
Reconstruction of Depth-3 Arithmetic Circuits with Constant Top
Fan-in

Shubhangi Saraf∗ Devansh Shringi† Narmada Varadarajan ‡

December 28, 2025

Abstract

In this paper, we give the first subexponential (in fact, quasi-polynomial time) reconstruction
algorithm for depth-3 circuits of any constant top fan-in (ΣΠΣ(k) circuits) over R, C, or any
large characteristic finite field F. More explicitly, we show that for any constant k, given black-
box access to an n-variate polynomial f computed by a ΣΠΣ(k) circuit of size s, there is a
randomized algorithm that runs in time quasi-poly(n, s) and outputs a generalized ΣΠΣ(k)
circuit computing f . The size s includes the bit complexity of coefficients appearing in the
circuit: this is the max bit complexity if the field is R or C, and log |F| if the field is finite.

Depth-3 circuits of constant fan-in (ΣΠΣ(k) circuits) and closely related models have been
very well studied in the context of polynomial identity testing (PIT). In this paper, we build
upon the structural results for identically zero ΣΠΣ(k) circuits that were studied in the context
of PIT. Using connections to discrete geometry, we prove new structural properties of vanishing
spaces of polynomials computed by such circuits.

Prior to our work, the only subexponential reconstruction algorithm for ΣΠΣ(k) circuits is
by [Karnin–Shpilka, CCC 2009]. However, the run time is quasipolynomial in |F|, and hence this
is only efficient over small finite fields. Over general (potentially exponentially large size) finite
fields, efficient reconstruction algorithms were only known for k = 2 ([Sinha, ITCS 2022]); and
over R and C, they were only known for k = 2 ([Sinha, CCC 2016]) and k = 3 ([Saraf–Shringi,
CCC 2025]).

1 Introduction
Arithmetic circuits are directed acyclic graphs (DAGs) used to represent multivariate polynomials
succinctly. They generate polynomials from input variables by repeatedly applying addition (+)
and multiplication (×) operations.

The reconstruction problem for arithmetic circuits asks the following: given only black-box (or
oracle) access to a polynomial computed by an unknown circuit C of size s from some circuit class C,
design an efficient (deterministic or randomized) algorithm that outputs another circuit computing
the same polynomial. This can be viewed as the algebraic counterpart of exact learning in Boolean

∗Department of Mathematics & Department of Computer Science, University of Toronto, Toronto,
Canada. Research partially supported by an NSERC Discovery Grant and a McLean Award. Email:
shubhangi.saraf@utoronto.ca

†Department of Computer Science, University of Toronto, Toronto, Canada. Research partially supported by an
NSERC Discovery Grant and a McLean Award. Email: devansh@cs.toronto.edu

‡Department of Mathematics, University of Toronto, Toronto, Canada. Research partially supported by an NSERC
Discovery Grant and a McLean Award. Email: narmada.varadarajan@mail.utoronto.ca

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 222 (2025)

circuit complexity [Ang88]. When we additionally require that the reconstructed circuit must lie
in the same class C as the original, the task is referred to as proper learning.

Reconstructing arithmetic circuits is a central yet notoriously challenging problem. Recent
years have seen substantial progress, with numerous works developing reconstruction algorithms
for several restricted but natural subclasses of arithmetic circuits [BBB+00, KS01, KS06, FS12,
GKQ14, KNST17, KNS19, GKS20, CGK+24].

Depth-reduction results [AV08, Koi10, Tav13, GKKS13] have shown that even low-depth circuits—
notably depth-3 and depth-4 models—are remarkably powerful. Consequently, efficient reconstruc-
tion even for depth-3 circuits would have far-reaching implications. However, despite sustained
efforts, we remain far from a complete understanding of general depth-3 reconstruction. Still, sig-
nificant progress has been made for restricted subclasses of depth-3 (ΣΠΣ) and depth-4 (ΣΠΣΠ) cir-
cuits [Shp07, KS09a, BSV21, PSV24, BS25, GKL12, BSV20, Sin16b, Sin22, SS25, KS19, BGKS22].

A closely related problem is black-box polynomial identity testing (PIT). Here, given black-box
access to a polynomial f computed by a circuit C of size s from a class C, the goal is to determine
whether f is identically zero. Equivalently, the task is to construct an explicit hitting set for C.1

It is straightforward to observe that deterministic reconstruction for a circuit class C is at
least as hard as derandomizing black-box PIT for C. Even randomized reconstruction typically
demands a deep understanding of the structure of C, and in most known cases, appears to be
strictly harder than derandomizing PIT. In fact, for nearly every circuit class studied so far, effi-
cient PIT algorithms have preceded progress on reconstruction algorithms. Since this work focuses
on reconstruction for depth-3 circuits with constant top fan-in (i.e., ΣΠΣ(k) circuits), we begin by
surveying what is known about PIT for this model.

PIT for ΣΠΣ(k) circuits A recent breakthrough by [LST22] established the first subexponential-
time deterministic black-box PIT for ΣΠΣ circuits (and more generally, constant-depth circuits).
However, truly polynomial-time derandomization is only known for restricted subclasses of depth-3
circuits. When the top fan-in of the output gate is bounded by a constant k, the model is referred to
as ΣΠΣ(k) circuits. This class has been extensively studied in the context of black-box PIT, with to
a sequence of works culminating in polynomial-time algorithms [DS05, KS08, KS09b, SS13, SS11].

A unifying idea in many of these results is that ΣΠΣ(k) circuits that compute the zero poly-
nomial must exhibit strong algebraic structure—specifically, they must be low-rank. This insight
led to deep connections with discrete geometry, particularly variants of the Sylvester–Gallai theo-
rem. Inspired by this, several recent works [Shp19, PS22a, PS21, PS22b, GOS22, OS22, GOPS23,
OS24, DDS21] have recently attempted to lift these techniques to restricted depth-4 circuits, such
as ΣkΠΣΠr circuits (i.e., depth-4 circuits with bounded top and bottom fan-in).

Reconstruction for ΣΠΣ(k) circuits Despite all this progress on our understanding of the
structure of identically zero ΣΠΣ(k) circuits and ΣkΠΣΠr circuits, reconstruction algorithms for
these models have still proved to be nearly intractable. Here is an overview of what was known
in the case of infinite or exponentially large fields. Until recently, the only known subexponential
reconstruction algorithms R and C held for k ≤ 3. Even for k = 2, the problem is still very
challenging and, despite attracting a lot of interest, was only resolved in the last few years by the
works of Sinha [Sin16b] (over R and C), and [Sin22](over all finite fields, including exponentially
large finite fields). This was extended to k = 3 in the work of Saraf and Shringi [SS25] (over R and
C) and needed several new ideas and techniques.

1With randomness, this can be solved easily using the Schwartz–Zippel lemma [Sch80, Zip79]

2

Since reconstruction for general values of k seemed more challenging, much attention focused on
interesting restricted submodels such as powering, multilinear and set-multilinear ΣΠΣ(k) circuits;
the last few years have seen some exciting progress on reconstruction algorithms in these set-
tings [BBB+00, Shp07, KS09a, BSV21, PSV24, BS25]. Among these, powering circuits Σ ∧ Σ(k),
and set-multilinear ΣΠΣ(k) have attracted particular interest due to their close connections with
symmetric tensor decomposition and tensor decomposition problems. The focus of our paper will
be on general ΣΠΣ(k) circuits with no restrictions on structure.

The minimum k for a homogeneous polynomial such that it can be computed by a homoge-
neous ΣΠΣ(k) circuit is known as the Chow Rank of the polynomial. It is a generalization of
complexity measures like Tensor rank and Waring rank and has been studied in various settings
[Lan15, BCC+18, DGI+24].

In the setting of small finite fields, one can exhaustively search over all field elements. This
makes algorithm design easier in several settings, and indeed this allowed [Shp07, KS09a] to obtain
an efficient reconstruction algorithm (which depended quasi-polynomially on field size) for ΣΠΣ(k)
circuits. Even though exhaustive search is possible, these results are highly non-trivial, with several
beautiful ideas and algorithms developed, which enabled and influenced the design of several of the
known reconstruction algorithms.

Our result (informal): Given black-box access to an n-variate degree-d polynomial f over R,C,
or a finite field F with char(F) greater than d, computed by a ΣΠΣ(k) circuit, there is a randomized
quasi-poly(n, d, s) time reconstruction algorithm for f, where s is the maximum bit complexity of
any constant appearing in the circuit if the field is R or C, or it is log |F| if the field is finite.

Some definitions ΣΠΣ(k) circuits are arithmetic circuits of depth 3 with top fan-in k. These
circuits have three layers of alternating Σ and Π gates, and compute a polynomial of the form

C(x) =
k∑

i=1
Ti(x) =

k∑
i=1

di∏
j=1

lij(x)

where the lij(x)’s are linear polynomials.
For the purpose of reconstruction and PIT, one can easily reduce to the homogeneous setting

where all the di’s are the same (see discussion in Lemma 3.2). Henceforth we will assume that our
circuits are homogeneous.

We say that the circuit is simple if gcd{Ti|i ∈ [k]} = 1 and minimal if for all proper subsets
S ⊂ [k], ∑

i∈S Ti ̸= 0. We define gcd(C) = gcd(T1, . . . , Tk). The simplification or the simple part
of C, denoted by sim(C), is defined as C/ gcd(C). We define the rank of a circuit (rank(C)) as the
dimension of the space spanned by all the linear forms in the circuit dim(span({li,j : i ∈ [k], j ∈
[di]})). We will often be concerned with rank(sim(C)).

A generalized depth-3 circuit ΣΠΣ(k, d, r) is of the form

C =
k∑

i=1

 di∏
j=1

lij · hi(li1, . . . , lir)


where lij ,lik are linear forms in F[x1, . . . , xn] and d = maxi(di + deg(hi)). Notice that when r is

small (say constant or O(log d), the representation looks like a ΣΠΣ(k) circuit where every product
gate is further multiplied by a polynomial in few linear forms.

3

1.1 Our Results

In this paper, we give the first subexponential time (in fact, quasipolynomial time) algorithm for
reconstructing ΣΠΣ(k) circuits over R, C, or any finite field with char(F) greater than d. When the
k multiplication gates in our circuit are sufficiently distant—∀i, j ∈ [k], i ̸= j, rank(sim(Ti + Tj)) ≥
c1 logc2 d for some absolute constant c1, c2—then our algorithm does proper learning, i.e. its output
is the unique ΣΠΣ(k) circuit computing f . If this distance property does not hold, then our
algorithm still outputs a circuit computing f , but from a slightly more general class—it computes
a generalized depth-3 circuit of top fan-in at most k−1. The running time in the statement supresses
a poly(s) dependence on the max bit complexity s of any constant appearing in the circuit C if the
underlying field is R and C, and a poly log(|F|) factor if F is a finite field.

Here is the formal statement of our main result.

Theorem 1.1. Let F be a field that is a finite field with char(F) greater than d, or R or C. Let
k ∈ N+. Let f ∈ F[x1, . . . , xn] be a degree-d polynomial computed by ΣΠΣ(k) circuit of the form
C = T1 + T2 + · · · + Tk. There exist constants c1, c2 > 0 (depending on k) such that the following
holds: There is a randomized algorithm that runs in (nd)O(log d)O(1) time, makes black-box queries
to f , and with probability 1− o(1) does the following:

1. If ∀i, j ∈ [k], i ̸= j, rank(sim(Ti + Tj)) ≥ c1(log d)c2, then it outputs a ΣΠΣ(k) circuit com-
puting f .

2. If ∃i, j ∈ [k], i ̸= j, such that rank(sim(Ti + Tj)) < c1(log d)c2 then it outputs a ΣΠΣ(k −
1, d, c1(log d)c2) generalized depth-3 circuit computing f .

Remark 1.2 (Dependence on bit complexity and field size). Over fields R or C, if s is the maxi-
mum bit complexity of any coefficient appearing in C, then our algorithm’s run time also depends
quasipolynomially on s. In the statement of the above theorem and later in the paper, we have
suppressed the quasipoly(s) dependence in the running time for clarity of exposition. Over finite
fields, our algorithm needs query access over a poly(d) degree extension of F, and has a run time
that also depends quasipolynomially on log |F|.

Remark 1.3 (Proper vs improper learning). Note that our algorithm is a proper learning algorithm
only when every pair of multiplication gates had enough ‘distance’. Otherwise, the output came from
the model of generalized depth-3 circuits. All prior works on reconstruction of ΣΠΣ(2) circuits and
ΣΠΣ(k) circuits [Shp07, KS09a, Sin16b, Sin22, SS25] also had a similar kind of output.

Remark 1.4 (Field Characteristic). The requirement of char(F) > d for finite fields comes from
using Carlini’s algorithm ([Car06]). We use it only when there are gates in the circuit that have
low rank. In cases where the rank of each gate in the ΣΠΣ(k) circuit is at least c1(log d)c2, we can
do reconstruction even if the characteristic is small. For more details, check Remark 3.13.

Outline of the paper In Section 2, we give a high-level overview of our proof. Section 3
comprises preliminaries, such as rank bounds for identically zero circuits and solving systems of
polynomial equations. In Section 4, we bound the number of ‘nice’ spaces V such that the circuit
vanishes on V (vanishing spaces). Section 5 consists of several technical structural results about
the circuit and its vanishing spaces, which aid us in algorithmically computing a large class of
vanishing spaces in Section 6. Finally, in Section 7, we show how to use these computed vanishing
spaces to learn some of the linear forms in the circuit C, and in Section 8 we complete the proof of
our theorem by reconstructing the circuit from these linear forms.

4

2 Proof Overview
Let f be an n-variate degree-d polynomial that has a ΣΠΣ(k) representation and let

C = T1 + T2 + · · ·+ Tk

be a ΣΠΣ(k) circuit computing f . As discussed in the preliminaries, after a simple preprocessing
step, we may assume that the circuit—and every gate within it—is homogeneous (see Lemma 3.2),
so that each Ti is a product of exactly d linear forms. In general, the gates Ti may share a nontrivial
greatest common divisor which will affect our proof methods. One might hope to reduce to the case
gcd(T1, T2, . . . , Tk) = 1 by factoring out the common linear factors, but this is not possible: there
may be linear factors that divide some Ti but are not part of the gcd, and dividing by such factors
might destroy the property that the polynomial is computable by a ΣΠΣ(k) circuit. However, for
the sake of this proof overview, let us assume that gcd(T1, T2, . . . , Tk) = 1.

Our goal is to learn all of the linear forms in the circuit C, so we will first attempt to learn
some of the linear forms that appear in one of the gates of C. In order to do this, we will try and
analyze the linear spaces of low codimension on which the polynomial f vanishes. A space V is a
vanishing space for f if f vanishes identically on V . If we write V = V(l1, . . . , lr) = {l1, . . . , lr}⊥,
we say span(l1, . . . , lr) is a vanishing kernel for f since f mod ⟨l1, . . . , lr⟩ ≡ 0. It turns out that
these spaces encode valuable information about the polynomial f . We will show that if we can
somehow “learn” these spaces—or even enough information about them—then we can learn some
linear forms appearing in C. Once we can learn enough (some large polynomial in log d) linear
forms in a single gate, then by combining results developed in past works [Shp07, KS09a] with ideas
from the theory of locally-decodable codes, we can recover the entire circuit.

Our high-level approach, at this generality, is not so different from that of [Sin16b, Sin22, SS25].
The works of [Sin16b, Sin22] attempted to learn codimension 1 and 2 vanishing spaces for circuits
of fan-in 2, and the work of [SS25] attempted to learn codimension 1, 2 and 3 vanishing spaces for
circuits of fan-in 3. To learn these spaces, these prior works had to prove several highly nontrivial
results about their structure.

In this work, we will need to understand and learn vanishing spaces up to codimension k
for circuits of top fan-in k (where k might be an arbitrarily large constant). For this, we prove
much more general structural theorems about vanishing spaces. Interestingly, given our improved
understanding, our structural results and algorithms for learning the spaces are a lot less ad-hoc,
and do not involve an elaborate case-by-case analysis as in the work of [SS25]. Nevertheless, the
final algorithms and their analysis are still fairly intricate.

As a first step to learning vanishing spaces, we need to be able to show that their number
is bounded. Unfortunately, this is not true. However, we will show how to identify a large and
important subset of them, and show that that subset has bounded size. We will then attempt to
learn a large class of these vanishing spaces, and use the spaces we have learned to determine some
of the linear forms appearing in the circuit. Once we are able to learn a few of the linear forms, we
have already made serious progress, and learning the rest can be done recursively.

Here is a brief outline of our reconstruction algorithm and its proof of correctness. After the
brief outline, we will elaborate on some of the steps in an attempt to give a clearer high-level picture
of what is going on.

1. For each r ≤ k, we attempt to bound the number of maximal vanishing spaces Sr(f) of
codimension r. In general, this may not be finite. We instead define a large important
subclass of vanishing spaces—for each r ≤ k, S ′

r(f) is the set of those vanishing spaces whose
kernels do not contain a subspace such that going modulo the subspace will crash the rank

5

of the circuit by too much. We formally define this class and show how to bound its size in
Section 4.

2. We would like to algorithmically compute S ′
r(f). We show how to do this (or something close

to this) in Section 6. This is the most intricate and challenging part of our analysis. Instead
of computing all of S ′

r(f) (which we do not know how to do), we show how to learn (for many
values of r) a large subset of S ′

r(f) that we call S∗
r (f). We elaborate more on this step in the

next part of the proof overview. Additionally, we look at the spaces in S∗
r (f) and show how to

algorithmically extend them to get additional vanishing spaces (which may not be maximal
anymore) but which have interesting properties such that some individual gates vanish on
those spaces. We call this richer set of vanishing spaces Sr(f).

3. We consider intersections of spaces in S∗
r (f) and Sr(f) and show that these have enough

information to recover many individual linear forms in C. The details of this step appear in
Section 7. This works as long as the linear forms in each gate span a high rank subspace. If
they do not, then we use Carlini’s algorithm [Car06] to compute suitable vanishing spaces of
the subset of gates that have high rank. We then can again learn enough linear forms from
one of the high rank gates.

4. Reconstruct the entirety of the circuit using the few linear forms learned in the previous part.
This part of the proof is very similar to what was done in prior works. These ideas first
appeared in the works of Shpilka [Shp07] and Karnin–Shpilka [KS09a] and then were also
used in Saraf–Shringi [SS25]. The details appear in Section 8.

2.1 Vanishing spaces and bounds on the number of them

Note that if for each i ∈ [k], li is a linear form dividing Ti, then the polynomial f vanishes identically
modulo span(l1, . . . , lk). This gives us the linear subspace V(l1, l2, . . . , lk) of codimension at most
k on which f vanishes, and the kernel of this space span(l1, . . . , lk).

For any r ∈ [k], we will let Vr be the set of codimension r spaces on which f vanishes. Note that
all vanishing spaces need not be of the above form (determined by linear forms in the circuit), and
this is one reason why understanding vanishing spaces is challenging. Now, if we could learn all
spaces of codimension up to k on which f vanishes, then we would also learn V(l1, l2, . . . , lk) (and
hence also span(l1, . . . , lk)) for any tuple (l1, . . . , lk) with li dividing Ti. And if we learn these spaces
for each such k-tuple, then using suitable intersections, we could start recovering linear forms in
the circuit.

The situation turns out to be far from so simple. One significant obstacle is that, in general, we
cannot even bound the number of spaces in Vr. There are two reasons for this. The first is that if
there is any codimension r−1 space on which f vanishes, then any codimension r space contained in
the codimension r−1 space will be a vanishing space (and thus there can be infinitely many of them
over infinite fields). This is not a serious issue: let us just define Sr to be the maximal codimension
r spaces on which f vanishes. The other more serious issue is a subtle one. We are only able to
bound even the number of S2 spaces when the circuit C is high-rank—the linear forms appearing in
the circuit span sufficiently high dimension. Now, suppose that there is some (r − 2)-dimensional
space span(l1, . . . , lr−2) such that the rank of C mod ⟨l1, . . . , lr−2⟩ crashes. That is, the original
circuit C = ∑

Ti has gcd 1 and its linear forms span a high-dimensional space, but the circuit C
mod ⟨l1, . . . , lr−2⟩ suddenly has a high gcd and the simple part sim(C mod ⟨l1, . . . , lr−2⟩)) has low
rank. We call any such space a crashing space, and call the set of all crashing spaces of dimension
r− 2 to be C≤r−2. Since the circuit C mod ⟨l1, . . . , lr−2⟩ is low rank, it could have infinitely many

6

codimension-2 vanishing spaces, resulting in infinitely many codimension-r vanishing spaces for the
original circuit C.

To deal with this issue, we define the set S ′
r(f) to be those spaces V ∈ Sr(f) such that the

kernel of V does not contain any (r − 2)-dimensional crashing subspace V ′ (i.e. V ′ does not lie in
C≤r−2).

Bounding the size of S ′
r(f) The starting point in our proof is to use ideas from discrete

geometry and rank bounds for identically zero ΣΠΣ(k) circuits to show that, for each r ≤ k, the size
of S ′

r(f) is polynomially bounded. A beautiful sequence of works [DS05, KS08, KS09b, SS11, SS13]
uses techniques from incidence geometry to prove that the rank of the simple part of any identically
zero ΣΠΣ(k) must be bounded (see Theorem 3.5 for a precise statement).

Observe that if V(l1, l2, . . . , lr) ∈ S ′
r(f), then C mod ⟨l1, l2, . . . , lr⟩ is identically zero, and hence

we can invoke Theorem 3.5. Let V = span(l1, l2, . . . , lr) with dim(V) = r. If the original circuit
sim(C) had high rank while sim(C mod V) has low rank, then several linear forms in sim(C) must
move into gcd(C mod V). In other words, there must be several k-tuples (l′1, . . . , l′k), with each l′i
dividing Ti such that dim(span(l′1, . . . , l′k)) ≥ 2, but dim (span(l′1, . . . , l′k) mod V) = 1. This can
only happen if V nontrivially intersects span(l′1, . . . , l′k). Now, if this happens for several choices of
(l′1, . . . , l′k), we show that these k-tuples determine a subspace V of V of some dimension r′. Since
V is determined by a few k-tuples of linear forms from C, it follows that the number of possible
choices of V is polynomially bounded. Now for any such V , consider the circuit C ′ = C mod V .
The ciruit C ′ vanishes modulo (V mod V). So, either dim V = r−1 and the number of extensions
of V to V is bounded by d, the number of linear factors of C ′, or, since V does not contain crashing
spaces of dimension r − 2, C ′ is high-rank and we can apply induction to bound the number of
possible spaces (V mod V). There are many details omitted in this overview; for example, we
need to show that (V mod V) is actually in Sr−r′(C ′) to apply our induction hypothesis. The full
details appear in Section 4.

Once we bound the size of S ′
r(f), the next steps are to compute S ′

r(f), and to show that learning
S ′

r(f) for various choices of r can help us learn linear forms appearing in C. Both these steps have
their challenges, and we will try to elaborate on these challenges and how we overcome them in the
discussion below.

2.2 Learning many of the vanishing spaces

As in previous works [SS25, Sin16b, Sin22], one way to learn vanishing spaces (assuming one can
bound them) is to project the function f to only constantly many (or polylogarithmically many)
variables, compute the vanishing spaces (here, S ′

r) for the low-variate polynomials by solving a
suitable system of polynomial equations (now in few variables) for each projection, and then ‘glue’
or ‘lift’ the solutions to a global solution over the entire original space.

However, given the nature of the definition of S ′
r(f) (vanishing spaces whose kernels do not

contain any crashing spaces) there seems to be no way to encode its computation as a system of
polynomial equations that is efficiently solvable. Indeed, the property of being a vanishing space
is easy to encode, but that of being a vanishing space whose kernel does not contain a crashing
space seems much harder. The way we get around this issue is to prove a structural result about
crashing spaces that shows that they cannot be arbitrarily positioned.

Structure of crashing spaces We prove that there must exist (for each relevant r) a low-
dimensional subspace Wr that intersects every crashing space of dimension up to r − 2. We use
lower bounds from locally-decodable codes (Similar arguments have been used in the past in related

7

settings for reconstruction.) to prove this fact. Essentially, the existence of any crashing space
implies several linear dependencies among the linear forms appearing in the gates of C. We show
that having too many independent crashing spaces would imply the existence of a 2-query locally-
decodable code with parameters that we know cannot exist.

Learning a low-dimensional space that hits all crashing spaces We will show how to
algorithmically learn such a space Wr, which is perhaps one of the most intricate parts of our
argument. To learn Wr, the hope is that we first learn all crashing spaces of dimension up to r− 2
and then pick a maximal independent subset of them whose span Wr. However, learning crashing
spaces of dimension up to r − 2 (i.e. spaces in C≤r−2) turns out to be difficult and something we
are unable to do. Instead, here is our idealistic proof strategy. The actual details are much more
involved, so we will later point out what goes wrong with our strategy and how we fix it.

Note that for W ∈ C≤r−2, when we consider the circuit C mod W , many of the linear forms
from the gates of C must move into the gcd of C mod W , resulting in a high-rank gcd(C mod W),
for this is the only way sim(C mod W) can be so low rank. Now, for any linear form l dividing
the gcd of C mod W , the space span(W, l) is a vanishing kernel of dimension at most r − 1 for
C. If we can recursively show that for most choices of l the space span(W, l) can be learned (since
we can recursively show that most vanishing spaces of codimension r − 1 can be learned), then we
would be well-positioned to learn the crashing space W . Perhaps the intersection of span(W, l1)
and span(W, l2) for some choice of l1 and l2 (as long as the linear forms dividing the gcd span high
enough dimension) will allow us to recover W .

The main thing that goes wrong with this proof strategy is that though span(W, l) is a van-
ishing kernel, it may not be a minimal vanishing kernel. Thus, though we may not be able to
learn span(W, l), we will still be able to recursively learn a vanishing kernel that is a subspace
of span(W, l). In order to learn vanishing kernels of dimension r, we assume we can learn most
vanishing kernels of dimension up to r − 1. We will also not be able to do this for all linear forms
dividing the gcd of C mod W but for most linear forms, but let us not worry about this for now.

Once we learn minimal vanishing kernels contained within span(W, l) for most choices of l
dividing gcd of C mod W , we can still learn a large subspace W of W . While W may not ‘crash’
the rank as much as W does, we will show that W is still crashing-like.

Thus we will algorithmically be able to construct crashing-like subspaces of almost all crashing
spaces in C≤r−2. Our structure theorem for crashing spaces also extends to crashing-like spaces,
and a maximal independent subset of them suffices in obtaining the space Wr that we seek. The
space Wr will have: every V ∈ C≤r−2 has nontrivial intersection with Wr.

Learning S∗
r (f)—a large subset of S ′

r(f) Instead of learning all of S ′
r, our algorithm will

only learn those spaces in S ′
r whose kernels do not intersect Wr; we call this set of spaces S∗

r (f).
By the bound on the size of S ′

r, S∗
r is also bounded. Assuming that we have already computed

Wr, we can now encode the computation of spaces in S∗
r by a system of polynomial equations

(albeit in n variables). In order to efficiently solve the system, we take several projections of the
function f to only constantly many (or polylogarithmically many) variables, and compute the S∗

r (f)
spaces for the low-variate polynomials by solving a suitable system of polynomial equations (now
in few variables) for each projection. There are many details involved in successfully executing this
process—for instance, we need to show that all properties that we need of Wr are consistent with
projections, and this is somewhat subtle. We then show how to ‘lift’ the solutions for the projected
spaces by gluing them together to form a global solution over the entire original space using ideas
similar to those in past works such as [Sin22, SS25, Shp07, KS09a]. We finally compute the set

8

S∗
r (f).

