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ABSTRACT

This work studies the complexity of refuting the existence of a perfect matching in spectral expanders 

with an odd number of vertices, in the Polynomial Calculus (PC) and Sum of Squares (SoS) proof system. 

Austrin and Risse [SODA, 2021] showed that refuting perfect matchings in sparse 𝑑-regular random graphs, 

requires with high probability, proofs with degree Ω( 𝑛
log 𝑛) in the above proof systems. We extend their 

result by showing the same lower bound holds for all 𝑑-regular graphs with a mild spectral gap. As a direct 

consequence, we also positively resolve the open problem posed by Buss and Nordström, which asks, “Are 

even colouring formulas over expander graphs hard for polynomial calculus over fields of characteristic distinct 

from 2 ?”

1 Introduction

Perhaps the most fundamental problem in computation is to provide an answer to the question 

asked by Stephen A. Cook and Robert A. Reckhow.  in their seminal paper [10] - “Given a true 

statement 𝐴, is there a short proof of the claim that 𝐴 is true”. In trying to answer this question, 

we must first describe what constitutes a valid proof. That is, we must describe the language 

in which the proof is written (axioms), and the rules for checking it (the verifier). Each set of 

rules for writing and checking a proof defines a proof system. Therefore, a precise restatement 

of the question above is the following: “Given a true statement 𝐴 and a proof system 𝑆, what is the 

length of a shortest proof 𝜋 ∈ 𝑆 that proves 𝐴?” If we could show that there exists a proof system 

𝑆, such that for any true statement 𝐴, the length of the shortest proof in 𝑆 is upper bounded 

by some polynomial in the length of 𝐴, it would imply that CoNP = NP and consequently the 

polynomial hierarchy collapes to NP. Conversely, if we could show large proof size lower bounds 

for some true statement 𝐴 in all proof systems, it would lead to a formal proof of the widely 

believed conjecture that P ≠ NP. Unfortunately, such lower bounds for arbitrary proof systems 

are out of reach. As an intermediate step, the research community has invested a significant 

effort in proving lower bounds for increasingly expressive proof systems (e.g., see [1, 2, 4, 8, 9, 

17, 20, 26, 28, 29, 32, 33]).

In this work, we focus on the algebraic and semi-algebraic proof systems1 of polynomial calculus 

(PC) and sum of squares (SoS). In algebraic proof systems, we are given a set 𝒬︀ = {𝑞𝑖( ⃗𝑥) | 𝑖 ∈
[𝑚]} of 𝑚 polynomial equations2 over 𝑛 variables ⃗𝑥 = {𝑥1, …, 𝑥𝑛}. In PC, the equations can be 

1Similar to the work of Per Austrin and Kilian Risse. [5], our lower bounds also extend to bounded depth Frege 
proof systems. However, the key technical component in this work is the graph theoretic techniques proposed 
for embedding carefully chosen hard instances into the host graph. As this applies broadly across proof systems, 
we restrict our preliminaries to PC and SoS for brevity.

2Semi-algebraic proof systems also allow for inequalities but we will not deal with inequality constraints in 
this paper.
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over an arbitrary, but fixed field 𝔽, and in the SoS the coefficients are over the reals. We say a 

proof 𝜋 is a refutation of 𝒬︀, if it is a proof of the claim (in the specified language) that there exists 

no assignment of ⃗𝑥 ∈ 𝔽𝑛 that satisfies all the polynomial equations in 𝒬︀. In PC and SoS, the proof 

𝜋 is itself expressed as a sequence of polynomials. Two common measures of the complexity 

of a semi-algebraic proof are size (the number of monomials appearing in the proof) and the 

degree (the largest degree of the proof polynomials that refute 𝒬︀, see Definition 2.1.2). Trade-

offs between the two are well known; in particular, any degree 𝑑 proof has size at most 𝑛𝑂(𝑑). 

Therefore, in this work we focus on the former3. We denote the smallest maximum degree over 

all proofs that refute 𝒬︀ in PC and SoS, with Deg(𝒬︀ ⊢
𝖯𝖢(𝔽)

⊥) and Deg(𝒬︀ ⊢
𝖲𝖮𝖲

⊥), respectively. One 

motivation for proving lower bounds for algebraic proof systems, as opposed to propositional 

proof systems, is that often they imply lower bounds for a broad family of related algorithms 

for solving combinatorial optimisation problems. Similarly, upper bounding the proof length 

has led to the fruitful discovery of many efficient algorithms. The SoS proof system is of partic

ular interest because of its close connection to the sum-of-squares hierarchy of semi-definite 

programming. We refer the reader to the survey by Noah Fleming, Pravesh Kothari, Toniann 

Pitassi, and others. [13] for more details about the connections between the semi-algebraic proof 

systems and combinatorial optimisation. In this work, we study the complexity of refuting perfect 

matchings in PC and SoS. Apart from being a natural problem in its own right, perfect matchings 

are also related to the pigeon hole principle [6, 22, 27, 30, 31] and Tseitin formula [12, 14–16], two 

well studied formulae in proof complexity. Assuming at most one pigeon fits in a single hole, the 

pigeon hole principle says 𝑚 pigeons cannot fit in 𝑛 < 𝑚 holes. If we construct the complete 

bipartite graph with the left vertices as 𝑚 pigeons and the right vertices as 𝑛 < 𝑚 holes, proving 

the pigeon hole principle amounts to proving that such a bipartite graph does not have a perfect 

matching. There are other formulations of the pigeon hole principle (see the survey by Alexander 

A. Razborov. [30]), and almost all of them have short proofs in the sum of squares proof system. 

In contrast, Tseitin formulae are known to require long proofs. The Tseitin formula over a graph 

claims that there is a spanning subgraph in which every vertex has odd degree. If a graph has a 

perfect matching, then the subgraph described by the matching ensures that every vertex has odd 

degree. However, formally refuting Tseitin formulae for expander graphs with an odd number 

of vertices, in the SoS proof system, requires degree linear in the number of vertices in the graph 

[16]. Given its close connections to the pigeon-hole and Tseitin, and the different behaviour of 

the two formulae, it is natural to determine the complexity of refuting perfect matchings for 

non-bipartite graphs.

To refute perfect matchings in an algebraic proof system, we first need to specify combinatorial 

constraints as algebraic equalities. Given an undirected graph 𝐺 = (𝑉 , 𝐸), 𝑉 = {1, …, 𝑛}, and a 

vector ⃗𝑏 = (𝑏1, …, 𝑏𝑛) ∈ 𝔽𝑛, we define Card(𝐺, ⃗𝑏) as the following set of polynomial constraints 

over variables 𝑥𝑒 for 𝑒 ∈ 𝐸:

3Note that exponential size lower bounds only follow from degree lower bounds 𝑑 ≫
√

𝑛, as 𝑑 = 𝑂(
√

𝑛) yields 
only subexponential size bounds 𝑛𝑂(

√
𝑛) = 2𝑂(

√
𝑛 log 𝑛).
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Card(𝐺, ⃗𝑏) ≔
{

𝑥𝑒(1 − 𝑥𝑒) = 0 for every 𝑒 ∈ 𝐸

∑𝑒∼𝑣 𝑥𝑒 = 𝑏𝑣 for every 𝑣 ∈ 𝑉

where we use notation 𝑒 ∼ 𝑣 to denote the set of edges 𝑒 incident on node 𝑣. For every 𝑒 ∈ 𝐸, 

the equation 𝑥𝑒(1 − 𝑥𝑒) = 0 restricts the domain of the above variables to bits. In plain words, 

