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ABSTRACT

This work studies the complexity of refuting the existence of a perfect matching in spectral expanders
with an odd number of vertices, in the Polynomial Calculus (PC) and Sum of Squares (SoS) proof system.
Austrin and Risse [SODA, 2021] showed that refuting perfect matchings in sparse d-regular random graphs,
requires with high probability, proofs with degree Q(ﬁ) in the above proof systems. We extend their
result by showing the same lower bound holds for all d-regular graphs with a mild spectral gap. As a direct
consequence, we also positively resolve the open problem posed by Buss and Nordstrom, which asks, “Are
even colouring formulas over expander graphs hard for polynomial calculus over fields of characteristic distinct
from 2?7

1 Introduction

Perhaps the most fundamental problem in computation is to provide an answer to the question
asked by Stephen A. Cook and Robert A. Reckhow. in their seminal paper [10] - “Given a true
statement A, is there a short proof of the claim that A is true”. In trying to answer this question,
we must first describe what constitutes a valid proof. That is, we must describe the language
in which the proof is written (axioms), and the rules for checking it (the verifier). Each set of
rules for writing and checking a proof defines a proof system. Therefore, a precise restatement
of the question above is the following: “Given a true statement A and a proof system S, what is the
length of a shortest proof m € S that proves A?” If we could show that there exists a proof system
S, such that for any true statement A, the length of the shortest proof in S is upper bounded
by some polynomial in the length of A, it would imply that CoONP = NP and consequently the
polynomial hierarchy collapes to NP. Conversely, if we could show large proof size lower bounds
for some true statement A in all proof systems, it would lead to a formal proof of the widely
believed conjecture that P # NP. Unfortunately, such lower bounds for arbitrary proof systems
are out of reach. As an intermediate step, the research community has invested a significant
effort in proving lower bounds for increasingly expressive proof systems (e.g., see [1, 2, 4, 8, 9,
17, 20, 26, 28, 29, 32, 33]).

In this work, we focus on the algebraic and semi-algebraic proof systems® of polynomial calculus
(PC) and sum of squares (SoS). In algebraic proof systems, we are given a set Q = {¢,(Z) | i €
[m]} of m polynomial equations® over n variables & = {z1, ..., z,, }. In PC, the equations can be

!Similar to the work of Per Austrin and Kilian Risse. [5], our lower bounds also extend to bounded depth Frege
proof systems. However, the key technical component in this work is the graph theoretic techniques proposed
for embedding carefully chosen hard instances into the host graph. As this applies broadly across proof systems,
we restrict our preliminaries to PC and SoS for brevity.

*Semi-algebraic proof systems also allow for inequalities but we will not deal with inequality constraints in
this paper.
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over an arbitrary, but fixed field F, and in the SoS the coefficients are over the reals. We say a
proof 7 is a refutation of O, if it is a proof of the claim (in the specified language) that there exists
no assignment of ¥ € F™ that satisfies all the polynomial equations in Q. In PC and SoS, the proof
7 is itself expressed as a sequence of polynomials. Two common measures of the complexity
of a semi-algebraic proof are size (the number of monomials appearing in the proof) and the
degree (the largest degree of the proof polynomials that refute O, see Definition 2.1.2). Trade-

offs between the two are well known; in particular, any degree d proof has size at most n°(%.
Therefore, in this work we focus on the former®. We denote the smallest maximum degree over

all proofs that refute Q in PC and SoS, with Deg (Q F J_) and Deg (Q F J_) , respectively. One
PC(F) S0S

motivation for proving lower bounds for algebraic proof systems, as opposed to propositional
proof systems, is that often they imply lower bounds for a broad family of related algorithms
for solving combinatorial optimisation problems. Similarly, upper bounding the proof length
has led to the fruitful discovery of many efficient algorithms. The SoS proof system is of partic-
ular interest because of its close connection to the sum-of-squares hierarchy of semi-definite
programming. We refer the reader to the survey by Noah Fleming, Pravesh Kothari, Toniann
Pitassi, and others. [13] for more details about the connections between the semi-algebraic proof
systems and combinatorial optimisation. In this work, we study the complexity of refuting perfect
matchings in PC and SoS. Apart from being a natural problem in its own right, perfect matchings
are also related to the pigeon hole principle [6, 22, 27, 30, 31] and Tseitin formula [12, 14-16], two
well studied formulae in proof complexity. Assuming at most one pigeon fits in a single hole, the
pigeon hole principle says m pigeons cannot fit in n < m holes. If we construct the complete
bipartite graph with the left vertices as m pigeons and the right vertices as n < m holes, proving
the pigeon hole principle amounts to proving that such a bipartite graph does not have a perfect
matching. There are other formulations of the pigeon hole principle (see the survey by Alexander
A. Razborov. [30]), and almost all of them have short proofs in the sum of squares proof system.
In contrast, Tseitin formulae are known to require long proofs. The Tseitin formula over a graph
claims that there is a spanning subgraph in which every vertex has odd degree. If a graph has a
perfect matching, then the subgraph described by the matching ensures that every vertex has odd
degree. However, formally refuting Tseitin formulae for expander graphs with an odd number
of vertices, in the SoS proof system, requires degree linear in the number of vertices in the graph
[16]. Given its close connections to the pigeon-hole and Tseitin, and the different behaviour of
the two formulae, it is natural to determine the complexity of refuting perfect matchings for
non-bipartite graphs.