Learning more general vanishing spaces—Sr(f) The spaces in S∗
r have a lot of information,

but to effectively use this information, we use S∗
r to first learn a richer collection of possibly non-

maximal vanishing spaces, Sr(f). The spaces in Sr(f) are harder to define concisely, but they
have some very useful and interesting properties that allow us to extract information about the
circuit. One key property is the following. Consider any k-tuples (l1, . . . , lk) with li appearing in Ti

such that span(l1, . . . , lk) is r-dimensional and does not have nontrivial intersection with Wr. The
space span(l1, . . . , lk) is the kernel of a vanishing space for C, but we cannot algorithmically learn
it if the corresponding vanishing space is not maximal. However, we will still learn a subspace of
span(l1, . . . , lk) as a kernel of some space in S∗

r′ for some r′ ≤ r, but this subspace could be somewhat
arbitrary. We will algorithmically and recursively show how to “grow” this subspace until we obtain
a subspace that contains one of the linear forms l1, . . . , lk. These “grown” subspaces will be the
kernels of the vanishing spaces in the set Sr.

2.3 From vanishing spaces to linear forms

Armed with Wr, S∗
r , and Sr for various choices of r, we then show that intersections of the kernels

of spaces in Sr (for various choices of r) suffice to learn several linear forms from at least one
multiplication gate of C. This step uses the assumption that all gates of C have high rank.

Recall that by the properties of Sr, for any k-tuple (l1, . . . , lk) with li appearing in Ti such that
span(l1, . . . , lk) is r-dimensional and does not have nontrivial intersection with Wr, we can learn a
subspace of this span (as a kernel of a space in Sr) which contains one of the li. Now, if every Ti

is high rank that it follows that are a large number of such k-tuples such that we learn a subspace
with one of the linear forms of the k-tuple; moreover, we can find many such k-tuples such that
the subspaces learned correspond to the same linear form. In such a situation (if the k-tuples
are independent enough), the intersections of these subspaces will let us algorithmically learn that
linear form. Thus, the proof involves some clever counting along with basic linear algebra.

Handling the case when some gates have low rank The above procedure only works as long
as the linear forms in each gate span a high-rank subspace. If they do not, then we use Carlini’s
algorithm [Car06] to (in some sense) reduce to the case of all gates having high rank.

Suppose that C is of the form ∑
i∈A Ti +∑

i∈B Ti where the indices in A correspond to the high-
rank gates and those in B correspond to the low-rank gates. We then use Carlini’s algorithm [Car06]
to show how to set up a system of polynomial equations whose solutions correspond to the vanishing
spaces of ∑

i∈A Ti, i.e. the vanishing spaces of just the high-rank gates. Let CA = ∑
i∈A Ti compute

the polynomial fA. Though we do not have black-box access to fA, we will still be able to learnWr,
S∗

r and Sr spaces corresponding to fA. (This is not entirely accurate—there are some complications,
but this is the spirit of the argument.) Once we can do this, then using the previous analysis, we
can again learn enough linear forms from one of the high-rank gates.

2.4 Few linear forms to the entire circuit

To go from a few (poly(log d)) linear forms to the entire circuit, we use ideas appearing in previous
works [Shp07, KS09a]. Once we have enough linear forms from one of the gates, we essentially
go modulo these linear forms and recursively reconstruct the projections of ΣΠΣ(k′) circuits with
k′ ≤ k − 1.

9

In [KS09a], the authors gave a way to convert a ΣΠΣ(k) circuit into a ΣΠΣ(s, d, r) generalized
circuit (s ≤ k), such that if the rank of the simple part of the sum of any two gates in the generalized
circuit is high, it is a unique representation (Theorem 8.2).

We do proper learning if the initial gates of the circuit satisfy the distance properties of the
clustering, i.e. after the clustering, each cluster is just one gate.

We go then mod the linear forms we learned earlier, and reconstruct the generalized circuit with
smaller top fan-in recursively. With access to enough linear forms, we can learn poly(log d) many
independent projections of one gate in the generalized circuit.

Then, using the technique of [Shp07](Theorem 3.16), one can combine the O(log d) independent
projections of the gcd part of the gate in the generalized circuit to learn the gcd part exactly.
Similarly, using poly(log d) projections and techniques of [KS09a] (Lemma 3.17), we can learn the
sim part of the gate. Thus, we can learn one gate of the generalized circuit representation exactly.

We subtract it from the given circuit and learn the rest of the circuit recursively. At the end,
we output the circuit after a randomized PIT check from Lemma 3.3 to ensure the output circuit
computes the correct polynomial.

3 Preliminaries
Notation Let N := {0, 1, 2, . . . } and N+ := {1, 2, . . . }. Denote {1, 2, . . . , n} by [n]. The cardi-
nality of a set S is denoted by |S|. F is usually used to denote the underlying field, with char(F)
denoting its characteristic. R refers to the field of real numbers, and C refers to the field of complex
numbers. Denote by log a the logarithm of a with base two.

Throughout the paper, we use uppercase letters X, Y to denote sets of variables, lowercase xi to
denote variables, x, y or x̄, ȳ to denote vectors/tuples of variables, and v to denote a vector/tuple
of field constants.

Whenever we say linear forms divide a multiplication gate, we mean up to scalar multiples. For
a polynomial f , Lin(f) denotes the multiset of linear factors of f (including multiplicities), and
NonLin(f) refers to f∏

l∈Lin(f) l
. We use span(l1, . . . , lr) to refer to the vector space that is the span

of the linear forms {l1, . . . , lr}. In other words, it is the set of all vectors of the form ∑r
i=1 αili for

αi ∈ F. For a vector space V, dim(V) denotes the dimension of V.
Given k linearly independent linear forms l1, l2, · · · lk, let V(l1, l2, . . . , lk) ⊆ Fn denote the codi-

mension k subspace of Fn corresponding to those vectors where l1, l2, · · · lk evaluate to 0. We say that
V(l1, l2, . . . , lk) is a vanishing space for a polynomial f if f vanishes on all points of V(l1, l2, . . . , lk).
For a space V , KV or Ker(V) are used to denote the kernel of V . For a set of spaces S, KS denotes
the set of kernels of spaces in S.

Consider any invertible linear transformation ϕ ∈ Fn×n such that ϕ(li) = xi for all i ∈ [k]. Let
ϕ · f = f(ϕ(x̄)). Then setting x1, x2, . . . xk to 0 in ϕ · f results in the identically 0 polynomial. The
polynomial f mod ⟨l1, . . . , lk⟩ is equivalent (up to an invertible linear map) to ϕ · f after setting
x1, x2, . . . xk to 0. Often it is easier to think in terms of ϕ · f , and once we learn ϕ · f , one can
recover f after applying the inverse linear map. We simplify notation and use f mod l (and C
mod l where C is a circuit computing f) to denote f mod ⟨l⟩ (or C mod ⟨l⟩) for a linear form l.
let V be a r-dimensional vector space spanned by linear forms l1, . . . , lr(any basis), then we might
also use f mod V (and C mod V) to denote f mod ⟨l1, . . . , lr⟩ (and C mod ⟨l1, . . . , lr⟩).

Remark 3.1. For most of the paper, we will assume char(F) is either 0 or greater than d. We
will also assume the field F to be of large size, i.e. |F| ≥ dn. If the field is small, we consider the
circuit to be over an extension of size dn. Due to uniqueness, results up to scaling of linear factors

10

in Theorem 3.5 and Theorem 8.2, the output circuit will have constants in F. This only changes
the bit complexity by n log d.

3.1 Depth-3 Circuits

In this section, we formally introduce the general model of depth-3 circuits which is the focus of
our paper.
Definition 1. A depth-3 ΣΠΣ(k) circuit C computes a polynomial of the form

C(X) =
k∑

i=1
Ti(X) =

k∑
i=1

di∏
j=1

li,j(X),

where the li,j’s are linear functions; li,j(X) =
n∑

t=1
at

i,jxt + a0
i,j with at

i,j ∈ F.

We say that C is minimal if no strict subset of the multiplication gates sums to zero. We define
gcd(C) as the linear product of all the non-constant linear functions that belong to all the Ti’s.
I.e. gcd(C) = gcd(T1, . . . , Tk). We say that C is simple if gcd(C) = 1. The simplification or the
simple part of C, denoted by sim(C), is defined as C/ gcd(C). In other words, sim(C) is the circuit
resulting upon the removal of all the linear functions that appears in gcd(C).
Definition 2 (Homogeneous Depth-3 circuit). A depth 3 circuit ΣΠΣ(k) computing a polynomial
f ∈ F[x1, . . . , xn] is a homogeneous depth-3 circuit ΣΠΣ(k) if f is homogeneous and the polynomial
computed in every gate of the circuit is homogeneous as well. It will have the following form

C(X) =
k∑

i=1
Ti(X) =

k∑
i=1

d∏
j=1

li,j(X),

where the li,j’s are linear functions; li,j(X) =
n∑

t=1
at

i,jxt + a0
i,j with at

i,j ∈ F and a0
i,j = 0.

Definition 3 (Rank of a circuit). The rank of a circuit C(X) =
k∑

i=1
Ti(X) = ∑k

i=1
∏di

j=1 li,j(X) is

defined as the dimension of the space spanned by all the linear forms in the circuit dim(span({li,j :
i ∈ [k], j ∈ [di]})). We denote it by rank(C).
Definition 4 (Rank of the simple part of a circuit). The rank of the simple part of the circuit

C(X) =
k∑

i=1
Ti(X) = ∑k

i=1
∏di

j=1 li,j(X) is defined as the rank of the simple part (obtained after

removing the gcd of Ti’s). We will denote the simple rank of C using ∆(C) = rank(sim(C)). This
also defines a distance measure between 2 circuits C1, C2 as ∆(C1, C2) = rank(sim(C1 + C2)).

In the following lemma from [SS25, Sin16a], it was shown that reconstruction of any ΣΠΣ(k)
circuit could be reduced to reconstruction of homogenous ΣΠΣ(k) circuits with poly(n, d) overhead.
Therefore, from now on, we are only concerned with the reconstruction of ΣΠΣ(k) circuits in this
paper and all ΣΠΣ(k) circuits we consider will be assume to be homogeneous.
Lemma 3.2 (Section 1.5, [Sin16a];Lemma 3.1,[SS25]). Let f ∈ F[x1, . . . , xn] be a degree-d poly-
nomial computed by a ΣΠΣ(k) circuit C. Then in time poly(n, d) (per query), one can sim-
ulate a black-box access to a homogeneous ΣΠΣ(k) circuit computing a homogeneous fhom ∈
F[x1, . . . , xn, z], such that any reconstruction algorithm for fhom immediately implies a reconstruc-
tion algorithm for f , with only a poly(n, d) overhead in time complexity.

11

3.2 Generalized Depth-3 circuits

Definition 5. A generalized depth-3 circuit ΣΠΣ(k, d, r) is of the form

C =
k∑

i=1

 di∏
j=1

lij · hi

(
li1, . . . , lir

)
where lij,lik are linear forms in F[x1, . . . , xn] and d = maxi(di + deg(hi)).

In particular, in the setting where r is small (say constant or O(log d)), the representation looks
like a ΣΠΣ(k) circuit where every product gate is further multiplied by a polynomial in a few (i.e.
r) linear forms. Without loss of generality we can also assume that the hi’s have no linear factors.

3.3 Polynomial Identity Testing and Rank Bounds

Lemma 3.3 (Schwartz-Zippel Lemma,[Sch80, Zip79]). Let f ∈ F[x1, . . . , xn] be a polynomial of
total degree d that is not identically zero. Let S ⊂ F be any finite set. For s1, . . . , sn chosen
independently and uniformly at random from S,

Pr[f(s1, . . . , sn) = 0] ≤ d

|S|
.

A finite set of points S with the property that every line through two points of S passes through
a third point in S is called a Sylvester-Gallai configuration. The famous Sylvester-Gallai theorem
states that the only Sylvester-Gallai configurations in Rn are those formed by collinear points. This
basic theorem about point-line incidences was extended to higher-dimensional flats in [Han65, BE67]
over the real numbers and in [BDWY13, DSW14] over C. We define the rank of a set of vectors to
be the dimension of the linear space they span.

Definition 6 (SGk(F, m)). Let S be a set of non-zero vectors in Fn+1 such that no two vectors in
S are scalar multiples of each other. Suppose that for every set V ⊆ S of k linearly independent
vectors, the linear span of V contains at least k + 1 vectors of S. Then, the set S is said to be
SGk-closed. The largest possible rank of an SGk-closed set of at most m vectors in Fn (for any n)
is denoted by SGk(F, m).

It is known that SGk(R, m) = 2(k− 1) [Han65, BE67]. The rank of high-dimensional Sylvester-
Gallai configurations over C was bounded by 2ck for a fixed constant c in [BDWY13]. This bound
was further improved to SGk(C, m) = ck (for a fixed constant c) in [DSW14]. In Theorem 7
of [SS13], it was shown that for any field F, SGk(F, m) ≤ 9k log m, while for F = Fp, we know
constructions such that SGk(Fp, m) = Ω(k logp m).

The polynomial time black-box PIT algorithms for ΣΠΣ(k) circuits follow from some strong
structural properties of identically zero ΣΠΣ(k) circuits. In [KS09b] it was shown that the rank of
any identically zero, simple and minimal ΣΠΣ(k) circuit is at most some constant depending on k.
This bound was improved in [SS11, SS13], and the theorem below gives the best bound we know.

Theorem 3.4 ([SS13]). Let C be a ΣΠΣ(k) circuit, over field F, that is simple, minimal and zero.
Then, we have rank(C) ≤ 2k2 + k · SGk(F, d).

Combining the above theorem with the best bounds we know for SGk(R, m), SGk(C, m) and
SGk(Fq, m) we obtain the following:

12

Theorem 3.5. Let C be a simple, minimal and identically zero ΣΠΣ(k) circuit over R, C or Fq.
Then there is an absolute constant RF(k, d) depending only on k, d such that rank(C) < RF(k, d).
If C is over R then we can bound rank(C) by 3k2. If C is over C then we can bound rank(C) by
2k2 + k · ck for some absolute constant c. If C is over Fq, then we can bound rank(C) by 9k log d.

We represent the rank bound for simple, minimal generalized ΣΠΣ(k, d, ρ) circuit byRF(k, d, ρ).
Lemma 3.6 (Lemma 4.2,[KS08]). Let C be a simple and minimal ΣΠΣ(k, d, ρ) circuit in n inde-
terminates computing the zero polynomial. Then rank(C) < RF(k, d, ρ) = RF(k, d) + k · ρ.

3.4 Other Known Results

Theorem 3.7 (Effective Hilbert irreducibility, Theorem 1.1[KSS14]). Let S ⊆ F be a finite set and
g(X, A1, . . . , An) a monic polynomial in X of total degree at most d. If g is irreducible then it holds
that

Pα,β[g(X, α1T + β1, . . . , αnT + βn) is not irreducible] < O(d5/|S|),
where α and β are chosen uniformly and independently from Sn.
Lemma 3.8 (Black-box multivariate polynomial interpolation, [BOT88, KS01]). Let n, m, d be
parameters and F be a field that is R, C, or a large enough finite field. There exists a deterministic
algorithm that runs in time (nmd)O(1), and outputs a set S of points in Fn, such that given black-
box access to any degree-d polynomial f ∈ F[x1, . . . , xn] with at most m monomials, the coefficients
of all monomials can be recovered in (nmd)O(1) time using evaluations from the set {f(s) : s ∈ S}.
Lemma 3.9 (Black-box Factoring, [KT90]). There exists a randomized algorithm that takes as
input black-box access to a degree-d, n-variate polynomial f with coefficients in some field F, runs
in time poly(nd) and outputs black-box access to polynomials f1, . . . , fm (m ≤ d) along with integers
e1, . . . , em such that,

Pr[f = fe1
1 . . . fem

m

∧
f1, . . . , fm are irreducible] ≥ 1− o(1).

Using the above, we can also decompose any circuit into its linear factors (which we can inter-
polate) and NonLin(f) in randomized poly(n, d) time.

3.5 Solving a System of Polynomial Equations

We obtain the vanishing spaces of our circuit by solving a system of polynomial equations. The
problem of solving a system of polynomial equations is generally considered to be difficult, even
undecidable for certain fields. A longer discussion on the complexity of finding a single solution to
a system of polynomial equations for various fields can be found in [BSV21].

The system of polynomial equations we will solve in this paper will have an extra condition that
the number of solutions is finite. In this case, the problem can be solved in time that is exponential
in number of variables for various fields as described below. We will also need to find all possible
solutions of the system that we set up (instead of a single solution), and in order to do this, we
show that the number of solutions is finite, and in particular polynomially bounded. Note that
once we can find a single solution, then by iteratively adding additional equations, we can find all
solutions.

In this work, the polynomial systems we solve have a small (O(1)) number of variables, and
hence once can find solutions efficiently. The theorem we state below is a variant of an analogous
one that appears in [BSV21], and it describes the current known upper bounds for solving a system
of polynomial equations for various fields.

Let F denote the algebraic closure of F.

13

Theorem 3.10. Let f1, f2, . . . fm ∈ F[x1, . . . , xn] be n-variate polynomials of degree at most d.
Suppose that the system of equations f1(x) = 0, . . . , fm(x) = 0 has N solutions in the algebraic
closure of F, where N is finite. Then, the complexity of finding all the solutions in an appropriate
extension is as follows:

1. [GVJ88] For F = R, there is a deterministic poly((mdN)n2) time algorithm. Here the authors
assumed that the constants appearing in the system are integers (or rationals). Note that for
all computational applications we can WLOG assume this by simply approximating/truncating
a given real number at some number of bits.

2. [Ier89] For F = C (or any algebraically closed field), there is a deterministic (mn)O(n) ·
(dN)O(n2) time algorithm.

3. [Laz01] For F = Fq, there is a randomized (mdnN)poly(n) time algorithm that computes
solutions in a degree N extension of F.

Thus, in randomized time (mdnN)poly(n), we can find all the solutions of f1(x) = 0, . . . , fm(x) =
0 if it has N solutions in the algebraic closure of F.

Remark 3.11. In the results used above, we have suppressed a poly(s) multiplicative dependence in
the running time, where s is the maximum bit complexity of any coefficient appearing in the input
circuit (log |F| for finite fields). We use the above algorithm only in cases where n is poly(log d) and
the number of solutions N = poly(d), and hence the solutions are only in poly(d) degree extensions
and there is an additional quasipoly(s, d) running time factor, which we suppress throughout the
paper.

3.6 Essential Variables of a Polynomial

This notion will be useful in reconstruction when the input circuit is low rank, as well as when one
of more gates is low rank. We start by defining essential variables in a polynomial.

Definition 7 (Essential variables, [Kay11]). The number of essential variables in f(x1, . . . , xn)
is the smallest t for which there exists an invertible linear transformation A ∈ F(n×n) such that
f(A · x) depends on only t variables.

The number of redundant variables is the number of essential variables subtracted from n. We
will use the following result from [Car06] that allows us to compute t, the number of essential
variables, and the linear transformation A.

Theorem 3.12 ([Car06],[Kay11]). Let n, d be positive integers and F be a field with char(F) > d or
= 0. There is a randomized algorithm that takes as input black-box access to an n-variate degree-d
polynomial f(x) ∈ F[x̄] with t essential variables, runs in time (nd)O(1), and outputs an invertible
matrix A ∈ F(n×n) such that f(A · x̄) depends only on the first t variables.

Remark 3.13. Theorem 3.12 is the only tool we use that requires the characteristic of the under-
lying field to be at either 0 or greater than d. This is used in Lemma 7.2 and Lemma 8.1, both of
which contribute to Theorem 1.1 requiring char(F) to be 0 or greater than d.

The partial derivative ∂if is used to represent ∂f
∂xi

. We use ∂f to denote (∂1f, . . . , ∂nf). We
define the partial derivative matrix of a polynomial f , M(f), as the matrix with columns indexed
by monomials over n variables and degree d − 1, while the rows are indexed by [n], and Mi,j =
coeffj(∂if) where coeffj(g) is the coefficient of monomial j (represented as vector) in g.

14

We denote ∂f⊥ as the set of vectors a ∈ Fn such that a · ∂f = 0. The proof of the above
theorem relies on the following lemma which describes the relation between the partial derivative
matrix and the number of essential variables.

Lemma 3.14 ([Car06], Lemma B.1[Kay11]). The number of redundant variables in a polynomial
f(x1, . . . , xn) equals the dimension of ∂f⊥. In particular, the number of essential variables of f is
the rank of the partial derivative matrix M(f).

The following lemma from [Shp07] will also be useful to us.

Lemma 3.15 (Lemma 23, [Shp07]). Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a polynomial with k es-
sential variables and two different representations: f = g(l1, . . . , lk) = h(l′1, . . . , l′k) for polynomials
g, h ∈ F[y1, . . . , yk], and linear forms l1, . . . , lk, l′1, . . . , l′k ∈ F[x1, . . . , xn]. Then, span({li}i∈[k]) =
span({l′i}i∈[k]).

3.7 Gluing Projections

Using lower bounds for locally-decodable codes in [Shp07], the authors gave an algorithm that could
learn a product of linear forms exactly with multiplicities if given access to Ω(log d) independent
non-zero projections of the product. This is summarized in the theorem below.

Theorem 3.16 (Implicit in [Shp07]). Let L be a multiset containing d linear functions in n vari-
ables. Let {φ1, . . . , φm} be a set of linearly independent linear functions such that m ≥ 100 log(d).
For each j ∈ [m] define the multiset

Lj ≜ {l mod φj : l ∈ L}.

Then there exists a deterministic algorithm that, given {Lj}mj=1, outputs L in poly(n, d) time.

In [KS09a], the authors gave a way to similarly glue projections of gates in a generalized circuit.
The two key ingredients were the theorem above, and the following lemma below that allows one
to glue the projections of low-rank polynomials.

Lemma 3.17 (Special case of Lemma 4.20 in [KS09a]). Let h be a non-zero n-variate polynomial
of degree d with r essential variables. Let l1, l2 be two independent linear forms in F[x1, . . . , xn]
such that h mod ⟨l1, l2⟩ also has r essential variables. Then, there exists a deterministic algorithm
which when given as the input the two polynomials {h mod l1, h mod l2}, outputs a representation
of h as a polynomial of r linear functions in O(n · dr) time.

4 Upper bounding the size of Sr(f)
Let f be an n-variate degree-d polynomial in F[x1, . . . , xn] computed by a ΣΠΣ(k) circuit C =
T1 + T2 + · · ·+ Tk.

Definition 8 (Vanishing Spaces). A codimension-r space V(l1, . . . , lr) is a vanishing space for
a polynomial f if f mod ⟨l1, . . . , lr⟩ = 0. The vanishing space is maximal if it is not properly
contained in any vanishing spaces, i.e. for any q < r linear forms l′1, . . . , l′q ∈ ⟨l1, . . . , lr⟩, f
mod ⟨l′1, . . . , l′q⟩ ≠ 0.

We define Vr(f) to be the set of all codimension-r vanishing spaces of f , and Sr(f) to be the
set of all maximal codimension-r vanishing spaces of f .

Sr(f) = {V : V ∈ Vr(f) is maximal }.

15

For most of our proofs, we will need the actual linear forms l1, . . . , lr instead of the codimension-r
subspace, so we define the r-kernel of the polynomial f as

KVr(f) = {span(l1, . . . , lr) : V(l1, . . . , lr) ∈ Vr(f)},

and the minimal r-kernel

KSr(f) = {span(l1, . . . , lr) : V(l1, . . . , lr) ∈ Sr(f)}.

We will refer to a space V ∈ KSr(f) as a minimal vanishing kernel.

Definition 9. Let f be a polynomial computed by a ΣΠΣ(k) circuit C, and cq = RF(k, d) + 2q2.
A q-dimensional space span(l1, . . . , lq) is a crashing space of f if

(i) rank(sim(C mod ⟨l1, . . . , lq⟩)) ≤ cq+1;

(ii) C mod ⟨l1, . . . , lq⟩ ≠ 0;

(iii) and C mod ⟨l1, . . . , lq⟩ is not a product of linear forms.

A crashing space is minimal if it does not contain any other proper crashing spaces.
Define

Cq = {minimal q-dimensional crashing spaces of f}.

We can only bound and compute those kernels that do not contain any crashing spaces, so we
define

S ′
r(f) = {V ∈ Sr(f) : ker(V) does not contain any space in Cq(f) for all q ≤ r − 2},

and

KS ′
r(f) = {V ∈ KSr(f) : V does not contain any space in Cq(f) for all q ≤ r − 2}.

Theorem 4.1. Let f be a polynomial computed by a degree-d ΣΠΣ(k) circuit C. For any r ≤ k,
let cr = RF(k, d) + 2r2. If rank(sim(C)) ≥ cr, then∣∣S ′

r(f)
∣∣ = O(d2kr2)

Proof. We will show this using induction on r and k. First, for any k, |KS1(f)| ≤ d = O(d2k) since
each linear form generating a KS1 space must be a factor of f . Assume for our induction hypothesis
that for some k and some r ≥ 2, we know that for all h ≤ k and q ≤ r − 1, |KS ′

q| = O(d2kq2). Our
proof is divided in two cases.

Case 1. We bound the number of V = span(l1, . . . , lr) ∈ KS ′
r(f) such that some gate Ti vanishes

modulo ⟨V ⟩.

Suppose without loss of generality that Ti = T1. There must be some linear form l ∈ V that
divides T1; extend this to a basis {l, l′2, . . . , l′r} for V . Define V ′ = span{l′2, . . . , l′r}. Then, the circuit
C ′ = T2 + · · ·+ Tk mod ⟨l⟩ is nonzero by the minimality of V , and C ′ mod V ′ = C mod V = 0.
This shows that V ′ is a vanishing kernel for C ′. We want to apply our induction hypothesis to C ′

and bound the number of possible extensions of V ′ to V .

16

First, we need to show that V ′ ∈ KS ′
r−1(C ′). If V ′ contains a proper vanishing kernel U ′ ⊂ V ′

such that C ′ mod U ′ = 0, then span{U ′, l} is a proper subspace of V such that C mod span{U ′, l} =
0, contradicting the minimality of V . So, V ′ is a minimal vanishing (r− 1)-kernel for C ′. Similarly,
suppose V ′ contains a q-dimensional crashing space W ⊆ V ′ such that rank(sim(C ′ mod W)) ≤
cq+1, for some q ≤ r − 3. Then, span{W, l} ⊆ V is a (q + 1)-dimensional crashing space for C,
since rank(sim(C mod span{W, l})) = rank(sim(C ′ mod W)) ≤ cq+1 ≤ cq+2, contradicting that
V does not contain any crashing spaces of dimension at most r − 2. So, V ′ ∈ KSr−1(C ′).

If r = 2, then V ′ is a KS1 space, i.e. it is generated by a linear factor of the circuit C ′, so there
are at most d choices of V ′. And there are at most d choices of the linear form l as a factor of the
gate T1, so there are at most d2 = O(d2kr2) choices for the space V = span{V ′, l}.

