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Abstract

In this paper we ask how much expansion one can retain with almost no edges

beyond connectivity. Concretely, for graphs of average degree 2 + ε, what is the

“Ramanujan bound”—how does spectral expansion scale with ε? We compare five

ultra–sparse graph models—including the configuration model, subdivision of regular

expanders, and the union of a cycle with a partial matching—and analyze each under

the normalized or unnormalized notions of expansion.

For some models we prove rigorous bounds—primarily via finite free probabil-

ity—while others remain beyond our current techniques. To bridge this gap, we

introduce the Free Method, which produces quantitative predictions without proving

existence—analogous to the probabilistic method, which certifies existence without

providing an explicit construction. These predictions align with experiments. We

expect the free method to be useful more broadly in graph-theoretic settings.

Our results also extend to expansion in general irregular graphs. Moreover, as a

byproduct, we give two alternative proofs of the Marcus–Spielman–Srivastava exis-

tence theorem for one-sided Ramanujan graphs.

∗Tel Aviv University. gil@tauex.tau.ac.il. Supported by ERC starting grant 949499 and by the
Israel Science Foundation grant 2989/24.

†Tel Aviv University. galmaor@mail.tau.ac.il. Supported by ERC starting grant 949499.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 196 (2025)



Contents

1 Introduction 1

1.1 Ultra-sparse expanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Five models of ultra-sparse graphs . . . . . . . . . . . . . . . . . . . . . . . 3

2 Our Results 4

2.1 Ultra-sparse expanders in the normalized setting . . . . . . . . . . . . . . . 5

2.2 Ultra-sparse expanders in the unnormalized setting . . . . . . . . . . . . . 7

2.3 The free method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Union of Ramanujan graphs and cycles . . . . . . . . . . . . . . . . . . . . 13

3 Ultra-Sparse Expanders via Subdivision 14

3.1 The normalized case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 The unnormalized case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Interlacing Families and Free Convolutions 20

5 Ultra-Sparse Expanders in the Configuration Model 25

5.1 Rotation maps and the configuration model . . . . . . . . . . . . . . . . . 26

5.2 Alternate MSS proof via finite free projection . . . . . . . . . . . . . . . . 27

5.3 Non-regular graphs in the configuration model . . . . . . . . . . . . . . . . 28

5.4 Structure vs. randomness in non-regular graphs . . . . . . . . . . . . . . . 30

6 The Free Method 31

6.1 Free method procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Application to ultra-sparse graphs . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 Does the free method admit a combinatorial meaning? . . . . . . . . . . . 44

7 Sum of Free Graphs 46

7.1 Sum of free cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



1 Introduction

Expanders are sparse yet highly connected, well-mixing graphs. Their sparsity makes

them “cost-effective”, while their expansion properties allow them—up to some error—to

be treated as if they were complete graphs, which are ideal but too expensive to use.

They have been studied extensively for decades, with construction techniques ranging from

combinatorial [RVW00, BL06, BATS11] and group-theoretic [LPS88, Mar82] to analytic

[MSS15]. They have a myriad of applications in coding theory [SS94, AEL95, TS17],

computational complexity [INW94, Din07, Rei08], and beyond. For background, see, e.g.,

the survey [HLW06], Chapter 4 of [Vad12], or the book manuscript [Spi25].

In this paper we ask for the optimal expansion when the edge budget is just above

connectivity—the almost-tree regime. Specifically, for graphs with average degree 2 + ε,

what is the “Ramanujan bound”—how does spectral expansion depend on ε? Such ultra-

sparse graphs are necessarily irregular, so to understand the full landscape we use both the

normalized and unnormalized (adjacency-based) notions of expansion. For completeness,

we first briefly recall the standard definitions.

Let G be an undirected graph on n vertices with adjacency matrix A and eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn. We refer to λ2 as the one-sided spectral expansion of G, and to λ1−λ2

as the one-sided spectral gap. The quantity λ
4
= max{|λ2|, |λn|} is the (two-sided) spectral

expansion of G. In the normalized setting, let D be the diagonal degree matrix and let

W
4
= AD−1 be the random walk matrix, with eigenvalues 1 = ω1 ≥ ω2 ≥ · · · ≥ ωn. Here

ω2 is the one-sided normalized spectral expansion of G, 1− ω2 is the one-sided normalized

spectral gap, and ω
4
= max{|ω2|, |ωn|} is the (two-sided) normalized spectral expansion.

Clearly, a 2-regular graph is not a good expander, as the only connected 2-regular graph

is a cycle, whose spectral gap vanishes as the number of vertices grows. It is well-known

that 3-regular graphs can achieve normalized spectral expansion of
√

8
3

. The exact value

is of secondary importance in most applications; what matters is that it is bounded away

from 1. More generally, for every integer d ≥ 3 the best possible (asymptotic) normalized

spectral expansion for d-regular graphs, 2
√
d−1
d

[Nil91], is attained by the so-called Ramanu-

jan graphs. Thus, as one increases the degree d (making the graph more expensive to use),

the spectral expansion improves, making the graph a better expander.

1.1 Ultra-sparse expanders

Given that the chief utility of expanders is having normalized spectral expansion bounded

away from 1, we ask how sparse a graph can be while still keeping this quantity bounded

away from 1—even if it exceeds the “regular-graph barrier”
√

8
3
≈ 0.94—and we aim to

characterize the precise sparsity–expansion tradeoff in this regime.

Connectivity is the minimal prerequisite for expansion, and since any connected n-vertex
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graph has average degree at least 2− 2
n
, we focus on graphs with average degree 2+ε, where

ε > 0 controls the sparsity. As mentioned, our goal is to understand how the achievable

expansion depends on ε—that is, to determine the “Ramanujan bound” for ultra-sparse

graphs with parameter ε.

To minimize degree variance, we primarily consider graphs whose degrees lie in {2, 3}.
High-degree vertices can, in some applications, impose a disproportionate workload on a

single node. Although hub-and-spoke graphs—e.g., the wheel graph (see Section 5.4)—can

be even more amortization-efficient than 3-regular graphs, we avoid them for this reason.

Our techniques, however, extend readily to broader degree distributions, and so we prioritize

simplicity to clarify the landscape of expanders in this largely unexplored regime. As we

will see, while this work advances our understanding of this setting, it also leaves basic

questions open and introduces techniques of independent interest.

As mentioned, ultra-sparse graphs are inherently irregular; accordingly, the unnormalized

spectral expansion reflects different properties than the normalized spectral expansion. The

normalized spectrum reflects random walk behavior, whereas the unnormalized spectrum is

better suited to analyzing edge expansion and expander–mixing–lemma–type bounds—each

accounting for degree heterogeneity in different ways (see [AZ24] for a survey). Therefore,

in this work we also study the unnormalized spectral expansion of ultra-sparse graphs. In

general, for irregular graphs, the unnormalized spectral expansion has been less studied

than the normalized one, in part because irregularity can obscure its usefulness. When the

degree variance is small—particularly in ultra-sparse graphs with degrees in {2, 3}—the

parameter nevertheless reveals meaningful aspects of the graph’s combinatorial structure.

There are two general frameworks for constructing Ramanujan graphs. The first is

based on Cayley graphs of carefully chosen non-abelian groups, originating in the seminal

works of Lubotzky, Phillips, and Sarnak [LPS88], and Margulis [Mar82]. Departing from

this decades-old, deep group-theoretic approach, Marcus, Spielman, and Srivastava (MSS)

initiated a new, more analytic framework, proving the existence of one-sided Ramanujan

graphs in a celebrated sequence of papers [MSS15, MSS18, MSS22]. The construction

originating in this line of work, which draws inspiration from free probability theory, was

later made explicit by Cohen [Coh16].

The group-theoretic approach seems ill-suited to our goal of constructing ultra-sparse

graphs, as much of the appeal of Cayley graphs lies in their high degree of symme-

try—which, in particular, enforces regularity. That said, there are ways to generate ir-

regular graphs from groups, for instance by considering Schreier graphs instead of Cayley

graphs. We leave this direction for future investigation.

The MSS approach to Ramanujan graphs analyzes the union of d perfect matchings that

are, in an appropriate sense, uncorrelated, and it targets one-sided expansion. Although

this framework does not directly fit our setting, it will serve as our main point of departure.
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1.2 Five models of ultra-sparse graphs

As hinted above, the MSS approach studies a distribution over graphs and proves that

at least one graph in its support is (one-sided) Ramanujan. Specifically, in the setting of

d-regular graphs, they examined the distribution—or model—induced by the union of d

perfect matchings. This raises a natural question: what model is appropriate for generating

ultra-sparse graphs? We propose five natural models.

Two-and-a-fraction matchings. The first is perhaps closest in spirit to the MSS dis-

tribution. In this model, denoted suggestively as M +M + εM, or (2 + ε)M for short,

we consider the union of two perfect matchings and a third ε-matching—that is, a partial

matching covering an ε-fraction of the vertices. Note that at the extremes ε = 0 and ε = 1,

one recovers the MSS distributions for 2-regular and 3-regular graphs, respectively.

Three equally sized partial matchings. An alternative is the union of three β-

matchings, where β = 2+ε
3

. This distribution is denoted by 3
(

2+ε
3
M
)
. Upon brief re-

flection, the reader may lean toward the (2 + ε)M distribution, as the alternative appears

to struggle even with basic connectivity. Indeed, the expected fraction of isolated vertices

in the 3
(

2+ε
3
M
)

model is
(

1−ε
3

)3 ≈ 1
27

for small ε. Nonetheless, we explore this distribution

as well. Our goal is not to pick the “best” model, but to better understand each of them.

Cycle plus partial matching. In light of the connectivity issues of the previous model,

one may reconsider the use of perfect matchings altogether. In particular, we propose a

model in which one takes the union of a cycle passing through all vertices and an ε-partial

matching. We denote this model by C + εM. In a certain sense, this distribution seems

to improve upon both previous models: the presence of the cycle guarantees connectivity,

whereas the first two perfect matchings in (2 + ε)M do not.

It is also worth recalling a well-known explicit construction [Lub11] of 3-regular ex-

panders formed by the union of a cycle and a matching, defined as follows: the vertex set

is identified with a finite field of prime order, and the neighbors of a vertex—represented

by a field element x—are x + 1, x− 1 (forming the cycle), and x−1 (providing the match-

ing). Another similar model was recently analyzed from a property testing perspective in

[DG25].

Exploring this model naturally leads to questions about the standard setting of regular

graphs. For instance, what can be said about the model formed by the union of d
2

cycles, and

how does it compare to the MSS model, which considers the union of d perfect matchings?

More broadly, if one views the cycle as the optimal 2-regular expander, it is natural to

ask what can be said about models formed by the union of several Ramanujan graphs.

In addition to our focus on ultra-sparse expanders, we investigate these questions (see
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Section 2.4). As a side result, we give an alternative proof of the MSS existence theorem

for one-sided Ramanujan graphs, using a distribution generated by unions of cycles rather

than unions of perfect matchings.

The configuration model. In this model a perfect matching is selected over a set of

“half-edges”. Specifically, each vertex v designated to have degree dv (in the case of ultra-

sparse graphs, dv is either 2 or 3, depending on v) contributes dv half-edges to a global

pool. A perfect matching is then chosen on this pool, thereby determining the edges of the

graph.

The configuration model is widely studied in the context of bounding the spectrum of

random graphs (e.g. [Bor20]), as well as in the analysis of graph operators such as the

zig-zag product [RVW00, CCM24]. Unlike the MSS model—which considers the union of

d perfect matchings—the configuration model is naturally suited for irregular graphs, as

it easily accommodates varying degrees across vertices. As a byproduct of our study of

this model, we obtain a second alternative proof of the MSS result in the standard regular

setting.

Subdividing 3-regular graphs. The notion of subdivision—replacing each edge by a

path by inserting degree-2 vertices—goes back at least to Kuratowski [Kur30], who char-

acterized planar graphs via subgraphs homeomorphic to K5 and K3,3. With this in mind,

a natural (and final) model suggests itself: start from any 3-regular Ramanujan graph (or,

more generally, any d-regular Ramanujan graph) and replace each edge by a long path,

inserting many degree-2 vertices along it. As the paths get longer, the resulting graph’s

average degree drifts down toward 2 from above; by choosing the path length appropri-

ately, we can make the average degree as close to 2 + ε as we like. Intuitively, the edges

are “stretched” into paths, and we retain the global structure of the original graph while

operating in the near–degree-two regime.

One advantage of this fifth model is explicitness: if the base graph is explicit, then the

subdivided ultra-sparse graph is explicit as well; likewise for strong explicitness.

2 Our Results

In this section, we present our results. We find the five ultra-sparse graph models introduced

above to be natural and compelling. As noted earlier, this work advances their study while

raising more questions than it answers, in both the normalized and unnormalized settings.
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2.1 Ultra-sparse expanders in the normalized setting

We begin by presenting our results in the normalized setting. Our first result uses the

configuration model (the fourth model) and applies to general irregular graphs—indeed, to

any prescribed degree sequence.

Theorem 2.1 (Irregular graphs via the configuration model). Let (d1, . . . , dn) be a sequence

of degrees such that
∑n

i=1 di is even. Then there exists a graph with this degree sequence

whose one-sided normalized spectral expansion is bounded above by

2
√
d̄− 1

d̄
, (1)

where d̄ is the average degree.