Card(𝐺, ⃗𝑏) denotes the claim that there exists a spanning subgraph 𝐺′ ⊆ 𝐺 such that a vertex 

𝑣 ∈ 𝑉 (𝐺) has 𝑏𝑣 edges incident to it in 𝐺′. Note if there was an assignment of variables (𝑥𝑒)𝑒∈𝐸  

that satisfies all equations in Card(𝐺, ⃗1), where ⃗1 = (1, …, 1) ∈ 𝔽𝑛, it would imply that the 

graph 𝐺 has a perfect matching (given by the edges corresponding to variables with assignment 

1). Therefore, we define PM(𝐺) ≔ Card(𝐺, ⃗1). When |𝑉 | is odd, 𝐺 trivially does not contain a 

perfect matching. How difficult is it to refute PM(𝐺) in this case? In recent work, Per Austrin and 

Kilian Risse. [5] showed that refuting PM(𝐺), in the Polynomial Calculus and Sum-of-Squares 

system, in the case 𝐺 is a random 𝑑-regular graphs with an odd number of vertices typically 

requires proofs with degree Ω( 𝑛
log 𝑛). They conjecture that the hardness results should also apply 

to general expander graphs but leave showing so as an open problem [5: see Section 6]. In this 

work, we verify this by extending their result to all 𝑑-regular spectral expanders, that is, 𝑑-

regular graphs with a mild condition on the spectral gap. In fact, similar to Austrin and Risse, 

we reduce the hardness of refuting Card(𝐺, ⃗𝑡), where ⃗𝑡 = (𝑡, …, 𝑡), for any odd value 𝑡, to the 

hardness of refuting Card(𝐺, ⃗1), where ⃗1 = (1, …, 1). As another special case, this answers the 

even-colouring case when 𝑡 = 𝑑
2  is odd, a problem posed by Buss and Nordström [7: see Open 

Problem 7.7], which asks, “Are even colouring formulas over expander graphs hard for polynomial 

calculus over fields of characteristic distinct from 2 ?” Formally, we prove the following (for the 

definition of (𝑛, 𝑑, 𝜆)-graphs see Section 2.2).

Theorem 1.1 (Hardness Result For Card(𝐺, ⃗𝑡))

There exist universal constants 𝜀, 𝑛0, 𝑑0 ∈ ℕ such that for any odd 𝑛 ≥ 𝑛0 and even 𝑑 ∈
[𝑑0, 𝑛], the following holds for any (𝑛, 𝑑, 𝜆)-graph 𝐺 with 𝜆 < 𝜀𝑑, and for any odd 1 ≤
𝑡 ≤ 𝑑:

Deg(Card(𝐺, ⃗𝑡) ⊢
𝖯𝖢(𝔽)

⊥ =) = Ω( 𝑛
log 𝑛

)

Deg(Card(𝐺, ⃗𝑡) ⊢
𝖲𝖮𝖲

⊥ =) = Ω( 𝑛
log 𝑛

)

We follow the overall approach of Per Austrin and Kilian Risse. [5]. Very briefly, the strategy is 

to obtain an affine restriction (see Definition 2.1.6) Card(𝐺, ⃗𝑡)|𝜌 ≡ PM(𝐻) where 𝐻  is some 

graph for which refuting PM(𝐻) requires large degree. An example of such 𝐻  is given by Sam 

Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. [8]. We now describe how to find 

such a restriction in more details: Using a result of Nemanja Draganić, Michael Krivelevich, and 

Rajko Nenadov. [11], we show that 𝐻  topologically embeds into a given expander graph 𝐺 with 
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𝜆 < 𝜀𝑑 for some universal small constant 𝜀 ∈ (0, 1), such that all paths corresponding to the 

embedding have odd length. The main technical ingredient of Austrin and Risse is also a similar 

embedding theorem, albeit a significantly more complicated one. Moreover, we show that one 

can find such an embedding so that the subgraph of 𝐺 induced by vertices which are not part of 

the embedding has a perfect matching. This allows us to use the restriction argument to transfer 

the hardness of PM(𝐻) into the hardness of PM(𝐺). To extend this to hardness of Card(𝐺, ⃗𝑡) 
for an odd 3 ≤ 𝑡 ≤ 𝑑, it suffices to show that the graph 𝐺′ obtained from 𝐺 by removing all 

edges that participate in the embedding and the matching contains a (𝑡 − 1)-regular spanning 

subgraph. Austrin and Risse achieve this using the contiguity property of random regular graphs 

(and hence their hardness result for Card(𝐺, ⃗𝑡) critically relies on randomness). Instead, we 

provide a significantly simpler and shorter argument based on Tutte’s criterion. As a random 𝑑
-regular graph is with high probability an (𝑛, 𝑑, 𝜆)-graph with 𝜆 = Θ(

√
𝑑) ( [34: see Theorem 

A], our embedding theorem readily applies in the context of [5].

The rest of the document is structured as follows. In Section  2, we describe the requisite 

background from graph theory and proof complexity. In Section 3, we describe the machinery 

for finding a desired topological embedding. In Section 4, we prove conditions under which the 

residual graph has a perfect matching or, more generally, a (𝑡 − 1)-regular spaning subgraph. 

In Section 5, we use the tools from the previous sections to prove Theorem 1.1. In Section 

Section 6 we briefly discuss a few other lower bounds using embeddings in proof complexity, 

and conclude with some future directions.

2 Preliminaries

2.1 Proof Complexity Preliminaries

Let 𝒬︀ = {𝑝1 = 0, …, 𝑝𝑚 = 0} be a set of polynomial equations4, which we refer to as axioms, 

over variables 𝑋⃗ = {𝑥1, …, 𝑥𝑛, 𝑥1, …, 𝑥𝑛}.

4The sum of squares proof system is a semi-algebraic proof system where 𝒬︀ may also contain inequalities of 
the form 𝑝𝑖(𝑥) ≥ 0. However, we only need equality constraints to express the existence of Perfect Matchings 
over graphs. Therefore to simplify our exposition, we write all our definitions using equality constraints only.

4



Refuting Perfect Matchings in Spectral Expanders is Hard

Definition 2.1.1 (Sum Of Squares Refutations)

Given a set of 𝑚 polynomial equality constraints 𝒬︀ over the reals, a Sum of Squares (SoS) 

refutation is a sequence of polynomials 𝜋 = (𝑡1, …, 𝑡𝑚; 𝑠1, …, 𝑠𝑎) such that

ℎ ≔ ∑
𝑖∈[𝑚]

𝑡𝑖𝑝𝑖 + ∑
𝑖∈[𝑎]

𝑠2
𝑖 = −1

The degree of a proof 𝜋 is

Deg(𝜋) ≔ max{max
𝑖∈[𝑚]

Deg(𝑡𝑖) + Deg(𝑝𝑖), max
𝑖∈[𝑎]

2 Deg(𝑠𝑖)}

Note that 𝑠2
𝑖 (𝑥) ≥ 0 for any 𝑥 by definition. Therefore, if there were to exist some 𝑥∗ such that 

𝑝𝑖(𝑥∗) = 0 for all 𝑝𝑖 ∈ 𝒬︀, then ∑𝑖∈[𝑚] 𝑡𝑖(𝑥
∗)𝑝𝑖(𝑥∗) = 0. This would imply that ℎ ≥ 0, but if 

proof 𝜋 shows that ℎ = −1, then by the contrapositive, no such 𝑥∗ can exist. Therefore, the 

existence of the sequence of polynomials 𝜋 act as a formal proof of the claim that the set of 

polynomial equations in 𝒬︀ is unsatisfiable.

