
Pseudodeterministic Communication Complexity

Mika Göös Nathaniel Harms Artur Riazanov
EPFL University of British Columbia EPFL

Anastasia Sofronova Dmitry Sokolov Weiqiang Yuan
EPFL EPFL & Université de Montréal EPFL

November 20, 2025

Abstract

We exhibit an n-bit partial function with randomized communication complexity O(log n) but
such that any completion of this function into a total one requires randomized communication
complexity nΩ(1). In particular, this shows an exponential separation between randomized and
pseudodeterministic communication protocols. Previously, Gavinsky (2025) showed an analo-
gous separation in the weaker model of parity decision trees. We use lifting techniques to extend
his proof idea to communication complexity.

Contents

1 Introduction . 1
2 Warm-Up and Proof Overview . 5
3 Proof of the Main Theorem . 10
4 Density Restoring Partitions and Protocol Transformation 17
5 Completing the Safe Stage Lemma . 21
A Appendix: Counting Arguments and Variations of FBPP 27
References . 31

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 193 (2025)

1 Introduction

Here is a simple question about the behavior of randomized algorithms. A basic statistical task is
to distinguish “few” vs. “many”, formalized by the Gap Majority problem:

GapMaj(x) :=


1 if |x| ≥ 2

3n,

0 if |x| ≤ 1
3n,

∗ otherwise,

where |x| denotes the number of 1s in x ∈ {0, 1}n and ∗ indicates that we put no requirement on the
output of an algorithm (that is, GapMaj is a search problem with 0 and 1 both being acceptable
outputs). This problem is difficult to solve deterministically: It requires Ω(n) queries for decision
trees and parity decision trees, and Ω(n) bits of deterministic communication when we turn it into
a two-player problem by composing it with an appropriate gadget. For example, composing with
XOR yields the Gap Hamming Distance problem given by GapHD(x, y) := GapMaj(x⊕y). On
the other hand, for randomized decision trees (and the other models as well), the cost of GapMaj is
only 1 query because the algorithm can sample a random coordinate and output it; when |x| ≥ 2

3n
or |x| ≤ 1

3n this is correct with probability at least 2/3. Our simple question is:

What is the randomized algorithm doing on the ∗ inputs?

On inputs with |x| = n/2, the sampling algorithm will output 0 or 1 with equal probability. But
must it do this, or can we ask that the randomized algorithm produce consistent outputs for every
input x? That is, can we ask that the algorithm computes some completion of GapMaj into a total
function: on any input x it should output either value 0 with probability at least 2/3, or value 1
with probability at least 2/3. Such an algorithm is called pseudodeterministic. Generally, a pseudo-
deterministic algorithm is a randomized algorithm that is required to output (with probability at
least 2/3) a single consistent output for every input; this is desirable not only for partial boolean
functions, but for any problem where there is more than 1 acceptable output for each input, that is,
for any search problem or relation. The goal is to combine the efficiency of randomized algorithms
with the consistency of deterministic algorithms. So, are pseudodeterministic algorithms nearly as
efficient as randomized ones?

We show that, for communication protocols, the answer is no: there is a partial boolean function
with an efficient randomized protocol but such that every total completion of that function has
large randomized complexity.

Theorem 1. There is a partial communication problem {0, 1}n×{0, 1}n → {0, 1, ∗} with random-
ized communication complexity O(log n) but pseudodeterministic communication complexity Ω(

√
n).

Partial n-bit boolean functions with poly log n randomized communication cost are a type of
“BPP search problems”: relations R ⊆ {0, 1}n×{0, 1}n×{0, 1}∗ computed by an efficient random-
ized protocol. By analogy to Turing machine complexity classes, the class of “BPP search problems”
would be called FBPP. If we use FPs to denote the class of relations admitting pseudodeterministic
protocols with cost poly log n, Theorem 1 is the first explicit example witnessing the separation

FPs ⊊ FBPP, (1)

and it does so in the most restricted setting, where the output is only a single bit. We remark,
however, that (1) has a caveat: just like the Turing machine analogue, the communication class

1

FBPP has several natural definitions, which are not equivalent [Aar10, Gol11, ILW23, ABK24].
For one of these definitions (which requires the output to be efficiently verifiable), the inclusion (1)
holds in the opposite direction for partial boolean functions; our Theorem 1 gives an explicit witness
for (1) under the remaining definitions. Weaker versions of (1), which allow the outputs to be large
and do not require an explicit example, can be proved by counting; see Appendix A for a discussion
of these nuances.

Several recent works [GGMW20, GIPS21, Gav25, FGHH25, BHH+25] asked for lower bounds
on pseudodeterministic communication complexity for BPP search problems. Many of them proved
versions of (1) for weaker models of computation: Goldwasser, Grossman, Mohanty, and Woodruff
[GGMW20] proved it for one-way communication protocols; Goldwasser, Impagliazzo, Pitassi, and
Santhanam [GIPS21] proved it for decision trees; and Gavinsky [Gav25] proved it for parity decision
trees. Our result can thus be viewed as a qualitative strengthening of these prior works (the upper
bound in Theorem 1 holds even for randomized non-adaptive decision trees).

For partial functions, the only known prior separation was due to Blondal, Hatami, Hatami,
Lalov, and Tritiak [BHH+25]. They showed an O(1)-vs-Ω(log log n) separation for Gap Hamming
Distance, i.e., the XOR-lift GapMaj(x ⊕ y). This would be the ideal function to witness the
separation (1) for partial functions, and we suspect it exhibits the maximum possible separation:

Conjecture 2. The pseudodeterministic communication complexity of GapHD is Ω(n).

This was one of the principal inspirations for our present work, but our Theorem 1 ultimately does
not prove the separation using GapHD; we instead use a slightly more complicated lift of GapMaj,
as explained next.

1.1 Our techniques

Our proof extends the work of Gavinsky [Gav25]. He proved an Ω(
√
n) query lower bound for

pseudodeterministic parity decision trees computing the GapMaj partial function. To turn this
function into a communication problem, we compose it with the Inner Product gadget on m =
O(log n) bits defined by IPm(a, b) :=

∑m
i=1 aibi mod 2. This produces a communication problem

on O(n log n) bits:

GapMaj ◦ IPn
m(x1, . . . , xn, y1, . . . , yn) := GapMaj (IPm(x1, y1), . . . , IPm(xn, yn)) .

Here xi, yi ∈ {0, 1}m, Alice has all the xi inputs, and Bob has all the yi inputs. This problem
has randomized communication complexity O(log n) because the players can select O(1) random
indices i ∈ [n] and solve IPm(xi, yi) deterministically.

Standard randomized lifting theorems [GPW20, CFK+21] show that for every partial func-
tion f : {0, 1}n → {0, 1, ∗} the randomized communication complexity of f ◦ IPn

m equals roughly the
randomized query complexity of f . It is open to prove such a general lifting theorem for pseudo-
deterministic complexity. The immediate obstacle to applying a randomized lifting theorem to
a pseudodeterministic protocol for f ◦ IPn

m is that the protocol may produce different consistent
outputs for inputs (x, y) and (x′, y′) such that IPn

m(x, y) = IPn
m(x′, y′) ∈ f−1(∗). Since we can-

not invoke known lifting theorems as a black box, we employ a white-box approach: We use tools
from lifting theory to adapt Gavinsky’s argument for communication protocols. This adaptation
introduces new technical challenges not present in the setting of parity decision trees. We give an
overview of the proof in Section 2, including an exposition of Gavinsky’s original argument.

2

1.2 History and Motivations

Pseudodeterministic algorithms were introduced by Gat and Goldwasser [GG11] (under the name
Bellagio algorithms), and independently by Huynh and Nordström [HN12] in the context of proof
complexity (they called them consistent algorithms). Pseudodeterministic algorithms have ap-
plications to cryptography and distributed computing, and have been studied in several com-
putational models including Turing machines [GGR13, OS17, LOS21, CLO+23], decision trees
[GGR13, GIPS21, CDM23], and parity decision trees [Gav25]. They are natural and interesting in
their own right, they provide an intermediary between randomized and deterministic complexity,
and they are also related to notions of replicability in machine learning and the natural sciences
[GIPS21, ILPS22, CMY23, BHH+25].

Aside from intrinsic interest in pseudodeterminism, [Gav25] points out its connection to struc-
tural questions about randomized communication (which we discuss in the open problems below),
and [GIPS21] argues that understanding pseudodeterministic communication is an important step
towards understanding the communication complexity of search problems (i.e., relations). Whereas
the communication complexity of functions benefits from connections to well-understood query
complexity measures (e.g., sensitivity and block-sensitivity) via lifting theorems, analogues of these
measures for search problems are not well understood. Pseudodeterministic algorithms must com-
pute some function, and therefore serve as an intermediate between functions and relations.

Pseudodeterminism was introduced in [HN12] for applications in proof complexity. That paper
shows that cutting plane proofs of CNF unsatisfiability can be turned into pseudodeterministic
communication protocols for the falsified-clause search problem where two players search for a
clause that is not satisfied by a (distributed) assignment of variables. Their lower bound for this
communication problem allowed them to prove time–space tradeoffs for cutting planes.

1.3 Open Problems

Improved quantitative bounds. Let us start by reiterating that we conjecture Gap Hamming
Distance to require pseudodeterministic complexity Ω(n) (Conjecture 2). Proving this seems to
require two steps. First, improve Gavinsky’s lower bound of Ω(

√
n) for parity decision trees com-

putingGapMaj to Ω(n). Second, lift this toGapHD. Another strategy may be to directly improve
the current lower bound for the pseudodeterministic communication complexity of GapHD, which
is Ω(log log n), and which uses very different techniques [BHH+25].

It is important to note that Gap Hamming Distance is, in a precise sense, the only partial
boolean communication problem where we can hope to prove an O(1)-vs-poly(n) separation between
randomized and pseudodeterministic communication. This is because all n-bit partial boolean
matrices with randomized cost O(1) are a submatrix of GapHD on O(n) bits (with some constant
α < 1/2 in place of 1/3 in the gap) [LS09, FGHH25]. So a pseudodeterministic lower bound for
any of these matrices implies the same lower bound for GapHD.

Separation for a TFNP problem. The most outstanding qualitative problem that is left open
is to prove pseudodeterministic lower bounds for a total NP search problem (TFNP). A relation
R ⊆ {0, 1}n × {0, 1}n × {0, 1}∗ is in (communication analogue of) TFNP if

− R is total, meaning that for all inputs (x, y) there is a solution z such that (x, y, z) ∈ R; and
− R is efficiently checkable, meaning that there is a deterministic verifier protocol V of cost

poly log n such that V (xz, yz) = 1 iff (x, y, z) ∈ R for all (x, y, z).

3

Conjecture 3. There exists some TFNP communication problem with randomized communication
complexity poly log n but pseudodeterministic complexity nΩ(1).

The analogous separation for query complexity was the main result of the paper [GIPS21]. The
communication analogue of TFNP has been studied explicitly in, e.g., [GKRS19, BFI23, GGJL25],
but, implicitly, TFNP problems are ubiquitous in communication complexity: this includes all
(monotone) Karchmer–Wigderson games as well as the aforementioned falsified-clause search prob-
lems, which arise when applying communication lower bounds to proof complexity. The sur-
vey [dRGR22] explains these connections and more: TFNP problems give a unified lens to study
the interconnections between communication protocols, propositional proofs, and boolean circuits.

Separation for a BPP-verifiable problem. In fact, it is still open to prove a weaker result
than Conjecture 3. If we define BPP search problems for communication complexity by adapting
the definition of Goldreich [Gol11] for Turing machines, we get the class of relations R ⊆ {0, 1}n ×
{0, 1}n × {0, 1}∗ such that

− There is a randomized poly log(n) cost protocol solving R; and
− There is a randomized poly log(n) cost verifier protocol V : Pr[V (xz, yz) = 1] ≥ 2/3 if

(x, y, z) ∈ R and Pr[V (xz, yz) = 1] ≤ 1/3 otherwise, for all (x, y, z).

We can then replace the TFNP requirement in Conjecture 3 with these BPP-verifiable problems
and the conjecture is still open.

Our result implies this separation for a weaker, more specialized type of verification. The partial
function GapMaj ◦ IP does not satisfy the above definition, because the verifier cannot exist (we
could use it to solve exact majority efficiently, which cannot be done). However, we can define the
relation R ⊆ {0, 1}nm×{0, 1}nm× [n] where for each x, y the valid outputs are the numbers t ∈ [n]
that are within ±n/10 of the number of 1-valued IPm gadgets. This relation can be solved in cost
O(m) = O(log n) the same way as GapMaj ◦ IPm. It can also be sort-of verified: given (x, y, t̂), if
the correct number of 1-valued gadgets is t, there is a randomized verifier V which satisfies

− If |t− t̂| ≤ n/10 (i.e., (x, y, t̂) ∈ R) then Pr
[
V (x, y, t̂) = 1

]
≥ 2/3; and

− If |t− t̂| ≥ n/9 then Pr
[
V (x, y, t̂) = 1

]
≤ 1/3.

