
Negations are powerful even in small depth

Bruno Cavalar ∗ Théo Borém Fabris† Partha Mukhopadhyay‡

Srikanth Srinivasan§ Amir Yehudayoff¶

December 22, 2025

Abstract

We study the power of negation in the Boolean and algebraic settings and show the following
results.

1. We construct a family of polynomials Pn in n variables, all of whose monomials have posi-
tive coefficients, such that Pn can be computed by a depth three circuit of polynomial size
but any monotone circuit computing it has size 2Ω(n). This is the strongest possible sepa-
ration result between monotone and non-monotone arithmetic computations and improves
upon all earlier results, including the seminal work of Valiant (1980) and more recently
by Chattopadhyay, Datta, and Mukhopadhyay (2021). We then boot-strap this result to
prove strong monotone separations for polynomials of constant degree, which solves an
open problem from the survey of Shpilka and Yehudayoff (2010).

2. By moving to the Boolean setting, we can prove superpolynomial monotone Boolean cir-
cuit lower bounds for specific Boolean functions, which imply that all the powers of certain
monotone polynomials cannot be computed by polynomially sized monotone arithmetic
circuits. This leads to a new kind of monotone vs. non-monotone separation in the arith-
metic setting.

3. We then define a collection of problems with linear-algebraic nature, which are similar
to span programs, and prove monotone Boolean circuit lower bounds for them. In par-
ticular, this gives the strongest known monotone lower bounds for functions in uniform
(non-monotone) NC2. Our construction also leads to an explicit matroid that defines a
monotone function that is difficult to compute, which solves an open problem by Jukna
and Seiwert (2020) in the context of the relative powers of greedy and pure dynamic
programming algorithms.

Our monotone arithmetic and Boolean circuit lower bounds are based on known techniques,
such as reduction from monotone arithmetic complexity to multipartition communication com-
plexity and the approximation method for proving lower bounds for monotone Boolean circuits,
but we overcome several new challenges in order to obtain efficient upper bounds using low-depth
circuits.

∗Department of Computer Science, University of Oxford, United Kingdom. Supported by EPSRC project
EP/Z534158/1 on “Integrated Approach to Computational Complexity: Structure, Self-Reference and Lower
Bounds”. Email: bruno.cavalar@cs.ox.ac.uk

†Department of Computer Science, University of Copenhagen, Denmark. Supported by the European Research
Council (ERC) under grant agreement no. 101125652 (ALBA). Email: thfa@di.ku.dk

‡Chennai Mathematical Institute, India. Email: partham@cmi.ac.in
§Department of Computer Science, University of Copenhagen, Denmark. Supported by the European Research

Council (ERC) under grant agreement no. 101125652 (ALBA). Email: srsr@di.ku.dk
¶Department of Computer Science, The University of Copenhagen, and The Technion-IIT. Supported by a DNRF

Chair grant. Email: amir.yehudayoff@gmail.com

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 219 (2025)



Contents

1 Introduction 1
1.1 Background and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges and Proof Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Arithmetic separations 9
2.1 Polynomials from graphs and their ΣΠΣ upper bounds . . . . . . . . . . . . . . . . . 9
2.2 Monotone arithmetic complexity and communication complexity . . . . . . . . . . . 11
2.3 A multipartition communication complexity lower bound . . . . . . . . . . . . . . . 12
2.4 Monotone arithmetic circuit lower bounds . . . . . . . . . . . . . . . . . . . . . . . . 15

3 A criterion for monotone Boolean circuit lower bounds 16

4 Boolean separation 20
4.1 Nonmonotone low-depth circuit upper bounds . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Monotone Boolean circuit lower bounds via well-behaved codes . . . . . . . . . . . . 20
4.3 Explicit constructions of well-behaved codes . . . . . . . . . . . . . . . . . . . . . . . 26

5 Mixed separation 29
5.1 Nonmonotone low-depth circuit upper bounds . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Choice of a well-behaved R-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Monotone Boolean circuit lower bounds via well-behaved matrices . . . . . . . . . . 34



1 Introduction

1.1 Background and results

Separation between arithmetic models. In his paper “A single negation is exponentially
powerful”, Valiant [Val80] proved that there are n-variate monotone polynomials inVP that require

a monotone arithmetic circuit of size at least 2Ω(n1/2) and that every computation in VP can
be performed with a single negation gate. Chattopadhyay, Datta and Mukhopadhyay [CDM21]
recently strengthened the upper bound to depth-three circuits (also known as a ΣΠΣ circuit);

they proved a 2Ω̃(n1/4) lower bound on the monotone circuit complexity of a monotone polynomial
that can be computed by a ΣΠΣ circuit of polynomial size. Another recent work shows that the
spanning tree polynomials, having n variables and defined over constant-degree expander graphs,
have monotone arithmetic circuit complexity 2Ω(n) [CDGM22]. However, the best known non-
monotone upper bound for the spanning tree polynomial is a polynomial-size algebraic branching
program (ABP) [W70] via a determinant computation [Csa76, Ber84]. Our first main result is a
strengthening of these results.

Theorem 1.1. There is an n-variate polynomial P = Pn such that the following hold:

1. P can be computed by a ΣΠΣ circuit of size O(n3).

2. Any monotone arithmetic circuit computing P has size at least 2Ω(n).

The family of polynomials (Pn)n≥1 in Theorem 1.1 can be computed by a uniform sequence of
circuits. That is, there is a Turing machine that gets n as input, runs in time poly(n) and outputs
a circuit computing Pn. The polynomial Pn is described using an expander graph G with n/2
vertices. It is of the form

Pn(x) =
∑

a∈{0,1}n/2

 ∑
{u,v}∈E(G)

auav − 1

2
n/2∏
i=1

xi,ai . (1)

We prove below that there is a small ΣΠΣ circuit for Pn. Using the fact that G is an expander,
we show that the monotone circuit complexity of Pn is high. This is based on a reduction from
monotone arithmetic circuit lower bounds to a problem in communication complexity. Several
recent results exploit the connection between monotone circuit lower bounds and communication
complexity [RY11, HY13, Sri20, CDM21, CDGM22, CGM22].

All together, this leads to the strongest possible separation between monotone and non-
monotone computation in the algebraic setting. A single negation gate which performs the sub-
traction of two monotone depth three circuits is exponentially powerful even compared to general
monotone circuits.

A padding argument allows us to deduce new separation between monotone and non-monotone
arithmetic circuits for constant degree polynomials. This allows us to solve Open Problem 9 in the
survey of Shpilka and Yehudayoff [SY10]. Before this work, such a separation for polynomials of
constant degree, was known only between monotone and general arithmetic formulas [HY09].

Theorem 1.2. For every constant k ∈ N and n ∈ N, there is an n-variate polynomial P = Pn,k of
total degree k such that the following hold:

1



1. P can be computed by a ΣΠΣ circuit of size O(n(log n)2).

2. Any monotone arithmetic circuit computing P has size at least (n/k)Ω(k).

Such a padding argument is only possible because we prove a strongly exponential lower bound
in Theorem 1.1 (strengthening [CDM21]) and because of the simplicity of our upper bounds for
the polynomial Pn defined above (it is not clear how to get such a separation from the strongly
exponential lower bound of [CDGM22]).

Separation between arithmetic and Boolean models. One of the major challenges in the
study of monotone arithmetic complexity is proving that there are explicit monotone polynomials
P such that for every monotone polynomial Q, the monotone complexity of P ·Q is high [HY21].
All of our proof techniques seem to fail for this problem. We take a step towards this problem.
We identify an explicit monotone polynomial P such that P has small non-monotone arithmetic
circuits but every power of P has high monotone complexity. As far as we know, this is the first
separation of this kind.

We do this via a connection to Boolean circuit lower bounds. For every n-variate monotone
polynomial P over R, we can define a monotone Boolean function fP : {0, 1}n → {0, 1} via the
correspondence

fP (x) = 1 ⇐⇒ P (x) > 0.

Our first observation is that a monotone circuit for P leads to a monotone circuit for fP .

Observation 1.3. If P can be computed by a monotone arithmetic circuit of size s, then fP can
be computed by a monotone Boolean circuit of size s.

Sketch. The Boolean circuit for s is obtained by replacing + gates by ∨ gates and × gates by ∧
gates. ■

One advantage is that fP corresponds not just to P but also to all the powers of P . So, a
monotone lower bound for fP leads to a monotone lower bound to all the powers of P . A second
important advantage is that we know how to prove lower bounds for monotone Boolean complexity.
Razborov [Raz85] and many works that followed [AB87, Tar88, HR00, CKR22, CGR+25] devel-
oped the approximation method for proving Boolean monotone circuit complexity lower bounds.
In particular, the known lower bounds for the perfect bipartite matching function already imply
that any power of the permanent polynomial is superpolynomially [Raz85] (and even exponen-
tially [CGR+25]) hard for monotone arithmetic circuits.

We can extend this to show separations. To do this, we also need to upper bound the non-
monotone circuit complexity of P or fP . A central tool in proving arithmetic circuit upper bounds
in through linear algebra and the determinant [Csa76, Val79, Ber84, MV97]. All together we get
the following strong separation.

Theorem 1.4. There is a monotone n-variate polynomial P = Pn, over the reals, such that the
following hold:

1. P can be computed by an arithmetic circuit of size polynomial in n and depth O((log n)2).

2. Any monotone Boolean circuit computing the Boolean function fP that corresponds to P has
size at least nΩ((logn)1/2).

It follows that any monotone arithmetic circuit computing a power of P must be of super-
polynomial size as well.

2



Separations between Boolean models. An adaptation of our construction to work over the
field F2 leads to an improved separation between monotone and non-monotone circuits in the
Boolean setting as well. We take a small detour to explain the context better. The results in
[AB87, Tar88] show that there exists a monotone function in P that requires monotone circuits

of size 2n
1/6−o(1)

. Building on these results, de Rezende and Vinyals [dRV25] have recently shown

that there exists a monotone function in P that requires monotone circuits of size 2n
1/3−o(1)

. Very
recently, Cavalar et al. [CGR+25] improved Razborov’s result and showed that the matching func-
tion for bipartite graphs (computable in RNC [Lov79] and in quasi-NC [FGT19]) and another

explicit monotone function computable in L require monotone circuits of size 2n
1/6−o(1)

. Earlier
works [GKRS18, GGKS20] also exhibited an explicit function in NC requiring monotone circuits
of size 2n

ε
, where ε > 0 is an unspecified constant.

In this paper, we obtain the following theorem, proving the strongest quantitative lower bounds
for a function in NC (except for the o(1) terms, it also matches the best known lower bound for a
function in P).

Theorem 1.5. For every sufficient large n ∈ N, there is a monotone Boolean function f : {0, 1}n →
{0, 1} such that the following hold:

1. f can be computed by a uniform Boolean circuit of size polynomial in n and depth O(log n)2,
i.e., f is in uniform NC2

2. Any monotone Boolean circuit computing f has size at least 2n
1/3−o(1)

.

The function f from Theorem 1.5 has an additional important property. As any monotone
function is specified by its min-terms, it is interesting to compare the “complexity” of the min-
terms to the monotone complexity of the function. Concretely, Jukna and Seiwert [JS20] studied
monotone functions whose min-terms are the bases of a matroid. Their motivation was comparing
the power of greedy algorithms and pure dynamic programming algorithms. In their terminology,
the function f from Theorem 1.5 gives an explicit problem for which a greedy algorithm exactly
solves the problem whereas the cost of approximately solving the problem using pure dynamic
programming is high. They proved that such problems exists using counting arguments, but we
provide the first explicit example of such a function, solving an open problem from their work
(see [JS20, Problem 1]). While there have been other lower bounds recently for monotone Boolean
functions defined via linear algebra [GKRS18, CGR+25], they do not seem to yield a lower bound
for a matroid-based function as above.

1.2 Challenges and Proof Ideas

Arithmetic lower bounds. In order to prove Theorem 1.1, we follow an idea of Hrubeš and
Yehudayoff [HY13] in the non-commutative setting,1 which was in turn inspired by results from
communication complexity [Raz92, FMP+15]. Let P (x1,0, x1,1, . . . , xn,0, xn,1) be a (set-multilinear)
polynomial such that each monomial in P has the form x1,a1 · · ·xn,an for some a ∈ {0, 1}n. It is
known [Nis91] that if P has a ‘simple’2 monotone non-commutative circuit of size s, then we can

1In this model, variables do not commute.
2The technical term for this is an Algebraic Branching Program (ABP). A similar but more complicated decom-

position can be given for general circuits.

3



write

P =
s∑

i=1

Qi ·Ri

where each Qi depends on the first half of the variables (xj,b for j ∈ [n/2]) and Ri on the lat-
ter half, and the polynomials are all monotone. This is analogous to the setting of commu-
nication complexity, where we can use a small 2-party communication protocol for a function
f : {0, 1}n/2 × {0, 1}n/2 → {0, 1} to decompose f into a small sum of Boolean (and hence
non-negative) rectangles. The work of [HY13] shows how to exploit this connection to obtain a
non-monotone versus monotone separation. The separating example is inspired by the Unique-
Disjointness function. This function has a simple algebraic description via inner products which
leads to a non-monotone upper bound, and the lower bound uses ideas from Razborov’s lower
bound [Raz92] on the communication complexity of this problem.

Our set-up is the standard commutative setting, which means that we get a similar decom-
position to the one above, except that each Qi depends on (an unknown subset of) half of the
variables (or more precisely xj,b for some j ∈ Si where |Si| = n/2). Now, the analogy is no
longer with the standard model of communication complexity but with the model of multipartition
communication complexity, where each rectangle in the decomposition is allowed to use a differ-
ent partition of the inputs. This model and its variants have been investigated before in works
of [ĎHJ04, Hay11, HY16]. The work of [Hay11, Juk15, HY16] in particular discovered a technique
to ‘lift’ some structured lower bounds from standard communication complexity to the multipar-
tition setting, by defining variants of the hard functions (for the standard communication model)
using an expander graph. In particular, the lower bounds for the Unique-disjointness function are
amenable to this lifting technique. The polynomial Pn defined in (1) is an algebraic variant of
this lifted Boolean function (analogous to how the separating example of [HY13] is related to the
Unique-disjointness function). The lower bound argument combines a non-deterministic commu-
nication complexity lower bound for Unique-Disjointness (this is due to Razborov but we use a
version due to [KW15]). To lift the lower bound, we need to construct a hard distribution that
allows to carry out a covering argument. This hard distribution uses some ideas from [Sri20].

To get a separation for constant-degree polynomials (hence resolving the open problem
from [SY10]), we use a padding argument. The variables of Pn naturally come in n groups, each of
size 2. We collect these groups into k buckets of size n/k each. There are now 2n/k possible mono-
mials in each group and we define a new polynomial Qk treating these monomials as our variables.
It easily follows that Qk is at least as hard as Pn since a circuit for Qk easily yields a circuit for
Pn by replacing each variable of Qk by the corresponding monomial. The converse, however, is not
clear. Nevertheless, because our depth-3 non-monotone circuits for Pn are very simple, we are also
able to modify this construction to get a non-monotone circuit for Qk of small size and depth.