Our proof is based on the configuration model (rather than the perfect matchings model

used in [MSS18]) and is inspired by the notion of free projections from classical free prob-

ability theory, which we discuss in Section 5. As a direct corollary we obtain the following

result for ultra-sparse graphs.

Corollary 2.2 (Ultra-sparse expanders via the configuration model). For every ε > 0 and

for infinitely many values of n, there exists a graph on n vertices with degrees 2 or 3, with

average degree 2 + ε, whose one-sided normalized spectral expansion is bounded by

2
√

1 + ε

2 + ε
= 1− ε2

8
+O(ε3). (2)

At first glance, the bound in Theorem 2.1 resembles the Ramanujan bound for d-regular

graphs. Moreover, empirical evidence suggests that the typical behavior of random con-

figuration graphs is indeed captured by Equation (1) (and therefore by Equation (2) for

ultra-sparse graphs). However, optimality in the irregular setting is more delicate, and the

bound is not generally tight. For example, consider the wheel graph, formed from a cycle

plus one additional vertex connected to all cycle vertices. The normalized spectral expan-

sion of the wheel approaches 2
3
, since within two steps one reaches a uniformly random

vertex with probability 1
3
. Yet its average degree approaches 4 as the number of vertices

grows, so Theorem 2.1 guarantees only a graph G with ω (G) ≤
√

3
2
≈ 0.866, which is

significantly worse.

This gap suggests that even for graphs with degrees 2 and 3—where degree variance is

kept to a minimum—Corollary 2.2 may not be tight. Indeed, our second result shows that

the subdivision model (our fifth model) does yield better expansion. For a d-regular graph

G and parameter ε > 0, let Gε denote the graph obtained by subdividing each edge of G

into paths of equal length, so that the resulting graph has average degree 2 + ε.
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Theorem 2.3 (Ultra-sparse expanders via subdivision). Let G be a d-regular graph with

normalized spectral expansion ω, and let ε > 0. Then the normalized spectral expansion of

Gε is

cos

(
d

2(d− 2)
arccos(ω)ε

)
.

Specializing to d = 3 and taking G to be a 3-regular Ramanujan graph, the guaranteed

spectral expansion for the resulting ultra-sparse graph is

cos

(
3

2
arccos

(√
8

3

)
ε

)
≈ 1− 0.1299ε2.

This improves upon the bound obtained via the configuration model in Corollary 2.2. In

particular, the syntactically Ramanujan-like bound in Theorem 2.1 is not tight.

It is, perhaps, surprising that the configuration model yields weaker expanders. In the

configuration model, the degree-2 vertices are incorporated while the expander is being

constructed, whereas in the subdivision approach they are added only after the 3-regular

Ramanujan base graph has been fixed—and in an indifferent, uniform manner: every edge is

replaced by a path of the same length. However, the Ramanujan property only guarantees

a large spectral gap; it conveys little about local edge densities, so some regions can still

be denser than others. Thus, it can be advantageous to distribute the degree-2 vertices

nonuniformly, taking into account these density variances.

On the other hand, the time spent “stuck” on a path—which weakens the spectral

expansion—is quadratic in its length. Since the total length summed over all paths is fixed

as a function of ε, it is therefore beneficial to make all paths the same length. Still, one

might hope to exploit a 3-regular Ramanujan base graph with substantial variation in local

edge density by distributing the subdivision lengths nonuniformly, potentially yielding an

even larger spectral gap. This leads to the following open problem.

Open Problem 2.4. What is the optimal normalized spectral gap for graphs with degrees

2 and 3 and average degree 2 + ε?

We conjecture that the true answer to Open Problem 2.4 is 1− C · ε2 − o (ε2) for some

constant C.

We also remark that applying Theorem 2.3 starting with d-regular Ramanujan graphs

with increasing degree d improves the spectral gap. In the limit, since

lim
d→∞

d

2(d− 2)
arccos

(
2
√
d− 1

d

)
=

π

4
,
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Theorem 2.3 yields ultra-sparse graphs with degrees 2 and d whose spectral expansion is

cos
(
π
4
ε
)

= 1− π2

32
ε2 +O(ε4) ≈ 1− 0.3084ε2.

It is instructive to place our bound in the broader context of expansion for irregular

graphs, beyond the ultra-sparse regime. As noted, Theorem 2.1 syntactically resembles

the Ramanujan bound for d-regular graphs. However, optimality in the irregular setting is

subtler. Lower bounds analogous to Alon–Boppana are known: for example, Chung [Chu16]

lower-bounded the normalized spectral expansion of an irregular graph by

2
∑

i di
√
di − 1∑

i d
2
i

. (3)

This bound is not known to be tight in general, and Theorem 2.1 does not match it—the

bounds drift further apart as the degree variance increases. Moreover, as discussed above,

one can beat Equation (3) for certain degree sequences.

For the ultra-sparse regime with degrees in {2, 3}, Equation (3) yields

4 + (6
√

2− 4)ε

4 + 5ε
= 1− 9− 6

√
2

4
ε+O(ε2), (4)

leaving a gap relative to our bounds–not only in the constants but also in the asymp-

totic dependence on ε. A more general question than Open Problem 2.4 is the following,

concerning the best expansion for a given degree sequence.

Open Problem 2.5. What is the optimal normalized spectral expansion for a graph with

degree sequence (d1, . . . , dn)?

Unlike the d-regular case—where random graphs are expected to be nearly optimal (cf.

Friedman’s theorem [Fri08, Bor20])—imposing structure on a non-regular graph can sub-

stantially improve expansion. We discuss this difference in Section 5.4. However, because

our focus is on ultra-sparse graphs, we defer a systematic study of irregular-graph expansion

to future work, and we expect the techniques developed here to be useful in that setting.

2.2 Ultra-sparse expanders in the unnormalized setting

In this section we present our results in the unnormalized setting. We begin with the sub-

division model, presenting our result for ultra-sparse graphs in the unnormalized setting,

and then turn to the other four models in the same setting. Although we are not yet able to

prove the existence of ultra-sparse graphs for these other models in the unnormalized set-

ting, we introduce the Free Method, which yields quantitative predictions for the attainable

spectral expansion as a function of ε in each case. While nonrigorous, these predictions
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align with empirical observations. We view the Free Method, discussed in Section 6, as a

main contribution alongside our formal results: it lets us “peek” at the expected behavior

before an existence proof is in hand.

Theorem 2.6 (Ultra-sparse expanders via subdivision). Let G be a d-regular graph with

spectral expansion λ, and let ε > 0. Then the spectral expansion of Gε is obtained as follows:

find the unique positive ξ solving

λ =
sinh((k + 1)ξ)− (d− 1) sinh((k − 1)ξ)

sinh(ξ)
. (5)

where k =
⌈

(d−2)(2+ε)
dε

⌉
. Then the spectral expansion µ is given by 2 cosh ξ.

Although Theorem 2.6 gives the exact one-sided spectral expansion, it is not straight-

forward to read off its dependence on ε (a numerical derivation for µ for the case where

G is a 3-regular Ramanujan graph is shown in Figure 1). However, by expanding about

ε = 0+, we show that

µ =
√
d− 1 +

1√
d− 1

+ (1 + ok(1))
λ

2
· (d− 2)2(√

d− 1
)k+3

.

Observe the exponential decay of the error in k ≈ 1/ε, in contrast to the normalized setting,

where the decay in ε is only quadratic—even for the same model.

We now switch gears to the other four models and the free method we use to analyze

them.

2.3 The free method

We view the free method as an analogue of the probabilistic method, and so we begin by

discussing the latter. The probabilistic method is a powerful tool: it proves the existence of

an object without revealing what it looks like. A celebrated example is Ramsey graphs. In

the paper that inaugurated the probabilistic method, Erdős [Erd47] gave a one-line proof

that for k = (2 + o(1)) log n there exist n-vertex graphs that are k-Ramsey. Many decades

later—and despite significant advances relying on fairly involved techniques (see [FW81,

BRSW12, Coh21, CZ19, Li23] and references therein)—we still do not have an explicit

construction matching Erdős’s bound. Similar stories abound: in coding theory, for the

distance–rate tradeoff captured by the Gilbert–Varshamov bound [Gil52, Var57] and in

complexity theory, for pseudorandom generators and randomness extractors.

The probabilistic method offers no insight into the structure of the object or how to find

it explicitly. The value associated with the guaranteed object often serves as a benchmark
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(a quantitative prediction) for researchers aiming to find explicit constructions—e.g., the

dependence of k on n for Ramsey graphs, or the distance–rate tradeoff in coding theory.

The underlying philosophy is that such constructions should exist, even though the

probabilistic method does not provide them. It is important to note, however, that this

is not guaranteed—and in generic, unstructured settings it is seldom true. Belief in the

existence of explicit constructions typically stems from the structure of the problem—

structure not exploited by the probabilistic method itself. Thus its quantitative prediction

is a guide—often trustworthy in natural settings—but still only a prediction. The method’s

power lies in:

(i) Ease of use. Benchmarks are derived quickly, especially compared with the extreme

difficulty of constructing explicit objects that even approach them.

(ii) Evidence. Across many examples over the decades the predictions have proved

reliable; explicit constructions often come close (though they rarely achieve them).

(iii) Scope. The method applies across a wide range of combinatorial problems.

However, in many graph-theoretic settings even proving existence is technically formidable.

Consider, for example, the value 2
√
d− 1. Proving the existence of graphs that attain

this spectral expansion is notoriously difficult. Nonetheless, the value itself—serving as a

benchmark—is both informative and insightful.

The free method, in a sense, takes things one step further. It is designed for situations

where even the mere existence of an object with the desired properties is too difficult

to prove, and thus the optimal value cannot be established via the same route as in the

probabilistic method (namely, by proving existence). We reiterate that the main takeaway

from the probabilistic method is often the value that serves as a benchmark for explicit

constructions. When it comes to devising such constructions, the existence proof is typically

unused, as it generally ignores precisely the structure required for explicit constructions.

The free method provides only this key information.

More concretely, the free method targets graph-theoretic problems by abstracting away

everything except the spectrum. Given a problem on finite graphs, we first model it by

an infinite-dimensional object that captures the essential spectral features of the original

problem. We then apply tools from free probability (powerful yet simple to use) to solve

the infinite-dimensional problem, and the resulting quantity serves as a prediction for the

finite case. We denote such predicted values by pred(·) throughout the paper.

This perspective generalizes the “universal cover” viewpoint, but without requiring iden-

tification of a specific cover or combinatorial structure—only the spectral data. To situate

the method relative to the three merits of the probabilistic method discussed earlier:

(i) Ease of use. The free method is likewise fairly straightforward to apply. Much as

the probabilistic method has standard techniques, we provide practical procedures
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requiring no background in free probability and often reducing to solving a scalar

equation. We hope future work will extend them.

(ii) Verification. Being new, the method lacks accumulated evidence of correctness.

However—and this is a distinctive advantage—its predictions are easy to empirically

verify by experiments. Indeed, just as the probabilistic method typically asserts that

a random object attains the benchmark, the free method appears to capture typical

behavior observable in efficient experiments.

(iii) Scope. The free method seems quite general within graph-theoretic frameworks: it

applies across various models while relying only on their spectral descriptions.

To summarize, the philosophy of the probabilistic method is to prove existence without

providing an explicit construction, while also yielding a quantitative benchmark—often the

most valuable piece of information when constructing explicit objects. In contrast, the

free method aims to derive this benchmark while entirely sidestepping a proof of existence,

let alone an explicit construction. Because it makes weaker guarantees, the free method

applies in much more challenging settings—ubiquitous in spectral graph theory—where the

probabilistic method often falls short due to intricate eigenvalue behavior and the problem’s

inherent noncommutativity.

To set the stage for a more formal discussion, we fix notation and recall the Cauchy

transform of an undirected graph G on n vertices:

GG(x) =
1

n

n∑
i=1

1

x− λi
.

This encodes exactly the spectrum—and nothing else. In this paper we restrict GG to the

domain (λ1,∞), following the convention in finite free probability. By contrast, classical

free probability treats the Cauchy transform as an analytic function on an open subset of

C \ {λi}, most commonly the open upper half-plane. Our use of the free method draws on

both perspectives.

Consider the 3
(

2+ε
3
M
)

model, the union of three ρ-partial matchings with ρ = 2+ε
3

. In

settings where one unions t independent samples from the same distribution (here t = 3),

the first procedure we present in the free method prescribes:

1. Find the unique solution x0 > λ1 to

(t− 1)G ′G(x) + tGG(x)2 = 0. (6)

2. The prediction is given by

t · x0 −
t− 1

GG(x0)
. (7)
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At this point we have not justified this procedure (let alone the existence and uniqueness

of x0 > λ1). The point is that the resulting procedure is quite general and easy to apply.

In Section 6 we explain the rationale and derivation; here we focus solely on applying the

method.

Before applying the free method to ultra-sparse graphs, we warm up by rederiving the

Ramanujan bound 2
√
d− 1 using the recipe above.

