y ∈ {0, 1}m there are no poly(n)-
length V -proofs of the coNP statement that “y is not in the range of Gn.” Kraj́ıček [Kra04b] first raised the
possibility that there could be a single proof complexity generator that is simultaneously secure against all
proof systems.

Conjecture 1.7 (Kraj́ıček [Kra04b] (see also [Kra22, Conjecture 1.1])). There is a single proof complexity
generator secure against all proof systems.

We remark that it would be quite surprising if such a generator G could be computable in uniform
polynomial-time, at least when m ≥ n+ω(1). This is because any string y with t-time-bounded Kolmogorov
complexity6 greater than n+O(1) for a sufficiently large polynomial t must be outside the range of G (since
otherwise one could get a short description for y by giving a pre-image of it and running G on it). It seems
plausible that one can generate a sequence of such y in uniform polynomial-time [KS25] and thus get a
P-uniform sequence of strings that are outside the range of G. Then there is a trivial proof system V which
knows the description of these strings and has short proofs that they are not in the range of G.

As a result, to get a single proof complexity generator secure against all proof systems it seems like
one must necessarily consider non-uniform proof complexity generators. Indeed this is what we get. An
immediate consequence of Theorem 1.4 is a non-uniform proof complexity generator secure against all proof
systems. To the best of our knowledge, this is the first such construction under any plausible complexity
assumption. Moreover, this construction has nearly exponential stretch.

5The assumptions in [ILW23] are NP ̸= coNP and the existence of a subexponentially-secure indistinguishability obfusca-
tor [BGI+12; JLS21].

6The t-time-bounded Kolmogorov complexity of a string y is length of the shortest program that outputs y in time at most
t. We say it is near maximum if its complexity is at least, say, |y| − 10.

4

Corollary 1.8 (Informal Theorem 3.6). Assume there are no infinitely often NP-constructive natural prop-
erties against P/poly. Then for every s(n) = nω(1) there is a single non-uniform proof complexity generator
G : {0, 1}poly(s(n)) → {0, 1}2n that is simultaneously secure against all proof systems.

Indeed, the construction is very simple and efficiently samplable. Pick a sequence of functions gn :
{0, 1}3n → {0, 1} uniformly at random. The generator Gn is the circuit that takes as input the description
of a s(n)-size oracle circuit C and outputs the truth table of C using oracle gn. Proving a string f is outside
the range of Gn is equivalent to proving a s(n)-size lower bound on the gn-oracle circuit complexity of f .
Applying Theorem 1.4 and union bounding7 over every proof system, we get that Gn is a proof complexity
generator against all proof systems with probability one (in the measure theoretic sense).

1.1.1 Bypassing Cryptographic Impossibilities: Zero-Knowledge Without Interaction

We believe that our results should be useful for overcoming barriers in cryptography. In particular, several
impossibility results in cryptography (e.g., [HW15]) are proved via “incompressibility arguments.” In such
arguments, one shows that a certain object cannot exist because if it did exist, then one could describe an
arbitrary n-bit string with a description of length less than n, which contradicts the pigeonhole principle
(since two different strings would have the same description).

On the other hand, one interpretation of the proof complexity generator in Corollary 1.8 is as follows:
it is hard to rule out that any particular function f : {0, 1}n → {0, 1} has a small gn-oracle circuit (and
hence a short description given gn). This is despite the fact that the pigeonhole principle shows that not
every function can have a short description, even given gn. As a result, we suspect that one might be able
to use Corollary 1.8 to bypass an incompressibility-based impossibility argument. It’s worth noting that in
many cryptographic settings it is okay to sample a gn uniformly at random (perhaps as part of a “common
reference string”).

Despite this initial intuition, our results did not end up going along these lines, although we still think
that it is a promising approach. Instead, we use our results to overcome a cryptographic impossibility
result for zero-knowledge proofs [GO94] that is (to our knowledge) unrelated to incompressibility arguments.
Besides being remarkable in its own right, this result is strong evidence that our results (and similar ones)
are useful in cryptography, which we view as a major conceptual contribution of this paper. We now describe
the zero-knowledge result.

Zero-knowledge proofs [GMR89] allow a prover to convince a verifier that a statement is true (e.g., that
x is in a language L) without revealing anything besides the validity of the statement. The crux of the
definition is the notion of a simulator. Intuitively, if the verifier can simulate how the interaction with the
prover will go, then it cannot learn anything it did not already know.

Amazingly, zero-knowledge proofs exist for all languages in NP [GMW86] (and even all of PSPACE [IY87;
Sha92]). However, these proofs differ significantly from the traditional notion of a mathematical proof:

• Interaction: All known zero-knowledge proof systems for NP require the prover and verifier to engage
in a multi-round interactive protocol or require trusted setup [BFM88; BSMP91]. In contrast, a
traditional mathematical proof is a single string a prover can send to a verifier.

• Soundness: In all known zero-knowledge proof systems, the verifier can be convinced of false state-
ments, just with low probability. In contrast, traditional mathematical proofs offer perfect soundness
(if there is a proof, then the statement is true).

Indeed, Goldreich and Oren [GO94] show it is impossible to remove either interaction or imperfect soundness
from zero-knowledge proofs for languages outside of BPP. This impossibility even holds if the prover and
verifier are allowed to be non-uniform.

Perhaps surprisingly, we overcome this barrier. Building on several ideas in prior work [KP89; Pud86;
FS90; FLS90; BOV07; KZ20], we show that there are traditional mathematical proofs for NP statements

7This really means applying the Borel-Cantelli lemma, which one can think of a generalization of the union bound to handle
infinitely many events.

5

that achieve almost all security properties guaranteed by zero-knowledge. Our key idea is this: rather than
requiring a simulator actually exist, we require that it is hard to refute the existence of a simulator in a proof
system. This led us to the following definition (which uses terms we have not introduced yet, but should
still give the reader the flavor of its meaning).

Definition 1.9 (Effectively Zero-Knowledge to a Proof System). Say a prover P is effectively zero-knowledge
to a proof system V if for some ϵ = λ−ω(1), ℓ = λω(1) and some s = poly(λ) we have that for all λ there is no
ℓ(λ)-length V -proof that

“Pλ lacks an ϵ(λ) secure simulator of size s(λ)”

The usefulness of this definition is as follows: Suppose ZFC proves that ρ is implied by zero-knowledge.
If P is zero-knowledge to ZFC, then there can be no conclusive evidence that ρ fails, since such evidence
would refute the existence of a simulator, contradicting that P is zero-knowledge to ZFC. In a certain sense,
one can view this as saying P is indistinguishable from being zero-knowledge to ZFC.

Remarkably, we show (under a standard assumption in cryptography and the non-existence of NP-
constructive natural properties) that there is a single non-uniform, truly non-interactive prover and verifier
that are effectively zero-knowledge to every proof system! This means this prover and verifier enjoy almost
all natural security properties (classical) zero-knowledge entails.

Our construction relies on the existence of a non-interactive witness indistinguishable proof system for
SAT (NIWI) [FS90; BOV07], which follows from several standard assumptions in cryptography [BOV07;
GOS12; BP15].

Theorem 1.10 (Less Detailed Theorem 4.10). Assume a NIWI exists and there are no infinitely often NP-
constructive natural properties against P/poly. Then there exists a non-uniform, non-interactive, perfectly
sound prover and verifier that are effectively zero-knowledge to every proof system.

After proving Theorem 1.10, we realized how to prove a version where the prover and verifier are uniform
instead of non-uniform. The latter result (a) does not rely on the natural proofs barrier, (b) is of significant
cryptographic interest, and (c) requires a large amount of background and exposition to fully explain and
use. Thus, to aid readability, we split off the uniform version of this result to a separate paper [Aut25].
Consequently, in this paper we keep our discussion of effectively zero-knowledge proofs relatively short and
defer altogether on how to use them, pointing the interested reader to the companion paper [Aut25].

For example, in the companion paper, we show that the construction in Theorem 1.10 is distributionally
witness hiding [FS90; KZ20] meaning roughly that a proof that a circuit C is satisfiable generated using a
witness w does not reveal a satisfying assignment to C whenever C and w are sampled from a P-samplable8

distribution for which solving Search-SAT on C is hard. Our result is the first construction of such a non-
interactive non-uniform prover on which this property holds for all P-sampleable distributions simultaneously.
This improves on prior work by Kuykendall and Zhandry [KZ20], who gave a construction where the prover
and verifier depend in a non-uniform way on the precise distribution one wants to be witness hiding against.