Definition 2.1.2 (Complexity Of SoS Refutation)

If we let Π denote the set of all valid SoS refutations for 𝒬︀, then the complexity of refuting 

𝒬︀ in the SoS proof system is given by

Deg(𝒬︀ ⊢
𝖲𝖮𝖲

⊥) ≔ min
𝜋∈Π

Deg(𝜋)

Polynomial Calculus (PC) is a dynamic version of the static Nullstellensatz proof system [13: see 

Section 1.3 for the defintion of Nullstellensatz proof systems] operating over an arbitrary but 

fixed field, based on the following inference rules.

1. From polynomial equations 𝑓 = 0 and 𝑔 = 0 where 𝑓, 𝑔 ∈ 𝔽[𝑋⃗] we can derive 𝛼𝑓 + 𝛽𝑔 = 0 

for 𝛼, 𝛽 ∈ 𝔽.

2. From polynomial 𝑓 = 0 where 𝑓 ∈ 𝔽[𝑋⃗], we can derive 𝑥𝑓 = 0 where 𝑥 ∈ 𝑋⃗.

Definition 2.1.3 (Polynomial Calculus Refutations)

A Polynomial Calculus (PC) refutation of 𝒬︀ over 𝔽 is a sequence of polynomials 𝜋 =
(𝑡1, …, 𝑡ℓ) such that 𝑡ℓ = 1, and for each 𝑖 ≠ 𝑙, either (1) 𝑡𝑖 ∈ 𝒬︀, or (2) 𝑡𝑖 is derived 

from (𝑡𝑗)𝑗<𝑖
 using the above rules. The degree of the proof is given by Deg(𝜋) =

max𝑖∈𝑙 Deg(𝑡𝑖). If we let Π denote the set of all PC refutations of 𝒬︀, then

Deg(𝒬︀ ⊢
𝖯𝖢(𝔽)

⊥) ≔ min
𝜋∈Π

Deg(𝜋)
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To ensure Boolean variables, we assume the axioms 𝒬︀ always contain the equations 𝑥2
𝑖 −

𝑥𝑖 = 0 and 𝑥2
𝑖 − 𝑥𝑖 = 0 for all 𝑖 ∈ [𝑛]. Equivalently, we can also just work in the ring 

𝔽[𝑥1, …, 𝑥𝑛]/(𝑥2
1 − 𝑥1, …, 𝑥2

𝑛 − 𝑥𝑛) of multi-linear polynomials. Multi-linearity implies that the 

degree of any proof can be at most 𝑛 i.e. a proof of degree Ω(𝑛) is the largest lower bound one 

can hope to achieve. Additionally, we will also assume that 1 − 𝑥𝑖 − 𝑥𝑖 = 0 is also included in 𝒬︀, 

for all 𝑖 ∈ [𝑛], which ensures that the bar elements are bit complements of the non-bar elements. 

The following lemma is by Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. 

[8] and gives an instance where perfect matching is hard to refute in the worst case.

Lemma 2.1.4 (Worst Case Hard Instance For PC)

Given any odd 𝑛 ∈ ℕ, there exists a graph 𝐻  with 𝑛 vertices and maximum degree Δ𝐻 =
5 such that Polynomial Calculus over any field of characteristic different from 2 requires 

degree Θ(𝑛) to refute Card(𝐻, ⃗1).

A description of the worst case hard instance for SoS can be found in [5:Theorem A.3] which is 

also derived from [8].

Lemma 2.1.5 (Worst Case Hard Instance For SOS)

Given any odd 𝑛 ∈ ℕ, there exists a graph 𝐻  with 𝑛 vertices and maximum degree Δ𝐻 =
5 such that SoS refutations requires degree Θ(𝑛) to refute Card(𝐻, ⃗1).

An important lemma we will need is that given a set of axioms 𝒬︀ over the ring 

𝔽[𝑥1, …, 𝑥𝑛], a partial assignment of variables can only make refuting 𝒬︀ easier. Given a 

set of 𝑚 polynomial equality constraints 𝒬︀ over boolean variables {𝑥1, …, 𝑥𝑛}, let the 

family of functions {𝑓𝑖 : {0, 1}𝑛 → {True, False}}𝑖∈[𝑚], denote predicates for satisfiability 

for each constraint. For example, given 𝛼 ∈ {0, 1}𝑛, 𝑓𝑖(𝛼) = True if the 𝑖’th polynomial 

constraint 𝑞𝑖 ∈ 𝒬︀ is satisfied i.e 𝑞𝑖(𝛼) = 0. We say 𝒬︀ is satisfied if there exists 𝛼 ∈
{0, 1}𝑛 such that 𝑓𝑖(𝛼) = True ⇔ 𝑞𝑖(𝛼) = 0 for all 𝑖 ∈ [𝑚]. Given a map 𝜌 : {𝑥1, …, 𝑥𝑛} →
{𝑥1, …, 𝑥𝑛, 𝑥1, …, 𝑥𝑛, 1, 0}, the restriction of a function 𝑓 : {0, 1}𝑛 → {0, 1}, denoted by 𝑓|𝜌, 

is defined as 𝑓|𝜌 (𝑥1, …, 𝑥𝑛) = 𝑓(𝜌(𝑥1), …, 𝜌(𝑥𝑛)). Similarly, the restriction of formula 𝒬︀ is 

defined as 𝒬︀|𝜌 = {𝑓{1}|𝜌, …, 𝑓{𝑚}|𝜌}. Two formula 𝒬︀ and 𝒬︀′ are equivalent if they are element-

wise equal, ignoring any functions that are constantly True. For example, 𝒬︀ = {𝑓𝑎, 𝑓𝑏, True} 

and 𝒬︀′ = {𝑓𝑎, 𝑓𝑏} are equivalent, denoted as 𝒬︀ ≡ 𝒬︀′.

Definition 2.1.6 (Affine Restriction)

We say that an axiom 𝒬︀′ is an affine restriction of 𝒬︀ if there is a map 𝜌 : {𝑥1, …, 𝑥𝑛} →
{𝑥1, …, 𝑥𝑛, 𝑥1, …, 𝑥𝑛, 1, 0} such that 𝒬︀ ≡ 𝒬︀|𝜌.
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Lemma 2.1.7

Let 𝒬︀, 𝒬︀′ be axioms such that 𝒬︀′ is an affine restriction of 𝒬︀, and each axiom of 𝒬︀ depends 

on a constant number of variables, then

• For any arbitrary but fixed 𝔽 it holds that Deg(𝒬︀ ⊢
𝖯𝖢(𝔽)

⊥) ∈ Ω(Deg(𝒬︀′ ⊢
𝖯𝖢(𝔽)

⊥))

• Deg(𝒬︀ ⊢
𝖲𝖮𝖲

⊥) ∈ Ω(Deg(𝒬︀′ ⊢
𝖲𝖮𝖲

⊥))

The proof for Lemma 2.1.7 can be found in [5: see Lemma 2.2]. What the above lemma says is 

that if we have a graph 𝐺 with odd vertices with constant degree, that has a perfect matching 

on a subset of even vertices on the graph, then the size of the proof to refute PM(𝐺) is at least 

as large as refuting a perfect matching in 𝐺 with the even vertices removed.