2.3.1 Deriving the classical 2
√
d− 1 bound using the free method

Let us illustrate the above procedure of the free method in the classical setting of d-regular

graphs, constructed as the union of t = d perfect matchings. The adjacency matrix M of

a perfect matching has half of its eigenvalues equal to 1 and half equal to −1. Thus, the

Cauchy transform of a perfect matching is given by

GM(x) =
1

2

(
1

x− 1
+

1

x+ 1

)
=

x

x2 − 1
,

with derivative G ′M(x) = − x2+1
(x2−1)2 . Solving Equation (6) for this case yields the positive

solution x0 =
√
d− 1. Plugging this into Equation (7), noting that GM(

√
d− 1) =

√
d−1
d−2

,

we obtain the prediction, denoted here as

pred(d) = d
√
d− 1− d− 1

GM(
√
d− 1)

= 2
√
d− 1,

which, of course, matches the well-known and tight spectral bound for d-regular graphs.

A worth-noting observation is that this prediction is independent of n, the number of

vertices. This reflects the fact that the free method draws on tools from free probability,

where the underlying operators are infinite-dimensional. In this sense, the prediction treats

n as if it were infinite.

2.3.2 Predictions for the three partial matchings model via the free method

We now apply the free method to ultra-sparse expanders, in particular to the 3
(

2+ε
3
M
)

model. Concretely, we take t = 3 independent copies of a ρ-partial matching with ρ = 2+ε
3

.

Such a matching has a (1 − ρ)-fraction of its eigenvalues equal to 0, with the remaining

eigenvalues split evenly between +1 and −1. The corresponding Cauchy transform, denoted

Gρ, is therefore

Gρ(x) =
x2 − 1 + ρ

x(x2 − 1)
.

11



Equation (6) now becomes 2G ′ρ(x) + 3Gρ(x)2 = 0, whose unique solution for x > 1 is

x0(ρ) =

√
1 +

√
ρ(4− 3ρ) .

Plugging this to Equation (7) and expressing the result in terms of ε yields the prediction

pred3( 2+ε
3
M)(ε) =

√
1 +

√
4− ε2

3
·
√

3(4− ε2)− 3ε

2(1− ε)

=

√
3 +
√

12 +

√
3 +
√

12

4 +
√

12
ε+O(ε2). (8)

On the other extreme, when ε = 1, we recover the 2
√

2 bound for 3-regular Ramanujan

graphs. In fact, the Taylor expansion to the left of ε = 1 is

2
√

2− 1− ε
3
√

2
+O

(
(1− ε)2

)
.

This ε–dependence is hard to infer purely from experiments or by combinatorial means

alone, and it matches experimental results.

2.3.3 Predictions for the remaining models

In Section 6–where we also explain the rationale behind the method–we apply the free

method to the remaining models using techniques analogous to the procedure introduced

above. For the configuration model, we apply a procedure to bound the spectrum of the

product of two matrices, one of which is PSD, which has common ground with the proof

of Theorem 2.1. Its application gives

predconf(ε) =
3√
2

+
3

4
ε1/2 +

9
√

2

32
ε+O(ε3/2). (9)

Interestingly, although (2 + ε)M and C + εM are quite different as finite-graph models,

their behavior coincides under the free-method analysis (based on classical free probability).

Using an additive analog of the multiplicative procedure used for the configuration model

yields the prediction

predC+εM(ε) = pred(2+ε)M(ε) =
√

5 +

√
4

5φ

√
ε, (10)

where φ = (1 +
√

5)/2 is the golden ratio. The analysis uses a variant of the procedure

used for 3
(

2+ε
3
M
)
, applied to two distinct distributions.

For comparison, Hoory’s lower bound [Hoo05] states that if a graph G has average degree

12



Figure 1: Comparison of the predictions for the bound on λ2 for the conf, C + εM and

3
(

2+ε
3
M
)

models. Hoory’s lower bound of 2
√
d̄− 1 is displayed in red, and the subdivision

model of a 3-regular Ramanujan graph (λ = 2
√

2) appears in black. Note that, as the
number of subdivisions k is an integer, the largest possible value for ε in this model is 0.4.
For clarity, however, we also plot the solution to Equation (5) for real k < 2 as a dotted
line (see full analysis in Section 3.1).

at least d̄ even after deleting any ball of radius r, then

λ2(G) ≥ 2
√
d̄− 1

(
1− c log r

r

)
, (11)

for a universal constant c. In our unbounded-size models the r-dependent error should

be negligible, so we compare to 2
√
d̄− 1 = 2

√
1 + ε. Together with our predictions, this

yields the comparison shown in Figure 1. As the figure suggests, there is an ordering of the

models, and the curves coincide only at ε = 1.

2.4 Union of Ramanujan graphs and cycles

In the C + εM model, we considered the union of a full cycle—one that traverses all

vertices—with a partial matching. The role of the cycle is to ensure connectivity even

before the partial matching is applied. This motivates the natural idea of replacing perfect

matchings with cycles, even in the classical setting of d-regular graphs. In particular, for

d even, we define the model d
2
C, in which a graph is formed by taking the union of d

2
full

cycles, and ask how it compares to the more standard model—studied by MSS—where the

graph is formed as the union of d perfect matchings, denoted by dM.

13



More generally, if one views a cycle as an optimal 2-regular expander, it is natural to

extend this idea by considering any c-regular Ramanujan graph G. One can then ask

about the model obtained by taking the union of d
c

independent copies of G, assuming for

simplicity that c divides the target degree d. Does this distribution—naturally denoted by
d
c
G—contain a d-regular Ramanujan graph, regardless of the specific identity of G?

Starting with the more general question, our main result in this section is that an almost-

Ramanujan graph always exists in the support of d
c
G.

Theorem 2.7 (Union of Ramanujan Graphs). Let G be a c-regular one-sided Ramanujan

graph of girth g. Then, in the support of the distribution d
c
G, there exists a graph with

one-sided spectral expansion

2
√
d− 1 +O(

√
d) · 2−Ω(g).

A key ingredient in the proof of Theorem 2.7 is the adapter trick, introduced in [CM23]

and refined in Section 7. This technique effectively replaces the (unknown) spectrum of

G with the Kesten–McKay distribution, incurring a small error that depends on the girth

of G. To apply it, one needs both that G is Ramanujan and a lower bound on its girth.

This shows that the Free Method can be applied with only this information, at the cost of

a small error term. However, a recurring theme is that additional structural information

about G enables a tighter analysis. For example, in the d
2
C model—where G is a cycle—the

spectrum is fully explicit, allowing us to prove Theorem 2.8 with no error term, yielding

another proof of the MSS result.

Theorem 2.8 (Union of Cycles). In the support of the distribution d
2
C, there exists a

one-sided Ramanujan graph.

3 Ultra-Sparse Expanders via Subdivision

In this section we prove our results on ultra-sparse expanders in the subdivision model (our

fifth model). We first establish Theorem 2.3 in Section 3.1, and then prove the slightly

more involved Theorem 2.6 in Section 3.2.

3.1 The normalized case

Let G be a d-regular graph and denote its adjacency matrix by A and random walk matrix

by W. Let Gk be the k-subdivision of G, which is defined by replacing every edge of G with

a path of length k, effectively adding k−1 new vertices of degree 2. While we will focus on

analyzing the spectrum of the corresponding matrices Ak and Wk of the resulting graph,

we clarify already at this point that this process yields a graph of average degree 2 + ε by

14



choosing k ≈ 2(d−2)
dε

, tying it to our motivation. Nevertheless, the result is more general.

The analysis provided here is elementary (i.e., it does not rely on finite free probability),

and is inspired by the proofs in [XZC16].

Lemma 3.1 (Subdivision and the random walk spectrum). Let k ≥ 2, and let Gk be as

defined above. Then for every eigenvalue ω of W and every t = 0, 1, . . . , k − 1,

rt = cos

(
arccos(ω) + 2πt

k

)
is an eigenvalue of Wk. The rest of the eigenvalues are of the form

rj = cos

(
πj

k

)
for j = 1, . . . , k − 1.

Proof. For every edge {u, v} in G, we denote the simple path replacing it by (x0, x1, . . . , xk),

identifying x0 with u and x1 with v. Let (r, y) be an eigenpair of Wk such that Wky = ry.

Fix a subdivided edge u = x0, x1, . . . , xk = v and write a := yx0 and b := yxk . At each

internal vertex of degree 2, the eigen-equation is

(Wky)xi = 1
2
(yxi−1

+ yxi+1
) = r yxi .

Set r = cos θ. Similarly to the eigenvalues of the cycle graph, the solution takes the form

yxi = α sin(iθ) + β cos(iθ),

for some values of α, β. Imposing the two endpoint values yx0 = a and yxk = b determines

uniquely the whole sequence. By setting i = 0 one gets β = a, and by i = k we have that

α = b−a cos(θk)
sin(θk)

. This gives the overall formula

yxi =
sin((k − i)θ)

sin(kθ)
a+

sin(iθ)

sin(kθ)
b (i = 0, 1, . . . , k),

and in particular

yx1 =
sin((k − 1)θ)

sin(kθ)
a+

sin θ

sin(kθ)
b.

We now look at the eigen-equation at an original vertex u (degree d). Denoting by N(u)

the neighbors of u in G,

r · yu = (Wky)u =
1

d

∑
v∈N(u)

y(u→v)
x1

=
sin((k − 1)θ)

sin(kθ)
a+

sin θ

sin(kθ)
· 1

d

∑
v∈N(u)

yv.
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Rearranging,
1

d

∑
v∈N(u)

yv =
r sin(kθ)− sin((k − 1)θ)

sin θ
yu.

Notice that the LHS translates to the form of the original random walk matrix: if g is a

vector such that Wg = ωg and we set yu = gu, we have that (setting again r = cos θ)

ω =
cos θ sin(kθ)− sin((k − 1)θ)

sin θ
= cos(kθ). (12)

This concludes the first part: given any eigenpair (ω, g) of W , pick θ with cos(kθ) = ω and

define y along each subdivided edge by the boxed formula; then (cos θ, y) is an eigenpair of

Wk.

The above resulted in kn eigenvalues, while the graph Gk is of size

n+ (k − 1)|E| =
(

1 +
1

2
(k − 1)d

)
n.

For the remainder of the eigenvalues r, set

yexi = αe sin(iθ), yu = yv = 0,

which satisfies the internal-vertex equation with r = cos θ = cos(πj/k). At every original

vertex u, the eigen-equation reads

(Wky)u =
1

d

∑
e3u

y(e)
x1

=
sin θ

d

∑
e3u

αe = r yu = 0,

so it holds precisely when the edge-weights obey
∑

e3u αe = 0 for all original u. This results

in n constraints for the |E| = dn
2

variables, providing (together with the k − 1 choices for

j) the remaining
(
d
2
− 1
)

(k − 1)n eigenvalues.

Corollary 3.2. Let G be a d-regular graph with normalized one-sided spectral expansion

ω(G), and let S be its subdivision with average degree 2 + ε. Then

ωd(ε) = cos

(
d ε

2(d− 2)
arccos (ω(G))

)
. (13)

In particular:

1. If d = 3 and G is Ramanujan, then

ω3(ε) = cos

(
3

2
arccos

(√
8

3

)
ε

)
≈ 1− 0.12993 ε2.
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2. As d→∞ (with G Ramanujan), since arccos
(

2
√
d−1
d

)
→ π

2
, we obtain

ωd(ε) −→ cos
(
π
4
ε
)

= 1− π2

32
ε2 +O(ε4).

Proof. Let k =
⌈

(d−2)(2+ε)
d ε

⌉
be the subdivision parameter so that the resulting graph has

average degree 2 + ε. By Lemma 3.1, the normalized expansion after k-subdivision is

cos

(
arccos(ω(G))

k

)
.

Using the relation between k and ε established in Theorem 2.3 yields Equation (13).

For (1), put ω(G) = 2
√

2
3

(Ramanujan) and set φ
4
= arccos(ω(G)) ≈ 0.33984, giving

ω3(ε) = cos

(
3

2
φ ε

)
= 1− (3φ)2

8
ε2 +O(ε3) ≈ 1− 0.12993 ε2.

For (2), observe that for Ramanujan d-regular graphs, ω(G) = 2
√
d−1
d

and hence

arccos(ω(G)) → π
2

as d → ∞. Plugging into Equation (13) gives the stated limit and its

Taylor expansion.

3.2 The unnormalized case

In this section we turn to the unnormalized (adjacency) spectrum. Unlike the normalized

case, the resulting expression does not admit a simple closed form. Nevertheless, the

formula we obtain is exact and informative, and it facilitates direct comparison with the

other models.

Lemma 3.3 (Subdivision and the adjacency matrix spectrum). Let k ≥ 2, and let Gk be

as defined above. Then every eigenvalue µ of Ak satisfies one of the conditions below.

1. µ = 2 cos(πj/k) for j = 1, . . . , k − 1.

2. µ = 2 cos θ for real θ, satisfying

λ =
sin((k + 1)θ)− (d− 1) sin((k − 1)θ)

sin θ
, (14)

where λ is an eigenvalue of A.

3. µ = ±2 cosh ξ for real ξ > 0, satisfying

λ =
sinh((k + 1)ξ)− (d− 1) sinh((k − 1)ξ)

sinh(ξ)
, (15)
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where λ is an eigenvalue of A.

Notice that Item 3 in the theorem statement provides the only potential eigenvalue larger

than 2.