1.2 Related Work

We now discuss some related work that we have not already discussed. Ilango, Li, and Williams [ILW23] made
partial progress on refuting the Oracle Derandomization Hypothesis. Specifically, they rule out a variant of
the hypothesis for time-bounded Kolmogorov complexity, assuming NP ̸= coNP and subexponentially-secure
indistinguishability obfuscators exist [BGI+12; JLS22]. In more detail, their variant roughly asks one to,
given x, generate a short y with high conditional time-bounded Kolmogorov complexity conditioned on x. It
seems difficult to extend their argument to refute the original Oracle Derandomization Hypothesis because
of difficulties related to how they use indistinguishability obfuscation.

Kraj́ıček has put forth two candidates for a proof complexity generator against all proof systems, one
utilizing the Nisan-Wigderson generator [Kra11a, Chapter 30.3] and one (more general construction) based

8This means there is a polynomial-time Turing machine that given 1n samples from the distribution indexed by n.

6

on the “gadget” generator [Kra22]. However, to our knowledge, neither construction has a security reduction
to a previously-studied complexity assumption.

There are several prior works [BP04; BOV07; BL18; KZ20] studying relaxations of zero-knowledge achiev-
able with truly no interaction. One line of work [BP04; BL18], which we have not yet discussed, achieves
(weak [Pas03]) zero-knowledge with zero-interaction by relaxing statistical soundness to computational sound-
ness (for comparison, we consider perfect soundness). Specifically, Barak and Pass [BP04] give a construction
with uniform soundness (i.e., no uniform algorithm can prove a false statement). Bitansky and Lin [BL18]
extend this to a weak form of soundness against non-uniform adversaries (the number of false statements an
adversary can generate is bounded by its amount of non-uniformity).

Independent and Concurrent Work. In an independent and concurrent work, Ren, Wang, and Zhong
[RWZ25] prove related versions of our results for proof complexity generators (Corollary 1.8) and Avoid
(Corollary 1.6). Specifically, under a similar assumption9 they show:

• worst-case non-deterministic hardness of Avoid (in comparison, we give average-case non-deterministic
hardness in Corollary 1.6) and

• for every proof system V , there exists a non-uniform proof complexity generator GV against V (as
opposed to our single non-uniform proof complexity generator G that is simultaneously secure against
all V in Corollary 1.8). However, [RWZ25] proves stronger properties about their generator GV than
we do, such as pseudosurjectivity.

Interestingly, our techniques are somewhat different from [RWZ25]. Whereas we rely on the parity shift
lemma, they rely on randomness extractors. Indeed, our use of the parity shift lemma is useful for ruling
out the Oracle Derandomization Hypothesis (Theorem 1.4). [RWZ25] does not prove results about zero-
knowledge.

1.3 Main Technical Ideas

We now discuss some of our main technical ideas. One strength of our work is that our proofs are quite
crisp.

Refuting the Oracle Derandomization Hypothesis. For contradiction, suppose that the Oracle De-
randomization Hypothesis is true. In particular, suppose there is an efficient algorithm G that maps truth
tables of oracles O : {0, 1}3n → {0, 1} to truth tables of functions f : {0, 1}n → {0, 1} such that f is hard
even with oracle access to O.

At first glance, it seems difficult to actually make use of the power of G. The reason is as follows. Imagine
we instead got oracle access to a G′ that is constructed by setting G(O) = f for a uniformly random f . It
turns out that, if one believes that P = BPP, then oracle access to G′ is essentially useless. Hence, if our
argument is black-box in G, it must somehow distinguish between oracle access to G and G′. This seems
quite difficult since G′ does satisfy the correctness guarantee that G′(x) requires large x-oracle circuits on
all but an exponentially small fraction of all x (since it outputs a uniformly random string).

We overcome this by using non-determinism to effectively make exponentially many queries to G. In
particular, we will use G to get a certificate for the hardness of a uniformly random function f : {0, 1}n →
{0, 1} as follows: we will non-deterministically guess an O : {0, 1}3n → {0, 1} and w ∈ {0, 1}2n such that
G(O) = f ⊕O|w, where O|w denotes the restriction of O on its first 2n inputs to w. Observe that if f ⊕O|w
requires large O-oracle circuits, then it must be the case that f requires large circuits (without an O oracle).
Hence, if the algorithm finds such O and w, it can be sure that f is hard.

9Their assumption is the existence of a demi-bit generator [Rud97]. The non-existence of NP-constructive natural properties
is a special case of the existence of a demi-bit generator, which makes their assumption weaker than ours. However, we note that
our proofs of Corollary 1.8 and Corollary 1.6 easily generalizes to work with the demi-bit generator assumption, as discussed in
[RWZ25].

7

It remains to show that such O and w exist for random f . The key idea comes from Lautemann’s
proof [Lau83] that BPP is in the polynomial hierarchy! Lautemann uses a “parity shift lemma” that says if
A ⊆ {0, 1}N has density p, then a random set B ⊆ {0, 1}N of size poly(Np) satisfies

{0, 1}N = A⊕B = {x⊕ y : x ∈ A, y ∈ B}

with high probability. In our setting:

• A corresponds to truth tables f for which no certificate pair (O, w) exists

• B corresponds to the truth tables of subfunctions of a uniformly random O : {0, 1}3n → {0, 1}.

• The fact that A⊕ B = {0, 1}N corresponds to the fact that every possible output of G(O) leads to a
certificate for some f ∈ A, which contradicts that the functions in A lack a certificate.

We note our use of the parity shift lemma is reminiscent of the “drag-along principle” in [RR97].

Constructing Effectively Zero-Knowledge Proofs. An immediate consequence of our result on proof
complexity generators (Corollary 1.8) is that there is a non-uniform sequence ψλ of unsatisfiable formulas
such that “ψλ is unsatisfiable” lacks a short proof in every proof system.

We combine these ψλ with a construction of Feige-Lapidot-Shamir [FLS90], which works as follows.
The prover, given a formula φ and a witness w, will give a truly non-interactive, perfectly sound, “witness
indistinguishable” [FS90] proof π that “either φ is satisfiable or ψλ is satisfiable.” Roughly, the witness
indistinguishability guarantee says that one cannot tell if π is generated using a satisfying assignment for φ
or a satisfying assignment for ψλ.

Thus, in particular, the “witness indistinguishability” guarantee implies that the prover is zero-knowledge
if ψλ has a satisfying assignment. Specifically, one can simulate generating π without knowing a witness to
φ as follows: generate π using the satisfying assignment for ψλ. Witness indistinguishability says that this
simulated π is indistinguishable from honestly generating π using a satisfying assignment for φ.

Hence, if ψλ is satisfiable, then the prover is zero-knowledge. Now, in truth, ψλ is not satisfiable. But,
because “ψλ is unsatisfiable” lacks a short proof in any proof system, we get the desired guarantee that it is
hard to rule out that our prover is zero-knowledge in any proof system.

On the other hand, the verifier is perfectly sound because ψλ is, in fact, unsatisfiable.

2 Preliminaries

Unless otherwise specified, we let N = 2n. The density of a set A ⊆ {0, 1}n is |A|2n . Let {0, 1}≤n denote the

set of binary strings of length at most n. For a language L, let L|n ∈ {0, 1}2
n

denote the truth table of L
restricted to n-bit inputs.

2.1 Proof Systems

In this paper, we use the following notion for a proof system following Cook and Reckhow [CR79].

Definition 2.1 (Proof System [CR79]). A proof system for a language L is a uniform deterministic poly-
nomial time algorithm V : {0, 1}⋆ × {0, 1}⋆ → {0, 1} with the property that if V (x, π) = 1, then x ∈ L. We
say that there is an ℓ-length V -proof of x if V (x, π) = 1 for some π ∈ {0, 1}≤ℓ.

The definition of a non-uniform proof system is the same except V can be a non-uniform deterministic
polynomial-time algorithm. Unless otherwise specified, a proof system refers to the uniform definition.

For our purposes, we do not require completeness of a proof system V .
Throughout the paper, we assume we have fixed a particular language L sufficiently powerful enough to

decide the truth of the statements we need to prove. For instance, L = HALT suffices. Unless otherwise
specified, all proof systems we consider are proof systems for this fixed sufficiently powerful L.

8

We usually put statements being proved in double quotes and write an English language or mathematical
description of the statement (we implicitly assume an unspecified but sufficiently “nice” encoding of these
statements as instances of L).

We note that even powerful logical systems like ZFC (Zermelo Fraenkel with Choice, the standard axioms
in mathematics) can be viewed as proof systems for a language L. For example, if L = HALT, then one can
consider the V with V (x, π) = 1 if and only if π is a ZFC-proof that x ∈ HALT.

