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Abstract

We show a nearly optimal lower bound on the length of linear relaxed locally decodable
codes (RLDCs). Specifically, we prove that any q-query linear RLDC C : {0, 1}k → {0, 1}n
must satisfy n = k1+Ω(1/q). This bound closely matches the known upper bound of
n = k1+O(1/q) by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (STOC 2004).

Our proof introduces the notion of robust daisies, which are relaxed sunflowers with
pseudorandom structure, and leverages a new spread lemma to extract dense robust daisies
from arbitrary distributions.
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1 Introduction
In their influential 2004 paper, Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (BGHSV)
[BGH+06] introduced the notion of relaxed locally decodable codes (RLDCs). Similarly to
standard locally decodable codes (LDCs), these are error-correcting codes from which indi-
vidual message bits can be recovered, with high probability, by querying only a few codeword
bits, even when the codeword is partially corrupted. However, RLDCs permit a relaxed
decoder that, on a small fraction of coordinates, may output the rejection symbol ⊥ upon
detecting corruption.

More precisely, a (q, δ, σ)-RLDC C : {0, 1}k → Σn is a code that admits a relaxed decoder
D that, given an index i ∈ [k] and oracle access to w ∈ {0, 1}n that is δ-close to some codeword
c = C(x), satisfies the following conditions.

1. Completeness: if w = c, then Dw(i) = xi.

2. Relaxed local decoding: otherwise, Pr[Dw(i) ∈ {xi,⊥}] ≥ σ.

As observed in [BGH+06, Lemma 4.10], for O(1)-query RLDCs, the two conditions above
imply a relaxed decoder that will only output ⊥ on an arbitrarily small fraction of the message
bits.

This seemingly modest relaxation of LDCs allows for constructions with dramatically bet-
ter parameters. BGHSV constructed q-query linear RLDCs with length n = k1+O(1/q).1 In
particular, this implies O(1)-query RLDCs with nearly-linear length, while the best known
construction of O(1)-query (non-relaxed) LDCs has superpolynomial length [Yek08, Efr12].
However, despite the much attention that RLDCs received (cf. [GR18, GG18, GGK19,
GRR20, GL21, AS21, GG21, DGMT22, CGS22, CY22, DGL23, Gol24b, KM24, CY24]),
there are no constructions that improve on BGHSV by achieving length n = k1+o(1/q), and
whether such constructions are possible remained an open problem.

1.1 Main result
We prove a lower bound for linear RLDCs, which closely matches the n = k1+O(1/q) upper
bound of BGHSV. We do this by first proving a lower bound for RLDCs with non-adaptive
decoders, and then apply a known reduction by Goldberg [Gol24a] to deduce the same bound
for linear RLDCs.

Theorem 1. Let C : {0, 1}k → Σn be a non-adaptive (q, δ, σ)-RLDC, where q ∈ N, σ > 0,
and δ > n

− σ
2q . Then,

n ≥
(

σ2 · k
38q4 log2(|Σ|) · log2 k

)1+ 1
⌈q/σ⌉

.

For simplicity, throughout the rest of this section, we restrict our attention to the standard
setting of σ = 2/3 and δ = Ω(1), and assume a binary alphabet Σ = {0, 1}. In this setting,
and for a constant q, Theorem 1, yields the following.

Corollary 2. For any linear q-RLDC C : {0, 1}k → {0, 1}n it holds that n = k1+Ω(1/q).
1While BGHSV only guaranteed that the length is n = k1+O(1/

√
q), Goldreich [Gol24b] showed that their

construction achieves the stronger guarantee, with minor modifications to the analysis.
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Our result improves upon the previous state-of-the-art lower bound of n = k1+Ω(1/q2) for
linear RLDCs. This prior bound was achieved by applying Goldberg’s reduction [Gol24a] to
the n = k1+Ω(1/q2) non-adaptive bound in [Gol23] (which improved on the n = k1+Ω(1/q2 log2 q)

bound in [GL21]).
For the constant rate regime, rearranging the terms in Theorem 1 yields the following.

Corollary 3. For any linear q-RLDC C : {0, 1}k → {0, 1}n, where n = O(k), it holds that
q = Ω

(
log k

log log k

)
.

Since linear locally correctable codes (RLCCs) imply RLDCs with the same parameters,
both corollaries immediately extend to them.

Beyond non-adaptive RLDCs. We remark that the machinery developed in [DGL23]
provided the means to extend the n = k1+Ω(1/q2 log2 q) lower bound in [GL21] to (not necessarily
linear) adaptive RLDCs. We believe that an adaptation of this machinery will extend our
lower bounds to general RLDCs. We leave this to future work.

1.2 Robust daisies
The proof of our main result, Theorem 1, introduces the combinatorial notion of robust daisies,
which may be of independent interest. A distribution over sets is a robust daisy with a kernel
K if, after removing the kernel, its support forms a satisfying set system. That is, a binomial
sampling of the universe elements contains a full set from this system (ignoring the elements
in K) with high probability (see Definition 4.1). Furthermore, this property must hold for
any subset of the support, where the required success probability scales exponentially in the
subset’s density.

Definition 1.1. (Robust daisy) A distribution µ over P(U) is a (p, ε)-robust daisy with
kernel K ⊆ U , if, for every D ⊆ supp(µ):

Pr
W∼Bin(U,p)

[∃ S ∈ D, S ⊆ K ∪W ] ≥ 1− εµ(D) .

For any set S ∈ supp(µ), we call S \ K a petal of the robust daisy. Put differently, the
robust daisy condition dictates that every subset of petals {S \ K | S ∈ D} is

(
p, εµ(D)

)
-

satisfying.
Robust daisies are closely related to robust sunflowers [Ros14]. They both require the

petals to be a satisfying set system. However, the notions differ in two ways: (1) for robust
daisies, the kernel is allowed to have an arbitrary structure, rather than being restricted to
the intersection of all sets; (2) the robust daisy is a distribution over sets, rather than an
unweighted set system, and the satisfying set system condition must hold not only for the
support of the distribution, but also for its subsets.

We remark that, unlike the notion of (non-robust) daisies [GL21, DGL23], where outside
the relaxed kernel each point is only required to be covered by a bounded number of sets,
robust daises capture a pseudorandom structure, known as spreadness, outside of the kernel.
Indeed, to argue about robust daisies, we prove a new spread lemma that is applicable to
spread families of small sets (see Section 4).
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Robust daisy lemma. Our main structural result concerning robust daisies shows that it
is always possible to extract a dense robust daisy from a distribution over small sets.

Lemma 1.2. (The Robust Daisy Lemma; informally stated, see Lemma 5.1) Fix q ∈ N and
a set U of size n. Let µ be a distribution over P(U) such that |S| ≤ q for every S ∈ supp(µ).
Then, there exists D ⊆ supp(µ) with µ(D) ≥ 0.99 and a kernel K ⊆ U with |K| = o(n) such
that the conditional distribution µD(x) =

µ(x)
µ(D) is a (p, ε)-robust daisy with kernel K, where

p = n−Θ(1/q) and ε = 2−Ω(|K|) .

The conceptual message of the robust daisy lemma stands in sharp contrast to that of the
robust sunflower lemma. While the robust sunflower lemma shows the existence of a small,
highly structured subset within the set system, the robust daisy lemma instead extracts
a pseudorandom approximation of the entire distribution over the set system. To use a
metaphor, if a robust sunflower is a small precious “gem” that can be found within any large
enough mountain, a robust daisy is (approximately) the entire mountain.

1.3 Related work
LDCs, LCCs and their relaxed counterparts have attracted significant attention in recent
years. See the works of Yekhanin [Yek12] and Kopparty and Saraf [KS17] and references
therein for comprehensive surveys of LDCs, LCCs and their applications.

RLDCs constructions. The constructions of RLDCs and RLCCs can be separated into
two main parameter regimes: constant query complexity, and constant rate.

In the constant rate regime, the state-of-the-art code is the construction by Cohen and
Yankovitz [CY24]. They construct a linear RLCC with rate arbitrarily close to 1, and query
complexity q = (log n)2+o(1). This construction builds upon the result by Kumar and Mon
[KM24], which shows a similar code but with query complexity q = (log n)O(1).

In the constant query regime, the original work of [BGH+06] claimed to achieve RLDC
with constant query complexity O(q) and length n = O(k1+1/

√
q). In fact, [Gol24b] showed

that this construction actually achieves n = O(k1+1/q), which still makes it the current state-
of-the art RLDC construction with constant query complexity.

The work of [GRR20] introduced the notion of RLCCs, constructing such a code with con-
stant query complexity, but with a worse length tradeoff. Chiesa, Gur, and Shinkar [CGS22]
constructed an improved RLCC, achieving length n = O(k1+1/

√
q) (matching the original

BGHSV claim). This was later improved by Asadi and Shinkar [AS21], who constructed an
RLCC with length n = O(k1+1/q), matching the actual (and stronger) bound of the BGHSV
construction.

Lower bounds. In recent decades, extensive research has been conducted on lower bounds
for (non-relaxed) LDCs in various regimes [KT00, KdW03, Woo07, Woo12, AGKM22, JM25,
BHKL25].

Gur and Lachish [GL21] presented the first lower bound for relaxed LDCs. Specifically,

they showed that any non-adaptive RLDC requires a block length of n = k
1+Ω

(
1

q2 log2 q

)
. For

the adaptive case, they established a lower bound of n = k
1+Ω

(
1

22q log2 q

)
.
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The result of [GL21] was extended to additional settings, such as proofs of proximity
and property testing, and to the adaptive setting by Dall’Agnol, Gur and Lachish [DGL23].

Specifically, they extended the lower bound of n = k
1+Ω

(
1

q2 log2 q

)
to adaptive RLDCs.

Goldreich [Gol23] surveyed and simplified the work of [GL21], without employing the
newer techniques of [DGL23]. He established an improved bound of n = k1+Ω(1/q2) for the
non-adaptive case, and a bound of n = k1+Ω(1/q3) for the adaptive case (which is weaker than
the one presented in [DGL23]).

Goldberg [Gol24a] presented a generic reduction that transforms any lower bound for non-
adaptive RLDCs and extends it to (possibly adaptive) linear RLDCs. Applying this reduction
to the bound from [Gol23] extends the n = k1+Ω(1/q2) lower bound to all linear RLDCs.

Spreadness. Our techniques draw on the powerful connection between spreadness and ro-
bust combinatorial structures, a link that has been central to recent breakthroughs.

The concept of spreadness for distributions was introduced by Talagrand [Tal10]. A ver-
sion of the spread lemma, with roots in Rossman [Ros14], was famously used by Alweiss,
Lovett, Wu, and Zhang [ALWZ21] (building on [LSZ20]) to prove that any sufficiently spread
set system contains a robust sunflower. This directly led to a breakthrough on the sunflower
lemma. This line of work, and the spread lemma itself, has since been significantly strength-
ened [FKNP21, PP23, Rao20] and has found numerous applications across combinatorics and
computer science (among others, see [ALWZ21, FKNP21, PP23, CKR22, CGR+25]). For a
detailed survey, we refer the reader to [Rao25].