Arithmetic and Boolean upper bounds. To prove Theorems 1.4 and 1.5, we consider poly-
nomials and Boolean functions corresponding to full-rank sets of vectors. Let M be an r×n matrix
over a field F. We are going to consider both the cases in which the field is a finite field and R. For
any subset S ⊆ [n] of the columns of M , let M [S] be the restriction of M to the columns in S. Let
fM : {0, 1}n → {0, 1} be the monotone Boolean function associated to M defined as

fM (x) = 1 iff the matrix M [S] has full rank,

4



where S = {i ∈ [n] : xi = 1} is the set of columns of M that x indicates. Equivalently, the function
fM (x) evaluates to 1 iff the linear system yTM [S] = 0 has a unique solution. This can be checked
by a Boolean circuit of polynomial size and depth O(log n)2 [ABO99, Mul87].

When F = R, we also associate with M an n-variate multilinear polynomial PM via

PM (x) :=
∑

S⊆[n]:
|S|=r

det(M [S])2 ·
∏
i∈S

xi. (2)

For x ∈ {0, 1}n, it follows that PM (x) > 0 iff fM (x) = 1. The Cauchy–Binet formula allows to
compute PM efficiently with a non-monotone circuit (and in poly-log depth). This leads to our
arithmetic non-monotone upper bounds.

It is tempting to try to derive our separations with the type of functions considered in [GKRS18,
CGR+25]. These functions correspond to checking whether a certain system of linear equations
is satisfiable. More concretely, there is an implicit matrix M over a field F, and the input string
is interpreted as encoding a subset S of the columns of M . The function accepts if M [S] spans
a fixed target vector v ̸= 0. However, unlike the full-rank property which is tightly related to
the determinant polynomial, it does not seem possible to connect such a span restriction with an
efficiently constructible polynomial. Moreover, whereas a full-rank set of vectors is a basis of a
vector space (and thus of a matroid), the same cannot be said of vectors spanning v. This is crucial
for our solution of the Problem 1 of [JS20].

Finally, as we discuss in the Open Problems section, the function fM can be computed
by a rarely studied monotone model of computation which we name monotone rank programs.
These are restrictions of monotone span programs, a widely studied monotone computational
model [KW93, BGW99] that computes the functions from [GKRS18, CGR+25] and is equiva-
lent to linear secret-sharing schemes [Bei11]. It is possible that monotone rank programs are much
weaker than monotone span programs, just like monotone dependency programs (another restric-
tion of monotone span programs) [PS96]. If that is true, then our work extends the exponential
monotone circuit lower bound shown for monotone span programs [GKRS18] to an even simpler
computational model.

Monotone Boolean lower bounds. We now discuss the monotone Boolean circuit lower bounds
in this paper. Recall from above that there is a fixed matrix r × n M and we want to prove a
lower bound for the Boolean function fM : {0, 1}n → {0, 1} which decides if a given subset of the
columns of M is full-rank or not.

To prove such a lower bound, we turn to the approximation technique of Razborov [Raz85]
which has seen many refinements over the years [AB87, Ros14, CKR22, CGR+25]. Based on these
works, we abstract out the core of the approximation method as applied to monotone Boolean
circuit lower bounds into a general and clean statement (Theorem 3.3) below. Informally, the
statement says that to prove a monotone circuit lower bound for a Boolean function f , it suffices
to devise two distributions D0 and D1, supported on the 0s and 1s of f respectively, that satisfy
two conditions:

• (Spreadness of D1): The probability that any w variables are simultaneously set to 1 under
D1 is at most q−w (for as large a q and w as possible).

5



• (Robust Sunflowers for D0): Any w-DNF of size sk contains a subset that is a robust sunflower
with respect to D0. Informally, this is a subset of the terms that can be replaced by a single
term without changing the DNF much on inputs from D0.

The lower bound obtained from these two conditions is roughly (q/s)w. At a high-level, the spread-
ness of D1 says that it is supported on strings of low weight, and the sunflower property of D0 says
that it is supported on strings of high weight. By the monotonicity of f , these weight are “opposite
of what they should be”; the 1s of f should be higher than the 0s of f .

To use this technique for fM , we need to define the distributions which in turn depend on the
choice of M. The cleanest example is that of a random r×n matrix over F2 where r ≈ nε. Standard
calculations show that such a matrix satisfies two linear algebraic properties:

• P1: Most subsets of r columns are linearly independent.

• P0: All subsets of columns of cardinality r′ = Ω̃(r) are linearly independent.

P1 allows us to easily obtain a spread D1 with as low a Hamming weight as possible: simply choose
a random subset of size r and set these bits to 1. This is a spread distribution with spreadness
parameter q ≈ (n/r).

Choosing the distribution D0 is slightly trickier: To sample a large number of columns that are
linearly dependent, we choose a random vector u ∈ Fr

2 and pick all the columns that are orthogonal
to u. This distribution has uniform marginals (and thus relatively high Hamming weight) and is also
r′-wise independent by property P0 above. This last property allows us to prove the robust sunflower
property for D0 by replacing D0 by the uniform distribution, since low-width w ≈

√
r′ DNFs cannot

distinguish between the two [Baz09, Tal17] except with error exp(−Ω̃(
√
r′)). Recent bounds on

robust sunflower lemmas with respect to product distributions [ALWZ21, BCW21, Rao25] can now
be used to argue the desired property with the parameter s ≈

√
r′. Optimizing the parameters

leads to choosing r as r ≈ n2/3 which leads to a lower bound of ≈ exp(n1/3). Interestingly, this is
the first time Bazzi’s theorem is employed to show monotone circuit lower bounds.

We note that Bazzi’s theorem is the only overhead in our lower bound, otherwise we could have
matched the best known monotone circut lower bound for an NP function (≈ exp(n1/2) [CKR22]).
Nonetheless, our reduction to the robust sunflower lemma via Bazzi is more efficient than the
reduction from matching-sunflowers via “blocky” families of [CGR+25], which gives us a lower
bound of higher order for an NC function (theirs being ≈ exp(n1/6)). On the other hand, their
upper bound is better (the function is in L), which makes the results arguably incomparable.

To obtain explicit matrices with the above properties, we use constructions of binary linear
codes with sufficiently high distances and dual distances. By translating properties P0 and P1 into
the coding theory language, we can obtain P0 by proving that the dual distance of the code is at
least r′, and P1 by proving that its distance is sufficiently large.

Finally, to prove the separation between the arithmetic and Boolean models, we need to argue
the above lower bound for a real matrix M . A natural strategy is to repeat the above argument,
say, for random matrices where each column is an independent sign vector v ∈ {−1, 1}r. However
this leads to a problem with defining the distribution D0 as above, since the point thus sampled is
unlikely to have a high Hamming weight (by standard anti-concentration arguments [LO43, Erd45],
the chance that two random sign vectors are orthogonal is small), and thus D0 has marginals that
are small.

We need to have many real vectors so that many of their subsets are linearly dependent. How
to achieve this? The main idea is to choose a sparse matrix. We sample each column of M to be a

6



random Boolean vector of low Hamming weight. This now gives a distribution D0 that has higher
marginals and satisfy a weak form of bounded independence. Unfortunately, we are unable to apply
this weak form in conjunction with the strongest robust sunflower lemmas. We are, however, able
to use it along with the classical sunflower lemma [ER60] and thus prove a superpolynomial lower
bound à la Razborov [Raz85] (instead of an exponential lower bound).

Hamming balls and subspaces. On the way to establishing the spreadness property for D1,
we prove a technical result about intersection patterns of subspaces and the Boolean cube, which
we believe is independently interesting. Let F be any field and V be a subspace of Fn of dimension
d. It is a standard fact that |V ∩{0, 1}n| ≤ 2d (see e.g. [AY24]). We extend this bound from the full
Hamming cube to a Hamming ball of radius s. We prove that the number of points of the Boolean
cube and Hamming weight at most s in V is at most

(
d
≤s

)
. These bounds are all easily seen to be

tight for a vector space V generated by d standard basis vectors.

1.3 Open problems

The power of monotone rank programs. A monotone span program of size k over a field
F is a F-matrix A with k rows, together with a labelling of the rows with an input variable from
{x1, . . . , xn}. The span program accepts a binary string x ∈ {0, 1}n if the set Ax of rows whose
labels are satisfied by x span the vector e1 = (1, 0, . . . , 0) (any other vector can be chosen by a
proper change of basis). There is a linear-size monotone span program computing the functions
from [GKRS18, CGR+25]. Using standard tricks, it is not hard to compute fM with a monotone
span program as well.

Interestingly, the function fM can also be computed by a seemingly simpler monotone model
which we name monotone rank programs. Just like a monotone span program, a monotone rank
program is a matrix A with a labelling of the rows. The difference is that a monotone rank program
accepts an input x iff Ax is full-rank. Such models have been studied in the context of linear secret
sharing schemes [NNP04] and have been called “non-redundant” as there are no dependencies in
Ax for any minimally accepting x.

A related model called monotone dependency programs accepts x iff Ax is linearly dependent.
This was shown to be exponentially weaker than monotone span programs in [PS96]. It remains
an open problem to determine whether monotone rank programs are weaker than monotone span
programs.

Monotone complexity of matching over planar graphs. There are two parts for proving
a separation in computational complexity. We have two computational classes A and B, and we
need to come up with a problem P that belongs to B but does not belongs to A. In our context, A
is a monotone class and B is a non-monotone class. We have used techniques from communication
complexity [Raz92, KW15] and approximation methods [Raz85] to prove lower bounds against A.
To prove that P belongs to B, we have used either the power of depth-3 circuits with negations,
or the power of linear algebra.

There is also a different path for proving separations. In his work [Val80], Valiant used the
fact the number of perfect matchings in a planar graphs is given by the Pfaffian [Kas67] so we can
reduce it to computing the determinant polynomial. Again, the upper bound comes from linear
algebra. Valiant proved that (for some planar graphs) the Pfaffian can be computed by a non-
monotone arithmetic circuit of polynomial size; more precisely, by an algebraic branching program

7



of polynomial size. But we are interested in separating Boolean monotone circuits and arithmetic
non-monotone circuits. We know that the upper bound holds, but we do not know if deciding the
perfect matching problem is hard for planar graphs for monotone Boolean circuits.

Constant-depth separations. Theorem 1.1 shows a polynomial computable by depth-3 arith-
metic circuits requiring maximal monotone arithmetic complexity, improving previous separations
of this kind [CDM21]. In the Boolean setting, a line of works [AG87, Oko82, RW92, GS92, BGW99,
COS17, GKRS18, CO23, CGR+25] has either directly or indirectly studied the relative power of
constant-depth and monotone circuits, recently discovering a monotone function computable by
constant-depth circuits which requires superpolynomial size monotone circuits [CGR+25]. It re-
mains an open question whether there exists a monotone function computable by some constant-
depth circuit model (in fact, even O(log n)-depth) requiring exponential-size monotone circuits. Is
there a matrix M such that fM can exhibit this separation?

This type of question is also interesting from the point of view algebraic separations. Is there
a polynomial P computable by constant-depth or even logarithmic-depth arithmetic circuits and
such that fP requires superpolynomial or even exponential size monotone Boolean circuits? This
looks plausible in light of several nontrivial algorithms which have recently been implemented with
constant-depth arithmetic circuits [AW24].

Other questions. There are also more specific questions about the techniques we used to obtain
our results:

• Can we improve our lower bounds in Section 2 to Ω
((

n
k

))
for an n-variate polynomial of

constant degree k?

• Can we make the bounds in Section 5 (Theorem 1.4) exponential? This requires proving
a better robust sunflower lemma for distributions that are only weakly independent (in the
sense of Lemma 5.11). One approach would be to show that our distribution fools low-width
DNFs. Note that recent work has shown limitations on what kinds of distributions can fool
DNFs [AGG+25].

• Can we make the random choice of matrices Mn in Sections 5 explicit? In Section 4, our
construction uses explicit constructions of binary linear codes with high distances and dual
distances.

• Does the lower bound in Section 5 also hold if each column (in Mn) is just O(1)-sparse?

1.4 Acknowledgements

PM, TBF and SS started their collaboration at the Workshop on Algebraic Complexity Theory
(WACT) 2025 in Bochum and would like to thank the organizers of this workshop for their hospi-
tality. SS would also like to thank Rohit Gurjar and Roshan Raj for pointing him to polynomial
identities related to matroids using the Cauchy-Binet formula; Radu Curticapean for a discussion
related to subgraph polynomials; Duri Janett for references related to lifting theorems; and Su-
sanna de Rezende for clarifications regarding [dRV25]. BC acknowledges support of EPSRC project
EP/Z534158/1 on “Integrated Approach to Computational Complexity: Structure, Self-Reference
and Lower Bounds”.

8



Organization of the paper. The rest of the paper is organized as follows. The proofs of Theorem
1.1 and Theorem 1.2 are presented in Section 2. Section 3 contains the necessary framework for
our lower bounds of Boolean monotone circuits. The proof of Theorem 1.4 and Theorem 1.5 are
given in Section 4 and in Section 5 respectively.

2 Arithmetic separations

The goal of this section is to prove strong separations between monotone and non-monotone alge-
braic circuits.

2.1 Polynomials from graphs and their ΣΠΣ upper bounds

Let G be a graph with vertex-set [n]. Denote by E(G) the edge-set of G, and let e(G) := |E(G)|. Let
X be the set of 2n variables X := {x1,0, x1,1, . . . , xn,0, xn,1}. Let PG be the nonnegative polynomial
defined by

PG :=
∑

a∈{0,1}n

 ∑
{u,v}∈E(G)

auav − 1

2
n∏

i=1

xi,ai .

For every divisor k of n, let Qk,G be the degree-k polynomial in the k2n/k variables {xi,a | i ∈
[k], a ∈ {0, 1}n/k}, defined by

Qk,G :=
∑

a∈{0,1}n

 ∑
{u,v}∈E(G)

auav − 1

2
k∏

i=1

xi,(a(i−1)n/k+1,...,ain/k).

Note that PG = Qn,G. In the other direction, by applying the substitution

xi,a ←
∏

j∈[n/k]

x(i−1)n/k+j,aj (3)

to the polynomial Qk,G we obtain the polynomial PG. We start by proving some upper bounds for
the polynomials Qk,G.

Lemma 2.1. For all G, k as above, the polynomial Q := Qk,G has a ΣΠΣ formula of size
O(e(G)2k2n/k).

Proof. For every p ∈ N, let

Qp :=
∑

a∈{0,1}n

 ∑
{u,v}∈E(G)

auav

p
k∏

i=1

xi,(a(i−1)n/k+1,...,ain/k).

We can write Q as

Q =
∑

a∈{0,1}n

 ∑
{u,v}∈E(G)

auav

2

− 2

 ∑
{u,v}∈E(G)

auav

+ 1

 k∏
i=1

xi,(a(i−1)n/k+1,...,ain/k)

= Q2 − 2Q1 +Q0.

9



First,

Q0 =

k∏
i=1

 ∑
a∈{0,1}n/k

xi,a

 .

Second,

Q1 =
∑

{u,v}∈E(G)

∑
a∈{0,1}n

auav

k∏
i=1

xi,(a(i−1)n/k+1,...,ain/k)

=
∑

{u,v}∈E(G)

Q1,uv

where

Q1,uv :=
∑

a∈{0,1}n
auav

k∏
i=1

xi,(a(i−1)n/k+1,...,ain/k).

For every u ∈ [n], let (iu, ju) ∈ [k]× [n/k] be the unique pair such that

u = (iu − 1)n/k + ju.