Proof. The proof of Items 1 and 2 follows the same lines as the proof of Lemma 3.1.

Assuming µ > 2 we denote µ = 2 cosh ξ and define the vector y by

yxi = α sinh(iξ) + β cosh(iξ).

The equivalent of Equation (12) then becomes

λ =
2 cosh(ξ) sinh(kξ)− d · sinh((k − 1)ξ)

sinh(ξ)
, (16)

which by trigonometric identities is equivalent to Equation (15). The proofs of the other

items are the same as in Lemma 3.1. For the negative case, the proof follows by defining

the vector using

yxi = (−1)i (α sinh(iξ) + β cosh(iξ)) ,

or by assuming k is even and using the fact that for bipartite graphs the spectrum is

symmetric.

Sanity check at k = 2. As explained in the opening of Section 3.1, we will be interested

in ultra-sparse expanders, and hence in large values of k. However, Lemma 3.3 holds for

any k, including k = 2. This is the simplest subdivision application, where a single vertex

is added in the middle of every edge, resulting in a (d, 2)-biregular graph, where the original

vertices form one side of the graph and the new vertices form the other. Equation (15)

simplifies in this case to

λ =
sinh(3ξ)− (d− 1) sinh(ξ)

sinh(ξ)
= 4 cosh2(ξ)− d.

Recall from Lemma 3.3 that the resulting eigenvalue of Gk is µ = ±2 cosh ξ, therefore the

above equation simplifies even further to

λ = µ2 − d.

Assuming the original graph was Ramanujan, one can solve the above by assigning λ =

2
√
d− 1 to get the positive eigenvalue

µ =

√
d+ 2

√
d− 1 =

√
d− 1 + 1,
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which is exactly the spectrum of the universal cover of this graph: the biregular infinite

tree of degrees d and 2 (recall that the spectrum of the infinite (a, b)-biregular tree is√
a− 1 +

√
b− 1).

An explicit (rather cumbersome) solution is also feasible for k = 3, but this is not the case

for general k as Equation (15) is not invertible even for a fixed λ = 2
√
d− 1. Nonetheless,

we are able to give a sharp estimate of the result for large k, which is the regime of interest

in our paper (as k ≈ 1/ε in our desired model).

Corollary 3.4. All eigenvalues µ of Ak with µ > 2 satisfy

µ =
√
d− 1 +

1√
d− 1

+ (1 + ok(1))
λ

2
· (d− 2)2(√

d− 1
) k+3

.

Proof. Another way to write Equation (15) is

λ =
ekξ
(
eξ − (d− 1)e−ξ

)
+ e−kξ

(
(d− 1)eξ − e−ξ

)
eξ − e−ξ

. (17)

Note that λ is an eigenvalue of the original graph, and therefore independent of k. Because

the first term in the numerator grows like ekξ, a fixed left-hand side forces us to choose ξ

so that the multiplicative factor

A(ξ) , eξ − (d− 1)e−ξ

is small. This happens near the unique zero of A(ξ), namely ξ = 1
2

ln(d− 1). Accordingly,

set

ξ∗ = 1
2

ln(d− 1) + x, x = x(k)→ 0 as k →∞.

A short calculation gives

A(ξ∗) =
√
d− 1 ex −

√
d− 1 e−x = 2

√
d− 1 sinhx = 2

√
d− 1x (1 + o(1)),

and

eξ
∗ − e−ξ∗ = 2 sinh

(
1

2
ln(d− 1) + x

)
=

d− 2√
d− 1

+

(√
d− 1 +

1√
d− 1

)
x (1 + o(1)).

Since x = o(1), the denominator is

eξ
∗ − e−ξ∗ =

d− 2√
d− 1

(1 + o(1)).
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Moreover,

ekξ
∗

= (d− 1)k/2 ekx = (d− 1)k/2 (1 + o(1)),

because with the scaling we obtain below, kx→ 0.

Plugging these approximations into Equation (17) (with the term having e−kξ ignored

for large k) yields

λ =
(d− 1)k/2 (1 + o(1)) · 2

√
d− 1x (1 + o(1))

(d− 2)/
√
d− 1 (1 + o(1))

=
2(d− 1)k/2+1

d− 2
x (1 + o(1)),

so

x =
λ

2
· d− 2

(d− 1)k/2+1
(1 + o(1)).

Finally, the corresponding eigenvalue is µ = 2 cosh ξ∗, and

µ =
√
d− 1 ex +

1√
d− 1

e−x

=
√
d− 1 +

1√
d− 1

+ x

(√
d− 1− 1√

d− 1

)
(1 + o(1)),

whence

µ =
√
d− 1 +

1√
d− 1

+ (1 + o(1))
λ

2
· (d− 2)

(d− 1)k/2+1
· d− 2√

d− 1

=
√
d− 1 +

1√
d− 1

+ (1 + ok(1))
λ

2
· (d− 2)2(√

d− 1
) k+3

,

as claimed.

4 Interlacing Families and Free Convolutions

In this section we review definitions and known results in free probability and interlacing

families. We use the following standard notation: for a symmetric matrix A, χx (A) is

the characteristic polynomial of A with variable x. We denote by λk(A) the k-th largest

eigenvalue of A (as A is symmetric, all eigenvalues are real and hence can be ordered as

above). For every symmetric matrix B for which the all-ones vector 1 is and eigenvector

and B1 = b1, we denote by pB(x) the polynomial satisfying (x− b)pB(x) = χx (B).

For a real-rooted polynomial p(x), we denote by αk(p) the k-th largest root of p(x). Given

a distribution P over polynomials, we denote by Ep∼P [p(x)] the expected polynomial over

this distribution, where the expectation is taken in coefficient space, namely, for every k,
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the coefficient of xk in Ep∼P [p(x)] is the expectation over coefficients corresponding to xk

in p(x) drawn according to P .

The following lemma is a simplified version of a more general statement from [MSS18],

where it appeared as the main tool enabling us to analyze the expected characteristic

polynomial over a distribution, and deduce an existence result.

Lemma 4.1. Suppose A1, . . . ,At are symmetric m ×m matrices and let (Pi)i∈[t] be uni-

formly random m × m permutation matrices. Let AP =
∑t

i=1 PiAiP
T
i . Then, for every

k ≤ m there exist permutation matrices (Ri)i∈[t] such that

λk (AR) ≤ αk

(
E
P
χx (AP)

)
. (18)

The multiplicative analog of Lemma 4.1 was proved in [CM23, Theorem 6.5 and Lemma

6.3]. A simplified version, suitable for our needs, is stated below.

Lemma 4.2. Suppose A,B are symmetric m×m matrices and P is a uniformly random

m × m permutation matrix. Then, for every k ≤ m there exists a permutation matrix S

such that

λk
(
ASBST

)
≤ αk

(
E
P
χx
(
APBPT

))
. (19)

Denote the group of m×m orthogonal matrices by O(m). The Haar distribution is the

unique distribution over O(m) which is invariant under multiplication (from the right or

from the left) with any orthogonal matrix. We call a matrix drawn from this distribution

a Haar random matrix.

Definition 4.3 (Additive and multiplicative convolutions). Let A,B be real symmetric ma-

trices of dimension m, with characteristic polynomials a(x) = χx (A) and b(x) = χx (B).

The additive convolution a�m b and the multiplicative convolution a�m b are the polyno-

mials defined by

(a�m b)(x) = E
Q
χx
(
A + QBQT

)
,

and

(a�m b)(x) = E
Q
χx
(
AQBQT

)
,

where Q is a Haar random orthogonal matrix. We will use � and � instead of �m and

�m for simplifying notation when the dimension is clear from the context.

Although Definition 4.3 involves the matrices A and B, it depends in fact only on a(x)

and b(x), due to the properties of the Haar measure.1 It is important to note that, as

proven in [MSS22], both (a� b)(x) and (a� b)(x) are real-rooted. Interestingly, there are

1It is easily seen that the convolution is well defined for any real-rooted polynomials a(x) and b(x) by
choosing A,B to be diagonal matrices with their respective roots on the diagonal.
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explicit formulas for both (a� b)(x) and (a� b)(x) as functions of the coefficients of a(x)

and b(x). We refer the reader to [MSS22] for more details.

Working with graph matrices, an issue with the above definition is that the Haar measure

does not have a meaningful combinatorial interpretation. Therefore, we need a way to relate

permutations matrices - which do have such interpretation - to Haar random matrices. To

this end we state the following lemma (which appeared first in [MSS18] for the additive

case, and later on in [CM23] for the multiplicative case, whose proof uses similar ideas)

which is described as a Quadrature result, translating an infinite (continuous) measure

space to a finite one.

Lemma 4.4 (Quadrature; Corollary 4.9 from [MSS18] and Lemma 2.3 from [CM23]). Let

A,B be real m × m symmetric matrices such that A1 = a1 and B1 = b1. Denote by

pA, pB the polynomials satisfying χx (A) = (x− a)pA(x), χx (B) = (x− b)pB(x). Let P be

a uniformly random m×m permutation matrix. Then,

E
P
χx
(
A + PBPT

)
= (x− (a+ b)) (pA � pB) (x), (20)

E
P
χx
(
APBPT

)
= (x− ab) (pA � pB) (x). (21)

4.1 Transforms

Let µ be a compactly supported probability distribution over R, and let a = sup (µ). The

Cauchy transform of µ is defined on the domain (a,∞) as the function

Gµ(x) =

∫
R

1

x− t
µ(t)dt.

We remark that in many settings it is instructive to study the Cauchy transform as a

function whose domain is C+. However, we will consider the Cauchy transform as a function

on R. The Cauchy transform is also related to the moments of a distribution. If mr(µ) is

the r-th moment of µ, then for every x > a we have (see [NS06, Remark 2.19]):

Gµ(x) =
∞∑
r=0

mr(µ)

xr+1
. (22)

Let p(x) be a degree m real-rooted polynomial with roots α1 ≥ α2 ≥ · · · ≥ αm. To p(x)

we associate the uniform distribution over its roots, and therefore its Cauchy transform

(defined for x > α1) is

Gp(x) =
1

m

m∑
i=1

1

x− αi
=

1

m
· p
′(x)

p(x)
.
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Accompanying the Cauchy transform of µ is the M-transform (or moment transform),

which is defined by

Mµ(x) = xGµ(x)− 1. (23)

It is easy to see that Gµ(x) is monotonically decreasing within its domain, and thus

invertible. Denote the range of Gµ(x) by (0, L+), that is, L+ = limx→+a Gµ(x) (for a

polynomial p(x), L+ = ∞). With this in mind, we define Kµ : (0, L+) → (a,∞) as the

inverse of Gµ, and, in a similar manner, we define Nµ(y) as the inverse ofMµ. By definition,

for every y ∈ (0, L+), both Kµ(y) and Nµ(y) provide an upper bound on a, the supremum

of the support of µ. In case of a polynomial p(x), this bounds the largest root of p(x),

which we state for later reference in the following claim:

Claim 4.5. Let p(x) be a degree m real-rooted polynomial with roots α1 ≥ α2 ≥ · · · ≥ αm.

Then for every y ∈ (0,∞), both α1 ≤ Kp(y) and α1 ≤ Np(y).

For a symmetric matrix A, we use the notation GA for Gχx(A), and GpA for the Cauchy

transform of pA as used in Lemma 4.4 if applicable, and similar notations for the other

transforms.

Example 4.6 (Perfect matching). Let M be the adjacency matrix of a perfect matching of

dimension 2m. Then we have its transforms (defined for x > 1 and y > 0):

GM(x) =
1

2m

(
m

x+ 1
+

m

x− 1

)
=

x

x2 − 1
, (24)

KM(y) =
1 +

√
4y2 + 1

2y
. (25)

The key feature of the K and the N transforms is that they behave very well under

additive and multiplicative convolutions, respectively, as was shown in [MSS22, Theorem

1.11] and [CCM24, Claim 4.12], and stated below.

Lemma 4.7 (Convolution bounds). For real-rooted polynomials p(x) and q(x) of degree

m, and for any y > 0,

Kp�mq(y) ≤ Kp(y) +Kq(y)− 1

y
.

When one of the polynomials has only non-negative roots, then for every y > 0,

Np�mq(y) ≤ y

y + 1
· Np(y) · Nq(y).

Both inequalities are strict in case both polynomials have at least two distinct roots.

An immediate corollary of Lemma 4.7 and Claim 4.5 is the following.
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Corollary 4.8. For every real-rooted polynomial p(x), t ∈ N and y > 0,

maxroot
(
p�t(x)

)
≤ t · Kp(y)− t− 1

y
.

Claim 4.9. [CCM24, Claim 4.12] Let B be a symmetric matrix such that B1 = b1 and b

is its largest eigenvalue. Then, for every x > b, GpB(x) ≤ GB(x) and MpB(x) ≤ MB(x),

and for every y > 0, KpB(y) ≤ KB(y) and NpB(y) ≤ NB(y).

When B 6= bI, all inequalities are sharp.

4.2 The Kesten-McKay distribution

The probability measure of the Kesten-McKay distribution with parameter d is given by

µkm(t) =


d
√

4(d− 1)− t2
2π(d2 − t2)

, for |t| ≤ 2
√
d− 1;

0, otherwise.