1.4 Open problem
Our work leaves several interesting directions for further research. We highlight one open
question that we find particularly compelling.

In the constant rate regime, where n = O(k), Theorem 1 implies a lower bound on the
query complexity, of q = Ω( log k

log log k ). On the other hand, the recent state-of-the-art construc-
tion of a constant-rate RLDC by Cohen and Yankovitz [CY24], achieves q = O(log2 k). An
important open problem is to close the quadratic gap that still remains in this regime.

2 Proof overview
The proof of the RLDC lower bound in Theorem 1 consists of the following three high-level
steps.

• Step 1: Reduction to a combinatorial problem. First, we reduce the problem of
proving a lower bound for RLDCs to a purely combinatorial problem: finding a specific
structure, a dense robust daisy, within the decoder’s query-set distribution.

• Step 2: From spreadness to robust daisies. Second, we establish the key link
between spreadness and our new notion of robust daisies. We introduce a set-theoretic
property, which is a generalization of the well-known notion of set spreadness. We prove
a new small-set spread lemma which shows that any spread set system is satisfying,
which is the required structure of the robust daisy outside the kernel.

4



• Step 3: finding spreadness. Third, we prove a spreadness extraction lemma. We
show that every distribution over sets can be made spread, by puncturing (removing
o(n) elements from the universe), and conditioning (restricting the distribution to a
large-measure subset of its support).

These three components chain together to prove the main theorem. We apply the spread-
ness extraction lemma (Step 3) to the RLDC’s query-set distribution to find a large, spread
substructure. Our small-set spread lemma (Step 2) then proves this structure is a robust
daisy. Finally, by our reduction (Step 1), the existence of this robust daisy within the de-
coder’s queries implies the n = k1+Ω(1/q) lower bound. We proceed to elaborate on each of
these three steps.

2.1 RLDC lower bounds via robust daisies
Our first contribution is conceptual: we abstract and generalize the argument underlying
the RLDC lower bound in [GL21]. This abstraction is crucial, as it reveals the bottleneck
common to all previous lower bounds, including [DGL23, Gol23, Gol24a], and provides the
generality that is needed to surpass the barrier of n = k1+Ω(1/q2) lower bounds.

In the following, let C : {0, 1}k → {0, 1}n be a non-adaptive q-RLDC; that is, for each
decoding index i ∈ [k] the decoder’s queries are determined by a query-set distribution µi

over q-tuples of codeword coordinates.
We show that if the relaxed decoder is structured in the sense that each distribution µi

constitutes a robust daisy (Definition 1.1), then the following lower bound on the code’s block
length must hold.

Lemma 2.1. (informally stated, see Lemma 6.3) Let C : {0, 1}k → {0, 1}n be a non-adaptive
q-query RLDC. If for every i ∈ [k], the query-set distribution µi is a (p, εi)-robust daisy with
a kernel Ki ⊆ [n] such that |Ki| = o(n) and εi = 2−Ω(|Ki|), then k ≤ pn.

We defer a detailed overview of the proof of Lemma 2.1 to Section 6.1, which we encourage
readers unfamiliar with the techniques of [GL21] to review first. Our focus here is on how the
reduction to a combinatorial problem, which Lemma 2.1 provides, allows us to overcome the
limitations of previous approaches.

Towards this end, note that the query-set distribution µ of a general RLDC might not
form a robust daisy, but rather an arbitrary set of distributions {µi}i∈[k] supported on q-sets.
However, to apply the reduction, it suffices that each µi can be approximated by a robust
daisy.

To see this, fix i ∈ [k] and denote µ = µi. Note that if there exists a dense sub-family
D ⊆ supp(µ) such that the conditional distribution µD is a robust daisy, we can slightly
modify the operation of the relaxed decoder: instead of sampling a set S ∼ µ (as the original
decoder does), the modified decoder will sample a set S ∼ µD. Hence, if D is dense enough
(say, with µ(D) ≥ 0.99), then the soundness probability of the modified decoder is only
slightly worse than that of the original one.

The above discussion, combined with Lemma 2.1, reduces the task of proving RLDC lower
bounds to the following, purely combinatorial problem.

Problem (Robust daisy extraction). Given an arbitrary distribution µ supported on q-sets,
extract a dense (p, ε)-robust daisy with kernel K such that ε = 2−Ω(|K|), while minimizing p.
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Our reduction to the problem of extracting robust daisies, which are closely related to
robust sunflowers (see Section 1.2), exposes the connection to the pseudorandom structure
captured by spread lemmas, which lies at the heart of robust sunflower lemmas and is also a
key component in our proof.

We remark that previous RLDC lower bounds did not employ an abstract reduction;
rather, they directly analyzed the query-set distribution to identify specific structures. Re-
casting the works of [GL21, DGL23, Gol23] through the lens of robust daisy extraction, the
structures they isolate are in fact (p, ε)-robust daisies, albeit with relatively weak parameters:
to achieve ε that is exponentially small in the kernel’s size, they need p = n−Θ(1/q2). The
quadratic dependency in the query complexity gives the corresponding factor in the lower
bound.2 Moreover, as we shall see next, there are explicit counterexamples showing that
these structures cannot attain the parameters needed to surpass n = k1+Ω(1/q2) lower bounds.

2.2 Extracting a robust daisy
In light of the reduction above, we can set aside RLDCs and focus on the combinatorial
problem of robust daisy extraction. For simplicity, let us denote a (p, ε)-robust daisy with
ε = 2−Ω(|K|) as a p-robust daisy.

We begin by examining the methods used in previous lower bounds to extract structures
that can be viewed as p-robust daisies, and explain a barrier for such approaches.

The bottleneck: t-daisies. The combinatorial structure extracted in all previous works
[GL21, DGL23, Gol23] is that of a t-daisy.3 A set system is a t-daisy if, outside a kernel K,
each element is contained in at most t sets.

Reframing [GL21] through the abstraction of robust daises, their argument regarding
t-daisies can be seen as showing for any set system containing O(n) sets, the following holds:

1. It is always possible to extract a t-daisy with t|K| = O(n1−1/q).4

2. If a t-daisy satisfies the condition above, then it is a n−Θ(1/q2)-robust daisy.

We remark that the second item is shown by simple, first-principle arguments. Namely, using
a greedy process, [GL21] finds a family of disjoint sets in the t-daisy. Then, they directly
calculate the probability to sample one of these sets.

We argue that p = n−Θ(1/q2) is the best (i.e., minimal) sampling probability that can be
achieved by extracting t-daisies; hence, they cannot imply stronger RLDC lower bounds.

First, there exist t-daisies satisfying the condition t|K| = O(n1−1/q) which are not p-
robust daisies for any p = n−o(1/q2). To see this, fix t = n1−1/q, and consider the set system
consisting of n/t = n1/q sets of size q, each repeating t times. This set system is a t-daisy with

2The robust daisy extracted in [GL21] is of density of only µ(D) ≥ 1/q. Therefore, they had to employ a
soundness amplification process, which increases the query complexity to q log q. This increment gives the term
q2 log2 q in their lower bound. Using an improved construction, [Gol23] is able to extract a robust daisy with
density arbitrarily close to 1 (but still with p = n−Θ(1/q2)), which avoids the need for soundness amplification,
yielding the improved lower bound.

3Technically, the argument in [Gol23] avoids the notion of t-daisies, and the query sets are simply divided
into heavy, medium, and light elements. However, the essence of the structure is maintained, as the heavy
elements play the role of the kernel, and the light elements admit the bounded intersection property.

4Notice that extracting a t-daisy with t|K| = O(n) is trivial, since for a constant q, there are at most O(1/t)
elements with degree larger than t.
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an empty kernel, and satisfies t|K| = O(n1−1/q). However, by a straightforward calculation,
one needs p = n−O(1/q2) to sample a full set with a constant probability.5

Nevertheless, one might wonder: is it possible to extract a t-daisy with a better relation
between t and K? This might imply that this t-daisy is a p-robust daisy with p = n−o(1/q2).
Alas, this is impossible. The process for extracting t-daisies in [GL21] is optimal; one cannot
find better t-daisies in arbitrary set systems.

To illustrate this, we present a (q + 1)-uniform set system, with n sets over O(n) base
elements. This set system has the property that for every value of t, and setting the kernel K
to contain the elements with degree larger than t, it holds that t|K| = Ω(n1−1/q). Consider
the k-regular tree with q + 1 levels, with k = n1/q. Each level ℓ in the tree has kℓ−1 vertices
(the root is on level 1), and the last level where ℓ = q + 1 has n leaves. The n sets in the
system are the unique n root-to-leaf paths in the tree. The degree of each element in level ℓ
is kq+1−ℓ, which is the number of root-to-leaf paths going through it. The degrees decrease
from kq = n at the root to k0 = 1 at the leaves.

Now, consider any degree threshold t. This threshold must fall between the degrees of
two adjacent levels. Namely, t ∈ [kq−ℓ, kq+1−ℓ) for some ℓ between 0 and q. The kernel K
of a t-daisy now must include all vertices in the top ℓ levels – otherwise there is an element
included in kq+1−ℓ > t or more petals. The size of this kernel is therefore at least the total
number of vertices in these levels:

|K| ≥
ℓ∑

j=1

kj−1 = Θ(kℓ−1) .

On the other hand, t ≥ kq−ℓ, and together this implies:

t|K| = Ω(kq−ℓ · kℓ−1) = Ω(kq−1) = Ω(n1−1/q) .

To summarize: the notion of t-daisies is, on the one hand, not strong enough to imply the
desired n−Θ(1/q) sampling probability, and on the other hand, too strong, so improving the
extraction process is impossible.

Nevertheless, as we shall see next, it is possible to extract a n−Θ(1/q) robust daisy from
every distribution supported over sets of size at most q, even from the tree set system above
– this is guaranteed by our Robust Daisy Lemma (Lemma 1.2). For that, however, we need
new ideas that avoid the bottleneck of t-daisies.

(m, k)-spreadness. In this work, we introduce the notion of (m, k)-spreadness, which is a
generalization and strengthening of the known notion of k-spreadness [Tal10, MNWSZ25].
This stronger notion is essential for extracting robust daisies that outperform those from
previous approaches.

In the following, we use ⟨T ⟩ to denote the family of all subsets of U that contain T , and
then µ(⟨T ⟩) is the total density of all subsets of U that contain T .

Definition 2.2 ((m, k)-spread distributions). Let µ be a distribution over P(U), let k > 1
and let m ∈ (0, 1]. We say that µ is (m, k)-spread if for any non-empty set T ⊆ U ,

µ(⟨T ⟩) ≤ m

k|T | .