2.2 Graph Theory Preliminaries

We use standard graph theoretic notation. For a graph 𝐺, we use 𝑉 (𝐺) and 𝐸(𝐺) to denote the 

vertices and edges of 𝐺. For a vertex 𝑣 ∈ 𝑉 (𝐺), we use Γ𝐺(𝑣) = {𝑢 ∈ 𝑉 (𝐺) : (𝑢, 𝑣) ∈ 𝐸′} to 

denote the neighbourhood of 𝑣 in 𝐺, and deg𝐺(𝑣) ≔ |Γ𝐺(𝑣)|. Given two sets 𝑆, 𝑇 ⊆ 𝑉 (𝐺)}, we 

use 𝑒𝐺(𝑆, 𝑇 ) to denote the number of edges in 𝐺 with one endpoint in 𝑆 and one endpoint in 𝑇 . 

Note that we do not require 𝑆 and 𝑇  to be disjoint; in case they are not disjoint, every edge with 

both endpoints in 𝑆 ∩ 𝑇  is counted twice in 𝑒𝐺(𝑆, 𝑇 ). If the graph 𝐺 is clear from the context, 

we omit the subscript. Given two vertices 𝑢 and 𝑣, we use 𝑢 ⇝ 𝑣 to denote the sequence of edges 

in the path from 𝑢 and 𝑣. Given 𝑊 ⊆ 𝑉 (𝐺), we denote with 𝐺[𝑊] the subgraph of 𝐺 induced 

by 𝑊 . We say that a subgraph 𝐺′ ⊆ 𝐺 is spanning if 𝑉 (𝐺′) = 𝑉 (𝐺). Next, we give a definition 

of pseudorandom graphs.

Definition 2.2.1 ((𝑛, 𝑑, 𝜆)-graphs)

Let 𝐺 be a 𝑑-regular graph on 𝑛 vertices, and, let 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑛 denote eigenvalues of 

the adjacency matrix of 𝐺. We say 𝐺 is an (𝑛, 𝑑, 𝜆)-graph if 𝜆(𝐺) ≔ max2,…,𝑛 max|𝜆𝑖| ≤
𝜆.

The following is a well known result of N. Alon and F. R. K. Chung. [3].

Lemma 2.2.2 (Expander Mixing Lemma)

Given an (𝑛, 𝑑, 𝜆)-graph 𝐺, for any 𝑆, 𝑇 ⊆ 𝑉 (𝐺) we have

|𝑒𝐺(𝑆, 𝑇 ) − 𝑑
𝑛

|𝑆||𝑇 || ≤ 𝜆√|𝑆||𝑇 |

We make use of the following two well known criteria of Tutte [35, 36]. Note that both of the 

7
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lemmata ask for properties which are stronger than what Tutte criteria requires5 however, they 

are easier to state and verify in our application. We denote with 𝑞(𝐺) the number of connected 

components in a graph 𝐺.

Lemma 2.2.3 (Tutte’s Criterion)

If a graph 𝐺 has even number of vertices and for every subset 𝑆 ⊆ 𝑉 (𝐺) we have 𝑞(𝐺 ∖
𝑆) ≤ |𝑆|, then 𝐺 contains a perfect matching.

Lemma 2.2.4 (Tutte’s Generalised Criterion)

Let 𝑓 ∈ ℕ be even. Suppose 𝐺 is a graph such that for every pair of disjoint sets 𝑆, 𝑇 ⊆
𝑉 (𝐺) the following holds:

𝑞(𝐺 ∖ (𝑆 ∪ 𝑇 )) ≤ |𝑆|𝑓 − ∑
𝑤∈𝑇

(𝑓 − |Γ𝐺(𝑤) ∖ 𝑆|)

Then 𝐺 contains a spanning subgraph 𝐺′ ⊆ 𝐺 which if 𝑓-regular.

2.3 Probabilistic Tools

Next we introduce standard tools for randomised algorithms. A dependency graph for a set of 

events 𝐸1, …, 𝐸𝑛 is a graph 𝐺 = (𝑉 , 𝐸) such that 𝑉 = {1…, 𝑛} and, for 𝑖 = 1, …, 𝑛, event 𝐸𝑖 

is mutually independent of the events {𝐸𝑗 | (𝑖, 𝑗) ∉ 𝐸}. The degree of the dependency graph is 

the maximum degree of any vertex in the graph.

Lemma 2.3.1 (Lovász Local Lemma)

Let 𝐸1, …, 𝐸𝑛 be a set of events over some probability space with probability 𝒟︀, and 

assume that for some 𝛽 ∈ (0, 1) the following hold:

• The degree of the dependency graph given by (𝐸1, …, 𝐸𝑛) is bounded by 𝑑.

• For all 𝑖 ∈ [𝑛], 𝖯𝗋𝐸𝑖←$𝒟︀[𝐸𝑖] ≤ 𝛽.

• 𝛽 ≤ 1
4𝑑 .

Then 𝖯𝗋[∩𝑛
𝑖=1 𝐸𝑖] > 0

5More specifically, in the Tutte criterion 𝑞(𝐺) denotes the number of odd sized connected components.
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Lemma 2.3.2 (Multiplicative Chernoff bound)

Suppose 𝑋1, …, 𝑋𝑛 are identical independent random variables taking values in {0, 1}. 

Let 𝑋 denote their sum and let 𝜇 = 𝑛𝔼[𝑋1] denote the sum’s expected value. Then, for 

any 0 < 𝛿 < 1, we have

𝖯𝗋[|𝑋 − 𝜇| ≥ 𝛿𝜇] ≤ 2𝑒−(𝛿2𝜇)/3

The proof of Lemma 2.3.2 and Lemma 2.3.1 can be found in any textbook on randomised 

algorithms (for example, see [23: see Ch. 1 and 7]).

Lemma 2.3.3 is originally by [5: see Lemma 4.3], re-derived here for completeness.

Lemma 2.3.3 (Partition Theoem)

For every 0 < 𝑐 < 1 and 𝛾 > 0, there exists 𝑑0 such that the following holds. If 𝐺 is a 𝑑-

regular graph, for some 𝑑 ≥ 𝑑0, then there exists a subset 𝐴 ⊆ 𝑉 (𝐺) such that

𝑐𝑑 − 𝛾𝑑 ≤ |Γ𝐺(𝑣) ∩ 𝐴| ≤ 𝑐𝑑 + 𝛾𝑑 (1)

for every 𝑣 ∈ 𝑉 (𝐺).

Proof.  We prove the existence of such a partition 𝐴 ⊆ 𝑉 (𝐺) using the probabilistic method. 