2.2 Circuit Complexity

In this paper, we consider circuits with NOT gates and fan-in-two AND/OR gates. The size of a circuit is
the number of AND/OR gates in the circuit. For a function f : {0, 1}n → {0, 1}, let CC(f) denote the size
of the smallest circuit for f . We say that f has no size s circuit if CC(f) > s.

For a function O : {0, 1}m → {0, 1}, we will also consider O-oracle circuits where one is additionally
allowed gates that take m-inputs and compute the O function. The size of an oracle circuit is the number
of AND/OR gates plus m times the number of oracle gates. Let CC(f | O) denote the size of the smallest
O-oracle circuit for f .

2.3 Natural Proofs

Now we give the more general definition of NP-constructive natural properties.

Definition 2.2 ((infinitely often) NP-constructive natural properties against SIZE[s] [RR97; Rud97]). Let
s = s(n). A non-deterministic polynomial-time algorithmA is a (respectively, infinitely often) NP-constructive
natural property against SIZE[s] if for all sufficiently large n (respectively, infinitely many n) we have that

• A(T) accepts at least half10 of all 2n-bit truth tables T

• A(T) rejects if T has a circuit of size at most s(n).

Rudich conjectured [Rud97] there are no NP-constructive natural properties against SIZE[s] for any
s = nω(1), and supported this conjecture using a new but plausible cryptographic assumption. We note that
this assumption becomes weaker as one chooses larger s.

2.4 Cryptography

We recall the definition of computational indistinguishability in both the non-asymptotic and asymptotic
context.

Definition 2.3 (Computational Indistinguishability). Let ϵ ∈ R, and let D and D′ be distributions on binary
strings. We say D and D′ are ϵ-computationally indistinguishable (written D ≈ϵ D′) if for every circuit A of
size at most 1

ϵ we have that ∣∣∣ Pr
x←D

[A(x) = 1]− Pr
x←D′

[A(x) = 1]
∣∣∣ ≤ ϵ.

The asymptotic definition is analogous: Let ϵ : N→ R and let D = {Dn}n∈N and D′ = {D′n}n∈N denote
sequences of distributions. We say D and D′ are ϵ-computationally indistinguishable (written D ≈ϵ D′) if
for all n ∈ N and every circuit A of size at most 1

ϵ(n) we have that∣∣∣∣ Pr
x←Dn

[A(x) = 1]− Pr
x←D′

n

[A(x) = 1]

∣∣∣∣ ≤ ϵ(n).
Next, we recall the definition of a non-interactive witness indistinguishable proof system (NIWI) [FS90;

DN07; BOV07] for SAT. (In this paper, whenever we refer to NIWIs, we refer to NIWIs for SAT.)
We note that the definition below differs mildly from the usual definition in that we require that ϵ be

efficiently computable.

10For readers familiar with natural properties, here we have set the largeness density to be half for simplicity.

9

Definition 2.4 (Non-Interactive Witness Indistinguishable Proof (NIWI)). A non-interactive witness in-
distinguishable proof system is a tuple of algorithms (NIWI.Prove,NIWI.Verify) satisfying all of the
following properties:

• NIWI.Prove(formula φ, satisfying assignment w, security parameter 1λ) is a uniform randomized poly-
nomial time algorithm that outputs a binary string (usually denoted π).

• NIWI.Verify(formula φ,purported proof π) is a uniform deterministic11 polynomial-time algorithm
that outputs either accept or reject.

• Functionality: For all formulas φ with φ(w) = 1 and all λ

Pr[NIWI.Verify(φ,NIWI.Prove(φ, x, 1λ)) = 1] = 1.

• Perfect Soundness: NIWI.Verify(φ, π) rejects on all unsatisfiable φ and all π.

• Security (Witness Indistinguishability): There is a polynomial-time computable negligible func-
tion ϵ such that for all formulas φ with φ(w) = φ(w′) = 1, we have that

NIWI.Prove(φ,w, 1λ) ≈ϵ(λ) NIWI.Prove(φ,w′, 1λ).

NIWIs exist under standard assumptions [BOV07; GOS12; BP15].

2.5 Probability Theory

We use the following lemma from measure theory.

Lemma 2.5 (Borel-Cantelli Lemma). Let {En}n∈N be a collection of events. Assume
∑

n∈N Pr[En] is finite.
Then with probability one, only a finite number of events En occur.

A simple consequence of the Borel-Cantelli lemma is the following.

Proposition 2.6. Let {Em,n}m,n∈N be a collection of events. Assume that
∑

n∈N
∑

m<g(n) Pr[Em,n] is finite

for some function g(n) = ω(1). Then

Pr[for all m, only finitely many Em,n occur] = 1.

Proof. Let Gn be the event that Em,n occurs for some m ≤ g(n). By the Borel-Cantelli lemma, with
probability one, only finitely many Gn occur.

On the other hand, if for some m, infinitely many Em,n occur, then infinitely many Gn occur (using that
g = ω(1)). The proposition follows.

In particular, one setting of parameters gives the following lemma.

Lemma 2.7. Let {Em,n}m,n∈N be a collection of events. Assume that for all m, there exists an integer nm
such that

Pr[Em,n] ≤
1

n2

for all n ≥ nm. Then
Pr[for all m, only finitely many Em,n occur] = 1

Proof. Define g : N → N by g(n) = min{m ≤
√
n : nm > n} ∪ {

√
n}. Observe that g = ω(1), as desired.

Then we have that ∑
n∈N

∑
m<g(n)

Pr[Em,n] ≤
∑
n∈N

√
n

n2
=

∑
n∈N

1

n1.5
.

is finite. Then the result follows from Proposition 2.6.
11We assume the verifier is deterministic. A randomized verifier can always be made deterministic if Promise-P = Promise-BPP.

10

3 Refuting the Oracle Derandomization Hypothesis

We begin by stating the Oracle Derandomization Hypothesis of Fortnow and Santhanam [FS11].

Hypothesis 3.1 (Oracle Derandomization Hypothesis [FS11]). There is a constant ϵ > 0 such that for all
constants δ > 0, there is a polynomial-time computable function Gδ with the following two properties:

• Nδ shrinking: Gδ maps N -bit strings to ⌊Nδ⌋-bit strings

• G(x) is exponentially non-deterministically hard relative to x: for all x, the non-deterministic
x-oracle circuit complexity of Gδ(x) is always at least N

δϵ (where we interpret x and Gδ(x) as the truth
tables of Boolean functions in the natural way by potentially padding with zeros).

We will refute this hypothesis using the non-existence of NP-constructive natural properties. Our proof
uses the “parity shift lemma” from Lautemann’s proof [Lau83] that BPP is in the polynomial hierarchy. For
two sets A and B, let A⊕B denote the parity set given by {a⊕ b : a ∈ A, b ∈ B}.

Lemma 3.2 (“Parity Shift Lemma” [Lau83]). For any set A ⊆ {0, 1}n,

Pr
x1,...,xk←{0,1}n

[{0, 1}n = A⊕ {x1, . . . , xk}] ≥ 1− e−k
|A|
2n +n.

Proof. The proof is a union bound argument. Fix an arbitrary y ∈ {0, 1}n. Observe

Pr
x←{0,1}n

[y ∈ A⊕ {x}] = |A|
2n
.

Therefore, the probability that y ̸∈ A⊕ {x1, . . . , xk} is at most

(1− |A|
2n

)k ≤ e−k
|A|
2n .

Union bounding over all N = 2n ≤ en possibilities for y ∈ {0, 1}n proves the lemma.

We are now ready to prove our theorem.

Theorem 3.3. Assume there is non-deterministic polynomial-time algorithm G with both the following
properties for all (respectively, infinitely many) n ∈ N

• Correctness: Let O : {0, 1}3n → {0, 1}. If G(O) ̸=?, then f = G(O) is the truth table of a function
f : {0, 1}n → {0, 1} such that CC(f |O) > s(n)

• Utility: G(O) ̸=? for at least a 2−N -fraction of all O : {0, 1}3n → {0, 1}.

Then there is a (respectively, infinitely often) NP-constructive natural property against SIZE[s(n)− 3n− 3].

Proof. We give the proof for the almost everywhere version. The infinitely often proof is similar.
Let A be the following non-deterministic polynomial-time algorithm:

Non-deterministic algorithm A

Given the truth table of f : {0, 1}n → {0, 1}

1. Non-deterministically guess O : {0, 1}3n → {0, 1} and w ∈ {0, 1}2n

2. Accept if G(O) = f ⊕O|w, where O|w : {0, 1}n → {0, 1} is the restriction of the first 2n inputs of
O to w

11

We will show that A is a NP-constructive natural property against SIZE[s(n) − 3n − 3]. There are two
things to show. First, that it rejects all low complexity truth tables, and second that it accepts random
truth tables.