If iu ̸= iv, then

Q1,uv =

 ∑
a∈{0,1}n/k

ajuxiu,a

 ·
 ∑

a∈{0,1}n/k

ajvxiv ,a


·

∏
i∈[k]\{iu,iv}

 ∑
a∈{0,1}n/k

xi,a

 .

If iu = iv, then

Q1,uv =

 ∑
a∈{0,1}n/k

ajuajvxiu,a

 · ∏
i∈[k]\{iu}

 ∑
a∈{0,1}n/k

xi,a

 .

Third,

Q2 =
∑

{u,v},{r,s}∈E(G)

Q2,uv,rs

where

Q2,uv,rs :=
∑

a∈{0,1}n
auavaras

k∏
i=1

xi,(a(i−1)n/k+1,...,ain/k).

Similarly to the cases for Q1,uv above, we can compute Q2,uv,rs using a ΠΣ monotone formula of
size O(k2k). ■

Corollary 2.2. For all G as above, the polynomial PG has a ΣΠΣ formula of size O(e(G)2n).

Proof. This follows from Lemma 2.1 using k equals n. ■

10



2.2 Monotone arithmetic complexity and communication complexity

Our monotone arithmetic circuit lower bound in based on communication complexity. This con-
nection was utilized in several works [RY11, Juk15, Sri20]. We start by defining the multipartition
rectangle number of a Boolean function and prove (for completeness) how it is related to the mono-
tone arithmetic complexity of a polynomial.

Let X be a finite set. We say that R ⊆ P(X) is a rectangle if there is a partition {Y,Z} of X
such that

R = {S ∪ T | S ∈ Y, T ∈ Z}

for some Y ⊆ P(Y ) and Z ⊆ P(Z). We say that a rectangle is balanced if |Y |, |Z| ∈ [1/3, 2/3) · |X|.
For every a ∈ {0, 1}n, let

supp(a) := { i ∈ [n] | ai = 1}

and for S ⊆ {0, 1}n, let
supp(S) := { supp(a) | a ∈ S} ⊆ P([n]).

The multipartition rectangle number mprn(f) of f : {0, 1}n → {0, 1} is the minimum number r
such that there is a family {Ri}i∈[r] of balanced rectangles (with respect to [n]) such that

supp(f−1(1)) =
⋃
i∈[r]

Ri.

The connection between arithmetic complexity and rectangle numbers is established as follows.
Let X := {x1, . . . , xm} and let X := {X1, . . . , Xn} be a partition of X to n parts. We say that a
polynomial P is X -set-multilinear if every monomial of P has exactly one element of Xi for every
i ∈ [n]. We say that a pair (g, h) of polynomials is a monotone pair (with respect to X ) if there
is a partition {Y,Z} of X such that X is a refinement of {Y, Z} and g ∈ R[Y ] and h ∈ R[Z]
and g and h are monotone polynomials. We say that a nonnegative pair (g, h) is balanced if
|XY |, |XZ | ∈ [1/3, 2/3) · |X | where for every W ⊆ X,

XW := {B ∈ X |B ⊆W}.

In words, the number of parts of X in each of Y, Z is balanced.
The following structural lemma was proved in [RY11] for general (not necessarily set-multilinear)

monotone circuits and in [Yeh19] for ordered polynomials. The proof for the set-multilinear case
below is basically the same.

Lemma 2.3. If P is a monotone X -set-multilinear polynomial computed by a monotone circuit of
size s then there is a family of balanced monotone pairs {(gi, hi)}i∈[s] such that

P =
∑
i∈[s]

gihi,

and each product gihi only contains monomials from P .

Proof sketch. In a nutshell, the proof uses that monotone circuits for set-multilinear polynomials
are syntactically set-multilinear, and the lemma follows by induction on the number of edges by
locating a single product gate that computes a balanced pair. ■

11



Now, let X be the set of 2n variables X := {x1,0, x1,1, . . . , xn,0, xn,1} and X := {X1, . . . , Xn} be
its partition with Xi := {xi,0, xi,1}. For any X -set-multilinear monomial m :=

∏n
i=1 xi,ai , let

A(m) := { i ∈ [n] | ai = 1}.

For a X -set-multilinear polynomial P , let

A(P ) := {A(m) |m ∈ supp(P )} ⊆ P([n]).

Lemma 2.4. Let f : {0, 1}n → {0, 1} and let P be a monotone X -set-multilinear polynomial. If
supp(f−1(1)) = A(P ), then

S+(P ) ≥ mprn(f).

Proof. Let C be a monotone circuit of size s computing P . By Lemma 2.3, we know that there is
a family {(gi, hi)}i∈[s] of balanced monotone pairs such that

P =
∑
i∈[s]

gihi.

This decomposition of P implies the following decomposition of its support

supp(P ) =
⋃
i∈[s]

{m1m2 |m1 ∈ supp(gi),m2 ∈ supp(hi)}.

Thus, we get the following decomposition

A(P ) =
⋃
i∈[s]

{A(m1) ∪ A(m2) |m1 ∈ supp(gi),m2 ∈ supp(hi)},

which, by hypothesis, implies

supp(f−1(1)) =
⋃
i∈[s]

{A(m1) ∪ A(m2) |m1 ∈ supp(gi),m2 ∈ supp(hi)}.

The final observation is that for any balanced monotone pair (g, h), the set

R := {A(m1) ∪ A(m2) |m1 ∈ supp(g),m2 ∈ supp(h)}

is a balanced rectangle of [n]. Together with the decomposition above, this concludes the proof of
the lemma.

■

2.3 A multipartition communication complexity lower bound

In this section, we prove the multipartition communication complexity lower bounds, which in turn
implies the monotone circuit lower bound. The problem we consider is defined over a graph G with
vertex-set [n]. For a subset U of the vertices of G, we denote by G[U ] the induced graph of G on
U . Denote by fG : {0, 1}n → {0, 1} the function defined by

fG(a) = 1⇐⇒ e(G[supp(a)]) ̸= 1.

12



Note that the support of the polynomial PG is the same as f−1
G (1).

Our lower bounds hold as long as G is an expander graph, since this is required by Lemma 9
from [Sri20], which we restated as Lemma 2.7. For concreteness, the definition of expander graph
used by [Sri20] is that G is a d-regular graph with the second largest eigenvalue of its adjacency
matrix at most d0.75. Our main lemma is the following.

Lemma 2.5. If G is an expander graph with vertex-set [n], then

mprn(fG) ≥ 2Ω(n).

The main ingredient in the lower bound is the following corruption-like lemma. It follows from
a communication complexity perspective of a result by Kaibel and Weltge [KW15]; see Lemma 5.10
in Roughgarden’s lecture notes [Rou15].

Lemma 2.6. For ℓ ∈ N, we define the 2ℓ-variate different-from-1 disjointness function DISJ̸=1
ℓ as

DISJ̸=1
ℓ (b1 . . . , bℓ, c1, . . . , cℓ) = 1⇔ | supp((b1, . . . , bℓ)) ∩ supp((c1, . . . , cℓ))| ≠ 1.

Let ℓ ∈ [n] and g := DISJ ̸=1
ℓ . For every i ∈ [ℓ], choose independently and uniformly at random

an element (bi, bℓ+i) of the set {(0, 0), (1, 0), (0, 1)}, and let b := (b1, . . . , b2ℓ) be the corresponding
random assignment over 2ℓ-variables. If R is a rectangle of [2ℓ] with partition {{1, . . . , ℓ}, {ℓ +
1, . . . , 2ℓ}} such that R ⊆ supp(g−1(1)), then

Pr
b
[b ∈ R] < 2−ℓ/2.

Proof. As the proof of Lemma 5.10 in the notes [Rou15] works for any unique-disjointness 1-
rectangle, this lemma follows from the fact that any different-from-one disjointness 1-rectangle is
also a unique-disjointness 1-rectangle. ■

Next, we need to define a “hard distribution” on f−1
G (1) such that the measure of all balanced

1-rectangles contained in f−1
G (1) of is small. While the function fG bears some similarity to the

different-from-1 disjointness function, this does not immediately follow from the lemma above,
because we do not a priori know the partition we need to deal with.

Consider the following algorithm, as defined in [Sri20], to sample a random matching from G:
for m ∈ [n] given as input,

1. Set M ← ∅.

2. For i = 1, 2, . . . ,m, do the following:

(a) Remove all vertices from G that are at distance at most 2 from any vertex in M . Let
Gi be the resulting graph.

(b) Choose a uniformly random edge ei from E(Gi), and add it to M .

3. Output M .

Now given a matching M , we use the following procedure to define a random input a ∈ {0, 1}n to
fG:

13



1. For each u ∈ [n] \ V (M), set au = 0.

2. For each {u, v} ∈M , choose independently and uniformly at random an element (au, av) from
the {(0, 0), (1, 0), (0, 1)}.

Note that e(G[supp(a)]) = 0 by our choice of a, implying that the procedure above defines a
probability distribution over f−1

G (1). Hence, Lemma 2.5 immediately follows from the claim that
for every balanced rectangle R ⊆ f−1

G (1),

Pr
a
[supp(a) ∈ R] ≤ 2−Ω(n).

So it remains to prove this inequality.
The useful properties of the random input a rely on the following properties of the random

matching M , which were stated in Lemma 9 from [Sri20].

Lemma 2.7. If G is an expander with vertex-set [n], then there is a constant α > 0 such that, for
m := ⌈αn⌉ and for M being a random matching sampled by the above algorithm using m as input,
the following hold:

1. M is an induced matching of cardinality m.

2. For every balanced partition {A,B} of [n],

Pr
M
[|M ∩ EG(A,B)| ≤ γm] ≤ exp(−γm),

for an absolute constant γ > 0.

Let {A,B} be any valid partition witnessing that R is a balanced rectangle of [n]. By Lemma 2.7,
we know that M is an induced matching of G and, with probability at least 1− 2−Ω(n), we have

|M ∩ EG(A,B)| ≥ γm =: s′.

For a fixed induced matching

E := {{u1, v1}, . . . , {us, vs}} ⊆ E(G)

with s ≥ s′ and ui ∈ A and vi ∈ B for every i ∈ [s], we condition on the event that the random
matching M satisfies

M ∩ EG(A,B) = E.

We can now define the following random variables: for every i ∈ [s], let

bi := aui and bs+i := avi ,

where a ∈ {0, 1}n is the random assignment associated to M . Let

b := (b1, . . . , b2s)

be the random 2s-variable Boolean assignment obtained by the definition above. By the definition
of the assignment a, we obtain that each pair (bi, bs+i) is chosen independently and uniformly at

14



random from the set {(0, 0), (1, 0), (0, 1)}. Let g be the 2s-variate different-from-one disjointness
function. We observe that

fG(a) = 1 ⇐⇒ g(b) = 1

for the assignments a and b defined above. Also note that b is a random assignment to g that
satisfies the assumptions of Lemma 2.6, and, furthermore, supp(a) ∈ R implies that supp(b) ∈ RE ,
where

RE := {S ∪ T | S ⊆ {1, . . . , s}, T ⊆ {s+ 1, . . . , 2s}, ({ui | i ∈ S} ∪ { vi−s | i ∈ T}) ∈ R}.

As R is an rectangle with partition {A,B} and we have {ui | i ∈ S} ⊆ A and { vi−s | i ∈ T} ⊆ B,
we get that RE is a rectangle of [2s] with partition {{1, . . . , s}, {s+1, . . . , 2s}}. Moreover, we have
RE ⊆ supp(g−1(1)), since any S ∪ T ∈ RE satisfies

{ui | i ∈ S} ∪ { vi−s | i ∈ T} ∈ R ⊆ supp(f−1(1)),

which implies that g(1S , 1T ) = 1, where we have identified S and T with their corresponding
indicator vectors.

Thus, RE is a rectangle satisfying the hypothesis of Lemma 2.6, so we can apply this lemma to
obtain that

Pr
a
[b ∈ RE ] ≤ 2−Ω(s) = 2−Ω(n),

which implies that

Pr
M,a

[a ∈ R | M ∩ EG(A,B) = E] ≤ Pr
M,a

[b ∈ RE | M ∩ EG(A,B) = E]

= Pr
a
[b ∈ RE ] ≤ 2−Ω(n).

Therefore, we get

Pr
M,a

[a ∈ R] = Pr
M,a

[a ∈ R, |M ∩ EG(A,B)| < s′]

+
∑

E⊆E(G):|E|≥s′

Pr
M,a

[a ∈ R | M ∩ EG(A,B) = E] · Pr
M
[M ∩ EG(A,B) = E]

≤ 2−Ω(n).

2.4 Monotone arithmetic circuit lower bounds

Let us now prove our monotone arithmetic circuit lower bounds.

Corollary 2.8 (Theorem 1.1). If G is an n-vertex expander graph, then S+(PG) ≥ 2Ω(n).

Proof. We have that

A(PG) =

A
(

n∏
i=1

xi,ai

) ∣∣∣∣∣∣ a ∈ {0, 1}n,
∑

{u,v}∈E(G)

auav ̸= 1


= { supp(a) | a ∈ {0, 1}n, e(G[supp(a)]) ̸= 1}
= supp(f−1

G (1)),

15



thus, by Lemmas 2.4 and 2.5, we obtain

S+(PG) ≥ mprn(fG) ≥ 2Ω(n).

■

Corollary 2.9 (Theorem 1.2). Let k ∈ N and n ∈ N. Let G be a graph with nk vertices. If G is
an expander graph, then

S+(Qk,G) ≥ (m/k)Ω(k),

where m := k2n is the number of variables in the degree-k polynomial Qk,G.

Proof. By a substitution (Equation 3), we can convert any monotone circuit of size s computing
Qk,G into a monotone circuit of size s + O(mn) computing PG. Thus, by Corollary 2.8, we have
2Ω(nk) ≤ s+O(mn), so

s ≥ 2Ω(nk) = (2n)Ω(k) = (m/k)Ω(k) .

Therefore, we obtain
S+(Qk,G) ≥ (m/k)Ω(k). ■

3 A criterion for monotone Boolean circuit lower bounds

The goal here is to describe a criterion for proving monotone Boolean circuit lower bounds for a
function f : {0, 1}n → {0, 1}. The criterion is based on the existence of distributions D0 and D1

over {0, 1}n satisfying some properties. We start with two important definitions.

Definition 3.1 (Sunflower). For S ⊆ [n], let tS denote the function

tS(x) :=
∧
i∈S

xi

where by convention t∅ ≡ 1.
We say that a family of sets S ⊆ P([n]) is a (D, ε)-sunflower if |S| ≥ 2 and

Pr
x∼D

[
∃S ∈ S : tS\K(x) = 1

]
> 1− ε, (4)

where K :=
⋂

S∈S S. The family S is called ℓ-uniform if |S| = ℓ for every S ∈ S. Let r(D, ℓ, ε)
be the minimum integer r such that every ℓ-uniform family of sets of size at least rℓ contains a
(D, ε)-sunflower (if no such r exists then it is ∞). ◀

Definition 3.2 (Spread). For an integer t and q > 0, a distribution D over {0, 1}n is t-wise q-spread
if, for every A ⊆ [n] such that |A| ≤ t,

Pr
x∼D

[tA(x) = 1] ≤ q−|A|.