To refute perfect matchings in an algebraic proof system, we first need to specify combinatorial
constraints as algebraic equalities. Given an undirected graph G = (V, E),V = {1,...,n},and a
vectorb = (b, ...,b, ) € F", we define Card(G, b) as the following set of polynomial constraints

-y Up

over variables z, for e € E:

*Note that exponential size lower bounds only follow from degree lower bounds d > \/n, asd = O(y/n) yields
only subexponential size bounds n®(vV?) = 20(vnlogn),
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. z,(l1—z,) =0 foreveryeec E
Card(G, b) :=
(G:9) > =z, =b,foreveryveV

e~v

where we use notation e ~ v to denote the set of edges e incident on node v. For every e € E,
the equation z,(1 — z,_) = 0 restricts the domain of the above variables to bits. In plain words,
Card(G, b) denotes the claim that there exists a spanning subgraph G’ C G such that a vertex
v € V(G) has b, edges incident to it in (i’. Note if tilere was an assignment of variables (z.) _.
that satisfies all equations in Card(G, 1), where 1 = (1,...,1) € F", it would imply that the
graph G has a perfect matching (given by the edges corresponding to variables with assignment
1). Therefore, we define PM(G) := Card(G, 1). When |V| is odd, G trivially does not contain a
perfect matching. How difficult is it to refute PM(G) in this case? In recent work, Per Austrin and
Kilian Risse. [5] showed that refuting PM(G), in the Polynomial Calculus and Sum-of-Squares
system, in the case G is a random d-regular graphs with an odd number of vertices typically
requires proofs with degree 2 (@) . They conjecture that the hardness results should also apply
to general expander graphs but leave showing so as an open problem [5: see Section 6]. In this
work, we verify this by extending their result to all d-regular spectral expanders, that is, d-
regular graphs with a mild condition on the spectral gap. In fact, similar to Austrin and Risse,
we reduce the hardness of refuting Card(G, ), where £ = (t, ..., t), for any odd value , to the
hardness of refuting Card(G, 1), where I = (1, ..., 1). As another special case, this answers the
even-colouring case when t = g is odd, a problem posed by Buss and Nordstréom [7: see Open
Problem 7.7], which asks, “Are even colouring formulas over expander graphs hard for polynomial
calculus over fields of characteristic distinct from 2 ?” Formally, we prove the following (for the
definition of (n, d, \)-graphs see Section 2.2).

Theorem 1.1 (Hardness Result For Card(G, t))

There exist universal constants €, n, d;, € N such that for any odd n > n, and even d €
[dy, n], the following holds for any (n,d, \)-graph G with A < ed, and for any odd 1 <
t <d:

Deg(Card<G, f) ,,hl=) =Q< " )

C(F log n

Deg(Card(G, HF L :) - Q( o )

S0s log n

We follow the overall approach of Per Austrin and Kilian Risse. [5]. Very briefly, the strategy is
to obtain an affine restriction (see Definition 2.1.6) Card(G), t)| , = PM(H) where H is some
graph for which refuting PM(H) requires large degree. An example of such H is given by Sam
Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. [8]. We now describe how to find
such a restriction in more details: Using a result of Nemanja Dragani¢, Michael Krivelevich, and

Rajko Nenadov. [11], we show that H topologically embeds into a given expander graph G with
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A < ed for some universal small constant € € (0, 1), such that all paths corresponding to the
embedding have odd length. The main technical ingredient of Austrin and Risse is also a similar
embedding theorem, albeit a significantly more complicated one. Moreover, we show that one
can find such an embedding so that the subgraph of G induced by vertices which are not part of
the embedding has a perfect matching. This allows us to use the restriction argument to transfer
the hardness of PM(H) into the hardness of PM(G). To extend this to hardness of Card(G), t)
for an odd 3 <t < d, it suffices to show that the graph G’ obtained from G by removing all
edges that participate in the embedding and the matching contains a (¢t — 1)-regular spanning
subgraph. Austrin and Risse achieve this using the contiguity property of random regular graphs
(and hence their hardness result for Card(G, ) critically relies on randomness). Instead, we
provide a significantly simpler and shorter argument based on Tutte’s criterion. As a random d
-regular graph is with high probability an (n, d, \)-graph with A = © (\/E) ( [34: see Theorem
Al], our embedding theorem readily applies in the context of [5].

The rest of the document is structured as follows. In Section 2, we describe the requisite
background from graph theory and proof complexity. In Section 3, we describe the machinery
for finding a desired topological embedding. In Section 4, we prove conditions under which the
residual graph has a perfect matching or, more generally, a (t — 1)-regular spaning subgraph.
In Section 5, we use the tools from the previous sections to prove Theorem 1.1. In Section
Section 6 we briefly discuss a few other lower bounds using embeddings in proof complexity,
and conclude with some future directions.

2 Preliminaries

2.1 Proof Complexity Preliminaries

Let Q = {p, =0,...,p,, = 0} be a set of polynomial equations*, which we refer to as axioms,
over variables X = {z,...,z,, %y, ..., T, }.

*The sum of squares proof system is a semi-algebraic proof system where O may also contain inequalities of
the form p,(z) > 0. However, we only need equality constraints to express the existence of Perfect Matchings
over graphs. Therefore to simplify our exposition, we write all our definitions using equality constraints only.

4
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Definition 2.1.1 (Sum Of Squares Refutations)

Given a set of m polynomial equality constraints Q over the reals, a Sum of Squares (SoS)

refutation is a sequence of polynomials 7 = (¢, ...,t,,; Sq, ---, S, ) such that
=D tpit )l
i€[m] i€lal

The degree of a proof  is

Deg(n) := max{maxDeg( ;) + Deg(p,), m?}f2 Deg(si)}
1€la

i€[m)|

Note that s?(x) > 0 for any z by definition. Therefore, if there were to exist some z* such that
p;(x*) =0 for all p;, € O, then Eie[m] t;(x*)p;(z*) = 0. This would imply that h > 0, but if
proof 7 shows that h = —1, then by the contrapositive, no such x* can exist. Therefore, the
existence of the sequence of polynomials 7 act as a formal proof of the claim that the set of
polynomial equations in Q is unsatisfiable.

Definition 2.1.2 (Complexity Of SoS Refutation)

If we let II denote the set of all valid SoS refutations for O, then the complexity of refuting
Q in the SoS proof system is given by

Deg(Q - J_) = min Deg()

S0S well

Polynomial Calculus (PC) is a dynamic version of the static Nullstellensatz proof system [13: see
Section 1.3 for the defintion of Nullstellensatz proof systems] operating over an arbitrary but
fixed field, based on the following inference rules.