We do these in order. Suppose A accepts f . Then G(O) = f ⊕O|w for some O and w. By the guarantee
on G, we must have that CC(G(O) | O) > s(n). Since O|w is computable by an O-oracle circuit of size 3n,
we must have that CC(f) > s(n) − 3n − 3 (the extra 3 comes from computing the parity between f and
O|w).

It remains to show that A accepts at least half of all f . Let Bad be the set of f : {0, 1}n → {0, 1} that
A does not accept. For contradiction, suppose that |Bad| > 2N/2. Then we get the following contradiction
for sufficiently large n

0 = Pr
O:{0,1}3n→{0,1}

[G(O) ∈ Bad⊕ {O|w : w ∈ {0, 1}2n}]

≥ Pr
O:{0,1}3n→{0,1}

[{0, 1}N = {O|w : w ∈ {0, 1}2n} and G(O) ̸=?]− (1− 2−n)

≥ Pr
O:{0,1}3n→{0,1}

[{0, 1}N = {O|w : w ∈ {0, 1}2n}]− (1− 2−n)

≥ 1− exp(−N2|Bad|/2N +N)− (1− 2−N)

≥ 2−N − exp(−N2/2 +N) > 0

where the first line is by the definition of Bad, the second line is by the correctness of G, the third line is by
the union bound, and the fourth line is by the parity shift lemma.

3.1 Proof Complexity Generators

The notion of proof complexity generators was first considered (independently) in the works of Alekhnovich,
Ben-Sasson, Razborov, and Wigderson [ABRW04] and Kraj́ıček [Kra01a].

Definition 3.4 (Proof Complexity Generator [ABRW04; Kra01a]). Let V be a proof system. Let G = {GN :
{0, 1}M(N) → {0, 1}N} be a family of length-increasing functions computable by polynomial-size circuits.
We say that G is a proof complexity generator against V if for every polynomial ℓ, we have that

Pr
y∈{0,1}N

[∃ ℓ(N)-length V -proof that “y is not in the range of GN”] = 0

for all sufficiently large N .

Kraj́ıček first raised the possibility that there could be a single proof complexity generator that is simul-
taneously secure against all proof systems.

Conjecture 3.5 (Kraj́ıček [Kra04b] (see also [Kra22, Conjecture 1.1])). There is a proof complexity gen-
erator against all proof systems.

We give, to the best of our knowledge, the first candidate of such a proof complexity generator with a
security reduction to a plausible complexity assumption. Our construction is the natural oracle generalization
of the truth table generator (which maps circuits to their truth tables).

Oracle Truth Table Generator

Parameters: an output length N = 2n, a size parameter s, and an oracle O : {0, 1}m → {0, 1}

The generator GCC
N [s,O] : {0, 1}Õ(s(N)) → {0, 1}N is given by

1. Interpret the input as the description of an oracle circuit C of size at most s mapping n-bits to
one bit

12

2. Output the N -bit truth table of the circuit CO.

Assuming the non-existence of NP-constructive natural properties, one can show that the oracle truth
table generator on uniformly random O is a proof complexity generator secure against all (uniform) proof
systems.

Theorem 3.6. Assume there are no infinitely often NP-constructive natural properties against SIZE[s(n) +
3n + 3]. For all n, let On : {0, 1}3n → {0, 1} be a uniformly random function. Then, with probability one,
G = {GCC

N [s(N),On]} is a proof complexity generator against all proof systems (as long as s is small enough
that it is length increasing).

Proof. For succinctness, we write GN = GCC
N [s(N),On]. We let O denote the collection of all On.

For a (uniform) proof system V and a polynomial ℓ, let EV,ℓ,N be the event that there exists an ℓ(N)-
length V -proof that “y is outside the range of GN” for some y ∈ {0, 1}N .

Because proof systems correspond to zero-error non-deterministic algorithms, by Theorem 3.3, for any
proof system V and any polynomial ℓ, we have that

Pr
O
[EV,ℓ,N] < 2−N .

Then, by Lemma 2.7 (essentially the Borel-Cantelli lemma), we have that

1 = Pr
O
[for all V and ℓ, EV,ℓ,N occurs for only finitely many N]

This proves the theorem.

We remark that our proof generalizes straightforwardly to the setting of conditional time-bounded Kol-
mogorov complexity, if one replaces the natural properties assumption with the analogous assumption for
time-bounded Kolmogorov complexity.

3.2 Average-Case Hardness of Range Avoidance

Now we show the average-case hardness of Avoid. Indeed, the hard average-case instances are just the oracle
truth table generator on random oracles.

Corollary 3.7. Assume there are no infinitely often NP-constructive natural properties against SIZE[s(n)+
3n+ 3]. Then every non-deterministic polynomial-time zero-error average-case12 algorithm A for Avoid has

Pr
On:{0,1}3n→{0,1}

[A(GCC
N [s(n),On]) ̸=?] < 2−N .

Proof. By the assumption on A and the construction of GCC
N , when A(GCC

N [s(n),On]) = y ̸=?, it must be
that CC(y | On) > s(n). Thus, the corollary follows immediately from Theorem 3.3.

4 On Truly Non-Interactive Zero-Knowledge

In this section, we define a new relaxation of zero-knowledge and construct it under plausible assumptions.

4.1 Definitions

First, we define an abstract notion of a prover.

Definition 4.1 (Prover). A prover is a (potentially non-uniform) probabilistic polynomial-time algorithm
P (·, ·, ·) that works as follows

12To be clear, this means that A(x) can output ?, but whenever it outputs an answer it needs to be correct.

13

• Inputs: a formula φ, a satisfying assignment w to φ, and a security parameter 1λ

• Output: a string π.

To make some technical aspects easier, we require that |π| ≥ λ ≥ |φ|. If P is a uniform algorithm, we say it
is a uniform prover. If it is non-uniform, we say it is a non-uniform prover.

Note that this definition, by itself, does not require the prover to actually produce interesting output (for
example, a prover may just output a sufficiently long string of zeros).

Definition 4.2 (Useful Prover). We say a uniform prover (respectively, non-uniform prover) is useful if
there exists a uniform (respectively, non-uniform) proof system V such that

Pr
P
[P (φ,w, 1λ) outputs a V -proof that “φ is satisfiable”] = 1

whenever φ(w) = 1 and |φ| ≤ λ.13

Next, we recall the notion of a simulator [GMR89].

Definition 4.3 (Simulator). Let C(φ,w) be a probabilistic circuit that maps formula-witness-pairs to a
string. We say C has an s-size ϵ-secure simulator if there is a probabilistic circuit Sim of size s such that

Simλ(φ) ≈ϵ C(φ,w).

for all formulas φ with φ(w) = 1.
Moreover, if P is a prover and λ ∈ N, we say Pλ has an s-size ϵ-secure simulator if the probabilistic

circuit Pλ(φ,w) = P (φ,w, 1λ) has an s-size ϵ-secure simulator.

We now restate our main definition with slightly different notation.

Definition 4.4 (Effectively Zero-Knowledge to V). Let P be a prover, and let V be a proof system. We
say P is effectively zero-knowledge to V if for some t = λω(1) and s = poly(λ) the following holds for all λ:

“Pλ has no s(λ)-size
1

t(λ)
-secure simulator”14

has no t(λ)-length V -proof.

4.2 Our Construction

Our construction follows the approach suggested by Kuykendall and Zhandry [KZ20] building on Feige,
Lapidot, and Shamir [FLS90]. The construction will make use of a non-interactive witness indistinguishable
proof system (NIWI) [FS90; DN07; BOV07]. We assume a NIWI exists and fix it for the remainder of this
section.

Our construction will be parameterized by a (potentially non-uniform) sequence {φλ} of poly(λ)-sized
formulas indexed by λ ∈ N.

Prover P{φλ}

Given ψ,w, 1λ:

1. Reject if ψ(w) ̸= 1 or |ψ| > λ.

2. Output NIWI proof of “ψ ∨ φλ is satisfiable” with witness w and security parameter λ.a

13One might also consider cases where the prover is non-uniform but it outputs proofs in a uniform proof system, or vice-versa.
We do not in this paper.

14We clarify a potential ambiguity in the notation. In the statement being proved t(λ) and s(λ) denote the specific numbers
the corresponding functions evaluate to. We do not need to include in the statement any information about how to compute t
and s on values other than λ. Similarly, Pλ denotes the specific circuit corresponding to P (φ,w, 1λ).