(26)

Note that we suppress the parameter d from the notation when clear from context. A

special case of Kesten-McKay is d = 2 where it is referred to as the arcsin distribution:

µarc(t) =
1

π

1√
4− t2

, (27)

supported on (−2, 2). The following is a well-known fact from free probability theory (see,

e.g., [NS06, Chapter 12]).

Claim 4.10. The Cauchy and K-transforms of the Kesten-McKay distribution with pa-

rameter d are given by

Gµkm(x) =
d
√
x2 − 4(d− 1)− x(d− 2)

2(x2 − d2)
.

Kµkm(y) =
2− d+ d

√
1 + 4y2

2y
.

In particular

Gµarc(x) =
1

x2 − 4
, Kµarc(y) =

√
4y2 + 1

y
.

For ease of readability we denote the Cauchy transform of the Kesten-McKay distribution

by Gkm. Lastly, the following claim, relating the moments of a d-regular graph with the

moments of the Kesten-McKay distribution with parameter d is implicit in [McK81].
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Claim 4.11. Let G be a d-regular graph with girth g. Then, for every 0 ≤ r < g, mr(G) =

mr(µkm).

5 Ultra-Sparse Expanders in the Configuration Model

In this section we prove Theorem 2.1, which immediately implies Corollary 2.2. We begin

by recalling the configuration model in Section 5.1. Then, before turning to our main

argument in Section 5.3, we give an alternative proof of the celebrated MSS theorem using

the configuration model—rather than the standard union-of-d-matchings approach. This

appears in Section 5.2 and serves as a warm-up for the techniques used in our main proof.

The next paragraphs, up to Section 5.2, are intended as an intuitive starting point and

are not required for following the formal proofs; they also highlight the connection to free

probability and its potential role here.

Assume we have a matrix A, with eigenvalue distribution µA. Assume also that we

have a matrix P which is a random projection to an α-fraction of the space. What should

we expect the eigenvalue distribution of PAP to be? Assuming no connections between

the randomness of P and the eigenvectors of A, it is not surprising that free probability

has an answer to this question. However, the nature of this answer is remarkable, and is

encompassed in Free Projection and convolution semigroups, concepts in free probability

introduced in [NS96]. Explained in free probabilistic terms, we have two elements a and

p, where p has expectation α and satisfies p2 = p (which defines a projection), and a has

probability distribution µ. The compression of a by p is the element pap. If a and p

are free, we call the resulting distribution the free α-projection of µ and denote it by µα.

The following surprising result from [NS96] is that, up to scaling, the free α-projection is

equivalent to the summation of 1/α free elements with the same distribution.

Theorem 5.1. Let a1, . . . , ad be free identically distributed random variables, each with

distribution µ. Then, their sum has the same distribution (up to scaling) as the free 1/d-

projection of µ. That is,

µ�d(t) = µ1/d(dt). (28)

The rich structure of free probability theory gives us this surprising characteristic, which

has no equivalent in classical probability–that is, there is no similar statement for sums of

independent random variables. Notice that although µ�d was defined for an integer d

only, the projection is not restricted to simple fractions of the form 1/d. What Theorem 5.1

inspired in [NS06, Chapter 14] is the idea of defining µ�t for any real t ≥ 1, being consistent

with the original convolution definition.

When µ is the ±1 distribution associated with a perfect matching (as in Example 4.6),

µ�d is the analogue of summing d free matchings, which underlies the original MSS proof.

In turn, Theorem 5.1 yields an alternative existence proof of Ramanujan graphs via the
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configuration model, leveraging its matrix structure. The observation above extends to any

α ∈ (0, 1)—in particular, to α = 1/d̄, where d̄ is the graph’s average degree.

5.1 Rotation maps and the configuration model

Let G = (V,E) be a d-regular undirected graph on n vertices, and assume that each vertex

v assigns distinct labels from {1, . . . , d} to its d incident edges, so that every label appears

exactly once. Note that each edge receives two labels—one from each of its endpoints—and

these labels need not coincide. Let v[i] denote the i-th neighbor of v according to this

labeling.

Definition 5.2 (Edge rotation map). Let G be a graph labeled as above. The edge rotation

map (or simply rotation map) of G, denoted RotG : V × [d]→ V × [d], is defined by

RotG(v, i) = (u, j) ⇐⇒ v[i] = u ∧ u[j] = v.

In other words, RotG(v, i) = (u, j) if the i-th neighbor of v is u, and the j-th neighbor

of u is v. Observe that RotG is an involution. We note that, unlike in some other random

graph models, self-loops are allowed: it is possible that RotG(v, i) = (v, j) for some vertex

v and indices i, j ∈ [d], in which case v is its own i-th and j-th neighbor. We also define

the associated rotation matrix Ġ, which is an N ×N Boolean matrix with N = nd, where

Ġ(v,i),(u,j) = 1 if and only if RotG(v, i) = (u, j).

We now define the configuration model for sampling a random d-regular graph on n

vertices, where n, d ∈ N and at least one of them is even. One way to visualize the process

is to imagine that each vertex is initially connected to d “half-edges”, and the graph is

formed by pairing up the N half-edges at random. This definition will later be extended

to the non-regular setting.

Definition 5.3 (Configuration model for regular graphs). A random undirected d-regular

graph on n vertices is said to be sampled by the configuration model if it is generated by

choosing a uniformly random perfect matching on the nd half-edges.

The model can also be described more formally in matrix form. To describe this, let U

be the N × n up matrix, defined by its action on vectors x ∈ Rn as Ux = x ⊗ 1d, where

⊗ denotes the tensor product and 1d is the all-ones vector of dimension d. Let M denote

the adjacency matrix of an arbitrary perfect matching on N vertices (recall that N = nd).

Then, sampling a graph G from the configuration model is equivalent to choosing a random

N ×N permutation matrix P and setting

AP = UTPMPTU. (29)
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Note that the middle operator PMPT is precisely Ġ, which encodes the rotation map

RotG. We denote the d-regular n-vertex graph whose adjacency matrix is AP by GP.

5.2 Alternate MSS proof via finite free projection

In this section, we present our alternative proof of the MSS result using the configuration

model. We make use of the notation introduced in Section 5.1 throughout.

Theorem 5.4. For every d ≥ 2, n ∈ N such that N = nd is even, there exists an N × N
permutation matrix P such that the d-regular n-vertex graph GP satisfies

λ2 (GP) < 2
√
d− 1.

Proof. We begin with the useful observation that

V
4
= UUT = Jd ⊗ In,

where Jd denotes the d× d matrix with all entries equal to 1
d
. Note that Jd is the random

walk matrix (i.e., the normalized adjacency matrix) of the complete graph on d vertices

with self-loops. Observe that

χx (M) = (x− 1)
N
2 (x+ 1)

N
2 ,

χx (V) = xn(d−1)(x− d)n.

Thus, a direct calculation yields

NM(y) =

√
y + 1

y
, NV(y) =

dy + 1

y
, (30)

where N -transform is as defined in Section 4.1.

Now, for any matrix P,

xn(d−1)χx
(
UTPMPTU

)
= χx

(
UUTPMPT

)
,

since characteristic polynomials are invariant under cyclic rotations—up to a multiplicative

factor of x, depending on the difference in dimensions. By Lemma 4.2, it is enough to prove

that

α2
4
= α2

(
E
P
χx
(
UUTPMPT

))
< 2
√
d− 1, (31)

where recall that for a real-rooted polynomial p(x), we let αi(p(x)) denote its i-th largest
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root. By Lemma 4.4,

E
P
χx
(
UUTPMPT

)
= (x− d) (pV � pM) (x), (32)

where pV(x) and pM(x) are the polynomials defined by χx(V) = (x−1)pV(x) and χx(M) =

(x− d)pM(x), respectively. Therefore,

NpV�pM(y) ≤ y

y + 1
NpM(y)NpV(y) <

dy + 1√
(y(y + 1))

, (33)

where the first inequality follows by Lemma 4.7, and the second, sharp, inequality follows

by Claim 4.9 and the calculations of NM(y),NV(y) above.

By Claim 4.5, α2 ≤ NpV�pM(y) for any y > 0. Choosing the point y0 = 1
d−2

, we get by

the above inequality that

α2 ≤ NpV�pM(y0) <
dy0 + 1√
y0(y0 + 1)

= 2
√
d− 1.

5.3 Non-regular graphs in the configuration model

In this section, we extend our alternative proof of MSS’s theorem, presented in the previous

section, to the setting of irregular graphs. The configuration model is well-suited for han-

dling vertices with varying degrees, and the required changes are minor, mostly involving

appropriate normalizations.

Before proceeding, we recall the definition of the random walk matrix for irregular

graphs. First, recall that the random walk matrix of a d-regular graph G, with adja-

cency matrix A, is given by W = 1
d
A, and we denote its eigenvalues by 1 = ω1 ≥ ω2 ≥

· · · ≥ ωn ≥ −1. The normalized spectral expansion of G, denoted ω (G), is defined as

max(|ω2|, |ωn|) ∈ [0, 1]. When G is not regular, the random walk matrix is defined as

W = AD−1, where D is the diagonal matrix of vertex degrees (we assume no isolated

vertices). This generalizes the above definition for regular graphs. The parameter ω (G)

governs the convergence rate of random walks on G. It is easy to see that the eigenvalues

of W are the same as those of the symmetric matrix D−1/2AD−1/2. Since we are primar-

ily interested in the eigenvalues, we will treat this symmetric matrix as the random walk

matrix in what follows.

To derive the analogue of Equation (29) in the irregular case, we introduce the following

notation. Let d1, . . . , dn be a degree sequence such that N =
∑n

i=1 di is even. Define
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jk =
∑k

i=1 di as the sum of the first k degrees, and let Jk ⊂ [N ] be the set of indices

Jk = {jk−1 + 1, jk−1 + 2, . . . , jk−1 + dk}.

The analogue of the matrix U in the non-regular case is the N × n matrix C defined by

Cek = 1√
dk

1Jk for every k ∈ [n]. Using this notation, we obtain

WP = CTPMPTC, (34)

where M is the adjacency matrix of a perfect matching on the N half-edges, as in the

regular configuration model. This is best illustrated by an example.

Example. For a 3-vertex graph with degrees 2, 3, 3 we have

C =



1√
2

0 0
1√
2

0 0

0 1√
3

0

0 1√
3

0

0 1√
3

0

0 0 1√
3

0 0 1√
3

0 0 1√
3


. (35)

With this, we are ready to prove Theorem 2.1. The proof follows similar lines to that of

Theorem 5.4, and so we refrain from repeating it in full, instead focusing on the differences.

Proof of Theorem 2.1. First, observe that CCT is the block-diagonal matrix, which we

denote by V̄, consisting of n blocks of the form 1
di

Jdi . Note that

χx
(
V̄
)

= (x− 1)nxN−n.

A straightforward calculation gives NV̄(y) = d̄y+1
d̄y

. Following the same steps as in the proof

of Theorem 5.4, we arrive at the analogue of Equation (33),

NpV̄�pM(y) ≤ y

y + 1
· NpM(y) · NpV̄(y) <

d̄y + 1

d̄
√
y(y + 1)

.

The proof follows as the right-hand side attains its minimum value
2
√
d̄−1

d̄
(at y0 = 1

d̄−2
).
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5.4 Structure vs. randomness in non-regular graphs

The bound of Theorem 2.1, expressed in Equation (1), has a strong syntactic resemblance

to the Ramanujan bound for the non-regular setting. As this is known to be optimal in

the regular case, an immediate question to be asked is whether Theorem 2.1 is the optimal

possible expansion for a particular sequence of degrees. We answer this question with a

simple counterexample.

Consider a graph on m+ 1 vertices, where m vertices have degree 3 and a single vertex

is of degree m. An example of such a graph is the Wheel graph Wm, consisting of a cycle

graph of size m and an additional vertex v0 connected to all the vertices of the cycle denoted

v1, . . . , vm. See Figure 2a for a visualisation of the graph.

It is intuitive that the spectrum of the random walk matrix of Wm should approach 2
3
,

as within two steps one reaches a uniformly random vertex with probability 1
3
. This is

formalized in the following claim.

Claim 5.5. The nontrivial eigenvalues of the normalized adjacency matrix of Wm are

ωj(Wm) =
2

3
cos

(
2πj

m

)
,

for j = 1, . . . ,m.

Proof sketch. We prove by constructing the eigenvectors (xj)
m/2
j=1 and (yj)

m/2
j=1 corresponding

to the eigenvalues. Let xj(v0) = yj(v0) = 0 and xj(v`) = cos
(

2πj`
m

)
, yj(v`) = sin

(
2πj`
m

)
.

It is easy to verify that these are indeed m distinct eigenvectors of Wm with the desired

eigenvalues.

An immediate corollary of the above is that ω (Wm) ≤ 2
3
, and it approaches 2

3
as m

grows. However, d̄ = m+3m
m+1

≈ 4, and Theorem 2.1 gives us the promise of a graph G with

ω (G) ≤
√

3
2
≈ 0.866, which is significantly worse, while Chung’s bound, Equation (3), only

tells us that ω (G) ≥ 2√
m

.

