Electronic Colloquium on Computational Complexity, Report No. 222 (2025)

Reconstruction of Depth-3 Arithmetic Circuits with Constant Top
Fan-in

Shubhangi Saraf* Devansh Shringi' Narmada Varadarajan ¥

December 28, 2025

Abstract

In this paper, we give the first subexponential (in fact, quasi-polynomial time) reconstruction
algorithm for depth-3 circuits of any constant top fan-in (XIIX(k) circuits) over R, C, or any
large characteristic finite field F. More explicitly, we show that for any constant k, given black-
box access to an n-variate polynomial f computed by a XIIX (k) circuit of size s, there is a
randomized algorithm that runs in time quasi-poly(n,s) and outputs a generalized XIIX(k)
circuit computing f. The size s includes the bit complexity of coefficients appearing in the
circuit: this is the max bit complexity if the field is R or C, and log |F| if the field is finite.

Depth-3 circuits of constant fan-in (XIIX (k) circuits) and closely related models have been
very well studied in the context of polynomial identity testing (PIT). In this paper, we build
upon the structural results for identically zero XIIX (k) circuits that were studied in the context
of PIT. Using connections to discrete geometry, we prove new structural properties of vanishing
spaces of polynomials computed by such circuits.

Prior to our work, the only subexponential reconstruction algorithm for XIIX(k) circuits is
by [Karnin—Shpilka, CCC 2009]. However, the run time is quasipolynomial in |F|, and hence this
is only efficient over small finite fields. Over general (potentially exponentially large size) finite
fields, efficient reconstruction algorithms were only known for & = 2 ([Sinha, ITCS 2022]); and
over R and C, they were only known for k¥ = 2 ([Sinha, CCC 2016]) and k = 3 ([Saraf-Shringi,
CCC 2025]).

1 Introduction

Arithmetic circuits are directed acyclic graphs (DAGs) used to represent multivariate polynomials
succinctly. They generate polynomials from input variables by repeatedly applying addition (+)
and multiplication (x) operations.

The reconstruction problem for arithmetic circuits asks the following: given only black-box (or
oracle) access to a polynomial computed by an unknown circuit C of size s from some circuit class C,
design an efficient (deterministic or randomized) algorithm that outputs another circuit computing
the same polynomial. This can be viewed as the algebraic counterpart of exact learning in Boolean

*Department of Mathematics & Department of Computer Science, University of Toronto, Toronto,
Canada. Research partially supported by an NSERC Discovery Grant and a McLean Award. Email:
shubhangi.saraf@utoronto.ca

TDepartment of Computer Science, University of Toronto, Toronto, Canada. Research partially supported by an
NSERC Discovery Grant and a McLean Award. Email: devansh@cs.toronto.edu

#Department of Mathematics, University of Toronto, Toronto, Canada. Research partially supported by an NSERC
Discovery Grant and a McLean Award. Email: narmada.varadarajan@mail.utoronto.ca

ISSN 1433-8092

circuit complexity [Ang88]. When we additionally require that the reconstructed circuit must lie
in the same class C as the original, the task is referred to as proper learning.

Reconstructing arithmetic circuits is a central yet notoriously challenging problem. Recent
years have seen substantial progress, with numerous works developing reconstruction algorithms
for several restricted but natural subclasses of arithmetic circuits [BBB1T00, KS01, KS06, FS12,
GKQ14, KNST17, KNS19, GKS20, CGK*24].

Depth-reduction results [AV08, Koil0, Tav13, GKKS13] have shown that even low-depth circuits—
notably depth-3 and depth-4 models—are remarkably powerful. Consequently, efficient reconstruc-
tion even for depth-3 circuits would have far-reaching implications. However, despite sustained
efforts, we remain far from a complete understanding of general depth-3 reconstruction. Still, sig-
nificant progress has been made for restricted subclasses of depth-3 (X1IX) and depth-4 (XTIX1T) cir-
cuits [Shp07, KS09a, BSV21, PSV24, BS25, GKL12, BSV20, Sinl6b, Sin22, SS25, KS19, BGKS22].

A closely related problem is black-box polynomial identity testing (PIT). Here, given black-box
access to a polynomial f computed by a circuit C' of size s from a class C, the goal is to determine
whether f is identically zero. Equivalently, the task is to construct an explicit hitting set for C.!

It is straightforward to observe that deterministic reconstruction for a circuit class C is at
least as hard as derandomizing black-box PIT for C. Even randomized reconstruction typically
demands a deep understanding of the structure of C, and in most known cases, appears to be
strictly harder than derandomizing PIT. In fact, for nearly every circuit class studied so far, effi-
cient PIT algorithms have preceded progress on reconstruction algorithms. Since this work focuses
on reconstruction for depth-3 circuits with constant top fan-in (i.e., XII¥(k) circuits), we begin by
surveying what is known about PIT for this model.