If r = dim V ≥ 3, then the circuit C ′ satisfies our high-rank hypothesis since

rank(C ′) = rank(sim(T2 + · · ·+ Tk) mod ⟨l⟩) = rank(sim(C mod ⟨l⟩) ≥ cr−1,

where the last inequality holds since span{l} ⊆ V cannot be a crashing space.
From the induction hypothesis, there are at most O(d2k(r−1)2) choices for span{l′2, . . . , l′r} from

KS ′
r−1(f mod l), and there are at most d choices for a divisor l of T1. Therefore, in this case there

are at most O(d2kr2) possibilities for V ∈ KSr(f).

Case 2. We bound the number of V = span{l1, . . . , lr} ∈ KS ′
r(f) such that no gate Ti vanishes

modulo V .

First, suppose the circuit has the form C = G × (T1 + · · · + Tk) where G = gcd(C) and
T1 + · · ·+ Tk = sim(C). Define

L(Ti) = {l : l is a linear form dividing Ti};

L(sim(C)) =
k⋃

i=1
L(Ti).

Since C vanishes modulo V , the rank bounds in Theorem 3.5 imply that rank(C mod V) <
RF(k, d). For each i = 1, . . . , k, define

Ai = {l ∈ L(Ti) : l divides gcd(C mod V)},
Bi = L(Ti) \Ai.

Since V is r-dimensional, rank{l mod V l ∈ B1 ∪ · · · ∪ Bk} ≥ rank{l : l ∈ B1 ∪ · · · ∪ Bk} − r,
so rank(A1 ∪ · · · ∪ Ar) = rank{l ∈ L(sim(C)) : l divides gcd(C mod V)} ≥ rank(sim(C)) − r −
RF(k, d) ≥ 3r + 1. We will actually prove something stronger: we will show by induction that the
number of r-dimensional spaces V such that rank(C mod V) < RF(k, d) and no gate Ti vanishes
mod V is at most O(d2kr)..

For the base case of r = 1, we want to bound the number of linear forms l such that rank(C
mod l) < RF(k, d) and l does not divide any gate of C. Since rank(sim(C)) ≥ RF(k, d) + 2, there
are at least 2 independent linear forms l1, l2 ∈ L(C) that divide gcd(C mod l). That is, for each
j = 1, 2, there are k linear forms l1,j ∈ L(T1), . . . , lk,j ∈ L(Tk) and scalars λ1,j , . . . , λk,j , α1,j , . . . , αk,j

such that
li,j = αi,jl + λi,jlj .

So, for j = 1, 2, the vector space

Vj = span{l1,j , . . . , lk,j} = span{l, lj}

17

has dimension 2. The intersection V1 ∩ V2 = span{l}, so l is determined by at most 2 linear forms
from each of L(T1), . . . ,L(Tk), so there are at most d2k possibilities for l.

For the inductive step, suppose we know that for all q < r, the number of q-dimensional spaces
U ∈ KS ′

q such that rank(C mod U) < RF(k, d) and no gate Ti vanishes modulo U is O(d2kq2). To
bound the number of r-dimensional spaces V ∈ KS ′

r such that rank(C mod V) < RF(k, d) and
no gate vanishes mod V , we consider two cases: the case when V contains a (r − 1)-dimensional
subspace W such that rank(C mod W) < RF(k, d), and the case where it does not. Recall by
definition of KS ′

r, V cannot contain any crashing spaces of dimension ≤ r − 2.

Case 2a. We bound the number of spaces V that contain some (r − 1)-dimensional subspace W
such that rank(C mod W) < RF(k, d).

This proof is similar to the proof of case 1. Let V = span{W, l} for some linear form l. Then,
the circuit C ′ = C mod W is nonzero by the minimality of V , but C ′ mod l = 0, so l is a factor
of C ′. No gate of the original circuit C vanishes modulo W , so the number of choices for W is
O(d2k(r−1)2) by the induction hypothesis applied to C and W . Then, we have at most d choices for
the factor l of C ′, which implies we have O(d2kr2) choices for the space V .

Case 2b. We bound the number of spaces V such that for any (r−1)-dimensional subspace W ⊆ V ,
rank(C mod W) ≥ RF(k, d).

This proof uses a linear algebra trick similar to the base case. We know that least 2r + 1
independent linear forms collapse into gcd(C mod V), so let l1, . . . , lc, for some c ≥ 2r + 1, be
independent linear forms that divide gcd(C mod V). Again, for each j ∈ [c], we have linear forms
li,j ∈ L(Ti), i = 1, . . . , k such that

li,j mod V = λi,jlj

for some scalars λi,j . Define
Vj = span{l1,j , . . . , lk,j}

so dim(Vj ∩ V) = dim(Vj)− 1.
Note that dim Vj ≥ 2, otherwise the linear forms l1,j , . . . , lk,j would all belong to the gcd of C.

Our goal is to use a subset of the spaces {V1, . . . , Vc} to learn a subspace U ′ of V .
We say a set of spaces V1, . . . , Va is independent if for every i ∈ [a], Vi /∈ span{V1, . . . , Vi−1, Vi+1, . . . , Va}.

Suppose (relabelling the spaces if necessary) V1, . . . , Va is a maximal independent set of spaces in
{Vj : j ∈ [c]}. This implies that span{V1, . . . , Va} = span{Vj : j ∈ [c]}. Since dim(Vi mod V) = 1
for al i ∈ [a], we know that

dim span{V1, . . . , Va} = dim (span{V1 mod V, . . . , Va mod V } ∪ V) ≤ a + r.

On the other hand,

dim span{V1, . . . , Va} = dim span{Vj : j ∈ [c]} ≥ 3r + 1,

so a ≥ 2r + 1. Thus, we can find r independent spaces V1, . . . , Vr.
Now, by Lemma 4.2, for some m ≤ r, the space U ′ = span{V1, . . . , Vm−1} ∩ Vm is nonzero and

contained in V . There are dk choices for each of the spaces V1, . . . , Vm, so there are at most dkr

choices for the space U ′. If U ′ = V , this shows there are at most O(d2kr2) choices for V .
Suppose U ′ is a proper subspace of V . Consider the circuit C ′ = C mod U ′ and two cases, one

where dim(U ′) = r − 1, and the other where dim(U ′) ≤ r − 2. In the first case, if U ′ is (r − 1)-
dimensional then the linear form V mod U ′ divides the circuit C ′, so we have at most d possible
extensions of U ′ to V , and therefore at most d · dkr = O(d2kr) choices for C.

18

In the second case, suppose 1 ≤ dim U ′ = q ≤ r − 2. We know that V does not contain
any crashing spaces of dimension ≤ r − 2, so rank(sim(C ′)) ≥ cr−1. We will now argue that V
mod U ′ is in fact in KSr−q(C ′). First, V mod U ′ is a vanishing kernel for C ′ = C mod U ′ since
V is a vanishing kernel for C. Next, if V mod U ′ contains a proper subspace V ′ mod U ′ that
is vanishing for C ′, then V ′ is a proper subspace of V that is vanishing for C, contradicting the
minimality of V . Finally, if V mod U ′ contains a subspace V ′ mod U ′ that is crashing for C ′,
then V ′ is a subspace of V that is crashing for C, which is again a contradiction. This all shows
that V mod U ′ ∈ KSr−q(C ′). Recall that r − q ≤ r − 1, so by the induction hypothesis, there are
at most O(d2k(r−1)2) choices for V mod U ′. So, there are at most O(d2k(r−1)2) · dkr = O(d2kr2)
choices for the space V .

Definition 10. We say a collection of spaces V1, . . . , Va is independent if for every i ∈ [a], Vi /∈
span{V1, . . . , Vi−1, Vi+1, . . . , Va}.

Lemma 4.2. Let V1, . . . , Va be a set of independent spaces2, and let U be an r-dimensional space,
for some 1 < r < a, such that dim(U ∩ Vj) = dim(Vj) − 1 for all j = 1, . . . , a. Then, for some
i ≤ r, the space span(V1, . . . , Vi) ∩ Vi+1 ⊆ U and dim(span(V1, . . . , Vi) ∩ Vi+1) ≥ 1.

Proof. Define Ui = U∩Vi for i = 1, . . . , a. Choose the maximum i such that the spaces U1, . . . , Ui are
independent. Note that since U is r-dimensional, the maximum such i is at most r, which is strictly
less than a. We will show that span{V1, . . . , Vi} ∩ Vi+1 ⊆ U and dim(span{V1, . . . , Vi} ∩ Vi+1) ≥ 1.

For each j, since Vj mod U is 1-dimensional, choose a nonzero vector wj so that Vj = span(wj , Uj).
Suppose for contradiction that span{V1, . . . , Vi}∩Vi+1 ̸⊆ U . Equivalently, span(w1, . . . , wi)∩Vi+1 ̸=
{0}. So, we can choose a nonzero vector zi+1 ∈ (span(w1, . . . , wi) ∩ Vi+1) \ U .

By the maximality of i, Ui+1 ⊆ span{U1, . . . , Ui−1}. Since Vi+1 ̸⊆ span{V1, . . . , Vi} by indepen-
dence, it follows that wi+1 /∈ span(V1, . . . , Vi), which implies that wi+1 /∈ span(Ui+1, zi+1).

Finally, this tells us that span(Ui+1, wi+1, zi+1) ⊆ Vi+1 and dim(Vi+1) ≥ dim(Ui+1) + 2 =
dim(Vi+1) + 1, a contradiction.

5 Structural results about vanishing spaces
In this section we prove a variety of useful structural results on vanishing spaces. Many of these
statements are generalizations of similar statements that appeared in [SS25] in the setting of k = 3.
The proofs are a simple variation of those when k = 3, but we include them for completeness.

The first structural result that will be useful in our reconstruction is the following lemma, which
bounds the dimension of the set of rank-reducing linear forms. The proof of Claim 4.8 in [DS05]
implies this result. It can also be inferred as a special case of Lemma B.1 (restated with better
notation in section B.1.2) in [KS09a], with A = [k], r̂ = rank(sim(T1 + T2 + · · ·+ Tk)), rt = r, and
χ =

⌊
r̂

2r′ log d

⌋
. We omit the proofs when they can be found in the referenced papers.

Lemma 5.1 (Implied from Claim 4.8,[DS05]). Let C be a ΣΠΣ(k) circuit of the form T1 + T2 +
· · ·+ Tk such that gcd(T1, . . . , Tk) = 1. Fix r′ > 0 to be any constant such that rank(sim(T1 + T2 +
· · · + Tk)) > 2r′ log d + 2k. We define a linear form l to be rank-reducing if ∀i ∈ [k] l ∤ Ti and
rank(sim(C mod l)) ≤ r′. If we define a set of rank-reducing linear forms for C as

L := {l : l is rank-reducing for C}
then dim(span(L)) ≤ max(r′ log d, 2k log dk + 2k).

2As defined in the proof of case 2b of Theorem 4.1, a set of spaces V1, . . . , Va is independent if for every i ∈ [a],
Vi /∈ span{V1, . . . , Vi−1, Vi+1, . . . , Va}.

19

Using the above lemma along with rank bounds for ΣΠΣ(k) circuits, we show how to bound
the dimension of linear forms that divide f but do not divide the gcd G. This is a generalization
of Lemma 6.4 from [SS25] which showed it for k = 3.

Lemma 5.2. Let RF(k, d) be as defined in Theorem 3.5. Let f ∈ F[x1, . . . , xn] be a degree-d
polynomial computed by ΣΠΣ(k) (k ≥ 2) circuit of the form C = G × (T1 + · · · + Tk) such that
gcd(T1, . . . , Tk) = 1. Define

Ls1 := {l : V(l) ∈ S1(f)} = {l : l|f}.

Then, we have dim(span(Ls1 \ Lin(G))) ≤ 2k2RF(k, d) log d.

Proof. The only interesting case is when rank(T1 + · · ·+Tk) ≥ 2k2RF(k, d) log d, as the contribution
of linear forms dividing T1 + · · · + Tk has to be less than rank(T1 + · · · + Tk). So, assuming that
rank(T1 + · · · + Tk) ≥ 2k2RF(k, d) log d, we will prove the statement by induction on k, where the
base case is simply [SS25, Lemma 6.4].

For the induction hypothesis, suppose that for any k′ < k and f ′ computed by a ΣΠΣ(k′)
circuit, we have dim(span(Ls1(f ′) \ Lin(G))) ≤ 2(k−1)2RF(k − 1, d) log d. Let l be any linear form
that divides T1 + · · ·+ Tk. We divide our proof into two cases.

Case 1. ∀i ∈ [k], l ∤ Ti.

As f ≡ 0 mod l, the circuit (C mod l) computes the zero polynomial. Let C mod l be of the
form G′ × (T ′

1 + · · · + T ′
k) with gcd(T ′

1, . . . , T ′
k) = 1. Note that (T ′

1 + · · · + T ′
k) is a simple circuit

computing 0, and hence by Theorem 3.5, rank(T ′
1 + · · · + T ′

k) < RF(k, d). Let L′
s1 be the set of

linear forms in Ls1 which do not divide any Ti. We can use Lemma 5.1 with r′ = RF(k, d) and
rank(sim(T1 + · · ·+ Tk)) > 2RF(k, d) log d + 2k, to obtain

dim(span(L′
s1)) ≤ max(RF(k, d) log d, 2k log(kd) + 2k) ≤ 2RF(k, d) log d + 2k.

Case 2. ∃i ∈ [k] such that l|Ti.

Since we have l ∈ Ls1 \ Lin(G), there must be a set of gates K ⊂ [k] such that l ∤ Tj , j ∈ K.
We also know |K| ≥ 2. Now, since l|(T1 + · · · + Tk) and l|Ti, i ∈ [k] \ K, we have l|(∑j∈K Tj).
By the induction hypothesis, l lies in a set of dimensions at most 2|K|2RF(k, d) log d. The number
of such subsets would be

(k
|K|

)
. Therefore, all such l will lie in a space of dimension at most∑k−1

i=2
(k

i

)
2i2RF(i, d) log d ≤ 2k2RF(k, d) log d.

Combining the two cases we get that dim(span(Ls1) \ Lin(G)) ≤ 2k2RF(k, d) log d + 2k.

A very interesting corollary of the above result is that for our reconstruction algorithm, we can
essentially reduce to the case where the gcd of the gates in the input circuit is low-dimensional.

Corollary 5.3. Let f be a n-variate degree-d polynomial computed by a ΣΠΣ(k) circuit C =
G× (T1 + · · ·+ Tk) and ccand be any integer. Given black-box access to C, there exists an algorithm
that runs in time dO(RF(k,d) log d) outputs a size dO(RF(k,d) log d)-list L of pairs of polynomials (L, f ′)
such that

• for each (L, f ′) ∈ L, L is a product of linear forms and L · f ′ = f , and

• for at least one of the (L, f ′) ∈ L, f ′ can be computed by a ΣΠΣ(k) circuit C ′ = G′ × (T1 +
· · ·+ Tk) with dim(span(Ls1(C ′))) ≤ 2k2RF(k, d) log d + 2k.

20

Note that the above corollary implies that we can assume for our reconstruction algorithm that
dim(span(Ls1(C))) ≤ 2k2RF(k, d) log d + 2k for input ΣΠΣ(k) circuits C. This is because we can
run our reconstruction for each f ′ such that (L, f ′) ∈ L, and once the reconstruction succeeds, we
can verify the correct one using a PIT algorithm.

Proof. Using Lemma 3.9, we can get access to the set of linear factors Ls1 of f in poly(n, d) time
with high probability. This set will contain linear factors of G and sim(C). From Lemma 5.2, we
know the linear factors of sim(C) lie in a

(
2k2RF(k, d) log d + 2k

)
-dimensional space. Therefore,

we guess a set of up to 2k2RF(k, d) log d + 2k independent linear forms from Ls1 and divide f by
all linear forms in Ls1 not in the span of the linear forms we guessed. For the correct guess, we will
have guessed the space corresponding to linear factors of sim(C) and therefore, all divisions will
correspond to linear forms in Lin(G).

The number of possible guesses is at most dO(RF(k,d) log d) and hence the running time and size
of the list.

5.1 Special and regular vanishing spaces

The vanishing spaces of the ΣΠΣ(k) circuit, as we saw in Theorem 4.1, can be of two types: First,
where some gate vanishes, and second, where the simple part of the circuit becomes identically 0
mod them without any gates vanishing. The first type of spaces (Special spaces) is useful to us as
they give information about linear forms in the circuit, while the second (Regular spaces) interfere
with us learning the first type of spaces. The actual definition of the spaces below in Definition 11
is a little more technical, which allows us to bound the structure of regular spaces.

Definition 11 (Regular and Special Spaces). We classify vanishing spaces in Vr(f) into two kinds,
the regular spaces

Sreg
r (f) := {V(l1, . . . , lr) ∈ Vr(f) : For a random W ∈ span(l1, . . . , lr) with dim(W) = r − 1 and

span(l′) := (span(l1, . . . , lr) mod) , l′|sim(C mod W) with probability 1− oF(1)},

and the special spaces

Ssp
r (f) := Vr \ Sreg

r (f)

Observe that for r = 1, Sreg
1 = {V(l) : l ∈ Ls1 \ Lin(G)} and Ssp

1 = {V(l) : l ∈ Lin(G)}.
Notice that Lemma 5.2 above shows that the kernels of spaces in Sreg

1 span a low-dimensional
space. We will prove a generalization of this result to higher-dimensional kernels of regular spaces.
We first introduce a definition to make the statement formal.

Definition 12 (Totally independent regular set). We define a subset Vr ⊆ Sreg
r (f) to be a totally

independent regular set if

dim (span ({l1, . . . , lr : V(l1, . . . , lr) ∈ Vr})) = r|Vr|,

i.e. the kernels of the spaces in Wr are totally independent.

We will argue in the following lemma that the size of any totally independent regular set Wr is
small.

21

Lemma 5.4. Let f be a n-variate degree-d polynomial over any field F such that |F| ≥ O(d5),
computed by a circuit C = G × (T1 + · · · + Tk) such that gcd(T1, . . . , Tk) = 1. Let RF(k, d) be as
defined in Theorem 3.5. Then, for any totally independent regular set Wr ⊆ Sreg

r (f), where r < k,
we have

|Wr| ≤ 2k2RF(k, d) log d

We will prove this using induction on r. The base case is for r = 1 which is in Lemma 5.2.
We first state and prove a simple claim that will be useful for the proof. Note that this claim only
requires a weaker assumption that the spaces are independent, that is, no space is in the span of
the others.

Claim 5.5. Let S = {U1, U2, . . . Ub} be any collection of independent r-dimensional subspaces of
Fn (where F is an infinite or large enough field). For i ∈ [b], let li be a linear form corresponding to
a uniformly random vector sampled from Ui. Let f ∈ F[x1 . . . xn] be a nonzero degree-d polynomial.
Then, the probability that f = 0 mod ⟨l1, . . . , lb⟩ ≤ bd/|F|.

Proof. First observe that it suffices to prove the above result for b = 1 and then use induction to iter-
ate this on the polynomials f mod ⟨l1⟩, f mod ⟨l1, l2⟩, . . . , f mod ⟨l1, . . . , lb⟩ (since U1, U2, . . . Ub

are all independent) and apply the union bound. For b = 1, note that for any linear form l such
that f = 0 mod ⟨l⟩, l must be a linear factor of f . Since f can have at most d distinct linear
factors (up to scaling), the result follows.

We now prove Lemma 5.4

Proof of Lemma 5.4. Let t = |Wr|. Let Wr = {W1, W2, . . . Wt}. Now each Wi ∈ Wr is of the form
V(li1, . . . , lir). Let Vi = span{vi1, . . . , vir} where vij ∈ Fn is the vector corresponding to lij .

For each i, let li be the linear form corresponding to a uniformly random vector sampled from
Vi. Let V ′

i be a space of dimension r − 1 such that span{li, V ′
i } = Vi.

Let A = {li : i ∈ [t]}.
Now, we consider the circuit C ′ = C mod ⟨A⟩. Let f ′ = f mod ⟨A⟩.
Let C ′ be of the form C ′ = G′ × (T ′

1 + · · · + T ′
k), where gcd(T ′

1, . . . , T ′
k) = 1. Observe that by

Claim 5.5, C ′ ̸= 0. Moreover each of G′, T ′
1, . . . , T ′

k compute nonzero polynomials. We will show
that V ′

1 , V ′
2 , . . . , V ′

t are all in Sreg
r−1(f ′) (in the space V(l1, l2, . . . , lk)) i.e. are regular vanishing spaces

of codimension r − 1. Then, by the induction hypothesis, the bound on t follows.
We first show that V ′

i is a Sreg
r−1 of C mod li. As C vanishes mod Vi = span(V ′

i , li), C mod li
must vanish mod V ′

i . Consider any random r−2 space V ′′
i of V ′

i . As we first chose li randomly from
Vi, span(V ′′

i , li) is a random codimension r − 1 space of Vi, and therefore for l′i such that l′i = V ′
i

mod V ′′
i = Vi mod ⟨V ′′

i , li⟩, we have l′i divides sim(C mod ⟨li, V ′′
i ⟩) = sim((C mod li) mod V ′′

i).
We would like to show that V ′

i continues to be a regular codimension r−1 vanishing space of C
mod li, i.e. l′i divides sim(C mod ⟨A, V ′′

i ⟩). Let C mod ⟨li, V ′′
i ⟩ be of the form Gi×(T1i+· · ·+Tk′i)

with gcd(T1i, . . . , Tk′i) = 1 and 2 ≤ k′ ≤ k.
Let T1i be a gate such that l′i ∤ T1i. Such a gate exists as gcd(T1i, . . . , Tk′i) = 1. It suffices to show

that no linear form dividing T1i becomes equal to l′i when we consider it over V(V ′′
i , l1, l2, . . . , lt).

Consider any linear form l dividing T1i. By assumption, span{l′i} cannot contain any factor of
T1i. Thus l ̸∈ span{l′i} and hence it is of the form βl′i + l′ where l′ ̸∈ span{l′i}. By Claim 5.5
(applied to βl′i + l′ but in the space V(l′i)), l′ remains nonzero with high probability when we go
mod l1, l2, . . . , li−1, li+1, . . . lt, and moreover is still not in span{l′i}.

22

5.2 Essential variables and rank

We now state a lemma which will eventually be useful in analyzing circuits where some gates have
their linear forms only spanning a low dimensional space. This is a variant of Lemma 6.9 of [SS25],
where a very similar result was shown for k = 3; the proof is essentially the same as well.
Lemma 5.6. Let f be a homogeneous polynomial computed by a ΣΠΣ(k) circuit C = G ×
(T1 + · · · + Tk) and gcd(T1, . . . , Tk) = 1. Let t > 0 be any nonnegative integer such that ∀i ∈
[k], dim(span(Lin(G × Ti))) ≥ t and for any r < k let l1, . . . , lr ∈ F[x1, . . . , xn] be arbitrary linear
forms. RF(k, d) as defined in Theorem 3.5. Then,

• The number of essential variables (Definition 7) in G× (T1 + · · ·+ Tk) is at least t−RF(k+1,d)
3 .

• If f mod ⟨l1, . . . , lr⟩ has less than t−RF(k+1,d)−r
4 essential variables, then f mod ⟨l1, . . . , lr⟩ =

0
Proof. We will first prove the first item. In the case where dim(span(Lin(G))) ≥ t−RF(k+1,d)

3 ,
then clearly we are done as the number of essential variables in G × (T1 + · · · + Tk) is at least
(t − RF(k + 1, d))/3. Therefore, we assume dim(span(Lin(G))) < t−RF(k+1,d)

3 and hence ∀i ∈
[k], dim(span(Lin(Ti))) ≥ 2t+RF(k+1,d)

3 . Let the number of essential variables in T1 + · · ·+ Tk be c.
Thus by definition (T1 + · · ·+Tk) = g(l1, . . . , lc) for some homogeneous polynomial g in F[x1, . . . , xc]
and linear forms l1, . . . , lc in F[x1, . . . , xn]. Let z be a new variable and consider a random linear
isomorphism Φ which for each i ∈ [c] maps li −→ αiz for a random αi ∈ F. Then with high
probability g is nonzero and is of the form αzd for some constant α ∈ F. Therefore, we have
Φ(T1 + · · ·+ Tk)− αzd = 0. Now we have a ΣΠΣ(k) circuit equalling 0 and hence we can use rank
bounds! By Theorem 3.5, rank(sim(Φ(T1 + · · ·+ Tk)− αzd)) ≤ RF(k, d).

We will first show that the linear forms contributing to the GCD have rank at most c.
Consider any two linear forms la ∈ Ta, lb ∈ Tb such that span(la) ̸= span(lb) which we can find

as gcd(T1, . . . , Tk) = 1, and hence these linear forms do not contribute to the gcd already. Suppose
after applying Φ, two distinct linear forms got “collapsed” to the same and moved into the gcd. In
other words span(Φ(la)) = span(Φ(lb)). We will now show that the only way this can happen is if
la, lb ∈ span(l1, . . . , lc). This will then imply that the linear forms in the gcd have rank at most c.

Let la = l′a + ∑c
i=1 βa,ili where βa,i ∈ F, and l′a = 0 or l′a ̸∈ span(l1, . . . , lc). Similarly lb =

l′b + ∑c
i=1 βb,ili where βb,i ∈ F, and l′b = 0 or l′b ̸∈ span(l1, . . . , lc). We have Φ(la) = l′a + ∑c

i=1 βa,iαiz
and Φ(lb) = l′b + ∑c

i=1 βb,iαiz.
Case 1: span(l′a) ̸= span(l′b). In this case Φ(la) and Φ(lb) clearly remain independent.
Case 2: span(l′a) = span(l′b). In case these spans are actually 0, then we are done. So let us

assume the span is nonzero. In this case, without loss of generality assume the linear forms are
scaled such that l′a = l′b. Then, since span(la) ̸= span(lb), for some i, βa,i ̸= βb,i. Hence with high
probability ∑c

i=1 βa,iαi ̸=
∑c

i=1 βb,iαi. Therefore Φ(la) and Φ(lb) remain independent with high
probability.

So, the only linear forms that move to the gcd of Φ(T1), . . . , Φ(Tk) are the ones that lie in
span(l1, . . . , lc). Therefore, the linear forms that move into the gcd lie in a space of dimension at
most c. Moreover, after applying Φ, the span of the linear forms from Ta that do not move to the
gcd can get shrunk by at most c. Therefore, rank(sim(Φ(T1 + · · · + Tk) − αzd)) ≥ 2t/3 − 2c. By
the rank bound, (2t +RF(k + 1, d))/3 − 2c ≤ RF(k + 1, d), which gives us c ≥ t−RF(k+1,d)

3 . Thus,
we finish the first part of the lemma.

We now show that if f mod ⟨l1, . . . , lr⟩ is non-zero then it must have a large number of essential
variables, and we will show how to deduce this either from the gcd or from the simple part of the
circuit.

23

C mod ⟨l1, . . . , lr⟩ is of the form G′ × (T ′
1 + · · · + T ′

k) with gcd(T ′
1, . . . , T ′

k) = 1 with at least
some T ′

i that are non-zero. Now, if dim(span(Lin(G′))) ≥ t−RF(k+1,d)−r
4 , then clearly the number

of essential variables of C mod ⟨l1, . . . , lr⟩ is greater than or equal to t−RF(k+1,d)−r
4 (except C

mod ⟨l1, . . . , lr⟩ = 0) since G′ is a product of linear forms which will continue to have a high
rank under any linear isomorphism. In the other case, when dim(span(Lin(G′))) < t−RF(k+1,d)−r

4 ,
then for all nonzero T ′

i , dim(span(Lin(T ′
i))) ≥

3t+RF(k+1,d)−3r
4 . Therefore, by part 1 of the current

lemma, we see that C mod ⟨l1, . . . , lr⟩ has at least t−RF(k+1,d)−r
4 essential variables. Therefore, if C

mod ⟨l1, . . . , lr⟩ has less than t−RF(k+1,d)−r
4 essential variables, then C mod ⟨l1, . . . , lr⟩ = 0.