For each 𝑣 ∈ 𝑉 (𝐺), we toss an independent coin 𝑋𝑖 with bias 𝑐. We include 𝑣 in 𝐴 if and 

only if 𝑋𝑖 = 1. Thus, 𝑋⃗ ≔ (𝑋1, …, 𝑋𝑛) ∈ {0, 1}𝑛 is a random variable that describes how 

we choose 𝐴. For any 𝑣 ∈ 𝑉 , let 𝑌𝑣 ≔ |Γ𝐺(𝑣) ∩ 𝐴| denote the random variable that counts 

the number of neighbours of 𝑣 in 𝐴. Define 𝛿 ≔ 𝛾
𝑐 , and for every 𝑣 ∈ 𝑉  let 𝐸𝑣 = 𝟙(|𝑌𝑣 −

𝑑𝑐| ≥ 𝛿𝑐𝑑) denote the bad event that 𝑣 has too many or too few neighbours in 𝐴. Observe that 

the dependency graph of events {𝐸𝑣}{𝑣∈𝑉 } has maximum degree at most 𝑑2 (only vertices 

at most two hops away from 𝑣 affect how many of 𝑣’s neighbours are in 𝐴; there at most 

𝑑2 such vertices). As 𝐺 is 𝑑-regular, 𝔼𝑋⃗[𝑌𝑣] = 𝑐𝑑. By the Lemma 2.3.2, for any 𝑣 ∈ 𝑉  we 

have 𝖯𝗋𝑋⃗[𝐸𝑣] ≤ 2𝑒−𝛿2𝑐𝑑/3 ≕ 𝛽. For 𝑑 sufficiently large we have 𝛽 ≤ 1
4𝑑2 , and so 𝛽𝑑2 ≤ 1

4 . 

All the conditions of Lemma 2.3.1 are satisfied, from which we conclude that, with positive 

probability, none of the bad events happen. This implies the desired 𝐴 ⊆ 𝑉 (𝐺) exists. ⁠ □

3 Topological embedding

In this section we describe the topological embedding result of Nemanja Draganić, Michael 

Krivelevich, and Rajko Nenadov. [11]. We start with a necessary definition.

9
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Definition 3.1 (Sub-divisions)

Given a graph 𝐻  and a function 𝜎 : 𝐸(𝐻) → ℕ, the 𝜎-subdivision of 𝐻 , denoted by 𝐻𝜎, 

is the graph obtained by replacing each edge in 𝐸(𝐻) with a path of length 𝜎(𝑒) joining 

the end points of 𝑒 such that all these paths are mutually vertex disjoint, except at the 

end points.

If a graph 𝐺 contains 𝐻𝜎 for some 𝜎 : 𝐸(𝐻) → ℕ, then we say 𝐺 contains 𝐻  as a topological 

minor. In our application, it will be important that we can control the parity of 𝜎(𝑒). The 

following result follows directly from [11: see Theorem 1].

Theorem 3.2 (Embedding Theorem)

For every 𝐷 ∈ ℕ there exist 𝛼, 𝜉, 𝐶 > 0, such that the following holds. Suppose 𝐺 is a 

graph with 𝑛 vertices and 𝑚 ≥ 𝐶𝑛 edges such that for every pair of disjoint subsets 𝑆, 𝑇 ⊆
𝑉 (𝐺) of size |𝑆|, |𝑇 | ≥ 𝜉𝑛, we have

|𝑒{𝐺}(𝑆, 𝑇 ) − |𝑆‖𝑇 |𝑝| ≤ 𝜉 |𝑆‖𝑇 | 𝑝

where 𝑝 = 𝑚/(𝑛
2 ). Then 𝐺 contains 𝐻𝜎, where 𝐻  is any graph with maximum degree at 

most 𝐷, 𝐻𝜎 has at most 𝛼𝑛 vertices, and 𝜎(𝑒) ≥ log 𝑛 for every 𝑒 ∈ 𝐸(𝐻).

When 𝐺 is an (𝑛, 𝑑, 𝜆) graph, we will we make use of Theorem 3.2 to show that 𝐺 satisfies 

the required properties, thereby contains 𝐻  as a topological minor. This gives us the following 

corollary.

Corollary 3.2.1

For every 𝐷 ∈ ℕ} there exist 𝑑0, 𝑛0 ∈ ℕ, 𝜀, 𝛼 ∈ (0, 1), such that the following holds. 

Suppose 𝐺 is an (𝑛, 𝑑, 𝜆)-graph where 𝑑 ≥ 𝑑0, and 𝜆 < 𝜀𝑑, and 𝑛 ≥ 𝑛0. Let 𝐵 ⊆ 𝑉 (𝐺) 
be a subset of size |𝐵| ≥ 𝑛

20 , and 𝐻  is any graph with maximum degree at most 𝐷 and at 

most 𝛼 𝑛
log 𝑛  vertices. Then the induced sub-graph 𝐺[𝐵] contains 𝐻𝜎 such that 𝜎(𝑒) is odd 

for every 𝑒 ∈ 𝐸(𝐻).

Proof.  Let 𝑚 denote the number of edges in the induced subgraph 𝐺[𝐵], which gives us 2𝑚 =
𝑒𝐺(𝐵, 𝐵). Denote 𝑏 ≔ |𝐵| and define 𝑝 = 𝑚/( 𝑏

2). By the Lemma 2.2.2, we have

|2𝑚 − 𝑑
𝑛

𝑏2| ≤ 𝜆𝑏 (2.1)

Dividing both sides with 𝑏(𝑏 − 1), and observing that 𝑑𝑏2

𝑛(𝑏−1)𝑏 = ( 𝑑
𝑛)( 𝑏

𝑏−1) = 𝑑
𝑛(1 + 1

𝑏−1), we 

further get

10
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| 2𝑚
𝑏(𝑏 − 1)

− 𝑑
𝑛

− 𝑑
𝑛(𝑏 − 1)

| ≤ 𝜆
𝑏 − 1

(3.1)

From this we have

|𝑝 − 𝑑
𝑛

| = |𝑝 − 𝑑
𝑛

− 𝑑
𝑛(𝑏 − 1)

+ 𝑑
𝑛(𝑏 − 1)

| (4.1)

≤ |𝑝 − 𝑑
𝑛

− 𝑑
𝑛(𝑏 − 1)

| + 1
(𝑏 − 1)

(4.2)

≤ 𝜆
(𝑏 − 1)

+ 1
𝑏 − 1

(4.3)

≤ 2𝜆
𝑏

(4.4)

Let us briefly justify each step: Equation 4.2 comes from the triangle inquality and 𝑑
𝑛 ≤ 1; 

Equation Equation 4.3 comes from Equation Equation 3.1; the last inequality comes from the 

assumption that 𝑏 ∈ Ω(𝑛), so the inequality holds for 𝑛 large enough.