14

aIf needed, pad this proof to length at least λ in any reasonable way.

Verifier V{φλ}

Given a “statement” x and a “proof” π:

1. Accept if x encodes (according to our sufficiently nice encoding) “ψ is satisfiable” and π is a NIWI
proof of “ψ ∨ φλ is satisfiable” for some λ ≤ |π|

We note that we refer to V{φλ} as a verifier instead of a proof system. This is because it is a proof system if
and only if all the φλ are unsatisfiable.

We also define the following related probabilistic circuit, which is parameterized by a λ ∈ N and a single
formula φ of size at most λ.

Probabilistic Circuit P [φ, λ]

Given a formula ψ of size at most λ and w:

1. Reject if ψ(w) ̸= 1.

2. Output NIWI proof of “φ ∨ ψ is satisfiable” with witness w and security parameter λ.a

aIf needed, pad this proof to length at least λ in any reasonable way.

We now prove the key lemma regarding this construction.

Lemma 4.5. There exist functions ϵ(λ) = λ−ω(1) and s(λ) = poly(λ) such that the following holds for every
proof system V , every λ ∈ N, and every formula φ of size at most λ. If there is an ℓ-length V -proof of the
statement

“P [φ, λ] lacks an s(λ)-size ϵ(λ)-secure simulator”

then there is a poly(ℓ, λ)-length proof that “φ is unsatisfiable” in the proof system Vextended (which is defined
below and depends only on V and the choice of NIWI).

Proof. Let ϵ(λ) = λ−ω(1) be the polynomial-time computable function corresponding to the security of the
NIWI. Let s(λ) = poly(λ) be a polynomial such that s(λ) ≥ |P [φ′, λ]| for any φ′ of size at most λ (note that
s(λ) is polynomial because the NIWI runs in polynomial time).

Fix any proof system V . Let Vextended be the proof system corresponding to the following algorithm.

Proof System Vextended

On input x and π = (1ℓ, π0, φ
′):

1. Accept if π0 is a V -proof of x

2. Accept if there is a λ ∈ [ℓ] such that all of the following hold:

• φ′ is of size at most λ,

• x encodes (according to our choice of encoding of statements) the statement “φ′ is unsatis-
fiable.”

• π is a V -proof of “P [φ′, λ] has no s(λ)-size ϵ(λ)-secure simulator.”a

3. Otherwise, reject

15

aThis is where we need that ϵ is efficiently computable.

If Vextended is indeed a proof system, the lemma follows immediately from the definition of Vextended. It
remains to show the following claim.

Claim 4.6. Vextended is a proof system.

Proof. Let L be the language that V is a proof system for. Let x be an arbitrary statement that Vextended
accepts. If x is accepted in step (1), then x ∈ L by the soundness of V . Thus, we assume that x is accepted
in step (2) with the values λ, π0, and φ

′.
By the soundness of V , we know P [φ′, λ] does not have an s(λ)-size ϵ(λ)-secure simulator. On the other

hand, if it was the case that φ′(w) = 1 for some w, then NIWI security guarantees that

Simλ(ψ
′) = P [φ′, λ](ψ′, w)

is an ϵ(λ)-secure simulator for P [φ′, λ] of size s(λ). Hence, φ′ is unsatisfiable.

Next, we make a definition for when a sequence of formulas is hard to prove unsatisfiable using a proof
system.

Definition 4.7 (Formulas Hard to Prove Unsatisfiable). Let {φλ} be a sequence of poly(λ)-sized formulas.
Let V be a (potentially non-uniform) proof system. We say {φλ} is hard to prove unsatisfiable using V if
there is an ℓ = λω(1) such that for all λ there is no ℓ(λ)-length Vextended-proof that φλ is unsatisfiable. (We
stress that the previous sentence talks about about Vextended-proofs.)

We say that {φλ} is universally hard to prove unsatisfiable if it is hard to prove unsatisfiable using every
uniform proof system.

Note that this definition depends on the definition of Vextended, which depends on our choice of NIWI.
Also note that this definition does not require that the formulas φλ actually be unsatisfiable. For example,
any sequence of satisfiable formulas is universally hard to prove unsatisfiable.

Combining this definition with Lemma 4.5, we get the following lemma.

Lemma 4.8. There exists a polynomial s such that the following holds. If a sequence of polynomial-sized
formulas {φλ} is hard to prove unsatisfiable using a proof system V , then P{φλ} is effectively zero-knowledge
to V .

Proof. Let ϵ = λ−ω(1), and s = λO(1) be the parameters given by Lemma 4.5. Let t(λ) = λω(1) be a
sufficiently small superpolynomial function satisfying t(λ) ≤ 1

ϵ(λ) .

Now fix some λ and suppose there is a t(λ)-length V -proof that

“Pλ has no s(λ)-size t(λ)- secure simulator.”

Then by Lemma 4.5, there is a poly(t(λ))-length Vextended-proof that “φλ is unsatisfiable.” But by assump-
tion, any Vextended-proof that “φλ is unsatisfiable” has length at least λω(1) > poly(t(λ)) by setting t to be
a sufficiently small superpolynomial function.

Finally, we get the following lemma if {φλ} is universally hard to prove unsatisfiable.

Lemma 4.9. If a sequence of polynomial-sized formulas {φλ} is universally hard to prove unsatisfiable, then
P{φλ} is effectively zero-knowledge to every (uniform) proof system V .

Proof. This follows from Lemma 4.8 and universal hardness.

16

4.3 Result

In this section, we construct a useful non-uniform prover and verifier that is effectively zero-knowledge to
every (uniform) proof system.

Theorem 4.10. Assume a NIWI exists and there is a non-uniform sequence {φλ} of polynomial-size unsat-
isfiable formulas that are universally hard to prove unsatisfiable. Then there is a useful non-uniform prover
that is effectively zero-knowledge to every (uniform) proof system.

Proof. Let P = P{φλ} and V = V{φλ}. V is sound because all the φλ are unsatisfiable and the NIWI is
perfectly sound. P is effectively zero-knowledge to every uniform proof system by Lemma 4.9.

We describe two (related) ways to construct such non-uniform sequences. The first is via a universally
hard UNSAT distribution.

Definition 4.11 (Universally Hard UNSAT Distribution). Let Dλ be a polynomial-time samplable distri-
bution on formulas. We say that Dλ is a universally hard distribution for UNSAT if for all uniform proof
systems V there is an ℓ = λω(1) such that

Pr
φ←Dλ

[either φ is satisfiable or there is an ℓ(λ)-length V -proof that “φ is unsatisfiable”] = o(
1

λ2
).

A universally hard UNSAT distribution follows, for example, from the assumption that s-lower bound
proofs are, say, 1

λ3 -rare when s≪ 2n

n .
Sampling from a universally hard UNSAT distribution leads (with high probability) to a sequence of

unsatisfiable formulas universally hard to prove unsatisfiable.

Proposition 4.12. Assume there exists a universally hard distribution Dλ for UNSAT. Then there is
a non-uniform sequence of polynomial-sized unsatisfiable formulas {φλ} that is universally hard to prove
unsatisfiable.

Proof. We will do this by a probabilistic argument. In particular, we will set φλ ← Dλ and show that, with
positive probability, it has the desired properties.

For a polynomial ℓ and proof system V , let EV,ℓ,λ be the event that either φλ is satisfiable or there is an
ℓ(λ)-length V -proof that “φλ is unsatisfiable.”

By assumption, we have that for every proof system V and every polynomial ℓ

Pr[EV,ℓ,λ] = o(
1

λ2
).

Hence, by Lemma 2.7 (essentially the Borel-Cantelli lemma), we get that

Pr[For all V and ℓ, only finitely many EV,ℓ,λ occur] = 1,

proving the proposition (replace the at most finitely many satisfiable formulas with the trivial unsatisfiable
formula).

One can also obtain such a sequence from a proof complexity generator against all proof systems.

Proposition 4.13. If there is a proof complexity generator against all proof systems, then there is a non-
uniform sequence of unsatisfiable formulas universally hard to prove unsatisfiable.

Proof. For each input length λ, let yλ be a string outside the range of the generator. Let φλ be the formula
that is satisfiable if and only if yλ is in the range of the generator. The proposition follows from the security
of the proof complexity generator.

Consequently, we get the following result.

Theorem 4.14. Assume a NIWI exists. Assume there is no NP-constructive natural property against
SIZE[2n/n2]. Then there is a useful non-uniform prover that is effectively zero-knowledge to every proof
system.