Observing random graphs picked in the configuration model shows that Equation (1)

does give a reliable description of the spectral expansion of these graphs. In particular,

as m grows, random graphs in the configuration model approach
√

3
2

with high probability

(even though graphs looking like Wm have nonzero probability to be drawn). While in the

regular case, we expect almost all graphs to be close to optimal by Friedman’s theorem

[Fri08, BC19], we have that in the non-regular case the expected behavior is different than

the optimal, and adding structure may improve expansion properties. This idea, together

with Open Problem 2.5, leaves more questions than answers in this setting and is left for

future research.
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(a) The graph W13. (b) Random configuration graph with the de-
gree sequence of W24.

Figure 2: Visualisation of Wm and random configuration graph. Note that multiple edges
are allowed in the configuration model and are omitted from the drawing.

6 The Free Method

The analysis in Section 5.3 deals with non-regular graphs directly for the normalized spec-

trum (of the matrix W), which governs the convergence of random walks (among other

characteristics). This raises the question of what can be said about the adjacency spectrum

of A, which is of importance when analyzing various generalizations of the expander mixing

lemma (see [AZ24] for an up to date survey of the latter).

However, the analysis of Section 5.3 does not translate to the adjacency case: when using

the “up matrix” C as in Equation (35) without normalization–that is, when the nonzero

entries of the up matrix are 1–the same proof technique does not work, as 1 is not an

eigenvector of all the matrices involved (and so Lemma 4.4 could not be applied).

There are several frameworks for using results from free probability to deduce analysis

on graph distributions. One of these is the finite free approach using interlacing families

of polynomials, pioneered in [MSS18] (and later used in [MO20, CM23] and others), and

exemplified here in Section 5.3. Others are the strong convergence approaches of Bordenave

and Collins [BC19] and Chen et al. [CGVTvH]. All these approaches can be looked at as

a two-step process:

1. A reduction from a combinatorial question to a setting of free random variables.

2. Solution in the free setting.

The reduction of Item 1 can yield either an existence proof (as in the MSS approach used

here in Theorem 2.1), or a high probability result as in [BC19, CGVTvH], reduced to the

solution of Item 2. The latter, however, is an elusive topic which did not get nearly enough
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attention in the literature, and we overview it next. We then analyze specific examples in

the free regime and verify that the results well represent the behavior of random graphs.

6.1 Free method procedures

In this section, we present a couple of procedures within the framework of the free method.

We begin with a brief overview of techniques used in free probability for computing dis-

tributions of sums and products of free random variables. In our context, we think of

these as the eigenvalue distributions of matrices, for which the eigenspaces are maximally

decoupled (for example, by rotating one matrix using a Haar unitary). However, in the

free probability literature this context is not necessary, as there are clean self-contained

definitions of free random variables expressed in terms of joint moments (for an excellent

textbook on the topic, we refer the reader to [NS06]).

Let a and b be free random variables, and denote their distributions by µa and µb. We

wish to find the distribution µc of the variable c = a+b, by which we define the free additive

convolution of distributions µc = µa � µb. This represents, in matrix terms, the eigenvalue

distribution of A + QTBQ where Q is a Haar unitary and A,B are square matrices with

eigenvalue distributions µa, µb respectively. The recipe doing so is the following, provided

here without proof2:

Procedure 1. Free additive convolution

1. Calculate the Cauchy transforms Gµa(x) and Gµb(x) as defined in Section 4.1.

2. Find the compositional inverses, denoted by Kµa(y) and Kµb(y) (as defined in Sec-

tion 4.1).

3. Calculate Kµc(y) = Kµa(y) +Kµb(y)− 1
y
.

4. Invert Kµc(y) to get Gµc(x).

5. Calculate µc from Gµc(x) using the Stieltjes inversion formula (details omitted).

The flow of the above recipe in the basic case that µa = µb = µ is illustrated in Figure 3.

Item 3 is the most famous theorem in free probability theory, commonly referred to as

Voiculescu’s Theorem and stated in terms of the R-transform ([NS06, Theorem 12.7]).

Note that when at least one of the distributions is supported on non-negative reals only

(in the context of matrices, at least one of them is PSD) there is a multiplicative analog

of the above recipe – that is, the calculation of the distribution µc = µa � µb for c = ab –

2The proof is standard in the free probability literature, and can be found in [NS06, Chapter 12].
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where the G and K transforms are replaced withM, N respectively, and Item 3 is replaced

with Nµc(y) ≤ y
y+1
· Nµa(y) · Nµb(y).

Gµ(x) Kµ(y) Kµ�µ(y) = 2Kµ(y)− 1
y Gµ�µ(x)

µ µ� µ

? ?

Figure 3: Procedure 1 in the basic case of a sum of free random variables, given that the
distribution of each of them is µ. Transitions marked with ? involve inverting a function.

The vast majority of the literature focuses on proofs of the above, and its generalizations.

However, explicit applications of it as stated are not very common, due to a few clear

caveats. The first is that for Item 1 we need to have explicit analytic formulas for µa, µb,

which may not be available. We handle a particular case of this issue in Section 7, where

we are able to begin the analysis directly from Item 2. For the rest of the discussion here,

though, we assume that the distributions are simple enough and are given in closed form.

The second caveat is that inverting a function is a complicated, sometimes infeasible,

task. Given a distribution µ supported on only 3 values, inverting Gµ involves solving a

cubic equation, which may be possible but leads to a function that is hard to analyze. For

more complicated distributions, we know the task to be infeasible, making Items 2 and 4

mere theoretical ideas and not practical tools.

A solution to the inversion problem of Item 4 is implicit in the work of Marcus, Spielman

and Srivastava. Once we relax our goal of having an explicit formula for µc and wish to only

bound its support, the only necessary part is knowing Kµc(y). This is due to the observation

(discussed here in Section 4.1) that every value of this function is an upper bound on the

support. Therefore Items 4 and 5 can be replaced with minimizing Kµc(y) over y > 0,

which is typically a simple analytic task, leading to the following simpler procedure:

Procedure 2. Bounding the free additive convolution

• Perform Items 1 to 3 of Procedure 1 to get Kµc(y).

• Output miny>0Kµc(y).

Although this procedure is simpler, we are still left with the case of Item 2 not being

feasible, which is the issue we wish to solve next in Section 6.1.1. Note that other works

have looked into relaxing the requirement to get a closed formula for µc, to rather learn

characteristics of its support [BES20] or develop numerical techniques for this task (see

[CY23, ON12] and the subordination technique presented in [Spe19]). To the best of our
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knowledge, although the technique presented here is elementary, this work is the first to

formally define it.

6.1.1 Sums of identical spectra

The procedure given in the next lemma solves the inversion issue of Item 2 for the case

that the random variables have an equal distribution µ. We use µ�t to denote the additive

convolution of µ with itself t− 1 times.

Lemma 6.1. Let µ be a compactly supported distribution on R, and t ∈ N. Then the

supremum of the support of µ�t is achieved by minimizing

K̃t(x) , tx− t− 1

Gµ(x)

over {x > max (µ)}, or equivalently applying the following procedure:

Procedure 3. Bounding the support of µ�t

1. Find the solution x0 of the equation

t− 1

t
G ′µ(x) = −Gµ(x)2. (36)

2. Evaluate y0 , Gµ(x0).

3. Output t · x0 − t−1
y0

.

Notice that at no point in Lemma 6.1 do we need to invert a function. Its usage is

illustrated in Figure 4. As was shown in Section 2.3.1, this procedure can be applied to

easily deduce the Ramanujan bound of 2
√
d− 1.

Gµ(x) K̃µ�µ(x) = 2x− 1
Gµ(x)

sup(µ� µ)µ

minimize over x > max(µ)

Figure 4: Examplified use of the bounding technique of Lemma 6.1, in the case t = 2.
Unlike the recipe depicted in Figure 3, no inversions are involved.
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Proof. By definition of inverse under composition, Gµ(Kµ(y)) = y. Differentiating both

sides and rearranging gives

K′µ(y) =
1

G ′µ(Kµ(y))
. (37)

As shown, we look for the minimal value of

Kµt(y) = t · Kµ(y)− t− 1

y
(38)

achieved at a point y0 satisfying K′µt(y0) = 0. Note that such a minimum always exists, as

Gµ(x) decays like 1
x
. Therefore by Equation (38)

t · K′µ(y0) = −t− 1

y2
0

.

Plugging in Equation (37) one concludes

t

G ′µ(Kµ(y0))
= −t− 1

y2
0

.

Let x0 be the value such that y0 = Gµ(x0). Then we get from the above that

t− 1

t
G ′µ(x0) = −G(x0)2,

as required in Equation (36). The minimal value of Equation (38) is thus

Kµt(y0) = t · Kµ(y0)− t− 1

y0

= t · x0 −
t− 1

y0

.

6.1.2 Sums and products of two distinct spectra

The procedure of Lemma 6.1 is very easy to use, but does not cover cases where we need

to perform an additive convolution of different distributions µ1 and µ2. A straightforward

variation of Lemma 6.1 shows that when one distribution has a simple Cauchy transform

Gµ1(x) with an explicit inverse Kµ1(y), the supremum of the support of µ1 � µ2 can be

found using the following lemma.

Lemma 6.2. Let µ1, µ2 be compactly supported distributions on R. The supremum of the

support of µ1 � µ2 is achieved by minimizing over {x > max (µ2)} the function

K̃µ1�µ2(x) , Kµ1(Gµ2(x)) + x− 1

Gµ2(x)
. (39)
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If either µ1 or µ2 is supported on R+ only, the supremum of the support of µ1 � µ2 is

achieved by minimizing over {x > max (µ2)} the function

Ñµ1�µ2(x) ,
Mµ2(x)

Mµ2(x) + 1
· Nµ1(Mµ2(x)) · x. (40)

Proof. We will prove the additive case, the multiplicative follows similar arguments. By

Item 3 of Procedure 1, we need to minimize

Kµ1�µ2(y) = Kµ1(y) +Kµ2(y)− 1

y
.

Set y = Gµ2(x), and we get the equation

K̃µ1�µ2(x) = Kµ1(Gµ2(x)) + x− 1

Gµ2(x)
,

completing the proof.

6.2 Application to ultra-sparse graphs

As previewed in Section 2.2, we predict spectral bounds for our graph models by analyzing

the spectra of their constituent pieces and how they combine. Our prediction for the

resulting graph is the free convolution of the component spectral measures—additive (�)

or multiplicative (�), depending on the model. For each model we apply the appropriate

theorem from Section 6.1 and express the bound as a function of the sparsity ε, denoted

predmodel(ε), where we substitute the suitable model in the subscript.

6.2.1 Free method predictions for the configuration model

As mentioned above, in order to apply the techniques of Section 6.1 to random graph mod-

els, one needs to understand the distributions involved. For the configuration model, we

follow the analysis of Section 5.3, however replacing the normalized matrix C in Equa-

tion (34) with the simpler “up matrix” U with every nonzero entry being 1 (similar to

Equation (29) in the regular case). The convolution in this case is of the eigenvalue dis-

tribution of the matrix M, which we already know to be the uniform distribution on ±1

and we denote by µ1, and the one of V = UUT which we denote by µ2. The latter’s form

is defined by the distribution of degrees. In the case of a graph with degrees 2 and 3 and

average degree 2 + ε, a straightforward calculation shows its Cauchy transform to be

Gµ2(x) =
1

2 + ε

(
1 + ε

x
+

ε

x− 3
+

1− ε
x− 2

)
.
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By Equation (30) we have that Nµ1(y) =
√

y+1
y

. Thus, applying Lemma 6.2 gives us that

sup (µ1 � µ2) is found by minimizing over x > 3 the function

Ñµ1�µ2(x) = x ·

√
Mµ2(x)

Mµ2(x) + 1
= x ·

√
xGµ2(x)− 1

xGµ2(x)
. (41)

This leads us to the main result of this section.

Lemma 6.3 (Small–ε bound for predconf(ε)).

predconf(ε) =
3√
2

+
3

4
ε1/2 +

9
√

2

32
ε−O(ε3/2).

Before proving the small ε approximation, we first handle the minimization of Equa-

tion (41) in the main technical lemma below, and then deduce the small–ε bound using

it.

Lemma 6.4. Fix ε ∈ (0, 1) and let Ñ (x) , Ñµ1�µ2(x) be as defined in Equation (41). The

function Ñ (x) has a minimum at x∗, which is the unique root in (3,∞) of

x3 − 8x2 + (18 + c)x+ 2c2 − 12c, (42)

where c =
6

2 + ε
, and the minimum Pmin(ε) , minx>3 Ñ (x) is

Pmin(ε) =

√
(x∗)2(x∗ − c)

(x∗)2 − 4x∗ + 6− c
.

See Figure 5 for an illustration of this function’s behavior.

Proof. We begin with an algebraic simplification. With c as defined, we get

Mµ2(x) =
(2 + ε)x− 6

(2 + ε)(x− 2)(x− 3)
=

x− c
(x− 2)(x− 3)

.

Hence, for x > 3,

f(x) , Ñ (x)2 =
x2(x− c)

x2 − 4x+ 6− c
.

In order to write f(x) = fN(x)/fD(x) as a rational function, we write

fN(x) = x2(x− c) and fD(x) = x2 − 4x+ 6− c. (43)
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Figure 5: The function Ñµ1�µ2(x) of Equation (41) drawn in solid green for ε = 0.1. The
dotted purple vertical line is the minimizer x∗.