PIT for XII¥X(k) circuits A recent breakthrough by [LST22] established the first subexponential-
time deterministic black-box PIT for XIIY. circuits (and more generally, constant-depth circuits).
However, truly polynomial-time derandomization is only known for restricted subclasses of depth-3
circuits. When the top fan-in of the output gate is bounded by a constant k, the model is referred to
as XII3(k) circuits. This class has been extensively studied in the context of black-box PIT, with to
a sequence of works culminating in polynomial-time algorithms [DS05, KS08, KS09b, SS13, SS11].

A unifying idea in many of these results is that XIIX (k) circuits that compute the zero poly-
nomial must exhibit strong algebraic structure—specifically, they must be low-rank. This insight
led to deep connections with discrete geometry, particularly variants of the Sylvester—Gallai theo-
rem. Inspired by this, several recent works [Shp19, PS22a, PS21, PS22b, GOS22, 0S22, GOPS23,
0S24, DDS21] have recently attempted to lift these techniques to restricted depth-4 circuits, such
as YFTIXI" circuits (i.e., depth-4 circuits with bounded top and bottom fan-in).

Reconstruction for XIIX(k) circuits Despite all this progress on our understanding of the
structure of identically zero XIIX(k) circuits and S¥TIXII" circuits, reconstruction algorithms for
these models have still proved to be nearly intractable. Here is an overview of what was known
in the case of infinite or exponentially large fields. Until recently, the only known subexponential
reconstruction algorithms R and C held for ¥ < 3. Even for k = 2, the problem is still very
challenging and, despite attracting a lot of interest, was only resolved in the last few years by the
works of Sinha [Sinl6b] (over R and C), and [Sin22](over all finite fields, including exponentially
large finite fields). This was extended to k = 3 in the work of Saraf and Shringi [SS25] (over R and
C) and needed several new ideas and techniques.

'"With randomness, this can be solved easily using the Schwartz-Zippel lemma [Sch80, Zip79]

Since reconstruction for general values of k seemed more challenging, much attention focused on
interesting restricted submodels such as powering, multilinear and set-multilinear XII3(k) circuits;
the last few years have seen some exciting progress on reconstruction algorithms in these set-
tings [BBB100, Shp07, KS09a, BSV21, PSV24, BS25]. Among these, powering circuits ¥ A X(k),
and set-multilinear XIIX (k) have attracted particular interest due to their close connections with
symmetric tensor decomposition and tensor decomposition problems. The focus of our paper will
be on general 311X (k) circuits with no restrictions on structure.

The minimum k for a homogeneous polynomial such that it can be computed by a homoge-
neous XII¥(k) circuit is known as the Chow Rank of the polynomial. It is a generalization of
complexity measures like Tensor rank and Waring rank and has been studied in various settings
[Lan15, BCCT18, DGIt24].

In the setting of small finite fields, one can exhaustively search over all field elements. This
makes algorithm design easier in several settings, and indeed this allowed [Shp07, KS09a] to obtain
an efficient reconstruction algorithm (which depended quasi-polynomially on field size) for XIIX (k)
circuits. Even though exhaustive search is possible, these results are highly non-trivial, with several
beautiful ideas and algorithms developed, which enabled and influenced the design of several of the
known reconstruction algorithms.

Our result (informal): Given black-box access to an n-variate degree-d polynomial f over R,C,
or a finite field F with char(F) greater than d, computed by a 31IX(k) circuit, there is a randomized
quasi-poly(n,d, s) time reconstruction algorithm for f, where s is the mazimum bit complezity of
any constant appearing in the circuit if the field is R or C, or it is log |F| if the field is finite.

Some definitions XIIX(k) circuits are arithmetic circuits of depth 3 with top fan-in k. These
circuits have three layers of alternating > and Il gates, and compute a polynomial of the form

where the [;;(Z)’s are linear polynomials.

For the purpose of reconstruction and PIT, one can easily reduce to the homogeneous setting
where all the d;’s are the same (see discussion in Lemma 3.2). Henceforth we will assume that our
circuits are homogeneous.

We say that the circuit is simple if gcd{T;|i € [k]} = 1 and minimal if for all proper subsets
S C k], XiesTi # 0. We define ged(C) = ged(T1,...,T). The simplification or the simple part
of C, denoted by sim(C), is defined as C'/ gcd(C). We define the rank of a circuit (rank(C')) as the
dimension of the space spanned by all the linear forms in the circuit dim(span({l;; : ¢ € [k],j €
[di]})). We will often be concerned with rank(sim(C)).