An efficient pseudodeterministic protocol for this estimation problem could be used as a pseudo-
deterministic protocol for GapMaj ◦ IPm, so Theorem 1 shows that it cannot exist. However, the
necessary gap between n/10 and n/9 means that this does not satisfy the definition of [Gol11].

Structure of communication protocols. Communication complexity is closely related to the
size of monochromatic rectangles within the communication matrices: efficient deterministic pro-
tocols imply large monochromatic rectangles inside the matrix. The question of whether the same
is true for randomized protocols that compute a total boolean function was raised in [GKPW18].
A striking version of this question is obtained for constant-cost protocols: Chattopadhyay, Lovett,
and Vinyals [CLV19] and Hambardzumyan, Hatami, and Hatami [HHH23] conjecture that

Conjecture 4 ([CLV19, HHH23]). There exists a function η such that every N×N boolean matrix
with randomized communication cost c has an η(c) ·N × η(c) ·N monochromatic rectangle.

4

Completions of the GapHD matrix cannot have such large monochromatic rectangles [FF81],
and therefore Conjecture 4 already implies lower bounds on the pseudodeterministic cost ofGapHD,
as noted in [FGHH25]. Gavinsky [Gav25] points out similar implications for parity decision trees,
with monochromatic affine subspaces in place of rectangles. The best progress so far towards
Conjecture 4 is to find such monochromatic rectangles in matrices of bounded γ2-norm [BHT25].

2 Warm-Up and Proof Overview

Our proof starts with the lower bound for parity decision trees by Gavinsky [Gav25] and upgrades it
to a communication lower bound using techniques from query-to-communication lifting [GLM+16,
GPW20]. As a warm-up to our main proof, we will present an exposition of Gavinsky’s argument,
but simplified to the special case of decision trees.

Of course, for decision trees (rather than parity decision trees), there is a simpler proof of a su-
perior Θ(n) bound: in any completion f of GapMaj, find the input x ∈ f−1(0) with largest weight;
then, observe that by fixing the 1-valued coordinates of x and letting the 0-valued coordinates vary,
we obtain the Or problem on Ω(n) bits, which implies a lower bound of Ω(n) queries. However, the
more complicated warm-up proof gives a technique that can be lifted to communication complexity.

2.1 Warm-Up: Lower Bound for Decision Trees

Theorem 5 (Simplified version of [Gav25]). Any completion f : {0, 1}n → {0, 1} of GapMaj
requires randomized query complexity Ω(

√
n).

Proof sketch. The proof has two parts, encapsulated in the Closeness Lemma and the Stage
Lemma. The Closeness Lemma formalizes the key observation that a shallow decision tree cannot
distinguish between the uniform distribution over {0, 1}n and the distribution where the bits are
slightly biased towards 1. Specifically, suppose u ∼ {0, 1}n is uniform random and x is obtained
from u by setting to 1 a uniformly random set of

√
n coordinates; that is, we “sprinkle” some

√
n

many 1s into u. Then the probability that a depth-o(
√
n) decision tree T can distinguish u from x

is o(1); in other words, the output distributions T (u) and T (x) are close to each other.
Using this Closeness Lemma, we break down the argument into stages, each stage handled by

the Stage Lemma. In each stage, we start with a subcube X ⊆ {0, 1}n where at least half the
strings x ∈ X satisfy f(x) = 0. A subcube X is equivalent to a partial assignment of variables,
where a set F ⊆ [n] are “free”, while variables [n] ∖ F are “fixed”, i.e., all x ∈ X agree on the
coordinates [n]∖F . Our goal in each stage is to find ≈

√
n free variables to fix (i.e., to remove from

F to obtain a new subcube); essentially, these newly fixed variables are the ones queried by the
decision tree, along with the

√
n “sprinkled” 1-bits. Our choice should satisfy the property that,

after fixing these new variables, we maintain the invariant that at least half the remaining strings x
have f(x) = 0. If we can accomplish this goal in each stage, repeating this process over 0.9

√
n stages

yields a contradiction as illustrated in Figure 1: on one hand, we have fixed 0.9
√
n ·
√
n = 0.9n bits

to 1, so f is identically 1 on all remaining strings. On the other hand, we maintained the invariant
that half the remaining strings x have f(x) = 0, forcing a contradiction.

We find the ≈
√
n variables to fix as follows. The key trick is that, by Yao’s principle, there is a

deterministic o(
√
n)-depth decision tree T that errs with probability at most ε on the distribution

1
2(unif(X) + σ),

5

where σ is the “sprinkled-1s” distribution: start with a uniform u ∼ X and construct x by fixing
a random set of

√
n free variables to 1. Crucially, T has error probability 2ε over each component

distribution unif(X) and σ. Since Prx∼X [f(x) = 0] ≥ 1/2 and T has error 2ε over unif(X), we can
easily find a 0-leaf ℓ where f(x) = 0 for most x reaching that leaf; by fixing the variables queried
by T on the path to ℓ, we obtain a subcube L with Prx∼L[f(x) = 0] ≥ 1/2. We can “upgrade” the
last step to let us fix an additional

√
n variables to 1, by using the fact that T also has error 2ε

over σ, and the Closeness Lemma, which says that the distribution over leaves of T is similar for σ
as for unif(X).

Full proof (skippable on first reading). We now give a more formal proof that serves as a
blueprint for our communication lower bound. The following lemma formalizes the process for each
stage, that is, the act of assigning (1 + o(1))

√
n bits. To better match with the communication

proof we view the conditioning on a partial assignment as zooming in to a subcube of {0, 1}n.
Notation: Throughout the paper, for any string x ∈ Σn and a set S ⊆ [n], we write xF ∈ ΣF

for the substring of x on coordinates F . For X ⊆ Σn, we write XF := {xF | x ∈ X}.

Lemma 6 (Stage Lemma for Decision Trees). Suppose f : {0, 1}n → {0, 1} is a completion of
GapMaj with randomized query complexity o(

√
n). Let X ⊆ {0, 1}n be a subcube of the boolean

cube, that is, there exists F ⊆ [n] be such that X[n]∖F is fixed and XF is free. Suppose that
|F | ≥ 0.1n and Pru∼X [f(u) = 0] ≥ 1/2. Then there exists a subcube X ′ ⊆ X and F ′ ⊆ F such that

Pr
u′∼X′

[f(u′) = 0] ≥ 1

2
and XF ′ is free.

Moreover, there is a set R ⊆ F ∖ F ′ such that: X ′
R = 1R and |R| ≥ 0.9|F ∖ F ′|.

This lemma suffices to prove the lower bound, as follows (see Figure 1 for an illustration):

Proof of Theorem 5 given Lemma 6. We may assume that |f−1(0)| ≥ 2n−1, as otherwise we can
swap the roles of 0/1 output values in the upcoming argument. Begin with X = {0, 1}n, F = [n],
and S = ∅. We will apply the stage lemma iteratively as long as |F | ≥ 0.1n and update X,F, S in
each stage, as follows: assuming the invariant Pru∼X [f(u) = 0] ≥ 1/2, we apply the stage lemma
and update

• X ← X ′ with X ′ from the stage lemma, maintaining the invariant Pru′∼X′ [f(u′) = 0] ≥ 1/2;

• F ← F ′ from the stage lemma;

• S ← S ∪R from the stage lemma, maintaining the invariant that all x ∈ X ′ have value 1 on
coordinates S.

On termination, we have preserved the invariant Pru∼X [f(u) = 0] ≥ 1/2, but on the other hand,
since |S| ≥ 0.9|[n] ∖ F | ≥ 0.8n and all x ∈ X have coordinates in S fixed to 1, we have f(x) = 1
for all x ∈ X, a contradiction.

To prove the stage lemma, we define the following distribution over inputs. Given any subcube
X ⊆ {0, 1}n with free variables F ⊆ [n], we define σ as the distribution over X obtained by choosing
a uniformly random u ∼ X and a uniformly random set I ∼

(
F√
n

)
of
√
n free variables. Then we

take x ∈ X to be the string obtained from u by setting all coordinates i ∈ I to 1.

6

0n

1n

1

0

(a) Evolution of subcube X; it ends up con-
tained in f−1(1).

X

F

X

0
0
0
0

1
1
1
1

1
1
1
1

F

X
0
0
0

1
1
1

1
1
1

1
1
1

1
1
1

0
0
0

F

X
0
0

1
1

1
1

1
1

1
1

0
0

1
1

0
0

1
1

F

[n]

(b) Evolution of free variables F ; each stage fixes
at least

√
n new 1s.

Figure 1: Decision tree stages

This distribution has two important properties: first, it has
√
n “planted” 1-valued coordinates,

so that it is more biased towards 1 than a uniformly random string. Second, it is indistinguishable
from the uniform distribution by o(

√
n)-query decision trees, as established in the Closeness Lemma:

Lemma 7 (Closeness Lemma for Decision Trees). Let X ′ ⊆ X be a subcube of X and F ′ ⊆ F the
set of its free variables. Suppose |F ∖ F ′| ≤ o(

√
n) and |F | ≥ 0.1n. Then

Pr
x∼σ

[x ∈ X ′] ≥ (1− o(1)) Pr
u∼X

[u ∈ X ′].

Proof. Let I ∼
(
F√
n

)
be as in the definition of σ. Then x ∼ σ is obtained by choosing u ∼ X and

then fixing variables in I to 1. If u ∈ X ′ and the set I ⊆ F does not intersect the set F ∖ F ′ of
variables which are fixed by X ′, then it must be the case that x ∈ X ′ as well. Therefore

Pr
x∼σ

[x ∈ X ′] ≥ Pr
u∼X

[u ∈ X ′ ∧ (I ∩ (F ′ ∖ F) = ∅)] = Pr
u∼X

[u ∈ X ′] · Pr
[
I ∩ (F ′ ∖ F) = ∅

]
.

By the union bound,

Pr
[
I ∩ (F ′ ∖ F) ̸= ∅

]
≤
√
n · |F

′ ∖ F |
|F |

≤
√
n · o(

√
n)

0.1n
= o(1).

We now conclude the lower bound by proving the stage lemma:

7

Proof of Lemma 6. Suppose that f has randomized decision tree complexity o(
√
n); we may assume

that the randomized decision tree has error probability ε. Let X be any subcube with free variables
F satisfying |F | ≥ 0.1n. Recall the distribution σ over X where x ∼ σ is sampled by choosing
I ∼

(
F√
n

)
and x ∼ unif({x ∈ X | xI = 1I}).

By Yao’s principle, there exists a deterministic decision tree T of depth o(
√
n), computing f

with error ε over the mixture distribution

1
2(unif(X) + σ).

Observe that tree T has error at most 2ε over each individual distribution σ and unif(X).
Note that each leaf ℓ of T corresponds to a subcube L ⊆ X obtained by fixing the o(

√
n) bits

queried by T on the path to ℓ; therefore the free variables FL of L satisfy |F ∖ FL| = o(
√
n). By

applying the closeness lemma, Lemma 7, to each subcube L corresponding to the 0-leaves of T , we
obtain

Pr
x∼σ

[T (x) = 0] =
∑

0−leaf L

Pr
x∼σ

[x ∈ L] ≥ (1− o(1) Pr
u∼X

[T (u) = 0] ≥ (1− o(1))
(
1
2 − 2ε

)
≥ 1/4,

where the penultimate inequality uses the assumption Pru∼X [f(u) = 0] ≥ 1/2. Now, since T errs
with probability at most 2ε on σ, we have

Pr
x∼σ

[f(x) = 1 | T (x) = 0] =
Prx∼σ[f(x) = 1 ∧ T (x) = 0]

Prx∼σ[T (x) = 0]
≤ 8ε.

Hence, according to the total probability law, there exists a 0-leaf ℓ in T such that Prx∼σ[f(x) = 1 |
x ∈ L] ≤ 8ε ≤ 1/2. Again by total probability law, there exists I ∈

(
F√
n

)
such that Prx∼σ[f(x) =

1 | x ∈ L, I = I] ≤ 1/2. We then observe that for u ∼ X the distributions of (u | uI = 1) and
(x | I = I) coincide, therefore Pru∼X [f(u) = 1 | u ∈ ℓ,uI = 1] ≤ 1/2. We then conclude by
defining X ′ := {x ∈ L | xI = 1I} with R := I being the variables forced to 1, and the new set of
free variables being F ′ := FL ∖R (the free variables remaining in the leaf L, minus those forced to
1), which satisfies |R| =

√
n ≥ 0.9|F ∖ F ′| = 0.9(

√
n+ o(

√
n)).