◀

We show that a monotone circuit lower bound for a function f : {0, 1}n → {0, 1} follows imme-
diately from a spreadness bound on a distribution D1 of accepting inputs, and a sunflower bound
on a distribution D0 of rejecting inputs.

16



Theorem 3.3 (A lower bound criterion). Let n ∈ N and let f : {0, 1}n → {0, 1} be a monotone
function. Let t ∈ N and q ∈ (0, 1). Let D0,D1 be distributions over {0, 1}n such that D1 is t-wise
q-spread, and let

α := min

{
Pr

x∼D0

[f(x) = 0], Pr
x∼D1

[f(x) = 1]

}
.

Let w ∈ N such that w ≤ t/2, and define

rw := max
ℓ∈[2w]

r(D0, ℓ, αn
−3w).

If 8rw ≤ q ≤ rwn, then any Boolean monotone circuit computing f has size at least(
cαq

rw

)w

where c is a universal positive constant.

We prove Theorem 3.3 using the approximation method of Razborov [Raz85], generalising the
“tailored sunflower” approach of recent works [CKR22, BM25, CGR+25] which began with [Ros14].
Certain sunflower criterions have previously appeared in [Cav20, BM25]. Our presentation of the
method is similar to [CGR+25], with the difference that we consider arbitrary distributions. The
following is the main lemma.

Lemma 3.4. Let n ∈ N and let f : {0, 1}n → {0, 1} be a monotone function. Let t ∈ N and
q ∈ (0, 1). Let D0,D1 be distributions over {0, 1}n such that D1 is t-wise q-spread and supp(Di) ⊆
f−1(i) for every i ∈ {0, 1}. Let w ∈ N such that w ≤ t/2, and define

rw := max
ℓ∈[2w]

r(D0, ℓ, n
−3w).

If 8rw ≤ q ≤ rwn, then any Boolean monotone circuit computing f has size at least(
cq

rw

)w

where c is a universal positive constant.

Before proving our main lemma, let us use it to prove Theorem 3.3.

Proof of Theorem 3.3. For every b ∈ {0, 1}, we have Prx∼Db
[f(x) = b] ≥ α > 0. Let D∗

b be the
distribution Db conditioned on the event f(x) = b. First, the distribution D∗

1 is t-wise (αq)-spread

because for every A ∈
([n]
≤t

)
,

Pr
x∼D∗

1

[tA(x) = 1] ≤ 1

α
· Pr
x∼D1

[tA(x) = 1] ≤ (αq)−|A|.

Second, every (D0, αε)-sunflower S is a (D∗
0, ε)-sunflower because

Pr
x∼D∗

0

[
∀S ∈ S tS\K(x) = 0

]
≤ 1

α
· Pr
x∼D0

[
∀S ∈ S tS\K(x) = 0

]
<

εα

α
= ε,

so r(D∗
0, ℓ, ε) ≤ r(D0, ℓ, αε). The result now follows by Lemma 3.4. ■

17



For the rest of this section, we prove Lemma 3.4. Let D0,D1, q, t, w, ℓ be as in the assumptions
of the lemma. We denote by D the distribution

D := (D0 +D1)/2.

Our goal is to approximate a given monotone circuit by a monotone DNF formula

FS :=
∨
S∈S

tS

for a given family of sets S ⊆ P([n]) satisfying some properties.
We say that FS is r-small if, for every ℓ ∈ [n],

|S ∩
(
[n]

ℓ

)
| ≤ rℓ.

We say that FS has width w if |S| ≤ w for every S ∈ S. Finally, we say that FS is a (w, r)-DNF if
it is both r-small and has width w. The approximation method now proceeds in the following two
steps.

Claim 3.5. There is a universal constant c ∈ (0, 1) such that if a monotone circuit of size at most
(cq/rw)

w computes f then there is a (w, rw)-DNF F such that

Pr
x∼D

[F (x) = f(x)] ≥ 0.9.

Claim 3.6. For every δ ∈ (0, 1/2) and for every (w, δq)-DNF F , we have

Pr
x∼D

[F (x) = f(x)] ≤ 1/2 + 2δ.

Before proving the two claims, we prove the main lemma.

Proof of Lemma 3.4. The proof uses the two claims above. When rw = ∞, the theorem trivially
holds so assume that rw < ∞. Assume (towards a contradiction) that f can be computed by a
monotone circuit of size ≤ (cq/2rw))

w where c > 0 is the constant from Claim 3.5. As 8rw ≤ q by
assumption, Claim 3.5 implies that there is a (w, q/8)-DNF such that

Pr
x∼D

[F (x) = f(x)] ≥ 0.9,

which contradicts Claim 3.6. ■

Proof of Claim 3.6. Let F := FS be a (w, δq)-DNF. If F ≡ 1 (i.e., ∅ ∈ S), the claim is true by
definition of D and the fact that Db is supported in f−1(b) for every b ∈ {0, 1}. Otherwise, note
that F (x) = 1 only if there exists S ∈ S such that tS(x) = 1. As F is δq-small and has width w
and D1 is t-wise q-spread with w ≤ t/2, we have

Pr
x∼D1

[F (x) = 1] ≤
∑
k∈[w]

∑
S∈S∩([n]

k )

Pr
x∼D1

[tS(x) = 1] ≤
∑
k∈[w]

(δq)kq−k ≤ 2δ. ■

18



Proof of Claim 3.5. For convenience, let r := rw and let ε := n−3w. Let C be a monotone circuit
of size at most (cq/r)w computing f where c > 0 is to be determined. We will construct a (w, r)-
DNF for C gate-by-gate, inductively, starting at the input gates until we reach the output gate.
Every input variable is already a (w, r)-DNF. As we naively combine our inductively constructed
(w, r)-DNFs, the number of terms might increase, potentially violating r-smallness. In order to
maintain smallness of our DNF, we approximate the naive combination by the following procedure.
The subsequent claim summarises the properties of the resulting DNF.

Algorithm 1 Plucking procedure pluck(S)
1: while ∃ℓ ∈ [2w] : |S ∩

([n]
ℓ

)
| > rℓ do

2: Let S ′ ⊆ S ∩
([n]

ℓ

)
be a (D0, ε)-sunflower with core K

3: Let S ← {K} ∪ {S ∈ S : K ̸⊆ S}
4: end while

Note that Line 2 of the algorithm is always possible by the choice of r.

Claim 3.7. If FS has width 2w, then Fpluck(S) is a (2w, r)-DNF with Fpluck(S) ≥ FS and

Pr
x∼D0

[Fpluck(S)(x) > FS(x)] ≤ n−w.

Proof. Since the core K is contained in all sets in S ′ and |S ′| > 1, the size of S ∩
([n]

ℓ

)
is necessarily

reduced at Line 3, and eventually we obtain an r-small family. Therefore, as S has width 2w, the
algorithm ends in at most

∑2w
i=0

(
n
i

)
≤ n2w iterations. It follows that Fpluck(S) is a (2w, r)-DNF.

Because the core belongs to all sets in the sunflower, we get Fpluck(S) ≥ FS . It remains to bound
the error on D0 incurred in Line 3. Such an error happens only if tK(x) = 1 and, for all S ∈ S, we
have tS(x) = 0. Thus, the error of a single iteration (sunflower plucking) can be bounded by

Pr
x∼D0

[Fpluck(S)(x) > FS(x)] ≤ Pr
x∼D0

[∀S ∈ S, tS\K(x) = 0] ≤ Pr
x∼D0

[∀S ∈ S ′, tS\K(x) = 0] < ε,

because S ′ is a (D0, ε)-sunflower. As there are at most n2w iterations and ε = n−3w, the total error
is at most n−w. ■

As remarked above, every input gate is already a (w, r)-DNF. Going over the gates of the circuit
one-by-one (according to the circuit-order), we will inductively construct a (w, r)-DNF for each gate
of the circuit. Let g be a gate of the form g := g1 ◦ g2 for a binary operation ◦ ∈ {∨,∧}. Suppose
we have inductively constructed two (w, r)-DNFs FS and FT for g1 and g2 respectively. We will
construct a DNF Fg such that

E1,g := Pr
x∼D1

[Fg(x) < (FS ◦ FT )(x)] ≤ (2r/q)w (5)

and

E0,g := Pr
x∼D0

[Fg(x) > (FS ◦ FT )(x)] ≤ (2r/q)w. (6)

If ◦ = ∨, we approximate FS ∨ FT by letting Fg := Fpluck(S∪T ). Note that, by Claim 3.7, we
have that Fpluck(S∪T ) is a (w, r)-DNF and

Fpluck(S∪T ) ≥ FS∪T = FS ∨ FT .

19



Thus plucking introduces no errors on D1, implying (5). Moreover, plucking incurs errors at most
n−w ≤ (2r/q)w errors on D0 by Claim 3.7 and q ≤ rn, which implies (6).

If ◦ = ∧, we approximate g by first taking

F := pluck ({S ∪ T : S ∈ S, T ∈ T }) .

By Claim 3.7, FF is r-small since |S∪T | ≤ 2w for every S ∈ S, T ∈ T . As in the ∨ case, this creates
no error on D1 and the error on D0 is at most n−w ≤ (2r/q)w. We now define Fg be removing all
sets of width larger than w from F . This removal does not create an error on D0, since Fg ≤ FF .
Since F is r-small, the q-spreadness of D1 implies that

Pr
x∼D1

[Fg(x) > FF (x)] ≤
2w∑

ℓ=w+1

∑
S∈F∩([n]

ℓ )

Pr
x∼D1

[tS(x) = 1] ≤
t∑

ℓ=w+1

rℓq−ℓ ≤ (2r/q)w,

where we used that q ≥ 2r. We have thus shown (5) and (6).
Finally, let F be the (w, r)-DNF of the output gate. By the union bound and Equation (5) ,

Pr
x∼D1

[C(x) > F (x)] ≤
∑
g

E1,g ≤ (cq/r)w(2r/q)w ≤ (2c)w ≤ 0.1,

for c = 0.05. A similar bound holds for Prx∼D0 [C(x) < F (x)]. It follows that

Pr
x∼D

[F (x) ̸= f(x)] =
1

2
Pr

x∼D1

[C(x) > F (x)] +
1

2
Pr

x∼D0

[C(x) < F (x)] ≤ 0.1. ■

4 Boolean separation

Recall that, given a matrix M with n rows and m columns over a field F, the Boolean function
fM : {0, 1}m → {0, 1} accepts an input S ⊆ [m] if and only if M [S] has full rank. In this section,
we only consider F := F2 in order to prove Theorem 1.5.

4.1 Nonmonotone low-depth circuit upper bounds

Let us first prove the upper bound part of Theorem 1.2.

Lemma 4.1 (Upper bound). For any matrixM ∈ Fn×m, the function fM is computed by a Boolean
circuit of size poly(m) and depth O(logm)2.

Proof. On an input 1S corresponding to the indicator vector of a set S ⊆ [m], we need to compute
the rank of the matrix M [S]. This is known to be computed by a Boolean circuit of size poly(m)
and depth O(logm)2 [ABO99, Mul87]. ■

4.2 Monotone Boolean circuit lower bounds via well-behaved codes

Let us start by defining a special kind of linear binary codes, which are explicitly constructed in
Section 4.3. We will only use the abstract properties of these codes to define probability distribu-
tions that allow us to apply Theorem 3.3 and obtain lower bounds for monotone circuits computing
functions related to these codes.

20



Definition 4.2. For M ∈ Fn×m, we define the (linear) code CM of M as

CM := {M⊤w | w ∈ Fn} ⊆ Fm,

and define the dual code DM of M as

DM := {w ∈ Fm |Mw = 0} ⊆ Fm.

We say that a code C ⊆ Fm is a linear code if there is a rank n matrix G ∈ Fn×m, called a generator
matrix of C, such that

C = CG.

For any linear code C ⊆ Fm, we say that a rank m − n matrix H ∈ F(m−n)×n is a parity check
matrix of C if

C = DH ,

and, in this case, we define the dual code C∗ of C as

C∗ := CH ,

which is independent of the choice of a parity check matrix H. We define the distance of a linear
code C ⊆ Fm as

d(C) := min
x∈C,x ̸=0

|{ i ∈ [m] | xi ̸= 0}|,

and its dual distance as d∗(C) := d(C∗). For every d, t ∈ R≥0, we say that C is (d, t)-well-behaved if
d(C) > d and d∗(C) > t. ◀

The main theorem of this section is the following.

Theorem 4.3. Let n ∈ N, and m := m(n) ∈ N, and d := d(n) ∈ N, and t := t(n) ∈ N. Let
C ⊆ Fm be any (d, t)-well-behaved linear code with generator matrix M ∈ Fn×m. If 2n < d, then
the monotone complexity of fM is at least

Ω

(
d

n
√
t

)√
t/(b logm)

,

where b ∈ R is a sufficiently large positive constant.

In Section 4.3, we are going to use this theorem with

m ≈ n3/2 log n, and d ≈ m− n, and t ≈ n.

The rest of this section is devoted to prove this theorem. Henceforth we assume that C and M are
as in the assumption of the theorem. Let us denote by Mi ∈ Fn the i-th column of M for every
i ∈ [m]. We first prove a few properties related to the rank of submatrices of M . Some of them are
standard facts from coding theory, but we add the proof here for completeness.

Lemma 4.4 (Theorem 10 from Chapter 1 of [MS77]). For every S ⊆ [m] with |S| ≤ t, the set of
columns of M indexed by S is linearly independent.

21



Proof. Let S be a subset of [m] such that the set of columns ofM indexed by S is linearly dependent.
Then there is a nonzero vector v ∈ Fm such that supp(v) ⊆ S, and∑

i∈[m]

viMi = 0.

Thus, Mv = 0, and v ∈ DM . Note that DM = C∗, since, for any matrix H ∈ F(m−n)×m such that
C = DH , we have that

C∗ = CH and HM⊤ = 0.

By the definition of the distance of C∗ and the fact that C is (d, t)-well-behaved, we get that

|S| ≥ | supp(v)| ≥ d∗(C) > t. ■

Lemma 4.5. For any subspace V ⊆ Fn of dimension D < n, and for u being a uniform random
column of M , we have

Pr
u
[u ∈ V ] ≤ 1− d/m =: ∆.

Proof. As V has dimension D ≤ n− 1, there is a nonzero vector c ∈ Fn such that, for every v ∈ V ,
we have v⊤c = 0. Let C ⊆ [m] be the set of the columns of M that are in V , and let

w := M⊤c ∈ CM = C.

Note that, for every i ∈ C, we have wi = M⊤
i c = 0. Thus, by the definition of the distance of C

and the fact that C is (d, t)-well-behaved, we get that

m− |C| ≥ | supp(w)| ≥ d(C) > d.

and, consequently,

Pr
u
[u ∈ V ] ≤ |C|

m
≤ 1− d

m
. ■

Lemma 4.6. For any N := N(m) ∈ N with N ≤ m, and for a random set S distributed uniformly

in
([m]
N

)
, we have

Pr
S
[M [S] is not full rank] ≤ 2n∆N .

Proof. Let span(S) := span({Mi | i ∈ S}), where Mi is the column of M indexed by i ∈ [m]. Note
that the rank of M [S] is at most n− 1 if and only if there is a subspace V ⊆ Fn of dimension n− 1
such that span(S) ⊆ V . Hence,

Pr
S
[M [S] is not full rank] ≤ Pr

S
[∃V ⊆ Fn

2 s.t. dim(V ) = n− 1 and span(S) ⊆ V ]

≤
∑

V⊆Fn
2 ,dim(V )=n−1

Pr
S
[S ⊆ V ] .