5For a counterexample that avoids repetitions of the same set, one can add a unique vertex to each of the
n sets, while maintaining the sampling bound.
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This new notion coincides with the standard k-spreadness for m = 1. For m < 1, however,
it is stronger. We believe this generalization, and the connection it creates between RLDCs
to the literature on spreadness, might be of independent interest.

We remark that even with m = 1, the spreadness condition is strictly stronger than
the condition required from the petals of a t-daisy. To see that, fix m = 1, and assume
the uniform distribution over a set system F is k-spread. Then, applying the spreadness
condition to T = {x} for every universe element x, we deduce that every element is contained
in at most |F|

k sets. That is, F is a |F|
k -daisy with an empty kernel. In other words, the

bounded intersection requirement is similar to asking for spreadness, but for singletons only.
Spreadness is a much stronger requirement, as it applies to any subset of U .

Our generalized notion of (m, k)-spreadness allows us to prove a new spread lemma, which
is useful specifically when the support of the distribution is over small sets. Before stating
the new lemma, let us demonstrate why we need the new generalized definition.

(m, k)-spreadness vs k-spreadness. The main benefit of the new notion comes from the
following observation: One cannot hope for spreadness parameter better than k = nΘ(1/q).
Consider the uniform distribution over n distinct sets, each of size q. Let T be one of these n
sets. The probability of picking T is µ(T ) = 1/n. Since T ∈ ⟨T ⟩, the total density µ(⟨T ⟩) must
be at least 1/n. On the other hand, the spreadness condition requires µ(⟨T ⟩) ≤ 1/k|T | = 1/kq.
Combined, this implies 1/n ≤ 1/kq, and hence k ≤ n1/q.

Now, the high-probability version of the spread lemma ([Rao20]) guarantees that a k-
spread set system is (p, ε)-satisfying for p = O

(
log(q/ε)

k

)
. This is known to have an optimal

dependence on ε (e.g., see [BCW21, Lemma 4]). To obtain ε = 2−Ω(|K|), one would need to
set p = n−Θ(1/q) · |K| which is vacuous if |K| = ω(n1/q), which is unavoidable in certain cases.
This motivates the need for a stronger notion of spreadness, and a stronger spread lemma.

A second difference between the definitions is that the new one is “closed under condi-
tioning”: if µ is (m, k)-spread, then, for any D ⊆ supp(µ), the conditioned distribution µD is(

m
µ(D) , k

)
-spread. The more refined condition of (m, k)-spreadness allows us to express this

relation. We will see shortly how this property helps us to show that a distribution is a robust
daisy.

The Small-Set Spread Lemma. In Section 4, we prove that if a distribution is (m, k)-
spread, then its support is a satisfying set system.

Lemma 2.3 (“The Small-Set Spread Lemma”; informally stated, see Lemma 4.6). Let µ be
a (m, k)-spread distribution, and assume every set in supp(µ) has at most q elements. Then,
for every α > 2q, supp(µ) is (p, ε)-satisfying with p = α

k and ε = exp
(
−Ω̃

(
α
qm

))
.

This lemma shows that (m, k)-spreadness is sufficient to obtain the required satisfaction
guarantees, and provides a clear target for what parameters we should aim for.

Suppose we can find a dense family D and a kernel K such that the distribution over the
petals, µ, is (m, k)-spread with k = nΘ(1/q) and m|K| = O(1). Let D′ ⊆ D. As noted above,
µD′ is ( m

µ(D′) , k)-spread. We could then apply Lemma 2.3 with α = O(m|K|) (which is O(1)

by our assumption). The lemma then gives us sampling probability p = O(1/k) = n−Θ(1/q)

and failure probability ε′ = exp
(
−Ω̃

(
m|K|

qm/µ(D′)

))
= 2−Ω(µ(D′)·|K|), implying that the set of
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petals is (n−Θ(1/q), εµ(D
′
)-satisfying for ε = 2−Ω(|K|), as needed. In the next section we show

that we can always achieve such parameters.
Our proof of the Small-Set Spread Lemma relies on a delicate application of Janson’s In-

equality. We follow the proof strategy of prior spread lemmas [Ros14, ALWZ21], but crucially
leverage our new definition of (m, k)-spread. We use this strengthened spread property to
obtain a tighter bound on the cumulative dependency among intersecting sets in the family,
which in turn yields a smaller failure probability.

While the above guarantee is stronger than that provided by standard k-spread, fortu-
nately, the kernel structure of robust daises enable us to extract such a stronger spread in
any distribution, as we discuss next.

2.3 The spreadness extraction lemma
By the discussion above, to obtain the desired RLDC lower bound, the remaining task is
as follows. We get an arbitrary distribution µ over a universe U of size n, supported on
sets of size at most q, which for the overview we assume is constant. We need to extract an
(m, k)-spread distribution from µ, and we are allowed to perform the following two operations:

1. Puncturing: We remove a small set of “problematic” elements K ⊆ U , where |K| =
o(n).6 This K corresponds to the kernel of the robust daisy.

2. Conditioning: We are allowed to restrict the distribution to a “well-behaved” subfam-
ily D ⊆ supp(µ), as long as the density µ(D) is large (e.g., µ(D) ≥ 0.99).

In Lemma 5.4, we prove that for any distribution µ, there always exists such a set K and
a subfamily D which allow us to achieve the desired spreadness.

Lemma 2.4. (The Spreadness Extraction Lemma; informally stated, see Lemma 5.4) Let µ
be a distribution over P(U), and assume that every set in supp(µ) has at most q elements.

Then, there exists a family of sets D ⊆ supp(µ), and a set K ⊆ U such that the distribution
µD punctured by K is (m, k)-spread, where:

k = nΘ(1/q), m · |K| = O(1), µ(D) ≥ 0.99 .

This extraction process builds upon [GL21] and [Gol23]. However, it is substantially more
involved, as we extract (m, k)-spreadness, as opposed to merely a degree bound.

We next provide a high-level overview of the proof of Lemma 2.4.

Universe partitioning. We partition the elements in U into c + 1 = Θ(q) buckets. The
partitioning is according to the (normalized) weighted degree of each element, which we define
as:

µ̄(u) =
∑

S s.t. u∈S

µ(S)

|S|
.

Note that µ̄ is a distribution over U . That is,
∑

x∈U µ̄(x) = 1. This distribution is equivalent
to the following two-step random process: first, select a set S ⊆ U according to µ, and then
select an element x ∈ S uniformly at random. We remark that if µ is a uniform distribution

6We note that it is sufficient for our purposes that |K| ≤ δn. However, for a constant q, we can achieve this
better o(n) bound.
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over a uniform family F , then µ̄(u) is the normalized degree of u in F (the fraction of sets in
F containing u) divided by q.

We set a base step size k = n1/c. The buckets are then defined by degree ranges: B0

contains the elements with µ̄(u) ≤ 1/n, and for j ∈ [c], the bucket Bj contains the elements
with µ̄(u) ∈ (kj−1/n, kj/n]. Since kc = n and the degrees are normalized, this is indeed a
partition of the universe.

The kernel threshold. We choose the kernel K to be all elements with µ̄(u) > kj/n
for some j ∈ [c] that we pick later. That is, the threshold m = kj/n is set to be one of
the bucket boundaries. Since

∑
x∈U µ̄(x) = 1, this implies m|K| = O(1). The question is

how to choose this bucket j (which defines K and m), such that after puncturing by K and
conditioning on an appropriate subfamily D (as we will see next), the resulting distribution
is (O(m), k)-spread.

Token distributions and good boundaries. For any fixed set S, the partitioning cate-
gorizes its q elements into the buckets. We treat these elements as q tokens distributed among
the c+ 1 buckets, and call this distribution the token distribution of S.

Now, we define a key property: we say that a bucket Bj is a good boundary for S if
the token distribution satisfies the following property: for every i ∈ {0, . . . , j}, the set of
i + 1 buckets from Bj−i to Bj (inclusive) contains at most i tokens. The proof relies on the
following two claims:

1. If Bj is a good boundary for every S ∈ D (for some D ⊆ supp(µ)), then after the removal
of K = {u | µ̄(u) > kj/n} the distribution µD punctured by K is (O(m), k)-spread.

2. There exists D ⊆ supp(µ) with µ(D) > 0.99 and a bucket Bj which is a good boundary
for every S ∈ D.

We next sketch the proofs of these two claims, which form the technical heart of the lemma.

From good boundaries to spreadness. Recall that to prove spreadness, we need to
show that for every T ⊆ U , the total mass of sets containing T (denoted by µ(⟨T ⟩)) is
upper bounded by m/k|T |. The key observation is that: if T contains an element with small
weighted degree, then µ(⟨T ⟩) itself is upper bounded. Specifically, let x ∈ T . Then, since each
set containing T also contains x, and each set is of size at most q, we have µ(⟨T ⟩) ≤ q · µ̄(x).

Now, since we removed all elements with µ̄(u) > kj/n, we can assume T does not contain
any such element. But, by construction, Bj is a good boundary, hence, by taking i = |T | − 1,
T can contain at most |T | − 1 elements in the buckets between Bj−|T |+1 and Bj (inclusive).
In other words, T must contain an element in Bj−|T | (or a lower bucket). But all these
elements have µ̄(u) ≤ kj−|T |/n = m/k|T |. Hence, by the above argument, we get the bound
µ(⟨T ⟩) ≤ qm/k|T |.

Abundance of good buckets. We prove that for a any fixed set S, at least c− q buckets
constitute good boundaries. Towards this end, we use a subtle analysis of a token shifting
process: by iteratively moving tokens from crowded buckets to higher ones, we can argue
that the final configuration will have at most q buckets containing any tokens. This leaves at
least c− q buckets empty, and we prove that these empty buckets must be good boundaries.
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Taking a sufficiently large c (e.g., c = 100q = Θ(q)) yields that almost all the boundaries (say,
99%) are good. In turn, this implies that there exists (at least) one bucket which is a good
boundary for 99% of the sets. We choose this bucket to determine m and K, and set D to be
the sets for which this bucket is good.

The number of buckets. It is instructive to discuss how we choose the exact number of
buckets, c. On the one hand, we want this number to be as small as possible, as c determines
the exact constant in the exponent of the lower bound. Specifically, the lower bound we
achieve is n = Ω̃(k1+

1
c−1 ).

On the other hand, it must be sufficiently large; the fraction of good boundaries (out of
the total number of buckets) must be larger than the soundness error of the relaxed decoder,
which is 1−σ. Otherwise, even if the chosen boundary is good for a large fraction of sets, it is
possible that all these sets are “bad” — leading the decoder to a wrong output when choosing
them. This means we must choose c such that the fraction of good boundaries c−q

c = 1− q/c
is larger than 1 − σ; that is, q/c < σ. More precisely, we need σ to be bounded away from
q/c by some constant independent of k.

Hence, we choose c = ⌈ qσ ⌉ + 1, which is the minimal integer satisfying this requirement.
This parameter choice gives the exact exponent in the lower bound – namely, 1

⌈q/σ⌉ .