2.2 Proof Overview

Let us describe how to lift the argument for decision trees in Section 2.1 to prove a lower bound for
the communication complexity of GapMaj◦IPn

m. For the sake of brevity, we will write Σ := {0, 1}m
for the alphabet of inputs to the IPm gadget, so that both inputs toGapMaj◦IPn

m are in domain Σn.
For the remainder of the paper, m = log |Σ| indicates the bit-size of the IPm gadget. Below, we
use R(·) to denote randomized communication complexity (to within error 1/3).

Theorem 8. Any completion f : Σn × Σn → {0, 1} of GapMaj ◦ IPn
m, with m := 100 log n, has

R(f) = Ω(
√
n log n).

Our proof proceeds analogously to the proof for query complexity in Section 2.1. At a high
level, we have the following analogies:

• For decision trees we tracked a subcube X ⊆ {0, 1}n, because leaves of a decision tree correspond
to subcubes. Now we track a rectangle X × Y ⊆ Σn × Σn because leaves of a communication
protocol correspond to rectangles. (Gavinsky’s argument for parity decision trees tracks an affine
subspace X ⊆ Fn

2 .)

8

• We still have a set F of “free” variables, but these take on a different meaning, because the
rectangle X × Y no longer corresponds exactly to a set of inputs obtained by fixing variables
[n]∖F and leaving those in F completely unrestricted; this is because communication protocols
may exchange information about variables without entirely “fixing” them. Our “free variables”
F instead satisfy the condition that “only a small amount of information about them is known”.

• We still have a Stage Lemma, which suffices to prove the theorem in almost the same way:
starting with a rectangle X×Y where f(x, y) = 0 for most (x, y) ∈ X×Y , we iteratively restrict
to a smaller rectangle X ′ × Y ′ by “fixing” some free variables, including

√
n variables fixed to 1.

Unlike the decision tree proof, we can no longer fix
√
n variables to 1 in every stage, but only

most stages (which we call “safe stages”).

• We still have a Closeness Lemma, which we use to find
√
n variables to fix to 1; however,

the simple birthday paradox argument in Lemma 7 no longer works, because a protocol does
not simply query o(

√
n) bits, so

√
n random coordinates will not simply “miss” the queried

coordinates with high probability. Indeed, our new Closeness Lemma will only apply in the “safe
stages”.

Let’s give a little more detail on how the Stage Lemma and Closeness Lemma differ from their
decision tree analogues. We also provide a diagram of the Stage Lemma in Figure 3.

Stage Lemma: Suppose for the sake of contradiction that there exists a randomized communi-
cation protocol with error ε and communication cost o(

√
nm). We proceed as follows:

1. Start each stage with a rectangle X ×Y (originally Σn×Σn) which contains mostly 0-valued
inputs to f , and a set F ⊆ [n] of “free variables”. We keep track of the “deficit”

D(X × Y, F) := 2|F |m−H∞(xF)−H∞(yF),

where (x,y) ∼ X×Y and H∞(x) := minx log(1/Pr[x = x]) denotes min-entropy. Intuitively,
the deficit quantifies how many bits of information Alice and Bob know about the free vari-
ables F . For intuition, note that if Alice and Bob were merely simulating a decision tree
(solving individual gadgets one at a time) then the deficit would always be 0.

2. By Yao’s principle we obtain a deterministic protocol Π with cost |Π| = o(
√
nm) and error ε

over the distribution
1

2
(unif(X × Y) + σ(X × Y, F)) ,

where σ(X ×Y, F) is a sprinkled-1s distribution (Definition 14). In the sprinkled-1s distribu-
tion, an input (x,y) is chosen uniformly from X × Y , and then a random set of

√
n gadgets

in F are fixed to have value 1, i.e., we force the input distribution to increase the number of
1-valued gadgets by at least

√
n.

3. We use the fact that Π has error 2ε on each of unif(X × Y) and σ(X × Y, F), together with
the Closeness Lemma (which says that distribution over leaves induced by σ(X × Y, F) and
unif(X×Y) is similar), to find a smaller subrectangle X ′×Y ′ ⊆ X×Y and smaller set of free
variables F ′ ⊆ F , where

√
n new IP gadgets are fixed to 1. However, the Closeness Lemma

will now apply only in “safe stages” where the deficit is low; in the unsafe stages, we skip the
step of fixing

√
n gadgets to 1. This is OK, because most stages will be safe.

9

Closeness Lemma: The Closeness Lemma should show that the distribution over leaves of the
protocol is similar under the sprinkled-1s distribution σ(X×Y, F) and unif(X×Y), so that we can
safely sprinkle

√
n 1-values “without the protocol noticing”. However, to prove this claim, there are

two caveats, which constitute the main technical novelty of the proof, and do not have an analogue
in Gavinsky’s parity decision tree proof:

1. In each stage, we must first transform Π into a more structured protocol Π′ using techniques
from lifting and properties of the IPm gadget.

2. We can prove the claim only when the deficit D(X × Y, F) is small (i.e., there is little
information known about the free variables F , so that intuitively they behave similarly to the
completely free variables in the decision tree argument).

In the next section, we formalize the main claims required for this argument.

3 Proof of the Main Theorem

For the sake of contradiction, we make the following assumption throughout the proof:

Assumption 9. Assume that there is a completion of GapMaj◦IPn
m, denoted f : Σn×Σn → {0, 1},

such that the randomized communication cost of f is o(
√
nm) and Pr(x,y)[f(x,y) = 0] ≥ 1/2.

As in the decision tree proof, the main theorem will follow from a Stage Lemma. To state the
communication version of the Stage Lemma, we need a few definitions. First, we will use the deficit
as a potential function throughout the stage procedure:

Definition 10 (Deficit). For a set F ⊆ [n] and a random variable x over Σn, we write

D∞(xF) := |F |m−H∞(xF).

For a rectangle X × Y ∈ Σn × Σn and F ⊆ [n] we define the deficit :

D(X × Y, F) := D∞(xF) + D∞(yF) = 2|F |m−H∞(xF)−H∞(yF),

where (x,y) ∼ unif(X × Y). Observe that the deficit is non-negative.

Next, we will maintain the property that, for the current rectangle X × Y in the process, the
sets X and Y are pseudorandom in sense of being γ-spread :

Definition 11 (Spread Variables). A random variable x ∈ ΣJ is γ-spread if ∀I ⊆ J it holds
that H∞(xI) ≥ γ|I|m. A set X ⊆ ΣJ is γ-spread if x ∼ unif(X) is γ-spread.

The reason we make this definition and maintain the spreadness property throughout the stage
process is that it lets us take advantage of near-uniformity of the Inner Product gadget outputs
on the free variables. Let us state this lemma now to make the motivation of this definition clear:

Lemma 12 ([GLM+16, Lemma 13]). Suppose m ≥ 100 log n. Let X × Y ⊆ Σn × Σn and F ⊆ [n]
be such that the random variables xF and yF are 0.9-spread, for (x,y) ∼ unif(X × Y). Then

∀z ∈ {0, 1}F : Pr [(IPm(xi,yi))i∈F = z] ∈ 2−|F | · (1± 2−m/20).

10

We may now state the communication version of the Stage Lemma.

Lemma 13 (Stage Lemma). Assume Assumption 9. Let X × Y ⊆ Σn × Σn be a rectangle and
F ⊆ [n], such that: |F | ≥ 0.1n,

Pr
x,y∼X×Y

[f(x,y) = 0] ≥ 1/2, and XF and YF are 0.9-spread.

Then there exist X ′ × Y ′ ⊆ X × Y and F ′ ⊊ F , such that: |F ∖ F ′| ≥ Ω(
√
n),

Pr
x,y∼X′×Y ′

[f(x,y) = 0] ≥ 1/2, and X ′
F ′ and Y ′

F ′ are 0.9-spread.

Moreover, there exists a set R ⊆ F∖F ′ such that either |R| =
√
n (“safe stage”) or R = ∅ (“unsafe

stage”), and

1. For every x, y ∈ X ′ × Y ′, and every i ∈ R, IPm(xi, yi) = 1 (i.e., the output of every gadget
inside R is fixed to 1);

2. D(X ′ × Y ′, F ′) ≤ D(X × Y, F) + o(
√
nm)− Ω(|F ∖ (F ′ ∪R)| ·m).

Here, the constants under Ω(·) are universal.

To give some intuition behind the deficit inequality, it comes from

D(X ′ × Y ′, F ′) ≤ D(X × Y, F) +O(|Π|+ |R|)− Ω(|F ∖ (F ′ ∪R)| ·m),

where Π refers to the protocol obtained from Yao’s principle, and the deficit increases in each stage
by O(|Π| + |R|) because the entropy is reduced by O(1) for each bit of communication, as well as
for each gadget in R that we fix to 1 (we lose O(1) bits of entropy instead of O(m) because we
leave the 2m input bits random); meanwhile, the process will also fix the 2m input bits for each
gadget in F ∖ (F ′ ∪R) in an uncontrolled way, to “restore” spreadness and decreases the deficit.

The remainder of this paper is dedicated to proving the Stage Lemma. Assuming this lemma,
here is the proof of the main theorem:

Proof of Theorem 8 given Lemma 13. As in the proof for decision trees, we may assume without
loss of generality that Prx,y∼Σn×Σn [f(x,y) = 0] ≥ 1

2 , and we will apply the Stage Lemma iteratively
over many stages,

Observe that the initial value X×Y = Σn×Σn and F = [n] satisfies the condition of Lemma 13,
and that X ′ × Y ′ and F ′ obtained from Lemma 13 maintain the conditions to reapply the lemma,
as long as |F ′| ≥ 0.1n. We may therefore perform the following procedure.

Initialize

• X × Y = Σn × Σn (the current rectangle);
• F = [n] (the current “free variables”);
• T = ∅ (the current set of gadgets fixed to 1);
• U = ∅ (the current set of “unfree variables” other than T).

While |F | ≥ 0.1n, apply Lemma 13 to obtain X ′ × Y ′ ⊆ X × Y , F ′ ⊊ F , and R ⊆ F ∖ F ′, and
update

X × Y ← X ′ × Y ′, U ← U ∪ (F ∖ (F ′ ∪R)), F ← F ′, T ← T ∪R.

11

Σn

Σn

IPn

0n

1n

1

0

(a) Evolution of X × Y

X

Y

spread

X

Y

spreadfixed

X

Y

spreadfixed

X
Y

spreadfixed

[n]

IPn

IP(X × Y)

F

IP(X × Y)

1
1
1
1

1
1
1
1

F

IP(X × Y)
1
1
1

1
1
1

0
0
0

0
0
0

1
1
1

Funsafe

IP(X × Y)
1
1

1
1

0
0

0
0

1
1

1
1

1
1

F

[n]

(b) Evolution of F

Figure 2: Communication stages. The second stage is unsafe, we assign too many coordinates

12

Since F shrinks in each iteration, the process halts. Upon halting, the final rectangle X×Y satisfies

Pr[f(x,y) = 0] ≥ 1/2 (2)

for uniformly random (x,y) ∼ unif(X × Y).
Note that the total number of stages is O(

√
n), since |F ∖ F ′| = Ω(

√
n), and so the number of

“free variables” decreases by Ω(
√
n) on every stage.

Now consider the deficit D(X × Y, F) of the final rectangle with respect to the final set of free
variables. By property (2) of Lemma 13, this satisfies

0 ≤ D(X × Y, F) ≤ o(
√
nm) ·O(

√
n)− Ω(|U |m) ≤ o(nm)− Ω(|U |m),

implying |U | ≤ o(n) for sufficiently large n.
When the process halts, the number of free variables is at most |F | < 0.1n, meaning that

|T |+ |U | = n− |F | ≥ 0.9n, so
|T | ≥ 0.9n− |U | ≥ 0.8n.

For each i ∈ T , we have ensured in property (1) of Lemma 13 that IPm(xi, yi) = 1 for all (x, y) ∈
X×Y . Since |T | > 2

3n, this means that f(x, y) = 1 for all (x, y) ∈ X×Y , contradicting Equation (2).
This concludes the proof.

3.1 Proving the Stage Lemma

The structure of the proof of the Stage Lemma is shown in Figure 3, which explains how the 4
main ingredients fit together: the Protocol Transformation lemma (Lemma 15), the communication
version of the Closeness Lemma (Lemma 18), the Safe Stage Lemma (Lemma 16), and the Unsafe
Stage Lemma (Lemma 17). We state these lemmas formally below. Let us begin with the definition
of the sprinkled-1s distribution, similar to the one we used for decision trees:

Definition 14 (Sprinkled 1s Distribution). For X×Y ⊆ Σn×Σn and F ⊆ [n], let σ(X×Y, F)
be the sprinkled-1s distribution obtained by

1. Choosing a uniformly random subset I ∼
(
F√
n

)
of free variables, and

2. Returning (x,y) ∼ unif(X × Y) conditional on the event IPm(xi,yi) = 1 for all i ∈ I.

We prove the following Protocol Transformation lemma in Section 4.