1. From polynomial equations f = 0 and g = 0 where f,g € F [X' ] we can derive af + 8g =0
fora, 8 € F.

2. From polynomial f = 0 where f € F [X' ] , we can derive 2 f = 0 where z € X.

Definition 2.1.3 (Polynomial Calculus Refutations)

A Polynomial Calculus (PC) refutation of Q over I is a sequence of polynomials 7 =

(ty,...,t;) such that t, =1, and for each i # [, either (1) ¢, € O, or (2) t; is derived

from (tj) s using the above rules. The degree of the proof is given by Deg(w) =
j<i

max,¢; Deg(t;). If we let IT denote the set of all PC refutations of O, then

Deg(Q H J.) := min Deg()

PC(F) mell
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To ensure Boolean variables, we assume the axioms Q always contain the equations z? —
;=0 and Z? —%; = 0 for all i € [n]. Equivalently, we can also just work in the ring
Flzq, ..., T,]/ (23 — 24, ..., T2 — T,,) of multi-linear polynomials. Multi-linearity implies that the
degree of any proof can be at most n i.e. a proof of degree §2(n) is the largest lower bound one
can hope to achieve. Additionally, we will also assume that 1 — z; — z; = 0 is also included in ©,
for all ¢ € [n], which ensures that the bar elements are bit complements of the non-bar elements.
The following lemma is by Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi.

[8] and gives an instance where perfect matching is hard to refute in the worst case.

Lemma 2.1.4 (Worst Case Hard Instance For PC)

Given any odd n € N, there exists a graph H with n vertices and maximum degree A ;; =
5 such that Polynomial Calculus over any field of characteristic different from 2 requires

degree ©(n) to refute Card(H, 1).

A description of the worst case hard instance for SoS can be found in [5:Theorem A.3] which is
also derived from [8].

Lemma 2.1.5 (Worst Case Hard Instance For SOS)

Given any odd n € N, there exists a graph H with n vertices and maximum degree A ;; =
5 such that SoS refutations requires degree ©(n) to refute Card(H, 1).

An important lemma we will need is that given a set of axioms < over the ring

n), @ partial assignment of variables can only make refuting QO easier. Given a

Flzy,...,x
set of m polynomial equality constraints Q over boolean variables {zi,...,z,}, let the

family of functions {f; : {0,1}" — {True,False}}ie[m], denote predicates for satisfiability
for each constraint. For example, given « € {0,1}", f;(a) = True if the i’th polynomial
constraint ¢; € Q is satisfied ie ¢;(a) =0. We say Q is satisfied if there exists « €
{0,1}"™ such that f;(a) = True < g;(a) = 0 for all i € [m]. Given a map p: {z,...,x,,} —
{®15 Ty, Ty, o0y Ty, 1,0}, the restriction of a function f: {0,1}" — {0, 1}, denoted by f|,,
is defined as f|, (zy,...,x,) = f(p(21),..., p(,,)). Similarly, the restriction of formula Q is
defined as 9|, = { Fraylps o Frmy p}. Two formula Q and Q are equivalent if they are element-
wise equal, ignoring any functions that are constantly True. For example, O = {f,, f;, True}
and Q" = {f,, f,} are equivalent, denoted as 9 = Q’.

Definition 2.1.6 (Affine Restriction)

We say that an axiom Q’ is an affine restriction of Q if there is a map p : {z4,...,z,} —
{T1, s Ty, Ty, oy Ty, 1,0} such that O = O] .
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Lemma 2.1.7

Let 9, Q" be axioms such that Q’ is an affine restriction of 9, and each axiom of Q depends
on a constant number of variables, then

* For any arbitrary but fixed I it holds that Deg (Q + J.) e} (Deg (Q’ I—) J.))

PC(F) PC(F

- Deg(g - J_) c Q(Deg(Q’ - J_))

SOS SOS

The proof for Lemma 2.1.7 can be found in [5: see Lemma 2.2]. What the above lemma says is
that if we have a graph G with odd vertices with constant degree, that has a perfect matching
on a subset of even vertices on the graph, then the size of the proof to refute PM(G) is at least
as large as refuting a perfect matching in G with the even vertices removed.

2.2 Graph Theory Preliminaries

We use standard graph theoretic notation. For a graph G, we use V(G) and E(G) to denote the
vertices and edges of G. For a vertex v € V(G), we use I';(v) = {u € V(G) : (u,v) € E'} to
denote the neighbourhood of v in G, and deg (v) := |I'iz(v)|. Given two sets S, T C V(G)}, we
use e (S, T) to denote the number of edges in G with one endpoint in S and one endpoint in 7.
Note that we do not require .S and 7" to be disjoint; in case they are not disjoint, every edge with
both endpoints in S N T is counted twice in e (S, T). If the graph G is clear from the context,
we omit the subscript. Given two vertices u and v, we use u ~» v to denote the sequence of edges
in the path from u and v. Given W C V(G), we denote with G[W] the subgraph of G induced
by W. We say that a subgraph G’ C G is spanning if V(G’) = V(G). Next, we give a definition
of pseudorandom graphs.

Definition 2.2.1 ((n, d, \)-graphs)

Let G be a d-regular graph on n vertices, and, let \; > Ay > ... > A, denote eigenvalues of
the adjacency matrix of G. We say G is an (n, d, A)-graph if \(G) := max, _, max|)\;| <
A

The following is a well known result of N. Alon and F. R. K. Chung. [3].

Lemma 2.2.2 (Expander Mixing Lemma)

Given an (n, d, \)-graph G, for any S, T C V(G) we have

d
ea(5.T) - 2151T1| < AVFSTT

We make use of the following two well known criteria of Tutte [35, 36]. Note that both of the
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lemmata ask for properties which are stronger than what Tutte criteria requires® however, they
are easier to state and verify in our application. We denote with ¢(G) the number of connected
components in a graph G.

Lemma 2.2.3 (Tutte’s Criterion)

If a graph G has even number of vertices and for every subset S C V(G) we have ¢(G \
S) < |S

Lemma 2.2.4 (Tutte’s Generalised Criterion)

Let f € N be even. Suppose G is a graph such that for every pair of disjoint sets S,7 C
V(G) the following holds:

g(G\(SUT)) <[SIf = D (f — ITa(w) \ 8])

weT

, then G contains a perfect matching.