The centrality of the spread parameter k = n1/q. The choice for the value of k, the
“spreadness” parameter or “step size”, plays a central role in determining the exact lower
bound achieved, even more than the choice of c. Let us follow how this parameter propagates
through the different parts of the proof.

First, the Small-Set Spread Lemma yields a (p, ε)-satisfying set system with p = α/k.
Recall we set α = O(1) in this overview, so p = O(1/k).7 This sampling probability p is then
used for the robust daisy we extract. By our reduction (Lemma 2.1), this value of p is what
gives the final lower bound on the code’s length.

Second, we remark that our current proof technique cannot get an improved value for k.
As we have seen, k = n1/c is the base step size between the buckets, and our proof requires
c > q. If there were fewer than q + 1 buckets (i.e., c ≤ q), it would be possible for a set S
to place one of its q tokens in every single bucket. In this case, our token-shifting argument
would fail to guarantee an empty bucket, and there would be no ”good boundaries” at all.

This k = nΘ(1/q) barrier is not a coincidence; it appears to be fundamental. This exponent
is not just a limitation of our proof technique but an inherent feature of the problem, stemming
from three different points of view:

1. From Construction: It matches the n1+O(1/q) upper bound, so a better parameter
would imply an impossible lower bound.

2. From Combinatorics: As observed above, k = nΘ(1/q) is the best spreadness param-
eter achieved for arbitrary distributions over sets of size q.

3. From Our Proof: Our token-shifting technique, which requires c > q buckets, inde-
pendently arrives at the same k = nΘ(1/q) parameter.

7More accurately, in the full proof we need to set α = O(log2 n log2 |Σ|) to compensate for a few minor
terms which we do not cover in the overview.
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These perspectives – the upper bound, the combinatorial limitation of spreadness, and our
own extraction method – solidify the 1/q exponent as a central, inherent property of the
problem.

2.4 Organization
The rest of the paper is organized as follows. In Section 3 we give standard definitions and
notations, including those of RLDCs. In Section 4 we prove the spread lemmas, making the
link between spreadness and robust daisies. In Section 5 we prove the spreadness extraction
lemma, and apply it to prove the robust daisy lemma. In Section 6 we show the reduction
from proving a lower bound for RLDCs to the problem of finding a robust daisy, and we apply
it to finally prove Theorem 1.

3 Preliminaries
We provide notation for set and distributions that we shall use throughout the paper.

3.1 Basic notations
Set notation. Let U be a finite set.

• For a set U , we denote by P(U) the power set of U , i.e., the family of all subsets of U .
Furthermore, let P≤q(U) = {S ∈ P(U) ; |S| ≤ q} denote the family of subsets of size
at most q.

• The star of a set T ⊆ U , denoted by ⟨T ⟩, is the family of subsets of U that contain T ;
that is, ⟨T ⟩ = {S ⊆ U | S ⊇ T} ⊆ P(U).
We use a slight abuse of notation and write ⟨x⟩ to denote ⟨{x}⟩ for an element x ∈ U .

• A family of sets F ⊆ P(U) is called q-uniform if every set S ∈ F has size |S| = q.

• We use I[·] to denote the indicator function. For a set S, the indicator function of S is
defined as:

I[x ∈ S] =

{
1 if x ∈ S

0 if x /∈ S

Distributions. Let D be a discrete domain.

• A distribution µ over D is a function µ : D → [0, 1] such that
∑

x∈D µ(x) = 1.
For any subset A ⊆ D, the probability mass or density of A is µ(A) =

∑
x∈A µ(x).

• The support of a distribution µ is the set of elements with non-zero probability, denoted
supp(µ) = {x ∈ D | µ(x) > 0}.

• The conditioning of a distribution µ to a set A ⊆ D with non-zero density is a distri-
bution over A, denoted µA, defined for each x ∈ A by µA(x) = µ(x)

µ(A) . The following
straightforward observation relates the probability of events in the conditional distribu-
tion to the original distribution.

Fact 3.1. For any B ⊆ D, µA(B) = µ(B)/µ(A).
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3.2 Concentration inequalities
We use the following version of Janson’s inequality.

Lemma 3.2 (Janson’s Inequality [AS16, Chapter 8.1]). Let S ⊆ P(U) be a family of sets.
Let W ∼ Bin(U, p). For S ∈ S, let ZS be the indicator of the event that S ⊆ W . Let
X =

∑
S∈S ZS and M = E[X]. For, S ̸= T ∈ S, let S ∼ T iff S ∩ T ̸= ∅. Define

∆ =
∑

(S,T ) : S∼T

E[ZSZT ] .

Then,
Pr[X = 0] ≤ exp(−M +∆/2) ,

and if M ≤ ∆, then
Pr[X = 0] ≤ exp(−M2/2∆) .

3.3 Relaxed Locally Decodable Codes
We recall the formal definition of relaxed locally decodable codes [BGH+06].

Definition 3.3. (Relaxed locally decodeable codes) Let C : {0, 1}k → Σn be an error correcting
code. A (q, δ, σ)-relaxed decoder for C is a randomized procedure B that on an explicit input
i ∈ [k], and oracle access to w ∈ Σn, outputs an element of {0, 1,⊥}, and satisfies the following
requirements:

1. (completeness) If w = C(x) for some x ∈ {0, 1}k, then Bw(i) = xi.8

2. (relaxed local decoding) If there exists x ∈ {0, 1}k such that dist(w,C(x)) ≤ δ, then
Bw(i) ∈ {xi,⊥} with probability at least σ.

3. For every input i and oracle access to any w ∈ Σn, B makes at most q queries.

We say that a B is non-adaptive if it determines all its queries based on its explicit input
(namely, the index to decode) and internal coin tosses, independently of the specific w to
which it is given oracle access. We refer to δ as the decoding radius of the decoder, and to σ
as its soundness probability.

A code C with a (q, δ, σ)-relaxed decoder is often referred to as a (q, δ, σ)-relaxed locally
decodable code.

A relaxed corrector for a code is defined analogously to a relaxed decoder, but its objective
is to correct any codeword symbol rather than decode a message bit. That is, the three
requirements in Definition 3.3 are extended to any i ∈ [n], and the corrector’s output should
be ci (or ⊥) instead of xi.

We say that a code C : {0, 1}k → Σn is linear if Σ is a field and the image of C is a linear
subspace of Σn.

8We remark that a common variation of RLDCs allows the decoder to err with a small probability even on
valid codewords. Our lower bound holds for such codes as well (assuming they are linear), but for simplicity,
we assume perfect completeness throughout.
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4 Spread lemmas
In this section, we prove two spread lemmas. The first is a spread lemma for families of sets.
We then proceed to extend this lemma, and prove a spread lemma for distributions.

Let us begin by reiterating the relevant definitions.

Definition 4.1 (Satisfying set system). Let F be a family of sets over a universe U . We say
that F is (p, ε)-satisfying if

Pr
W∼Bin(U,p)

[∃S ∈ F , S ⊆W ] ≥ 1− ε .

Here, W ∼ Bin(U, p) denotes the random set where each element u ∈ U is chosen to be
in W independently with probability p.

We remark that the notion of a satisfying set system, and its name, originates from the
study of DNF formulas. When a set system is interpreted as a DNF formula, this condition
is that the formula has more than a 1− ε probability of being satisfied on p-biased inputs.

In the following, recall that for T ⊆ U , the star of T , denoted ⟨T ⟩, is the family of all
subsets of U that contain T .

Definition 4.2 ((m, k)-spread distributions, reiterating Definition 2.2). Let µ be a distribution
over P(U), let k > 1 and let m ∈ (0, 1]. We say that µ is (m, k)-spread if for any non-empty
set T ⊆ U ,

µ(⟨T ⟩) ≤ m

k|T | .

Definition 4.3 (Spread families). Let F be a family of sets over a universe U , let k > 1,
and let m ∈ (0, 1]. We say that F is (m, k)-spread if the uniform distribution over F is
(m, k)-spread. That is, if for any non-empty set T ⊆ U ,

degF (T )

|F|
≤ m

k|T | ,

where degF (T ) is the number of sets in F that contain T .

4.1 The spread lemma for families of sets
We start by proving the spread lemma for fixed set systems.

Lemma 4.4 (“The Small-Set Spread Lemma” - for families of sets). Fix k > 1 and m ∈ (0, 1].
Let F be an (m, k)-spread family of sets over universe U , and assume every set in F has at
most q elements. Then, for every α > 2q, the family F is (p, ε)-satisfying with p = α/k and
ε = exp

(
− α

4qm

)
.

Proof. Our goal is to lower bound PrW∼Bin(U,p)[∃S ∈ F , S ⊆ W ], where p = α/k. The proof
relies on Janson’s inequality.
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Setup of Janson’s inequality. For any S ∈ F , let ZS be the indicator value for the event
S ⊆W . Denote S ∼ T if S, T ∈ F intersect. Define:

M =
∑
S∈F

E[ZS ], ∆ =
∑
S∼T

E[ZSZT ] . (1)

Recall that Janson’s inequality states that:

1. when ∆ ≤M :

Pr
W∼Bin(U,p)

[∃S ∈ F , S ⊆W ] ≥ 1− exp (−M +∆/2) ≥ 1− exp(−M/2).

2. when ∆ > M :
Pr

W∼Bin(U,p)
[∃S ∈ F , S ⊆W ] ≥ 1− exp

(
−M2

2∆

)
.

Let s ≤ q be the size of the largest set in F . It is sufficient to show that

min

(
M2

2∆
,
M

2

)
≥ α

4sm
≥ α

4qm
.

Uniformity assumption. In what follows, we assume that F is s-uniform. This assump-
tion can be made without loss of generality. If the family is not uniform, we can increase
the universe with a set of “dummy” elements and pad each set S ∈ F with s − |S| distinct
dummies to create a new s-uniform family F ′. This transformation only makes the required
condition stricter: for any sample W from the new universe, if a padded set S′ ∈ F ′ is fully
contained in W , then its original counterpart S is necessarily contained in W as well.

Also note that since each new dummy element is contained only in a single set, this
transformation does not affect the spreadness of F .

Estimating M . By assumption, every set in F has s elements, and hence for any S ∈ F
we have E[ZS ] = ps. Therefore,

M =
∑
S∈F

E[ZS ] = |F| · ps . (2)

Bounding ∆. For any t ∈ [s], let rt be the number of pairs of sets S, T ∈ F such that
|S ∩ T | = t. Any such S, T ∈ F share t vertices, and have s − t unique vertices each.
Therefore, the probability of sampling all of the vertices of both S, T is

E[ZSZT ] = pt · (ps−t)2 = p2s−t .

Hence, it follows that

∆ =
∑
S∼T

E[ZSZT ] =
s∑

t=1

rt · p2s−t = p2s
s∑

t=1

rt · p−t .