Lemma 15 (Protocol Transformation Lemma). Let X × Y ⊆ Σn × Σn, let F ⊆ [n], and let Π be
any deterministic protocol with cost |Π| = o(

√
nm) and error ε over an arbitrary distribution µ.

Suppose that XF and YF are both 0.9-spread. Then there exists a protocol Π′ with error at most ε
over the same distribution, such that each leaf L = X(L) × Y (L) of Π′ is associated with a subset
FL ⊆ F of free variables, where:

1. For every leaf L, the random variable (x(L),y(L)) ∼ unif(X(L)×Y (L)) has x
(L)
FL

and y
(L)
FL

both
0.9-spread; and

2. For a random leaf L := L(x,y) defined as the leaf of a random (x,y) ∼ unif(X × Y), with
probability at least 1− 4ε,

D(L, FL) ≤ D(X × Y, F) +O(|Π|)− Ω(|F ∖ FL| ·m),

where the constants under O(·) and Ω(·) are universal.

13

Begin Stage

Rectangle X × Y , free variables F .
• X × Y is mostly 0s.
• XF , YF are both 0.9-spread.

Yao’s Principle

Obtain deterministic protocol Π with cost o(
√
nm) and error ε over

1

2
(unif(X × Y) + σ(X × Y, F)),

where σ(X × Y, F) is the “sprinkled-1s” distribution.

Protocol Transformation (Lemma 15)

Transform Π into protocol Π′ with error ε over the same distribution, but now:
• Every leaf L = X(L) × Y (L) is associated with a set FL ⊆ F of “free variables”.

• Every leaf L of Π′ preserves spreadness: X
(L)
FL

and Y
(L)
FL

are 0.9-spread.
• Instead of an upper bound on protocol cost, there is an upper bound on the deficit.

Safety Check (Is Π′ “Decision-Tree-Like”?)

As in the decision tree proof, we will select a 0-leaf of Π′ to turn into the output X ′ × Y ′, to
ensure X ′ × Y ′ is mostly 0s. Let L0 be a random 0-leaf of Π′, chosen as the leaf reached by a
uniformly random 0-input (x,y) ∈ X ×Y . “Fixed gadgets” F ∖FL0 are analogous to “queried
coordinates” for the decision tree. So, is

median(|F | − |FL0 |) ≤
1

1000

√
n ? (3)

Safe Stage Lemma (Lemma 16)

Safe to fix a set R of
√
n gadgets to 1, using

the Closeness Lemma (Lemma 18), pro-
ducing new subrectangle X ′ × Y ′ ⊆ L and
F ′ ⊆ FL ∖R from some 0-leaf L of Π′.
•Must ensure spreadness is still maintained.
• Fixing extra gadgets increases the deficit.

Unsafe Stage Lemma (Lemma 17)

Not safe to fix any gadgets to 1. Set R = ∅.
Take X ′ × Y ′ = L and F ′ = FL for some
0-leaf L of Π′ with |F ∖ FL| >

√
n/1000.

• Spreadness maintained by Π′.
• Π′ decreases the deficit.

Yes No

Figure 3: Outline of the proof of the Stage Lemma.

14

Lemma 16 (Safe Stage Lemma). Let X × Y ⊆ Σn × Σn and F ⊆ [n] satisfy the conditions of
Lemma 13, and assume the current stage is safe, i.e., Equation (3) holds. Then the conclusion of
Lemma 13 holds with |R| =

√
n.

Lemma 17 (Unsafe Stage Lemma). Let X × Y ⊆ Σn × Σn and F ⊆ [n] satisfy the conditions
of Lemma 13, and assume the current stage is unsafe, i.e., Equation (3) does not hold. Then the
conclusion of Lemma 13 holds with R = ∅.

The Stage Lemma (Lemma 13) follows immediately from Lemmas 16 and 17.

3.2 Proof of the Safe Stage Lemma

In this section we state the main ingredients required for the Safe Stage Lemma, including the
communication version of the Closeness Lemma, and we prove the lemma using those ingredients.
We defer the proofs of each ingredient to Section 5.

We start with the rectangle X×Y and free variables F ⊆ [n]. Recall that Π′ is the transformed
protocol from the Protocol Transformation Lemma, which has error ε over the distribution

1

2
(unif(X × Y) + σ(X × Y, F)).

Suppose that the current stage is safe, i.e., Equation (3) holds. We want to find a subset R ⊆ F of
the free variables where we can fix all of the IP gadget values to 1, and produce a new rectangle
X ′×Y ′ ⊆ X×Y and new free variables F ′ ⊆ F ∖R satisfying the conditions to repeat the process
in Lemma 13.

The crucial step is the “birthday paradox” step, where we show that we can sprinkle
√
n random

1-valued gadgets without the protocol Π′ noticing. This is formalized in the next lemma, which uses
spreadness of (x,y) ∼ unif(X ×Y) on the free variables F , together with the pseudorandomness of
the Inner Product gadget under the spreadness condition (Lemma 12). We prove the Closeness
Lemma in Section 5.1.

Lemma 18 (Closeness Lemma). Assume m ≥ 100 log n. Let X × Y ⊆ Σn ×Σn and let F ⊆ [n] be
such that the random variables xF and yF are both 0.9-spread, where (x,y) ∼ unif(X × Y). Now
let X ′ × Y ′ ⊆ X × Y and F ′ ⊆ F also be such that x′

F ′ ,y′
F ′ are both 0.9-spread, for (x′,y′) ∼

unif(X ′ × Y ′), and suppose |F | ≥ 0.1n and |F | − |F ′| ≤
√
n/1000. Then

Pr
(x,y)∼σ(X×Y,F)

[(x,y) ∈ X ′ × Y ′] ∈ (1± 0.1) Pr
(x,y)∈unif(X×Y)

[(x,y) ∈ X ′ × Y ′].

Informally, this lemma claims that if we start from a big enough spread rectangle in Σn × Σn, a
typical leaf of a shallow protocol will not be able to distinguish between uniform distribution and
“sprinkled 1s” distribution.

With the Closeness Lemma, finding the target rectangle X ′×Y ′ together with its free variables
F ′ ⊆ F and set R ⊆ F ∖ F ′ of the 1-valued gadgets is done in three steps, given by the next three
propositions. The first proposition claims that it is possible to find a 0-leaf in the protocol, such
that it is mostly correct under the sprinkled distribution, and the deficiency would not grow too
much.

Proposition 19 (Sprinkle 1s). Let ε > 0 be a sufficiently small constant. Let X × Y ⊆ Σn × Σn

and F ⊆ [n] satisfy the conditions of Lemma 13. If the current stage is safe, then there exists a
leaf L of Π′ such that:

15

1. L contains mostly 0 inputs under the sprinkled-1s distribution:

Pr
(x,y)∼σ(X×Y,F)

[f(x,y) = 0 | (x,y) ∈ L] ≥ 1− 10ε,

2. |F | − |FL| ≤
√
n/1000.

3. D(L,FL) ≤ D(X × Y, F) +O(|Π|).

The next proposition states that we can fix a particular outcome for sprinkling it 1s; again, without
increasing the deficiency too much.

Proposition 20 (Fix 1s). Under the conditions of Proposition 19, let L be a leaf of Π′ obtained
from that proposition, and let FL be its associated set of free variables (as defined in Lemma 15).
Then there exists X ′ × Y ′ ⊆ L, R ⊆ FL with |R| =

√
n, and F ′ := FL ∖R such that

1. Pr[f(x,y) = 0] ≥ 0.6 for (x,y) ∼ unif(X ′ × Y ′);
2. For all j ∈ R and all x, y ∈ X ′ × Y ′, IPm(xj , yj) = 1, and
3. D(X ′ × Y ′, F ′) ≤ D(L,FL) + 2|R|.

While the leaf L of Π′ is spread (due to the protocol transformation), in the the previous step we
moved to a subrectangle X ′ × Y ′ ⊆ L by fixing the R gadgets to 1, which may not have preserved
spreadness. We regain spreadness by the same technique as in the Protocol Transformation Lemma.

Proposition 21 (Spreadify). Let A × B ⊆ Σn × Σn and H ⊆ [n] such that Pra,b∼A×B[f(a, b) =
0] ≥ 0.6. Then there exists H ′ ⊆ H and a rectangle A′ ×B′ ⊆ A×B such that

1. Pra,b∼A′×B′ [f(a, b) = 0] ≥ 1/2.
2. A′

H′ and B′
H′ are 0.9-spread.

3. D(A′ ×B′, H ′) ≤ D(A×B,H)− Ω(|H ∖H ′|m).

We prove these propositions in Section 5.2. With these tools, we can complete the proof of the safe
stage lemma.

Proof of the Safe Stage Lemma. Start with X × Y and F satisfying the conditions of Lemma 13.
Let L be the leaf of Π′ with free variables FL obtained from Proposition 19. Let X ′ × Y ′, F ′, and
R = F ∖ F ′ be from Proposition 20 and let X ′′ × Y ′′ ⊆ X ′ × Y ′ and F ′′ ⊆ F ′ be obtained from
applying Proposition 21 to X ′ × Y ′ and F ′.

From Proposition 20 we guarantee that IPm(xi, yi) = 1 for every (x, y) ∈ X ′′ × Y ′′ and every
i ∈ R. From Propositions 20 and 21 we get

D(X ′′ × Y ′′, F ′′) ≤ D(X ′ × Y ′, F ′)− Ω(|F ′ ∖ F ′′|m) (Proposition 21)

≤ D(L,FL) + 2|R| − Ω(|F ′ ∖ F ′′|m) (Proposition 20)

≤ D(X × Y, F) +O(|Π|) + 2|R| − Ω(|F ′ ∖ F ′′|m) (Proposition 19)

≤ D(X × Y, F) + o(
√
nm)− Ω(|F ′ ∖ F ′′|m) (|Π|, |R| = o(

√
nm))

≤ D(X × Y, F) + o(
√
nm)− Ω(|F ∖ (F ′′ ∪R)|m)

This concludes the proof of Lemma 16.

16

3.3 Proof of the Unsafe Stage Lemma

A stage is unsafe if Equation (3) is false. In this case, we choose any 0-valued leaf L0 with |F |−|FL0 |
at least the median in Equation (3), and which also contains mostly 0-valued inputs of f ; we must
show this exists.

Recall that L0 = (L | L outputs 0) is a random leaf drawn by taking the unique 0-leaf containing
(x,y) ∼ unif(X × Y) conditional on (x,y) ending up in a 0-valued leaf. Suppose Equation (3) is
false. Let R = ∅. Then, to conclude the lemma, we want to show that there exists a 0-valued leaf
L0 of Π′ with |F | − |FL0 | ≥ median (|F | − |FL0 |) >

√
n/1000, such that

• Pr(x,y)∼unif(L0)[f(x,y) = 0] ≥ 1/2, and

• D(L0, FL0) ≤ D(X × Y, F) +O(|Π|)− Ω(|F ∖ FL0 | ·m).

Let L′
0 be an independent copy of L0. We upper bound the probabilities for the following events:

(E1) |F | − |FL′
0
| < median (|F | − |FL0 |);

(E2) errorL′
0
> 1/2, where errorL′

0
:= Pr(x,y)∼unif(L′

0)
[f(x,y) = 1].

(E3) D(L′
0, FL′

0
) > D(X × Y, F) +O(|Π|)− Ω(|F ∖ FL′

0
| ·m).

For (E1), by definition, PrL′
0
[|F | − |FL′

0
| < median (|F | − |FL0 |)] < 1/2.

For (E2), since Π′ has error ε over the mixture 1
2 (unif(X × Y) + σ(X × Y, F)), it has error at

most 2ε over unif(X × Y). Therefore EL′
0
[errorL′

0
] ≤ 4ε, so it follows by Markov inequality that

PrL′
0
[errorL′

0
≥ 20ε] ≤ 1

5 . For a small enough ε, we can conclude that:

Pr
L′

0

[
errorL′

0
>

1

2

]
= Pr

L′
0

[
Pr

(x,y)∼unif(L′
0)
[f(x,y) = 0] < 1/2

]
≤ 1

5
.