Then G contains a spanning subgraph G’ C G which if f-regular.

2.3 Probabilistic Tools

Next we introduce standard tools for randomised algorithms. A dependency graph for a set of
events Fy, ..., E, isagraph G = (V, E) such that V = {1...,n} and, for i = 1, ..., n, event E,
is mutually independent of the events {Ej | (i,j) ¢ E}. The degree of the dependency graph is
the maximum degree of any vertex in the graph.

Lemma 2.3.1 (Lovasz Local Lemma)

Let E,,...,E, be a set of events over some probability space with probability 2, and
assume that for some 8 € (0, 1) the following hold:

« The degree of the dependency graph given by (Ey, ..., E,)) is bounded by d.
» Foralli € [n], Prg  ¢p[E;] < B.

« B< 45

Then Pr[N?; E;] >0

*More specifically, in the Tutte criterion ¢(G) denotes the number of odd sized connected components.

8



Refuting Perfect Matchings in Spectral Expanders is Hard

Lemma 2.3.2 (Multiplicative Chernoff bound)

Suppose X, ..., X,, are identical independent random variables taking values in {0,1}.

Let X denote their sum and let u = nE[X]] denote the sum’s expected value. Then, for
any 0 < 6 < 1, we have

Pr{IX — | > dp] < 2e= (/3

The proof of Lemma 2.3.2 and Lemma 2.3.1 can be found in any textbook on randomised
algorithms (for example, see [23: see Ch. 1 and 7]).

Lemma 2.3.3 is originally by [5: see Lemma 4.3], re-derived here for completeness.

Lemma 2.3.3 (Partition Theoem)

For every 0 < ¢ < 1 and v > 0, there exists d, such that the following holds. If G is a d-
regular graph, for some d > d,, then there exists a subset A C V(G) such that

cd —vyd < |[Tp(v)NA| <cd+~d (1)

for every v € V(G).

Proof. We prove the existence of such a partition A C V(G) using the probabilistic method.
For each v € V(G), we toss an independent coin X with bias c. We include v in A if and
only if X; = 1. Thus, X = (X4,...,X,) € {0,1}" is a random variable that describes how
we choose A. For any v € V, let Y, := [T\ (v) N A| denote the random variable that counts
the number of neighbours of v in A. Define ¢ := 2, and for every v € V' let E,, = 1(|Y, —
dc| > dcd) denote the bad event that v has too many or too few neighbours in A. Observe that
the dependency graph of events {E, } (vev) has maximum degree at most d? (only vertices

at most two hops away from v affect how many of v’s neighbours are in A; there at most
d? such vertices). As G is d-regular, E4[Y,] = cd. By the Lemma 2.3.2, for any v € V we
have Prg[E,] < 2¢—9%cd/3 _. B. For d sufficiently large we have g < #, and so Ad? < ;11.
All the conditions of Lemma 2.3.1 are satisfied, from which we conclude that, with positive

probability, none of the bad events happen. This implies the desired A C V(G) exists. O

3 Topological embedding

In this section we describe the topological embedding result of Nemanja Dragani¢, Michael
Krivelevich, and Rajko Nenadov. [11]. We start with a necessary definition.
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Definition 3.1 (Sub-divisions)

Given a graph H and a function o : E(H) — N, the o-subdivision of H, denoted by H?,
is the graph obtained by replacing each edge in E(H) with a path of length o(e) joining

the end points of e such that all these paths are mutually vertex disjoint, except at the
end points.

If a graph G contains H for some o : E(H) — N, then we say G contains H as a topological
minor. In our application, it will be important that we can control the parity of o(e). The
following result follows directly from [11: see Theorem 1].

Theorem 3.2 (Embedding Theorem)

For every D € N there exist o, £, C > 0, such that the following holds. Suppose G is a
graph with n vertices and m > Cn edges such that for every pair of disjoint subsets S, 7" C
V(G) of size |S|, |T'| > &n, we have

ey (S, T) —|SITIp| < £ |SIT| p

where p = m/(7). Then G contains H?, where H is any graph with maximum degree at
most D, H? has at most an vertices, and o(e) > logn for every e € E(H).

When G is an (n,d, \) graph, we will we make use of Theorem 3.2 to show that G satisfies
the required properties, thereby contains H as a topological minor. This gives us the following
corollary:.

Corollary 3.2.1

For every D € N} there exist dy,n, € N,e,a € (0,1), such that the following holds.
Suppose G is an (n,d, A)-graph where d > d,, and A < ed, and n > n,. Let B C V(G)
be a subset of size | B| > 7, and H is any graph with maximum degree at most D and at
most a@ vertices. Then the induced sub-graph G[B] contains H? such that o(e) is odd
for every e € E(H).

Proof. Let m denote the number of edges in the induced subgraph G[B], which gives us 2m =
ec(B, B). Denote b := |B| and define p = m/(%). By the Lemma 2.2.2, we have

d
‘Qm — Eb2 < \b (2.1)

Dividing both sides with b(b — 1), and observing that n(gL_Ql)b = (%) (bTbl) = %(1 + %), we

further get

10
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2m d d A
_ 2 _ < 1
‘b(b—l) n n(b—l)‘_b—l (3.1)
From this we have
d d d d
_ 2 =y 2 4.1
’p n ’p n  n(b—1) n(b—l)‘ (4.1)
d d 1
<lp-2- 4.
_’p n n(b—l)’+(b—1) (4.2)
A 1
4.
oo troa (43)
g% (4.4)

Let us briefly justify each step: Equation 4.2 comes from the triangle inquality and % <1
Equation Equation 4.3 comes from Equation Equation 3.1; the last inequality comes from the
assumption that b € Q(n), so the inequality holds for n large enough.