5.3 µ-Cluster Representation

For a ΣΠΣ(k) circuit C, recall that ∆(C) = rank(sim(C)), and for two ΣΠΣ(k) circuits C1, C2,
∆(C1, C2) = rank(sim(C1 + C2)). Based on this notion of distance, we can cluster the gates close
to each other together into a representation given by the following lemma.

Lemma 5.7. For any µ and ΣΠΣ(k) circuit C = G × (T1 + · · · + Tk), there is a partition of [k]
into nonempty sets A1, . . . , As (where s depends on the circuit and µ) such that for Ci = ∑

j∈Ai
Tj

and C = G× (C1 + · · ·+ Cs), we have ∀i ̸= j ∈ [s], ∆(Ci, Cj) > µ and ∀i ∈ [s], ∆(Ci) < 2k · µ.

We call such a representation a µ-cluster representation.

Proof. We do this greedily. Start with k clusters, each containing a single gate and merge any
two clusters into one if they do not satisfy ∆(Ci, Cj) > µ. Therefore, the greedy merge stops
either if there is only 1 cluster remaining or the distance condition between clusters is satisfied
for all clusters. At each merge for any cluster Ci, ∆(Ci) at most doubles. Also, after the first
merge for any cluster Ci, ∆(Ci, Cj) ≤ µ and there are at most k − 1 merges. Therefore, we have
∀i ∈ [s]∆(Ci) < 2k · µ.

6 Algorithmically Computing Vanishing Spaces
In this section we will show how to compute a large and interesting subset of all vanishing spaces,
which we will later use to compute linear forms from the circuit. Though we cannot even bound
the size of Sr(f), we are able to bound the size of the set S ′

r(f) (maximal vanishing spaces of
codimension r which don’t have crashing spaces of dimension r−2 in their kernels) in Theorem 4.1
assuming the circuit is high rank. The high-level goal will be to try and compute these spaces,
and then use them to compute linear forms from the circuit. The way we learn these spaces is
by encoding the property of being a vanishing space as the solution of a system of polynomial
equations. However, in order to set up a polynomial system for computing S ′

r(f) spaces, one has
to first get a handle on how to compute crashing spaces, which is quite challenging.

The way we get around this challenge is to show that there exist low-dimensional spaces Wr

(LDICR spaces, to be formally defined later) which intersect all crashing spaces of dimension at most
r− 2. Moreover, we can even algorithmically compute these spaces (this step is quite challenging).
Thus, though we aren’t even able to compute S ′

r(f) for various r, we will show how to compute a
large enough subset of them (those that don’t intersect Wr), and then show that this essentially
suffices.

To make all this more precise we introduce some definitions and notation. We will deal with
a more general notion of crashing spaces, which we define below as rank-reducing spaces. These

24

capture reduction of rank to any prespecified threshold, unlike crashing spaces for which we fix a
certain threshold.

Definition 13 (Rank-Reducing Spaces). Let f be a polynomial computed by a ΣΠΣ(k) circuit C,
and t > 0. A q-dimensional space span(l1, . . . , lq) is a t-rank reducing space of f if

1. rank(sim(C mod ⟨l1, . . . , lq⟩)) ≤ t,

2. C mod ⟨l1, . . . , lq⟩ ≠ 0,

3. and C mod ⟨l1, . . . , lq⟩ is not a product of linear forms.

Define
Cq,t(C) = {minimal q-dimensional t-rank reducing spaces of C},

and
C≤q,t(C) =

q⋃
i=1

Ci,t(C).

Note that the set of all minimal crashing spaces of dimension r (as defined in Section 4) is
Cr,cr−1 .

Computing and avoiding all the crashing spaces seems very complicated so we instead deal with
LDICR (Low-Dimensional Intersecting Crashing and Regular) spaces as defined below. These will
be low-dimensional spaces intersecting all the crashing spaces of dimension up to r − 2, (moreover
we will also ensure that Wr intersects all regular spaces - we will see why this is useful only later
on) and thus avoiding intersection any such space will allow us to avoid containing any crashing
space.

Definition 14 (LDICR (Low-dimensional Intersecting Crashing and Regular) Space). Let f be
a n-variate, degree-d polynomial in F[x1, . . . , xn] that is computed by a ΣΠΣ(k) circuit. We will
call a space Wr an LDICR space with parameter r (for r ≥ 3) if it has all of the following three
properties:

• dim(Wr) ≤ 22k2RF(k, d)(k4 log d)r−2

• every space V ∈ C≤r−2,ck
non-trivially intersects Wr

• every space V ∈ Sreg
≤r−1 non-trivially intersects Wr.

We define W1 = {0} and W2 = Lin(f).

We will show that with iterative computation, we can algorithmically compute a dpoly(log d) set
of spaces, at least one of which will be an LDICR space, but we may not be able to identify which
one it is. Thus we will branch on all possible choices of these spaces (this will blow up our run time
by a quasi-polynomial factor), and for the correct choice of space, our reconstructing will succeed.
Thus one can essentially assume that we are able to pick a true and canonical choice of LDICR
space and we fix it to be Wr for given r. We also have W1 = 0 and W2 = span({l : l|C}). From
Corollary 5.3, we can assume dim(W2) ≤ 2k2RF(k, d) log d + 2k.

Therefore, instead of computing Sr or S ′
r, we will compute Sr up to a LDICR space Wr, i.e.,

compute all spaces in Sr whose kernels do not intersect Wr. We will define this set to be S∗
r as

follows

S∗
r := {V ∈ Sr(f) : dim(Ker(V) ∩Wr) = 0}.

25

Claim 6.1. S∗
r ⊆ S ′

r

Proof. Since, every space in C≤r−2,ck
intersects Wr, any space in Sr(f) whose kernel contained a

crashing space of dimension up to r − 2 will intersect Wr. Therefore S∗
r ⊆ S ′

r.

Thus, our size bounds on S ′
r in Theorem 4.1 also hold for S∗

r .
In Section 6.1 we will show how to computeWr and in Section 6.2 we will show how to compute

S∗
r .

The spaces in S∗
r have a lot of information, but to effectively use the information, we use S∗

r

to first learn a richer collection of possibly non-maximal vanishing spaces (We call this set Sr(f))
which will have some additional properties that will allow us to extract information about the
circuit.

The spaces in Sr(f) are harder to define concisely, but they have the interesting property of
“saturation” as described below.
Definition 15 (Sr spaces). Let f be computed by a ΣΠΣ(k) circuit of the form G× (T1 + · · ·+Tk).
LetWr be an LDICR space for f with parameter r. We say that a collection of spaces of codimension
at most r is an Sr family for f if it has the following properties.

1. Consider any space V(l1, . . . , lk) of codimension r where ∀i ∈ [k], li ∈ Lin(Ti), and such
that span(l1, . . . , lk) ∩ Wr = {0}. Then, there is a space V in a Sr such that Ker(V) ⊆
span(l1, . . . , lk) and contains at least one of the li’s.

2. Consider any crashing space W ∈ Cr−1,ck
(f) such that it doesn’t intersect Wr. Let l be a

linear form and e be a positive integer such that le| gcd(C mod W), span(W, l) ∩Wr = {0}
and l ∤ sim(C mod W). We say that such a linear form l is saturated by the set of spaces
Sr, if Sr contains a space V with the following properties.

(a) Ker(V) ⊂ span(W, l). Let W ′ = Ker(V) ∩W .
(b) There exist e linear forms l′1, . . . , l′e, each of the form l+ l′, where l′ ∈W such that gcd(C

mod W ′) is divisible by
∏

i∈[e](l′i mod W ′).

Then, the dimension of the span of linear forms l in gcd(C mod W), such that (1) span(W, l)∩
Wr = {0}, (2) l ∤ sim(C mod W) and (3) l is not saturated by Sr, is at most k.

We will learn the spaces in Wr, S∗
r and Sr in an iterative manner, with spaces corresponding

to the lower values of r being used in the construction of spaces with larger r.
The space Wr will be constructed from S∗

1 , . . . ,S∗
r−1,S1, . . . ,Sr−1 as described in Lemma 6.6.

We will then useWr to compute S∗
r and Sr which we will describe in Lemma 6.12 and Lemma 6.14.

We will only be able to compute Wr, and hence S∗
r ,Sr, in cases when the circuit doesn’t have a

certain property which we call the SCS-property (Single Cluster Survives Property) for a given r,
as defined below. We will later see that in cases where the circuit does have the property, it only
makes our life easier and we are even more easily able to learn linear forms without even learning
additional vanishing spaces (see Lemma 6.19).
Definition 16 (SCS (Single Cluster Survives) Property). Let t = 22k2RF(k, d)(k4 log d)k−3 and
µ = 2t log d + 2k. Let f be a n-variate, degree-d polynomial in F[x1, . . . , xn] that is computed by
a ΣΠΣ(k) circuit C = G × (T1 + · · · + Tk) with gcd(T1, . . . , Tk) = 1 such that it has a µ-cluster
representation C = G× (C1 + · · ·+ Cs) as defined in Lemma 5.7.

We say a circuit has the SCS(r)-Property if r is the smallest positive integer less than s such
that for some j ∈ [s], there exists two totally independent spaces3 Wa, Wb such that

3dim(span(Wa, Wb)) = dim(Wa) + dim(Wb)

26

1. Wa, Wb ∈ C≤r−2,tr for tr := 22k2RF(k, d)(k4 log d)r−3

2. There exists space W1, W2 ∈ C≤r−2,ck
such that Wa ⊆W1, Wb ⊆W2.

3. Wa, Wb do not non-trivially intersect Wr−1

4. C mod ⟨Wa⟩ = Cj mod ⟨Wa⟩ and C mod ⟨Wb⟩ = Cj mod ⟨Wb⟩.

In cases where the SCS(r)-Property is satisfied, we give up on computing S∗
r and Sr, but

instead directly compute linear forms in the gcd of a cluster using Lemma 6.19.
Else, for any r such that the circuit doesn’t have this property, we will show that given Wr−1,

S∗
1 , . . . ,S∗

r−1,S1, . . . ,Sr−1, we can learn Wr, S∗
r , Sr. This will be the main goal of this section.

The goal of Section 7 will then be to use these Wr, S∗
r , Sr (for all r ≤ s) to compute enough linear

forms from one of the gates.

Theorem 6.2. Let t = 22k2RF(k, d)(k4 log d)k−3. Let f be a n-variate, degree-d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(k) circuit C = G×(T1 + · · ·+Tk) with gcd(T1, . . . , Tk) = 1
such that it has a 2t log d+3k-cluster representation C = G×(C1+· · ·+Cs) as defined in Lemma 5.7.
Let r be in [s] and tr := 22k2RF(k, d)(k4 log d)r−3. Then, given access to any LDICR space Wr−1 of
parameter r − 1 and the corresponding sets KS∗

1 , . . . ,KS∗
r−1,KS1, . . . ,KSr−1, and given black-box

access to f either

1. SCS(r)-Property is not satisfied. In this case, we show that there are efficient randomized
algorithms for the following tasks.

A There is an algorithm that runs in time (nd)poly(log d) and outputs a dpoly(log d)-sized list
of spaces such that at least one of the spaces Wr that is output is an LDICR space with
parameter r as defined in Definition 14. (proved in Lemma 6.6)

B GivenWr, there is an algorithm that runs in randomized time (nd)poly(log d) and computes
S∗

r (f) with 1− o(1) probability. (proved in Lemma 6.12)
C Given Wr and S∗

r , there is an algorithm that runs in randomized time (nd)poly(log d) and
computes Sr with 1− o(1) probability. (proved in Lemma 6.14)

2. SCS(r)-Property is satisfied. Let λ = mini∈[k](dim(span(Lin(Ti)))). Then there exists an
algorithm that computes in poly(n, d) time, a set of linear forms Lcand such that |Lcand| =
dO(1) and ∃j ∈ [k] such that dim(span(Lin(Tj)∩Lcand)) ≥ λ−2k·(2tr log d+2k). (Lemma 6.19)

6.1 Computing Wr

In this section we will show how to compute an LDICR space of paramater r,Wr, given access to any
LDICR spaceWr−1 of parameter r−1 and the corresponding sets KS∗

1 , . . . ,KS∗
r−1,KS1, . . . ,KSr−1.

We will also assume that the SCS(r) property is not satisfied. We will first prove some preliminary
lemmas which don’t assume anything about the SCS(r) property. This property will only be used
in Lemma 6.6. Lemma 6.3 and Lemma 6.5 will also eventually be useful to prove Lemma 6.19 when
the SCS(r) property is satisfied.

Lemma 6.3. Let f ∈ F[x1, . . . , xn] be a degree-d polynomial computed by a ΣΠΣ(k) circuit C
such that rank(sim(C)) ≥ ck + dimWr+1 + 2r. Let 1 ≤ r ≤ k − 2, and t′ := ck + dim(Wr+1) +
2k2RF(k, d) log d+6k. There is an algorithm that takes as inputWr+1,KS∗

1 , . . . ,KS∗
r+1,KS1, . . . ,KSr+1,

runs in time dOk(1), and outputs a set Pr with the following properties:

27

(i) The number of subspaces in Pr is |Pr| = dOk(1), and

(ii) for every W ∈ C≤r,ck
(C) with W ∩Wr+1 = {0}, there is a subspace W ⊆W such that W ∈ Pr

and W ∈ C≤r,t′(C).

Proof. Let us fix some notation first. Define Kr = KS∗
1 ∪ · · · ∪ KS∗

r+1 ∪ KS1 ∪ · · · ∪ KSr+1. Given
a crashing space W ∈ C≤r,ck

(C) with W ∩Wr+1 = {0}, define

L(W) = {l : l is a linear factor of gcd(C mod W)}
L(W) = {l ∈ L(W) : span(W, l) ∩Wr+1 = {0}}.

Since W is crashing, m = rank(L(W)) ≥ rank(sim(C))− ck − dimWr+1 ≥ 2r. We say a subspace
W ⊆ W saturates a linear form l ∈ L(W) if any space V ∈ Kr with V ⊆ span(W, l) satisfies
V ∩W ⊆W . We say W is saturating if rank{l ∈ L(W) : W does not saturate l} ≤ 2r. We will first
construct a set Pr such that for any space W ∈ C≤r,ck

with W ∩Wr+1 = {0}, there is a saturating
subspace W ⊆ W such that W ∈ Pr. Then we will show that this saturating subspace W is also
in C≤r,t′ for t′ = ck + dim(Wr+1) + 2k2RF(k, d) log d + 6k, as in the statement of the lemma.

We will construct Pr iteratively. First, define

P(1)
r = {span(V1, . . . , Vr) ∩ span(Vr+1, . . . , V2r) : V1, . . . , V2r ∈ Kr} ,

P(i)
r = P(i−1)

r + P(1)
r .

Set Pr = ∪r
i=1P

(i)
r . Fix W ∈ C≤r,ck

with W ∩Wr+1 = {0}, and define P(i)
r (W) = {V ∈ P(i)

r : V ⊆
W}, and Pr(W) = ∪r

i=1P
(i)
r (W) analogously. We will show by induction on i that any maximum-

dimensional subspace in P(i)
r (W) is either saturating or has dimension at least i. Then, since W

itself is an r-dimensional saturating subspace of itself, this shows that there must be a saturating
space W ∈ Pr(W).

For the base case, we only need to show that P(1)
r (W) contains a nonzero subspace. For each

linear form l ∈ L(W), the space span(W, l) is a vanishing kernel for the circuit C. Choose a
subspace Vl ∈ Kr with Vl ⊆ span{W, l}, and define W̃ = span(Vl : l ∈ L(W)) ∩ W . Since
dim W̃ ≤ r, we can choose r linear forms l1, . . . , lr ∈ L(W) such that W̃ = span(Vl1 , . . . , Vlr) ∩W .
Since rankL(W) ≥ 2r, we can choose linear forms lr+1, . . . , l2r ∈ L(W) that are independent
from {l1, . . . , lr} and define W ′ = span(lr+1, . . . , l2r) ∩ W . By construction, the spaces Vlr+1

mod W, . . . , Vl2r mod W are all independent from {Vl1 mod W, . . . , Vlr mod W}, so the inter-
section span(Vl1 , . . . , Vlr) ∩ span(Vlr+1 , . . . , Vl2r) must in fact be contained in W . In particular,
span(Vl1 , . . . , Vlr)∩span(Vlr+1 , . . . , Vl2r) = W ′∩W̃ . Note that by our choice of l1, . . . , lr, we actually
have W ′ ⊆ W̃ , so W ′∩W̃ = W ′. Finally, recall that for each l ∈ L(W), span(W, l)∩Wr+1 = {0}, so
span(W, l) does not contain any linear factors of C. This implies that each of the spaces Vl1 , . . . , Vl2r

is at least 2-dimensional and thus has nonzero intersection with W , so the space W ′ is a nonzero
space in P(1)

r (W).
For the inductive step, suppose we know that any maximum-dimensional subspace in P(i−1)

r (W)
is either saturating or has dimension ≥ i − 1. Let V ∈ P(i−1)

r (W) be a maximum-dimensional
subspace. We will show that if V is not saturating, then we can find a space in P(i)

r (W) that strictly
contains V . For each unsaturated linear form l ∈ L(W), choose a space Vl ∈ Kr with Vl ⊆ span(W, l)
such that Vl ∩W ̸⊆ V . As in the base case, define W̃ = span(Vl : l is not saturated by V) ∩W .
Once again, since dim W̃ ≤ r, we can find linear forms l1, . . . , lr that are unsaturated by V such
that W̃ = span(Vl1 , . . . , Vlr) ∩W . Since V is not saturating, we can also find unsaturated linear
forms lr+1, . . . , l2r independent from {l1, . . . , lr}, and set W ′ = span(Vlr+1 , . . . , Vl2r) ∩W . Then,

28

following the same reasoning as the base case, W ′ ⊆ W̃ by definition, W ′ ̸⊆ V since V is not
saturating, and span(Vlr+1 , . . . , Vl2r) ∩ span(Vl1 , . . . , Vlr) = W ′ since the linear forms lr+1, . . . , l2r

are independent from {l1, . . . , lr}. The fact that W ′ ̸⊆ V and the expression span(Vlr+1 , . . . , Vl2r)∩
span(Vl1 , . . . , Vlr) = W ′ tell us that W ′ is a nonzero subspace in P(1)

r (W). This shows that V +
W ′ ∈ P(i)

r (W) is a strictly larger space than V , so the maximum-dimensional subspace of P(i)
r has

dimension at least i.

Claim 6.4. Let W ∈ Cr,ck
be a rank-reducing space such that dim(W ∩Wr+1) = 0. Let W ⊂ W

be a subspace of W of dimension r′ such that W is a saturating space.
Let t = ck + dim(Wr+1) + 2k2RF(k, d) log d + 6k. Then W ∈ Cr′,t.

Proof. As W ∈ Cr,ck
, we know rank(sim(C mod W)) ≤ ck. Our goal is to show that rank(sim(C

mod W)) ≤ ck + dim(Wr+1) + 2k2RF(k, d) log d + 6k. Let C mod W = C ′ := G′× (T ′
1 + · · ·+ T ′

k′).
Therefore, mod W , each gate Ti either vanished or the following holds: some of the linear forms
in Lin(Ti) get mapped to linear forms in T ′

i , and some get mapped to the gcd. Thus, we can
write Lin(Ti) as Ai ∪ Bi where Ai gets mapped to the linear forms in G′ and Bi gets mapped to
the linear forms in T ′

i . Let us assume that k′ of the gates remain nonzero, and WLOG these are
T1, T2, . . . , Tk′ . Thus rank(B1, . . . , Bk′) ≤ ck + r (since W has dimension r). When we go mod W ,
the linear forms in Bi’s continue to be a part of sim(C mod W). The rank they contribute is at
most ck + dim(W)− dim(W) ≤ ck + r.

The major part of the rank drop when we go mod W comes from the linear forms in the Ai’s
as they move into G′. These linear forms can be considered in tuples (l1, . . . , lk′) with a linear form
l such that ∀i ∈ [k′], li mod W = αil for some αi ∈ F. We will show that except for those tuples
whose corresponding l lies in a small-dimensional space, all other tuples will have their linear forms
move into the gcd of C mod W . We will give up on all those l such that span(W, l) intersectsWr+1,
as well as on all those l that are not saturated by W . We also give up on l such that l divides the
sim(C mod W). All such l must lie in a

(
dim(Wr+1) + 2r + 2k2 · RF(k, d) log d + 2k

)
-dimensional

space as W is a saturating space and using Lemma 5.2.
Notice that the space span(W, l) is such that C vanishes modulo it. Also, span(l1, . . . , lk′) ⊆

span(W, l). From the saturation property of Sr+1, described in property 2 of Definition 15, we have
that unless l lies in a k-dimensional space, KSr will have a subspace V of span(W, l) such that l
has same multiplicity in C mod (V ∩W) as in C mod W . Since W is a saturating space, for any
such V , we have V ∩W ⊆W . Therefore, when we go mod W , all the linear forms in the previously
mentioned tuples in Ai’s, except those whose span intersect a k-dimensional space (from property
of Sr spaces), do move into the gcd, just as they did mod W .

Therefore, every l ∈ gcd(C mod W) has the same multiplicity in gcd(C mod W) as in gcd(C
mod W) unless it lies in a

(
dim(Wr+1) + 2k2RF(k, d) log d + 3k + 2r

)
-dimensional space. As dis-

cussed, the rank increase in linear form from Bi’s as we go mod W compared to going mod W is
at most ck + r. Thus, rank(sim(C mod W) ≤ ck + 3r + dim(Wr+1) + 2k2RF(k, d) log d + 3k.

Definition 17 (Totally Independent Rank-Reducing Sets). We define a subset Ur of C≤r,t(C) to
be a Totally independent rank-reducing set if

dim(span({W ∈ Ur})) =
∑

W ∈Ur

dim(W)

i.e. the spaces in Ur are totally independent.

29

Similar to Lemma 5.4 for spaces in Sreg
r , we will prove a similar structural result for rank-

reducing spaces.

Lemma 6.5. Let f be an n-variate, degree-d polynomial in F[x1, . . . , xn] that is computed by a
ΣΠΣ(k) circuit C = G × (T1 + · · · + Tk) with gcd(T1, . . . , Tk) = 1 such that it has a 2t log d + 2k-
cluster representation C = G× (C1 + · · ·+ Cs) as defined in Lemma 5.7. Let r be any integer such
that 1 ≤ r ≤ s − 2, and let Ur ⊆ C≤r,t be a totally independent rank-reducing set for f . Then one
of the following two scenarios must hold.

1. There is a positive integer j ≤ s, and at least two totally independent spaces4 Wa, Wb ∈
C≤r,t(C) such that C mod ⟨Wa⟩ = Cj mod ⟨Wa⟩ and C mod ⟨Wb⟩ = Cj mod ⟨Wb⟩.

2. |Ur| ≤ r · (k2t log d + 2k · t)

Proof. We will show the lemma for totally independent sets of Cr,t(C) and the results for C≤r,t(C)
follows with a factor of r. The proof will follow the same outline as Lemma 5.4. We will prove this
using induction over r. Consider any space W ∈ Cr,t(C).

For the base case of r = 1, we need to bound the number of independent linear forms modulo
which the rank crashes. In case there are two independent linear forms, such that mod them, a
single cluster survives, we are done. Therefore, there are at most s independent linear forms for
which only one cluster survives, and the rest of all linear forms in C1(t) are such that at least two
clusters survive mod them. Since, we have at least 2 cluster that survive, which means that the
rank of the simple part of the surviving clusters (∆(Ci, Cj)) drops from 2t log d + 2k (because of
distance condition from clustering) to below t. From Lemma 5.1, we know that the number of such
independent linear forms is at most t log d. Since, there is are k2 choices for which clusters survive,
we have |W1| ≤ k2t log d + 2s · t.

Now for the induction hypothesis, assume the size bound to be true for all W1, . . . , Wr−1. Let
a = |Wr|. Let Wr = {V1, V2, . . . , Va}.

For each i, let li be the linear form corresponding to a uniformly random vector sampled from
Vi. Let V ′

i be a space of dimension r − 1 such that span{li, V ′
i } = Vi.

Let A = {li : i ∈ [t]}.
Now, we consider the circuit C ′ = C mod ⟨A⟩. Let f ′ = f mod ⟨A⟩.
Let C ′ be of the form C ′ = G′×(C ′

1+· · ·+C ′
s), where C ′

1, . . . , C ′
s are all projections of C1, . . . , Cs

modulo ⟨A⟩. Observe that by the definition of rank-reducing spaces, C ′ ̸= 0. Moreover each of
G′, C ′

1, . . . , C ′
s compute nonzero polynomials because of Claim 5.5. We will show that V ′

1 , V ′
2 , . . . , V ′

a

are all in Cr−1,t(C ′) i.e. are rank-reducing of codimension r − 1 for C ′. Then, by the induction
hypothesis, the bound on a follows.

From Claim 5.5, we see that no two distinct linear forms in the circuit C become the same, and
hence there is no new gcd. Consider two clusters C1, C2 that survive when we go mod Vi. We know
∆(C1, C2) ≥ 2t log d + 2k and ∆(C1 mod Vi, C2 mod Vi) < t. As there is no new gcd mod ⟨A⟩,
we have ∆(C1 mod ⟨A⟩ , C2 mod ⟨A⟩) ≥ 2t log d + 2k − a. Let the drop in ∆(C1, C2) when we
go mod ⟨A⟩ be δ, which we know is at most a. The independence of spaces V1, . . . , Va means that
∆(C1 mod ⟨A, V ′

i ⟩ , C2 mod ⟨A, V ′
i ⟩) < t−δ+1. Therefore, the rank crashes from 2t log d+2k−δ

to at most t− δ, and therefore V ′
i is in Cr−1,t(C ′).

We now show how to learn Wr using access to Wr−1,S∗
≤r−1,S≤r−1.

Lemma 6.6. Let t = 22k2RF(k, d)(k4 log d)k−3. Let f be an n-variate, degree-d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(k) circuit C = G×(T1 + · · ·+Tk) with gcd(T1, . . . , Tk) = 1

4dim(Wa + Wb) = dim Wa + dim Wb

30

such that it has a 2t log d + 2k-cluster representation C = G × (C1 + · · · + Cs) as defined in
Lemma 5.7 with s ≥ 3. Let r be in [3, s] and tr := 22k2RF(k, d)(k4 log d)r−3. Assume that the
circuit C doesn’t satisfy the SCS(r)-property as defined in Definition 16. Given access to Wr−1
and the sets KS∗

1 , . . . ,KS∗
r−1,KS1, . . . ,KSr−1, there exists an algorithm that outputs a list of size

dpoly(log d) in time (nd)poly(log d) which contains spaces of dimension 22k2RF(k, d)(k4 log d)r−2 = tr+1
and at least one space satisfies the properties of LDICR spaces as defined in Definition 14.