For (E3), we are guaranteed from Lemma 15 that

D(L, FL) ≤ D(X × Y, F) +O(|Π|)− Ω(|F ∖ FL|m) (4)

with probability at least 1 − 4ε over a random leaf L chosen as the leaf containing (x,y) ∼
unif(X × Y). We want this to hold for the random 0-leaf L′

0. Since Pr[f(x,y) = 0] ≥ 1/2 and the
protocol has error at most 2ε over (x,y), L is a 0-leaf with probability at least 1/2 − 2ε. Then
Equation (4) must hold with probability at least 1− 10ε for L′

0 instead of L, when ε is sufficiently
small.

Applying the union bound, we can conclude that with positive probability, none of the three
events occur. Then there exists a 0-leaf L0 that satisfies the properties stated in the claim.

4 Density Restoring Partitions and Protocol Transformation

4.1 Density Restoring Partitions

The following is [GPW20, Lemma 3.5] (with straightforward adaptation to allow for x non-uniform,
see also [CFK+21]):

Lemma 22 (Density Restoring Partition). Let x ∈ Σn be a random variable with support X, let
F ⊆ [n], and let γ ∈ (0, 1). Then there exists a partition X =

⊔r
j=1Xj with associated sets Ij ⊆ F

and values αj ∈ ΣIj such that:

17

• Xj := {x ∈ X | xIj = αj}∖
⋃

i<j Xi;

• (xF∖Ij | x ∈ Xj) is γ-spread;

• D∞(xF∖Ij | x ∈ Xj) ≤ D∞(xF)− (1− γ)|Ij |m+ δj where δj = log

(
1

Pr[x∈∪k≥jXk]

)
.

We define a procedure to apply the density restoring partition to rectangles X × Y :

Lemma 23 (Density Restoring Partition for Rectangles). Let X × Y ⊆ Σn × Σn, F ⊆ [n], ε, γ ∈
(0, 1). Then there exist partitions X =

⊔a
i=1Xi and Y =

⊔b
j=1 Yj where each rectangle Xi × Yj ⊆

X × Y is associated with a set Fi,j ⊆ F of “free variables” which satisfy the following properties:

1. For all i, j, the random variables (xFi,j | x ∈ Xi) and (yFi,j | y ∈ Yj) are both γ-spread, where
(x,y) ∼ unif(X × Y);

2. With probability at least 1 − 2ε over (x,y) ∼ unif(X × Y), the unique rectangle Xi × Yj
containing (x,y) satisfies

D(Xi × Yj , Fi,j) ≤ D(X × Y, F)− (1− γ)|F ∖ Fi,j |m+ 2 log(1/ε).

Proof. Begin by applying the density restoring partition of Lemma 22 to each of X and Y to obtain

X =
⊔
i

Xi, and Y =
⊔
j

Yj ,

where for each i, j there exist sets Ii, Jj ⊆ F and assignments αi ∈ ΣIi , βj ∈ ΣJj such that

Xi := {x ∈ X | xIi = αi}∖
⋃
k<i

Xk, and Yj := {y ∈ Y | yJj = βj}∖
⋃
k<j

Yk,

where (xF∖Ii | x ∈ Xi) and (yF∖Jj | y ∈ Yj) are both γ-spread for (x,y) ∼ unif(X×Y). We define
the set Fi,j associated with Xi × Yj as

Fi,j := F ∖ (Ii ∪ Jj),

so that the “free variables” are those which are not assigned by either one of the density restoring
partitions. Since Fi,j ⊆ F ∖ Ii and Fi,j ⊆ F ∖ Jj , the random variables

(xFi,j | x ∈ Xi) and (yFi,j | y ∈ Yj)

remain γ-spread, establishing the first property of the lemma. Let us verify the second property.
For every fixed rectangle Xi × Yj , we have from Lemma 22 that

D∞(xF∖Ii | x ∈ Xi) ≤ D∞(xF)− (1− γ)|Ij |m+ log

 1

Pr
[
x′ ∈

⋃
k≥iXk

]
 ,

where x′ ∼ unif(X). Since Fi,j = F ∖ (Ii ∪ Jj), we can use Proposition 25 (stated below) to bound
D∞(xFi,j) ≤ D∞(xF∖Ii). Then the remaining task to bound the final term.

18

Claim 24. With probability at least 1 − ε over x ∼ unif(X), the unique value i ∈ [a] such that

x ∈ Xi satisfies log

(
1

Pr[x′∈
⋃

k≥i Xk]

)
< log(1/ε).

Proof of claim. Wemay think of the distribution over the index i ∈ [a] defined by p(i) := Pr[i = i] =
Pr[x ∈ Xi]. Then for all t ∈ [0, 1],

Pr
x

log
 1

Pr
[
x′ ∈

⋃
k≥iXk

]
 > t

 = Pr
i

[
log

(
1∑

k≥i p(k)

)
> t

]
= Pr

i

∑
k≥i

p(k) < 2−t

 .
Let i∗ be the smallest value such that

∑
k≥i∗ p(k) < 2−t. If

∑
k≥i p(k) < 2−t then i ≥ i∗ so the

probability of this event is at most
∑

k≥i∗ p(k) < 2−t. Setting t = log(1/ε) produces the desired
bound.

Applying the same reasoning to y and using the union bound over x and y, we have with
probability at least 1− 2ε the inequality

D∞(xFi,j
| x ∈ Xi) +D∞(yFi,j

| y ∈ Yj) ≤ D∞(xF) +D∞(yF)− (1− γ)(|Ii|+ |Jj |)m+2 log(1/ε),

which concludes the proof since |Ii|+ |Jj | ≥ |Ii ∪ Jj |.

We used the following proposition in the proof above:

Proposition 25. Let x be a random variable over Σn and let J ⊆ F ⊆ [n]. Then

D∞(xF∖J) ≤ D∞(xF).

Proof. First, observe

max
z∈ΣF∖J

Pr[xF∖J = z] = max
z∈ΣF∖J

∑
w∈ΣF ,wJ=z

Pr[xF = w] ≤ |Σ||J | max
w∈ΣF

Pr[xF = w],

so that
H∞(xF∖J) ≥ H∞(xF)− |J |m.

Then
D∞(xF∖J) = (|F | − |J |)m−H∞(xF∖J) ≤ |F |m−H∞(xF) = D∞(xF).

4.2 Protocol Transformation

To prove the Protocol Transformation Lemma, we must relate the growth of the deficit function to
the communication complexity of the protocol Π.

Proposition 26. Let X × Y ⊆ Σn × Σn, let F ⊆ [n], and let Π be any communication protocol
with cost d. Then for any ε > 0, with probability at least 1− 2ε over a random leaf L of Π chosen
as the leaf reached by (x′,y′) ∼ X × Y ,

D(L, F) ≤ D(X × Y, F) + 2d+ 2 log(1/ε).

To prove the statement, we will need a chain rule for min-entropy:

19

Lemma 27 (see e.g. [Vad12, Lemma 6.30]). Let (a, b) be distributed over A×B with |A| = 2ℓ and
H∞(a, b) ≥ k, and let A denote the marginal distribution of a. Then for every ε > 0

Pr
a′∼A

[H∞(b | a = a′) ≥ k − ℓ− log 1/ε] ≥ 1− ε.

Proof. Fix some a ∈ A, b ∈ B then Pr[a = a ∧ b = b]/Pr[a = a] = Pr[b = b | a = a], so H∞(b | a =
a) ≥ H∞(a, b)− log 1/Pr[a = a]. Then defining p(a) := Pr[a = a] we have

Pr[log 1/p(a) ≥ ℓ+ log 1/ε] = Pr[p(a) ≤ ε/|A|] =
∑

a : p(a)≤ε/|A|

p(a) ≤ ε.

Proof of Proposition 26. The claim is equivalent to the statement that, with probability at least
1− 2ε over a random leaf L,

H∞(xF | (x,y) ∈ L) + H∞(yF | (x,y) ∈ L) ≥ H∞(xF) + H∞(yF)− 2d− 2 log(1/ε).

Let t(x, y) denote the transcript of protocol Π on input x, y, so that t(x, y) ∈ {0, 1}d, and observe
that transcript t(x, y) is in one-to-one correspondence with the leaf L of (x, y). Consider the random
variable (t(x,y),xF). By the chain rule for min-entropy (Lemma 27), with probability at least 1−ε
over a random transcript t′ = t(x′,y′)

H∞(xF | t(x,y) = t′) ≥ H∞(xF)− d− log(1/ε).

Using the same argument for y and applying the union bound, we get the desired conclusion.

We may now prove the protocol transformation lemma.

Proof of Protocol Transformation Lemma. Let X×Y ⊆ Σn×Σn, let F ⊆ [n], and let Π be a deter-
ministic protocol with cost o(

√
nm) and error ε over µ. We define the protocol Π′ in Algorithm 1,

which we think of as outputting a transcript (i.e., a leaf L) along with a value.

Algorithm 1 The transformed protocol Π′

Input: (x, y) ∈ X × Y
Output: Leaf L′(x, y) and value b = Π(x, y)
1: Run protocol Π on (x, y) to obtain a leaf L = L(x, y) and a value b.
2: Apply the density restoring partition for rectangles (Lemma 23) to L = U (L) × V (L) and F , to

obtain
U (L) =

⊔
i

U
(L)
i , and V (L) =

⊔
j

V
(L)
j .

3: Alice sends value i for the unique U
(L)
i containing x.

4: Bob sends value j for the unique V
(L)
j containing y.

5: The players output leaf U
(L)
i × V (L)

j and value b.

By definition, on any input the protocol outputs the same value as the original protocol Π, so
its output is correct with the probability 1− ε on µ.

20

For each leaf L′ = U
(L)
i × V (L)

j of Π′, we associate the free variables FL′ = F
(L)
i,j ⊆ F given by

Lemma 23. The first desired property of Lemma 15 is that for every leaf U
(L)
i × V (L)

j of Π′, the
variables

(x
F

(L)
i,j

| (x,y) ∼ U (L)
i × V (L)

j) and (y
F

(L)
i,j

| (x,y) ∼ U (L)
i × V (L)

j)

are 0.9-spread. This is immediately guaranteed by Lemma 23. The second desired property of

Lemma 15 is that a random leaf L′ = U
(L)
i × V (L)

j satisfies

D(L′, FL′) ≤ D(X × Y, F) +O(|Π|)− Ω(|F ∖ FL′ |)m

with probability at least 1− 4ε, where constants under O(·) and Ω(·) (C1 and C2, respectively) are
universal. The random leaf L′ is obtained by first selecting a random leaf L of Π by taking the leaf

containing (x,y) ∼ unif(X × Y), and then conditional on (x,y) ∈ L taking the part U
(L)
i × V (L)

j

containing (x,y).
By Proposition 26, with probability at least 1− 2ε over L, we have

D(L, F) ≤ D(X × Y, F) + 2|Π|+ 2 log(1/ε).

Now for any fixed leaf L of Π, Lemma 23 guarantees that with probability at least 1 − 2ε over
(x,y) ∼ unif(X × Y) conditional on (x,y) ∈ L, we have

D(U (L)
i × V (L)

j , F
(L)
i,j) ≤ D(L,F)− 0.1|F ∖ F

(L)
i,j |m+ 2 log(1/ε).

Therefore, by the union bound, we may combine these inequalities to obtain, with probability at
least 1− 4ε over the random leaf L′ of Π′,

D(L′, FL′) ≤ D(X × Y, F) + 2|Π| − 0.1|F ∖ FL′ |m+ 4 log(1/ε).

For any fixed ε > 0 and sufficiently large n, 4 log(1/ε) < |Π|, so we get the conclusion with C1 = 3
and C2 = 0.1.

5 Completing the Safe Stage Lemma

5.1 Closeness Lemma

In this section, we show that the sprinkled-1s distribution in Definition 14 is close to uniform for the
“good leaves”, i.e., the leaves L where we fix at most

√
n/1000 new variables (|F |−|FL| ≤

√
n/1000).

The intuition of this proof is that if the communication protocol “fixes” at most
√
n/1000 variables

within one stage, then this is similar to “querying” at most
√
n/1000 gadgets, and therefore by

a birthday paradox argument we may sprinkle a random set of
√
n gadgets fixed to 1 without

affecting the distribution over leaves of the protocol. We require the following birthday paradox
bounds:

Claim 28. Let I ∼
(
[ℓ]
s

)
be a uniformly random set of s elements drawn from [ℓ] and let T ⊆ [ℓ] be

such that s · |T | ≤ ℓ/100. Then

Pr[I ∩ T = ∅] ≥ 1− 1/100 and E[2|I∩T |] ≤ 1 + 1/20.

21

Proof. Write I = {i1, . . . , ik}. For any fixed k we estimate

Pr[|I ∩ T | ≥ k] = Pr[∃K ⊆ [s] : |K| = k ∧ ∀j ∈ K, ij ∈ T] ≤
(
s

k

)(
|T |
ℓ

)k

≤ (s · |T |)k

ℓk
≤ 100−k.