Let £ be as given by the Theorem 3.2. Using the bound on the difference between p and %,
for every disjoint subsets S, T C B of size |S|,|T| > &n, for A < ed where ¢ is sufficiently
small, we have

d d
ea(5.T) = pISITI| < e (.7) = Sisir] + | Aisirl —pisiTl| 60

2
S AVISITI+ 4= [SIT] < € STl (5.2)

With the lower bounds on S, T and B, we can make ¢ sufficiently small with respect to & to
get the upper bound in the last step. Let o : E(H) — N be the constant function where o(e)
is the smallest odd integer larger than logn. As G[B] has at least Cn edges (by the Lemma
2.2.2), 0(e) <2 +logn, and H has at most Qg7 Vertices, we can invoke the Theorem 3.2
to conclude that G[B] contains H°.

O

4 Perfect matching and regular subgraphs

As described earlier, the second ingredient in our hardness proof is showing that a certain
residual graph contains a perfect matching or a spanning (¢t — 1)-regular subgraph. In this
section we state and prove these ingredients.

11
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Lemma 4.1 (Perfect Matching Lemma)

Let G be an (n, d, \)-graph with A < d/50, and suppose G’ C G satisfies §(G’) > 0.9d.
Then for all S C V(G’), G’ \ S has at most |S| connected components, that is, ¢(G" \
S) < |S|. Therefore, if G’ has an even number of vertices then it contains a perfect
matching.

Proof. Let U = V(G’). We aim to show that the graph G’ \ S has at most |.S| connected
components. If |S| > |U|/2 then G’ \ S has at most |S| vertices, so the the upper bound on

connected components trivially holds. For the remainder of the proof we can assume |S| <
|U|/2. We claim the following:

Claim: For every partition X UY = U \ S, with | X|,|Y]| > @, we have

e (X,Y) > 1= q(G'\ S) <|S]

Proof Of Claim. To see why, assume towards a contradiction that there exists an edge
in G’ between every partition X UY = U \ S, where | X|,|Y| > |S|/3, and G’ \ S has
more than |S| connected components. Denote the vertex sets of these components by
Ci,...,Cy, forsome k > |S|.Let X* := C; U...UC,and Y* := C,,; U ... U C;,, where s =
||S]/2] > |S]|/3. By construction, even if each component C; is a singleton set, we get that
| X*|,|Y*| > |S5]/3. Now as all C;’s are disjoint connected components, there can be no
edge between X* and Y. Therefore, we have found a partition X* UY™* = U \ S with
| X*[,|Y*| > |S|/3 without an edge between them, which contradicts our assumption that
all appropriately sized partitions have at least one edge between them. O

To complete our main proof, it suffices to show e/ (X,Y) > 1 for every partition X UY =
U\ S with | X|,|Y]| > |S]|/3.

Consider some arbitrary partition X UY of U \ S, with |X]|, |Y| > |S|/3, and without loss
of generality assume | X| < |Y|. Then by a simple counting argument we get

U =S| _ n—|S]
< < .
(XIS —5—<—5 (6.1)
We have:
et (X, X) + e (X, ) < eg(X, X) + (X, 9) (7.1)
d d
Sg|X|2+/\|X|+E|X||5|+>\\/|X||5| (7.2)
d —|S d
g;\X|(7}2J+)\|X|+E|X||S|+)\\/§\X| (7.3)
dlX|  dX||S|
< 5 + o + 3\ | X| (7.4)
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<= |X| + 1X| +3X | X]| (7.5)

—0 Ry (7.6)

These steps are justified as follows: The first equation follows from the Lemma 2.2.2; Equa-
tion 7.3 comes from Equation 6.1 and |X| > |S|/3; Equation 7.5 comes from |S| < %; and
Equation 7.6 comes the assumption A < g5 By the assumption 6(G”) > 0.9d we conclude
that there is an edge in G’ with one vertex in X and the other in V(G’)\ (X U S) =

O

The next lemma shows that subgraphs of (n, d, \)-graphs with large minimum degree contain
regular spanning subgraphs.

Lemma 4.2 (Regular Subgraph Lemma)

For every C' > 1 there exists d, = d,(C) such that the following holds. Suppose G is an
(n,d, \) graph with A\ < ed and d > d,), where ¢ < 1/<100C’%). If G’ C G has minimum
degree 6 > d — C, then G’ contains a spanning f-regular subgraph for any even 2 <
f<dj2.

Proof. We prove this lemma using Lemma 2.2.4. We need to show that for any pair of disjoint
sets S, T C V(G’), we have

¢(G'\(SUT) <[S|f =Y (f — [Tar(w) \ ) (8.1)
weT
Ase < 1/(1OOC’%> and C' > 1, we have that ¢ < 1/100. This implies that G is an (n,d, \)
graph with A < 4. We set d, := d(C) large enough such that for all d > d,,, even after
deleting at most C' edges incident on each vertex of the d-regular graph G to get G’, we have
the minimum degree of G’ to be 6» > d — C > 9d/10. Therefore the conditions of Lemma
4.1 are satisfied, thus

g(G'\(SUT)) <[SUT| = [S|+T] 9)
To prove Equation 8.1, it suffices to show
[SI+ITI<|S| f=IT|f +|T|(d = C) —eq (S, T) (10.1)
<181 = 3207~ T (w)\ ) (10.2)
we

We distinguish a few cases.

Case 1: Suppose |S| < |T'|. As f < d/2, we have
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SIf +ITI(d—C— f) = (1] + \T|>(9—c) (1L.1)

The condition described by the inequality Equation 10.1 is satisfied via the following
analysis.

S|+ |T| + eq (S, T) <|S|+|T|+ |S|T| — + ed/|S||T] (12.1)

<|S|+|T|+ - (|S|+|T|)+sd (IS|+1T)) (12.2)

< (S| + \T|)(d +1+ de) (12.3)
<(S|+ |T|>(9 - 0) (12.4)
<|S|f —|Tld—C— f) (12.5)

Equation 12.1 comes from the Lemma 2.2.2 and A\ < &d, together with an obvious upper
bound e%/(S, T') < eg(s,r)- Equation Equation 12.2 comes from the fact that |S||T| <
(%) < nw. Equation 12.4 comes from £ < 1/(1000%), C > 1 and d, being
sufficiently large. Equation 12.5 follows from Equation 11.1 which gives us what we want.