Proof. We initializeWr :=Wr−1. We then consider all the spaces in KS∗
r−1, and find all completely

set of independent spaces that span a space of dimension at most r · 2k2RF(k, d) log d, and append
them to Wr. From Lemma 5.4, we know that the maximal set of independent regular spaces of
dimension r has size at most 2k2RF(k, d) log d. Therefore, for the right guess of spaces, every regular
space of dimension r must from intersect the space spanned by these independent spaces. Note
that any regular space of dimension r, not in S∗

r must intersect Wr−1. The number of such guesses
is at most dO(log d), and we can find them in time dO(log d) as well.

We then use Lemma 6.3 to obtain the set Pr−2 such that for every space V ∈ C≤r−2,ck
, there is a

subspace W of it in Pr−2 such that W ∈ C≤r−2,t′ where t′ = t+dim(Wr+1)+2k2RF(k, d) log d+6k ≤
tr. Note the existence of at least two clusters having a large distance is enough to meet the rank
requirements of Lemma 6.3. Therefore, there exists a subset of Pr−2 ∩ C≤r−2,tr which contains a
subspace of every space in C≤r−2,ck

. From Lemma 6.5, we know that this subset will have a maximal
independent rank-reducing set of size at most r · (k2tr log d + 2k · tr) < 22k2RF(k, d)(k4 log d)r−2.
Therefore, an LDICR space as defined in Definition 14 exists and is the span of all the spaces in the
maximal independent rank-reducing set described above, union with the independent set of Sreg

r

and Wr−1.
To find such a Wr, we construct completely independent sets of size 22k2RF(k, d)(k4 log d)r−2

from Pr−2. The number of such sets is dr·(k2tr log d+2k·tr) = dpoly(log d), the span of the spaces in
these sets forms the list of spaces we required.

6.2 Computing S∗
r

In this section we will show how to compute S∗
r (f) given that we have computed S∗

≤r−1(f) andWr.
We will first show how to obtain a quasipolynomial time algorithm to compute S∗

r (f) when the
number of variables in the circuit is about poly(log d). This algorithm will crucially use algorithms
for solving systems of polynomial equations in few variables, which can be efficiently done over R,C
and finite fields, see Theorem 3.10.

6.2.1 Small variate case

Lemma 6.7. Let t = 22k2RF(k, d)(k4 log d)k−3. Let f be a m-variate, degree-d polynomial in
F[x1, . . . , xm] that is computed by a ΣΠΣ(k) circuit C = G×(T1 + · · ·+Tk) with gcd(T1, . . . , Tk) = 1
such that it has a 2t log d + 2k-cluster representation C = G× (C1 + · · ·+ Cs) with s ≥ 2 as defined
in Lemma 5.7. Let r be in [s]. Then, given access to Wr and the sets KS∗

1 , . . . ,KS∗
r−1, there exists

a randomized algorithm (Algorithm 1) that computes S∗
r (f) in time poly(dpoly(m)).

Proof. Let Φ be a random linear isomorphism on F[x1, . . . , xm] such that ∀i ∈ [m], Φ(xi) =∑m
j=1 αijxj where αij are sampled randomly from [dm]. We first observe that if f vanishes over

a codimension r space V(l1, . . . , lr), then after a random linear isomorphism Φ on the variables,
g = Φ(f) = f(Φ(x)) will vanish over a space V(Φ(l1), . . . , Φ(lr)) and moreover this space can be rep-
resented in the form V(x1− la1, x2− la2, . . . , xr− lar) for linear forms ∀j ∈ [r], laj ∈ F[xr+1, . . . , xn].
Using Lemma 3.8, we can get monomial access to g in time poly(dm).

31

Let lai = ∑m
j=r+1 aijxj for variables aij , i ∈ [r], j ∈ [r+1, m]. We will substitute xi = lai into the

monomial representation of the polynomial, and obtain the polynomial g mod ⟨x1 − la1, . . . , xr − lar⟩.
We equate the coefficients in xr+1, . . . , xm to 0 to obtain a system of polynomial equations in r(m−r)
variables of degree d and at most dm equations. This system of polynomial equations might have
infinitely many solutions unless we discard all those codimension r spaces that are contained in
S∗

<r spaces and those which intersect Wr. We also know from Theorem 4.1 and the fact that
Wr is an LDICR space (Definition 14) that this suffices as m ≥ cr. The challenge remains to
remove these spaces. To discard all those codimension r spaces that are contained in S∗

<r spaces,
we add additional polynomial equations to the system of polynomial equations, that ensure for
any r′ < r and V(l′1, . . . , l′r′) ∈ S∗

r′(g), dim(span(l′1, . . . , l′r′ , x1 − la1, . . . , xr − lar)) ≥ r + 1. We
assume we are given a basis of Wr, computed in Lemma 6.6. Then, we add another equation to
ensure that span(x1− la1, . . . , xr− lar) doesn’t intersectWr, which ensures the spaces computed do
not contain any crashing spaces of dimension at most r − 2. Finally, having computed the spaces
V(x1 − la1, . . . , xr − lar) on which g vanishes by solving the system of equations, we simply apply
Φ−1 to get V(l1, . . . , lr).

We now give a more detailed analysis.
We first observe that in Step 1 of Algorithm 1, the random linear forms l̃1, . . . , l̃m will be inde-

pendent with high probability (as otherwise it will correspond to a certain determinant evaluating
to 0, which happens with probability at most d−(m−1) due to Lemma 3.3).

Thus, with high probability Φ is a random isomorphism, and we obtain the polynomial g = Φ(f)
which is also computable by a ΣΠΣ(k) circuit over m variables, and the simple part of the circuit
has rank m. From now onwards, let us assume that Φ is an isomorphism.

g vanishes on spaces of the form V(x1 − la1, . . . , xr − lar) As Φ is an isomorphism, f
vanishes on V(l1, . . . , lr) if and only if g vanishes on V(Φ(l1), . . . , Φ(lr)). We will first observe
that with high probability, for any space V(Φ(l1), . . . , Φ(lr)) ∈ Sr(g), there are linear forms
la1, . . . , lar ∈ F[xr+1, . . . , xm] such that V(x1 − la1, . . . , xr − lar) = V(Φ(l1), . . . , Φ(lr)). The reason
is the following: For i ∈ [r], let li = ∑

j∈[m] uijxj . As V(l1, . . . , lr) is a codimension r space, hence
dim(span(l1, . . . , lr)) = r. After applying the isomorphism Φ, they remain independent with high
probability and coefficients of xa in Φ(li) as ∑n

j=1 αa,juijxj . As they were independent, the deter-
minant of the r × r matrix formed by the coefficients of x1, . . . , xr from Φ(l1), . . . , Φ(lr) will be a
non-zero polynomial in α1,1, . . . , αr,m and will vanish with low probability due to Lemma 3.3. This
means that for space V(l1, . . . , lr) ∈ Sr(g) there is a space V(x1 − la1, . . . , xr − lar) ∈ Sr(g) where
la1, . . . , lar ∈ F[xr+1, . . . , xm].

Setting up a system of equations Observe that we can use interpolation to get monomial
access to g in time poly(dm) using Lemma 3.8.

For all i ∈ [r], we set lai = ∑m
j=r+1 aijxj for variables {aij : i ∈ [r], j ∈ ([m] \ [r])}. Substituting

xi = lai into the monomial form, we obtain a system of dO(m) equations of degree at most d in
r(m − r) variables by equating the coefficients of monomials in the variables xr+1, . . . , xm to 0.
Solutions to this would correspond to codimension r spaces that g vanishes on.

To remove the codimension r spaces that are contained in S∗
r′(f) for r′ < r, we apply Φ on the

linear forms that are the basis of the spaces in S∗
1 (f), . . . ,S∗

r−1(f), to compute S∗
1 (f), . . . ,S∗

r−1(f).
Then, we need to ensure that the solution to our system of equations x1 − la1, . . . , xr − lar is

such that ∀(l′1, . . . , l′r′) such that V(l′1, . . . , l′r′) ∈ S∗
r′(g), we have that dim(span(x1 − la1, . . . , xr −

lar, l′1, . . . , l′r′)) = r + 1. This is the same as saying that the m × (r′ + r) matrix A(l′1,...,l′
r′) with

x1 − la1, . . . , xr − lar, l′1, . . . , l′r′ as rows have rank at least r + 1. This means at least one of the

32

(r + 1)× (r + 1) minors of A(l′1,...,l′
r′) is full rank, with a non-zero determinant. Let the number of

such minors be kr′ :=
(m

r+1
)
·

(r+r′

r+1
)
. To handle these, we introduce new variables yr′1, . . . , yr′kr′ ,

and for each relevant (l′1, . . . , l′r′) we consider the inequalities sum(l′1,...,l′
r′) = ∑kr′

j=1 yjMj ̸= 0, where
Mj are the determinants of the (r + 1)× (r + 1) minors of A(l′1,...,l′

r′). The inequality has solutions
if and only if there exists a solution for which at least one of the Mj is non-zero. We note that
we can use the same new variables yr′1, . . . , yr′kr′ in all of the inequalities. Observe that the set
of inequalities ∀ V(l′1, . . . , l′r′) ∈ Sr′(g), sum(l′1,...,l′

r′) ̸= 0 is the same as having a single inequality
Prodr′ = (∏V(l′1,...,l′

r′)∈Sr′ (g) sum(l′1,...,l′
r′)) ̸= 0. We can further combine these inequalities further

for all r′ ∈ [r − 1], by using the inequality ∏
i∈[r−1] Prodi ̸= 0, which is same as requiring that∏

i∈[r−1] Prodi · z = 1 has a solution for a new variable z.
Thus, we can handle the condition of the solution not lying in any S∗

r′(g) space for r′ < r, by
simply adding one extra equation of degree ∑r−1

i=1 (r+2)·|Sr′(g)| = dO(1) and (∑r−1
i=1 ki)+1 = poly(m)

variables to the system of equations we had earlier.

Removing Spaces intersecting Wr In this algorithm, we assume we have already computed
the LDICR space Wr we are going to avoid. Let Wr = span(l′1, . . . , l′dim(Wr)) where l′1, . . . , l′dim(Wr)
format basis ofWr which we are given. We first computeWr for g by applying Φ to l′1, . . . , l′dim(Wr).
To ensure that the new spaces we find don’t intersect Wr, we will ensure that dim(span(Wr, x1 −
la1, . . . , xr − lar)) = dim(Wr) + r. We do this by ensuring the matrix(M) with the basis of Wr

and x1 − la1, . . . , xr − lar as rows is of full rank, i.e., it has a non-zero determinant. This can be
ensured by introducing a new variable z′ and adding the equation z′ · det(M) = 1 to our system of
equations. The equation adds one extra variable and has degree dim(Wr) + r ≤ t + r ≤ m.

Running Time Analysis The sampling of the random αi,j can be done in randomized poly(m, log d)
time. From Lemma 3.9, we can get black-box access to the factors in time randomized poly(m, d).
We can do interpolation and get monomial access to g in time dO(m) using Lemma 3.8. As
|S ′

r′(g)| ≤ dO(1) from Theorem 4.1, combined with the loop on line 11 runs dO(1) times, doing
poly(m) computation. Finally, the system of equations has dO(m) equations with degree (md)O(1)

in poly(m) variables. The system has dO(1) solution by combining Theorem 4.1 and Claim 6.1.
Therefore, we can find la1, . . . , lar by solving the system of equations in time poly(dpoly(m)) using
Theorem 3.10. Thus, the entire algorithm works in poly(dpoly(m)) time.

33

Algorithm 1 Computing Vanishing Sr(f) for constant variate polynomials
Input: Black-box access to circuit C of form ΣΠΣ(k) computing polynomial f ∈ F[x1, . . . , xm]
with properties as described in Lemma 6.7, Wr, S∗

1 , . . .S∗
r−1

1: function S∗
r (f)

2: Sample m2 random values αij ; i, j ∈ [m] uniformly from {1, . . . , dm}, and use them to define
m linear forms l̃i = ∑m

j=1 αijxj . Check if they are independent, otherwise repeat. Define
isomorphism Φ such that for all i ∈ [m], Φ(xi) := l̃′i. Let g = Φ(f) = f(Φ(x)).

3: Using randomized black-box factoring from Lemma 3.9 and get access to the linear factors
of g

4: Interpolate g to get monomial access to it
5: for i ∈ [r] do
6: Substitute xi = ∑m

j=r+1 aijxj for linear form xi − lai in g.
7: Obtain equations in {aij : i ∈ [r], j ∈ ([m] \ [r])} by equating the coefficients of monomials

in the variables xr+1, . . . , xm−1, xm to 0.
8: for i ∈ [r − 1] do
9: Let ki =

(m
r+1

)
·
(i+r

r+1
)
. Introduce new variables yi,1, . . . , yi,ki

. Set Prodi := 1.
10: for V(l′1, . . . , l′i)← S∗

i (g) do
11: Consider the (i+r)×m matrix A(l′1,...,l′i) formed by l′1, . . . , l′i and x1− la1, . . . , xr− lar.
12: Compute the determinant of each (r + 1)× (r + 1) minor Mj of A(l′1,...,l′i). Compute

sum(l′1,...,l′i) := ∑k1
j=1 yjMj .

13: Prodi := Prodi × sum(l′1,...,l′i)

14: Introduce a new variable z. Add Equation ∏
i∈[r−1] Prodi · z = 1 to the system of equations

in Step 7.
15: Construct M with basis of Φ(Wr) and x1 − la1, . . . , xr − lar. Introduce a new variable z′.

Add equation z′ · det(M) = 1 to the system of equations.
16: Solve the system of equations in {aij : i ∈ [r], j ∈ [m]\[r]} and {yi,j : i ∈ [r−1], j ∈ [ki]}, z, z′

using Theorem 3.10 to obtain a set of (x1 − la1, . . . , xr − lar).
17: Verify for each (x1− la1, . . . , xr− lar) if f vanishes on V(Φ−1(x1− la1), . . . , Φ−1(xr− lar)) =

V(l1, . . . , lr) using Lemma 3.3, then add V(l1, . . . , lr) to S∗
r (f)

18: Output S∗
r (f).

6.2.2 General case

We will now discuss how we can use the solution for the low-variate case to compute S∗
r (f) in the

general case.
Let t = 22k2RF(k, d)(k4 log d)k−3. We will start by using a random linear isomorphism Φ on f

such that Φ(xi) = ∑n
j=1 αijxj , where αij are chosen randomly from [dn], and define g = Φ(f) =

f(Φ(x)). Let m = 2t log d + 2k + 2. We will then consider the m variate polynomials gi (for i ≥ m)
which are obtained from g by setting all variables xj for j > m− 1 to zero, except xi.

Thus
gi = g|xm=···=xi−1=xi+1=···=xn=0

We will then find S∗
r (gi) spaces using the low-variate algorithm and then show how to glue the

learned spaces to get S∗
r (g) and then S∗

r (f). The Wr we use for computation of gi, will be the Wr

we obtain from Lemma 6.6, with Φ and projected down same as gi.
We will need the following collection of simpler properties about gi’s summed up in the following

lemmas to prove the correctness of the algorithm computing S∗
r (f).

34

Lemma 6.8. Let t = 22k2RF(k, d)(k4 log d)k−3. Let f be a n-variate, degree-d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(k) circuit C = G×(T1 + · · ·+Tk) with gcd(T1, . . . , Tk) = 1
such that it has a 2t log d+2k-cluster representation C = G×(C1+· · ·+Cs) as defined in Lemma 5.7.

With probability 1 − o(1), For each i ∈ {m, . . . , n}, the polynomials gi can be computed by
ΣΠΣ(k) circuits Ci such that they have 2t log d+2k-cluster presentation Ci = Gi× (C1i + · · ·+Csi)
as defined in Lemma 5.7.

Proof. The circuit C after applying the isomorphism Φ will be of the form

Φ(C) = Φ(G)× (Φ(C1) + · · ·+ Φ(Cs)),

We denote Γi as the homomorphism from F[x1 . . . , xn] to F[x1, . . . , xm−1, xi] mapping xj −→ 0 for
j ∈ {m, . . . , i− 1} ∪ {i + 1, . . . , n}. Then for each i, gi is computable by the following circuit

gi = Γi(g) = Γi(Φ(G))× (Γi(Φ(C1)) + · · ·+ Γi(Φ(Cs)))

We will first argue that with high probability ∆(Γi(Φ(Ca)), Γi(Φ(Cb))) ≥ 2t log d + 2k for any
a ̸= b ∈ [s]. Consider any two linear forms l = ∑n

i=1 cixi and l′ = ∑n
i=1 c′

ixi such that span(l) ̸=
span(l′) and l ∈ gcd(Ca), l′ ∈ gcd(Cb) respectively. After applying Φ, the coefficients of x1, x2 in
Φ(l), Φ(l′) will be ∑n

i=1 α1,icixi and ∑n
i=1 α2,icixi for Φ(l) and ∑n

i=1 α1,ic
′
ixi and ∑n

i=1 α2,ic
′
ixi for

Φ(l′). As span(l) ̸= span(l′), if these two linear forms were distinct, they would become equal and
move to the gcd of Ca + Cb only if the determinant of the 2 × 2 matrix with these coefficients as
entries becomes identically 0. This happens with vanishingly small probability (by Lemma 3.3) as
the determinant is a non-zero polynomial in α1,1, . . . , α2,n and we choose αi,j from a large set of
size dn.

Also, as ∆(Ca, Cb) ≥ 2t log d + 2k, we have rank(sim(Ci + Cj)) ≥ 2t log d + 2k. From above
we have that the linear forms that were in sim(Ci + Cj), stay in sim(Γi(Φ(CA)) + Γi(Φ(CB))).
These linear forms spanned a space with dimension at least 2t log d + 2k, and after the random
projection with high probability still span a space of dimension 2t log d + 2k. Therefore, for each i,
and a, b ∈ [s] we conclude that rank(sim(Ca + Cb)) ≥ 2t log d + 2k. Thus, all gi have 2t log d + 2k
cluster representation with the same top fan-in as C with 1− o(1) probability.

We show that after the random projection, crashing spaces of gi continue to intersect Wr that
was computed for f .

Lemma 6.9. Let t = 22k2RF(k, d)(k4 log d)k−3. Let f be a n-variate, degree-d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(k) circuit C = G×(T1 + · · ·+Tk) with gcd(T1, . . . , Tk) = 1
such that it has a 2t log d+2k-cluster representation C = G×(C1+· · ·+Cs) as defined in Lemma 5.7.
Let m = 2t log d + 2k + 2.

Then with probability 1− o(1), for all r ∈ [k] and every V ∈ C≤r−2,ck
(gi)

dim(V ∩ Φ(Wr)|xm=···=xi−1=xi+1=···=xn=0) ≥ 1

Proof. Note that gi is obtained by first applying a random linear isomorphism and then setting
several variables to zero. To prove the lemma, it is enough to handle the simpler case where we
apply a random linear isomorphism and then set just one variable to zero. If we can show that, with
very high probability, the resulting circuit still retains the desired property in this case, then we
can iterate the process: alternately applying random linear isomorphisms and setting one variable
to zero at a time. This allows us to reduce the circuit to m variables while maintaining, with high

35

probability, any crashing space which r − 2 dimensional continues to intersect Wr projected to
the m variables. Note that by Lemma 6.8, the intermediate polynomials till gi continue to have a
2t log d + 2k-cluster representation.

Note that, repeatedly applying random isomorphisms and zeroing variables one by one is equiv-
alent to applying a single random isomorphism and then zeroing several variables simultaneously.
We will thus work with the iterated process. Adapting the argument to the original distribution
(or redefining gi to be drawn from the recursive distribution) is straightforward.

Therefore, what we need to show is that for a random linear form l (coefficients are chosen
randomly from [dn]), all (r − 2)-dimensional crashing spaces of C mod l intersect Wr. To show
this, we will first show the following claim:

Claim 6.10. For C = G × (T1 + · · · + Tk) with gcd(T1, . . . , Tk) = 1 and rank(sim(C)) > t,
any minimal rank-reducing space V ∈ Cr,t of C is in the span of t + r · (k + 1) linear forms in
Lin(T1), . . . , Lin(Tk).

Proof. For the purpose of this proof, note that we can without loss of generality assume that
gcd(C) = 1, so that C = sim(C) = T1 + · · · + Tk. Let the circuit C mod V be of the form C
mod V = G′× (T ′

1 + · · ·+T ′
k), where G′ = gcd(C mod V) and T ′

1 + · · ·+T ′
k = sim(C mod V). For

each i = 1, . . . , k, we can write each Ti as Ti = AiBi, where Ai mod V = G′ and Bi mod V = T ′
i .

First, for each linear factor l of G′ (with multiplicity), we can find linear forms l1 dividing
A1,. . . , lk dividing Ak such that l1 mod V = · · · = lk mod V = l. Define Vl = span(l1, . . . , lk),
and let WA = span

(⋃
l|G′ Vl

)
∩ V . By construction, gcd(C mod WA) = gcd(C mod V). Since

dim WA ≤ r, WA is contained in the span of at most r of the spaces Vl, where l divides G′, so it is
contained in the span of at most rk linear forms in T1, . . . , Tk.

Next, we turn our attention to sim(C mod V). We know that t ≥ rank(sim(C mod V)) =
rank

(∑k
i=1 Bi mod V

)
≥ rank

(∑k
i=1 Bi

)
−r. So, we can choose t+r linear forms l1, . . . , lt+r from

Lin(B1), . . . , Lin(Bk) that span span(Lin(B1)∪ · · · ∪Lin(Bk)). Define WB = span(l1, . . . , lt+r)∩V .
Then, rank

(∑k
i=1 Bi mod W

)
= rank

(∑k
i=1 Bi mod V

)
by construction.

Finally, set W = WA + WB. The space W is contained in the span of t + r(k + 1) linear forms
in T1, . . . , Tk. We know that gcd(C mod W) = gcd(C mod V) by construction of WA. And by
the construction of WB, this implies that rank(sim(C mod W)) = rank(sim(C mod V)) ≤ t, so
W is a crashing space. By the minimality of V , W must be equal to V which concludes our proof.

For the sake of contradiction, let l be a random linear form and let V ∈ C≤r−2,ck
(C mod l) be a

crashing space that doesn’t intersect Wr mod l. First observe, with 1− o(1) probability, l doesn’t
lie in Wr. This follows from the fact that if l lied in Wr, the matrix formed by linear forms in
basis ofWr and l will have rank dim(Wr), which means the determinant of the sub-matrices of size
(dim(Wr)+1)×(dim(Wr)+1) is zero, which happens with o(1) probability from Lemma 3.3. Then,
we consider the space span(V, l), which is a crashing space of dimension r − 1 for C. We will first
argue that span(V, l) is a minimal crashing space and therefore is in Cr−1,ck

(C). For contradiction,
assume there is a strict subspace V ′ that is the the minimal crashing space in span(V, l), i.e. V ′ ⊂ V
such that rank((C mod V ′)) ≤ ck. As it is a proper subspace, dim(V ′) ≤ r − 2. Therefore, V ′

must intersectWr non-trivially from definition ofWr. But we know V mod l doesn’t intersectWr

mod l, which means span(V, l) doesn’t intersect Wr and therefore V ′ doesn’t intersect Wr which is
a contradiction. Therefore, we have span(V, l) ∈ Cr−1,ck

.
From Claim 6.10, we have that span(V, l) must lie in a space spanned by ck + k(r + 1) linear

forms in sim(C), which means the random linear form l lies in the span of these linear forms.

36

For any fixing of ck + k(r + 1) linear forms, we will show that the probability that l lies in their
span is very small, and then we will take a union bound over all possible choices of ck + k(r + 1)
linear forms in the circuit. Let S be any set of ck + k(r + 1) linear forms in sim(C) and let their
span have dimension a where a ≤ ck + k(r + 1). This means the matrix formed by the vectors
corresponding to the linear forms in S and our random linear form l has rank a and therefore the
sub-matrices of dimensions (a+1)× (a+1) have zero determinant, which happens with probability
a+1
dn ≤ ck+k(r+1)+1

dn by Lemma 3.3. The number of possibilities for the choice of S is (kd)ck+k(r+1).
Taking union bound over all such choices, we get that the probability that l lies in the span of at
most ck + k(r + 1) linear forms in sim(C) is at most (ck+k(r+1)+1)·(kd)ck+k(r+1)

dn = o(1).

We will also need to show that there are no new minimal vanishing spaces of r′ dimensions for
r′ < r that will affect the computation of S∗

r . We don’t show this, but rather show that any such
new space must intersect Wr′+1 (and hence Wr), and therefore still doesn’t affect the computation
of S∗

r .

Lemma 6.11. If f is computed by a ΣΠΣ(k) circuit C as described in Theorem 6.2, then with proba-
bility 1−o(1), for all r ∈ [k−1], any V ∈ S∗

r (gi) such that V ̸∈ {Φ(S∗
r (f))}|xm=···=xi−1=xi+1=···=xn=0,

we have dim(Ker(V) ∩ Φ(Wr+1)|xm=···=xi−1=xi+1=···=xn=0) ≥ 1.

Proof. We already argued in Lemma 6.9, that we can use the same Wr projected down for the
calculations of S∗

r , and therefore only need to argue that there is no new codimension r space over
which gi vanishes, which doesn’t correspond to a space in S∗

r (g) for r < k− 1 or it intersects Wr+1.
Similar to Lemma 6.9, we argue this recursively and therefore only need to show that no new

S∗
r spaces are added when we consider f mod l for a random linear form l.

Consider a new space V(l1, . . . , lr) ∈ S∗
r (f mod l) such that it doesn’t correspond to a space in

S∗
r (f), i.e. V(l1, . . . , lr) ̸∈ {S∗

r (f)}|l=0. This means that the space V(l1, . . . , lr, l) is a codimension
r+1 space on which f vanishes. If span(l1, . . . , lr) intersectsWr+1, we are done. We will now argue
that if span(l1, . . . , lr) doesn’t intersect Wr+1, then span(l1, . . . , lr, l) doesn’t intersect Wr+1 either
with high probability. For that to happen, the matrix with basis of Wr+1 and l1, . . . , lr, l will need
to have rank at most dim(Wr+1) + r, which using Lemma 3.3 happens with o(1) probability.

Therefore, we know now that V = span(l1, . . . , lr, l) doesn’t intersect Wr+1 with high probabil-
ity. Thus, it must have a subspace in KS∗

≤r+1. Let this subspace be V ′. If V ′ doesn’t contain l,
then either V ′ is just span(l1, . . . , lr) or its a subspace of span(l1, . . . , lr) is not minimal and not in
S∗

r . Therefore, V ′ must contain l. Also, V ′ must be in KS∗
r′ for some r′ ≤ r + 1. For a given V ′, the

probability that l lies inside it is equal to probability that the rank of matrix formed by l and basis
of V ′ has rank equal to dimension of V which happens with probability at most r + 1/dn. From
Claim 6.1 and Theorem 4.1, we know the number of V ′ spaces will be at most dO(1), and taking
union bound over it, we see that it happens with probability o(1).

We will now combine the above lemmas and use a gluing procedure to show that we can use
the computation of S∗

r (gi)’s to obtain S∗
r (f).

Lemma 6.12. Let t = 22k2RF(k, d)(k4 log d)k−3. Let f be a n-variate, degree-d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(k) circuit C = G×(T1 + · · ·+Tk) with gcd(T1, . . . , Tk) = 1
such that it has a 2t log d+2k-cluster representation C = G×(C1+· · ·+Cs) as defined in Lemma 5.7.
Let r be in [s]. Then, given access to Wr and the sets KS∗

1 , . . . ,KS∗
r−1, there exists a randomized

algorithm (Algorithm 2) that outputs S∗
r , in poly(n, dpoly(t))-time with probability 1− o(1).