Let 𝜉 be as given by the Theorem 3.2. Using the bound on the difference between 𝑝 and 𝑑
𝑛 , 

for every disjoint subsets 𝑆, 𝑇 ⊆ 𝐵 of size |𝑆|, |𝑇 | ≥ 𝜉𝑛, for 𝜆 < 𝜀𝑑 where 𝜀 is sufficiently 

small, we have

|𝑒𝐺(𝑆, 𝑇 ) − 𝑝|𝑆‖𝑇 || ≤ |𝑒𝐺(𝑆, 𝑇 ) − 𝑑
𝑛

|𝑆‖𝑇 || + |𝑑
𝑛

|𝑆‖𝑇 | − 𝑝|𝑆‖𝑇 || (5.1)

≤ 𝜆√|𝑆‖𝑇 | + 2𝜆
𝑏

|𝑆‖𝑇 | ≤ 𝜉 |𝑆‖𝑇 |𝑝 (5.2)

With the lower bounds on 𝑆, 𝑇  and 𝐵, we can make 𝜀 sufficiently small with respect to 𝜉 to 

get the upper bound in the last step. Let 𝜎 : 𝐸(𝐻) → ℕ be the constant function where 𝜎(𝑒) 
is the smallest odd integer larger than log 𝑛. As 𝐺[𝐵] has at least 𝐶𝑛 edges (by the Lemma 

2.2.2), 𝜎(𝑒) ≤ 2 + log 𝑛, and 𝐻  has at most 𝛼 𝑛
log 𝑛  vertices, we can invoke the Theorem 3.2 

to conclude that 𝐺[𝐵] contains 𝐻𝜎.

⁠ □

4 Perfect matching and regular subgraphs

As described earlier, the second ingredient in our hardness proof is showing that a certain 

residual graph contains a perfect matching or a spanning (𝑡 − 1)-regular subgraph. In this 

section we state and prove these ingredients.
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Lemma 4.1 (Perfect Matching Lemma)

Let 𝐺 be an (𝑛, 𝑑, 𝜆)-graph with 𝜆 < 𝑑/50, and suppose 𝐺′ ⊆ 𝐺 satisfies 𝛿(𝐺′) ≥ 0.9𝑑. 

Then for all 𝑆 ⊆ 𝑉 (𝐺′), 𝐺′ ∖ 𝑆 has at most |𝑆| connected components, that is, 𝑞(𝐺′ ∖
𝑆) ≤ |𝑆|. Therefore, if 𝐺′ has an even number of vertices then it contains a perfect 

matching.

Proof.  Let 𝑈 = 𝑉 (𝐺′). We aim to show that the graph 𝐺′ ∖ 𝑆 has at most |𝑆| connected 

components. If |𝑆| ≥ |𝑈|/2 then 𝐺′ ∖ 𝑆 has at most |𝑆| vertices, so the the upper bound on 

connected components trivially holds. For the remainder of the proof we can assume |𝑆| <
|𝑈|/2. We claim the following:

Claim: For every partition 𝑋 ∪ 𝑌 = 𝑈 ∖ 𝑆, with |𝑋|, |𝑌 | ≥ |𝑆|
3 , we have

𝑒𝐺′(𝑋, 𝑌 ) ≥ 1 ⇒ 𝑞(𝐺′ ∖ 𝑆) ≤ |𝑆|

Proof Of Claim.  To see why, assume towards a contradiction that there exists an edge 

in 𝐺′ between every partition 𝑋 ∪ 𝑌 = 𝑈 ∖ 𝑆, where |𝑋|, |𝑌 | ≥ |𝑆|/3, and 𝐺′ ∖ 𝑆 has 

more than |𝑆| connected components. Denote the vertex sets of these components by 

𝐶1, …, 𝐶𝑘, for some 𝑘 > |𝑆|. Let 𝑋∗ ≔ 𝐶1 ∪ … ∪ 𝐶𝑠 and 𝑌 ∗ ≔ 𝐶𝑠+1 ∪ … ∪ 𝐶𝑘, where 𝑠 =
⌊|𝑆|/2⌋ ≥ |𝑆|/3. By construction, even if each component 𝐶𝑖 is a singleton set, we get that 

|𝑋∗|, |𝑌 ∗| ≥ |𝑆|/3. Now as all 𝐶𝑖’s are disjoint connected components, there can be no 

edge between 𝑋∗ and 𝑌 ∗. Therefore, we have found a partition 𝑋∗ ∪ 𝑌 ∗ = 𝑈 ∖ 𝑆 with 

|𝑋∗|, |𝑌 ∗| ≥ |𝑆|/3 without an edge between them, which contradicts our assumption that 

all appropriately sized partitions have at least one edge between them. ⁠ □
To complete our main proof, it suffices to show 𝑒𝐺′(𝑋, 𝑌 ) ≥ 1 for every partition 𝑋 ∪ 𝑌 =
𝑈 ∖ 𝑆 with |𝑋|, |𝑌 | ≥ |𝑆|/3.

Consider some arbitrary partition 𝑋 ∪ 𝑌  of 𝑈 ∖ 𝑆, with |𝑋|, |𝑌 | ≥ |𝑆|/3, and without loss 

of generality assume |𝑋| ≤ |𝑌 |. Then by a simple counting argument we get

|𝑋| ≤ |𝑈| − |𝑆|
2

≤ 𝑛 − |𝑆|
2

(6.1)

We have:

𝑒𝐺′(𝑋, 𝑋) + 𝑒𝐺′(𝑋, 𝑆) ≤ 𝑒𝐺(𝑋, 𝑋) + 𝑒𝐺(𝑋, 𝑆) (7.1)

≤ 𝑑
𝑛

|𝑋|2 + 𝜆 |𝑋| + 𝑑
𝑛

|𝑋‖𝑆| + 𝜆√|𝑋‖𝑆| (7.2)

≤ 𝑑
𝑛

|𝑋| (𝑛 − |𝑆|)
2

+ 𝜆 |𝑋| + 𝑑
𝑛

|𝑋‖𝑆| + 𝜆
√

3 |𝑋| (7.3)

< 𝑑|𝑋|
2

+ 𝑑|𝑋||𝑆|
2𝑛

+ 3𝜆 |𝑋| (7.4)
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< 𝑑
2

|𝑋| + 𝑑
4

|𝑋| + 3𝜆 |𝑋| (7.5)

< 9𝑑
10

|𝑋| (7.6)

These steps are justified as follows: The first equation follows from the Lemma 2.2.2; Equa

tion 7.3 comes from Equation 6.1 and |𝑋| ≥ |𝑆|/3; Equation 7.5 comes from |𝑆| < 𝑛
2 ; and 

Equation 7.6 comes the assumption 𝜆 < 𝑑
50 . By the assumption 𝛿(𝐺′) > 0.9𝑑 we conclude 

that there is an edge in 𝐺′ with one vertex in 𝑋 and the other in 𝑉 (𝐺′) ∖ (𝑋 ∪ 𝑆) = 𝑌 .

⁠ □
The next lemma shows that subgraphs of (𝑛, 𝑑, 𝜆)-graphs with large minimum degree contain 

regular spanning subgraphs.

Lemma 4.2 (Regular Subgraph Lemma)

For every 𝐶 > 1 there exists 𝑑0 = 𝑑0(𝐶) such that the following holds. Suppose 𝐺 is an 

(𝑛, 𝑑, 𝜆) graph with 𝜆 < 𝜀𝑑 and 𝑑 ≥ 𝑑0, where 𝜀 < 1/(100𝐶 3
2 ). If 𝐺′ ⊆ 𝐺 has minimum 

degree 𝛿𝐺′ ≥ 𝑑 − 𝐶 , then 𝐺′ contains a spanning 𝑓-regular subgraph for any even 2 ≤
𝑓 ≤ 𝑑/2.