By Proposition 1.7.2 in Stanley [Sta97], the number of n− 1 dimensional subspaces of Fn is

(2n − 1)(2n − 2) · · · (2n − 2n−2)

(2n−1 − 1)(2n−1 − 2) · · · (2n−1 − 2n−2)
≤ 2n − 1.

22



For any (n − 1)-dimensional subspace V of Fn, let CV ⊆ [m] be the set of columns of M that are
contained in V . By Lemma 4.5, we know that c := |CV | ≤ ∆m, which implies that

Pr
S
[S ⊆ V ] ≤ Pr

S
[S ⊆ CV ] =

(
c
N

)(
m
N

) ≤ ( c

m

)N
≤ ∆N .

Therefore,
Pr
S
[M [S] is not full rank] ≤ 2n∆N . ■

Now our goal is to apply Theorem 3.3 to prove a lower bound for fM . So we first define two
probability distributions that, intuitively, are hard to distinguish for monotone Boolean circuits of
small size.

Definition 4.7. We define the distribution a ∼ D1 by sampling a uniformly random a ∈ {0, 1}m
of Hamming weight

N := n⌈m/d⌉. (7)

We define the distribution a ∼ D0 by sampling a uniformly random u ∈ Fn
2 and, for every j ∈ [m],

we set aj := 1 if ⟨M [j], u⟩ = 0 and aj := 0 otherwise, where the inner product is taken over F2. ◀

Note that, by the choice of N and the assumption 2n ≤ d, we have N < m and

1− 2n(1− d/m)N ≥ 1− 2ne−Nd/m ≥ 1− 2n2−n/ ln 2 ≥ 1/2.

Thus, by Lemma 4.6, we have
Pr

a∼D1

[fM (a) = 1] ≥ 1/2 =: α.

Moreover, the point a sampled from D0 is an element of f−1
M (0) as long as u ̸= 0, so

Pr
a∼D0

[fM (a) = 0] = 1− 1

2n
≥ α.

Spreadness of D1. To apply Theorem 3.3, we need to show that D1 is “spread”.

Lemma 4.8 (Spreadness of D1). The distribution D1 is N -wise (m/N)-spread.

Proof. Let T be any subset of [m] of size k ≤ N . The number of N -sized sets of columns of M
which contain the set of columns indexed by T is

(
m−k
N−k

)
. Thus,

Pr
a∼D1

[∧
i∈T

ai = 1

]
≤
(
m−k
N−k

)(
m
N

) .

Simplifying the above, we get

Pr
a∼D1

[∧
i∈T

ai = 1

]
≤

(∏k−1
i=0 (N − i)∏k−1
i=0 (m− i)

)
≤
(
N

m

)k

,

using the fact that N−i
m−i ≤

N
m for i ≤ k − 1. ■

23



Sunflower bound for D0. The second step is to show a sunflower bound for (D0, ε)-sunflowers.
We first prove that D0 is t-wise independent.

Lemma 4.9 (Independence of D0). The distribution D0 has uniform marginals and is t-wise
independent.

Proof. Fix any set S := {j1, j2, . . . , jt} of [m]. Also fix a vector

b := (b1, b2, . . . , bt) ∈ Ft
2.

Then

Pr
a∼D0

[a↾S = b] = Pr
u∈Fn

2

[(⟨u,M [j1]⟩ = b1) ∧ . . . ∧ (⟨u,M [jt]⟩ = bt)] = Pr
u∈Fn

2

[
u⊤M [S] = b

]
.

Using the rank-nullity theorem, the above probability is the same as

Pr
u∈Fn

2

[
u⊤M [S] = b

]
=
| ker(M [S])|

2n
=

1

2t
,

where the last equality follows from the fact that the rank ofM [S] is t (Lemma 4.4). As the columns
of M are nonzero (as t > 0), we can prove that the marginals are uniform: for every ℓ ∈ [t],

Pr
u∈Fn

2

[⟨u,M [jℓ]⟩ = 0] =
1

2
. ■

Another important ingredient in our proof is Bazzi’s theorem [Baz09], which has been further
improved by work of Tal [Tal17]. This shows that small DNFs have almost the same behaviour on
k-wise independent distributions as they have over truly uniform distributions.

Theorem 4.10 (Fooling DNFs with independence: Theorem 7.1 [Tal17]). Let F be a DNF with
N terms and ε ∈ (0, 1). Then there exists T ≤ O(logN · log(N/ε)) such that, for any distribution
D that is T -wise independent with uniform marginals, we have∣∣∣∣ Pr

a∼{0,1}n
[F (a) = 0]− Pr

a∼D
[F (a) = 0]

∣∣∣∣ ≤ ε.

Finally, to show our sunflower lemma, we combine Bazzi’s theorem with the optimal bounds for
“robust sunflowers” recently obtained (see, e.g., [Rao25, Lemma 2], [BCW21]). Robust sunflowers
are (Uniform, ε)-sunflowers, where Uniform denotes the uniform distribution. Recall the definition
of “sunflower bound” r(·, ·, ·) from Definition 3.1.

Lemma 4.11 (Robust Sunflower Lemma: Lemma 2 [Rao25]). For every k ∈ N and ε ≤ 1/2, we
have r(Uniform, k, ε) = O(log(k/ε)).

We can now show a sunflower lemma for D0. Recall that m is the number of input bits of the
function fM .

Lemma 4.12 (Sunflower lemma for t-wise independent distributions). There exists a constant
b ≥ 1, such that, for w :=

√
t/(b logm) and every k ≤ 2w, we have

r(D0, k,m
−4w) = O(w logm).

24



Proof. Let w :=
√
t/(b logm) for some constant b to be defined later, and set ε := m−4w. We will

show
r(D0, k, ε) ≤ r(Uniform, k, ε/2).

Indeed, suppose that S is an ε/2-robust sunflower with core K. Let SK = {S \K | S ∈ S}. Note
that FSK

has width at most k and at most
(
m
≤k

)
≤ mk terms.

We now wish to apply Theorem 4.10 on FSK
with the t-wise independent distribution D0 and

approximation parameter ε/2. Theorem 4.10 can only be applied when

t ≥ D log(|SK |) log(|SK |/(ε/2)),

for some constant D > 0 given by Theorem 4.10. Now note that

D log(|SK |) log(|SK |/(ε/2)) ≤ O(w2(logm)2) =
1

b2
O(t) ≤ t

for large enough b. Thus, we can apply Theorem 4.10 and obtain

Pr
x∼D0

[∃S ∈ S : tS\K(x) = 1] = Pr
x∼D0

[FSK
(x) = 1]

≥ Pr
x∼{0,1}n

[FSK
(x) = 1]− ε/2

= Pr
x∼{0,1}n

[∃S ∈ S : tS\K(x) = 1]− ε/2

> 1− ε.

Thus, the set S is a (D0, ε)-sunflower. The result now follows from Lemma 4.11 by observing that

r(Uniform, k, ε/2) ≤ O(log(k/ε)) ≤ O(w logm). ■

Wrapping up. We can now apply Theorem 3.3, finishing the proof. Note that the distributions
D1 and D0 defined in Definition 4.7 satisfy the following properties:

1. We have Prx∼Di [fM (x) = i] ≥ α for every i ∈ {0, 1};

2. D1 is N -wise (m/N)-spread (Lemma 4.8);

3. For w :=
√
t/(b logm) where b is a sufficiently large universal constant (Lemma 4.12), we

have r(D0, k, αm
−3w) ≤ r(D0, k,m

−4w) ≤ O(w logm) for every k ≤ 2w and sufficiently large
n.

Therefore, by Theorem 3.3 and the choice of N (Equation 7), we obtain that the monotone com-
plexity of fM is at least

Ω

(
m

Nw logm

)w

≥ Ω

(
d

nw logm

)w

= Ω

(
d

n
√
t

)√
t/(b logm)

.

This finishes the proof of Theorem 4.3.

25



4.3 Explicit constructions of well-behaved codes

We now construct an explicit well-behaved binary code C for which we can apply the argument
from Section 4.2 to prove exponential lower bounds for monotone circuits computing a boolean
function in uniform-NC2.

Lemma 4.13. Let n,m, ℓ ∈ N, and let Fq be a finite field with q := 2ℓ. Let L ⊆ Fm
q be the linear

code generated by a matrix G ∈ Fn×m
q . Then there is a linear binary code C ⊆ Fs

2 generated by a

matrix M ∈ Fr×s
2 for r := ℓn and s := ℓm such that

d(L) ≤ d(C) ≤ ℓd(L) and d∗(L) ≤ d∗(C) ≤ ℓd∗(L).

Furthermore, if each entry of the generator matrix G for L can be computed in time poly(n,m, ℓ),
then we can compute all the entries of the generator matrix M for C in time poly(n,m, ℓ).

Proof. Let B := {b1, . . . , bℓ} be a basis of Fq as an ℓ-dimensional vector space over F2. Let ϕ : Fq →
Fℓ
2 be the map from elements v ∈ Fq to their coordinate vector with respect to the basis B: that

is, for every v ∈ Fq, let ϕ(v) ∈ Fℓ
2 be the unique vector such that

v =
∑
i∈[ℓ]

ϕ(v)ibi.

Note that ϕ is a linear isomorphism between Fq and Fℓ
2. Let γ : Fm

q → Fℓm
2 be the following map:

for every v1, . . . , vm ∈ Fq,
γ(v1, . . . , vm) := (ϕ(v1), . . . , ϕ(vm)).

Again note that γ is a linear isomorphism between Fm
q and Fℓm

2 ; in particular:

γ(0) = 0 and γ is a linear bijection.

Let
C := { γ(w) | w ∈ L},

and let g1, . . . , gn ∈ Fm be the rows of G. Note that, for every w ∈ Fk
q ,

G⊤w =
∑
i∈[n]

wigi =
∑
i∈[n]

∑
j∈[ℓ]

ϕ(wi)jbjgi,

hence
γ(G⊤w) =

∑
i∈[n]

∑
j∈[ℓ]

ϕ(wi)jγ(bjgi).

Let M ∈ Fr×s
2 , for r := ℓn and s := ℓm, be the matrix with the vectors γ(bjgi) as rows, that is,

M :=
∑
i∈[n]

∑
j∈[ℓ]

e(i−1)ℓ+jγ(bjgi)
⊤ =

γ(b1g1)
⊤

...
γ(bngℓ)

⊤

 , (8)

where e1, . . . , enℓ are the standard basis vectors of Fnℓ
2 . As ϕ is a linear isomorphism, we can prove

that
C = {M⊤w | w ∈ Fnℓ

2 }.

26



Now let us prove the claimed distance bounds for C. First note that if v ∈ C satisfies v = γ(w) =
(ϕ(w1), . . . , ϕ(wm)) for some w ∈ L ⊆ Fm

q , then, as ϕ(x) = 0 iff x = 0, we have

| supp(w)| ≤ | supp(v)|,

which implies that d(L) ≤ d(C), and | supp(v)| ≤ ℓ| supp(w)|, which implies that

d(C) ≤ ℓd(L).

In order to prove the bound on the dual distance of C, we will use the following characterization of
the dual distance of codes:

Proposition 4.14 (Theorem 8 from Chapter 5 of [MS77]). We say that a set S ⊆ Fm
q is t-wise

independent if, for a uniformly chosen (x1, . . . , xm) := x ∼ Unif(S) and for all I ⊆ [m] with |I| ≤ t,
the variables (xi)i∈I are independent and uniformly distributed over Fq. Then a linear code C ⊆ Fm

q

is t-wise independent if and only if t ≤ d∗(C)− 1.

Now let us prove that d∗(L) ≤ d∗(C). For any t ≤ d∗(L)−1, we know that L is t-wise independent
over Fq by Proposition 4.14. This implies that, for a uniformly chosen (x1, . . . , xm) := x ∼ Unif(L)
and for I ⊆ [m] with |I| ≤ t, the variables (xi)i∈I are independent and uniformly distributed over
Fq. Let

(y1, . . . , yℓm) := y ∼ Unif(C).

As xi for any i ∈ I is uniformly over Fq and as ϕ is a bijection from Fq to Fℓ
2, we get that

(yi,1, . . . , yi,ℓ) := ϕ(xi) are independent random variables and uniformly distributed over F2. Thus,
any subset J ⊆ I × [ℓ] of the random variables (yi,p)i∈I,p∈[ℓ] with |J | ≤ t satisfies that (yj)j∈J are
independent random variables and uniformly distributed over F2. Hence, C is t-wise independent,
and, by Proposition 4.14,

d∗(L) ≤ d∗(C).

Now suppose that
d∗(C) ≥ ℓd∗(L) + 1.

By Proposition 4.14, we get that C is (ℓd∗(L))-wise independent. Again using the fact ϕ is a
bijection from Fq to Fℓ

2, we can prove that, for a uniformly chosen (x1, . . . , xm) := x ∼ Unif(L) and
for I ⊆ [m] with |I| ≤ d∗(L), the variables (xi)i∈I are independent and uniformly distributed over
Fq. By Proposition 4.14, we obtain that d∗(L) + 1 ≤ d∗(L), which is a contradiction. Therefore,

d∗(C) ≤ ℓd∗(L).

Now let us argue about the explicitness of our construction. Note that:

• Element representations (via a basis for Fq) and operations over the field Fq can be performed
in time poly(ℓ) [Sho88].

• For any given (v1, . . . , vm) := v ∈ Fm
q , the element γ(v) ∈ Fℓm

2 can be uniformly computed

in time poly(m, ℓ) as it is just the concatenation of ϕ(v1), . . . , ϕ(vm) ∈ Fℓ
2 and ϕ(vi) is the

representation of vi as an element of Fq.

• The generator matrix M ∈ Fℓn×ℓm
2 (Equation 8) for C ⊆ Fℓm

2 can be uniformly computed in
time poly(n,m, ℓ). ■

27



Corollary 4.15. For every n,m ∈ N with m > n and for ℓ := ⌈log2m⌉, there is a binary code
C ⊆ Fℓm

2 such that we can explicitly construct a generator matrix M ∈ Fℓn×ℓm
2 for C and

m− n ≤ d(C) ≤ 2ℓ(m− n) and n ≤ d∗(C) ≤ 2ℓn.

Proof. For q := 2ℓ, let L ⊆ Fm
q be a Reed-Solomon code over Fq with generator matrix G ∈ Fn×m

q .
The following facts are standard results in coding theory (e.g., see Chapter 10 of [MS77]):

• Each entry of the matrix G can be constructed in time poly(n,m, ℓ).

• The distance of L is
d(L) = m− n+ 1.

• The dual code of L has distance

d∗(L) = m− (m− n) + 1 = n+ 1.

By Lemma 4.13, there is a binary code C ⊆ Fℓm
2 such that we can explicitly construct a generator

matrix M ∈ Fℓn×ℓm
2 for C, and

m− n ≤ d(L) ≤ d(C) ≤ ℓd(L) ≤ 2ℓ(m− n), and n ≤ d∗(L) ≤ d∗(C) ≤ ℓd∗(L) ≤ 2ℓn. ■

Theorem 4.16 (Theorem 1.5). For every sufficiently large n ∈ N, and for

m := ⌈n3/2(log n)2⌉ and ℓ := ⌈log2m⌉,

there is an ℓm-variate monotone Boolean function f : {0, 1}ℓm → {0, 1} such that the following
hold:

1. f can be computed by a uniform Boolean circuit of size polynomial in n and depth O(log ℓm)2.