37

Proof. We first apply a random linear isomorphism and obtain g = Φ(f). For m = 2t log d+2k +2,
we obtain n − m polynomials gi ∈ F[x1, . . . , xm−1, xi] by setting all except x1, . . . , xm−1, xi to 0.
Then we solve the low variate cases, using Lemma 6.7 discussed above to recover S∗

r (gi). We will
then recover S∗

r (g) by gluing together spaces from S∗
r (gi) (across different choices of i) when the

spaces are consistent when restricted to x1, . . . , xm−1. Once, we have S∗
r (g), we can immediately

obtain S∗
r (f) by using Φ−1.

By Lemma 6.8, the random invertible linear isomorphism ensures that when we set some
of the variables to 0, that the distance between the clusters remains high (equal to m) with
high probability. Given access to Wr−1,KS∗

1 , . . . ,KS∗
r−1,KS1, . . . ,KSr−1, we can compute Wr

from Lemma 6.6. Also, from Lemma 6.9, we know all crashing spaces of gi must intersect
Φ(Wr)|xm=···=xi−1=xi+1=···=xn=0. Therefore, we use it as Wr in the computation of S∗

r (gi).
As discussed in the proof of Lemma 6.7, we see that for a vanishing codimension r space

V(l1, . . . , lr) of f , there will be a V(x1 − l1a, . . . , xr − lra) vanishing space of codimension r of g,
where ∀j ∈ [r], lja ∈ F[xr+1, . . . , xn]. It is fairly straightforward to see that if g vanishes on V(x1 −
l1, . . . , xr− lr) then gi vanishes on V(x1− l1i, . . . , xr− lri) where lji = lj |xm=0,...,xi−1=0,xi+1=0,...,xn=0.

We will now show that if V(l1, . . . , lr) ∈ S∗
r (f), then we have V(x1 − l1i, . . . , xr − lri) ∈ S∗

r (gi).
As we use the sameWr projected down for calculations of S∗

r (gi), if span(l1, . . . , lr) doesn’t intersect
Wr (as V(l1, . . . , lr) ∈ S∗

r (f)), we have span(x1− l1i, . . . , xr− lri) doesn’t intersect Γi(Φ(Wr)). From
Lemma 6.11, we know any vanishing space of S∗

r′(gi) for r′ ∈ [r−1] that doesn’t correspond to a space
in S∗

r′(f), must intersect Γi(Φ(Wr)). Since, span(x1−l1i, . . . , xr−lri) doesn’t intersect Γi(Φ(Wr)), it
cannot be blocked by a new minimal vanishing space of gi. Hence, we have V(x1− l1i, . . . , xr− lri) ∈
S∗

r (gi). We can find S∗
r (gi) in dpoly(m) time as described in Lemma 6.7.

To obtain S∗
r (g) (wlog of the form V(x1− l1, . . . , xr− lr)), we will show how to glue these spaces

learned in the low-variate case. To do this, we will look at spaces in S∗
r (gi) and S∗

r (gj) (for i ̸= j)
and “glue” them if they are consistent in the first m − 1 variables. For this to be efficient, it will
be very useful to have the property that distinct spaces in S∗

r (gi) are distinct when restricted to
the first m − 1 coordinates. However to make the argument simpler to analyze, we consider and
apply another random linear isomorphism Ψ (we will apply these to the spaces in S∗

r (gi) for each i)
defined as follows: ∀i < m, Ψ(xi) = xi and ∀i ∈ [m, n], Ψ(xi) = xi + βi,r+1xr+1 + · · ·+ βi,m−1xm−1
where βi,j are sampled independently and uniformly from [dn]. The goal of introducing the map Ψ
is to ensure that distinct spaces in S∗

r (gi) are distinct when restricted to the first m−1 coordinates,
and we prove this formally in the claim below.

Claim 6.13. For all i ∈ {m, . . . , n}, let V(l1, . . . , lr) and V(l′1, . . . , l′r) be distinct spaces in S∗
r (gi)

such that l1, . . . , lr, l′1, . . . , l′r only depend on xr+1, . . . , xm−1, xi. Then V(Ψ(x1− l1)xi=0, . . . , Ψ(xr−
lr)xi=0) ̸= V(Ψ(x1 − l′1)xi=0, . . . , Ψ(xr − l′r)xi=0). In particular

⟨Ψ(l1)|xi=0, . . . , Ψ(lr)|xi=0⟩ ≠
〈
Ψ(l′1)|xi=0, . . . , Ψ(l′r)|xi=0

〉
Proof. Consider 2 distinct elements V(x1 − l1, . . . , xr − lr) and V(x1 − l′1, . . . , xr − l′r) in S∗

r (gi),
with l1, l′1, . . . , lr, l′r ∈ F[xr+1, . . . , xm−1, xi]. Let l1 = a1,r+1xr+1 + · · · + a1,m−1xm−1 + a1,ixi, . . . ,
lr = ar,r+1xr+1 + · · · + ar,m−1xm−1 + ar,ixi, l′1 = a′

1,r+1xr+1 + · · · + a′
1,m−1xm−1 + a′

1,ixi, . . . ,
l′r = a′

r,r+1xr+1 + · · ·+ a′
r,m−1xm−1 + a′

r,ixi. Therefore, we have

38

l1 = (a1,r+1 + βi,r+1a1,i)xr+1 + · · ·+ (a1,m−1 + βi,m−1a1,i)xm−1 + a1,ixi

...
lr = (ar,r+1 + βi,r+1ar,i)xr+1 + · · ·+ (ar,m−1 + βi,m−1ar,i)xm−1 + ar,ixi

l′1 = (a′
1,r+1 + βi,r+1a′

1,i)xr+1 + · · ·+ (a′
1,m−1 + βi,m−1a′

1,i)xm−1 + a′
1,ixi

...
l′r = (a′

r,r+1 + βi,r+1a′
r,i)xr+1 + · · ·+ (a′

r,m−1 + βi,m−1a′
r,i)xm−1 + a′

r,ixi

Now, if ⟨Ψ(x1 − l1), . . . , Ψ(xr − lr)⟩ |xi=0 = ⟨Ψ(x1 − l′1), . . . , Ψ(xr − l′r)⟩ |xi=0, we have a system
of linear equations in βi,r+1, . . . , βi,m−1 given by ∀j ∈ {r + 1, . . . , m − 1} βi,j(a1,i − a′

1,i) = (a1,j −
a′

1,j),. . . ,βi,j(ar,i − a′
r,i) = (ar,j − a′

r,j). Since ⟨x1 − l1, . . . , xr − lr⟩ and ⟨x1 − l′1, . . . , xr − l′r⟩ are
distinct, there is some choice of p, q for which ap,q ̸= a′

p,q must hold. This gives a nonzero linear
equation in βi,j (when viewed as formal variables) which must become zero for the specific choice
of sampled values. By using Lemma 3.3,the probability this can happen is 1

dn as we choose the βi,j

from [dn]. From Theorem 4.1, Claim 6.1, and Lemma 6.8 we know the S∗
r (gi) = dO(1), and taking

the union of all pairs from S∗
r (gi) gives us that with probability 1 − o(1) no two spaces in any of

the S∗
r (gi) are equal after applying Ψ and setting xi to zero.

As described in Algorithm 2, for each V(x1−lm1, . . . , xr−lmr) ∈ S∗
r (gm) we “glue” or combine it

with a corresponding V(x1− li1, . . . , xr− lir) ∈ S∗
r (gi) if they are consistent in first m− 1 variables,

i.e. ⟨Ψ(li1)|xi=0, . . . , Ψ(lir)|xi=0⟩ = ⟨Ψ(lm1)|xm=0, . . . , Ψ(lmr)|xm=0⟩. We each fixed space in S∗
r (gm)

with high probability there is a unique space in S∗
r (gi) where this happens by the above claim. Note

that every space in S∗
r (g) corresponds to some unique space in S∗

r (gm) (since the spaces in S∗
r (gm)

are distinct restricted to first m− 1 coordinates). To recover the spaces of S∗
r (g) with information

for all coordinates, for each i, we use the information present in the glued space in S∗
r (gi) to recover

the information for the coordinate corresponding to xi. Thus we obtain all spaces V(l1, . . . , lr) on
which g vanishes and use Φ−1 to obtain Sr(f).

39

Algorithm 2 Computing Vanishing Codimension r Subspaces
Input: Black-box access to circuit C of form ΣΠΣ(k) computing polynomial f ∈ F[x1, . . . , xn]
with properties as described in Theorem 6.2, Wr, S∗

1 , . . . ,S∗
r−1

1: function S∗
r (f)

2: Sample n2 random values αij ; i, j ∈ [n] uniformly from {1, . . . , dn}, and use them to define
n linear forms l′i = ∑n

j=1 αijxj . Check if they are independent, otherwise repeat. Define
isomorphism Φ such that for all i ∈ [n], Φ(xi) := l′i. Let g = Φ(f) = f(Φ(x)).

3: Set t = ck + 2k2RF(k, d) log d and m = 2t log d + 2k + 2. For i ∈ [m, n], Obtain gi =
gxm=0,...,xi−1=0,xi−1=0,...,xn=0

4: For each gi, i ∈ [m, n] and r′ ∈ [r], Compute S∗
r′(gi) using Algorithm 1 with

Φ(Wr′)|xm=0,...,xi−1=0,xi−1=0,...,xn=0 as the LDICR space.
5: We now describe how to glue these spaces across gi.
6: Consider an isomorphism Ψ obtained as follows. Sample (n − m + 1) × (m − r) random

values βi,j where i ∈ [m, n], j ∈ [r, m− 1] uniformly from {1, . . . , dn}. For all i ∈ [1, m− 1], let
Ψ(xi) = xi and for all i ∈ [m, n], let Ψ(xi) = xi + βi,rxr+1 + · · ·+ βi,m−1xm−1.

7: for V(x1 − lm1, . . . , xr − lmr) ∈ S∗
r (gm) do

8: la1 := lm1, la2 := lm2, . . . , lar := lmr

9: for i ∈ {m + 1, . . . , n} do
10: Search for V(x1 − li1, . . . , xr − lir) such that

⟨Ψ(x1 − lm1)|xm=0, . . . , Ψ(xr − lmr)|xm=0⟩ = ⟨Ψ(x1 − li1)|xi=0, . . . Ψ(xr − lir)|xi=0⟩

11: If multiple such spaces are found, break out of the loop, and go to the next space in
the outer loop.

12: If only one such space is found then update la1 = la1 − α1xi, . . . , lar = lar − αrxi

where α1, . . . , αr are coefficients of xi in li1, . . . , lir respectively.
13: Add V(x1 − la1, x2 − la2, . . . , xr − lar) to S∗

r (g)
14: For each V(l1, . . . , lr) ∈ S∗

r (g), Verify f vanishes on V(Φ−1(l1), . . . , Φ−1(lr). Output the set
thus obtained, as S∗

r (f).

6.3 Computing Sr

In this section, we will show how to compute Sr(f) spaces as defined in Definition 15, given that
we have already learned Wr,S∗

1 (f),S∗
2 (f), . . . ,S∗

r (f).

Lemma 6.14. Let t = ck + 2k2RF(k, d) log d. Let f be a n-variate, degree-d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(k) circuit C = G×(T1 + · · ·+Tk) with gcd(T1, . . . , Tk) = 1
such that it has a 2t log d+3k-cluster representation C = G×(C1+· · ·+Cs) as defined in Lemma 5.7.
Let r be in [s]. Then, there exists an algorithm(Algorithm 3) that runs in time poly(n, dpoly(t)) and
with probability 1 − o(1), it outputs a set of spaces Sr of size poly(d) such that it satisfies the
properties described in Definition 15.

We will break this further into two separate lemmas which will show the first and second
properties of Sr spaces, respectively. As described in Algorithm 3, Sr spaces are computed as a
union of spaces Sr := S(1)

r ∪S
(2)
r ∪ · · · ∪ S

(r)
r . We will also make grow Wr slightly (which we will be

able to do since we assume we have learnt S∗
r , so that is also now intersects kernels of all regular

spaces of codimension r (and not just those of codimension r − 1). To not overload notation, we
will continue to call this space Wr.

40

Update of Wr: Once we have computed S∗
r , we can use it to update Wr so that any space in

Sreg
r also has to intersect Wr. To do this, we look at all maximal sets of independent spaces in S∗

r

that span a space W ′
r of dimension at most r · 2k2RF(k, d) log d which is at most poly(log d) for a

suitable polynomial from Theorem 3.5. From Lemma 5.4, we know that there is right choice of W ′
r

that it would intersects all spaces in Sreg
r . As |S∗

r | is dO(1), the number of choice ofW ′
r is dpoly(log d).

Wlog we assume that we chose the right W ′
r (our algorithm will iterate over all choices of W ′

r, and
eventually all the wrong choices get pruned out by a final PIT step at the end. This adds a factor of
dpoly(log d) to the running time, which we can handle). The new Wr is obtained by taking the span
of W ′

r with the original Wr, and this increasing its dimension by at most r · 2k2RF(k, d) log d. Wr

now also intersects all kernels of spaces Sreg
r . We will assume this going forward for computation

of Sr.

Lemma 6.15. Let f be a polynomial and C be a circuit computing it as described in Lemma 6.14.
Then, there exists an algorithm that runs in time poly(n, dpoly(t)) and with probability 1 − o(1),
it outputs a set of spaces S(1)

r of size poly(d) such that it satisfies the property 1 described in
Definition 15, i.e. for every space V(l1, . . . , lk) of codimension r, li ∈ Lin(Ti), and such that
span(l1, . . . , lk)∩Wr = {0}. Then there is a space V in a S(1)

r such that Ker(V) ⊆ span(l1 . . . , lk),
f mod ⟨l1, . . . , lk⟩ = 0 and Ker(V) contains at least one of the li’s.

Proof. We will first show that there exists an algorithm that shows how to grow vanishing kernels
to larger spaces which have interesting properties (such as containing a linear form of the circuit.)

Claim 6.16. There exists an algorithm such that given any vanishing kernel W of dimension at
most r such that W ∩Wr = {0}, blackbox access to f and Wr, it runs in poly(n, dpoly(t))-time and
outputs a poly(d)-sized set S of spaces of dimension at most r with the following properties:

• ∀X ∈ S, W ⊂ X

• Let U be any r dimension space which is of the form span(l1, . . . , lk) for li ∈ Lin(Ti), such
that U ∩ Wr = {0}. If W ⊂ U with C mod ⟨W ⟩ = 0 and if for all i ∈ [k], li ̸∈ W then
∃X ∈ S, X ⊆ U .

Proof. Given access to W s.t dim(W) = r′, we pick a random (r′−1)-dimensional subspace V ⊂W
and a linear form l′ such that span(l′, V) = W . Next, consider the circuit C mod ⟨V ⟩. As W
doesn’t contain any regular space, as it doesn’t intersect Wr, l′ will divide gcd(C mod ⟨V ⟩) and
not sim(C mod ⟨V ⟩). Let the multiplicity of l′ in C mod ⟨V ⟩ be e, which we can find by factoring
C mod ⟨V ⟩ using Lemma 3.9. Let C := C mod ⟨V ⟩ /(l′)e. We first argue that C will have a
structure similar to that of C and in fact, (Wr mod V) will satisfy the required properties of Wr

for this. The algorithm will compute S∗
a(C) for all a ∈ [1, r − r′ + 1] using Lemma 6.12, and then

take the span of each of those spaces with W (in other words we grow W by dimension at least 1)
and this will be the set of spaces S.

We first argue C has a 2t log d+2k-cluster representation with the fan-in s. Since W is not a
regular space (as it doesn’t intersectWr), by definition sim(C ′) will not be divisible by l′ and hence
C is still a ΣΠΣ(k) circuit. Since V is chosen randomly from W , with high probability the linear
forms in the Ti’s won’t vanish modulo V . Let Ci, Cj be 2 clusters in the cluster representation of
C. We know ∆(Ci, Cj) ≥ 2t log d + 3k. Dividing by l′, doesn’t decrease ∆(Ci, Cj) as l′ only divides
gcd(C mod V). Therefore, ∆(Ci, Cj) can decrease only if two independent linear forms become
the same mod V . We argue this happens only if the two-dimensional space spanned by these linear
forms lies inside W . If the space is outside and doesn’t intersect V , they stay independent mod V .

41

If the space intersects W in a 1-dimensional line, then they become the same only if V contains
this line, which happens with o(1) probability. Thus, the only linear forms lost from sim((Ci + Cj)
mod V) are those that are contained in W , which has dimension r′ ≤ k. Hence, for any 2 clusters
i, j in C, ∆(Ci, Cj) ≥ 2t log d + 2k.

We will first show that any crashing space of dimension at most r − 2 of C will intersect Wr

mod V . Therefore, we can use the same Wr mod V to play the role of Wr for computation of S∗

in Lemma 6.12.
Any Crashing space of C intersects Wr mod V : We will show that any crashing space

X ∈ C≤r−r′−2,ck
(C) would intersect Wr mod V . For the sake of contradiction, assume there

is a crashing space X ∈ C≤r−r′−2,ck
(C) that doesn’t intersect Wr mod V . Clearly, span(X, V)

(this is that subspace of Fn which contains V and such that when we go mod V it equals X) is
a crashing space for C, i.e. span(X, V) ∈ C≤r−2,ck

(C), as l′ doesn’t divide the sim(C mod V)
and only the gcd and therefore division by it, doesn’t affect the rank of the simple part. Since,
span(X, V) ∈ C≤r−2,ck

(C), it must intersect Wr from Lemma 6.6. Recall V ∩ Wr = {0} as V is
a subspace of W and W only intersects Wr at {0}. Since span(X, V) mod V = X, thus it most
hold that the space which means the intersection of X and Wr mod V is non-zero, which is a
contradiction to the assumption. Hence, all X ∈ C≤r−r′−2,ck

(C) would intersect Wr mod V .

Thus, we can compute the spaces S∗
a(C) for all a ∈ [1, r − r′ + 1] using Lemma 6.12 with Wr

mod V playing the role of Wr. We will now show that the conclusions of the claim hold. The first
conclusion is immediate. Let U be as in the assumption of the second conclusion. We will now argue
that one of these spaces in S∗

a(C) is a subspace of U mod ⟨V ⟩ or is equal to U mod ⟨V ⟩. Notice
that this will suffice in proving the claim. Next, we show that C vanishes mod (U mod ⟨V ⟩). This
suffices as U ∩Wr = {0}.

Notice that C mod V vanishes mod (U mod ⟨V ⟩). To obtain C, we divided C mod V by
(l′)e. As argued earlier, C is a ΣΠΣ(k) circuit.

We will show that this division does not impact the vanishing property. We know from definition
of U = span(l1, . . . , lk), the linear forms li divide their respective Ti in C. We will show that li
mod V continues to divide Ti mod V for each i even after the division. For this, it suffices to show
that li does not become equal to l′ when we go modulo V , and this is what we will show now.

Since by assumption, none of the li’s lie inside W it immediately follows that when we go mod
⟨V ⟩, they will not be in span(l′). Thus division by l′ does not affect their presence in the Ti’s and
if we set U mod V to zero, each li mod V will get set to zero, and hence each of the gates in C
vanishes and hence C vanishes mod U mod ⟨V ⟩.

Hence, U mod V is a space on which C vanishes on, and it doesn’t intersectWr mod V which
we use in the computation of S∗(C). Thus U mod V is a vanishing kernel, but it may not be a
minimal vanishing kernel of C. We conclude that either U mod V or some subspace of it must be
computed in S∗(C).

As C doesn’t vanish on l′ (we divided out the multiplicity of l′ in C mod V), the spaces
computed will be of dimension at least 1 outside W and when extended by W will contain W .
Thus, the subspace computed of U mod V will extend to a subspace of U strictly containing W .
Hence, we can lift W to a strictly larger subspace of U . The time complexity is the time complexity
of computing S∗

≤r−r′+2(C) which is poly(n, dpoly(t)) from Lemma 6.12.

Our final algorithm will run the algorithm from Claim 6.16 using the spaces fromKS∗
1 , . . . ,KS∗

r−1
which don’t intersectWr, playing the role of W , to learn a new set of “grown" spaces, and then run
the algorithm again on this new set of slightly larger spaces. We do this iteratively r−1 times. For
every space U = span(l1, . . . , lk), in each iteration we either learn a larger space in U or we learn a

42

subspace containing one of the li. Thus, at the end we would have either learned a subspace which
contains one of the li’s, or the space U itself, and hence proving the lemma. The runtime analysis
easily follows from the runtime of the algorithm in the claim.

Lemma 6.17. Let f be a n-variate, degree-d polynomial in F[x1, . . . , xn], as described in Lemma 6.14.
Then there exist an algorithm that computes a set Sr such that it satisfies property 2 of Defini-
tion 15, i.e. If we consider any crashing space W ∈ Cr−1,ck

such that it doesn’t intersect Wr. Let l
be any linear form and e a positive integer such that le| gcd(C mod W), span(W, l)∩Wr = {0}, and
l ∤ sim(C mod W). We say such an l is saturated by a space V , if it has the following properties.

1. Ker(V) ⊂ span(W, l). Let W ′ = Ker(V) ∩W .

2. There exists e linear forms l′1, . . . , l′e, each of the form l + l′, where l′ ∈ W such that gcd(C
mod W ′) is divisible by

∏
i∈[e](l′i mod W ′).

Then, for any crashing space W ∈ Cr−1,ck
which doesn’t intersect Wr, the dimension of the

span of linear forms in gcd(C mod W) that are not saturated by any space in Sr is at most k.

Proof. We will compute the set Sr iteratively as a union of S(1)
r , . . . ,S(r)

r . We already saw how
we can compute S(1)

r in Lemma 6.15. For every pair of spaces in KS(1)
r , the algorithm takes their

intersection W ′ and considers C mod W ′. It then computes S(1)
≤r−dim(W ′)(C mod W ′) and then

takes the span of each space in KS(1)
≤r−dim(W ′)(C mod W ′) with W ′ to obtain KS(2)

r (C) and hence
S(2)

r . We repeat this step r times, and use the union of these sets as our Sr.
In order to analyze why this algorithm works, we will first state and prove a claim which shows

that S(1)
r already has some interesting saturation properties.

Let W ∈ Cr−1,ck
. Thus rank(sim(C mod W)) ≤ ck. When we go modulo W , some of the Ti

might vanish. Wlog suppose that T1, . . . , Tk′ do not vanish mod W and Tk′+1, . . . , Tk do vanish
mod W for some k′ ≥ 2.Thus C mod W is of the form C ′ := G′ × (T ′

1 + · · ·+ T ′
k′).

For each i ∈ [k′], the linear forms in Lin(Ti) can be partitioned into Ai∪Bi such that the linear
forms that become part of G′ are in Ai, and the linear forms that became part of T ′

i are in Bi.
∀i ∈ [k′ + 1, k], as Ti vanishes mod W , there must exist a linear form li dividing Ti such that

li ∈ W . There may be multiple such linear forms in every gate that vanish modulo W , but we fix
any one such linear form per gate.

We focus on the linear forms in Ai’s as they are the ones we are concerned for moving into the
G′. Consider any l ∈ gcd(C mod W), and let e be the multiplicity of l in gcd(C mod W). We
also assume that l is such that span(W, l) ∩Wr = {0}, and l ∤ sim(C mod W). Then there are e
different k′-tuples (l11, . . . , l1k′), . . . , (le1, . . . , lek′), such that any lij ∈ Aj and is of the form αijl+ l′ij
where l′ij ∈W .

We consider such e different k-tuples of the form (li1, . . . , lik′ , lk′+1, . . . , lk) for i ∈ [e].
We first show that for any such l (corresponding to the above tuples), either we have a space

V in S(1)
r satisfying the properties of the lemma (i.e. V saturates l), or we have a space V ∈ KS(1)

r

such that at least one of lk′+1, . . . , lk is in V . Note that of V doesn’t saturate l, we still make
progress by learning one of the li within V , since distinct choices of V for distinct choices of l will
allow us to start learning some of the li (we actually learn subspaces of W containing one of the li)
by taking intersections.

Claim 6.18. Let W be as above. Consider an l ∈ gcd(C mod W) such that span(W, l)∩Wr = {0}
and l ∤ sim(C mod W). Then there exists a space V in KS(1)

r such that

43

1. either V saturates l

2. or ∃j ∈ [k′ + 1, k] s.t. lj ∈W and lj ∈ V .

Proof. Observe that C vanishes modulo span(W, l). Also, span(li1, . . . , lik′ , lk′+1, . . . , lk) ⊆ span(W, l)
and C vanishes mod it (since every gate vanishes). Since this space also does not intersect Wr,
at least one subspace of span(li1, . . . , lik′ , lk′+1, . . . , lk) (any minimal vanishing kernel) must be in
KS∗

≤r. Basically, all the tuples from (l11, . . . , l1k′ , lk′+1, . . . , lk), . . . , (le1, . . . , lek′ , lk′+1, . . . , lk) whose
span is a minimal vanishing kernel, are in KS∗

≤r. Thus even if one of the tuples spans a minimal
vanishing kernel, then since KS(1)

r contains KS∗
≤r, thus choosing V to be span of the linear forms

satisfies property (2) of the claim and we are done.
Therefore, we are left to deal with the case where V(li1, . . . , lik′ , lk′+1, . . . , lk) is not a maximal

vanishing subspace for all choices of i ∈ [e].
Since span(li1, . . . , lik′ , lk′+1, . . . , lk) doesn’t intersect Wr and l ∤ sim(C mod W), the span

cannot be contained in a kernel of a regular space. Therefore, from Lemma 6.15, we know that
there will be a subspace V of span(li1, . . . , lik′ , lk′+1, . . . , lk) in KS(1)

r , such that at least one of the
linear forms in (li1, . . . , lik′ , lk′+1, . . . , lk) will be in V . Wlog, let V be the largest such subspace of
span(W, l) learned in KS(1)

r . If V is span(W, l), then we are already done (property (2) is satisfied).
So assume V is not span(W, l). This means at some point in computation of S(1)

r , the computation
learned V and did not learn a larger space even though the computation is iterated r − 1 times.
We will now argue that the only way this can happen is that V either satisfies property (1) or (2).

If V satisfies property (1) of the current claim, then we are done. If any of the lk′+1, . . . , lk
are in V , then we are done as well. Let us assume that V doesn’t satisfy either property. We will
strengthen the analysis of Lemma 6.15 and show that, we will have learned a larger subspace of
span(W, l) in KS(1)

r containing V , contradicting the maximality of V .
Consider a random (dim(V)− 1)-dimensional subspace of V , which we call V ′ and a linear

form l′ such that V = span(V ′, l′). Let e′ be the multiplicity of l′ in C mod V ′. Consider C ′ = (C
mod V ′)/(l′)e′ and look at it’s S∗

≤r−dim(V)+1 spaces. As discussed in Claim 6.16, we have that C ′ is
computed by ΣΠΣ(k) circuit with almost the same cluster structure as C and any crashing space
of C ′ of dimension at most r − 2 must also intersect Wr. Therefore, we can use the same Wr for
computation of S∗

≤r−dim(V)+1(C ′).
As property (1) is not satisfied by V , we must have e′ < e. Note that l′e

′ divides the gcd and
not the simple part of the circuit, and hence it divides each gate of the circuit. Since each gate Tj

(j ∈ [k′]) had e linear forms {l1j , . . . , lej}, when we divide by l′e
′ after going mod V ′, at least one

of the e linear forms "survives" in the gate. In other words, it gets mapped modulo V ′, but does
not get eliminated by division. WLOG let the surviving linear form in gate Tj for j ∈ [k′] be l1j

mod V ′. As lk′+1, . . . , lk are not in V by assumption, hence when we go modulo V ′, they do not
get mapped to l′. Hence the division by l′e

′ does not impact these linear forms as well, and they
survive. Thus for i ∈ {k′ + 1, . . . , k}, Ti is is still divisible by li mod V ′ even after the division.