A generalized depth-3 circuit YI1X(k, d,r) is of the form

k d;
C= Z (H Lij - hi(lia, . .. 7li7">)

where l;,0;; are linear forms in F[z1, ..., 2,] and d = max;(d; + deg(h;)). Notice that when 7 is
small (say constant or O(logd), the representation looks like a XII3 (k) circuit where every product
gate is further multiplied by a polynomial in few linear forms.

1.1 Owur Results

In this paper, we give the first subexponential time (in fact, quasipolynomial time) algorithm for
reconstructing XIIX (k) circuits over R, C, or any finite field with char(F) greater than d. When the
k multiplication gates in our circuit are sufficiently distant—V4i,j € [k],i # j,rank(sim(T; + Tj)) >
c1 log® d for some absolute constant ¢y, co—then our algorithm does proper learning, i.e. its output
is the unique XIIX(k) circuit computing f. If this distance property does not hold, then our
algorithm still outputs a circuit computing f, but from a slightly more general class—it computes
a generalized depth-3 circuit of top fan-in at most k—1. The running time in the statement supresses
a poly(s) dependence on the max bit complexity s of any constant appearing in the circuit C' if the
underlying field is R and C, and a poly log(|F|) factor if F is a finite field.
Here is the formal statement of our main result.

Theorem 1.1. Let F be a field that is a finite field with char(F) greater than d, or R or C. Let
k € N*. Let f € Flxy,...,z,] be a degree-d polynomial computed by 1Y (k) circuit of the form
C=T+To+ -+ Ty. There exist constants c1,ca > 0 (depending on k) such that the following
holds: There is a randomized algorithm that runs in (nd)O(logd)o(1> time, makes black-box queries
to f, and with probability 1 — o(1) does the following:

1. If Vi, j € [k],i # j,rank(sim(T; + T3)) > ci(logd)®, then it outputs a XIIX(k) circuit com-
puting f.

2. If 3i,5 € [k],i # j, such that rank(sim(T; + Tj)) < ci1(logd)® then it outputs a XIIX(k —
1,d,c1(logd)®?) generalized depth-3 circuit computing f.

Remark 1.2 (Dependence on bit complexity and field size). Owver fields R or C, if s is the maxi-
mum bit complexity of any coefficient appearing in C, then our algorithm’s run time also depends
quasipolynomially on s. In the statement of the above theorem and later in the paper, we have
suppressed the quasipoly(s) dependence in the running time for clarity of exposition. Qver finite
fields, our algorithm needs query access over a poly(d) degree extension of F, and has a run time
that also depends quasipolynomially on log |F|.

Remark 1.3 (Proper vs improper learning). Note that our algorithm is a proper learning algorithm
only when every pair of multiplication gates had enough ‘distance’. Otherwise, the output came from
the model of generalized depth-3 circuits. All prior works on reconstruction of XI1X(2) circuits and
YIIX(k) circuits [Shp07, KS09a, Sin16b, Sin22, SS25] also had a similar kind of output.

Remark 1.4 (Field Characteristic). The requirement of char(F) > d for finite fields comes from
using Carlini’s algorithm ([Car06]). We use it only when there are gates in the circuit that have
low rank. In cases where the rank of each gate in the XIIX(k) circuit is at least ¢1(logd)®?, we can
do reconstruction even if the characteristic is small. For more details, check Remark 3.13.

Outline of the paper In Section 2, we give a high-level overview of our proof. Section 3
comprises preliminaries, such as rank bounds for identically zero circuits and solving systems of
polynomial equations. In Section 4, we bound the number of ‘nice’ spaces V' such that the circuit
vanishes on V' (vanishing spaces). Section 5 consists of several technical structural results about
the circuit and its vanishing spaces, which aid us in algorithmically computing a large class of
vanishing spaces in Section 6. Finally, in Section 7, we show how to use these computed vanishing
spaces to learn some of the linear forms in the circuit C, and in Section 8 we complete the proof of
our theorem by reconstructing the circuit from these linear forms.

2 Proof Overview

Let f be an n-variate degree-d polynomial that has a XIIX (k) representation and let
C=T1+T5+---+T}

be a XIIX (k) circuit computing f. As discussed in the preliminaries, after a simple preprocessing
step, we may assume that the circuit—and every gate within it—is homogeneous (see Lemma 3.2),
so that each Tj is a product of exactly d linear forms. In general, the gates T; may share a nontrivial
greatest common divisor which will affect our proof methods. One might hope to reduce to the case
ged(Th, Ty, ..., Tx) = 1 by factoring out the common linear factors, but this is not possible: there
may be linear factors that divide some T; but are not part of the ged, and dividing by such factors
might destroy the property that the polynomial is computable by a XII¥(k) circuit. However, for
the sake of this proof overview, let us assume that ged(7h, 75, ..., T;) = 1.