2. Any monotone Boolean circuit computing f has size at least 2(ℓm)1/3−o(1)
.

Proof. By Corollary 4.15, there is a binary code C ⊆ Fℓm
2 such that we can explicitly construct a

generator matrix M ∈ Fℓn×ℓm
2 for C and

m− n ≤ d(C) ≤ 2ℓ(m− n) and n ≤ d∗(C) ≤ 2ℓn. (9)

Let f := fM be the ℓm-variate Boolean function corresponding to M . By Lemma 4.1, the function
f can be computed by uniform Boolean circuit of size poly(ℓm) and depth O(log ℓm)2. Let

d := d(C)− 1 and t := d∗(C)− 1.

Note that, for sufficiently large n,
d ≥ 2nℓ.

By Theorem 4.3, we obtain that the monotone complexity S+(f) of f is at least

Ω

(
d

ℓnw log(ℓm)

)w

,

for w :=
√
t/(b log(ℓm)). By Equation 9, we get that

Ω(m1/3/(logm)2) ≤ w ≤ O(n1/2/(logm)1/2).

Therefore,

S+(f) ≥ Ω

(
d

ℓnw log(ℓm)

)w

≥ Ω

(
m

n3/2(logm)3/2

)w

≥ Ω(logm)w/2 ≥ 2Ω(m1/3 log logm/(logm)2). ■

28



5 Mixed separation

This section uses some ideas from Section 4 to prove a lower bound for fM when M is a real matrix.
We get weaker (but still superpolynomial) lower bounds for the size of monotone circuits.

5.1 Nonmonotone low-depth circuit upper bounds

Let us first prove the upper bound part of Theorem 1.4.

Lemma 5.1 (Upper bound). For any matrix A ∈ Rn×m, the polynomial PA ∈ R[x1, . . . , xm], as
defined in Equation 2, is computed by an arithmetic circuit of size poly(m) and depth O(logm)2.

Proof. Let

IX :=
m∑
i=1

xieie
⊤
i ∈ R[X]m×m

be the m-dimensional identity matrix with diagonal elements replaced by the variables x1, . . . , xm.
By the Cauchy-Binet formula, we have

det((AIX)AT ) =
∑

S⊆[m]:
|S|=n

det((AIX)[[n], S]) det(AT [S, [n]]) =
∑

S⊆[m]:
|S|=n

det((AIX)[[n], S]) det(A[S]),

and, by the block structure of IX and the multiplicative property of the determinant,

det((AIX)[[n], S]) = det(A[[n], S]IX [S, S]) = det(A[[n], S]) det(IX [S, S]) = det(A[S])
∏
i∈S

xi.

Hence,

det((AIX)AT ) =
∑

S⊆[m]:
|S|=n

(
det(A[S])

∏
i∈S

xi

)
det(A[S]) = PA(x1, . . . , xm).

By efficient computation of the determinant of a symbolic matrix [Ber84, MV97], we obtain that
the polynomial PA = det(AIXAT ) can be computed by an arithmetic circuit of size poly(m) and
depth O((logm)2). ■

5.2 Choice of a well-behaved R-matrix

Let k := k(n) ∈ N be a growing function, which will be specified later, such that k ≤ n0.1. Let

m := n2 and s := 200k2. (10)

Let Mn be an n×m random matrix obtained by sampling each column Mn[i] of Mn independently
and uniformly at random from the set of vectors in {0, 1}n of Hamming weight at most s.

For technical reasons, it is nicer to sample the matrix using points of Hamming weight at most
s, though the following lemma shows that this is not very different from sampling points of weight
close to s.

Lemma 5.2. With probability at least 1− 1/n, every column of Mn has Hamming weight at least
s/2.

29



Proof. Note that s = 200k2 = O(n0.2). We note that
(
n
i

)
≤ ni for i ∈ [n], and use the bound on s

to conclude (
n

≤ s

)
≥
(
n

s

)
≥
(n
s

)s
≥ n0.7s.

Putting things together, the probability that any fixed column Mn[j] has Hamming weight less
than s/2 is at most

s/2∑
i=0

(
n
i

)(
n
≤s

) ≤ (s/2 + 1) · ns/2

n0.7s
≤ n

n0.2s
.

Union bounding over m = n2 columns and using the fact that s ≥ 200, the probability that there
is a column of Hamming weight at most s/2 is at most 1/n. ■

To construct our hard distributions, the following lemma will be important.

Lemma 5.3 (Full rank lemma). If S is distributed uniformly in
( [m]
10n logn

)
and independently of

Mn, then

Pr
Mn

[
Pr
S
[Mn[S] is full rank] ≥ 1/10

]
≥ 1/10.

Proof. The idea is to carry out an argument analogous to the solution to the coupon-collector’s
problem to show that for each S ∈

( [m]
10n logn

)
, we have

Pr
Mn

[Mn[S] is full rank] ≥
4

5
. (11)

The claim of the lemma then follows from Equation 11 by the following averaging argument. Define
the random variables

X := Pr
S∈([m]

n )
[Mn[S] is full rank] , and Y := 1−X.

Thus

EMn [X] = EMn

 1(
m
n

) ∑
S⊆[m]:|S|=n

1rank(Mn[S])=n


=

1(
m
n

) ∑
S⊆[m]:|S|=n

Pr
Mn

[rank(Mn[S]) = n] ≥ 4

5
,

and EMn [Y ] ≤ 1
5 . By Markov’s inequality, we get

1− Pr
Mn

[
X ≥ 1

10

]
= Pr

Mn

[
Y ≥ 9

10

]
≤ 10EMn [Y ]

9
≤ 2

9
,

which implies that

Pr
Mn

[
X ≥ 1

10

]
≥ 7

9
>

1

10
.

Now let us prove the probability bound in Equation 11. Assume, without loss of generality, that
S = {1, . . . , 10n log n}. Assume that we choose an infinite sequence of vectors {vi}i∈N of vectors

30



independently and uniformly at random {0, 1}n≤s. For each d ≤ n, let Xd denote the smallest
r such that v1, . . . , vr span a subspace of dimension d. It suffices to show that EXn ≤ 2n log n,
because Equation 11 then follows by Markov’s inequality, since we can interpret the definition
of Mn as choosing the vectors v1, · · · , v10n logn as Mn’s columns. For X0 := 0, we have that
Xn :=

∑n−1
d=0 Xd+1 −Xd, which implies that

EXn =
n−1∑
d=0

E[Xd+1 −Xd].

To compute E[Xd+1−Xd], we condition on the value Xd = r and the vectors v1, . . . , vr which span a
vector space V of dimension d. Let pd denote the probability that a uniformly random v ∈ {0, 1}n≤s

lies outside V . By the subspace lemma (Lemma 5.4) proved below, we have

1− pd ≤
(

d
≤s

)(
n
≤s

) ≤ d+ 1

n+ 1

where the latter inequality follows from the following simple binomial estimate:(
d

≤ s

)
= 1 + d+

s∑
i=2

(
d

i

)
≤ 1 + d+

s∑
i=2

d+ 1

n+ 1
·
(
n

i

)
=

d+ 1

n+ 1
·
(

n

≤ s

)
.

It follows that Xd+1 − Xd (conditioned on v1, . . . , vr) has a geometric distribution with success
probability pd ≥ (n− d)/(n+ 1) and thus has expectation at most (n+ 1)/(n− d). Hence

EXn ≤
n−1∑
d=0

n+ 1

n− d
≤ 2n log n.

We have thus shown the desired upper bound on EXn, which completes the proof of the lemma. ■

The above proof used the following lemma, which show that a uniformly randomly chosen
v ∈ {0, 1}ns cannot lie in any proper subspace of Rn with high probability.

Lemma 5.4 (Subspace lemma). Let F be any field and let V be a subspace of Fn of dimension d,
and {0, 1}n≤s be the set of all binary strings of Hamming weight at most s. Then,

|V ∩ {0, 1}n≤s|≤
(

d

≤ s

)
.

We note that the above lemma is tight, as witnessed by a subspace V generated by any d
standard basis vectors.

Proof. As V has dimension d, there is a basis B of V such that there is a set R ∈
([n]
d

)
indexing

the elements of B as
B = { b(r) | r ∈ R}

such that, for every r ∈ R and v ∈ B,{
vr = 1 if v = b(r), and

vr = 0 otherwise.

31



Note that we can find such a basis via Gaussian elimination over any arbitrary basis of V , as the
set R above corresponds to the rows of the pivot element of the matrix in column echelon form.
For every v ∈ X := V ∩ {0, 1}n≤s, let αv ∈ RB be the unique vector such that v =

∑
b∈B αv,bb. So,

for every r ∈ R,

vr =
∑
b∈B

αv,bbr = αv,b(r) ,

which implies that supp(v)∩R uniquely determines αv (as vr ∈ {0, 1}), and, consequently, uniquely
determines v. As | supp(v) ∩R| ≤ | supp(v)| ≤ s for every v ∈ X, we get that

|X| ≤
∣∣∣∣( |R|≤ s

)∣∣∣∣ = ( d

≤ s

)
. ■

We also need the following lemma to show that, with high probability, most columns in an
arbitrary small tuple of columns of Mn have a small fraction of their support intersecting the union
of the support of their preceding columns.

Definition 5.5. For τ := (i1, . . . , it) a tuple of distinct elements of [m], we say that ij is c-contained
w.r.t. τ if the set supp(Mn[ij ]) has at least c elements in common with

⋃
p<j supp(Mn[ip]). ◀

Lemma 5.6. Let Sτ be the following (random) set

Sτ := { j ∈ [t] | ij is 10k-contained w.r.t. τ}.

Then, for any positive integer t ≤ n0.1, we have

Pr
Mn

[∃ τ such that |Sτ | ≥ t/2k] ≤ 1

n
.

Proof. Let r := ⌈t/2k⌉ and κ := 10k. By the union bound over the choices of τ ∈ [m]t and S ∈
(
[t]
r

)
,

we get that

Pr
Mn

[∃ τ such that |Sτ | ≥ t/2k] ≤ mt ·
(
t

r

)
max
τ,S

Pr
Mn

[S ⊆ Sτ ] .

Now we are going to find an upper bound for PrMn [S ⊆ Sτ ] for every τ =: (i1, . . . , it) and S ∈
(
[t]
r

)
.

Let {s1, . . . , sr} := S such that s1 < . . . < sr, and, for every j ∈ [r], let

Tj := ∪p<sj supp(Mn[ip]).

First note that |Tj | ≤ ts, and

Pr
Mn

[S ⊆ Sτ ] ≤ Pr
Mn

[
∩rj=1{| supp(Mn[isj ]) ∩ Tj | ≥ κ}

]
=

r∏
j=1

Pr
Mn

[
| supp(Mn[isj ]) ∩ Tj | ≥ κ

∣∣∣∣ ∩j−1
i=1 {| supp(Mn[isi ]) ∩ Ti| ≥ κ}

]

=
r∏

j=1

Pr
Mn

[
| supp(Mn[isj ]) ∩ Tj | ≥ κ

]
,

32



where the last equality follows from the independence between choices for the columns of Mn. For
every j ∈ [r], we have, again by independence of columns,

Pr
Mn

[
| supp(Mn[isj ]) ∩ Tj | ≥ κ

]
=

∑
T⊆[n],κ≤|T |≤ts

Pr
Mn

[
| supp(Mn[isj ]) ∩ T | ≥ κ

]
Pr
Mn

[Tj = T ]

≤ max
T⊆[n],κ≤|T |≤ts

Pr
Mn

[
| supp(Mn[isj ]) ∩ T | ≥ κ

]
.

For every T ⊆ [n] such that κ ≤ |T | ≤ ts, we get

Pr
Mn

[
| supp(Mn[isj ]) ∩ T | ≥ κ

]
= Pr

Mn

[
∃R ∈

(
T

κ

)
s.t. R ⊆ supp(Mn[isj ])

]
≤

(|T |
κ

)(
n−κ

≤(s−κ)

)(
n
≤s

) ≤
(|T |
κ

)
· (s+ 1) ·

(
n−κ
s−κ

)(
n
s

)
≤ (s+ 1)(tse/κ)κ(2s/n)κ

≤ n−0.5κ = n−5k.

Therefore, we obtain

Pr
Mn

[S ⊆ Sτ ] ≤ n−5kr ≤ n−2.5t

and, as a consequence,

Pr
Mn

[∃ τ such that |Sτ | ≥ t/2k] ≤
(
t

r

)
·mtn−2.5t =

(
t

r

)
· n−0.5t ≤ 1/n. ■

We now collect in the following definition the properties of a matrix that we need for the proof
of our lower bound.

Definition 5.7. We say that a matrix M ∈ Rn×m is well-behaved if the following properties hold:

1. Every column M [i] has support size at least s/2,

2. Pr
S∈( [m]

10n logn)
[M [S] is full rank] ≥ 1/10, and

3. for any t ≤ n0.1 and any tuple τ = (i1, . . . , it) of distinct elements from [m], the number of
j ∈ [t] such that ij is 10k-contained w.r.t. τ is smaller than t/2k. In particular, if t ≤ k, there
are no j ∈ [t] such that ij is 10k-contained w.r.t. τ .

◀

By Lemma 5.2, Lemma 5.3 and Lemma 5.6 (along with a union bound over all t ≤ n0.1), we
know that, with positive probability, Mn is a well-behaved matrix for every sufficiently large n. For
the rest of this section, we will denote by M a fixed well-behaved matrix.

33



5.3 Monotone Boolean circuit lower bounds via well-behaved matrices

In the remaining of this section, we show that the Boolean function fM cannot be computed by
a monotone Boolean circuit of small size. This is the lower bound part of Theorem 1.4. As in
Section 4.2, we start by defining two probability distributions over the inputs of fM .

Definition 5.8. We define the distribution a ∼ D1 by sampling a uniformly random a ∈ {0, 1}m
of Hamming weight 10n log n. We define the distribution a ∼ D0 by sampling a uniformly random
u ∈ {−1, 0, 1}n and, for every j ∈ [m], we set

aj := 1 if ⟨M [j], u⟩ = 0, and

aj := 0 otherwise,

where the inner product is taken over R. ◀

Observation 5.9. Since the matrix M is well-behaved (see Definition 5.7), the distribution D1

satisfies Pra∼D1 [f(a) = 1] ≥ 1/10.
Further, as long as u ̸= 0, the point a sampled from D0 is an element of f−1

M (0). Thus we have

Pr
a∼D0

[fM (a) = 0] = 1− 1

3n
.

Thus, to show a lower bound via the monotone circuit lower bound criterion (Theorem 3.3), as
before it suffices to show that D1 is spread and to show a bound for (D0, ε)-sunflowers.

Lemma 5.10 (Spreadness of D1). The distribution D1 is n0.1-wise (n/(10 log n))-spread.