Consider (l11, . . . , l1k′ , lk′+1, . . . , lk). From the above discussion we know that in every gate
Tj in C ′, we still have either l1j (j ∈ [k′]) or lj (j ∈ [k′ + 1, k]) dividing the gate. Therefore,
V(l11 mod V ′, . . . , l1k′ mod V ′, lk′+1 mod V ′, . . . , lk mod V ′) must be a vanishing space of C ′.
Therefore, the vanishing space must have been combined with V to give a larger space than V (but
still containing in span(W, l)) in S(1)

r . That gives a contradiction to maximality of V .

Consider any crashing space W ∈ Cr−1,ck
which doesn’t intersect Wr. Let Tk′+1, . . . , Tk be the

gates which vanish modulo W and for each of these gates Tj , let us fix a linear form lj dividing

44

Tj which vanishes on W . Let l ∈ gcd(C mod W) such that span(W, l) ∩Wr = {0} and l ∤ sim(C
mod W). By the above claim, we either learn V ∈ span(W, l) that saturates l, or else V contains
one of {lk′+1, . . . , lk}. Suppose there are at most k independent linear forms l that are not saturated
by some V ∈ S(1)

r , then we are done. Otherwise there are k + 1 distinct and linearly independent
mod W choices of l (l′1, . . . , l′k+1), such that for each i ∈ [k] we learn some Vi ∈ S

(1)
r such that

Vi ∈ span(W, l′i) and Vi contains one of {lk′+1, . . . , lk}. Observe that distinct i and j, Vi and Vj are
distinct and their intersection is a subspace of W . By the pigeon hole principle, there must exist
distinct Vi and Vj that both contain the same choice of linear form in {lk′+1, . . . , lk}. Thus their
intersection is a subspace of W ′ of W that contains one of {lk′+1, . . . , lk}.

This we can learn W ′, by looking at intersections of spaces in KS(1)
r . Recall that KS(2)

r is
obtained by looking at every pair of spaces in KS(1)

r , taking their intersection W ′, and computing
KS(1)

r−dim(W ′) for C mod W ′. Thus for the right choice of W ′ which corresponds to a subspace of
W containing one of {lk′+1, . . . , lk}, our algorithm will compute KS(1)

r for C mod W ′. This will
give us a space which either saturates all but k independent linear forms (when we consider its span
along with W ′) or a subspace of W mod W ′ which contains another non-zero linear form from
{lk′+1, . . . , lk} mod W ′. Since we iterate this process r times, we will either recover a saturating
space that saturates all but k independent linear forms or recover a subspace W of W that contains
all of {lk′+1, . . . , lk}. When we consider C mod W then we get a saturating space by Claim 6.18.

Algorithm 3 Computing codimension r Totally-Special vanishing spaces
Input: Black-box access to circuit C of form ΣΠΣ(k) computing polynomial f ∈ F[x1, . . . , xn],
Wr, S∗

1 , . . . ,S∗
r ,S1, . . . ,Sr−1

1: function Sr(C)
2: if r ≤ 2 then return ϕ

3: S(1)
r := S∗

≤r

4: for r′ ∈ [1, r − 1] do
5: for V(l1, . . . , lr′) ∈ (S∗

r′(f) ∪ Sr′(f)) do
6: Pick a random vector space V of dimension r′ − 1 in span(l1, . . . , lr′)
7: Let C ′ := C mod V and any l′ such that span(l′, V) := span(l1, . . . , lr′).
8: Let e be the multiplicity of l′ in Lin(C ′)
9: Let C := (C ′/ (l′)e).

10: Compute S∗
r−r′+1(C) with Wr mod V as the LDICR space.

11: for V(l′1, . . . , l′r−r′+1) ∈ S∗
r−r′+1(C)) do

12: if l′ ∈ span(l′1, . . . , l′r−r′+1) then
13: Add V(l1, . . . , lr′ , l′1, . . . , l′r−r′) to S(1)

r

14: for i← [2, r] do
15: for V1, V2 ∈ KS

(i−1)
r do

16: Let W = V1 ∩ V2. If W = {0}, continue.
17: Compute S(1)

r for C mod W .
18: for V ∈ KS(1)

r (C mod W) do
19: Add V(V, W) to S(i)

r .
20: Output Sr := S(1)

r ∪ · · · ∪ S
(r)
r

45

6.4 Learning linear forms when SCS(r) property is satisfied

Lemma 6.19. Let t = 22k2RF(k, d)(k4 log d)k−3. Let f be a n-variate, degree-d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(k) circuit C = G×(T1 + · · ·+Tk) with gcd(T1, . . . , Tk) = 1
such that it has a 2t log d+2k-cluster representation C = G×(C1+· · ·+Cs) as defined in Lemma 5.7.
Let r be in [s] and tr := 22k2RF(k, d)(k4 log d)r−3. Also, for any ccand and λ = ccand+2k ·(2tr log d+
2k), we have ∀i ∈ [k], dim(span(Lin(Ti))) ≥ λ. Assume the circuit satisfies the SCS(r) property
for some r ∈ [s]. Then, given access to Wr−1 and the sets KS∗

1 , . . . ,KS∗
r−1,KS1, . . . ,KSr−1, there

exists an algorithm that computes a set of linear forms Lcand such that |Lcand| = dO(1) and ∃j ∈ [k]
such that dim(span(Lin(Tj) ∩ Lcand)) ≥ ccand in time poly(n, d).

Proof. Let r = max(dim(Wa), dim(Wb)), where Wa and Wb are the smallest possible totally inde-
pendent spaces in C≤r−2,tr contained in spaces in C≤r−2,ck

such that such that C mod ⟨Wa⟩ = Cj

mod ⟨Wa⟩ and C mod ⟨Wb⟩ = Cj mod ⟨Wb⟩.
We can compute Pr−2 as described in Lemma 6.3, and therefore Wa and Wb would be two spaces

in Pr−2. The rank requirement of Lemma 6.3, is satisfied by at least two clusters in the circuit
with enough distance. We guess two spaces in Pr−2, and for the correct guess we have access to
Wa and Wb, such that C mod ⟨Wa⟩ = Cj mod ⟨Wa⟩ and C mod ⟨Wb⟩ = Cj mod ⟨Wb⟩. Using
Lemma 3.9, we have access to the linear factors of Cj mod ⟨Wa⟩ and Cj mod ⟨Wb⟩. Consider
any linear form in l| gcd(Cj). It can be written as l = l′ + la + lb where la and lb are linear forms
in Wa and Wb. So, we find linear forms l1, l2 in Lin(Cj mod ⟨Wa⟩) and Lin(Cj mod ⟨Wb⟩) such
that l1 mod ⟨Wb⟩ = l2 mod ⟨Wa⟩. There will be l1 = l′ + lb and l2 = l′ + la in the choices. From
these, we can recover l = l1 + l2 − (l1 mod ⟨Wb⟩). Thus, we can find all linear forms l such that
l| gcd(Cj).

Since C has a 2tr log d+2k cluster representation, we know rank(sim(Cj)) ≤ 2k ·(2tr log d+2k).
Since, dim(span(Lin(Ti))) ≥ ccand + 2k · (2tr log d + 2k), we have dim(span(Lin(gcd(Cj)))) ≥ ccand

and hence, we learn ccand independent linear forms from a gate in C.

We will divide the computation of S∗
r (f) into two parts, where we first compute it when the

number of variables (n) is small, such that n = tr and then do it in the general case.

7 Using S∗r (f) and Sr(f) to learn some linear forms appearing in
C

Armed with Wr, S∗
r and Sr for various choices of r, we then show that considering intersections

of the kernels of spaces in S∗
r and Sr (for various choices of r) suffices in learning several linear

forms from at least one multiplication gate of C. This step uses the assumption that all gates of
C have “high rank”. We show how to do this in Section 7.1. In the section after, we will show how
to effectively reduce to the case where all ga†es have high rank.

7.1 All large rank gates

Lemma 7.1. Let t = 22k2RF(k, d)(k4 log d)k−3. Let f be a n-variate, degree-d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(k) circuit C = G×(T1 +· · ·+Tk) with gcd(T1, . . . , Tk) = 1.
Let ccand > 0 be an arbitrary constant (it can depend on d). Let λ = 2k · (2t log d + 3k) + t + 2k2 ·
(ccand + k). If it holds that ∀i ∈ [k], dim(span(Lin(Ti))) ≥ λ, then there exists an algorithm that
runs in time poly(n, dpoly(t,ccand)) and computes a set of linear forms Lcand such that |Lcand| = dO(1)

and ∃j ∈ [k] such that dim(span(Lin(Tj) ∩ Lcand)) ≥ ccand.

46

Proof. Let f have a 2t log d + 3k-cluster representation C = G × (C1 + · · · + Cs) as defined in
Lemma 5.7.

If there is some r ∈ [s] for which the SCS(r)-property is not satisfied, then take the first r for
which this holds, and by Theorem 6.2 we can learn the desired set of linear forms. Thus, we now
assume that for all r ∈ [s], the SCS(r)-property is not satisfied by all r. By applying Theorem 6.2
iteratively, we can thus compute the spaces S∗

r (f) and Sr(f) for all r ∈ [s] in poly(n, dpoly(t,ccand))
time.

We construct Lcand as follows. For each pair of spaces in the union of S∗
r (f) and Sr(f) over all

r, we consider the intersections of kernels of these spaces. If they intersect in a one-dimensional
space, we add a linear form corresponding to the intersection to Lcand. As both |S∗

r (f)| and |Sr(f)|
are dO(1) for all choices of r, clearly |Lcand| is dO(1) and the runtime of the algorithm is at most
polynomial in the runtime of the algorithm from Theorem 6.2, which is poly(n, dpoly(t,ccand)).

We now show that the set Lcand has the desired properties.
Consider any set of independent linear forms L1 ⊆ Lin(gcd(C1)) such that any l ∈ L1, l ̸∈ Ws

and |L1| = 2k(ccand + k) = α. Similarly for i ∈ [s], let Li ⊆ Lin(gcd(Ci)) such that any l ∈ Li,
l ̸∈ span(Ws, L1, . . . , Li−1) and |Li| = 2k(ccand + k) = α. We will now justify that such Li exist by
the assumption of all gates being of high rank.

In any gate, the number of independent linear forms that can contribute to sim(Ci) is at
most 2k · (2t log d + 3k), as shown in Lemma 5.7. As Ws is a LDICR space, we know dim(Ws) ≤
22k2RF(k, d)(k4 log d)s−3 ≤ t from Definition 14. Since, we have dim(span(Lin(Ti))) ≥ 2k ·(2t log d+
3k) + t + 2k2 · (ccand + k), we can find enough independent linear forms to construct these sets
L1, . . . , Ls.

Consider the set of spaces S = {V(l1, . . . , ls) : ∀i ∈ [s], li ∈ Li}. Note that each space in S is
a vanishing space for C that does not intersect Ws. We have |S| = (2k(ccand + k))s = αs. We
have learnt all the minimal vanishing kernels corresponding to each space in S in S∗

≤s as shown in
Lemma 6.12.

From Lemma 6.14, for any space V(l1, . . . , ls) ∈ S we can either learn V(l1, . . . , ls) or we learn
some space V ′ in S≤s, such that KV ′ ⊆ span(l1, . . . , ls) and KV ′ contains at least one of the li’s.

We divide our set S into Sdegen and Snon−degen, where for each space V in Snon−degen, we learn
V itself in S≤s or in S∗

≤s, while for each space V ∈ Sdegen, we only learn a strict superspace in S≤s.
Equivalently, we only learn a strict subspace of its kernel in KS≤s. However the subspace kernel
contains one of the li’s that defined V .

For each space V ∈ Sdegen such that V is of the form V(l1, . . . , ls) we say that V is “associated"
with the linear form li if the kernel of the learned subspace in S≤s contains li.

For any linear form l that is in one of the Li’s, if there are two distinct spaces in Snon−degen

whose kernels intersect in exactly l, then such an l gets learnt in Lcand. We also learn l in Lcand if
there are at least two spaces in Sdegen that are both associated with l and the kernels of the spaces
intersect in exactly l.

For any linear form l ∈ Lj for some j ∈ [s], there are (α)s−1 spaces in S whose kernels contain
l. For a set S ′ ⊂ S, we say that S ′ is a matching with respect to l if it has the following properties.
(1) Each element of S ′ contains l in the kernel, (2) |S ′| = α and each linear form in Li (for any
Li ̸= Lj),is in exactly one of the kernels of spaces in S ′.

For each l ∈ Lj for some j ∈ [s], we define S(l) to be a subset of S containing all those spaces
whose kernel contains l. Observe that we can partition S(l) into αs−2 matchings with respect to l.
This partition is not unique, but we fix any partition and thus obtain for any l, a set of αs−2 sets
of spaces that are “matchings with respect to l".

Note that for any linear form l, if there is a single matching with respect to l that contains

47

two spaces in Snon−degen, then their intersection recovers l, and thus we can learn l. We call such
an l as “good". If there are more than kccand “good" linear forms, then we are done, as there will
be at least one gate from which we have learned ccand linear forms. Therefore, let us assume that
for all except kccand − 1 linear forms, there is at most one space in Snon−degen in each matching
corresponding to it. We call these linear forms “bad".

Thus we get the following bound on the size of Sdegen (justification to follow).

|Sdegen| ≥ (α)s − (kccand) · (α)s−1 − (sα− kccand) · (α)s−2

we get this expression because (α)s is the size of S. We first remove all elements of S that
correspond to any “good" linear form. Thus, we remove at most (kccand) · (α)s−1 elements. Thus,
all remaining spaces correspond to all bad linear forms. Some of these spaces might be non-
degenerate, and we would like to remove those. Since each bad linear form corresponds to at most
(α)s−2 nondegenerate spaces, thus by eliminating at most a further (sα − kccand) · (α)s−2 spaces,
we are left only with degenerate spaces.

If a linear form is associated with at least T = (α)s−2 + 1 degenerate spaces, then we learn the
linear form, as it will be associated with at least two spaces in the same matching corresponding to
it. If we can lower bound the number of linear forms which are associated with at least (α)s−2 + 1
degenerate spaces and show that it is at least kccand, then we will be done.

To do this, we upper bound the number of linear forms which are associated with at most T −1
degenerate spaces. Let this quantity be a. Then we have a · (T − 1) + (αs− a) · (α)s−1 is at least
|Sdegen|. Comparing the upper bounds and lower bound that we get on |Sdegen|, we get that

a · αs−2 + (αs− a) · αs−1 ≥ αs − (kccand) · αs−1 − (sα− kccand) · αs−2

a ≤ α2s− α2 + kccandα + sα− kccand

α− 1
a ≤ (2kccand + 2k2) · (s− 1) + kccand + s.

substituting
α =
2k(ccand + k)

Therefore, we get the number of linear forms associated with at least αs−2 +1 degenerate spaces
is at least αs− a ≥ α− kccand − s ≥ kccand. Thus, even in this case, we learn at least ccand linear
forms from one of the gates.

7.2 Some small rank gates

In this section, we will show how to learn enough linear forms from some gate assuming there are
some low rank gates. We still will require that the rank of the simple part of the circuit is high. If
this is not the case, then as in previous works, we can recover the circuit as a sparse polynomial of
linear forms (this part is quite standard), and we will handle this in the next section.

In the next lemma we will show how to learn enough linear forms when some of the gates are
low rank. In proof we will show how to in some sense simulate blackbox access to the high rank
part of the circuit and show how to compute S∗ and S spaces for the high rank gates. Once we
can do this then we can learn the required linear forms as in Lemma 7.1.
Lemma 7.2. Let t = 22k2RF(k, d)(k4 log d)k−3. Let f be a n-variate, degree-d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(k) circuit C = G×(T1 + · · ·+Tk) with gcd(T1, . . . , Tk) = 1.
Let ccand > 0 be an arbitrary constant (it can depend on d). Let λ = 2k · (2t log d + 3k) + t + 2k2 ·
(ccand + k). If it holds that rank(sim(C)) > 28k · k · λ, then, there exists a randomized algorithm
that runs in time poly(n, dpoly(t,ccand)) and computes with probability 1− oF(1) a set of linear forms
Lcand such that |Lcand| = dO(1) and ∃j ∈ [k] such that dim(span(Lin(Tj) ∩ Lcand)) ≥ ccand.

48

Proof. We have already handled the case when all gates have rank at least λ in Lemma 7.1.
Therefore, we only need to handle the case when there are some gates which have rank less than λ.

We will reduce this case to the case where all gates in the circuit have a rank at least λ. To do
this, we will first partition the circuit into high rank and low rank gates. Gates with low rank, will
have low number of essential variables (see Definition 7). Observe that if V is a vanishing space
for the high rank gates, then when we consider the circuit restricted to V , the resulting polynomial
has only few essential variables. This observation will motivate our algorithm. We will learn spaces
of codimension upto r restricted to which the polynomial has few essential variables. We will show
that these spaces are precisely the vanishing spaces for the high rank part of the circuit. Once we
have a rich enough set of vanishing spaces (S∗ and S) for the high rank gates, then we can learn
ccand independent linear forms in a gate using the previous lemma.

Partitioning the gates in high and low rank: The idea will be to partition the gates Ti, i ∈ [k]
by partitioning [k] into two sets K and K ′ = [k] \K such that all low rank gates have indices in
K ′ and there is a large separation between the ranks of gates with indices in K and the combined
rank of gates with indices in K ′.

Formally, K ′ ⊂ [k] is such that ∀j ∈ K, dim(span(Tj)) ≥ 8 · dim(span(∪i∈K′Lin(Ti))) + λ. To
find such a set K ′, we first choose (and add to K ′) all indices corresponding to gates Ti such that
dim(span(Lin(Ti))) < λ. Let the number of such chosen indices be a1. Then, there must exist a
gate in Tj (with index not in the current K ′), such that dim(span(Tj)) < (8a1 +1) ·λ, as otherwise,
we are done. In this next step, we add indices corresponding to all such gates with dim(span(Tj)) <
(8a1+1)·λ to K ′. Suppose that the number of indices added is a2. Similarly, now there must exist a
gate (with index not in the current K ′) Tj , such that dim(span(Tj)) < (8a1+1)·(8a2+1)·λ (or again
we are done). Suppose that this goes on for r steps and we get ar new indices, and after that no gate
remains, i.e. K ′ = [k]. We will now argue that this is not possible. If no gate remains after r steps,
then dim(span(∪i∈[k]Lin(Ti))) ≤

∑
j∈[r](1 + 8a1) . . . (1 + 8aj−1) · aj ·λ < (1 + 8a1) . . . (1 + 8ar) · r ·λ.

Using a1 + · · · + ar ≤ k and r ≤ k, we have (1 + 8a1) . . . (1 + 8ar) ≤ 28k. Therefore, we have a
contradiction as we know from assumption rank(sim(C)) > 28k · k ·λ. Thus we conclude that when
the process terminates, K ′ is not the full [k] and thus its complement K (or high rank gates) is
nonzero.

From the above argument, it immediately follows that dim(span(∪i∈K′Lin(Ti))) ≤ 28kλ. Let
the rank of ∑

i∈K′ Ti (which is precisely dim(span(∪i∈K′Lin(Ti)))) be m, for some integer m. We
will assume henceforth that m is known to us. This is because we will run the algorithm for all
m ∈ [28k · k ·λ] and our final set will be the union of all linear forms returned. Thus, it will include
the linear forms for the correct choice of m.

Note that for every i ∈ K, the rank of Ti is at least 8m + λ. Note that if for any choice
of ⟨l1, . . . , lr⟩, if C mod ⟨l1, . . . , lr⟩ has at most m essential variables, then it implies ∑

i∈K Ti

mod ⟨l1, . . . , lr⟩ has at most 2m essential variables. The second part of Lemma 5.6 thus implies it
must be that ∑

i∈K Ti mod ⟨l1, . . . , lr⟩ = 0. In our algorithm, we will compute spaces V(l1, . . . , lr)
such that restricted to them f has at most m essential variables. By the above reasoning, such
spaces will be vanishing spaces for ∑

i∈K Ti.
We will discuss now how we can show an analog of Theorem 6.2 for ∑

i∈K Ti (i.e. we will
algorithmically compute a rich class of vanishing spaces) but only using blackbox access to C.
First, we will show that if the SCS(r) property doesn’t hold for ∑

i∈K Ti for any choice of r ≤ |K|,
we can compute S∗

r (∑i∈K Ti) and Sr(∑i∈K Ti). We will also show that if SCS(r) property does
hold for some r, then we can use S∗

≤r−1(∑i∈K Ti) and S≤r−1(∑i∈K Ti), with blackbox access to C
to compute ccand independent linear forms from one gate.

49

Learning the S∗
r spaces of

∑
i∈K Ti We will recursively learn these spaces. We will assume we

have already learntWr−1,S∗
1 (∑i∈K Ti), . . . ,S∗

r−1(∑i∈K Ti),S1(∑i∈K Ti), . . . ,Sr−1(∑i∈K Ti) and we
assume that the SCS(r) property does not hold.

The algorithm for computation of a LDICR space, Wr, corresponding to the circuit ∑
i∈K Ti

using the spaces KS∗
1 (∑i∈K Ti), . . . ,KS∗

r−1(∑i∈K Ti),KS1(∑i∈K Ti), . . . ,KSr−1(∑i∈K Ti) remains
exactly the same as in Lemma 6.6. The algorithm for learning S∗

r (∑i∈K Ti) is almost identical to
that of learning S∗

r (C) (Algorithm 2) with one key change - when we set up the system of equations,
we don’t set it up so that some polynomial vanishes, but set it up so that some polynomial has at
most m essential variables. We elaborate below.

Similar to Algorithm 2, we take a random linear isomorphism Φ which is defined by Φ(xi) =∑n
j=1 αi,jxj(where αi,j are chosen randomly from [dn]) to get polynomial g = Φ(f) = f(Φ(x)). We

then obtain polynomials gi for i ∈ [8m+1, n], by setting all but the first 8m variables and xi to 0 in
C. We can interpolate these (since they are only few variate) to get white-box access to the mono-
mial representation of the gi’s. Let Φ(C)|x8m+1=···=xi−1=xi+1=···=xn=0 = G[i]× (T [i]

1 + · · ·+ T
[i]
k). For

j ∈ K, As dim(span(Lin(Tj))) ≥ 8m+λ (which is greater than 8m), after projecting down the gates
would still have high rank (at least 8m) with high probability, similar to Lemma 6.8, while projected∑

j∈K′ T
[i]
j will have at most m essential variables. Now, any l1, . . . , lr such that C mod ⟨l1, . . . , lr⟩

has at most m essential variables must be such that (∑j∈K T
[i]
j) mod ⟨l1, . . . , lr⟩ has at most 2m

essential variables. From part 2 of Lemma 5.6, any l1, . . . , lr such that (∑j∈K T
[i]
j) mod ⟨l1, . . . , lr⟩

has at most 2m essential variables must be such that (∑j∈K T
[i]
j) mod ⟨l1, . . . , lr⟩ = 0 (Since we

know that all Ti, i ∈ K have rank at least 8m + λ).
We will first show that we can preprocess the circuit such that we reduce to the case where the

linear forms in G are in the span of the linear forms appearing in ∑
i∈K′ Ti. The argument is very

similar to Corollary 5.3. We first observe that if l is any linear form dividing sim(C) then (∑i∈[k] Ti)
mod ⟨l⟩ equals 0. By the rank bound Theorem 3.5 and the difference in ranks among the gates,
it must hold that (∑i∈K′ Ti) mod ⟨l⟩ equals 0. Thus any such l is in the span of linear forms
appearing in ∑

i∈K′ Ti. We can look at all linear forms dividing C, guess the m-dimensional subset
of linear forms corresponding to span of linear forms in ∑

i∈K′ Ti and divide out the remaining
linear forms (which will not divide sim(C). This follows the argument in Corollary 5.3, and thus
we reduce to G having the required property.

Note, to learn S∗
r (∑j∈K T

[i]
j), it suffices to learn the codimension r spaces on which G[i] ×

(T [i]
1 + · · ·+ T

[i]
k) has at most m essential variables. Similar to Lemma 6.7, we have that if ∑

i∈K Ti

vanished mod ⟨l1, . . . , lr⟩, then ∑
j∈K T

[i]
j must vanish modulo ⟨x1 − l1i, . . . , xr − lri⟩ where lji ∈

F[xr+1, . . . , x8m, xi]. Let lji = αj,r+1xr+1 + · · · + αj,8mx8m + αj,ixi. For each j ∈ r, we substitute
xj = αj,r+1xr+1 + · · ·+ αj,8mx8m + αj,ixi into gi which we have monomial access to (which we can
obtain by interpolation since these polynomials are sparse). As seen in Lemma 3.14, the number
of essential variables in any polynomial is the rank of the corresponding partial derivative matrix.
Using white-box access to the gi’s, we can get access to its partial derivative matrix, and then we can
set up a system of polynomial equations in for j ∈ [r], αj,r+1, . . . , α1,8m, αj,i that bounds its rank to
be at most m. We get this by equating all (m+1)×(m+1) minors of the matrix to 0, thus ensuring
that the rank of the matrix is at most m. This ensures gi mod ⟨x1 − l1i, . . . , xr − lri⟩ has at most m
essential variables. We will also add an equation ensuring that span(x1− l1i, . . . , xr− lri) intersects
Φ(Wr)|x8m+1=...=xi−1=xi+1=...=xn=0 trivially, similar to Lemma 6.7. The system of equations is in
8m variables and has dO(m) equations with a degree at most m + 1 and hence can be solved
in poly(dpoly(m)) time using Theorem 3.10. We can then glue these solutions for gi, similar to
Lemma 6.12, by comparing coefficients in xr+1, . . . , x8m, to get codimension r vanishing spaces

50

of ∑
j∈K T

[i]
j . Hence, we can compute S∗

r spaces of ∑
j∈K Tj in time dpoly(m) time with 1 − o(1)

probability.

Learning Sr spaces: Next, we argue how to compute the Sr spaces of ∑
j∈K Tj . We will again as-

sume that SCS(r) property is not satisfied and we have computedWr,S∗
1 (∑i∈K Ti), . . . ,S∗

r (∑i∈K Ti)
and S1(∑i∈K Ti), . . . ,Sr−1(∑i∈K Ti).

Recall that to learn S(1)
r (C), we considered an r dimensional space span(l1, . . . , lk) for (li ∈

Lin(Ti)) which was not learned in KS∗
r because it contained a smaller space V in KS∗

≤r. In
Claim 6.16, we showed how to use V to learn a larger space in span(l1, . . . , lk). The steps af-
ter that for computation of S(2)

r , . . . ,S(r)
r we consider the circuit mod intersections of spaces in S(1)

r

and repeat the computation r times.
We need to now carry out these steps for ∑

i∈K Ti. All the later steps of computing S(2)
r , . . . ,S(r)

r

once we can compute S(1)
r are identical to Lemma 6.17. The only change required is in the procedure

in Claim 6.16 to learn larger spaces that contained V but that are also in span(l1, . . . , lk).
To learn these larger spaces, in Algorithm 3, we consider a random (dim(V)− 1)-dimensional

subspace V ′ of V and a linear form l′ such that span(V ′, l′) = V . Let e be the largest integer such
that (l′)e|C mod V ′. We then considered the circuit C ′ = C mod V ′/(l′)e, and found S∗ spaces
of C ′ whose kernels contained l′. We appended the kernel of these spaces with V ′ to obtain larger
vanishing spaces than V , and showed one of them was inside span(l1, . . . , lk). More details of the
analysis are in Lemma 6.15 and Lemma 6.17.