Differentiating we get

f ′(x) =
(3x2 − 2cx)fD(x)− fN(x)(2x− 4)

fD(x)2
.

Setting f ′(x) = 0 yields

x3 − 8x2 + (18 + c)x+ 2c2 − 12c = 0. (44)

Evaluating f at x∗ gives the minimum

Pmin(ε) =

√
(x∗)2(x∗ − c)

(x∗)2 − 4x∗ + 6− c

completing the proof.

Sanity check at ε = 1. In this case c = 6
2+1

= 2, and Equation (44) factors as

x3 − 8x2 + 20x− 16 = (x− 4)(x− 2)2,

with the only root at x > 3 being x∗ = 4. Consequently,

Pmin(1) =

√
42(4− 2)

42 − 16 + 6− 2
= 2
√

2,
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which coincides with the spectral radius of the adjacency operator on the infinite 3-regular

tree, as expected.

Explicit formula for predconf(ε). Set t = x− 8
3

to bring Equation (42) into the form

t3 + p t+ q = 0,

where p = c− 10
3

and q = 2c2 − 28
3
c+ 272

27
. By Cardano’s formula, we have the solution

t∗ = 3

√
−q

2
+
√

∆ + 3

√
−q

2
−
√

∆,

where ∆ = (q/2)2 + (p/3)3. Evaluating Ñ (x) at x∗ = t∗ + 8
3

gives

Ñ (x∗) =

√
(x∗)2(x∗ − c)

(x∗)2 − 4x∗ + 6− c
=

√
9t∗2 + 3(16− 2c)t∗ + 16(4− c)

6t∗ + 4
.

Although we have a closed-form expression, its complexity prompts us to take an alternative

route to understand its value for small ε. We use Lemma 6.4 as stated, and prove Lemma 6.3

using the approximation for small ε earlier in the process. This method will find itself useful

in proofs for the other models as well.

Proof of Lemma 6.3. Let x∗ be the unique minimizer of Ñ (x) on (3,∞) and recall Pmin(ε) =

Ñ (x∗).

Write c =
6

2 + ε
= 3 − δ with δ = 3

2
ε + O(ε2), and set x = 3 + u. In this notation

Equation (44) becomes

u3 + u2 − δ u− 3δ + 2δ2 = 0. (45)

By comparing the leading terms, it holds that u = Θ(δ1/2). Let u = a δ1/2 + b δ + O(δ3/2)

and substitute into Equation (45). Comparing the coefficients of δ and δ3/2 yields

a2 = 3, a3 + 2ab− a = 0 =⇒ a =
√

3, b = −1.

Hence

x∗ = 3 + u = 3 +
3√
2
ε1/2 − 3

2
ε+O(ε3/2). (46)

Next, compute Pmin(ε)2 from its definition

Pmin(ε)2 = f(x∗) =
x∗2(x∗ − c)

x∗2 − 4x∗ + 6− c
.

With fN(x), fD(x) defined as in Equation (43), at the point x∗ we have by substituting
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s = δ1/2:

fN(x∗) = 9
√

3s+ 18s2 +
27

2
√

3
s3 +O(s4),

fD(x∗) = 2
√

3s+ 2s2 − 1√
3
s3 +O(s4).

We will use the following identity for estimating a rational function as a power series. Let

A(s) = a0 + a1s+ a2s
2 +O(s3), B(s) = b0 + b1s+ b2s

2 +O(s3),

with b0 6= 0. Then

A(s)

B(s)
=
a0

b0

+
a1b0 − a0b1

b2
0

s+
a2b

2
0 − a1b0b1 + a0(b2

1 − b0b2)

b3
0

s2 +O(s3).

Used with A(s) = fN (x∗)
s

and B(s) = fD(x∗)
s

we have

a0 = 9
√

3, a1 = 18, a2 =
27

2
√

3
, b0 = 2

√
3, b1 = 2, b2 = − 1√

3

resulting in
fN(x∗)

fD(x∗)
=

9

2
+

3
√

3

2
s+

3

2
s2 +O(s3).

Substitute back we get s = δ1/2 =
√

3
2
ε1/2 +O(ε3/2) and s2 = δ = 3

2
ε+O(ε2), to obtain

Pmin(ε)2 =
9

2
+

9
√

2

4
ε1/2 +

9

4
ε+O(ε3/2).

Taking the square root by binomial expansion yields

Pmin(ε) =
3√
2

+
3

4
ε1/2 +

9
√

2

32
ε+O(ε3/2),

as claimed.

6.2.2 Free method predictions for the C + εM, (2 + ε)M and 3
(

2+ε
3
M
)

models

In order to apply the method on other models, we shall first recall their definitions to come

up with the correct distributions and convolutions required for the analysis. This in turn

will achieve a full analytic solution for the 3
(

2+ε
3
M
)

model, and a tight approximation for

small ε for C + εM and (2 + ε)M.

Given a parameter ρ ∈ (0, 1), we define the ρ-matching as a matching of a ρ fraction of

the vertices. We assume for simplicity that ρn is an integer, however the n parameter plays

no part in the (infinite) free analysis. The distribution µρ of its eigenvalues gives 0 with
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probability 1 − ρ, and otherwise ±1 with equal probabilities. By definition, the Cauchy

transform of its adjacency matrix is

Gρ(x) = (1− ρ) · 1

x
+
ρ

2
· 1

x− 1
+
ρ

2
· 1

x+ 1
. (47)

A special case of Equation (47) is the case of ρ = 1, which is the perfect matching Cauchy

transform from Equation (24). This enables the proof, using the techniques of Section 6.1,

of the two following predictions:

Lemma 6.5. For the 3
(

2+ε
3
M
)

model we have the benchmark

pred3( 2+ε
3
M)(ε) =

√
1 +

√
4− ε2

3
·
√

3(4− ε2)− 3ε

2(1− ε)
= A+Bε+O(ε2), (48)

where A =
√

3 +
√

12 ≈ 2.54 and B =

√
3+
√

12

4+
√

12
≈ 0.34.

Lemma 6.6. For small ε, we can bound the predictions for both the C+ εM and (2 + ε)M
models by

predC+εM(ε) = pred(2+ε)M(ε) <
√

5 +

√
4

5φ

√
ε, (49)

where φ = 1+
√

5
2

is the golden ratio.

While 3
(

2+ε
3
M
)

may seem less natural combinatorially than other models, its analytical

treatment turns out to be the most straightforward due to the ability to use Lemma 6.1. The

derivation of an explicit benchmark for C + εM and (2 + ε)M turns out to be infeasible;

however, techniques similar to those used in Section 6.2.1 enable us to deduce a good

approximation for it for small ε.

Proof of Lemma 6.5. In the 3
(

2+ε
3
M
)

model, we wish to apply Lemma 6.1 using the

Cauchy-transform Gβ(x), as defined in Equation (47), for β = 2+ε
3

. Equation (36) of

Procedure 3 then takes the form

2Gβ(x)′ + 3Gβ(x)2 = 0,

whose positive solution can be computed to be

x0(β) =

√
1 +

√
β(4− 3β).
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Plugging this into the rest of Procedure 3, we have that y0 =
β+
√
β(4−3β)

x0

√
β(4−3β)

and overall

pred3( 2+ε
3
M)(ε) = 3 · x0 −

2

y0

=

√
1 +

√
β(4− 3β)

3β +
√
β(4− 3β)

β +
√
β(4− 3β)

=

√
1 +

√
4− ε2

3
·
√

3(4− ε2)− 3ε

2(1− ε)
.

Remark 6.7. As µρ has support size 3, it is possible to invert Gρ(x), and a solution

using Procedure 2 may technically be possible. However, this turns out to be an extremely

cumbersome (and not very informative) process, as the inverse of Equation (47) can be

shown to be (after solving the cubic equation Gρ (Kρ(y)) = y):

Kρ(y) = 2 ·
√

1

3
+

1

9y2
· cos

1

3
· arccos

3
(
− 2

27y3 + 2−3ρ
3y

)
2
(
−1− 1

3y2

)
 ·√ 3

1 + 1
3y2

+
1

3y
, (50)

and a solution would require finding the minimum value of 3Kβ(y) − 2
y
. This shows that

Procedure 3 has an advantage even in cases of invertible Cauchy transforms.

As discussed in Section 1.2, the C+εM, and (2+ε)M models are different, in particular

in the sense that C + εM is guaranteed to be a connected graph while (2 + ε)M is not.

In spectral terms, these would result in the normalized second eigenvalue being either 1 in

the disconnected case or smaller otherwise. However, in the unnormalized regime (the ad-

jacency matrix eigenvalues), these models behave similarly when observed in experiments,

a behavior which is reflected in our free analysis. The latter is due to the fact that the

eigenvalue distribution of the cycle graph on n vertices is given by (see e.g. [HLW06])

spec (Cn) =

{
2 cos

(
2π

n
j

)
: j = 0, 1, . . . , n− 1

}
(51)

which, as n→∞, converges to the arcsin distribution

µarc(t) =
1

π

1√
4− t2

.

It is well known that µarc is the free convolution of two Rademacher distributions (the

uniform distribution on ±1), which are exactly the distributions induced by two perfect

matchings (see [NS06, Chapter 12]).
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Proof of Lemma 6.6. In order to apply the technique of Lemma 6.2, we use µarc in the role

of µ1, the distribution easier to work with (and for which we have a K-transform) and µε
in the role of µ2. Recall from Claim 4.10 that

KC(y) =

√
1 + 4y2

y
, (52)

which also equals 2KM(y), where M stands for a perfect matching. Applying Lemma 6.2

we get

K̃(x) = KC(Gε(x)) + x− 1

Gε(x)
=

x

x2 + ε− 1

(
ε+

√
T (x)

)
, (53)

where

T (x) , x4 + 2x2 +
4(ε− 1)2

x2
+ 8ε− 7.

While finding the minimizer x∗ for Equation (53) is not feasible analytically, a bound for

small ε is possible. To do so, we set x = 1 + b, where b = b(ε). We notice that for ε = 0,

one can simplify the function and get that K̃(x) =
√
x2 + 1, having its minimum value

√
5

achieved at x = 1. For this reason, we expect b to approach 0 as ε→ 0.

In a manner similar to the proof of Lemma 6.4, we write K̃(x) = fN (x)
fD(x)

, where fN(x) =

x
(
ε+

√
T (x)

)
and fD(x) = 2b + b2 + ε. We start with approximating T (x). Under the

above assumption that b is small, we use the approximation

x−2 = 1− 2b+ 3b2 − 4b3 ±O(b4)

which we get by expanding 1
1−(−b) = 1− b+ b2 − b3 ±O(b4). This gives

T (1 + b) = −16ε2b3 + 12ε2b2 − 8ε2b+ 4ε2 + 32εb3 − 24εb2 + 16εb+ b4 − 12b3 + 20b2.

Denote t =
√
ε. In order to find the min-value for K̃(1 + b), we set b = ct and try to

minimize for the constant c, which would yield a bound on the actual minimum (note

that the result is, numerically, a very good estimation of the actual minimum). The above

formula for T (x) becomes

T (1 + b) = 20c2t2 +
(
16c− 12c3

)
t3 +O(t4).

Taking the upper approximation
√

1 + y < 1 + y
2

we have that

√
T (1 + b) < 2

√
5ct+

√
5

5
(4− 3c2)t2,
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and the numerator becomes

fN(x) = (1 + b)
(
ε+

√
T (1 + b)

)
< 2
√

5ct+

√
5

5
(4− 3c2)t2 + t2 + 2

√
5c2t2 +O(t3)

= 2
√

5ct+

(
1 +

4√
5

+
7√
5
c2

)
t2 +O(t3),

while we have the denominator

fD(x) = 2ct+ (c2 + 1)t2.

Therefore, ignoring terms of order t3 in the numerator, we can write

K̃(1 + ct) <
A+Bt

C +Dt
,

where A = 2
√

5c, B = (1 + 4√
5

+ 7√
5
c2), C = 2c and D = c2 + 1. We use the following

formula for writing this as a power series in t:

A+Bt

C +Dt
=
A

C
+

(
B

C
− AD

C2

)
t+O(t2),

giving us

K̃(1 + ct) <
√

5 +

(
c√
5

+
5−
√

5

10c

)
t+O(t2).

This is minimized when picking c =
√

2
1+
√

5
=
√

1
φ
, φ = 1+

√
5

2
being the golden ratio. This

results in the overall bound of

K̃(1 + c
√
ε) <

√
5 +

√
4

5φ

√
ε.

By Lemma 6.2, we have the desired bound for predC+εM(ε) and pred(2+ε)M(ε).

6.3 Does the free method admit a combinatorial meaning?

The free method is analytic in nature and effectively “forgets” the underlying combinatorial

structure. Indeed, the input to the method is the spectrum of a graph, encoded via the

Cauchy transform; thus, much of the graph’s structural information (as captured by the

eigenvectors) is lost. That said, unlike most combinatorial and linear-algebraic techniques

used to study expanders, the free method incorporates the entire spectrum of the graph,

rather than focusing solely on its spectral expansion.
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A natural question is whether the free method, particularly Equation (6), has a combi-

natorial meaning. Although a complete combinatorial interpretation remains elusive—if it

exists at all—we offer a reformulation that is more combinatorial in spirit, and believe it

may shed some light on the question.