Our goal is to learn all of the linear forms in the circuit C, so we will first attempt to learn
some of the linear forms that appear in one of the gates of C. In order to do this, we will try and
analyze the linear spaces of low codimension on which the polynomial f vanishes. A space V is a
vanishing space for f if f vanishes identically on V. If we write V = V(I1,...,1,) = {l1,..., .} *,
we say span(ly,...,l) is a vanishing kernel for f since f mod (ly,...,l,) = 0. It turns out that
these spaces encode valuable information about the polynomial f. We will show that if we can
somehow “learn” these spaces—or even enough information about them—then we can learn some
linear forms appearing in C. Once we can learn enough (some large polynomial in logd) linear
forms in a single gate, then by combining results developed in past works [Shp07, KS09a] with ideas
from the theory of locally-decodable codes, we can recover the entire circuit.

Our high-level approach, at this generality, is not so different from that of [Sin16b, Sin22, SS25].
The works of [Sinl6b, Sin22] attempted to learn codimension 1 and 2 vanishing spaces for circuits
of fan-in 2, and the work of [SS25] attempted to learn codimension 1, 2 and 3 vanishing spaces for
circuits of fan-in 3. To learn these spaces, these prior works had to prove several highly nontrivial
results about their structure.

In this work, we will need to understand and learn vanishing spaces up to codimension k
for circuits of top fan-in k (where k might be an arbitrarily large constant). For this, we prove
much more general structural theorems about vanishing spaces. Interestingly, given our improved
understanding, our structural results and algorithms for learning the spaces are a lot less ad-hoc,
and do not involve an elaborate case-by-case analysis as in the work of [SS25]. Nevertheless, the
final algorithms and their analysis are still fairly intricate.

As a first step to learning vanishing spaces, we need to be able to show that their number
is bounded. Unfortunately, this is not true. However, we will show how to identify a large and
important subset of them, and show that that subset has bounded size. We will then attempt to
learn a large class of these vanishing spaces, and use the spaces we have learned to determine some
of the linear forms appearing in the circuit. Once we are able to learn a few of the linear forms, we
have already made serious progress, and learning the rest can be done recursively.

Here is a brief outline of our reconstruction algorithm and its proof of correctness. After the
brief outline, we will elaborate on some of the steps in an attempt to give a clearer high-level picture
of what is going on.

1. For each r < k, we attempt to bound the number of maximal vanishing spaces S,(f) of
codimension 7. In general, this may not be finite. We instead define a large important
subclass of vanishing spaces—for each < k, S..(f) is the set of those vanishing spaces whose
kernels do not contain a subspace such that going modulo the subspace will crash the rank

of the circuit by too much. We formally define this class and show how to bound its size in
Section 4.

2. We would like to algorithmically compute S/.(f). We show how to do this (or something close
to this) in Section 6. This is the most intricate and challenging part of our analysis. Instead
of computing all of S.(f) (which we do not know how to do), we show how to learn (for many
values of r) a large subset of S.(f) that we call Sf(f). We elaborate more on this step in the
next part of the proof overview. Additionally, we look at the spaces in S (f) and show how to
algorithmically extend them to get additional vanishing spaces (which may not be maximal
anymore) but which have interesting properties such that some individual gates vanish on
those spaces. We call this richer set of vanishing spaces S, (f).

3. We consider intersections of spaces in S}(f) and S,(f) and show that these have enough
information to recover many individual linear forms in C'. The details of this step appear in
Section 7. This works as long as the linear forms in each gate span a high rank subspace. If
they do not, then we use Carlini’s algorithm [Car06] to compute suitable vanishing spaces of
the subset of gates that have high rank. We then can again learn enough linear forms from
one of the high rank gates.

4. Reconstruct the entirety of the circuit using the few linear forms learned in the previous part.
This part of the proof is very similar to what was done in prior works. These ideas first
appeared in the works of Shpilka [Shp07] and Karnin—Shpilka [KS09a] and then were also
used in Saraf-Shringi [SS25]. The details appear in Section 8.

2.1 Vanishing spaces and bounds on the number of them

Note that if for each ¢ € [k], [; is a linear form dividing 7}, then the polynomial f vanishes identically
modulo span(ly,...,l;). This gives us the linear subspace V(i1,la,...,lx) of codimension at most
k on which f vanishes, and the kernel of this space span(ly,...,).