Case 2: Suppose |S| > |T'|. As f > 2, we have
|S|f +|T|(d—-C—f) >2|S|+|T|(d—C —2) (13.1)

To show Equation 10.1, it suffices to show that
eq (S, T) <|S|+|T|(d—C —3) (14.1)

Now we distinguish between two subcases.

« If |T| < £2%, then Equation 14.1 follows from a trivial bound eg/ (S, T) < |T)d.
: (i*i|3 <|T| < |S|. As |S| + |T| < n we have |S| < n — (@3, thus |S| < n < g_ii_

Using the Lemma 2.2.2, we have

e(S,T) < e (S, T) < §|S||T| + edy/[S|IT] (15.1)
ety

< AT+ <di T/ (15.2)

—|T)d < ((gii’}) +eVC13) (15.3)
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<|Tld < (21}2(014)) (15.4)
_Tld < (1 _ %C;H)) (15.5)

where the penultimate inequality follows from the upper bound on ¢. For d sufficiently
large in terms of C we obviously have

ﬁ) <|T|d—|T|(C+3) <|S|+|T|(d—-C—3) (16)

hence Equation 14.1 is satisfied.

IT|d < (1 -
2

5 Proof of Theorem Theorem 1.1

In this section we prove Theorem 1.1. As Card(G, ) = Card(G, d —t)), without loss of
generality we only prove the theorem for ¢t < d/2. Let G = (V, E) be an (n, d, \)-graph on an
odd number of vertices with A\ < ed, where ¢ < 1/ (10()0%) and C' = 6. For sufficiently small
constant « € (0, 1), let H denote the graph on h = aupgg; vertices as given by Lemma 2.1.5 (to
show lower bounds for PC, we use H from Lemma 2.1.4). Recall that any SoS proof which refutes
PM(H) has degree Q(h). We now make use of H to show the hardness of refuting Card(G, ©)).
The idea is to find a restriction p such that Card(G, t)| , = PM(H). We achieve this through
the following steps.

E

« Invoke Lemma 2.3.3 with parameters ¢ = 0.925 and v = 0.025 to get subsets A C V(G) and
B =V (G) \ A, such that for every u € V(G) we have

0.9d < [T, (u) N A| < 0.95d (17.1)
0.05d < |T;(u) N B| <0.1d (17.2)

« From equations Equation 17.1 and Equation 17.2, |B| > g5, with room to spare and

|E(G[B])| > 24. By Corollary Corollary 3.2.1, G[B] contains H” such that each o(e) is odd.
Let us denote a subgraph of G[B] corresponding to H” by G,,. We can describe G, as a func-
tion ¢ : V(H) — B together with a collection of pairwise vertex-disjoint (other than at the
endpoints) paths ¢ (u) ~» 9(v) in G[B], for (u,v) € E(H). Observe that it is at least as hard
to refute® PM(G,,) as it is to refute PM(H). To see why, let yy, ..., y pp) denote the variables
for the PM(H) formulae for each edge of H. We use as shorthand ¥ = (ye)ee E(H) and ¥ =

(ye)eeE(H). Define a mapping p’ : E(G,,) — {O, 1, y,y} as follows. For each (u,v) € E(H),
let p’(z.) = y(y, ) Where e is the first edge on the path ¢)(u) ~» 1(v). Subsequently, map each

*Note that this by itself does not guarantee it is hard to refute PM(G). We need item (3) and this to show
hardness of refuting PM(G).
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variable ., for e € 9(u) ~» ¥(v) alternately to y,, , or ¥, ,, such that the edges of the path
adjacent to 9(u) and (v) are set to y, ,). This is always possible as u +» v has odd length.
Observe that PM(G,,)| , = PM(H).

- As n is odd and |V(G,)| is odd, we have that U = V(G)\ V(G,,) has even size. From
Equation 17.1 we have that G[U] has minimum degree at least 9d JAs A < 50 (with room to
spare), we can invoke Lemma 4.1 to conclude G[U] has a perfect matchmg M.

« Consider the subgraph G’ C G obtained by deleting all edges e € E(Gw) U M, where M is
the perfect matching from the step above. As Ay <5, every vertex u € G loses at most 5
edges in this process. Thus, we have ;» > d — 5. As A < ed, by the Lemma 4.2 we have that
G’ contains a (t — 1)-regular spanning subgraph G”.

We finally define p as follows:
p'(e)if e € E(Gw)
p(z.) =<1 ifeec MUE(G")
0 otherwise

Then Card(G, t) |, = PM(H), thus our theorem follows from Lemma 2.1.7.

6 Related Work

In propositional” proof complexity, there a few prior examples of the strategy of embedding a
worst case instance into a host graph to show lower bounds for a larger class of objects [18, 25].
Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. [25] show Tseitin lower
bounds for Frege proof systems by relying on the embedding result by J. Kleinberg and R. Rubin-
feld. [19], which allows one to embed any bounded degree graph H of size O(n/(poly(logn)))
into an expander graph on n vertices as a minor (not necessarily a topological one). Michael
Krivelevich and Rajko Nenadov. [21] simplify and improve the above embedding theorem to
allow for embedding any graph H with size O(n/logn) as an ordinary minor . However,
embedding a hard instance H into G as an ordinary minor does not guarantee that the hardness
of H is preserved in the setting considered in this paper. In particular, it is entirely possible
that one of the edge contractions to obtain the minor results in H now being easy to refute.
Consequently, these embedding theorems cannot be directly applied show hardness of refuting
perfect matchings in our setting Instead, as described in section Section 5, one way to preserve
hardness is to use embedding theorems that allow for topological embeddings that allow for
edge sub-divisions of odd size [11, 24]. In order to get a topological embedding, Austrin and
Risse modify the ordinary embedding theorem in [21] but critically rely on the host graph being
random. In this work, we use the embedding theorem by Nemanja Draganic, Michael Krivelevich,
and Rajko Nenadov. [11], which greatly simplifies the argument. Moreover, we avoid the use of

”As opposed to algebraic proof complexity
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the contiguity argument present in [5] by directly utilising Tutte’s criterion and the Expander
Mixing Lemma.