We proceed to bound rt. For each of the |F| subsets in the family, there are
(
s
t

)
≤ st

options to choose the intersection set R ⊆ S of size t. By the spreadness hypothesis, each
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such set R is contained in at most m
kt |F| sets of F . Therefore, in total, rt ≤ |F|2m

(
s
k

)t, and
we get the upper bound

∆ ≤ p2s
s∑

t=1

|F|2m
( s
k

)t
· p−t = mp2s|F|2

s∑
t=1

(
s

pk

)t

.

Next, since pk = α and by assumption α > 2s =⇒ (1− s/α) > 1/2:

∆ ≤ mp2s|F|2
s∑

t=1

(
s

pk

)t

≤ mp2s|F|2
∞∑
t=1

( s

α

)t
= mp2s|F|2

(
s/α

1− s/α

)
≤ mp2s|F|2 2s

α
. (3)

Applying Janson’s inequality. Combining Equation (2) and Equation (3), we conclude
that

M2

2∆
≥ (|F|ps)2

2mp2s|F|2α−12s
=

α

4sm
.

Also, note that
M

2
=

ps|F|
2

=
αs|F|
2ks

≥ α

2
· |F|
ks

where the last inequality follows since α ≥ 1. Now, by assumption, there exists a set S ∈ F
(without dummy elements) with |S| = s. Hence, from the spreadness of F when applied to
T = S, we get 1 ≤ deg(S) ≤ |F| · mks =⇒ |F|

ks ≥
1
m , and then:

M

2
≥ α

2
· 1
m
≥ α

4sm

4.2 The spread lemma for distributions
We use the following helper lemma to transition from distributions to fixed set systems.

Lemma 4.5. Let µ be a distribution over a support R with |R| ≥ 2. There exists a non-empty
set A ⊆ R such that for every a ∈ A:

µ(a) ≥ 1

2|A| log(|R|)

Proof. Let n = |R|, and let p1 ≥ p2 ≥ · · · ≥ pn be the sorted probabilities of the elements in
R. Assume for contradiction that for all k ∈ {1, . . . , n}, we have pk < 1

2k log(n) .
Summing over all k gives:

1 =

n∑
k=1

pk <

n∑
k=1

1

2k log(n)
=

1

2 log(n)

n∑
k=1

1

k
=

Hn

2 log(n)

This implies 2 log(n) < Hn. However, for n ≥ 2, it is a known that Hn ≤ ln(n)+1 ≤ 2 log(n),
which is a contradiction.

Therefore, there must exist an index k such that pk ≥ 1
2k log(n) . Let A be the set of the

k elements with the largest probabilities. Then |A| = k, and for any a ∈ A, its probability
µ(a) ≥ pk, which satisfies the desired bound.
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Now, we prove the full version of our small-set spread lemma.

Lemma 4.6 (“The Small-Set Spread Lemma”). Fix k > 1 and m ∈ (0, 1]. Let µ be a
(m, k)-spread distribution over P(U) with support F , and assume every set in F has at
most q elements. Then, for every α > 2q, F is (p, ε)-satisfying with p = α/k and ε =

exp
(
− α

8qm log |F|

)
.

Proof. First, observe that if F ′ ⊆ F is (p, ε)-satisfying, then F is also (p, ε)-satisfying.
Now, by Lemma 4.5, there is a subset F ′ ⊆ F such that for every S ∈ F ′:

µ(S) ≥ 1

2|F ′| log |F|
=⇒ 1 ≤ 2|F ′| log |F|µ(S)

We argue that F ′ is (2 log |F|m, k)-spread. Let T ⊆ U be a non-empty set. Then,

degF ′ T

|F ′|
=

∑
S∈⟨T ⟩ I[S ∈ F ′]

|F ′|

≤
∑

S∈⟨T ⟩ 2|F ′| log |F|µ(S)
|F ′|

= 2 log |F|µ(⟨T ⟩) ≤ 2 log |F| ·m · k−|T |

where in the last inequality we applied the spreadness of µ.
Now, applying Lemma 4.4, and as every set in F ′ has at most q elements, we conclude

that F ′ is (p, ε)-satisfying (and hence also F) for p = α/k and

ε = exp

(
− α

4q · 2 log |F|m

)
= exp

(
− α

8qm log |F|

)

5 Robust daisies
In this section, we prove the Robust Daisy Lemma: every distribution over sets of small size
contains a dense robust daisy (Definition 1.1).

Lemma 5.1. (The Robust Daisy Lemma) Let µ be a distribution over P≤q(U). For every
integer c > q there exists D ⊆ P≤q(U) such that for every α > 2q, the conditioned distribution
µD is a (p, ε)-robust daisy with a non-empty kernel K ⊆ U where

p =
α

n1/c
ε = exp

(
−α(1− q/c)

8q2 log |D|
· |K|

)
|K| ≤ n1−1/c µ(D) ≥ 1− q

c
.

The proof of the lemma is in two steps. First, we prove the “Spreadness Extraction
Lemma”, Lemma 5.4. We show that it is always possible to make a distribution into a spread
one by removing a kernel (“puncturing”) and conditioning on a dense subfamily of the original
support. This lemma is the main technical part of this section, and is proved in Section 5.1.

The second part of the proof is to apply the small-set spread lemma (Lemma 4.6) to argue
that the extracted spread structure is a robust daisy with the required parameters.
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5.1 The spreadness extraction lemma
We start by formally defining the puncturing operator, and observe its properties.

Definition 5.2 (Punctured Distribution). Let µ be a distribution over P(U). The punctured
distribution of µ with respect to a set K ⊆ U is a distribution over P(U \K), denoted µ◦K .
It is defined by the process of first selecting a set S ⊆ U according to µ and then outputting
the set S \K. The probability of a set A ⊆ U \K is given by

µ◦K(A) =
∑
B⊆K

µ(A ∪B).

Note that
∑

A∈P(U\K) µ
◦K(A) = 1, and so µ◦K is indeed a distribution over P(U \K).

The following observations about the behavior of puncturing will be useful.

Observation 5.3. For every distribution µ over P(U), a family D ⊆ P(U) and a set K ⊆ U ,
the following holds:

1. If supp(µ) = D then supp(µ◦K) = D \K = {S \K | S ∈ D}.

2. If µ is supported on sets of size at most q, then so is µ◦K .

3. µ◦K(D \K) ≥ µ(D).

4. For every T ⊆ U \K, it holds that µ◦K(⟨T ⟩) = µ(⟨T ⟩).

Proof. Items 1-3 follow directly from the definitions. Item 4 follows by carefully expanding
the definitions:

µ◦K(⟨T ⟩) =
∑

A s. t T⊆A⊆U\K

µ◦K(A) =
∑

A s. t T⊆A⊆U\K

∑
B⊆K

µ(A ∪B)

Now observe that the double summation is the same as summing over all subsets of U that
contain T .

We are now ready to state and prove the spreadness extraction lemma.

Lemma 5.4. (The Spreadness Extraction Lemma) Let µ be a distribution over P≤q(U),
where |U | = n. Let c > q be any integer.

Then, there exists j ∈ [c], a family of sets D ⊆ supp(µ), and a non-empty set of elements
K ⊆ U such that the distribution (µD)

◦K is (m,n1/c)-spread, where:

m =
q

µ(D)
· n

j/c

n
, |K| ≤ n

nj/c
, µ(D) ≥ 1− q

c
.

We note that when q and c are treated as constants, the parameters satisfy the relation
m · |K| = O(1), which is needed for the robust daisy extraction. The specific value of the
index j is not crucial beyond its role in defining m and K.
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Proof. The proof proceeds by partitioning the universe U into c + 1 buckets based on the
weighted degree of each element, µ̄. We define µ̄ for each x ∈ U by:9

µ̄(x) =
∑
S∈⟨x⟩

µ(S)

|S|
.

Note that µ̄ is a distribution over U . That is,
∑

x∈U µ̄(x) = 1. This distribution is equivalent
to the following two-step random process: first, select a set S ⊆ U according to µ, and then
select an element x ∈ S uniformly at random.

The construction identifies a threshold defined by one of the buckets, indexed by j. The
punctured set K consists of all elements with a weighted degree above this threshold.

Construction. Let k = n1/c. We partition the universe U into c + 1 buckets, {B0, B1, . . . , Bc},
based on the weighted degree µ̄(u). Define B0 =

{
u ∈ U | µ̄(u) ≤ 1

n

}
and for each j ∈ [c]:

Bj =

{
u ∈ U | µ̄(u) ∈

(
kj−1

n
,
kj

n

]}
. (4)

Since kc = n, the upper bound for µ̄(u) in Bc is 1. As µ̄(u) ≤ 1 for any u ∈ U , the buckets
{B0, B1, . . . , Bc} form a partition of U .
For any indices i ≤ ℓ, we denote B[i,ℓ] = ∪ℓj=iBj .
The core of our argument relies on identifying a “well-behaved” boundary between buckets.

We formalize this in the following definition.

Definition 5.5. (Good Boundary) Let j ∈ [c] and S ⊆ U . We say that the bucket Bj is a
good boundary for the set S if for every i ∈ {0, . . . , j}, we have |S ∩B[j−i,j]| ≤ i.10

Note that by definition, B0 cannot be a good boundary.
The lemma now follows from the three claims below, and setting K = B[j+1,c]. It is

possible that B[j+1,c] is empty, in which case we set K = {u} for an arbitrary u ∈ U . This
does not affect any of our arguments.

Claim 5.6. There exists an index j ∈ [c] and a family D ⊆ P(U) such that Bj is a good
boundary for every S ∈ D, and µ(D) ≥ 1− q

c .

Claim 5.7. If Bj is a good boundary for every S ∈ D, then the distribution (µD)
◦B[j+1,c] is(

q
µ(D) ·

kj

n , k
)

-spread.

Claim 5.8. For every index j ∈ [c], the set of elements with high weighted degree is small:
|B[j+1,c]| ≤ n

kj
.

We begin by proving the claim that motivates the definition of good boundaries: if a
bucket is a good boundary for some sets D, then by conditioning on D, and then removing
the elements “above” this bucket, we get a spread distribution.

Proof of Claim 5.7. Assume that Bj is a good boundary for every S ∈ D. We prove that the
distribution (µD)

◦B[j+1,c] is
(

q
µ(D) ·

kj

n , k
)

-spread.

9Recall that S ∈ ⟨x⟩ ⇐⇒ x ∈ S.
10Note that for i ≥ q, this condition becomes trivial, as |S| ≤ q for every S ∈ supp(µ).
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Restating the goal. The distribution (µD)
◦B[j+1,c] is over subsets of

U \B[j+1,c] = B[0,j] =

{
u ∈ U | µ̄(u) ≤ kj

n

}
.

Hence, to show it is spread, we need to show that for every non-empty set T ⊆ B[0,j] we have

(µD)
◦B[j+1,c](⟨T ⟩) ≤ q

µ(D)
· k

j

n
· k−|T |

By Observation 5.3 (item 4) and the definition of µD, this is equivalent to:

µ(⟨T ⟩) ≤ q · k
j−|T |

n
.