For any r € [k], we will let V, be the set of codimension r spaces on which f vanishes. Note that
all vanishing spaces need not be of the above form (determined by linear forms in the circuit), and
this is one reason why understanding vanishing spaces is challenging. Now, if we could learn all
spaces of codimension up to k on which f vanishes, then we would also learn V(iy,12,...,l;) (and
hence also span(ly, . ..,lx)) for any tuple (I1,...,l;) with [; dividing T;. And if we learn these spaces
for each such k-tuple, then using suitable intersections, we could start recovering linear forms in
the circuit.

The situation turns out to be far from so simple. One significant obstacle is that, in general, we
cannot even bound the number of spaces in V,. There are two reasons for this. The first is that if
there is any codimension r—1 space on which f vanishes, then any codimension r space contained in
the codimension r — 1 space will be a vanishing space (and thus there can be infinitely many of them
over infinite fields). This is not a serious issue: let us just define S, to be the mazimal codimension
r spaces on which f vanishes. The other more serious issue is a subtle one. We are only able to
bound even the number of Sy spaces when the circuit C' is high-rank—the linear forms appearing in
the circuit span sufficiently high dimension. Now, suppose that there is some (r — 2)-dimensional
space span(ly,...,l,—2) such that the rank of C' mod (ly,...,l.—2) crashes. That is, the original
circuit C = 3 T; has ged 1 and its linear forms span a high-dimensional space, but the circuit C'
mod (ly,...,l,—2) suddenly has a high ged and the simple part sim(C mod (l1,...,l,—2))) has low
rank. We call any such space a crashing space, and call the set of all crashing spaces of dimension
7 — 2 to be ¥<r_2. Since the circuit C mod (ly,...,l,_2) is low rank, it could have infinitely many

codimension-2 vanishing spaces, resulting in infinitely many codimension-r vanishing spaces for the
original circuit C.

To deal with this issue, we define the set S.(f) to be those spaces V € S,(f) such that the
kernel of V' does not contain any (r — 2)-dimensional crashing subspace V' (i.e. V' does not lie in
ngr—Q)-

Bounding the size of S/(f) The starting point in our proof is to use ideas from discrete
geometry and rank bounds for identically zero XIIX (k) circuits to show that, for each r < k, the size
of S/(f) is polynomially bounded. A beautiful sequence of works [DS05, KS08, KS09b, SS11, SS13]
uses techniques from incidence geometry to prove that the rank of the simple part of any identically
zero XIIY (k) must be bounded (see Theorem 3.5 for a precise statement).

Observe that if V(Iy,1s,...,1;) € S.(f), then C mod (l3,1s,...,1l,) is identically zero, and hence
we can invoke Theorem 3.5. Let V = span(ly,la,...,[,) with dim(V') = r. If the original circuit
sim(C) had high rank while sim(C' mod V') has low rank, then several linear forms in sim(C') must
move into ged(C' mod V). In other words, there must be several k-tuples (I}, ...,1}), with each [}
dividing 7; such that dim(span(l},...,l;,)) > 2, but dim (span(l},...,l}) mod V) = 1. This can
only happen if V nontrivially intersects span(l},...,;). Now, if this happens for several choices of
(1},...,1}.), we show that these k-tuples determine a subspace V of V of some dimension . Since
V is determined by a few k-tuples of linear forms from C, it follows that the number of possible
choices of V is polynomially bounded. Now for any such V, consider the circuit C’ = C' mod V.
The ciruit ¢’ vanishes modulo (V' mod V). So, either dimV = r — 1 and the number of extensions
of V to V is bounded by d, the number of linear factors of C’, or, since V' does not contain crashing
spaces of dimension r — 2, C’ is high-rank and we can apply induction to bound the number of
possible spaces (V' mod V). There are many details omitted in this overview; for example, we
need to show that (V' mod V) is actually in S,_,~(C”) to apply our induction hypothesis. The full
details appear in Section 4.

Once we bound the size of S.(f), the next steps are to compute S,.(f), and to show that learning
S/(f) for various choices of r can help us learn linear forms appearing in C. Both these steps have
their challenges, and we will try to elaborate on these challenges and how we overcome them in the
discussion below.

2.2 Learning many of the vanishing spaces

As in previous works [SS25, Sinl6b, Sin22], one way to learn vanishing spaces (assuming one can
bound them) is to project the function f to only constantly many (or polylogarithmically many)
variables, compute the vanishing spaces (here, S.) for the low-variate polynomials by solving a
suitable system of polynomial equations (now in few variables) for each projection, and then ‘glue’
or ‘lift’ the solutions to a global solution over the entire original space.