Proof. This follows from Proposition 4.13, Theorem 3.6, and Theorem 4.10.

17

References

[ABRW04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. “Pseudoran-
dom Generators in Propositional Proof Complexity”. In: SIAM J. Comput. 34.1 (2004), pp. 67–
88. doi: 10.1137/S0097539701389944. url: https://doi.org/10.1137/S0097539701389944
(cit. on pp. 4, 12).

[Aut25] Anonymous Author. “Godel in Cryptography: Effectively Zero-Knowledge Proofs for NP with
No Interaction, No Setup, and Perfect Soundness”. In: Electron. Colloquium Comput. Complex.
TR25-095 (2025). ECCC: TR25-095. url: https://eccc.weizmann.ac.il/report/2025/095
(cit. on p. 6).

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-Interactive Zero-Knowledge and Its Ap-
plications (Extended Abstract)”. In: Proceedings of the 20th Annual ACM Symposium on The-
ory of Computing, May 2-4, 1988, Chicago, Illinois, USA. Ed. by Janos Simon. ACM, 1988,
pp. 103–112. doi: 10.1145/62212.62222. url: https://doi.org/10.1145/62212.62222
(cit. on p. 5).

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. “On the (im)possibility of obfuscating programs”. In: J. ACM 59.2 (2012), 6:1–
6:48. doi: 10.1145/2160158.2160159. url: https://doi.org/10.1145/2160158.2160159
(cit. on pp. 4, 6).

[BL18] Nir Bitansky and Huijia Lin. “One-Message Zero Knowledge and Non-malleable Commitments”.
In: TCC 2018. Ed. by Amos Beimel and Stefan Dziembowski. Vol. 11239. Lecture Notes in
Computer Science. Springer, 2018, pp. 209–234. doi: 10.1007/978-3-030-03807-6_8. url:
https://doi.org/10.1007/978-3-030-03807-6%5C_8 (cit. on p. 7).

[BOV07] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. “Derandomization in Cryptography”. In:
SIAM J. Comput. 37.2 (2007), pp. 380–400. doi: 10.1137/050641958. url: https://doi.
org/10.1137/050641958 (cit. on pp. 5–7, 9, 10, 14).

[BP04] Boaz Barak and Rafael Pass. “On the Possibility of One-Message Weak Zero-Knowledge”. In:
TCC 2004. Ed. by Moni Naor. Vol. 2951. Lecture Notes in Computer Science. Springer, 2004,
pp. 121–132. doi: 10.1007/978-3-540-24638-1_7. url: https://doi.org/10.1007/978-
3-540-24638-1%5C_7 (cit. on p. 7).

[BP15] Nir Bitansky and Omer Paneth. “ZAPs and Non-Interactive Witness Indistinguishability from
Indistinguishability Obfuscation”. In: Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II. Ed. by Yev-
geniy Dodis and Jesper Buus Nielsen. Vol. 9015. Lecture Notes in Computer Science. Springer,
2015, pp. 401–427. doi: 10.1007/978-3-662-46497-7_16. url: https://doi.org/10.
1007/978-3-662-46497-7%5C_16 (cit. on pp. 6, 10).

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. “Noninteractive Zero-
Knowledge”. In: SIAM J. Comput. 20.6 (1991), pp. 1084–1118. doi: 10.1137/0220068. url:
https://doi.org/10.1137/0220068 (cit. on p. 5).

[CHLR23] Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren. “Range Avoidance, Remote Point, and
Hard Partial Truth Table via Satisfying-Pairs Algorithms”. In: Proceedings of the 55th Annual
ACM Symposium on Theory of Computing. STOC 2023. Orlando, FL, USA: Association for
Computing Machinery, 2023, pp. 1058–1066. isbn: 9781450399135. doi: 10.1145/3564246.
3585147. url: https://doi.org/10.1145/3564246.3585147 (cit. on p. 4).

[CHR24] Lijie Chen, Shuichi Hirahara, and Hanlin Ren. “Symmetric Exponential Time Requires Near-
Maximum Circuit Size”. In: Proceedings of the 56th Annual ACM Symposium on Theory of
Computing. STOC 2024. Vancouver, BC, Canada: Association for Computing Machinery, 2024,
pp. 1990–1999. isbn: 9798400703836. doi: 10.1145/3618260.3649624. url: https://doi.
org/10.1145/3618260.3649624 (cit. on p. 4).

18

https://doi.org/10.1137/S0097539701389944
https://doi.org/10.1137/S0097539701389944
TR25-095
https://eccc.weizmann.ac.il/report/2025/095
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1007/978-3-030-03807-6_8
https://doi.org/10.1007/978-3-030-03807-6%5C_8
https://doi.org/10.1137/050641958
https://doi.org/10.1137/050641958
https://doi.org/10.1137/050641958
https://doi.org/10.1007/978-3-540-24638-1_7
https://doi.org/10.1007/978-3-540-24638-1%5C_7
https://doi.org/10.1007/978-3-540-24638-1%5C_7
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7%5C_16
https://doi.org/10.1007/978-3-662-46497-7%5C_16
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://doi.org/10.1145/3564246.3585147
https://doi.org/10.1145/3564246.3585147
https://doi.org/10.1145/3564246.3585147
https://doi.org/10.1145/3618260.3649624
https://doi.org/10.1145/3618260.3649624
https://doi.org/10.1145/3618260.3649624

[CL24] Yilei Chen and Jiatu Li. “Hardness of Range Avoidance and Remote Point for Restricted
Circuits via Cryptography”. In: Proceedings of the 56th Annual ACM Symposium on Theory
of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024. Ed. by Bojan Mohar,
Igor Shinkar, and Ryan O’Donnell. ACM, 2024, pp. 620–629. doi: 10.1145/3618260.3649602.
url: https://doi.org/10.1145/3618260.3649602 (cit. on p. 4).

[CR79] Stephen A. Cook and Robert A. Reckhow. “The Relative Efficiency of Propositional Proof
Systems”. In: J. Symb. Log. 44.1 (1979), pp. 36–50. doi: 10.2307/2273702. url: https:
//doi.org/10.2307/2273702 (cit. on pp. 4, 8).

[DN07] Cynthia Dwork and Moni Naor. “Zaps and Their Applications”. In: SIAM J. Comput. 36.6
(2007), pp. 1513–1543. doi: 10.1137/S0097539703426817. url: https://doi.org/10.1137/
S0097539703426817 (cit. on pp. 9, 14).

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. “Multiple Non-Interactive Zero Knowledge Proofs
Based on a Single Random String (Extended Abstract)”. In: 31st Annual Symposium on Foun-
dations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I. IEEE
Computer Society, 1990, pp. 308–317. doi: 10.1109/FSCS.1990.89549. url: https://doi.
org/10.1109/FSCS.1990.89549 (cit. on pp. 5, 8, 14).

[FS11] Lance Fortnow and Rahul Santhanam. “Infeasibility of instance compression and succinct PCPs
for NP”. In: J. Comput. Syst. Sci. 77.1 (2011), pp. 91–106. doi: 10.1016/J.JCSS.2010.06.007.
url: https://doi.org/10.1016/j.jcss.2010.06.007 (cit. on pp. 2, 11).

[FS90] Uriel Feige and Adi Shamir. “Witness Indistinguishable and Witness Hiding Protocols”. In:
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990,
Baltimore, Maryland, USA. Ed. by Harriet Ortiz. ACM, 1990, pp. 416–426. doi: 10.1145/
100216.100272. url: https://doi.org/10.1145/100216.100272 (cit. on pp. 5, 6, 8, 9, 14).

[GGNS23] Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi. “Range
Avoidance for Constant Depth Circuits: Hardness and Algorithms”. In: Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2023, September 11-13, 2023, Atlanta, Georgia, USA. Ed. by Nicole Megow and Adam D.
Smith. Vol. 275. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 65:1–65:18.
doi: 10.4230/LIPICS.APPROX/RANDOM.2023.65. url: https://doi.org/10.4230/LIPIcs.
APPROX/RANDOM.2023.65 (cit. on p. 4).

[GLW25] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. “Range Avoidance for Low-Depth Circuits
and Connections to Pseudorandomness”. In: ACM Trans. Comput. Theory (Mar. 2025). Just
Accepted. issn: 1942-3454. doi: 10.1145/3718745. url: https://doi.org/10.1145/3718745
(cit. on p. 4).

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Complexity of Inter-
active Proof-Systems (Extended Abstract)”. In: Proceedings of the 17th Annual ACM Sympo-
sium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA. Ed. by Robert
Sedgewick. ACM, 1985, pp. 291–304. doi: 10.1145/22145.22178. url: https://doi.org/10.
1145/22145.22178 (cit. on p. 2).