Then Pr[I ∩ T = ∅] ≥ 1− 1/100 and

E[2|I∩T |] ≤ 1 +
ℓ∑

k=1

2k Pr[|I ∩ T | ≥ k] ≤ 1 +
ℓ∑

k=1

1

50k
≤ 1 +

1

20
.

Lemma 18 (Closeness Lemma). Assume m ≥ 100 log n. Let X × Y ⊆ Σn ×Σn and let F ⊆ [n] be
such that the random variables xF and yF are both 0.9-spread, where (x,y) ∼ unif(X × Y). Now
let X ′ × Y ′ ⊆ X × Y and F ′ ⊆ F also be such that x′

F ′ ,y′
F ′ are both 0.9-spread, for (x′,y′) ∼

unif(X ′ × Y ′), and suppose |F | ≥ 0.1n and |F | − |F ′| ≤
√
n/1000. Then

Pr
(x,y)∼σ(X×Y,F)

[(x,y) ∈ X ′ × Y ′] ∈ (1± 0.1) Pr
(x,y)∈unif(X×Y)

[(x,y) ∈ X ′ × Y ′].

Proof. Within this proof we will use measure notation. For any subset I ⊆ F of size |I| =
√
n,

let ψI denote the measure on rectangles defined by our distributions σ(X,Y, F) conditioned on
choosing the set I of gadgets to fix to 1:

∀A×B ⊆ X × Y : ψI(A×B) := Pr
(x,y)∼σ(X×Y,F)

[(x,y) ∈ A×B | I = I],

where I ∼
(
F√
n

)
denotes the random set of coordinates used to generate (x,y) in the distribution

σ(X × Y, F).
According the definition of σ(X,Y, F), the lemma’s conclusion is equivalent to:

EI∼(F√
n)
[ψI(X

′ × Y ′)] ∈ |X
′ × Y ′|
|X × Y |

(1± 0.1). (5)

To prove the equation, we first observe that ψI is uniform over its support

supp(ψI) = {(x, y) ∈ X × Y | ∀i ∈ I, IPm(xi, yi) = 1},

so

ψI(X
′ × Y ′) =

|supp(ψI) ∩X ′ × Y ′|
|supp(ψI)|

.

Next, we calculate a formula for |supp(ψI) ∩ A × B| for any rectangle A × B ⊆ X × Y . For
convenience, we define δ = 2−m/20 = n−5 for m = 100 log n. Observe that (1− 2−m)

√
n ≥ 1−

√
n ·

2−m ≥ 1 − δ. Consider (a, b) ∼ unif(A × B). Let’s assume that aS , bS are both 0.9-spread, for
some set S ⊆ F . Then, due to the pseudorandomness lemma, Lemma 12, the sequence of inner
products (IPm(ai, bi))i∈S is nearly uniform; specifically,

∀z ∈ {0, 1}S : Pr[(IPm(ai, bi))i∈S = z] ∈ 1

2|S|
(1± 2−m/20) =

1

2|S|
(1± δ).

22

Therefore,
|supp(ψI) ∩A×B| = |A×B| · Pr[(a, b) ∈ supp(ψI)]

= |A×B| · Pr
[
(IPm(ai, bi))i∈I = 1I

]
≤ |A×B| · Pr

[
(IPm(ai, bi))i∈I∩S = 1I∩S

]
≤ |A×B| · 2−|I∩S| · (1 + δ).

(6)

In the case I ⊆ S, repeating the above calculation also yields

|supp(ψI) ∩A×B| ∈ |A×B| · 2−|I| · (1± δ). (7)

With these calculations, we may now complete the proof. For the rectangle X × Y , (x,y) ∼
unif(X × Y) have xF ,yF both 0.9-spread and that I ⊆ F always, so by Equation (7), we have

|supp(ψI)| = |supp(ψI) ∩X × Y | ∈ |X × Y | · 2−|I| · (1± δ),

using the fact that δ < 0.1. Therefore, we can write the left-hand side of Equation (5) as

EI∼(F√
n)
[ψI(X

′ × Y ′)] = EI∼(F√
n)

[
|supp(ψI) ∩X ′ × Y ′|

|supp(ψI)|

]
∈ EI∼(F√

n)
[|supp(ψI) ∩X ′ × Y ′|] · 2

√
n

|X × Y |
· (1± δ).

(8)

For the rectangle X ′ × Y ′, the random variables x′
F ′ , y′

F ′ are both 0.9-spread for (x′,y′) ∼
unif(X ′ × Y ′). In this case, we do not have I ⊆ F ′ always, but we do have it with large enough
probability, so we can write the following lower bound

EI∼(F√
n)
[|supp(ψI) ∩X ′ × Y ′|] ≥ Pr

[
I ⊆ F ′] · |X ′ × Y ′|

2
√
n
· (1− δ) ≥ (1− 1/100) · |X

′ × Y ′|
2
√
n
· (1− δ),

where we use the fact that |I| · |F ∖ F ′| ≤ n/1000 ≤ |F |/100, together with Claim 28, to obtain

Pr
[
I ⊆ F ′] = Pr

[
I ∩ (F ∖ F ′) = ∅

]
≥ 1− 1

100
.

Using Equation (6) and Claim 28, we also get an upper bound

EI∼(F√
n)
[|supp(ψI) ∩X ′ × Y ′|] ≤ |X

′ × Y ′|
2
√
n

· (1 + δ) · E[2|I∖F ′|] ≤ |X
′ × Y ′|
2
√
n

· (1 + δ) · (1 + 1
20).

By combining these bounds with Equation (8), we establish Equation (5).

5.2 Sprinkling and Fixing the 1s

Throughout this section, we are in the context of the Safe Stage Lemma, meaning that we have
rectangle X × Y and free variables F ⊆ [n] satisfying the conditions of the Stage Lemma; Π is the
protocol assumed in Assumption 9, Π′ is the transformed protocol from the Protocol Transformation
Lemma, and Equation (3) holds.

23

5.2.1 Finding a Leaf

Proposition 19 (Sprinkle 1s). Let ε > 0 be a sufficiently small constant. Let X × Y ⊆ Σn × Σn

and F ⊆ [n] satisfy the conditions of Lemma 13. If the current stage is safe, then there exists a
leaf L of Π′ such that:

1. L contains mostly 0 inputs under the sprinkled-1s distribution:

Pr
(x,y)∼σ(X×Y,F)

[f(x,y) = 0 | (x,y) ∈ L] ≥ 1− 10ε,

2. |F | − |FL| ≤
√
n/1000.

3. D(L,FL) ≤ D(X × Y, F) +O(|Π|).

Proof. We say a leaf L of the protocol Π′ is good if it satisfies the following three conditions:

1. F is a 0-leaf of Π′ (i.e., the protocol outputs 0 if it reaches L);
2. |F | − |FL| ≤

√
n/1000;

3. D(L,FL) ≤ D(X × Y, F) +O(|Π|)− Ω(|F ∖ FL|m), from Lemma 15.

Let L1, . . . , LN be all the good leaves of Π′, with associated variables FLi . First, we lower bound
the probability to be in a good leaf, and then prove that a typical good leaf does not contain too
many errors, which yields the proposition.

Let L be a random leaf of Π′, chosen as the unique leaf containing (x,y) ∼ unif(X × Y). The
current stage is safe, meaning that Equation (3) holds, so Pr[|F | − |FL| ≤

√
n/1000 | L prints 0] ≥

1/2. By Lemma 15,

Pr[D(L, FL) ≤ D(X × Y, F) +O(|Π|)− Ω(|F ∖ FL|m)] ≥ 1− 4ε.

Since Π′ errs with probability at most ε over the mixture distribution 1
2 (unif(X × Y) + σ(X × Y, F)),

it errs with probability at most 2ε over unif(X × Y). By assumption, Pr(x,y)∼unif(X×Y)[f(x,y) =
0] ≥ 1/2, so by the union bound,

Pr
(x,y)∼unif(X×Y)

[L(x,y) is good] ≥ Pr
[
|F | − |FL(x,y)| ≤

√
n/1000 and Π′(x,y) = 0

]
−4ε ≥ 1/4−5ε.

We rewrite the inequality as ∑
i∈[N]

Pr
(x,y)∼X×Y

[(x,y) ∈ Li] ≥ 1/4− 5ε. (9)

For brevity, we write σ := σ(X × Y, F). By the Closeness Lemma, for every i ∈ [N],

Pr
(u,v)∼σ

[(u,v) ∈ Li] ∈ (1± 1/10) Pr
(x,y)∼X×Y

[(x,y) ∈ Li]. (10)

Let pL := Pr(u,v)∼σ[f(u,v) = 1 | (u,v) ∈ L]. Since Π′ has error ε over the mixture, it has error 2ε

24

over σ, so

2ε ≥ Pr
(u,v)∼σ

[f(u,v) = 1 ∧Π′(u,v) = 0]

≥
∑

L 0-leaf of Π′

pL Pr
(u,v)∼σ

[(u,v) ∈ L]

≥
∑
i∈[N]

pLi Pr
(u,v)∼σ

[(u,v) ∈ Li]

≥ 0.9
∑
i∈[N]

pLi Pr
(x,y)∼unif(X×Y)

[(x,y) ∈ Li] (by Equation (10).)

Thus, for a random Li chosen as the unique leaf containing (x′,y′) drawn from the uniform distri-
bution on

⋃
i Li,

E[pLi
] =

∑
i∈[N]

pLi Pr
(x,y)∼unif(X×Y)

[(x,y) ∈ Li | (x,y) ∈
⋃
i

Li]

≤ 2ε · 10
9
· Pr

[
(x,y) ∈

⋃
i

Li

]−1

≤ 2ε · 10
9
· 1

1/4− 5ε
(by Equation (9))

≤ 10ε,

for sufficiently small ε > 0. Therefore, there exists a good leaf Li with pLi ≤ 10ε. For this leaf,

D(Li, FLi) ≤ D(X × Y, F) +O(|Π|)− Ω(|F | − |FLi |)m ≤ D(X × Y, F) +O(|Π|),

as desired.

5.2.2 Fixing the Gadgets

Proposition 20 (Fix 1s). Under the conditions of Proposition 19, let L be a leaf of Π′ obtained
from that proposition, and let FL be its associated set of free variables (as defined in Lemma 15).
Then there exists X ′ × Y ′ ⊆ L, R ⊆ FL with |R| =

√
n, and F ′ := FL ∖R such that

1. Pr[f(x,y) = 0] ≥ 0.6 for (x,y) ∼ unif(X ′ × Y ′);
2. For all j ∈ R and all x, y ∈ X ′ × Y ′, IPm(xj , yj) = 1, and
3. D(X ′ × Y ′, F ′) ≤ D(L,FL) + 2|R|.

Proof. Let σ := σ(X×Y, F). By Proposition 19 there exists a leaf L = X(L)×Y (L) of Π′ satisfying
|F | − |FL| ≤

√
n/1000 and

Pr
(u,v)∼σ

[f(u,v) = 1 | (u,v) ∈ L] ≤ 1/5.

Recall from Definition 14 that (u,v) ∼ σ is obtained by choosing I ∼
(
F√
n

)
and taking (u,v)

uniform over the set {(u, v) ∈ X × Y | IPm(ui, vi) = 1, ∀i ∈ I}. So there exists a choice I = R ∈(
F√
n

)
such that

Pr[f(u,v) = 1 | (u,v) ∈ L ∧ I = R] ≤ 1/5.

25

Let (x,y) ∼ unif(L) and let (u′,v′) be distributed identically to (u,v | (u,v) ∈ L ∧ I = R), which
is equivalent to (u′,v′) distributed as (x,y | IPm(xi, yi) = 1, ∀i ∈ R). In calculations below, we
write F := FL for brevity. We first want to show

H∞(u′
F ,v

′
F) ≥ H∞(xF ,yF)− |R| − 1. (11)

From Lemma 12,
Pr[∀i ∈ R : IPm(xi,yi) = 1] ∈ 2−|R|(1± 2−m/20),

so

max
(u,v)∈ΣF×ΣF

Pr
[
(u′

F ,v
′
F) = (u, v)

]
≤ max

(x,y)∈ΣF×ΣF
Pr[(xF ,yF) = (x, y)] · 2|R|(1− 2−m/20)−1,

which establishes Equation (11). The set {x, y | IPm(xi, yi) = 1,∀i ∈ R} is not a rectangle; to
obtain a rectangle we will find variable settings x0R, y

0
R ∈ ΣR so that the rectangle X ′ × Y ′ :=

{(x, y) ∈ L | (xR, yR) = (x0R, y
0
R)} satisfies the desired condition. Let (x0

R,y
0
R) be distributed

identically to (u′
R,v

′
R). Then by the chain rule for min-entropy (Lemma 27), for all δ ∈ (0, 1),

Pr
(x0

R,y0
R)

[
H∞

(
u′
F∖R,v

′
F∖R | (u′

R,v
′
R) = (x0

R,y
0
R)
)
≥ H∞(u′

F ,v
′
F)− 2|R|m− log(1/δ)

]
≥ 1− δ.