Proof. Let T be a subset of [m] of size k ≤ n0.1. The proof of this lemma is similar to the proof of
Lemma 4.8. Note that, for ℓ := 10n log n and S ∼ Unif(

(
m
ℓ

)
),

Pr
a∼D1

[∧
i∈T

ai = 1

]
= Pr

S
[T ⊆ S] =

(
m−k
ℓ−k

)(
m
ℓ

) =
k−1∏
i=0

ℓ− i

m− i
≤
(

ℓ

m

)k

,

where the last inequality follows from ℓ−i
m−i ≤

ℓ
m for i ≤ k − 1. As m = n2, we have

Pr
S
[T ⊆ S] ≤

(
10n log n

n2

)k

= (n/(10 log n))−k. ■

Sunflower bound. To show the sunflower bound, we first show a weak form of bounded inde-
pendence for D0.

Lemma 5.11 (Weak form of independence for D0). Assume that t ≤ n0.1. Fix any tuple τ :=
(i1, . . . , it) of distinct elements in [m] and j ∈ [t] such that ij is not 10k-contained w.r.t. τ . Then,

Pr
a∼D0

[
aij = 1 | ai1 , . . . , aij−1

]
≥ Ω(1/k).

Proof. Let Sℓ := suppM [iℓ] for ℓ ∈ [j], and R := Sj \
⋃j−1

ℓ=1 Sℓ. For every T ⊆ [n], let

XT :=
∑
ℓ∈T

uℓ,

34



where uℓ’s are the random variables used to defined D0. If ij is not 10k-contained w.r.t. τ , we have

|R| ≥ |Sj | − 10k ≥ (s/2)− 10k.

As X[n] = 0, we have that

Pr
a∼D0

[aij = 1 | ai1 , . . . , aij−1 ]

=

10k∑
p=−10k

Pr
a∼D0

[
XSj\R = −p,XR = p | ai1 , . . . , aij−1

]

=

10k∑
p=−10k

Pr
a∼D0

[
XR = p | XSj\R = −p, ai1 , . . . , aij−1

]
Pr

a∼D0

[
XSj\R = −p | ai1 , . . . , aij−1

]

=

10k∑
p=−10k

Pr
a∼D0

[XR = p] Pr
a∼D0

[
XSj\R = −p | ai1 , . . . , aij−1

]
,

where the last equality follows from the independence between coordinates of u. Note that, for
every p ∈ [−10k, 10k] and r := |R| and Yℓ ∼ Rademacher(ℓ) being a Rademacher random variable
with ℓ independent samples for every ℓ ∈ {0, . . . , r}, we have

Pr
a∼D0

[XR = p] =
∑
U⊆R

Pr
a∼D0

[
u−1(0) = U,XR = p

]
=
∑
U⊆R

Pr
a∼D0

[
XR\U = p | u−1(0) = U

]
Pr

a∼D0

[
u−1(0) = U

]
≥

∑
U⊆R,||U |−r/3|≤δr/3

Pr
a∼D0

[
Yr−|U | = p

]
Pr

a∼D0

[
u−1(0) = U

]

≥
(

min
w∈[r] s.t. |w−r/3|≤δr/3

Pr
a∼D0

[Yr−w = p]

) ∑
U⊆R,||U |−r/3|≤δr/3

Pr
a∼D0

[
u−1(0) = U

] ,

for any δ ∈ [0, 1]. Note that u−1(0) ∼ Bin(r, 1/3) =: B; thus, by Chernoff’s inequality [MU17],

Pr
B

[|B − EB| > δEB] ≤ 2e−δ2EB/3,

and, for δ :=
√

18/r,
Pr
B

[|B − r/3| > δr/3] ≤ 2e−2 ≤ 1/2.

Hence, ∑
U⊆R,||U |−r/3|≤δr/3

Pr
a∼D0

[
u−1(0) = U

]
≥ 1/2.

Now we just need to find good estimates for Pra∼D0 [Yv = p] for v := r − w with w ∈ [r] satisfying

|w − r/3| ≤
√
2r.

35



In order to obtain these estimates, we will use standard inequalities to deal with binomial coeffi-
cients. First note that

Pr
a∼D0

[Yv = p] =

(
v

(v + p)/2

)
2−v.

By using that 1− x ≥ e−x/(1−x) for every x ≤ 1, we get that(
v

(v+p)/2

)(
v

v/2

) =

p/2−1∏
i=0

v/2− i

v/2 + p/2− i

≥
(
v/2− p/2

v/2

)p/2

≥
(
e
− p

v
1

1−p/v

)p/2
≥ e

− p2

2(v−p) ,

and, using that
(

v
v/2

)
= Θ(2v/

√
v), we obtain

Pr
a∼D0

[Yv = p] ≥ e
− p2

2(v−p)

(
v

v/2

)
2−v

≥ Ω

e
− p2

2(v−p)

√
v

 .

As p ∈ [−10k, 10k] and

200k2 = s ≥ v ≥ 2r/3−
√
18r ≥ r/3 ≥ 1

3
((s/2)− 10k) =

1

3
(200k2 − 10k) ≥ 60k2

for sufficiently large k, we get

Pr
a∼D0

[Yv = p] ≥ Ω

e
− 200k2

2·(60k2−10k)

√
k2


≥ Ω (1/k) .

Therefore, we obtain

Pr
a∼D0

[
aij = 1 | ai1 , . . . , aij−1

]
≥ Ω (1/k) · 1

2
= Ω(1/k). ■

Our main combinatorial tool is the classical sunflower lemma [ER60] (see also [Juk11, Section
6.1]). Recall that a sunflower is a collection of sets S1, . . . , Sr such that the pairwise intersections
Si ∩ Sj are all the same. The improved bounds of [ALWZ21] and subsequent works will not make
any substantial difference in our bounds.

Lemma 5.12 (Sunflower lemma). If S is a family of sets of size at most ℓ ∈ [k] such that |S| ≥
ℓ!(r − 1)ℓ, then S contains a sunflower with r sets.

36



We now prove our D0-sunflower bound. To make the bound cleaner and simpler to prove, we
now set our choice of k. We set

k := ⌈(logm)1/2⌉. (12)

This is the only place where we need to set k = no(1), owing to our use of the classical sunflower
lemma.

Lemma 5.13 (D0-sunflower lemma). For every ℓ ∈ [k], we have r(D0, ℓ,m
−4k) ≤ 2k2ℓ+1ℓ logm.

Proof. Let ε := m−4k. Let S be a ℓ-uniform family of sets larger than (2k2ℓℓ log(1/ε))ℓ. By
Lemma 5.12, there exists a sunflower S ′ ⊆ S with

r := 2k2ℓ log(1/ε)

sets with some core K :=
⋂

S∈S′ S. Note that

r = 8k2ℓ+1 logm≪ n0.1,

by our choice of k =
√
logm and m = n2 (Equation (10)).

We now show that S ′ is a (D0, ℓ, ε)-sunflower. Let F := {S \K : S ∈ S ′}. It suffices to show
that, for F := FF , we have

Pr
a∼D0

[F (a) = 0] ≤ ε.

Let F1, F2, . . . , Fr be the sets of F . Let

τ := (i1, i2, . . . , it)

be the sequence of all the indices corresponding to the variables appearing in the terms F1, F2, . . . , Fr

in that order (inside each term we order the variables arbitrarily). Since t ≤ rk ≤ n0.1 and by the
choice of M (see Definition 5.7, Item (3)), there are at most t/2k ≤ r/2 indices in τ which are
10k-contained with respect to τ . In particular, these indices appear across at most r/2 ‘corrupted’
terms among F1, . . . , Fr. In the remaining terms, all of their indices are not 10k-contained w.r.t. τ .
Removing the corrupted terms yields a a subfamily F ′ ⊆ F with r′ ≥ r/2 sets such that all their
indices are not 10k-contained w.r.t. τ . Let F ′

1, . . . , F
′
r′ be the sets of F ′.

For any j ∈ [r′], we can apply Lemma 5.11 for each of F ′
j ’s elements (recall that F ′

j has at most
ℓ literals), and then obtain

Pr
a∼D0

[
F ′
j(a) = 1 | F ′

1(a) = 0, . . . , F ′
j−1(a) = 0

]
≥ Ω(1/k)ℓ.

Therefore, we obtain

Pr
a∼D0

[
F ′
j(a) = 0 | F ′

1(a) = 0, . . . , F ′
j−1(a) = 0

]
≤ 1− Ω(1/k)ℓ,

and, as a consequence,

Pr
a∼D0

[F (a) = 0] ≤ Pr
a∼D0

[
F ′(a) = 0

]
≤
(
1− Ω(1/k)ℓ

)r′
≤ exp(−rk−2ℓ/2) = ε,

for sufficiently large k. ■

37



Wrapping up. We can now apply Theorem 3.3, finishing the proof.

Proof of Theorem 1.4. We have shown that there is a sequence of matrices (Mn)n∈N with entries
from R such that Mn is an n×m matrix where m := n2 and Mn is well-behaved (Definition 5.7).
We have also exhibited two distributions D1, D0 (Definition 5.8) supported over strings {0, 1}m
such that

1. Prx∼Di [fM (x) = i] ≥ α for every i ∈ {0, 1}, where α > 0 is some constant (Definition 5.7 and
Observation 5.9);

2. D1 is n0.1-wise (n/(10 log n))-spread (Lemma 5.10);

3. r(D0, ℓ,m
−4k) ≤ 8k2ℓ+1 logm for every ℓ ∈ [k] (Lemma 5.13).

Taking w := k in Theorem 3.3 and noting that αm−3k ≤ m−4k, we obtain that there exists a
constant β > 0 such that the monotone complexity of fM is(

βn

k2k+1 log2 n

)k

= mΩ(
√
logm).

The nonmonotone circuit upper bound for fM was proved in Lemma 5.1. ■

References

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean functions. Comb.,
7(1):1–22, 1987. doi:10.1007/BF02579196.

[ABO99] Eric Allender, Robert Beals, and Mitsunori Ogihara. The complexity of matrix rank and feasible
systems of linear equations. Comput. Complex., 8(2):99–126, 1999. URL: https://doi.org/
10.1007/s000370050023, doi:10.1007/S000370050023.

[AG87] Miklós Ajtai and Yuri Gurevich. Monotone versus positive. Journal of the ACM, 34(4):1004–
1015, 1987. doi:10.1145/31846.31852.

[AGG+25] Yaroslav Alekseev, Mika Göös, Ziyi Guan, Gilbert Maystre, Artur Riazanov, Dmitry Sokolov,
and Weiqiang Yuan. Generalised linial-nisan conjecture is false for dnfs. In Srikanth Srinivasan,
editor, 40th Computational Complexity Conference, CCC 2025, August 5-8, 2025, Toronto,
Canada, volume 339 of LIPIcs, pages 29:1–29:13. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2025. URL: https://doi.org/10.4230/LIPIcs.CCC.2025.29, doi:10.4230/LIPICS.
CCC.2025.29.

[ALWZ21] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Improved bounds for the sun-
flower lemma. Ann. of Math., 2(194(3)):795–815, 2021. doi:10.4007/annals.2021.194.3.5.

[AW24] Robert Andrews and Avi Wigderson. Constant-depth arithmetic circuits for linear algebra
problems. In 65th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2024, Chicago, IL, USA, October 27-30, 2024, pages 2367–2386. IEEE, 2024. doi:10.1109/

FOCS61266.2024.00138.

[AY24] Daniel Avraham and Amir Yehudayoff. On Blocky Ranks of Matrices. Comput. Com-
plex., 33(1):2, 2024. URL: https://doi.org/10.1007/s00037-024-00248-1, doi:10.1007/
S00037-024-00248-1.

[Baz09] Louay M. J. Bazzi. Polylogarithmic independence can fool DNF formulas. SIAM J. Comput.,
38(6):2220–2272, 2009. doi:10.1137/070691954.

38

https://doi.org/10.1007/BF02579196
https://doi.org/10.1007/s000370050023
https://doi.org/10.1007/s000370050023
https://doi.org/10.1007/S000370050023
https://doi.org/10.1145/31846.31852
https://doi.org/10.4230/LIPIcs.CCC.2025.29
https://doi.org/10.4230/LIPICS.CCC.2025.29
https://doi.org/10.4230/LIPICS.CCC.2025.29
https://doi.org/10.4007/annals.2021.194.3.5
https://doi.org/10.1109/FOCS61266.2024.00138
https://doi.org/10.1109/FOCS61266.2024.00138
https://doi.org/10.1007/s00037-024-00248-1
https://doi.org/10.1007/S00037-024-00248-1
https://doi.org/10.1007/S00037-024-00248-1
https://doi.org/10.1137/070691954


[BCW21] Tolson Bell, Suchakree Chueluecha, and Lutz Warnke. Note on Sunflowers. Discrete Mathe-
matics, 344(8):112328, 2021. Preprint: https://arxiv.org/abs/2009.09327. arXiv:arXiv:

2009.09327, doi:10.1016/j.disc.2021.112328.

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In Yeow Meng Chee, Zhenbo Guo, San
Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, editors, Coding
and Cryptology - Third International Workshop, IWCC 2011, Qingdao, China, May 30-June 3,
2011. Proceedings, volume 6639 of Lecture Notes in Computer Science, pages 11–46. Springer,
2011. doi:10.1007/978-3-642-20901-7\_2.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a small number
of processors. Inf. Process. Lett., 18(3):147–150, 1984. doi:10.1016/0020-0190(84)90018-8.

[BGW99] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for monotone
span programs. Comb., 19(3):301–319, 1999. URL: https://doi.org/10.1007/s004930050058,
doi:10.1007/S004930050058.

[BM25] Jaroslaw Blasiok and Linus Meierhöfer. Hardness of clique approximation for monotone circuits.
In Srikanth Srinivasan, editor, 40th Computational Complexity Conference, CCC 2025, August
5-8, 2025, Toronto, Canada, volume 339 of LIPIcs, pages 4:1–4:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2025. URL: https://doi.org/10.4230/LIPIcs.CCC.2025.4, doi:
10.4230/LIPICS.CCC.2025.4.

[Cav20] Bruno Cavalar. Sunflower theorems in computational complexity. Master’s dissertation, Insti-
tuto de Matemática e Estat́ıstica, University of São Paulo, 2020. doi:10.11606/D.45.2020.

tde-25112020-162107.

[CDGM22] Arkadev Chattopadhyay, Rajit Datta, Utsab Ghosal, and Partha Mukhopadhyay. Monotone
complexity of spanning tree polynomial re-visited. In Mark Braverman, editor, 13th Inno-
vations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3,
2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 39:1–39:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ITCS.2022.39, doi:
10.4230/LIPICS.ITCS.2022.39.

[CDM21] Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay. Lower bounds for monotone
arithmetic circuits via communication complexity. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 786–799. ACM, 2021. doi:10.1145/3406325.

3451069.

[CGM22] Arkadev Chattopadhyay, Utsab Ghosal, and Partha Mukhopadhyay. Robustly separating the
arithmetic monotone hierarchy via graph inner-product. In Anuj Dawar and Venkatesan Gu-
ruswami, editors, 42nd IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai,
India, volume 250 of LIPIcs, pages 12:1–12:20. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2022. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2022.12, doi:10.4230/

LIPICS.FSTTCS.2022.12.

[CGR+25] Bruno Cavalar, Mika Göös, Artur Riazanov, Anastasia Sofronova, and Dmitry Sokolov. Mono-
tone circuit complexity of matching. CoRR, abs/2507.16105, 2025. URL: https://doi.org/
10.48550/arXiv.2507.16105, arXiv:2507.16105, doi:10.48550/ARXIV.2507.16105.