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Complexity of Interactive
Proof Systems”. In: SIAM J. Comput. 18.1 (1989), pp. 186–208. doi: 10.1137/0218012. url:
https://doi.org/10.1137/0218012 (cit. on pp. 5, 14).

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Prove all NP-Statements in Zero-
Knowledge, and a Methodology of Cryptographic Protocol Design”. In: Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings. Ed. by Andrew M. Odlyzko.
Vol. 263. Lecture Notes in Computer Science. Springer, 1986, pp. 171–185. doi: 10.1007/3-
540-47721-7_11. url: https://doi.org/10.1007/3-540-47721-7%5C_11 (cit. on p. 5).

19

https://doi.org/10.1145/3618260.3649602
https://doi.org/10.1145/3618260.3649602
https://doi.org/10.2307/2273702
https://doi.org/10.2307/2273702
https://doi.org/10.2307/2273702
https://doi.org/10.1137/S0097539703426817
https://doi.org/10.1137/S0097539703426817
https://doi.org/10.1137/S0097539703426817
https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1016/J.JCSS.2010.06.007
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/100216.100272
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.65
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65
https://doi.org/10.1145/3718745
https://doi.org/10.1145/3718745
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/3-540-47721-7%5C_11

[GO94] Oded Goldreich and Yair Oren. “Definitions and Properties of Zero-Knowledge Proof Systems”.
In: J. Cryptol. 7.1 (1994), pp. 1–32. doi: 10.1007/BF00195207. url: https://doi.org/10.
1007/BF00195207 (cit. on p. 5).

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “New Techniques for Noninteractive Zero-
Knowledge”. In: J. ACM 59.3 (2012), 11:1–11:35. doi: 10.1145/2220357.2220358. url:
https://doi.org/10.1145/2220357.2220358 (cit. on pp. 6, 10).

[HW15] Pavel Hubácek and Daniel Wichs. “On the Communication Complexity of Secure Function Eval-
uation with Long Output”. In: Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015. Ed. by Tim Roughgar-
den. ACM, 2015, pp. 163–172. doi: 10.1145/2688073.2688105. url: https://doi.org/10.
1145/2688073.2688105 (cit. on p. 5).

[ILW23] Rahul Ilango, Jiatu Li, and R. Ryan Williams. “Indistinguishability Obfuscation, Range Avoid-
ance, and Bounded Arithmetic”. In: Proceedings of the 55th Annual ACM Symposium on The-
ory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023. Ed. by Barna Saha
and Rocco A. Servedio. ACM, 2023, pp. 1076–1089. doi: 10.1145/3564246.3585187. url:
https://doi.org/10.1145/3564246.3585187 (cit. on pp. 4, 6).

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E Requires Exponential Circuits: De-
randomizing the XOR Lemma”. In: Proceedings of the Twenty-Ninth Annual ACM Symposium
on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997. Ed. by Frank Thomson
Leighton and Peter W. Shor. ACM, 1997, pp. 220–229. doi: 10.1145/258533.258590. url:
https://doi.org/10.1145/258533.258590 (cit. on p. 2).

[IY87] Russell Impagliazzo and Moti Yung. “Direct Minimum-Knowledge Computations”. In: Advances
in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic
Techniques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings. Ed. by Carl
Pomerance. Vol. 293. Lecture Notes in Computer Science. Springer, 1987, pp. 40–51. doi: 10.
1007/3-540-48184-2_4. url: https://doi.org/10.1007/3-540-48184-2%5C_4 (cit. on
p. 5).

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability obfuscation from well-founded
assumptions”. In: STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021. Ed. by Samir Khuller and Virginia Vassilevska Williams.
ACM, 2021, pp. 60–73. doi: 10.1145/3406325.3451093. url: https://doi.org/10.1145/
3406325.3451093 (cit. on p. 4).

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability Obfuscation from LPN over

nmathbb{F} p, DLIN, and PRGs in NC0”. In: Advances in Cryptology - EUROCRYPT 2022 -
41st Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part I. Ed. by Orr Dunkel-
man and Stefan Dziembowski. Vol. 13275. Lecture Notes in Computer Science. Springer, 2022,
pp. 670–699. doi: 10.1007/978-3-031-06944-4_23. url: https://doi.org/10.1007/978-
3-031-06944-4%5C_23 (cit. on p. 6).

[Kha22] Erfan Khaniki. “Nisan-Wigderson Generators in Proof Complexity: New Lower Bounds”. In:
37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA,
USA. Ed. by Shachar Lovett. Vol. 234. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022, 17:1–17:15. doi: 10.4230/LIPICS.CCC.2022.17. url: https://doi.org/10.
4230/LIPIcs.CCC.2022.17 (cit. on p. 4).

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou. “Total
Functions in the Polynomial Hierarchy”. In: 12th Innovations in Theoretical Computer Science
Conference, ITCS 2021, January 6-8, 2021, Virtual Conference. Ed. by James R. Lee. Vol. 185.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 44:1–44:18. doi: 10.4230/

20

https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/258533.258590
https://doi.org/10.1007/3-540-48184-2_4
https://doi.org/10.1007/3-540-48184-2_4
https://doi.org/10.1007/3-540-48184-2%5C_4
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-031-06944-4%5C_23
https://doi.org/10.1007/978-3-031-06944-4%5C_23
https://doi.org/10.4230/LIPICS.CCC.2022.17
https://doi.org/10.4230/LIPIcs.CCC.2022.17
https://doi.org/10.4230/LIPIcs.CCC.2022.17
https://doi.org/10.4230/LIPICS.ITCS.2021.44
https://doi.org/10.4230/LIPICS.ITCS.2021.44

LIPICS.ITCS.2021.44. url: https://doi.org/10.4230/LIPIcs.ITCS.2021.44 (cit. on
pp. 3, 4).

[Kor21] Oliver Korten. “The Hardest Explicit Construction”. In: 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE,
2021, pp. 433–444. doi: 10.1109/FOCS52979.2021.00051. url: https://doi.org/10.1109/
FOCS52979.2021.00051 (cit. on p. 4).

[KP24] Oliver Korten and Toniann Pitassi. “Strong vs. Weak Range Avoidance and the Linear Order-
ing Principle”. In: 2024 IEEE 65th Annual Symposium on Foundations of Computer Science
(FOCS). 2024, pp. 1388–1407. doi: 10.1109/FOCS61266.2024.00089 (cit. on p. 4).

[KP89] Jan Kraj́ıček and Pavel Pudlák. “Propositional Proof Systems, the Consistency of First Order
Theories and the Complexity of Computations”. In: J. Symb. Log. 54.3 (1989), pp. 1063–1079.
doi: 10.2307/2274765. url: https://doi.org/10.2307/2274765 (cit. on p. 5).

[Kra01a] Jan Kraj́ıček. “On the weak pigeonhole principle”. eng. In: Fundamenta Mathematicae 170.1-2
(2001), pp. 123–140. url: http://eudml.org/doc/282141 (cit. on pp. 4, 12).

[Kra01b] Jan Kraj́ıček. “Tautologies from pseudo-random generators”. In: Bull. Symb. Log. 7.2 (2001),
pp. 197–212. doi: 10.2307/2687774. url: https://doi.org/10.2307/2687774 (cit. on p. 4).

[Kra04a] Jan Kraj́ıček. “Diagonalization in proof complexity”. In: Fundamenta Mathematicae 182 (2004),
pp. 181–192 (cit. on p. 4).

[Kra04b] Jan Kraj́ıček. “Dual weak pigeonhole principle, pseudo-surjective functions, and provability
of circuit lower bounds”. In: J. Symb. Log. 69.1 (2004), pp. 265–286. doi: 10.2178/JSL/
1080938841. url: https://doi.org/10.2178/jsl/1080938841 (cit. on pp. 4, 12).

[Kra05] Jan Kraj́ıček. “Structured pigeonhole principle, search problems and hard tautologies”. In: J.
Symb. Log. 70.2 (2005), pp. 619–630. doi: 10.2178/JSL/1120224731. url: https://doi.org/
10.2178/jsl/1120224731 (cit. on p. 4).

[Kra07] Jan Kraj́ıček. “A proof complexity generator”. In: Proc. from the 13th International Congress
of Logic, Methodology and Philosophy of Science (Beijing. 2007 (cit. on p. 4).