The last step is to ensure that the rectangle will be mostly 0-valued.

Ex0
R,y0

R

[
Pr
u′,v′

[f(u′,v′) = 1 | (u′
R,v

′
R) = (x0

R,y
0
R)]

]
= Pr

[
f(u′,v′) = 1

]
≤ 1/5,

so by Markov’s inequality we have

Pr
x0
R,y0

R

[
Pr
[
f(u′,v′) = 1 | (u′

R,v
′
R) = (x0

R,y
0
R)
]
> 0.4

]
≤ 1

5
· 10
4

= 1/2.

By the union bound (using δ = 1/4), there exist x0R, y
0
R such that Pr

[
f(u′,v′) = 0 | (u′

R,v
′
R) = (x0R, y

0
R)
]
≥

6/10 and

H∞
(
x′
F∖R,v

′
F∖R | (u′

R,v
′
R) = (x0R, y

0
R)
)
≥ H∞(u′

F ,v
′
F)−2|R|m−2 ≥ H∞(xF ,yF)−2|R|m−|R|−3.

Therefore the rectangle X ′ × Y ′ for X ′ := {x ∈ X(L) | xR = x0R} and Y ′ := {y ∈ Y (L) | yR = y0R}
satisfies

D(X ′ × Y ′, F ∖R) = 2(|F | − |R|)m−H∞(u′
F∖R | u′

R = x0R)−H∞(v′
F∖R | v′

R = y0R)

≤ 2(|F | − |R|)m−H∞(xF ,yF) + 2|R|m+ |R|+ 3

≤ 2|F |m−H∞(xF ,yF) + 2|R|
= D(L,F) + 2|R|.

5.2.3 Restoring Spreadness

Proposition 21 (Spreadify). Let A × B ⊆ Σn × Σn and H ⊆ [n] such that Pra,b∼A×B[f(a, b) =
0] ≥ 0.6. Then there exists H ′ ⊆ H and a rectangle A′ ×B′ ⊆ A×B such that

26

1. Pra,b∼A′×B′ [f(a, b) = 0] ≥ 1/2.
2. A′

H′ and B′
H′ are 0.9-spread.

3. D(A′ ×B′, H ′) ≤ D(A×B,H)− Ω(|H ∖H ′|m).

Proof. For parameter ε > 0 to be fixed later, we apply the density restoring partition for the
rectangle A × B (Lemma 23) to obtain partitions A =

⊔
iAi and B =

⊔
j Bj with each rectangle

Ai × Bj associated with a set Hi,j ⊆ H of free variables. For each i, j, the random variables xHi,j

and yHi,j are 0.9-spread, where (x,y) ∼ unif(Ai × Bj). With probability at least 1 − 2ε over
(x,y) ∼ unif(A×B), the unique rectangle Ai ×Bj containing (x,y) satisfies

D(Ai ×Bj , Hi,j) ≤ D(A×B,H)− 0.1|H ∖Hi,j |m+ 2 log(1/ε). (12)

For each i, j, define
pi,j := Pr

(a′,b′)∼unif(Ai×Bj)
[f(a′, b′) = 1].

Let (i, j) the random variable chosen as the unique values such that Ai × Bj contains (a, b) ∼
unif(A×B). By assumption,

E[pi,j] =
∑
i,j

Pr[(x,y) ∈ Ai ×Bj] · pi,j = Pr
(a,b)∼unif(A×B)

[f(a, b) = 1] ≤ 4/10,

so by Markov’s inequality, Pr[pi,j > 1/2] ≤ 8/10. Setting ε = 1/20, the probability that pi,j > 1/2
or that Equation (12) fails for i, j is at most 8/10+1/10 = 9/10, so there exists rectangle A′×B′ =
Ai ×Bj with free variables H ′ := Hi,j satisfying the desired conditions.

A Appendix: Counting Arguments and Variations of FBPP

A.1 Variations of FBPP

As mentioned in the introduction, there is a variety of natural ways to define a class FBPP of
“BPP-search problems”, i.e., search problems with efficient randomized protocols. Here are four
definitions of increasing restrictiveness:

(i) Direct translation of the definition of BPP for decision problems. A sequence of relations
Rn ⊆ {0, 1}n × {0, 1}n × {0, 1}∗ is in FBPP if and only if ∀n there exists a randomized
protocol Π with cost poly log n such that ∀x, y ∈ {0, 1}n, Pr[(x, y,Π(x, y)) ∈ Rn] ≥ 2/3.

The issue with this definition is that, unlike for BPP, the constant 2/3 is no longer arbitrary:
choosing a different constant will change the class, because for search problems, the error
cannot generally be boosted (see examples below).

(ii) Fix the issue by demanding that there is an efficient protocol achieving any error ε > 0. The
sequence Rn ⊆ {0, 1}n × {0, 1}n × {0, 1}∗ is in FBPP if and only if ∀n,∀ε > 0 there exists a
randomized protocol with cost poly(log n, 1/ε) such that ∀x, y,Pr[(x, y,Π(x, y)) ∈ Rn] ≥ 1−ε.
This is the approach taken in [Aar10, ABK24] for Turing machines.

(iii) Demand that the cost of the protocol is poly(log n, log(1/ε)) instead of poly(log n, 1/ε), so
that dependence on ε is the same as it is for decision problems.

27

(iv) Require that solutions are not only efficient to find, but also efficient to verify. This is the
approach taken by [Gol11], and this is also analogous to the definition of efficient deterministic
search problems1 in the context of TFNP. According to this definition, Rn is in FBPP if and
only if both the following conditions hold:

• The condition from definition (i) above, where the relation can be computed with cost
poly log n and success probability is 2/3; and,

• For every n there exists a randomized verifier protocol V which outputs a value in {0, 1}
such that, for all (x, y, z) ∈ {0, 1}n×{0, 1}n×{0, 1}∗, when Alice is given (x, z) and Bob
is given (y, z), they can run protocol V which satisfies Pr

[
V (x, y, z) = 1(x,y,z)∈Rn

]
≥ 2/3.

Note that each of these definitions is more strict than the previous one: If a relation satisfies
definition (ii) then it also satisfies definition (i), etc.

Pseudodeterminism. It is most natural to compare pseudodeterminism with definition (iii).
This is because, if a problem admits an efficient poly log n pseudodeterministic protocol, it also
satisfies definition (iii). With a pseudodeterministic protocol, we can take a majority vote on the
output of O(log(1/ε)) independent runs; with probability 1 − ε, the canonical output for given
input (x, y) will be the majority of outputs.

Partial boolean functions. Each of the above definitions is more strict than the previous
one, but this is only true for problems with large outputs. When we consider partial boolean
functions, i.e., problems where the valid outputs are single bits (the main topic of this paper),
these 4 definitions collapse into only 2, because the first 3 definitions are equivalent. Given a
protocol with the guarantees in definition (i), we can perform majority-vote error boosting. If
there is only 1 valid output for given (x, y) then the majority vote will take this value; if there are
2 valid outputs for given (x, y) then the output is valid with probability 1.

If we then take definition (iii) as the definition of FBPP for partial functions, our Theorem 1
proves FBPP ⊊ FPs for partial functions.

Furthermore, when the number of valid outputs is small, definition (iv) is a special case of
efficient pseudodeterminism. This is because, for relations Rn ⊆ {0, 1}n × {0, 1}n × {0, 1}∗ with
only a small ≤ poly log(n) number of possible outputs, the verifier can be used to create a pseudo-
deterministic protocol, by iterating over every possible output in a fixed order:

Claim 29. Let Rn ⊆ {0, 1}n × {0, 1}n × {0, 1}∗ be a relation that satisfies definition (iv) above,
and also |{z ∈ {0, 1}∗ | ∃x, y : (x, y, z) ∈ Rn}| ≤ poly log n. Then there is a pseudodeterministic
protocol for Rn with cost poly log n.

A.2 Separations via counting

Let us explain how to prove Equation (1) for definitions (i)–(iii) of FBPP given above, using a
counting argument that works equally well for boolean circuits and other models of computation.
An initial sketch of the argument for definition (i) is as follows:

1We remark that, confusingly, the name FP is used for two different classes of problems: relations where a solution
can be found efficiently, and relations where a solution can be found and verified efficiently.

28

Define a relation S ⊆ {0, 1}n × {0, 1}n × [3] by choosing S(x, y) := {i : (x, y, i) ∈ S} as
a random subset of [3] of size 2 (i.e., we forbid one random output element). On any
input, outputting a random number in [3] will solve S with probability 2/3. A simple
counting argument shows that the pseudodeterministic complexity is Ω(n) with high
probability over the choice of S.

For definition (i), we can make this argument explicit (see Appendix A.3), i.e., we exhibit a specific
relation satisfying definition (i) but which does not have an efficient pseudodeterministic protocol.
But let us now give the full counting argument for definition (iii).

Proposition 30. There exists a sequence Rn ⊆ {0, 1}n × {0, 1}n × {0, 1}∗ of relations such that
for every ε > 0, Rε(Rn) = O(log(1/ε)), but which has pseudodeterministic cost Ω(n).

Proof. Fix any n. Let R be the set of all relations R such that |R(x, y) ∩ {0, 1}k| = 2k − 1 for all
(x, y) ∈ {0, 1}n × {0, 1}n and k ∈ [n]. That is, in any relation R ∈ R we have removed exactly one
of the 2k valid outputs for every output length k ∈ [n]. Each relation R ∈ R has randomized cost
O(log(1/ε)) since for every ε we can take k = ⌈log(1/ε)⌉ and output a random value z ∼ {0, 1}k;
then (x, y,z) ∈ R with probability at least 1− 2−k ≥ 1− ε.

Fix any function f : {0, 1}n × {0, 1}n → {0, 1}∗ such that the length of any output is at most
|f(x, y)| ≤ c for some c. Let Rf ⊆ R be the set of relations consistent with f (i.e., f(x, y) ∈ R for
all x, y). Then

|Rf |
|R|

=
∏
x,y

(
1− 2−|f(x,y)|

)
≤
(
1− 2−c

)22n ≤ e−22n−c
.

Every pseudodeterministic protocol with cost c computes one of these functions f . Using Newman’s
theorem to bound the number of random bits in any randomized protocol by log n + O(1), the
number of pseudodeterministic protocols with cost c is at most((

22
n)2c · (2c+1)2

c
)O(n)

.

Then the fraction of relations consistent with any pseudodeterministic protocol is at most

2O(n(2n+c+c2c))−Ω(22n−c) < 1

when c = o(n).

A.3 Explicit Separation for Definition (i)

Theorem 31. There exists an explicit two-party search problem f ⊆ {0, 1}n×{0, 1}n×{0, 1}2 with
randomized communication complexity O(1) but pseudodeterministic complexity Ω(n).

We first claim that it suffices to find an f and two different constant error parameters 0 <
ε2 < ε1 <

1
3 , such that Rε1(f) = O(1) while Rε2(f) = Ω(n) where we denote by Rε the ε-error

communication complexity and we omit ε when ε = 1/3. Let us also denote by Psε the ε-error
pseudodeterministic complexity. Indeed, if we can find such an f , we have R(f) ≤ Rε1(f) = O(1),
and on the other hand,

Ps(f) ≥ Ω(Psε2(f)/ log(1/ε2)) ≥ Ω(Rε2(f)/ log(1/ε2)) = Ω(n),

29

where we used that pseudodeterministic complexity admits error reduction.
We now construct f as follows: Let n = 2m without loss of generality. Given x, y ∈ {0, 1}n

as the input for Alice and Bob respectively, we interpret x = (x1, x2) as the concatenation of
two m-bit strings x1, x2 ∈ {0, 1}m, and similarly for y = (y1, y2). Then we define f(x, y) :=
{0, 1}2 ∖ {(IP(x1, y1), IP(x2, y2))} as the set of all pairs of bits excluding (IP(x1, y1), IP(x2, y2)).
We prove that R1/4(f) = O(1), while R0.1(f) = Ω(n).

We first show R1/4(f) = O(1): Observe that |f(x, y)| = 3 for all x, y ∈ {0, 1}n, the simple
protocol that outputs a uniform random pair (u,v) ∼ {0, 1}2 succeeds with probability 3/4.