[CKR22] Bruno Pasqualotto Cavalar, Mrinal Kumar, and Benjamin Rossman. Monotone circuit lower
bounds from robust sunflowers. Algorithmica, 84(12):3655–3685, 2022. URL: https://doi.
org/10.1007/s00453-022-01000-3, doi:10.1007/S00453-022-01000-3.

39

https://arxiv.org/abs/2009.09327
https://arxiv.org/abs/arXiv:2009.09327
https://arxiv.org/abs/arXiv:2009.09327
https://doi.org/10.1016/j.disc.2021.112328
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1016/0020-0190(84)90018-8
https://doi.org/10.1007/s004930050058
https://doi.org/10.1007/S004930050058
https://doi.org/10.4230/LIPIcs.CCC.2025.4
https://doi.org/10.4230/LIPICS.CCC.2025.4
https://doi.org/10.4230/LIPICS.CCC.2025.4
https://doi.org/10.11606/D.45.2020.tde-25112020-162107
https://doi.org/10.11606/D.45.2020.tde-25112020-162107
https://doi.org/10.4230/LIPIcs.ITCS.2022.39
https://doi.org/10.4230/LIPICS.ITCS.2022.39
https://doi.org/10.4230/LIPICS.ITCS.2022.39
https://doi.org/10.1145/3406325.3451069
https://doi.org/10.1145/3406325.3451069
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.12
https://doi.org/10.4230/LIPICS.FSTTCS.2022.12
https://doi.org/10.4230/LIPICS.FSTTCS.2022.12
https://doi.org/10.48550/arXiv.2507.16105
https://doi.org/10.48550/arXiv.2507.16105
https://arxiv.org/abs/2507.16105
https://doi.org/10.48550/ARXIV.2507.16105
https://doi.org/10.1007/s00453-022-01000-3
https://doi.org/10.1007/s00453-022-01000-3
https://doi.org/10.1007/S00453-022-01000-3


[CO23] Bruno Cavalar and Igor Oliveira. Constant-depth circuits vs. monotone circuits. In Proceedings of
the 38h Computational Complexity Conference (CCC), volume 264 of LIPIcs, pages 29:1–29:37.
Schloss Dagstuhl, 2023. doi:10.4230/LIPIcs.CCC.2023.29.

[COS17] Xi Chen, Igor Oliveira, and Rocco Servedio. Addition is exponentially harder than counting for
shallow monotone circuits. In Proceedings of 49th Symposium on Theory of Computing (STOC),
pages 1232–1245. ACM, 2017. doi:10.1145/3055399.3055425.

[Csa76] László Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing, 5(4):618–
623, 1976. doi:10.1137/0205042.

[ĎHJ04] Pavol Ďurǐs, Juraj Hromkovič, and Stasys Jukna. On multi-partition communication complexity.
Information and Computation, 194(1):49–75, 2004. doi:10.1016/j.ic.2004.05.002.

[dRV25] Susanna F. de Rezende and Marc Vinyals. Lifting with colourful sunflowers. In Rahul San-
thanam, editor, 40th Computational Complexity Conference (CCC 2025), volume 339 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 36:1–36:19, Dagstuhl, Germany, 2025.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2025.36.

[ER60] P. Erdös and R. Rado. Intersection theorems for systems of sets. J. Lond. Math. Soc., 35(1):85–
90, 1960.

[Erd45] Paul Erdős. On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc., 51(12):898–902,
1945.

[FGT19] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. A deterministic parallel algorithm for
bipartite perfect matching. Communications of the ACM, 62(3):109–115, 2019. doi:10.1145/

3306208.

[FMP+15] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf. Ex-
ponential lower bounds for polytopes in combinatorial optimization. J. ACM, 62(2):17:1–17:23,
2015. doi:10.1145/2716307.

[GGKS20] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. Theory Comput., 16:1–30, 2020. URL: https://doi.org/10.4086/toc.2020.
v016a013, doi:10.4086/TOC.2020.V016A013.

[GKRS18] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone
complexity and TFNP. Electron. Colloquium Comput. Complex., TR18-163, 2018. URL: https:
//eccc.weizmann.ac.il/report/2018/163, arXiv:TR18-163.

[GS92] Michelangelo Grigni and Michael Sipser. Monotone complexity. In Boolean Function Complexity,
London Mathematical Society Lecture Note Series, pages 57–75. Cambridge University Press,
1992. doi:10.1017/CBO9780511526633.006.

[Hay11] Thomas P. Hayes. Separating the k-party communication complexity hierarchy: an application of
the Zarankiewicz problem. Discrete Mathematics & Theoretical Computer Science, 13(4):15–22,
2011. doi:10.46298/dmtcs.546.

[HR00] Danny Harnik and Ran Raz. Higher lower bounds on monotone size. In Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, STOC ’00, page 378–387, New York,
NY, USA, 2000. Association for Computing Machinery. doi:10.1145/335305.335349.

[HY09] Pavel Hrubes and Amir Yehudayoff. Monotone separations for constant degree polynomials.
Inf. Process. Lett., 110(1):1–3, 2009. URL: https://doi.org/10.1016/j.ipl.2009.09.003,
doi:10.1016/J.IPL.2009.09.003.

40

https://doi.org/10.4230/LIPIcs.CCC.2023.29
https://doi.org/10.1145/3055399.3055425
https://doi.org/10.1137/0205042
https://doi.org/10.1016/j.ic.2004.05.002
https://doi.org/10.4230/LIPIcs.CCC.2025.36
https://doi.org/10.1145/3306208
https://doi.org/10.1145/3306208
https://doi.org/10.1145/2716307
https://doi.org/10.4086/toc.2020.v016a013
https://doi.org/10.4086/toc.2020.v016a013
https://doi.org/10.4086/TOC.2020.V016A013
https://eccc.weizmann.ac.il/report/2018/163
https://eccc.weizmann.ac.il/report/2018/163
https://arxiv.org/abs/TR18-163
https://doi.org/10.1017/CBO9780511526633.006
https://doi.org/10.46298/dmtcs.546
https://doi.org/10.1145/335305.335349
https://doi.org/10.1016/j.ipl.2009.09.003
https://doi.org/10.1016/J.IPL.2009.09.003


[HY13] Pavel Hrubes and Amir Yehudayoff. Formulas are exponentially stronger than monotone circuits
in non-commutative setting. In Proceedings of the 28th Conference on Computational Complex-
ity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 10–14. IEEE Computer
Society, 2013. doi:10.1109/CCC.2013.11.

[HY16] Pavel Hrubes and Amir Yehudayoff. On Isoperimetric Profiles and Computational Complexity.
In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,
43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 89:1–89:12. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.89, doi:
10.4230/LIPICS.ICALP.2016.89.

[HY21] Pavel Hrubes and Amir Yehudayoff. Shadows of Newton Polytopes. In Valentine Kabanets,
editor, 36th Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, On-
tario, Canada (Virtual Conference), volume 200 of LIPIcs, pages 9:1–9:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.CCC.2021.9,
doi:10.4230/LIPICS.CCC.2021.9.

[JS20] Stasys Jukna and Hannes Seiwert. Approximation limitations of pure dynamic programming.
SIAM J. Comput., 49(1):170–205, 2020. doi:10.1137/18M1196339.

[Juk11] Stasys Jukna. Extremal Combinatorics - With Applications in Computer Science. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2011. doi:10.1007/

978-3-642-17364-6.

[Juk15] Stasys Jukna. Lower bounds for tropical circuits and dynamic programs. Theory Comput. Syst.,
57(1):160–194, 2015. doi:10.1007/s00224-014-9574-4.

[Kas67] P. W. Kasteleyn. Graph theory and crystal physics. In Frank Harary, editor, Graph Theory and
Theoretical Physics, pages 43–110. Academic Press, London, 1967. Chapter in edited volume.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993, pages
102–111. IEEE Computer Society, 1993. doi:10.1109/SCT.1993.336536.

[KW15] Volker Kaibel and Stefan Weltge. A short proof that the extension complexity of the correlation
polytope grows exponentially. Discrete Comput. Geom., 53(2):397–401, 2015. doi:10.1007/

s00454-014-9655-9.

[LO43] J. E. Littlewood and A. C. Offord. On the number of real roots of a random algebraic equation.
iii. Rec. Math. [Mat. Sbornik] N.S., 12(54):277–286, 1943.

[Lov79] László Lovász. On determinants, matchings and random algorithms. In L. Budach, editor,
Fundamentals of Computation Theory (FCT’79), pages 565–574, Berlin, 1979. Akademie-Verlag.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. Parts I, II, vol-
ume 16 of North-Holland Math. Libr. Elsevier (North-Holland), Amsterdam, 1977.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing. Cambridge University Press,
Cambridge, second edition, 2017. Randomization and probabilistic techniques in algorithms and
data analysis.

[Mul87] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary
field. Comb., 7(1):101–104, 1987. doi:10.1007/BF02579205.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity. Chic.
J. Theor. Comput. Sci., 1997, 1997. URL: http://cjtcs.cs.uchicago.edu/articles/1997/
5/contents.html.

41

https://doi.org/10.1109/CCC.2013.11
https://doi.org/10.4230/LIPIcs.ICALP.2016.89
https://doi.org/10.4230/LIPICS.ICALP.2016.89
https://doi.org/10.4230/LIPICS.ICALP.2016.89
https://doi.org/10.4230/LIPIcs.CCC.2021.9
https://doi.org/10.4230/LIPICS.CCC.2021.9
https://doi.org/10.1137/18M1196339
https://doi.org/10.1007/978-3-642-17364-6
https://doi.org/10.1007/978-3-642-17364-6
https://doi.org/10.1007/s00224-014-9574-4
https://doi.org/10.1109/SCT.1993.336536
https://doi.org/10.1007/s00454-014-9655-9
https://doi.org/10.1007/s00454-014-9655-9
https://doi.org/10.1007/BF02579205
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html


[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In Cris
Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 410–418. ACM,
1991. doi:10.1145/103418.103462.

[NNP04] Ventzislav Nikov, Svetla Nikova, and Bart Preneel. On the size of monotone span programs.
In Carlo Blundo and Stelvio Cimato, editors, Security in Communication Networks, 4th In-
ternational Conference, SCN 2004, Amalfi, Italy, September 8-10, 2004, Revised Selected Pa-
pers, volume 3352 of Lecture Notes in Computer Science, pages 249–262. Springer, 2004.
doi:10.1007/978-3-540-30598-9\_18.

[Oko82] Elizaveta Okol’nishnikova. The effect of negations on the complexity of realization of monotone
Boolean functions by formulas of bounded depth. Metody Diskretnogo Analiza, (38):74–80, 1982.

[PS96] Pavel Pudlák and Jiŕı Sgall. Algebraic models of computation and interpolation for algebraic
proof systems. In Paul Beame and Samuel R. Buss, editors, Proof Complexity and Feasible
Arithmetics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, April
21-24, 1996, volume 39 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 279–295. DIMACS/AMS, 1996. URL: https://doi.org/10.1090/dimacs/039/
15, doi:10.1090/DIMACS/039/15.

[Rao25] Anup Rao. The story of sunflowers, 2025. URL: https://arxiv.org/abs/2509.14790, arXiv:
2509.14790.

[Raz85] Alexander Razborov. Lower bounds on the monotone complexity of some Boolean functions.
Dokl. Akad. Nauk SSSR, 281(4):798–801, 1985.

[Raz92] Alexander A. Razborov. On the Distributional Complexity of Disjointness. Theor. Comput.
Sci., 106(2):385–390, 1992. doi:10.1016/0304-3975(92)90260-M.

[Ros14] Benjamin Rossman. The monotone complexity of k-clique on random graphs. SIAM Journal on
Computing, 43(1):256–279, 2014. doi:10.1137/110839059.

[Rou15] Tim Roughgarden. Communication complexity (for algorithm designers), 2015. URL: https:
//arxiv.org/abs/1509.06257.

[RW92] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. Journal of
the ACM, 39(3):736–744, 1992. doi:10.1145/146637.146684.

[RY11] Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy and mixed-
sources extractors. J. Comput. Syst. Sci., 77(1):167–190, 2011. doi:10.1016/j.jcss.2010.06.
013.

[Sho88] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields. In 29th
Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24-26
October 1988, pages 283–290. IEEE Computer Society, 1988. doi:10.1109/SFCS.1988.21944.

[Sri20] Srikanth Srinivasan. Strongly exponential separation between monotone VP and monotone VNP.
ACM Trans. Comput. Theory, 12(4):12, 2020. Id/No 23. doi:10.1145/3417758.

[Sta97] Richard P. Stanley. Enumerative combinatorics. Vol. 1., volume 49 of Camb. Stud. Adv. Math.
Cambridge: Cambridge University Press, 1997.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Found. Trends Theor. Comput. Sci., 5(3-4):207–388, 2010. doi:10.1561/0400000039.

[Tal17] Avishay Tal. Tight bounds on the fourier spectrum of AC0. In Ryan O’Donnell, editor, 32nd
Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, volume 79
of LIPIcs, pages 15:1–15:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL:
https://doi.org/10.4230/LIPIcs.CCC.2017.15, doi:10.4230/LIPICS.CCC.2017.15.

42

https://doi.org/10.1145/103418.103462
https://doi.org/10.1007/978-3-540-30598-9_18
https://doi.org/10.1090/dimacs/039/15
https://doi.org/10.1090/dimacs/039/15
https://doi.org/10.1090/DIMACS/039/15
https://arxiv.org/abs/2509.14790
https://arxiv.org/abs/2509.14790
https://arxiv.org/abs/2509.14790
https://doi.org/10.1016/0304-3975(92)90260-M
https://doi.org/10.1137/110839059
https://arxiv.org/abs/1509.06257
https://arxiv.org/abs/1509.06257
https://doi.org/10.1145/146637.146684
https://doi.org/10.1016/j.jcss.2010.06.013
https://doi.org/10.1016/j.jcss.2010.06.013
https://doi.org/10.1109/SFCS.1988.21944
https://doi.org/10.1145/3417758
https://doi.org/10.1561/0400000039
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.4230/LIPICS.CCC.2017.15


[Tar88] Éva Tardos. The gap between monotone and non-monotone circuit complexity is exponential.
Comb., 8(1):141–142, 1988. doi:10.1007/BF02122563.

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Michael J. Fischer, Richard A. DeMillo,
Nancy A. Lynch, Walter A. Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h
Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia,
USA, pages 249–261. ACM, 1979. doi:10.1145/800135.804419.

[Val80] Leslie G. Valiant. Negation can be exponentially powerful. Theor. Comput. Sci., 12:303–314,
1980. doi:10.1016/0304-3975(80)90060-2.

[W70] Moon J W. Counting labelled trees. Canadian Mathematical Congress, Montreal, 1970.

[Yeh19] Amir Yehudayoff. Separating monotone VP and VNP. In Moses Charikar and Edith Cohen,
editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 425–429. ACM, 2019. doi:10.1145/
3313276.3316311.

43

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il

https://doi.org/10.1007/BF02122563
https://doi.org/10.1145/800135.804419
https://doi.org/10.1016/0304-3975(80)90060-2
https://doi.org/10.1145/3313276.3316311
https://doi.org/10.1145/3313276.3316311