Proof.  We prove this lemma using Lemma 2.2.4. We need to show that for any pair of disjoint 

sets 𝑆, 𝑇 ⊆ 𝑉 (𝐺′), we have

𝑞(𝐺′ ∖ (𝑆 ∪ 𝑇 )) ≤ |𝑆|𝑓 − ∑
𝑤∈𝑇

(𝑓 − |Γ𝐺′(𝑤) ∖ 𝑆|) (8.1)

As 𝜀 < 1/(100𝐶 3
2 ) and 𝐶 > 1, we have that 𝜀 < 1/100. This implies that 𝐺 is an (𝑛, 𝑑, 𝜆) 

graph with 𝜆 < 𝑑
100 . We set 𝑑0 ≔ 𝑑0(𝐶) large enough such that for all 𝑑 ≥ 𝑑0, even after 

deleting at most 𝐶 edges incident on each vertex of the 𝑑-regular graph 𝐺 to get 𝐺′, we have 

the minimum degree of 𝐺′ to be 𝛿𝐺′ ≥ 𝑑 − 𝐶 > 9𝑑/10. Therefore the conditions of Lemma 

4.1 are satisfied, thus

𝑞(𝐺′ ∖ (𝑆 ∪ 𝑇 )) ≤ |𝑆 ∪ 𝑇 | = |𝑆| + |𝑇 | (9)

To prove Equation 8.1, it suffices to show

|𝑆| + |𝑇 | ≤ |𝑆| 𝑓 − |𝑇 |𝑓 + |𝑇 |(𝑑 − 𝐶) − 𝑒𝐺′(𝑆, 𝑇 ) (10.1)

≤ |𝑆| 𝑓 − ∑
𝑤∈𝑇

(𝑓 − |Γ𝐺′(𝑤) ∖ 𝑆|) (10.2)

We distinguish a few cases.

Case 1: Suppose |𝑆| ≤ |𝑇 |. As 𝑓 ≤ 𝑑/2, we have
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|𝑆|𝑓 + |𝑇 |(𝑑 − 𝐶 − 𝑓) ≥ (|𝑆| + |𝑇 |)(𝑑
2

− 𝐶) (11.1)

The condition described by the inequality Equation  10.1 is satisfied via the following 

analysis.

|𝑆| + |𝑇 | + 𝑒𝐺′(𝑆, 𝑇 ) ≤ |𝑆| + |𝑇 | + |𝑆‖𝑇 | 𝑑
𝑛

+ 𝜀𝑑√|𝑆||𝑇 | (12.1)

≤ |𝑆| + |𝑇 | + 𝑑
4
(|𝑆| + |𝑇 |) + 𝜀𝑑1

2
(|𝑆| + |𝑇 |) (12.2)

≤ (|𝑆| + |𝑇 |)(𝑑
4

+ 1 + 𝜀𝑑
2

) (12.3)

< (|𝑆| + |𝑇 |)(𝑑
2

− 𝐶) (12.4)

≤ |𝑆|𝑓 − |𝑇 |(𝑑 − 𝐶 − 𝑓) (12.5)

Equation 12.1 comes from the Lemma 2.2.2 and 𝜆 < 𝜀𝑑, together with an obvious upper 

bound 𝑒𝐺′(𝑆, 𝑇 ) ≤ 𝑒𝐺(𝑆,𝑇). Equation Equation 12.2 comes from the fact that |𝑆||𝑇 | ≤
( |𝑆|+|𝑇 |

2 )
2

≤ 𝑛 (|𝑆|+|𝑇 |)
4 . Equation 12.4 comes from 𝜀 < 1/(100𝐶 3

2 ), 𝐶 > 1 and 𝑑0 being 

sufficiently large. Equation 12.5 follows from Equation 11.1 which gives us what we want.

Case 2: Suppose |𝑆| > |𝑇 |. As 𝑓 ≥ 2, we have

|𝑆|𝑓 + |𝑇 |(𝑑 − 𝐶 − 𝑓) ≥ 2|𝑆| + |𝑇 |(𝑑 − 𝐶 − 2) (13.1)

To show Equation 10.1, it suffices to show that

𝑒𝐺′(𝑆, 𝑇 ) ≤ |𝑆| + |𝑇 |(𝑑 − 𝐶 − 3) (14.1)

Now we distinguish between two subcases.

• If |𝑇 | ≤ |𝑆|
𝐶+3 , then Equation 14.1 follows from a trivial bound 𝑒𝐺′(𝑆, 𝑇 ) ≤ |𝑇 |𝑑.

• |𝑆|
𝐶+3 < |𝑇 | < |𝑆|. As |𝑆| + |𝑇 | < 𝑛 we have |𝑆| < 𝑛 − |𝑆|

𝐶+3 , thus |𝑆| < 𝑛 ≤ 𝐶+3
𝐶+4 .

Using the Lemma 2.2.2, we have

𝑒𝐺(𝑆, 𝑇 ) ≤ 𝑒𝐺′(𝑆, 𝑇 ) ≤ 𝑑
𝑛

|𝑆||𝑇 | + 𝜀𝑑√|𝑆||𝑇 | (15.1)

< 𝑑(𝐶 + 3)
(𝐶 + 4)

|𝑇 | + 𝜀𝑑|𝑇 |√(𝐶 + 3) (15.2)

= |𝑇 |𝑑 ≤ ( 𝐶 + 3
(𝐶 + 4}

) + 𝜀
√

𝐶 + 3) (15.3)
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< |𝑇 |𝑑 ≤ (𝐶 + 3
𝐶 + 4

+ 1
2(𝐶 + 4)

) (15.4)

= |𝑇 |𝑑 ≤ (1 − 1
2(𝐶 + 4)

) (15.5)

where the penultimate inequality follows from the upper bound on 𝜀. For 𝑑 sufficiently 

large in terms of 𝐶 we obviously have

|𝑇 |𝑑 ≤ (1 − 1
2(𝐶 + 4)

) < |𝑇 |𝑑 − |𝑇 |(𝐶 + 3) < |𝑆| + |𝑇 |(𝑑 − 𝐶 − 3) (16)

hence Equation 14.1 is satisfied.

⁠ □

5 Proof of Theorem Theorem 1.1

In this section we prove Theorem 1.1. As Card(𝐺, ⃗𝑡) ≡ Card(𝐺, ⃗𝑑 − ⃗𝑡)), without loss of 

generality we only prove the theorem for 𝑡 ≤ 𝑑/2. Let 𝐺 = (𝑉 , 𝐸) be an (𝑛, 𝑑, 𝜆)-graph on an 

odd number of vertices with 𝜆 < 𝜀𝑑, where 𝜀 < 1/(100𝐶 3
2 ) and 𝐶 = 6. For sufficiently small 

constant 𝛼 ∈ (0, 1), let 𝐻  denote the graph on ℎ = 𝛼 𝑛
log 𝑛  vertices as given by Lemma 2.1.5 (to 

show lower bounds for PC, we use 𝐻  from Lemma 2.1.4). Recall that any SoS proof which refutes 

PM(𝐻) has degree Ω(ℎ). We now make use of 𝐻  to show the hardness of refuting Card(𝐺, ⃗𝑡)). 
The idea is to find a restriction 𝜌 such that Card(𝐺, ⃗𝑡)|𝜌 ≡ PM(𝐻). We achieve this through 

the following steps.