It remains to show R0.1(f) = Ω(n). For the sake of contradiction, suppose that R0.1(f) = o(n).
By Yao’s principle, there exists a deterministic protocol Π of cost d = o(n) that computes f with
error at most 0.1 with respect to unif({0, 1}n × {0, 1}n). We will then construct a deterministic
protocol Π′ of cost d′ = O(d) = o(n) that computes n-bit IP with error at most 0.4 with respect
to unif({0, 1}m × {0, 1}m), a contradiction to the following folklore lower bound for distributional
communication complexity of IP.

Lemma 32 ([CG88]). The distributional communication complexity of the n-bit IP with respect to
µ := unif({0, 1}n/2 × {0, 1}n/2) is D0.4(IPn/2, µ) = Ω(n).

Before presenting the protocol Π′, we define the following notation:

p00 := Pr
[
u ̸= IP(x1,y1) ∧ v ̸= IP(x2,y2)

]
,

p01 := Pr
[
u ̸= IP(x1,y1) ∧ v = IP(x2,y2)

]
,

p10 := Pr
[
u = IP(x1,y1) ∧ v ̸= IP(x2,y2)

]
,

where x = (x1,x2),y = (y1,y2) are uniform n-bit strings and (u,v) := Π(x,y). It follows that
p00 + p01 + p10 = Pr[(u,v) ∈ f(x,y)] ≥ 0.9.

Next, we specify the protocol Π′ as follows: Alice holds x′ ∼ {0, 1}m and Bob holds y′ ∼ {0, 1}m.
To compute IP(x′,y′), they first sample two uniform random m-bit strings x′′,y′′ ∼ {0, 1}m.
Consider the following cases:

• p00 ≥ 0.3: In this case, we have either p00 + p01 ≥ 0.6 or p00 + p10 ≥ 0.6. Suppose the former
holds without loss of generality, as the other case can be dealt with a similar argument. Both
parties simulate Π on x := (x′,x′′) and y := (y′,y′′), obtain (u,v) := Π(x,y). Finally, they
output ¬u. We conclude that Π′ succeeds with probability

Pr
[
Π′(x′,y′) = IP(x′,y′)

]
= Pr

[
u ̸= IP(x′, y′)

]
= p00 + p01 ≥ 0.6.

• p00 < 0.3: In this case, we have p01 + p10 ≥ 0.6. Similar to the previous case, both parties
simulate Π on x := (x′,x′′) and y := (y′,y′′), obtain (u,v) := Π(x,y). Since (x′′,y′′) is
the common information between both parties, they can compute v′ := IP(x′,y′) without
extra communication. Finally, they output ¬(u⊕v⊕v′). We conclude that Π′ succeeds with
probability

Pr
[
Π(x′,y′) = IP(x′,y′)

]
= Pr

[
u⊕ v ⊕ IP(x′,y′)⊕ IP(x′′,y′′) = 1

]
= p01 + p10 ≥ 0.6.

30

References

[Aar10] Scott Aaronson. BQP and the polynomial hierarchy. In Proceedings of the 42nd
Symposium on Theory of Computing (STOC), pages 141–150. ACM, 2010. doi:10.

1145/1806689.1806711.

[ABK24] Scott Aaronson, Harry Buhrman, and William Kretschmer. A qubit, a coin, and an
advice string walk into a relational problem. In Proceedings of the 15th Innovations in
Theoretical Computer Science (ITCS), volume 287 of LIPIcs, pages 1:1–1:24. Schloss
Dagstuhl, 2024. doi:10.4230/LIPIcs.ITCS.2024.1.

[BFI23] Sam Buss, Noah Fleming, and Russell Impagliazzo. TFNP characterizations of proof
systems and monotone circuits. In Proceedings of the 14th Innovations in Theoretical
Computer Science (ITCS), volume 251 of LIPIcs, pages 30:1–30:40. Schloss Dagstuhl,
2023. doi:10.4230/LIPIcs.ITCS.2023.30.

[BHH+25] Ari Blondal, Hamed Hatami, Pooya Hatami, Chavdar Lalov, and Sivan Tretiak.
Borsuk-Ulam and replicable learning of large-margin halfspaces. Technical report,
arXiv, 2025. doi:10.48550/arXiv.2503.15294.

[BHT25] Igor Balla, Lianna Hambardzumyan, and Istvá Tomon. Factorization norms and an
inverse theorem for maxcut. Technical report, arXiv, 2025. doi:10.48550/arXiv.2506.

23989.

[CDM23] Arkadev Chattopadhyay, Yogesh Dahiya, and Meena Mahajan. Query complexity of
search problems. In Proceedings of the 48th Mathematical Foundations of Computer
Science (MFCS), pages 34–1. Schloss Dagstuhl, 2023. doi:10.4230/LIPIcs.MFCS.2023.34.

[CFK+21] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi.
Query-to-communication lifting using low-discrepancy gadgets. SIAM Journal on
Computing, 50(1):171–210, 2021. doi:10.1137/19M1310153.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988. doi:10.1137/0217015.

[CLO+23] Lijie Chen, Zhenjian Lu, Igor Oliveira, Hanlin Ren, and Rahul Santhanam.
Polynomial-time pseudodeterministic construction of primes. In Proceedings of the 64th
Symposium on Foundations of Computer Science (FOCS), pages 1261–1270. IEEE,
2023. doi:10.1109/FOCS57990.2023.00074.

[CLV19] Arkadev Chattopadhyay, Shachar Lovett, and Marc Vinyals. Equality alone does not
simulate randomness. In Proceedings of the 34th Computational Complexity Conference
(CCC), pages 14:1–14:11. Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.CCC.2019.14.

[CMY23] Zachary Chase, Shay Moran, and Amir Yehudayoff. Stability and replicability in
learning. In Proceedings of the 64th Symposium on Foundations of Computer Science
(FOCS), pages 2430–2439. IEEE, 2023. doi:10.1109/FOCS57990.2023.00148.

31

https://doi.org/10.1145/1806689.1806711
https://doi.org/10.1145/1806689.1806711
https://doi.org/10.4230/LIPIcs.ITCS.2024.1
https://doi.org/10.4230/LIPIcs.ITCS.2023.30
https://doi.org/10.48550/arXiv.2503.15294
https://doi.org/10.48550/arXiv.2506.23989
https://doi.org/10.48550/arXiv.2506.23989
https://doi.org/10.4230/LIPIcs.MFCS.2023.34
https://doi.org/10.1137/19M1310153
https://doi.org/10.1137/0217015
https://doi.org/10.1109/FOCS57990.2023.00074
https://doi.org/10.4230/LIPIcs.CCC.2019.14
https://doi.org/10.1109/FOCS57990.2023.00148

[dRGR22] Susanna de Rezende, Mika Göös, and Robert Robere. Proofs, circuits, and communi-
cation. SIGACT News, 53(1), 2022. doi:10.1145/3532737.3532745.

[FF81] Peter Frankl and Zoltán Füredi. A short proof for a theorem of Harper
about Hamming-spheres. Discrete Mathematics, 34(3):311–313, 1981. doi:10.1016/

0012-365X(81)90009-1.

[FGHH25] Yuting Fang, Mika Göös, Nathaniel Harms, and Pooya Hatami. Constant-cost com-
munication is not reducible to k-hamming distance. In Proceedings of the 57th
Symposium on Theory of Computing (STOC), pages 565–571. ACM, 2025. doi:

10.1145/3717823.3718129.

[Gav25] Dmytro Gavinsky. Unambiguous parity-query complexity. Random Structures & Al-
gorithms, 66(3):e70010, 2025. doi:10.1002/rsa.70010.

[GG11] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers
and their cryptographic applications. In Electronic Colloquium on Computational
Complexity (ECCC), number TR11-136, 2011. URL: https://eccc.weizmann.ac.il/report/

2011/136/.

[GGJL25] Mika Göös, Tom Gur, Siddhartha Jain, and Jiawei Li. Quantum communication
advantage in TFNP. In Proceedings of the 57th Symposium on Theory of Computing
(STOC), pages 1465–1475. ACM, 2025. doi:10.1145/3717823.3718155.

[GGMW20] Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David Woodruff. Pseudo-
deterministic streaming. In Proceedings of the 11th Innovations in Theoretical Com-
puter Science (ITCS), volume 151 of LIPIcs, pages 79:1–79:25. Schloss Dagstuhl, 2020.
doi:10.4230/LIPIcs.ITCS.2020.79.

[GGR13] Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations
of pseudodeterministic algorithms. In Proceedings of the 4th Innovations in Theoretical
Computer Science (ITCS), pages 127–138, 2013. doi:10.1145/2422436.2422453.

[GIPS21] Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On
the pseudo-deterministic query complexity of NP search problems. In Proceedings
of the 36th Computational Complexity Conference (CCC), pages 36:1–36:22. Schloss
Dagstuhl, 2021. doi:10.4230/LIPIcs.CCC.2021.36.

[GKPW18] Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. Query-to-
communication lifting for PNP. Computational Complexity, 28(1):113–144, 2018.
doi:10.1007/s00037-018-0175-5.

[GKRS19] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in
monotone complexity and TFNP. In Proceedings of the 10th Innovations in Theoretical
Computer Science (ITCS), volume 124 of LIPIcs, pages 38:1–38:19. Schloss Dagstuhl,
2019. doi:10.4230/LIPICS.ITCS.2019.38.

[GLM+16] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman.
Rectangles are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869,
2016. doi:10.1137/15M103145X.

32

https://doi.org/10.1145/3532737.3532745
https://doi.org/10.1016/0012-365X(81)90009-1
https://doi.org/10.1016/0012-365X(81)90009-1
https://doi.org/10.1145/3717823.3718129
https://doi.org/10.1145/3717823.3718129
https://doi.org/10.1002/rsa.70010
https://eccc.weizmann.ac.il/report/2011/136/
https://eccc.weizmann.ac.il/report/2011/136/
https://doi.org/10.1145/3717823.3718155
https://doi.org/10.4230/LIPIcs.ITCS.2020.79
https://doi.org/10.1145/2422436.2422453
https://doi.org/10.4230/LIPIcs.CCC.2021.36
https://doi.org/10.1007/s00037-018-0175-5
https://doi.org/10.4230/LIPICS.ITCS.2019.38
https://doi.org/10.1137/15M103145X

[Gol11] Oded Goldreich. In a world of P=BPP. In Studies in Complexity and Cryptography,
pages 191–232. Springer, 2011. doi:10.1007/978-3-642-22670-0 20.

[GPW20] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting
for BPP. SIAM Journal on Computing, 49(4):FOCS17–441–FOCS17–461, 2020. doi:

10.1137/17M115339X.

[HHH23] Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. Dimension-free bounds
and structural results in communication complexity. Israel Journal of Mathematics,
253(2):555–616, 2023. doi:10.1007/s11856-022-2365-8.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying
communication complexity hardness to time-space trade-offs in proof complexity. In
Proceedings of the 44th Symposium on Theory of Computing (STOC), pages 233–248.
ACM, 2012. doi:10.1145/2213977.2214000.

[ILPS22] Russell Impagliazzo, Rex Lei, Toniann Pitassi, and Jessica Sorrell. Reproducibility
in learning. In Proceedings of the 54th Symposium on Theory of Computing (STOC),
pages 818–831. ACM, 2022. doi:10.1145/3519935.3519973.

[ILW23] Rahul Ilango, Jiatu Li, and Ryan Williams. Indistinguishability obfuscation, range
avoidance, and bounded arithmetic. In Proceedings of the 55th Symposium on Theory
of Computing (STOC), pages 1076–1089. ACM, 2023. doi:10.1145/3564246.3585187.

[LOS21] Zhenjian Lu, Igor Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms and
the structure of probabilistic time. In Proceedings of the 53rd Symposium on Theory
of Computing (STOC), pages 303–316. ACM, 2021. doi:10.1145/3406325.3451085.

[LS09] Nati Linial and Adi Shraibman. Learning complexity vs communication complex-
ity. Combinatorics, Probability and Computing, 18(1-2):227–245, 2009. doi:10.1017/

S0963548308009656.

[OS17] Igor Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexpo-
nential time. In Proceedings of the 49th Symposium on Theory of Computing (STOC),
pages 665–677. ACM, 2017. doi:10.1145/3055399.3055500.

[Vad12] Salil Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1–3):1–336, 2012. doi:10.1561/0400000010.

33

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1007/978-3-642-22670-0_20
https://doi.org/10.1137/17M115339X
https://doi.org/10.1137/17M115339X
https://doi.org/10.1007/s11856-022-2365-8
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.1145/3519935.3519973
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1145/3406325.3451085
https://doi.org/10.1017/S0963548308009656
https://doi.org/10.1017/S0963548308009656
https://doi.org/10.1145/3055399.3055500
https://doi.org/10.1561/0400000010