However, given the nature of the definition of S.(f) (vanishing spaces whose kernels do not
contain any crashing spaces) there seems to be no way to encode its computation as a system of
polynomial equations that is efficiently solvable. Indeed, the property of being a vanishing space
is easy to encode, but that of being a vanishing space whose kernel does not contain a crashing
space seems much harder. The way we get around this issue is to prove a structural result about
crashing spaces that shows that they cannot be arbitrarily positioned.

Structure of crashing spaces We prove that there must exist (for each relevant r) a low-
dimensional subspace W, that intersects every crashing space of dimension up to r — 2. We use
lower bounds from locally-decodable codes (Similar arguments have been used in the past in related

settings for reconstruction.) to prove this fact. Essentially, the existence of any crashing space
implies several linear dependencies among the linear forms appearing in the gates of C. We show
that having too many independent crashing spaces would imply the existence of a 2-query locally-
decodable code with parameters that we know cannot exist.

Learning a low-dimensional space that hits all crashing spaces We will show how to
algorithmically learn such a space W,, which is perhaps one of the most intricate parts of our
argument. To learn W, the hope is that we first learn all crashing spaces of dimension up to r — 2
and then pick a maximal independent subset of them whose span W,. However, learning crashing
spaces of dimension up to r — 2 (i.e. spaces in ¢<,_2) turns out to be difficult and something we
are unable to do. Instead, here is our idealistic proof strategy. The actual details are much more
involved, so we will later point out what goes wrong with our strategy and how we fix it.

Note that for W € €¢<,_2, when we consider the circuit C' mod W, many of the linear forms
from the gates of C' must move into the ged of C' mod W, resulting in a high-rank ged(C' mod W),
for this is the only way sim(C' mod W) can be so low rank. Now, for any linear form [dividing
the ged of C mod W, the space span(W, 1) is a vanishing kernel of dimension at most r — 1 for
C'. If we can recursively show that for most choices of [the space span(W,[) can be learned (since
we can recursively show that most vanishing spaces of codimension r — 1 can be learned), then we
would be well-positioned to learn the crashing space W. Perhaps the intersection of span(W,l;)
and span(W, l2) for some choice of I; and Iy (as long as the linear forms dividing the ged span high
enough dimension) will allow us to recover W.

The main thing that goes wrong with this proof strategy is that though span(W,!) is a van-
ishing kernel, it may not be a minimal vanishing kernel. Thus, though we may not be able to
learn span(W,1), we will still be able to recursively learn a vanishing kernel that is a subspace
of span(W,1). In order to learn vanishing kernels of dimension r, we assume we can learn most
vanishing kernels of dimension up to » — 1. We will also not be able to do this for all linear forms
dividing the ged of C' mod W but for most linear forms, but let us not worry about this for now.

Once we learn minimal vanishing kernels contained within span(W,[) for most choices of [
dividing ged of C mod W, we can still learn a large subspace W of W. While W may not ‘crash’
the rank as much as W does, we will show that W is still crashing-like.

Thus we will algorithmically be able to construct crashing-like subspaces of almost all crashing
spaces in €<,_a. Our structure theorem for crashing spaces also extends to crashing-like spaces,
and a maximal independent subset of them suffices in obtaining the space W, that we seek. The
space W, will have: every V' € ¥<,_» has nontrivial intersection with W,.

Learning S;(f)—a large subset of S/(f) Instead of learning all of S/, our algorithm will
only learn those spaces in S, whose kernels do not intersect W, ; we call this set of spaces S;(f).
By the bound on the size of S, S is also bounded. Assuming that we have already computed
Wy, we can now encode the computation of spaces in S by a system of polynomial equations
(albeit in n variables). In order to efficiently solve the system, we take several projections of the
function f to only constantly many (or polylogarithmically many) variables, and compute the S;(f)
spaces for the low-variate polynomials by solving a suitable system of polynomial equations (now
in few variables) for each projection. There are many details involved in successfully executing this
process—for instance, we need to show that all properties that we need of W, are consistent with
projections, and this is somewhat subtle. We then show how to ‘lift’ the solutions for the projected
spaces by gluing them together to form a global solution over the entire original space using ideas
similar to those in past works such as [Sin22, SS25, Shp07, KS09a]. We finally compute the set