The one step in all this that we cannot carry out is where we divide the circuit C mod V ′ by
(l′)e simply because we do not have black box access to the circuit we are computing Sr spaces for,
i.e. ∑

j∈K Tj , as we only have black-box access to the full circuit C.
We will show that we can still compute the S(1)

r spaces. We have black box access to the circuit∑
j∈K Tj+∑

j∈K′ Tj , and we want to learn spaces of the form V(l1, . . . , l|K|), where dim(span(l1, . . . , l|K|)) =
r, li ∈ Lin(Ti) for i ∈ K and span(l1, . . . , l|K|) intersectsWr(∑j∈K Tj) trivially. Let span(l1, . . . , l|K|)
contain a space V of smaller dimension such that ∑

j∈K Tj mod V = 0 and hence V(l1, . . . , l|K|)
couldn’t be learned in S∗

r (∑j∈K Tj). Similar to the Claim 6.16, we consider a random (dim(V)− 1)-
dimensional subspace V ′ of V and a linear form l′ such that span(V ′, l′) = V . Let e be the largest
integer such that (l′)e|(∑j∈K Tj) mod V ′. Since span(l1, . . . , l|K|) intersects Wr(∑j∈K Tj) triv-
ially, we will have span(l1, . . . , l|K|) doesn’t contain any vanishing regular kernel, and hence l′

doesn’t divide sim(∑j∈K Tj mod V ′). The circuit C mod V ′ is of the form (l′)e · A + B where
A = ((∑j∈K Tj) mod V ′)/(l′)e and B = (∑j∈K′ Tj) mod V ′. We know the number of essential
variables in A is at least 8m+λ−r, while the number of essential variables in B is at most m. Wlog,
we can consider an invertible linear isomorphism Φ from n variables to n variables such that l′ −→ x1
and it keeps the rank of Ti’s in K still high. After Φ, C mod V ′ looks like (x1)e · Φ(A) + Φ(B).
Similar to Claim 6.16, we want to find S∗

≤r−dim(V ′)(Φ(A)) such that it contains x1 in the kernel, so
we can append them to V and learn larger vanishing spaces. Assuming, we know e, this was easy
to do in Claim 6.16, as we had black-box access to Φ(A). In our current case, we will simulate
the same, by looking at partial derivatives of C wrt x1, and then looking for spaces such that mod
them the circuit has at most m essential variables.

To carry out the above plan, we first “guess" e from {1, . . . , d} (we will in fact run the algorithm
for choices of e) and thus assume that we have the right choice of e. Then we look at the e-th order
partial-derivative of Φ(C mod V ′), i.e. ∂eΦ(C mod V ′)

∂xe
1

with respect to x1. Using product rule, it
will be of the form Φ(A)+x1 ·P + ∂eΦ(B)

∂xe
1

where P (x1, . . . , xn) is some non-zero polynomial. Observe

51

that ∂eΦ(B)
∂xe

1
has almost m essential variables.

We will now compute the set of codimension upto r − dim V ′ spaces such that ∂eΦ(C mod V ′)
∂xe

1
has almost m essential variables (similar to above) and their kernel contains x1, which is equivalent
to setting x1 = 0 and finding vanishing spaces of Φ(A) and hence having no contribution from
x1 · P . Thus, we find S∗

≤r−dim(V)(Φ(A)) containing x1, and hence vanishing spaces of A such that
it contains l′ in the kernel by inverting Φ.

Therefore, we are able to learn the larger spaces from V , and hence learn S(1)
r (∑j∈K Tj) as

well. Once, we can compute S(1)
r (∑j∈K Tj), we can look at intersections of these spaces and

consider the circuit mod them, and repeat the computation of S(1)
r , to learn S(2)

r , . . . ,S(r)
r and

hence Sr(∑j∈K Tj).

Learning linear forms if SCS(r) property holds Fix r to be the smallest such that SCS(r)
property holds. As seen above, we can compute S∗

≤r−1(∑i∈K Ti) and S≤r−1(∑i∈K Ti). In Lemma 6.19,
we saw if the SCS(r) property is satisfied for C then we can use S∗

≤r−1(C) and S≤r−1(C) to learn
ccand independent linear forms from a gate. To do this, we went mod the two independent spaces
that satisfied the SCS(r) property, learned the projections linear forms in the gcd of the cluster
that survived by factoring, and then glued these projections back to learn the required linear forms.
In current lemma, we are trying to learn linear forms from gates in ∑

i∈K Ti, and we have access
to S∗

≤r−1(∑i∈K Ti) and S≤r−1(∑i∈K Ti), but we no longer have blackbox access to ∑
i∈K Ti for

factoring the surviving cluster. We will bypass this by finding codimension 1 spaces restricted to
which the polynomial has at most m essential variables, instead of factoring.

Let Wa and Wb be the two completely independent spaces that come from the SCS(r) prop-
erty of ∑

i∈K Ti. When we go modulo Wa and Wb, only one cluster of the 2t log d + 3k-cluster
representation of ∑

i∈K Ti survives. We also know Wa and Wb are in the set Pr−2 computed using
S∗

≤r−1(∑i∈K Ti) and S≤r−1(∑i∈K Ti). Since |Pr−2| = dO(1), we run the algorithm for all possible
choices and output the set of linear forms as a union, and hence it will contain the linear forms
computed when we picked the correct Wa and Wb.

We consider C mod Wa and C mod Wb. We will then compute codimension 1 spaces modulo
which the circuits have at most m essential variables, and these will be the linear forms mod which
(∑i∈K Ti) mod Wa and (∑i∈K Ti) mod Wb vanish respectively. This computation is exactly the
S∗

r (∑i∈K Ti) computation for r = 1, we discussed earlier. Since, only one cluster survives, the
linear forms in gcd of the surviving cluster will also be in this list. Thus, we compute the linear
forms in gcd of the cluster mod Wa and Wb. As discussed in Lemma 6.19, we can compute the
linear forms in gcd of cluster exactly by gluing the two projections as the spaces Wa and Wb are
completely independent.

Therefore, we have learned the linear forms in the gcd of the cluster. Since, it is 2t log d + 3k
cluster representation, the linear forms from any Ti that went to the simple part of cluster is at most
2k ·(2t log d+3k) from Lemma 5.7. We know for any gate index i ∈ K, we have dim(span(Lin(Ti))) ≥
8m + λ. And λ = 2k · (2t log d + 3k) + t + 2k2 · (ccand + k). Thus, even after removing the linear
forms lost in simple part of the cluster, we are still able to learn at least 8m + t + 2k2 · (ccand + k)
independent linear forms from gcd of the cluster and hence from one of the gates.

8 Learning Circuit from few linear forms
We saw in Lemma 7.2, if the rank of the simple part of the circuit is large, then we learn a list Lcand

with ccand independent linear forms in one of the gates (for any ccand = poly(log d)) in (nd)poly(log d)

52

time with high probability. In this section, we will discuss how we can reconstruct the entire circuit
if we have black-box access to a ΣΠΣ(k) circuit C = G× (T1 + · · ·+ Tk) using the set Lcand.

We will first see how to do reconstruction when the rank(sim(C)) is low in Lemma 8.1, i.e. in
case when we cannot use Lemma 7.2 to learn linear forms in a gate. We will use Lemma 3.9 to
factor out the linear factors of C and then learn the Non-linear part using the Carlini Algorithm
(Lemma 3.14) to obtain a ΣΠΣ(1, d, poly(log d)) generalized circuit computing the same polynomial
as C.

Next, we will look at a clustering result from [KS09a], where they show that every ΣΠΣ(k)
circuit has a unique clustering if the clusters are far enough (Theorem 8.2). This gives a unique
ΣΠΣ(s, d, poly(log d)) (s ≤ k) representation for every ΣΠΣ(k) circuit. We will focus on learning
this unique representation.

Using the linear forms, we have learnt from Lemma 7.2, we will use them to get projections
of sum of other clusters, which we can reconstruct recursively. Using these reconstructions, we
get enough projections of a single cluster that we can combine them using Theorem 3.16 and
Lemma 3.17. Once, we have learnt the cluster, we can subtract it from the circuit and learn the
rest of the circuit with lower top fan-in. At the end we do a PIT check to ensure the output circuit
computes same polynomial as C.

8.1 Low Rank Reconstruction

In this section, we will give a reconstruction algorithm for the case when the rank(sim(C)) <

2kk+9k2RF(k, d)(log d)kk .

Lemma 8.1. Given black-box access to a ΣΠΣ(k) circuit C = G × (T1 + · · · + Tk) computing a
degree-d polynomial f ∈ F[x1, . . . , xn] with rank(sim(C)) < 2kk+9k2RF(k, d)(log d)kk , there exists
an algorithm that runs in randomized time (nd)poly(log d) and with probability 1 − o(1) outputs a
ΣΠΣ(1, d, 2kk+9k2RF(k, d)(log d)kk) generalized depth-3 circuit as defined in Definition 5.

Proof. The input circuit is of the form C = G× (T1 + · · ·+ Tk) computing f where dim(span({l :
l|(T1 × · · · × Tk)})) < 2kk+9k2RF(k, d)(log d)kk . Clearly, the non-linear factor of f , NonLin(f) =

f∏
l∈Lin(f) l

will divide T1 +· · ·+Tk and therefore, will have essential variables less than rank(sim(C)).
So, we use Lemma 3.9 to get black-box access to NonLin(f) and the linear factors Lin(f) in
randomized poly(n, d) time. As NonLin(f) has at most rank(sim(C)) essential variables, there
exist a linear transformation A such that NonLin(f)(A ·x) depends only on rank(sim(C)) variables.
Using Theorem 3.12, we can compute A in randomized polynomial time. We can do polynomial
interpolation in time (nd)rank(sim(C)) from Lemma 3.8 to get monomial access to and hence learn
NonLin(f)(A · x). We use A−1 to recover NonLin(f), and then the circuit by multiplying it with
Lin(f). Notice that this would give us a ΣΠΣ(1, d, 2kk+9k2RF(k, d)(log d)kk) circuit computing
f .

8.2 Unique Clustering

In this section, we will look at the κ-distant clustering as defined in [KS09a]. We will ask the reader
to note that this is not the same as the clustering mentioned in Lemma 5.7.

Definition 18 (κ-distant circuit). Let C be a ΣΠΣ(s, d, r) generalized depth-3 circuit(Definition 5)
computing a polynomial f . We say that C is κ-distant if for any two multiplication gates of C, M
and M ′, we have that ∆(M, M ′) ≥ κ · r.

53

The following theorem in [KS09a] showed that for every ΣΠΣ(k) circuit and large enough κ,
there exists a unique ΣΠΣ(s, d, r) generalized depth 3 circuit, for s ≤ k and r in the suitable range.

Theorem 8.2 (Existence and Uniqueness,(Theorem 3.2,3.6[KS09a])). Let f be a polynomial that
can be computed by a ΣΠΣ(k) circuit and let κ ≥ RF(2k,d)

RF(k+1,d)+k +k. Then, there exists a ΣΠΣ(s, d, r)
generalized depth-3 circuit C ′ computing f for s ≤ k and RF(k + 1, d) + k ≤ r ≤ (RF(k + 1, d) +
k) · (κ · k + k)k−2. Moreover, this representation is unique.

8.3 High Rank Reconstruction

We will focus on learning the unique ΣΠΣ(s, d, r) configuration described in Theorem 8.2.

Lemma 8.3. Let f be a n-variate degree-d polynomial in F[x1, . . . , xn] such that it can be computed
by a ΣΠΣ(k) circuit with rank(sim(C)) > 2kk+9k2RF(k, d)(log d)kk . Let κ = 2(k−1)k−1+9(k−1)2+1RF(k, d)·
(log d)(k−1)(k−1)+1. Let C = G × (C1 + · · · + Cs) be the κ-distant unique generalized ΣΠΣ(s, d, r)
circuit from Theorem 8.2 also computing f with 2 ≤ s ≤ k. Then, we can compute C =
G× (C1 + · · ·+ Cs) in (nd)poly(log d) time with 1− o(1) probability.

Proof. We have κ = 2(k−1)k−1+9(k−1)2+1 · (log d)(k−1)(k−1)+1, therefore, from Theorem 8.2, there
must exist a unique circuit ΣΠΣ(s, d, r) κ-distance generalized depth-3 circuit C = G × (C1 +
· · · + Cs) computing f , where RF(k + 1, d) + k ≤ r ≤ (RF(k + 1, d) + k) · (κ · k + k)k−2, i.e.
r ≤ 2(k−1)k(log d)(k−1)k .

Let ccand = 2kkRF(k, d)(log d)kk . Since, rank(sim(C)) ≥ 2kk+9k2RF(k, d)(log d)kk , from Lemma 7.2,
we have a poly(d)-sized list Lcand which has at least ccand independent linear forms from one of
the gates. Wlog, that gate is T1, which is part of cluster C1. Guess ccand independent linear forms
from Lcand, and run the algorithm in parallel for all guesses. There will be at most dccand guesses,
and for the right guess, we have l1, . . . , lcand independent linear forms from T1.

At least ccand − r of these linear forms must be part of Lin(C1), and C1 vanishes mod these
linear forms. Wlog these be l1, . . . , lccand−r. We consider the circuit C mod these linear forms. Now
consider the circuit (C2 + · · · + Cs) mod li for i ∈ [ccand − r]. The circuit has top fan-in at most
k − 1 as at least T1 vanished. From Corollary 5.3, we have at most 2k2RF(k, d) log d linear forms
might be such that all the clusters vanish mod them. We can learn projections of these clusters
recursively, if rank(sim((C2 + · · · + Cs) mod li)) ≥ 2(k−1)(k−1)+9(k−1)2RF(k − 1, d)(log d)(k−1)(k−1) .
If only one cluster survives, we learn the projection using Lemma 8.1. Otherwise, we have the
remaining clusters had distance at least κ ·r ≥ κ ·RF(k +1, d). We will next exclude all linear forms
such that mod them the rank of the simple part of remaining clusters dropped from κ ·RF(k + 1, d)
to 2(k−1)(k−1)+9(k−1)2RF(k − 1, d)(log d)(k−1)(k−1) . This is exactly the setting, where we can use
Lemma 5.1 with r′ = 2(k−1)(k−1)+9(k−1)2RF(k − 1, d)(log d)(k−1)(k−1) . Therefore, Lemma 5.1, gives
us that for a given pair of clusters surviving, the rank of the simple part of the circuit can go
be low r′ for at most r′ log d linear forms. Doing this for all possible pairs, we have to exclude
k2r′ log d + r + 2k2RF(k, d) log d linear forms from l1, . . . , lcand. Since, ccand = 2kkRF(k, d)(log d)kk

is much bigger, we easily have k · (100 log d + r + 2) independent linear forms li’s such that which
we can reconstruct (C2 + · · · + Cs) mod li exactly due to uniqueness from Theorem 8.2, and get
projections of clusters that did not vanish.

Therefore, we have at least 100 log d + r + 2 many projections of a single cluster Cj . From
Theorem 3.16, we need 100 log d independent projections of Lin(G × Cj) to obtain Lin(G × Cj).
From Lemma 3.17 and Claim 7.5 of [SS25], we need r + 2 projections of NonLin(Cj), to obtain
NonLin(Cj) exactly. Since we have enough independent projections, we can use them to learn
G× Cj .

54

Once we have learned G×Cj , we can simply subtract it from C, and hence learn the remaining
circuit with smaller fan-in to obtain a circuit for C ′ = C−G×Cj . At the end, we run a PIT check
of Lemma 3.3 to see if C ′ + G× Cj = C, and output C ′ + G× Cj if correct.

8.4 Proof of Theorem 1.1

Finally using Lemma 8.3 and Lemma 8.1 let us finish the proof of Theorem 1.1.

Proof of Theorem 1.1. Let c1 = 2kk and c2 = kk. Then, if ∀i ̸= j ∈ [k], rank(sim(Ti + Tj)) ≥
c1(log d)c2 , the cluster representation of Theorem 8.2 will be G × (T1 + · · · + Tk) as all the gates
will be far enough and each cluster will have only one gate. In this case, Lemma 8.3 will learn the
exact circuit, and we will have proper learning.

If the rank of the simple part is small, we learn a ΣΠΣ(1, d, c1(log d)c2) circuit in Lemma 8.1.
If the rank is high, but not all gates are far apart, we learn a ΣΠΣ(s, d, c1(log d)c2) circuit in
Lemma 8.3 for some s ≤ k − 1.

9 Future Work
The major open question that remains open is to understand the problem of proper learning for
small rank ΣΠΣ(k) circuits. This remains open even for top fan-in 2. Obtaining hardness results
for the problem would also be very interesting.

It is also a very interesting question to de-randomize the current algorithm, as well as obtain
reconstruction algorithms over low characteristic fields when top fan-in is greater than 2. Finally,
it would also be interesting to obtain reconstruction algorithms for “generalized" depth-3 circuits
and ΣkΠΣΠδ circuits for constant k, δ as we have recently made good progress on PIT for these
models.

References
[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

[AV08] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 67–75, 2008.

[BBB+00] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning
functions represented as multiplicity automata. J. ACM, 47(3):506–530, 2000.

[BCC+18] Alessandra Bernardi, Enrico Carlini, Maria Virginia Catalisano, Alessandro
Gimigliano, and Alessandro Oneto. The hitchhiker guide to: Secant varieties and
tensor decomposition. Mathematics, 6(12):314, 2018.

[BDWY13] Boaz Barak, Zeev Dvir, Avi Wigderson, and Amir Yehudayoff. Fractional sylvester–
gallai theorems. Proceedings of the National Academy of Sciences, 110(48):19213–19219,
2013.

[BE67] W Bonnice and Michael Edelstein. Flats associated with finite sets in pd. Niew. Arch.
Wisk, 15:11–14, 1967.

55

[BGKS22] Vishwas Bhargava, Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning general-
ized depth three arithmetic circuits in the non-degenerate case. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2022.

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynom-
inal interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing (STOC), pages 301–309, 1988.

[BS25] Vishwas Bhargava and Devansh Shringi. Faster & Deterministic FPT Algorithm for
Worst-Case Tensor Decomposition. In 52nd International Colloquium on Automata,
Languages, and Programming (ICALP 2025), volume 334, pages 28:1–28:20, 2025.

[BSV20] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction of depth-4
multilinear circuits. SODA 2020, 2020.

[BSV21] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction algorithms for
low-rank tensors and depth-3 multilinear circuits. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 809–822, 2021.

[Car06] Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic geometry
and geometric modeling, pages 237–247. Springer, 2006.

[CGK+24] Pritam Chandra, Ankit Garg, Neeraj Kayal, Kunal Mittal, and Tanmay Sinha. Learn-
ing arithmetic formulas in the presence of noise: A general framework and applica-
tions to unsupervised learning. In 15th Innovations in Theoretical Computer Science
Conference, ITCS, volume 287 of LIPIcs, pages 25:1–25:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2024.

[DDS21] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic Identity Testing
Paradigms for Bounded Top-Fanin Depth-4 Circuits. In Valentine Kabanets, editor,
36th Computational Complexity Conference (CCC 2021), volume 200 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 11:1–11:27, Dagstuhl, Germany,
2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[DGI+24] Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir
Lysikov. Homogeneous algebraic complexity theory and algebraic formulas. In 15th
Innovations in Theoretical Computer Science Conference (ITCS 2024), pages 43–1.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024.

[DS05] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and polynomial
identity testing for depth 3 circuits. In Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing, STOC ’05, page 592–601, New York, NY, USA,
2005. Association for Computing Machinery.

[DSW14] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for design ma-
trices and a new proof of kelly’s theorem. In Forum of Mathematics, Sigma, volume 2,
page e4. Cambridge University Press, 2014.

[FS12] M. A. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. Electronic Collo-
quium on Computational Complexity (ECCC), 19:115, 2012.

56

[GKKS13] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Arithmetic circuits: A chasm at
depth three. In Proceedings of the 54th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 578–587, 2013.

[GKL12] A. Gupta, N. Kayal, and S. V. Lokam. Reconstruction of depth-4 multilin-
ear circuits with top fanin 2. In Proceedings of the 44th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 625–642, 2012. Full version at
https://eccc.weizmann.ac.il/report/2011/153.

[GKQ14] A. Gupta, N. Kayal, and Y. Qiao. Random arithmetic formulas can be reconstructed
efficiently. Computational Complexity, 23(2):207–303, 2014.

[GKS20] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 889–899. IEEE, 2020.

[GOPS23] Abhibhav Garg, Rafael Oliveira, Shir Peleg, and Akash Kumar Sengupta. Radical
sylvester-gallai theorem for tuples of quadratics. In 38th Computational Complexity
Conference (CCC 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[GOS22] Abhibhav Garg, Rafael Oliveira, and Akash Kumar Sengupta. Robust Radical
Sylvester-Gallai Theorem for Quadratics. In Xavier Goaoc and Michael Kerber, edi-
tors, 38th International Symposium on Computational Geometry (SoCG 2022), volume
224 of Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1–42:13,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[GVJ88] D Yu Grigor’ev and Nicolai N Vorobjov Jr. Solving systems of polynomial inequalities
in subexponential time. Journal of symbolic computation, 5(1-2):37–64, 1988.

[Han65] Sten Hansen. A generalization of a theorem of sylvester on the lines determined by a
finite point set. Mathematica Scandinavica, 16(2):175–180, 1965.

[Ier89] D. Ierardi. Quantifier elimination in the theory of an algebraically-closed field. In Pro-
ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC
’89, page 138–147, New York, NY, USA, 1989. Association for Computing Machinery.

[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equiva-
lence problem. In Proceedings of the twenty-second annual ACM-SIAM symposium on
Discrete algorithms, pages 1409–1421. SIAM, 2011.

[KNS19] Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factoriza-
tion and reconstruction of low width algebraic branching programs. computational
complexity, 28:749–828, 2019.

[KNST17] N. Kayal, V. Nair, C. Saha, and S. Tavenas. Reconstruction of full rank algebraic
branching programs. In 32nd Computational Complexity Conference, CCC 2017., pages
21:1–21:61, 2017.

[Koi10] P. Koiran. Arithmetic circuits: the chasm at depth four gets wider. CoRR,
abs/1006.4700, 2010.

57

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 216–223, 2001.

[KS06] A. Klivans and A. Shpilka. Learning restricted models of arithmetic circuits. Theory
of computing, 2(10):185–206, 2006.

[KS08] Zohar S Karnin and Amir Shpilka. Black box polynomial identity testing of general-
ized depth-3 arithmetic circuits with bounded top fan-in. In 2008 23rd Annual IEEE
Conference on Computational Complexity, pages 280–291. IEEE, 2008.

[KS09a] Zohar S Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In 2009 24th Annual IEEE Conference on Computa-
tional Complexity, pages 274–285. IEEE, 2009.

[KS09b] N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3
circuits. In Proceedings of the 50th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 198–207, 2009. Full version at
https://eccc.weizmann.ac.il/report/2009/032.

[KS19] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous
depth three circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 413–424, 2019.

[KSS14] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial
identity testing and deterministic multivariate polynomial factorization. In 2014 IEEE
29th Conference on Computational Complexity (CCC), pages 169–180. IEEE, 2014.

[KT90] Erich Kaltofen and Barry M Trager. Computing with polynomials given by black boxes
for their evaluations: Greatest common divisors, factorization, separation of numerators
and denominators. Journal of Symbolic Computation, 9(3):301–320, 1990.

[Lan15] Joseph M Landsberg. Geometric complexity theory: an introduction for geometers.
Annali dell’universita’di Ferrara, 61(1):65–117, 2015.

[Laz01] Daniel Lazard. Solving systems of algebraic equations. ACM SIGSAM Bulletin,
35(3):11–37, 2001.

[LST22] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower
bounds against low-depth algebraic circuits. In 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science (FOCS), pages 804–814, 2022.

[OS22] Rafael Oliveira and Akash Kumar Sengupta. Radical sylvester-gallai theorem for cu-
bics. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 212–220. IEEE, 2022.

[OS24] Rafael Oliveira and Akash Kumar Sengupta. Strong algebras and radical sylvester-
gallai configurations. In Proceedings of the 56th Annual ACM Symposium on Theory
of Computing, pages 95–105, 2024.

[PS21] Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testing algorithm
for Σ[3]ΠΣΠ[2] circuits via Edelstein–Kelly type theorem for quadratic polynomials. In

58

Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 259–271, 2021.

[PS22a] Shir Peleg and Amir Shpilka. A generalized sylvester–gallai-type theorem for quadratic
polynomials. In Forum of Mathematics, Sigma, volume 10, page e112. Cambridge
University Press, 2022.

[PS22b] Shir Peleg and Amir Shpilka. Robust Sylvester-Gallai Type Theorem for Quadratic
Polynomials. In Xavier Goaoc and Michael Kerber, editors, 38th International Sym-
posium on Computational Geometry (SoCG 2022), volume 224 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 43:1–43:15, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[PSV24] Shir Peleg, Amir Shpilka, and Ben Lee Volk. Tensor Reconstruction Beyond Constant
Rank. In Venkatesan Guruswami, editor, 15th Innovations in Theoretical Computer
Science Conference (ITCS 2024), volume 287 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 87:1–87:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 27(4):701–717, 1980.

[Shp07] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication
gates. In Proceedings of the thirty-ninth annual ACM symposium on Theory of com-
puting, pages 284–293, 2007.

[Shp19] Amir Shpilka. Sylvester-gallai type theorems for quadratic polynomials. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1203–
1214, 2019.

[Sin16a] Gaurav Sinha. Blackbox Reconstruction of Depth Three Circuits with Top Fan-In Two.
PhD thesis, California Institute of Technology, 2016.

[Sin16b] Gaurav Sinha. Reconstruction of Real Depth-3 Circuits with Top Fan-In 2. In Ran
Raz, editor, 31st Conference on Computational Complexity (CCC 2016), volume 50 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:53, Dagstuhl,
Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[Sin22] Gaurav Sinha. Efficient reconstruction of depth three arithmetic circuits with top fan-
in two. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[SS11] Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for bounded top fanin
depth-3 circuits: the field doesn’t matter. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 431–440, 2011.

[SS13] Nitin Saxena and Comandur Seshadhri. From sylvester-gallai configurations to rank
bounds: Improved blackbox identity test for depth-3 circuits. Journal of the ACM
(JACM), 60(5):1–33, 2013.

[SS25] Shubhangi Saraf and Devansh Shringi. Reconstruction of Depth 3 Arithmetic Circuits
with Top Fan-In 3. In 40th Computational Complexity Conference (CCC 2025), volume
339, pages 21:1–21:22, 2025.

59

[Tav13] S. Tavenas. Improved bounds for reduction to depth 4 and depth 3. In MFCS, pages
813–824, 2013.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International sym-
posium on symbolic and algebraic manipulation, pages 216–226. Springer, 1979.

60
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