To show this, we first bound µ̄(x) for some x ∈ T . Then, we use this bound to bound µ(⟨T ⟩).

Bounding µ̄(x) for x ∈ T . We may assume there exists a set S ∈ D with T ⊆ S; otherwise,
µD(⟨T ⟩) = 0 and the spreadness requirement holds trivially.

First, we show that |T | ≤ j. Since Bj is a good boundary, |S∩B[j−i,j]| ≤ i for every i ≤ j.
Specifically, setting i = j we have |S ∩ B[0,j]| ≤ j. Now, because S is a subset of B[0,j], this
simplifies to |S| ≤ j, and therefore |T | ≤ j.

Next, we apply the same inequality with i = |T | − 1. Note that |T | ≤ j ensures i ≤ j.
This yields: ∣∣T ∩B[j−|T |+1,j]

∣∣ ≤ |T | − 1 .

The inequality implies that at most |T |−1 elements of T belong to the set B[j−|T |+1,j]. By the
pigeonhole principle, at least one element x ∈ T must lie outside this set. Since all elements
of T are in B[0,j], x must be in B[0,j] \ B[j−|T |+1,j] = B[0,j−|T |]. By definition, this means
µ̄(x) ≤ kj−|T |

n .

Bounding µ(⟨T ⟩). First, observe that for any x ∈ U , we have µ(⟨{x}⟩) ≤ q · µ̄(x). This
is because every set in the support of µ has at most q elements, and then by definition
µ̄(x) =

∑
S∈⟨x⟩

µ(S)
|S| ≥

µ(⟨x⟩)
q .

In addition, for every T ′ ⊆ T we have µ(⟨T ⟩) ≤ µ(⟨T ′⟩), since in the left side of the
inequality we sum up over (possibly) fewer sets. Hence, for T ′ = {x} we get µ(⟨T ⟩) ≤ µ(⟨{x}⟩).
Together with the bound on µ̄(x), this implies that:

µ(⟨T ⟩) ≤ µ(⟨x⟩) ≤ qµ̄(x) ≤ q · k
j−|T |

n
.

The proof of Claim 5.6 relies on the following combinatorial claim and a standard averaging
argument.

Claim 5.9. For any set S ⊆ U with |S| ≤ q, there are at least c− q indices j ∈ [c] for which
Bj is a good boundary for S.
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Proof. Let S ⊆ U with |S| ≤ q. To prove the claim, we show that there are at most q “bad
boundaries” for S, which implies that at least c − q boundaries must be good. The proof
uses a “token-shifting” argument. We conceptualize the elements of S as tokens distributed
among the buckets. Initially, each bucket is assigned a number of tokens that is equal to the
number of elements of S that are in this bucket. The total number of tokens is therefore
|S| ≤ q. We then apply an iterative redistribution process that shifts these tokens between
buckets to produce a final configuration.

The core of the argument is to show that in this final configuration, if a bucket contains
no tokens, then it must be a good boundary. We now proceed with the formal description of
the redistribution process and its analysis.

The Token-Shifting Process. The process is defined as follows. We start with the initial
token counts wj = |Bj ∩ S| for j ∈ [c]. As long as there is any bucket Bj that contains two
or more tokens (wj ≥ 2), we apply the following rule: move one token from bucket Bj to the
bucket above it, Bj+1. That is, update the counts: wj ← wj − 1 and wj+1 ← wj+1 + 1. If
j = c and there is not bucket above it, only remove a token from Bc. The process ends when
every bucket has one or zero token.

Loop Invariants. We claim that the following three invariants hold throughout the oper-
ation of the reassignment process.

1. The total number of tokens is at most |S| ≤ q. That is,
∑c

j=1wj ≤ q. This is because
the total number of tokens starts at |S| and can only decrease if bucket Bc is chosen.

2. If at some point a bucket has non-zero tokens, then it will never have zero tokens later.
This is because we remove tokens from a bucket only if it has at least 2 tokens.

3. If bucket Bj has no tokens, then for any i, the total number of tokens in the i buckets
below Bj is at least the number of elements of S in those buckets. That is,

∑j
j′=j−iwj′ ≥∑j

j′=j−i |Bj′ ∩ S|. This is because a bucket with a non-zero weight will never become
zero, and the total number of tokens in a sequence of buckets can decrease only when
the bucket just above them gains a token.

Post-loop claims. From these invariants, we deduce the following claims about the weights
at the end of the loop:

1. There are at most q non-zero buckets. Each bucket ends with a weight of at most 1,
and by the first invariant the total number of tokens is at most q.

2. If a bucket Bj has no tokens, then it is a good boundary. Otherwise, there is some ℓ
such that

∣∣S ∩B[j−i,j]

∣∣ > i. But according to the third invariant, since Bj contains no
tokens, the total number of tokens in the i buckets below Bj is at least

∣∣S ∩B[j−i,j]

∣∣ > i.
This is a contradiction, since after the loop ends each of these buckets has at most one
token, and Bj contains no tokens.

Together, these claims imply that there are at least c− q good boundaries for S.

We can now complete the proof of Claim 5.6
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Proof of Claim 5.6. Let G(S) ⊆ [c] be the set of good boundaries for a set S. By Claim 5.9,
|G(S)| ≥ c− q for every set S, and hence the expected number of good boundaries for a set
S ∼ µ is also lower bounded:

ES∼µ[|G(S)|] ≥ c− q

On the other hand, by linearity of expectation, the expectation can be expressed as:

ES∼µ[|G(S)|] = ES∼µ

 c∑
j=1

I[j ∈ G(S)]


=

c∑
j=1

ES∼µ[I[j ∈ G(S)]]

=

c∑
j=1

µ ({S | j ∈ G(S)})

Combining these facts implies there must exist an index j∗ ∈ [c] such that

µ({S | j∗ ∈ G(S)}) ≥ c− q

c
.

We define the family D as:

D = {S ∈ supp(µ) | Bj∗ is a good boundary for S}

For this choice, we have:
µ(D) ≥ c− q

c
= 1− q

c

Finally, we prove the simplest claim, Claim 5.8.

Proof of Claim 5.8. By the definition of the buckets, every element u ∈ B[j+1,c] has a weighted
degree µ̄(u) > kj

n . Summing this lower bound over all elements in B[j+1,c] yields:

∑
u∈B[j+1,c]

µ̄(u) >
∣∣B[j+1,c]

∣∣ · kj
n

.

On the other hand, since µ̄ is a probability distribution over the universe U , the sum of
probabilities over any subset of U is at most 1:∑

u∈B[j+1,c]

µ̄(u) ≤
∑
u∈U

µ̄(u) = 1 .

Combining these two inequalities gives:∣∣B[j+1,c]

∣∣ · kj
n

< 1 ,

and rearranging the terms finishes the proof.
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5.2 Large robust daisies
We next use the spread lemma for distributions (Lemma 4.6) to argue that if µ◦K is spread,
then µ is a robust daisy with kernel K.

First, we make the following observation:

Observation 5.10. Fix k > 1 and m ∈ (0, 1]. Let µ be a (m, k)-spread distribution over
P(U) and let D ⊆ supp(µ). Then, µD is

(
m

µ(D) , k
)

-spread.

Proof. Let T ⊆ U be a non-empty set. By the definition of conditioned distribution, and by
the spreadness of µ, we have:

µD(⟨T ⟩) ≤
µ(⟨T ⟩)
µ(D)

≤ 1

µ(D)
· m

k|T |

Armed with this observation, we show that a distribution which is spread outside a kernel
is also a robust daisy.

Lemma 5.11. Fix k > 1 and m ∈ (0, 1]. Let µ be a distribution over P≤q(U). Suppose µ◦K

is (m, k)-spread for some K ⊆ U . Then, for every α > 2q, µ is a (p, ε)-robust daisy with
kernel K, p = α/k and ε = exp

(
− α

8qm log |supp(µ)|

)
.

Proof. To prove that µ is a (p, ε)-robust daisy, we need to show that for every D ⊆ supp(µ),
the family D \K := {S \K | S ∈ D} is (p, εµ(D))-satisfying.

By assumption, µ◦K is (m, k)-spread. Therefore, by Observation 5.10, the distribution
(µ◦K)D\K is

(
m

µ◦K(D\K)
, k
)

-spread.11

Now, by Lemma 4.6, for every α > 2q we have that supp((µ◦K)D\K) = D \K is (p, ε′)-
satisfying with p = α/k and

ε′ = exp

(
− α

8q(m/µ◦K(D \K)) log |D \K|

)
≤ exp

(
− α · µ(D)
8qm log |supp(µ)|

)
= εµ(D) .

where the inequality follows from the observation that µ◦K(D \K) ≥ µ(D) (Observation 5.3)
and since |supp(µ)| ≥ |D| ≥ |D \K|.

We can now prove the main result of this section.

Proof of Lemma 5.1. The lemma follows from the Punctured Spread Distribution Lemma
(Lemma 5.4), combined with the fact that spreadness implies robustness (Lemma 5.11).

Let c > q. By Lemma 5.4, there exists j ∈ [c], D ⊆ P≤q(U) and a non-empty K ⊆ U such
that (µD)

◦K is a (m,n1/c)-spread distribution, where:

m =
q

µ(D)
· n

j/c

n
, |K| ≤ n

nj/c
, µ(D) ≥ 1− q

c
.

11We remark that, perhaps unintuitively, it is not always true that (µ◦K)D\K = (µD)◦K .
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Suppose α > 2q. Now, we apply Lemma 5.11 to conclude that µD is a (p, ε)-robust daisy
with p = α/k = αn−1/c and

ε = exp

(
− α

8qm log |D|

)
(supp(µD) = D)

= exp

(
− α · µ(D) · n
8q · q · nj/c · log |D|

)
(plugging in m)

≤ exp

(
−αµ(D) · |K|

8q2 log |D|

)
(since |K| ≤ n

nj/c
)

≤ exp

(
−α(1− q/c)|K|

8q2 log |D|

)
. (since µ(D) ≥ 1− q/c)

Finally, since j ≥ 1, we have |K| ≤ n
nj/c ≤ n1−1/c, as required.

6 RLDC lower bounds
This section proves the main result (Theorem 1) of the paper.

In Section 6.1, we provide a detailed overview that motivates and discusses the definition
of robust daisies and the “global sampler” strategy. In Section 6.2, we formally prove that if
a relaxed decoder possesses the structure of robust daisies, this implies a lower bound on its
block length. Section 6.1 and Section 6.2 are independent of the previous sections, and we
encourage readers unfamiliar with the work of [GL21] to read them first.

Finally, in Section 6.3, we prove the main result, by using the Robust Daisy Lemma to
show that any relaxed decoder can be transformed into one that has the structure of robust
daisies.

6.1 Overview
At its core, the proof is a compression-based, information-theoretic argument: one cannot
recover k bits of information by observing fewer than k bits, except with small probability.