Sy(f)-

Learning more general vanishing spaces—S,(f) The spaces in S} have a lot of information,
but to effectively use this information, we use S; to first learn a richer collection of possibly non-
maximal vanishing spaces, S,(f). The spaces in S,.(f) are harder to define concisely, but they
have some very useful and interesting properties that allow us to extract information about the
circuit. One key property is the following. Consider any k-tuples (I1, ...,) with [; appearing in T;
such that span(ly,...,l) is r-dimensional and does not have nontrivial intersection with W,. The
space span(ly,...,lx) is the kernel of a vanishing space for C', but we cannot algorithmically learn
it if the corresponding vanishing space is not maximal. However, we will still learn a subspace of
span(ly, ..., ;) as a kernel of some space in S} for some r’ < r, but this subspace could be somewhat
arbitrary. We will algorithmically and recursively show how to “grow” this subspace until we obtain
a subspace that contains one of the linear forms [q,...,l;. These “grown” subspaces will be the
kernels of the vanishing spaces in the set S,.

2.3 From vanishing spaces to linear forms

Armed with W,., §¥, and S, for various choices of r, we then show that intersections of the kernels
of spaces in S, (for various choices of r) suffice to learn several linear forms from at least one
multiplication gate of C'. This step uses the assumption that all gates of C' have high rank.

Recall that by the properties of S,., for any k-tuple (I1,...,lx) with [; appearing in T} such that
span(ly,...,lx) is r-dimensional and does not have nontrivial intersection with W,, we can learn a
subspace of this span (as a kernel of a space in S,) which contains one of the I;. Now, if every T;
is high rank that it follows that are a large number of such k-tuples such that we learn a subspace
with one of the linear forms of the k-tuple; moreover, we can find many such k-tuples such that
the subspaces learned correspond to the same linear form. In such a situation (if the k-tuples
are independent enough), the intersections of these subspaces will let us algorithmically learn that
linear form. Thus, the proof involves some clever counting along with basic linear algebra.

Handling the case when some gates have low rank The above procedure only works as long
as the linear forms in each gate span a high-rank subspace. If they do not, then we use Carlini’s
algorithm [Car(06] to (in some sense) reduce to the case of all gates having high rank.

Suppose that C is of the form } ;. 4 T; + > ;c g T; where the indices in A correspond to the high-
rank gates and those in B correspond to the low-rank gates. We then use Carlini’s algorithm [Car06]
to show how to set up a system of polynomial equations whose solutions correspond to the vanishing
spaces of) ;- 4 T;, i.e. the vanishing spaces of just the high-rank gates. Let C4 = >, 4 T; compute
the polynomial f4. Though we do not have black-box access to f4, we will still be able to learn W,.,
S» and S, spaces corresponding to f4. (This is not entirely accurate—there are some complications,
but this is the spirit of the argument.) Once we can do this, then using the previous analysis, we
can again learn enough linear forms from one of the high-rank gates.

2.4 Few linear forms to the entire circuit

To go from a few (poly(logd)) linear forms to the entire circuit, we use ideas appearing in previous
works [Shp07, KS09a]. Once we have enough linear forms from one of the gates, we essentially
go modulo these linear forms and recursively reconstruct the projections of XIIX (k') circuits with
K <k-—1.

In [KS09a], the authors gave a way to convert a XII¥(k) circuit into a XIIX (s, d,) generalized
circuit (s < k), such that if the rank of the simple part of the sum of any two gates in the generalized
circuit is high, it is a unique representation (Theorem 8.2).

We do proper learning if the initial gates of the circuit satisfy the distance properties of the
clustering, i.e. after the clustering, each cluster is just one gate.

We go then mod the linear forms we learned earlier, and reconstruct the generalized circuit with
smaller top fan-in recursively. With access to enough linear forms, we can learn poly(log d) many
independent projections of one gate in the generalized circuit.

Then, using the technique of [Shp07](Theorem 3.16), one can combine the O(log d) independent
projections of the gcd part of the gate in the generalized circuit to learn the ged part exactly.
Similarly, using poly(logd) projections and techniques of [KS09a] (Lemma 3.17), we can learn the
sim part of the gate. Thus, we can learn one gate of the generalized circuit representation exactly.

We subtract it from the given circuit and learn the rest of the circuit recursively. At the end,
we output the circuit after a randomized PIT check from Lemma 3.3 to ensure the output circuit
computes the correct polynomial.

3 Preliminaries

Notation Let N:={0,1,2,...} and N* := {1,2,...}. Denote {1,2,...,n} by [n]. The cardi-
nality of a set S is denoted by |S|. F is usually used to denote the underlying field, with char(IF)
denoting its characteristic. R refers to the field of real numbers, and C refers to the field of complex
numbers. Denote by loga the logarithm of a with base two.