In summary, we show degree lower bounds for refuting Card(G, t) for odd ¢ in (n, d, \) graphs
in the SoS and PC proof systems. There is still a logn gap between the largest possible proof
in such systems, and our lower bounds (similar to [5]). It is not inherently clear that such a gap
should exist. The gap is an artefact of d being constant, which makes the graphs sparse i.e we
need ©(log n) edges to form a path between any two nodes. This implies, that Q(n/logn) is the
largest hard instance we can topologically embed in any graph. Thus, if the worst case lower for
refuting perfect matchings was indeed Q(n), we would need a more direct proof of the statement
without using a smaller hard instance. We leave the issue of resolving the tightness of our lower
bound as an open problem for future work.

References

[1] Jackson Abascal, Venkatesan Guruswami, and Pravesh K. Kothari. 2021. Strongly refuting
all semi-random Boolean CSPs. Proceedings of the 32nd annual ACM-SIAM symposium on
discrete algorithms, SODA 2021, Alexandria, VA, USA, virtual, January 10-13, 2021, 454-472.
https://doi.org/10.5555/3458064.3458092

[2] M. Alekhnovich and A. Razborov. 2001. Lower Bounds for Polynomial Calculus: Non-
Binomial Case. In (FOCS '01), 2001. IEEE Computer Society, USA, 190.

[3] N. Alon and F. R. K. Chung. 1988. Explicit construction of linear sized tolerant networks.
Discrete Math. 72, 1-3 (1988), 15-19. https://doi.org/10.1016/0012-365X(88)90189-6

[4] Albert Atserias and Tuomas Hakoniemi. 2020. Size-degree trade-offs for sums-of-squares
and positivstellensatz proofs. In Proceedings of the 34th Computational Complexity Confer-
ence (CCC '19), 2020. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, New Brunswick,
New Jersey. https://doi.org/10.4230/LIPIcs.CCC.2019.24

[5] Per Austrin and Kilian Risse. 2022. Perfect Matching in Random Graphs is as Hard as
Tseitin. TheoretiCS (December 2022), 979-1012. https://doi.org/10.46298/theoretics.22.2

[6] Paul Beame, Russell Impagliazzo, Jan Krajci¢ek, Toniann Pitassi, Pavel Pudlak, and Alan
Woods. 1992. Exponential Lower Bounds for the Pigeonhole Principle. In Proceedings of the
Twenty-Fourth Annual ACM Symposium on Theory of Computing (STOC '92), 1992. Associ-
ation for Computing Machinery, Victoria, British Columbia, Canada, 200-220. https://doi.
0rg/10.1145/129712.129733

[7] Sam Buss and Jakob Nordstrém. 2021. Proof complexity and SAT solving. Handbook of
Satisfiability, 233-350.

[8] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. 1999. Linear Gaps
Between Degrees for the Polynomial Calculus Modulo Distinct Primes. In Proceedings of
the Thirty-First Annual ACM Symposium on Theory of Computing (STOC '99), 1999. Associ-

17


https://doi.org/10.5555/3458064.3458092
https://doi.org/10.1016/0012-365X(88)90189-6
https://doi.org/10.4230/LIPIcs.CCC.2019.24
https://doi.org/10.46298/theoretics.22.2
https://doi.org/10.1145/129712.129733

Ari Biswas and Rajko Nenadov

ation for Computing Machinery, Atlanta, Georgia, USA, 547-556. https://doi.org/10.1145/
301250.301399

Jonas Conneryd, Susanna F. De Rezende, Jakob Nordstrom, Shuo Pang, and Kilian Risse.
2023. Graph Colouring Is Hard on Average for Polynomial Calculus and Nullstellensatz. In
2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), 2023. 1-11.
https://doi.org/10.1109/FOCS57990.2023.00007

Stephen A. Cook and Robert A. Reckhow. 2023. The Relative Efficiency of Propositional
Proof Systems. In Logic, Automata, and Computational Complexity: The Works of Stephen
A. Cook (1st ed.). Association for Computing Machinery, New York, NY, USA, 173-192.
Retrieved from https://doi.org/10.1145/3588287.3588299

Nemanja Dragani¢, Michael Krivelevich, and Rajko Nenadov. 2022. Rolling backwards can
move you forward: on embedding problems in sparse expanders. Trans. Am. Math. Soc. 375,
7 (2022), 5195-5216. https://doi.org/10.1090/tran/8660

Yuval Filmus, Massimo Lauria, Mladen Miksa, Jakob Nordstrom, and Marc Vinyals. 2013.
Towards an understanding of polynomial calculus: new separations and lower bounds
(extended abstract). Automata, languages, and programming. 40th international colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, 437-448. https://doi.org/10.
1007/978-3-642-39206-1_37

Noah Fleming, Pravesh Kothari, Toniann Pitassi, and others. 2019. Semialgebraic proofs
and efficient algorithm design. Foundations and Trends® in Theoretical Computer Science 14,
1-2 (2019), 1-221.

Nicola Galesi, Dmitry Itsykson, Artur Riazanov, and Anastasia Sofronova. 2023. Bounded-
depth Frege complexity of Tseitin formulas for all graphs. Ann. Pure Appl. Logic 174, 1
(2023), 23. https://doi.org/10.1016/j.apal.2022.103166

Ludmila Glinskih and Dmitry Itsykson. 2017. Satisfiable Tseitin formulas are hard for
nondeterministic read-once branching programs. 42nd international symposium on mathe-
matical foundations of computer science, MFCS 2017, August 21-25, 2017, Aalborg, Denmark,
12. https://doi.org/10.4230/LIPIcs. MFCS.2017.26

Dima Grigoriev. 2001. Linear lower bound on degrees of Positivstellensatz calculus proofs
for the parity. Theoretical Computer Science 259, 1-2 (2001), 613-622.