For the rest of the overview, let C : {0, 1}k → {0, 1}n be a q-query RLDC with a non-
adaptive decoder, constant decoding radius δ, and soundness probability σ. We show that
if the block length n is too small as a function of the message length k, it is possible to
recover, with a high probability, the entire k-bit message by querying fewer than k bits of the
corresponding codeword.

Global sampler. A global sampler is a probabilistic algorithm with oracle access to a valid
codeword C(x). It samples each bit of the codeword independently with some probability p,
and its goal is to recover the entire message x. With a high probability, the sampler queries
Θ(pn) bits in total. Therefore, if it succeeds in recovering the message x, it implies a bound
of pn = Ω(k). For concreteness, a sampling probability of exactly p = n−1/q would give the
bound n

1− 1
q = Ω(k), which implies n = Ω

(
k
1+ 1

q−1

)
.

The global sampler leverages the relaxed decoder of C to recover the bits of x. To recover
the i-th bit, xi, the global sampler aims to simulate the relaxed decoder for index i. The
challenge is that the sampler’s random samples must be sufficient to decode all k indices
simultaneously, whereas the relaxed decoder for each index i may query an arbitrary set,
according to a distribution depending on i.
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Warm-up: satisfying set systems. Consider a non-adaptive relaxed decoder for a code
C : {0, 1}k → {0, 1}n. To decode xi, the decoder performs as follows: it picks a set S according
to some distribution µi, queries the indices in S, and computes its output deterministically
based on its sampled local view.12

If the global sampler happens to draw a set of samples that contains a full set from the
support of µi, it can recover xi by invoking the decoder’s logic on that local view. Since
the global sampler’s input is a valid codeword, the relaxed decoder is guaranteed to decode
correctly.

This idea is captured by the well-known notion of a Satisfying Set System. In the following,
W ∼ Bin(U, p) denotes a random subset of U where each element is included independently
with probability p.

Definition 6.1 (Satisfying set system, restating Definition 4.1). Let F be a family of sets
over a universe U . We say that F is (p, ε)-satisfying if

Pr
W∼Bin(U,p)

[∃S ∈ F , S ⊆W ] ≥ 1− ε .

This suggests that our goal is to show that each family Fi := supp(µi) is (p, ε)-satisfying
for a small ε (e.g., ε ≪ 1/k, to allow for a union bound over all k indices). However, it is
unreasonable to expect the query families Fi to satisfy such a strong property. The decoder’s
queries may be highly non-uniform; for instance, to decode index i, the decoder might always
query index i itself — a common feature in known constructions. In this case, the global
sampler must happen to sample index i to capture any full set S ∈ Fi. Since this occurs with
probability p, the sampler would effectively need to query almost all of C(x) to recover all of
x, yielding a trivial bound. We must therefore handle these “heavy indices” differently.

The actual global sampler: robust daisies. Our strategy is to guess the values of C(x)
at the few “heavy” indices instead of trying to sample them. Let us denote the set of these
heavy indices by a kernel K ⊆ [n]. To obtain a full local view for a query set S, the global
sampler no longer needs to sample all of S; it only needs to sample the “light” elements in
S \K.

We call the sets {S \K | S ∈ Fi} the petals. The intuition is that it might be sufficient
for the family of petals to be satisfying, rather than the family of full query sets.

If the guess for the heavy indices is correct, each local view we construct is consistent
with the valid codeword C(x). Therefore, since the decoder never errs on valid codewords,
applying its logic to any of these views will yield the correct output bit.

But what if our guess for the bits in K is incorrect? In this case, the local views we
construct are not consistent with C(x), but rather with a corrupted version of it. The number
of corruptions is at most |K|. If |K| is smaller than the decoding radius of the code, then the
decoder’s soundness guarantee holds. This means that for any guess, at least a large fraction
(i.e., σ, where “fraction” is measured with respect to the distribution µi) of the query sets
will lead the decoder to output the correct symbol or the special rejection symbol ⊥.

This leads to the actual algorithm for the global sampler. To recover each bit xi:

1. Sample the codeword C(x) by picking each index i.i.d. with probability p.
12We can assume that this computation is deterministic, since the decoder is non-adaptive and must never

err on valid codewords.

25



2. Iterate over all 2|K| possible guesses for the values of the bits at the heavy indices in K.

3. For each guess, identify all petals S \K that were fully contained in the initial sample.

4. For each such petal, form a complete local view using the sampled values and the current
guess. Feed all these views to the decoder’s logic.

5. If all these simulated local views result in the same output bit, output that bit for xi.
Otherwise, continue.

The algorithm is guaranteed to produce an output - for the correct guess on K. By the
decoder’s completeness, every local view consistent with C(x) leads to the correct output bit,
ensuring a consensus. An incorrect output for xi can only occur if, for some incorrect guess,
all sampled petals happen to correspond to query sets that mislead the decoder.

Conversely, for any guess, the algorithm avoids an error as long as at least one sampled
petal corresponds to a “good” query set — one that would lead the decoder to output the cor-
rect bit or ⊥. By the soundness guarantee, a large fraction of query sets are good. Therefore,
we expect that our sampler will likely hit one of the many corresponding “good” petals.

This motivates our central definition of a Robust Daisy. These structures differ from naive
satisfying set systems in two ways. First, they allow for a kernel K to be handled separately.
Second, they require that any sufficiently large sub-family is also satisfying. This ensures
that even if we restrict our attention to the “good” sets (which form a large subfamily), we
are still guaranteed to sample one of their petals.

For simplicity, our definition requires this property for all sub-families, a stronger condition
we can achieve without extra cost.

Definition 6.2. (Robust daisy, restating Definition 1.1) A distribution µ over P(U) is a
(p, ε)-robust daisy with kernel K ⊆ U , if, for every D ⊆ supp(µ), the family of petals
D \K := {S \K | S ∈ D} is (p, εµ(D))-satisfying. That is, if:

Pr
W∼Bin(U,p)

[∃ S ∈ D, S ⊆ K ∪W ] ≥ 1− εµ(D) .

From robust daisies to a global sampler. Now, suppose that for some i ∈ [k], the
query-set distribution of the relaxed decoder for index i, denoted µi, is a (p, εi)-robust daisy
with kernel Ki. Recall that at least a σ fraction of the petals are “good” (i.e., they lead to
a correct output or ⊥). Hence, by the discussion above, for any specific guess of the kernel
values, the probability that the global sampler fails to sample a “good” petal is at most εσi . By
taking a union bound over all 2|Ki| possible guesses, the probability that the global sampler
fails to find a good petal for any of the guesses, and hence outputs a wrong bit for xi, is at
most 2|Ki| · εσi .

Taking another union bound over all i ∈ [k], and assuming that every µi is a robust daisy,
gives that with probability at least 1−

∑
i∈[k] ε

σ
i · 2|Ki| the global sampler recovers all of the

k bits of x, without any mistakes. This brings us to the exact requirement we need from the
robust daisy, and the formal proof of the reduction, which we present in Section 6.2.

However, what if the distributions µi are not robust daisies? A simple argument shows
that it is enough to extract a robust daisy of large density from each µi. Namely, if we find
D ⊆ supp(µ) such that µD is a robust daisy, we can modify the relaxed decoder such that
instead of sampling a set S ∼ µ and querying the indices of S, the modified decoder samples a
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set S ∼ µD. Assuming that µ(D) is large enough compared to σ (specifically, if µ(D) > 1−σ),
then the modified decoder has non-trivial soundness, and can be used by the global sampler.
We give a formal proof of this argument in Section 6.3, and use it to complete the proof of
Theorem 1.

6.2 Lower bound for RLDCs with structured decoders
In this section, we prove a lower bound for RLDCs with relaxed decoders whose query set
distributions are robust daisies.

Lemma 6.3. Let C : {0, 1}k → Σn be a non-adaptive (q, δ, σ)-RLDC, and let p satisfy
3 ln(n)

n < p < 1. For each i ∈ [k], let µi be the decoder’s query distribution for index i.
Assume that for every i ∈ [k], µi is a (p, εi)-robust daisy with a kernel Ki ⊆ [n] such that

|Ki| ≤ δn and εσi ≤
1

3k · |Σ||Ki|
. (5)

Then k ≤ 2pn · log |Σ|.

Proof. We give a formal description of the global sampler, G, in Algorithm 1.

Notation. In the description of G we use the following notation. Let i ∈ [k], and let Bi be
the corresponding relaxed decoder with query set distribution µi. Let Di = supp(µi). On a
codeword y, the relaxed decoder samples a query set S ∼ µi, obtains yS and outputs some
deterministic function of S and yS . We can assume that this function is deterministic since
the decoder is non-adaptive and never errs on valid codewords. Let fi : Di × Σq → {0, 1} be
this deterministic function.

The global sampler. The global sampler G operates in two phases:

1. Query Phase: First G samples each coordinate of y independently with probability p.
Formally, it samples the coordinates W ∼ Bin([n], p). If |W | ≥ 2pn, G outputs a random
x̂ ∈ {0, 1}k.
Otherwise, G queries all the bits in W from y to obtain w = yW .

2. Decoding Phase: For each i ∈ [k], G decodes xi as follows. Let

Dsampled
i = {S ∈ Di | S \Ki ⊆W}

be the query sets of Di whose petals are fully sampled by G. For any κ ∈ Σ|Ki| and
S ∈ Dsampled

i , let aS,κ be the assignment of the variables of S that is consistent with κ
on Ki and with w on S \Ki.
G iterates over each assignment κ ∈ Σ|Ki| and does the following check on the relaxed
decoder B with decoding function fi:
For all S ∈ Dsampled

i with corresponding assignment aS,κ, does B output the same bit
b ∈ {0, 1}? If yes, then G sets x̂i = b.
If G never sets xi in these iterations, i.e., no such κ exists, then it sets x̂i = 0.
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Algorithm 1 Global Sampler G
Input: Di, fi,Ki ∀ i ∈ [k], query access to y ∈ Σn.
Output: x̂ ∈ {0, 1}k

1: Sample W ∼ Bin([n], p).
2: if |W | ≥ 2pn then
3: Output a random x̂ ∼ {0, 1}k.
4: end if
5: w ← yW .
6: for i ∈ [k] do
7: D ← Di,K ← Ki, f ← fi, x̂i ← 0.
8: Dsampled ← {S ∈ D | S \K ⊆W}.
9: for κ ∈ Σ|K| do

10: for S ∈ Dsampled do
11: aS,κ ← (κS∩K , wS\K)
12: end for
13: if ∃ b ∈ {0, 1}, ∀ S ∈ Dsampled, f(S, aS,κ) = b then
14: x̂i ← b.
15: end if
16: end for
17: end for
18: return x̂.

Analysis. We show that G succeeds, i.e., it outputs x correctly, with probability at least
1/2. G fails if it either samples ≥ 2pn coordinates, or decodes xi incorrectly for some i ∈ [k].