• Invoke Lemma 2.3.3 with parameters 𝑐 = 0.925 and 𝛾 = 0.025 to get subsets 𝐴 ⊆ 𝑉 (𝐺) and 

𝐵 = 𝑉 (𝐺) ∖ 𝐴, such that for every 𝑢 ∈ 𝑉 (𝐺) we have

0.9𝑑 ≤ |Γ𝐺(𝑢) ∩ 𝐴| ≤ 0.95𝑑 (17.1)
0.05𝑑 ≤ |Γ𝐺(𝑢) ∩ 𝐵| ≤ 0.1𝑑 (17.2)

• From equations Equation  17.1 and Equation  17.2, |𝐵| > 𝑛
20 , with room to spare and 

|𝐸(𝐺[𝐵])| ≥ 𝑛𝑑
20 . By Corollary Corollary 3.2.1, 𝐺[𝐵] contains 𝐻𝜎 such that each 𝜎(𝑒) is odd. 

Let us denote a subgraph of 𝐺[𝐵] corresponding to 𝐻𝜎 by 𝐺𝜓. We can describe 𝐺𝜓 as a func

tion 𝜓 : 𝑉 (𝐻) → 𝐵 together with a collection of pairwise vertex-disjoint (other than at the 

endpoints) paths 𝜓(𝑢) ⇝ 𝜓(𝑣) in 𝐺[𝐵], for (𝑢, 𝑣) ∈ 𝐸(𝐻). Observe that it is at least as hard 

to refute6 PM(𝐺𝜓) as it is to refute PM(𝐻). To see why, let 𝑦1, …, 𝑦𝐸(𝐻) denote the variables 

for the PM(𝐻) formulae for each edge of 𝐻 . We use as shorthand 𝒴︀ = (𝑦𝑒)𝑒∈𝐸(𝐻) and 𝒴︀ =
(𝑦𝑒)𝑒∈𝐸(𝐻). Define a mapping 𝜌′ : 𝐸(𝐺𝜓) → {0, 1, 𝒴︀, 𝒴︀} as follows. For each (𝑢, 𝑣) ∈ 𝐸(𝐻), 
let 𝜌′(𝑥𝑒) = 𝑦(𝑢,𝑣) where 𝑒 is the first edge on the path 𝜓(𝑢) ⇝ 𝜓(𝑣). Subsequently, map each 

6Note that this by itself does not guarantee it is hard to refute PM(𝐺). We need item (3) and this to show 
hardness of refuting PM(𝐺).
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variable 𝑥𝑒 for 𝑒 ∈ 𝜓(𝑢) ⇝ 𝜓(𝑣) alternately to 𝑦𝑢,𝑣 or 𝑦𝑢,𝑣, such that the edges of the path 

adjacent to 𝜓(𝑢) and 𝜓(𝑣) are set to 𝑦(𝑢,𝑣). This is always possible as 𝑢 ⇝ 𝑣 has odd length. 

Observe that PM(𝐺𝜓)|𝜌′ ≡ PM(𝐻).

• As 𝑛 is odd and |𝑉 (𝐺𝜓)| is odd, we have that 𝑈 = 𝑉 (𝐺) ∖ 𝑉 (𝐺𝜓) has even size. From 

Equation 17.1 we have that 𝐺[𝑈] has minimum degree at least 9𝑑
10 . As 𝜆 < 𝑑

50  (with room to 

spare), we can invoke Lemma 4.1 to conclude 𝐺[𝑈] has a perfect matching 𝑀 .

• Consider the subgraph 𝐺′ ⊆ 𝐺 obtained by deleting all edges 𝑒 ∈ 𝐸(𝐺𝜓) ∪ 𝑀 , where 𝑀  is 

the perfect matching from the step above. As Δ𝐻 ≤ 5, every vertex 𝑢 ∈ 𝐺 loses at most 5 

edges in this process. Thus, we have 𝛿𝐺′ ≥ 𝑑 − 5. As 𝜆 < 𝜀𝑑, by the Lemma 4.2 we have that 

𝐺′ contains a (𝑡 − 1)-regular spanning subgraph 𝐺″.

We finally define 𝜌 as follows:

𝜌(𝑥𝑒) ≔

{





𝜌′(𝑒) if 𝑒 ∈ 𝐸(𝐺𝜓)

1 if 𝑒 ∈ 𝑀 ∪ 𝐸(𝐺″)

0 otherwise

Then Card(𝐺, ⃗𝑡)|𝜌 ≡ PM(𝐻), thus our theorem follows from Lemma 2.1.7.

6 Related Work

In propositional7 proof complexity, there a few prior examples of the strategy of embedding a 

worst case instance into a host graph to show lower bounds for a larger class of objects [18, 25]. 

Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. [25] show Tseitin lower 

bounds for Frege proof systems by relying on the embedding result by J. Kleinberg and R. Rubin

feld. [19], which allows one to embed any bounded degree graph 𝐻  of size 𝑂(𝑛/(poly(log 𝑛))) 
into an expander graph on 𝑛 vertices as a minor (not necessarily a topological one). Michael 

Krivelevich and Rajko Nenadov. [21] simplify and improve the above embedding theorem to 

allow for embedding any graph 𝐻  with size 𝑂(𝑛/ log 𝑛) as an ordinary minor . However, 

embedding a hard instance 𝐻  into 𝐺 as an ordinary minor does not guarantee that the hardness 

of 𝐻  is preserved in the setting considered in this paper. In particular, it is entirely possible 

that one of the edge contractions to obtain the minor results in 𝐻  now being easy to refute. 

Consequently, these embedding theorems cannot be directly applied show hardness of refuting 

perfect matchings in our setting Instead, as described in section Section 5, one way to preserve 

hardness is to use embedding theorems that allow for topological embeddings that allow for 

edge sub-divisions of odd size [11, 24]. In order to get a topological embedding, Austrin and 

Risse modify the ordinary embedding theorem in [21] but critically rely on the host graph being 

random. In this work, we use the embedding theorem by Nemanja Draganić, Michael Krivelevich, 

and Rajko Nenadov. [11], which greatly simplifies the argument. Moreover, we avoid the use of 

7As opposed to algebraic proof complexity
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the contiguity argument present in [5] by directly utilising Tutte’s criterion and the Expander 

Mixing Lemma.

In summary, we show degree lower bounds for refuting Card(𝐺, ⃗𝑡) for odd 𝑡 in (𝑛, 𝑑, 𝜆) graphs 

in the SoS and PC proof systems. There is still a log 𝑛 gap between the largest possible proof 

in such systems, and our lower bounds (similar to [5]). It is not inherently clear that such a gap 

should exist. The gap is an artefact of 𝑑 being constant, which makes the graphs sparse i.e we 

need Θ(log 𝑛) edges to form a path between any two nodes. This implies, that Ω(𝑛/ log 𝑛) is the 

largest hard instance we can topologically embed in any graph. Thus, if the worst case lower for 

refuting perfect matchings was indeed Ω(𝑛), we would need a more direct proof of the statement 

without using a smaller hard instance. We leave the issue of resolving the tightness of our lower 

bound as an open problem for future work.
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