Russell Impagliazzo, Pavel Pudlak, and Jifi Sgall. 1999. Lower Bounds for the Polynomial
Calculus and the Grobner Basis Algorithm. Comput. Complex. 8, 2 (November 1999), 127-
144. https://doi.org/10.1007/s000370050024

Dmitry Itsykson, Artur Riazanov, Danil Sagunov, and Petr Smirnov. 2021. Near-optimal
lower bounds on regular resolution refutations of tseitin formulas for all constant-degree
graphs. computational complexity 30, 2 (2021), 13.

18


https://doi.org/10.1145/301250.301399
https://doi.org/10.1145/301250.301399
https://doi.org/10.1109/FOCS57990.2023.00007
https://doi.org/10.1145/3588287.3588299
https://doi.org/10.1090/tran/8660
https://doi.org/10.1007/978-3-642-39206-1_37
https://doi.org/10.1007/978-3-642-39206-1_37
https://doi.org/10.1016/j.apal.2022.103166
https://doi.org/10.4230/LIPIcs.MFCS.2017.26
https://doi.org/10.1007/s000370050024

Refuting Perfect Matchings in Spectral Expanders is Hard

J. Kleinberg and R. Rubinfeld. 1996. Short paths in expander graphs. In Proceedings of
the 37th Annual Symposium on Foundations of Computer Science (FOCS '96), 1996. IEEE
Computer Society, USA, 86.

Pravesh K. Kothari, Ryuhei Mori, Ryan O'Donnell, and David Witmer. 2017. Sum of squares
lower bounds for refuting any CSP. In Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC 2017), 2017. Association for Computing Machinery,
Montreal, Canada, 132-145. https://doi.org/10.1145/3055399.3055485

Michael Krivelevich and Rajko Nenadov. 2021. Complete minors in graphs without sparse
cuts. Int. Math. Res. Not. 2021, 12 (2021), 8996—9015. https://doi.org/10.1093/imrn/rnz086

Alexis Maciel, Toniann Pitassi, and Alan R. Woods. 2000. A new proof of the weak
pigeonhole principle. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing (STOC '00), 2000. Association for Computing Machinery, Portland, Oregon,
USA, 368-377. https://doi.org/10.1145/335305.335348

Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university press.

Rajko Nenadov. 2023. Routing permutations on spectral expanders via matchings. Combi-
natorica 43, 4 (2023), 737-742.

Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. 2016. Poly-
logarithmic Frege depth lower bounds via an expander switching lemma. In Proceedings
of the Forty-Eighth Annual ACM Symposium on Theory of Computing (STOC '16), 2016.
Association for Computing Machinery, Cambridge, MA, USA, 644-657. https://doi.org/10.
1145/2897518.2897637

Aaron Potechin. 2020. Sum of Squares Bounds for the Ordering Principle. In 35th Compu-
tational Complexity Conference (CCC 2020) (Leibniz International Proceedings in Informatics
(LIPIcs), 2020. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany,
38:1-38:37. https://doi.org/10.4230/LIPIcs.CCC.2020.38

Ran Raz. 2004. Resolution lower bounds for the weak pigeonhole principle. 7. ACM 51, 2
(March 2004), 115-138. https://doi.org/10.1145/972639.972640

Ran Raz. 2008. Elusive functions and lower bounds for arithmetic circuits. In Proceedings of
the Fortieth Annual ACM Symposium on Theory of Computing (STOC '08), 2008. Association
for Computing Machinery, Victoria, British Columbia, Canada, 711-720. https://doi.org/10.
1145/1374376.1374479

Alexander A. Razborov. 1998. Lower bounds for the polynomial calculus. Comput. Complex.
7, 4 (December 1998), 291-324. https://doi.org/10.1007/s000370050013

Alexander A. Razborov. 2002. Proof Complexity of Pigeonhole Principles. In Developments
in Language Theory, 2002. Springer Berlin Heidelberg, Berlin, Heidelberg, 100-116.

19


https://doi.org/10.1145/3055399.3055485
https://doi.org/10.1093/imrn/rnz086
https://doi.org/10.1145/335305.335348
https://doi.org/10.1145/2897518.2897637
https://doi.org/10.1145/2897518.2897637
https://doi.org/10.4230/LIPIcs.CCC.2020.38
https://doi.org/10.1145/972639.972640
https://doi.org/10.1145/1374376.1374479
https://doi.org/10.1145/1374376.1374479
https://doi.org/10.1007/s000370050013

Ari Biswas and Rajko Nenadov

[31] Alexander A. Razborov. 2003. Resolution lower bounds for the weak functional pigeonhole
principle. Theor. Comput. Sci. 303, 1 (2003), 233-243. https://doi.org/10.1016/50304-3975
(02)00453-X

[32] Susanna F. De Rezende, Aaron Potechin, and Kilian Risse. 2023. Clique Is Hard on Average
for Unary Sherali-Adams. In 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS), 2023. 12-25. https://doi.org/10.1109/FOCS57990.2023.00008

[33] Grant Schoenebeck. 2008. Linear Level Lasserre Lower Bounds for Certain k-CSPs. In
Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS '08), 2008. IEEE Computer Society, USA, 593-602. https://doi.org/10.1109/FOCS.
2008.74

[34] Konstantin Tikhomirov and Pierre Youssef. 2016. The spectral gap of dense random regular
graphs. Retrieved from https://arxiv.org/abs/1610.01765

[35] William T Tutte. 1947. The factorization of linear graphs. Journal of the London Mathemat-
ical Society 1, 2 (1947), 107-111.

[36] William Thomas Tutte. 1952. The factors of graphs. Canadian Journal of Mathematics 4,
(1952), 314-328.

ECCC ISSN 1433-8092
20
https://eccc.weizmann.ac.il



https://doi.org/10.1016/S0304-3975(02)00453-X
https://doi.org/10.1016/S0304-3975(02)00453-X
https://doi.org/10.1109/FOCS57990.2023.00008
https://doi.org/10.1109/FOCS.2008.74
https://doi.org/10.1109/FOCS.2008.74
https://arxiv.org/abs/1610.01765