The first kind of failure happens if |W | ≥ 2pn when W ∼ Bin([n], p). By Chernoff’s
bound, Pr[|W | ≥ 2pn] ≤ exp(−pn/3) ≤ 1/n, since p ≥ 3 ln(n)/n by assumption.

In Claim 6.4, we argue that for each i ∈ [k], G fails to decode xi with probability at most
|Σ||Ki| · εσi . Since, by the hypothesis, εi < exp

(
− log(3k)+|Ki| log(|Σ|)

σ

)
, this failure probability

is at most 1/3k.
First, we complete our argument assuming this claim:

Pr
W
[G fails] = Pr

W
[G fails and |W | ≥ 2pn] + Pr

W
[G fails and |W | ≤ 2pn]

≤ Pr
W
[|W | ≥ 2pn] + Pr

W
[ ∃ i ∈ [k],G fails to decode xi]

≤ 1/n+
∑
i∈[k]

Pr
W
[G fails to decode xi]

≤ 1/n+ k · 1/3k ≤ 1/2 ,

Hence, G decodes all of x with probability at least 1/2. Since it makes at most 2pn queries,
this implies k < 2pn log |Σ|.

We are left to prove Claim 6.4, which ensures that G decodes each xi with high probability,
which finishes the proof.

Claim 6.4. For any i ∈ [k], the global sampler decodes xi with probability at least 1−|Σ||Ki|εσi .

Proof. Fix i ∈ [k]. Let A := Bi be the relaxed decoder with query set distribution µ := µi

which is a (p, ε)-robust daisy with kernel K := Ki for ε := εi. Let D := Di and f := fi.
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Recall that G iterates over each κ ∈ Σ|K|. In the case where G guesses κ correctly, i.e.,
κ = yK , we argue that G sets x̂i correctly with probability at least 1 − ε. For every other
guess, we argue that with probability at least 1−εσ, the global sampler either sets x̂i correctly
or does not change x̂i . By the union bound we then conclude that G sets x̂i correctly with
probability at least 1− |Σ||K|εσ.

Correct guess. Suppose κ = yK . We next show that G sets xi correctly with probability
at least 1 − ε. For each S ∈ Dsampled, aS,κ agrees with the codeword y. Since the relaxed
decoder never errs on valid codewords, f(S, aS,κ) = xi for all S ∈ Dsampled. Therefore, as long
as |Dsampled| ≥ 1, G sets xi correctly. Since µ is a (p, ε)-robust daisy and D = supp(µ), this
occurs with probability at least 1− ε.

Incorrect guess. Conversely, suppose that κ ̸= yK . We show that with probability at least
1− εσ, G does not set xi incorrectly.

Let y′ ∈ {0, 1}n be the string that agrees with the guess κ on K, and agrees with y on
[n] \K. Now, each aS,κ is consistent with y′, and dist(y, y′) ≤ |K|

n ≤ δ. Therefore, due to the
soundness of the decoder:

Pr
S∼µ

[f(S, aS,κ) ∈ {xi,⊥}] ≥ σ .

For any κ ∈ {0, 1}K , let Dgood(κ) ⊆ D be the query sets on which A decodes correctly
when K is assigned κ, i.e., Dgood(κ) = {S ∈ D | f(S, aS,κ) ∈ {xi,⊥}}, and note that the
equation above implies µ(Dgood(κ)) ≥ σ.

Since µ is a (p, ε)-robust daisy and Dgood(κ) ⊆ D, Dsampled contains a set from Dgood(κ)
with probability at least 1 − εσ. Hence, in this case, there exists S ∈ Dgood(κ) ∩ Dsampled,
which ensures that G does not set xi incorrectly.

6.3 Lower bound for arbitrary RLDCs
In this section, we use the robust daisy lemma (Lemma 5.1) to show that an arbitrary RLDC
can be transformed into an RLDC with a decoder whose query set distribution is a robust
daisy with slightly worse soundness error.

Lemma 6.5. Let C : {0, 1}k → Σn be an error correcting code with a non-adaptive (q, δ, σ)-
relaxed decoder.

Then, for every integer c > q
σ such that n−1/c ≤ δ, the code C also has a non-adaptive

(q, δ, σ′)-relaxed decoder where σ′ = cσ−q
c−q , and for every i ∈ [k], the query distribution µi of

the new decoder for index i is a (p, εi)-robust daisy with kernel Ki ⊆ [n] with

p =
8q3 · log 3k · log n · log |Σ|

σ − q/c
· n−1/c

such that

|Ki| ≤ δn, εσ
′

i ≤
1

3k · |Σ||Ki|
.

Proof. We begin by describing our modified relaxed decoder.
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The modified decoder. For every i ∈ [k], let Bi be the original (q, δ, σ)-relaxed decoder
for C for index i, with query set distribution µi.

Let c > q/σ be an integer such that n−1/c ≤ δ, and let

α :=
8q3 · log 3k · log n · log |Σ|

σ − q/c
.

By Lemma 5.1, there exists a subset Di ⊆ supp(µi) such that µDi is a (p, εi)-robust daisy
with non-empty kernel Ki, where:

p = αn−1/c εi = exp

(
−α(1− q/c)

8q2 log |Di|
· |Ki|

)
|Ki| ≤ n1−1/c µ(Di) ≥ 1− q/c . (6)

The modified decoder A works as follows. For each i ∈ [k], the decoder for index i samples
a set S ∼ µDi . It then decodes xi according to the deterministic function fi of Bi restricted
to Di.

Since Di ⊆ supp(µi), every set it samples is also a set the original decoder could have
sampled. Therefore, the new decoder also makes at most q queries, and never errs on valid
codewords.

Soundness. Recall that σ′ := cσ−q
c−q . We next show that the soundness probability of A is

at least σ′.
That is, we need to show that for any x ∈ {0, 1}k and w ∈ Σn such that dist(w,C(x)) ≤ δ,

we have

Pr
S∼µDi

[Aw(i) = xi] ≥
cσ − q

c− q
. (7)

Now,

1− σ ≥ Pr
S∼µi

[Bw(i) ̸= xi]

= Pr
S∼µDi

[Bw(i) ̸= xi]µ(Di) + Pr
S∼µDi

[Bw(i) ̸= xi]µ(Di)

≥ Pr
S∼µDi

[Bw(i) ̸= xi](1− q/c) = Pr
S∼µDi

[Aw(i) ̸= xi](1− q/c)

where Di = supp(µi) \ Di and using µ(Di) ≥ 1 − q/c. Rearranging the inequality gives
Equation (7).

We conclude that A is a (q, δ, σ′)-relaxed decoder for C.

Parameter verification. By Equation (6), for each i ∈ [k] the query set distribution µDi

is a (p, εi)-robust daisy with kernel Ki where:

p = αn−1/c =
8q3 log n log 3k log |Σ|

σ − q/c
· n−1/c .

By assumptions, |Ki| ≤ n1−1/c ≤ δn.
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Since each set in Di has at most q elements, we have |Di| ≤ nq =⇒ q log n ≥ log |Di|.
Plugging the definition of σ′ in the choice of α, we infer the following bound:

α =
8q3 log n log 3k log |Σ|

σ − q/c
≥ 8q2 log |Di|

σ′(1− q/c)
· log(3k) · log |Σ|,

and then:

εσ
′

i = exp

(
−α · (1− q/c)

8q2 log |Di|
· |Ki| · σ′

)
≤ exp (− log(3k) · |Ki| · log |Σ|) ≤

1

3k · |Σ||Ki|
,

as required.

Finally, we combine Lemma 6.5 and Lemma 6.3 to derive our main theorem.

Proof of Theorem 1. We prove that:

k

log2 k
≤ 38q4σ−2 · log2 |Σ| · n

1− 1

⌈ q
σ ⌉+1 . (8)

This yields the statement of Theorem 1 after rearrangement of the terms.
Let c := ⌈ qσ ⌉+ 1. Note that q/σ < c < 2q/σ, and therefore, n−1/c ≤ n

− σ
2q ≤ δ.

By Lemma 6.5, C has a non-adaptive (q, δ, σ′)-relaxed decoder B with σ′ = cσ−q
c−q where

for every i ∈ [k], the query distribution µi of B on input i is a (p, εi)-robust daisy with a
non-empty kernel Ki ⊆ [n] that satisfies Equation (5) with p set according to the statement
of Lemma 6.5.

Note that σ − q/c = σ − q
⌈q/σ⌉+1 ≥ σ − q

q/σ+1 = σ2

σ+q ≥
σ2

q+1 . Furthermore, we can assume

without loss of generality that k ≥ n
1− 1

q+1 , since otherwise we are already done. Therefore,
log n ≤ (q+1) log k

q ≤ 2 log k (since q ≥ 2). Combining these two inequalities,

8q3 · log 3k · log n · log |Σ|
σ − q/c

≤ 8q3 · (log 3+ log k) · q + 1

σ2
·2 log k · log |Σ| < 19q4σ−2 log2 k log |Σ|.

Now, since B satisfies the guarantees of Equation (5) with

p =
8q3 · log 3k · log n · log |Σ|

σ − q/c
· n−1/c < 19q4σ−2 log2 k · log |Σ| · n−1/c

we can apply Lemma 6.3 (and note that p > 3 lnn
n by the choice of parameters) to conclude:

k < 2pn log |Σ| < 38q4σ−2 log2 k · log2 |Σ| · n
1− 1

⌈ q
σ ⌉+1 .

By rearrangement of the terms in Equation (8), we derive a query lower bound for RLDCs
with constant rate.

Corollary 6.6 (Constant rate). Fix a constant σ > 1/2 and let δ > n−1/4q. Let C : {0, 1}k →
{0, 1}n be a non-adaptive (q, δ, σ)-RLDC, and suppose that n = O(k). Then, q = Ω

(
log k

log log k

)
.
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Proof. Suppose n < d · k for some constant d > 0. Note that ⌈q/σ⌉ + 1 < 2q + 2. By
Theorem 1, we know that

k

log2 k
≤ 38q4σ−2 · n

1− 1
⌈ q
σ ⌉+1 < q5 · d · k1−

1
2q+2 < q6 · k1−

1
2q+2

where we use that q = ω(1) (otherwise it is easy to verify that n = ω(k)) and σ > 1/2.
This implies that

k
1

2q+3 ≤ k
1

2q+2

log2 k
≤ q6

where the first inequality follows for a large enough k. We conclude that

log k < 6(2q + 3) log q,

which directly implies the stated bound.

Our lower bound for non-adaptive RLDCs extends to the important case of linear RLDCs,
by using a known reduction.

Remark 6.7. [Gol24a] showed that any linear (q, δ, σ)-RLDC can be turned into (q+1, δ, σ)-
query non-adaptive RLDCs. We use this transformation along with Theorem 1 and Corol-
lary 6.6 to obtain Corollary 2 and Corollary 3.
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