[Kra11a] Jan Kraj́ıček. Forcing with Random Variables and Proof Complexity. Vol. 382. London Math-
ematical Society lecture note series. Cambridge University Press, 2011. isbn: 978-0-521-15433-
8. url: http : / / www . cambridge . org / de / academic / subjects / mathematics / logic -

categories-and-sets/forcing-random-variables-and-proof-complexity?format=PB

(cit. on pp. 4, 6).

[Kra11b] Jan Kraj́ıček. “On the Proof Complexity of the Nisan-Wigderson Generator based on a Hard
NP ∩ coNP function”. In: J. Math. Log. 11.1 (2011). doi: 10.1142/S0219061311000979. url:
https://doi.org/10.1142/S0219061311000979 (cit. on p. 4).

[Kra22] Jan Kraj́ıček. “On the existence of strong proof complexity generators”. In: Electron. Colloquium
Comput. Complex. TR22-120 (2022). ECCC: TR22-120. url: https://eccc.weizmann.ac.
il/report/2022/120 (cit. on pp. 4, 7, 12).

[KS25] Oliver Korten and Rahul Santhanam. “How to Construct Random Strings”. In: 40th Computa-
tional Complexity Conference, CCC 2025, August 5-8, 2025, Toronto, Canada. Ed. by Srikanth
Srinivasan. Vol. 339. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2025, 35:1–
35:32. doi: 10.4230/LIPICS.CCC.2025.35. url: https://doi.org/10.4230/LIPIcs.CCC.
2025.35 (cit. on p. 4).

[KZ20] Benjamin Kuykendall and Mark Zhandry. “Towards Non-interactive Witness Hiding”. In: The-
ory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November
16-19, 2020, Proceedings, Part I. Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12550. Lecture
Notes in Computer Science. Springer, 2020, pp. 627–656. doi: 10.1007/978-3-030-64375-
1_22. url: https://doi.org/10.1007/978-3-030-64375-1%5C_22 (cit. on pp. 5–7, 14).

21

https://doi.org/10.4230/LIPICS.ITCS.2021.44
https://doi.org/10.4230/LIPICS.ITCS.2021.44
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1109/FOCS61266.2024.00089
https://doi.org/10.2307/2274765
https://doi.org/10.2307/2274765
http://eudml.org/doc/282141
https://doi.org/10.2307/2687774
https://doi.org/10.2307/2687774
https://doi.org/10.2178/JSL/1080938841
https://doi.org/10.2178/JSL/1080938841
https://doi.org/10.2178/jsl/1080938841
https://doi.org/10.2178/JSL/1120224731
https://doi.org/10.2178/jsl/1120224731
https://doi.org/10.2178/jsl/1120224731
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/forcing-random-variables-and-proof-complexity?format=PB
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/forcing-random-variables-and-proof-complexity?format=PB
https://doi.org/10.1142/S0219061311000979
https://doi.org/10.1142/S0219061311000979
TR22-120
https://eccc.weizmann.ac.il/report/2022/120
https://eccc.weizmann.ac.il/report/2022/120
https://doi.org/10.4230/LIPICS.CCC.2025.35
https://doi.org/10.4230/LIPIcs.CCC.2025.35
https://doi.org/10.4230/LIPIcs.CCC.2025.35
https://doi.org/10.1007/978-3-030-64375-1_22
https://doi.org/10.1007/978-3-030-64375-1_22
https://doi.org/10.1007/978-3-030-64375-1%5C_22

[Lau83] Clemens Lautemann. “BPP and the Polynomial Hierarchy”. In: Inf. Process. Lett. 17.4 (1983),
pp. 215–217. doi: 10.1016/0020-0190(83)90044-3. url: https://doi.org/10.1016/0020-
0190(83)90044-3 (cit. on pp. 8, 11).

[Li24] Zeyong Li. “Symmetric Exponential Time Requires Near-Maximum Circuit Size: Simplified,
Truly Uniform”. In: Proceedings of the 56th Annual ACM Symposium on Theory of Computing.
STOC 2024. Vancouver, BC, Canada: Association for Computing Machinery, 2024, pp. 2000–
2007. isbn: 9798400703836. doi: 10.1145/3618260.3649615. url: https://doi.org/10.
1145/3618260.3649615 (cit. on p. 4).

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs Randomness”. In: J. Comput. Syst. Sci. 49.2
(1994), pp. 149–167. doi: 10.1016/S0022-0000(05)80043-1. url: https://doi.org/10.
1016/S0022-0000(05)80043-1 (cit. on p. 2).

[Pas03] Rafael Pass. “Simulation in Quasi-Polynomial Time, and Its Application to Protocol Com-
position”. In: EUROCRYPT 2003. Ed. by Eli Biham. Vol. 2656. Lecture Notes in Computer
Science. Springer, 2003, pp. 160–176. doi: 10.1007/3- 540- 39200- 9_10. url: https:
//doi.org/10.1007/3-540-39200-9%5C_10 (cit. on p. 7).

[Pic11] Ján Pich. “Nisan-Wigderson generators in proof systems with forms of interpolation”. In: Math.
Log. Q. 57.4 (2011), pp. 379–383. doi: 10.1002/MALQ.201010012. url: https://doi.org/10.
1002/malq.201010012 (cit. on p. 4).

[Pud86] Pavel Pudlák. “On the length of proofs of finitistic consistency statements in first order theo-
ries”. In: Logic Colloquium ’84. Ed. by J.B. Paris, A.J. Wilkie, and G.M. Wilmers. Vol. 120.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1986, pp. 165–196. doi: https:
//doi.org/10.1016/S0049-237X(08)70462-2. url: https://www.sciencedirect.com/
science/article/pii/S0049237X08704622 (cit. on p. 5).

[Raz15] Alexander A. Razborov. “Pseudorandom generators hard for k-DNF resolution and polynomial
calculus resolution”. English. In: Ann. Math. (2) 181.2 (2015), pp. 415–472. issn: 0003-486X.
doi: 10.4007/annals.2015.181.2.1 (cit. on p. 4).

[RR97] Alexander A. Razborov and Steven Rudich. “Natural Proofs”. In: J. Comput. Syst. Sci. 55.1
(1997), pp. 24–35. doi: 10.1006/jcss.1997.1494. url: https://doi.org/10.1006/jcss.
1997.1494 (cit. on pp. 3, 8, 9).

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. “On the Range Avoidance Problem for
Circuits”. In: 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022,
Denver, CO, USA, October 31 - November 3, 2022. IEEE, 2022, pp. 640–650. doi: 10.1109/
FOCS54457.2022.00067. url: https://doi.org/10.1109/FOCS54457.2022.00067 (cit. on
p. 4).

[Rud97] Steven Rudich. “Super-bits, Demi-bits, and NP/qpoly-natural Proofs”. In: Randomization and
Approximation Techniques in Computer Science, International Workshop, RANDOM’97, Bolognna,
Italy, July 11-12. 1997, Proceedings. Ed. by José D. P. Rolim. Vol. 1269. Lecture Notes in Com-
puter Science. Springer, 1997, pp. 85–93. doi: 10.1007/3-540-63248-4_8. url: https:
//doi.org/10.1007/3-540-63248-4%5C_8 (cit. on pp. 3, 7, 9).

[RWZ25] Hanlin Ren, Yichuan Wang, and Yan Zhong. Hardness of Range Avoidance and Proof Com-
plexity Generators from Demi-Bits. Manuscript. 2025 (cit. on p. 7).

[Sha92] Adi Shamir. “IP = PSPACE”. In: J. ACM 39.4 (1992), pp. 869–877. doi: 10.1145/146585.
146609. url: https://doi.org/10.1145/146585.146609 (cit. on p. 5).

22

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1016/0020-0190(83)90044-3
https://doi.org/10.1016/0020-0190(83)90044-3
https://doi.org/10.1016/0020-0190(83)90044-3
https://doi.org/10.1145/3618260.3649615
https://doi.org/10.1145/3618260.3649615
https://doi.org/10.1145/3618260.3649615
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/3-540-39200-9%5C_10
https://doi.org/10.1007/3-540-39200-9%5C_10
https://doi.org/10.1002/MALQ.201010012
https://doi.org/10.1002/malq.201010012
https://doi.org/10.1002/malq.201010012
https://doi.org/https://doi.org/10.1016/S0049-237X(08)70462-2
https://doi.org/https://doi.org/10.1016/S0049-237X(08)70462-2
https://www.sciencedirect.com/science/article/pii/S0049237X08704622
https://www.sciencedirect.com/science/article/pii/S0049237X08704622
https://doi.org/10.4007/annals.2015.181.2.1
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1007/3-540-63248-4_8
https://doi.org/10.1007/3-540-63248-4%5C_8
https://doi.org/10.1007/3-540-63248-4%5C_8
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609