Let χG(x) denote the characteristic polynomial of an undirected graph G. Observe that

GG(x) =
χ̇G(x)

χG(x)
,

where we use Newton’s dot notation to denote derivatives with respect to x. With this in

mind, Equation (6) can be rewritten as

(t− 1)
χ̈GχG − (χ̇G)2

χ2
G

+ t

(
χ̇G
χG

)2

= 0.

Rearranging, we obtain the equivalent form

(t− 1)
χ̈G
χ̇G

+
χ̇G
χG

= 0.

Here, the second term is simply the Cauchy transform GG(x). The first term also resembles

a Cauchy transform—but what is the object whose characteristic polynomial is given by

χ̇G(x)?

Strictly speaking, there need not exist a graph whose characteristic polynomial is χ̇G(x).

However, using cofactor expansion or Jacobi’s formula for matrix derivatives, one can derive

the well-known identity

χ̇G(x) =
∑
v∈V

χG−v(x),

where G − v denotes the graph obtained by removing the vertex v from G. That is,

χ̇G(x) is not the characteristic polynomial of a graph in the usual sense, but rather the

sum of characteristic polynomials of graphs closely related to G—each formed by a simple

combinatorial operation: vertex deletion. One can view this as a kind of “derivative” of

the graph G, which we denote here as ∂G. With this perspective, and with slight abuse of

notation, Equation (6) takes the form

(t− 1)GG(x) + G∂G(x) = 0. (54)

Although this does not fully resolve the question of a combinatorial interpretation of

the method, Equation (54) is, in some sense, more combinatorial than its analytically

equivalent form Equation (6). Indeed, it avoids analytic operations such as differentiation

or squaring of the Cauchy transform, and instead involves a simple linear combination of

Cauchy transforms of graphs—or more precisely, of graph sums—where the “derivative”
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used to define ∂G is interpreted purely at the combinatorial level.

7 Sum of Free Graphs

In this section, we prove that, by suitably permuting the vertices, the sum of Ramanujan

graphs can be made nearly Ramanujan. This implies Theorem 2.7.3

Proposition 7.1. Let G be a d-regular Ramanujan graph (d ≥ 3) on n vertices with girth

g and adjacency matrix A. Then, there exist permutation matrices P1, . . . ,Pt such that

λ2

(
t∑
i=1

PiAPT
i

)
< 2
√

2t− 1 +O
(√

dt
)
· 2−Ω(g).

Remark 7.2. The statement of Proposition 7.1 is phrased this way for simplicity. The

proof shows that an analogous claim holds for sums of graphs with different degrees: for

example, summing two Ramanujan graphs of degrees d1 and d2—after permuting the sec-

ond—can yield an almost-Ramanujan graph of degree d1 +d2. Moreover, the proof extends

to expanders that are not Ramanujan. We omit the details.

Proposition 7.1 directly implies that summing d/2 cycle graphs, after a suitable permu-

tation, yields a d-regular graph whose second eigenvalue is bounded by

2
√
d− 1 +O(d) 2−Ω(n).

However, as we show in Section 7.1, when summing cycles we can in fact match the Ra-

manujan bound exactly, with no error term. This is because for cycle graphs we know—and

can readily work with—the entire spectrum (not only the expansion and girth required

in Proposition 7.1), and we exploit this in our analysis.

The main ingredient in proving Proposition 7.1 is the following lemma.

Lemma 7.3. Let G be a d-regular Ramanujan graph on n vertices with girth g and adja-

cency matrix A. Then,

maxroot
(
pA(x)�t

)
≤ 2
√
t · d− 1 +O(

√
dt) · 2−Ω(g), (55)

where pA(x) is as defined in Section 4.

Before proving Lemma 7.3, we show the straightforward way to deduce our main theorem

from it.

3Note the change in notation relative to Theorem 2.7: there, d denotes the degree of the resulting graph.
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Proof of Proposition 7.1. By Lemma 4.1, it is enough to prove that

α2

(
E
P
χx (AP)

)
≤ 2
√
t · d− 1 +O(

√
dt) · 2−Ω(g),

where AP =
∑t

i=1 PiAiP
T
i . By Lemma 4.4 (Equation (20)), we know that

E
P
χx (AP) = (x− t · d)p�tA (x),

and by Lemma 7.3 the proof is complete.

For proving Lemma 7.3, we start with noting, via Corollary 4.8, that for every y > 0,

maxroot
(
pA(x)�t

)
≤ t · KpA(y)− t− 1

y
. (56)

However, to bound the RHS of the latter equation, we need to take an analytic view of

the G and K transforms, following the idea of the adapter defined by [CM23, Section 4.1]

and simplified here.

Let a ≥ 0 be a real number, µ a probability measure supported on [−a, a]. Let A

be an n × n real symmetric matrix whose eigenvalues are λ1 ≥ λ2 ≥ · · · ≥ λn. Denote

λ = max(|λ2|, |λn|) and set b = max(a, λ). Let pA(x) be the polynomial that satisfies

χx (A) = (x − λ1)pA(x) as in the notations set in Section 4. We denote the r-th moment

of A as mr(A) = 1
n

∑n
i=1 λ

r
i .

Assume that

mr(µ) = mr(A) for r = 0, 1, . . . , h, (57)

that is, the first h moments of µ and A match.

Claim 7.4. With the notation and under the assumptions above, for every x > b,

ε(x) , GpA(x)− Gµ(x) ≤ 2

x− b

(
b

x

)h+1

.
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Proof. By Equation (22) we have that

GpA(x)− Gµ(x) =
∞∑
r=0

mr(pA)−mr(µ)

xr+1

=
h∑
r=0

mr(pA)−mr(µ)

xr+1
+

∞∑
r=h+1

mr(pA)−mr(µ)

xr+1

=
h∑
r=0

mr(pA)−mr(A)

xr+1
+

∞∑
r=h+1

mr(pA)−mr(µ)

xr+1

<

∞∑
r=h+1

mr(pA)−mr(µ)

xr+1
, (58)

where in the last inequality we used the fact that any moment of A is by definition larger

than that of pA.

For bounding the resulting sum, we use the triangle inequality on the numerator for each

summand and get:

|mr(µ)−mr(pA)| ≤ ar + λr ≤ 2br.

Summing all the terms we have that for x > b,

∞∑
r=h+1

mr(µ)−mr(pA)

xr+1
≤

∞∑
r=h+1

|mr(µ)−mr(pA)|
xr+1

≤ 2

x
·
∞∑

r=h+1

(
b

x

)r
=

2

x− b

(
b

x

)h+1

,

(59)

completing the proof.

Claim 7.4 tells us that when µ and A agree on the low moments, the corresponding G-

transforms are close for sufficiently large x and h. However, as hinted in Equation (56), in

order to prove Lemma 7.3 we will need to use closeness of their inverses, the K-transforms.

To this end, we cite the following claim from [CM23]:

Claim 7.5 ([CM23, Claim 4.6]). Let f, g : (c,∞) → R be differentiable, strictly decreas-

ing convex functions. Note that f−1 : Im(f) → (c,∞) and g−1 : Im(g) → (c,∞) are

well-defined functions. Let ε : (c,∞) → R be a function such that for every x > c,

|f(x)− g(x)| ≤ ε(x). Then, for every y ∈ Im(f) ∩ Im(g),

∣∣f−1(y)− g−1(y)
∣∣ ≤ max

(
ε(f−1(y))

|g′(f−1(y))|
,
ε(g−1(y))

|f ′(g−1(y))|

)
.

We shall prove Lemma 7.3 by using Claim 7.5, where the G-transforms play the roles of

f, g and the K-transforms are their inverses.
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Proof of Lemma 7.3. By Corollary 4.8, for every y > 0 it holds that

maxroot
(
pA(x)�t

)
≤ t · KpA(y)− t− 1

y
. (60)

Let νd = µ
(d)
km be the Kesten-McKay distribution with parameter d. By straightforward

calculation,

tKνd(y)− d− 1

y
=

2 + dt
(√

1 + 4y2 − 1
)

2y
, (61)

where the RHS achieves its minimum value 2
√
td− 1 at yt =

√
td−1
td−2

. Using Equations (60)

and (61), it remains to show that:

KpA(yt) ≤ Kνd(yt) +O
(√

d
)
· 2−Ω(g). (62)

Let

xt = Kνd(yt) =
(t+ 1)d− 2√

td− 1
, (63)

and let x′t be such that GpA(x′t) = yt. As the K-transforms are the inverses of the G-

transforms, Equation (62) is equivalent to

x′t − xt ≤ O
(√

d/t
)
· 2−Ω(g), (64)

and it is enough to prove for case that x′t > xt. Equation (64) has the correct form of

Claim 7.5, without the absolute value (as we care only for one side of the inequality). We

will proceed by following Claim 7.5 and bounding

max

(
ε(x′t)∣∣G ′pA(x′t)

∣∣ , ε(xt)∣∣G ′νd(xt)∣∣
)

for x′t > xt. By Claim 4.11, for every h < g,

mr(νd) = mr(A) for r = 0, 1, . . . , h,

and so we can invoke Claim 7.4 and get that the numerator is bounded (plugging b = λ ,

2
√
d− 1) by

ε(xt) ≤
2

xt − λ

(
λ

xt

)g+1

<
2

(βt − 1)λ
β−gt ,

where βt = xt
λ
> max

(√
t

2
, β
)

, and β = 3√
8
.

By definition of the Cauchy transform we have that GpA(x) < 1
x−λ , and by straightfor-

ward calculation x′t cannot be larger than 2λ. Also by definition of the Cauchy transorm
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and λ it holds that for every x > λ it holds that |G ′νd(x)| > 1
(x+λ)2 and |G ′pA(x)| > 1

(x+λ)2 .

Overall we get that

min
(
|G ′νd(xt)|, |G

′
pA

(x′t)|
)
>

1

(x′t + λ)2
>

1

9λ2
. (65)

Combining the above, we have that

x′t − xt ≤
18λ2

(βt − 1)λ
β−g = O

(√
d/t
)
· 2−Ω(g),

as desired.

7.1 Sum of free cycles

As noted, for cycle graphs we can prove a stronger statement than that implied by Propo-

sition 7.1 by exploiting the full spectrum of the cycle, not just its spectral radius and girth.

As in previous sections, we denote by Cn the adjacency matrix of a cycle graph of size n,

and let µarc = ν2 be the arcsin distribution (the Kesten-McKay distribution with parameter

d = 2).

We denote the graph GP to be the (n, d)-graph whose adjacency matrix is

GP =

d/2∑
i=1

PiCnP
T
i , (66)

where P1,P2, . . . ,Pd/2 are n × n permutation matrices. We prove here the following (im-

plying Theorem 2.8):

Proposition 7.6. There exist permutation matrices P1, . . . ,Pd/2 such that

λ2 (GP) < 2
√
d− 1.

Given the proof of Lemma 7.3, the following lemma is the remaining piece for proving

Proposition 7.6. It can be seen as replacing the error term from Claim 7.4 with 0.

Lemma 7.7. Let xt = 2t√
2t−1

is as in Equation (63). For every n > 16π3 and every t ≥ 2,

GpCn (xt) < Gµarc(xt).

This will conclude the proof of Proposition 7.6 given that µ
� d

2
arc = µ

(d)
km. Note that a more

general statement, for every n and every x > 2, holds, however not necessary for our needs.

Proof of Lemma 7.7. We assume for simplicity that n = 2k (the odd case is similar), and
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denote G(x) , GpCn (x). We have already seen (Equation (51)) that

spec (Cn) =

{
2 cos

(
2π

n
j

)
: j = 0, 1, . . . , n− 1

}
, (67)

and we know that µarc(s) = 1
π

1√
4−s2 and is supported on (−2, 2). We use the following

notation:

fx(θ) =
1

x− 2 cos θ

θj = j
π

k

ai = fx(θk−i) such that a0 =
1

x+ 2
and ak =

1

x− 2
.

By definition of the Cauchy transform and noticing the multiplicities in Equation (67) we

have that

G(x) =
1

n− 1

(
a0 + 2

k−1∑
i=1

ai

)
. (68)

We also know by definition that

Gµarc(x) =

∫ 2

−2

1

x− t
µarc(t)dt =

1

π

∫ π

0

fx(θ)dθ, (69)

where the last equality is a simple change of variables. The trapezoidal rule for integration

tells us that the function

Tn(x) =
1

n

(
a0 + 2

k−1∑
i=1

ai + ak

)
(70)

is a π3|E|
12k2 -approximation of Gµarc(x), where E = f ′′x (ζ) for some ζ ∈ [0, π]. It can be

shown by straightforward calculation that for xt = 2t√
2t−1

, |f ′′xt(ζ)| < 48
t

, and hence Tn(xt)

approximates Gµarc(xt) by at most 16π3

tn2 . Therefore the proof will be concluded by showing

that Tn(xt)− G(xt) is large enough.

By Equations (68) and (70) we have

Tn(x)− G(x) =
1

n
(ak − G(x)) .

Notice that ai <
1
x

for i < k
2

and ai ≤ ak for all i. Therefore G(x) < 1
2

(
ak + 1

x

)
. Plugging

in xt we see that Tn(xt)− G(xt) ≥ 1
tn

, concluding the proof.
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