Throughout the paper, we use uppercase letters X, Y to denote sets of variables, lowercase x; to
denote variables, x,y or &,y to denote vectors/tuples of variables, and v to denote a vector/tuple
of field constants.

Whenever we say linear forms divide a multiplication gate, we mean up to scalar multiples. For
a polynomial f, Lin(f) denotes the multiset of linear factors of f (including multiplicities), and

NonLin(f) refers to 1l . We use span(ly, ..., 1) to refer to the vector space that is the span
leLin(f)

of the linear forms {/1,...,l;}. In other words, it is the set of all vectors of the form Y ;_; a;l; for
a; € F. For a vector space V, dim(V) denotes the dimension of V.

Given k linearly independent linear forms Iy, la, - - - Iy, let V(Iy,12,...,l;) C F™ denote the codi-
mension k subspace of F™ corresponding to those vectors where l1, lo, - - - [, evaluate to 0. We say that
V(l1,l,...,1lx) is a vanishing space for a polynomial f if f vanishes on all points of V(i1,1lo,...,).
For a space V, KV or Ker(V') are used to denote the kernel of V. For a set of spaces S, KS denotes
the set of kernels of spaces in S.

Consider any invertible linear transformation ¢ € F**™ such that ¢(l;) = x; for all i € [k]. Let
¢ - f = f(é(x)). Then setting z1,x2,...x; to 0 in ¢ - f results in the identically 0 polynomial. The
polynomial f mod (l1,...,l;) is equivalent (up to an invertible linear map) to ¢ - f after setting
x1,T,...xE to 0. Often it is easier to think in terms of ¢ - f, and once we learn ¢ - f, one can
recover f after applying the inverse linear map. We simplify notation and use f mod [(and C
mod [where C is a circuit computing f) to denote f mod (I) (or C' mod (l)) for a linear form .
let V' be a r-dimensional vector space spanned by linear forms l1,...,[,(any basis), then we might

also use f mod V' (and C' mod V) to denote f mod (ly,...,l;) (and C mod (ly,...,1.)).

Remark 3.1. For most of the paper, we will assume char(F) is either 0 or greater than d. We
will also assume the field F to be of large size, i.e. |F| > d™. If the field is small, we consider the
circuit to be over an extension of size d". Due to uniqueness, results up to scaling of linear factors

10

in Theorem 3.5 and Theorem 8.2, the output circuit will have constants in F. This only changes
the bit complezity by nlogd.

3.1 Depth-3 Circuits

In this section, we formally introduce the general model of depth-3 circuits which is the focus of
our paper.

Definition 1. A depth-3 X11X(k) circuit C computes a polynomial of the form
k k

d;
C(X)=> Ti(X)=> [LX),

i=1 i=1j=1

n
where the l; ;’s are linear functions; l; j(X) = Y af jx¢ + agj with af ; € F.
t:l b2 2 2

We say that C' is minimal if no strict subset of the multiplication gates sums to zero. We define
ged(C) as the linear product of all the non-constant linear functions that belong to all the T;’s.
Le. ged(C) = ged(Th,...,Tk). We say that C is simple if gcd(C') = 1. The simplification or the
simple part of C, denoted by sim(C'), is defined as C/ ged(C). In other words, sim(C') is the circuit
resulting upon the removal of all the linear functions that appears in ged(C).

Definition 2 (Homogeneous Depth-3 circuit). A depth 3 circuit X113(k) computing a polynomial
f € Flxy,...,zy,] is a homogeneous depth-3 circuit SIIX(k) if f is homogeneous and the polynomial
computed in every gate of the circuit is homogeneous as well. It will have the following form

k d
C(X) =ZTz‘(X) = Zle‘,j(X),

M=

where the l; j’s are linear functions; l; ;(X) = aﬁ’jxt + a?,j with aaj €F and a?,j =0.

t

Il
—

k
Definition 3 (Rank of a circuit). The rank of a circuit C(X) = Y Ty(X) = ¥k, H;‘li:1 lij(X) is
i=1

defined as the dimension of the space spanned by all the linear forms in the circuit dim(span({l; ; :
i€ lk],j€[di]})). We denote it by rank(C').

Definition 4 (Rank of the simple part of a circuit). The rank of the simple part of the circuit
k
C(X) =Y TiX) =3k, H;lizl l; j(X) is defined as the rank of the simple part (obtained after
=1
removing the ged of T;’s). We will denote the simple rank of C using A(C) = rank(sim(C')). This
also defines a distance measure between 2 circuits C1,Cy as A(Cy, Co) = rank(sim(C1 + C3)).
In the following lemma from [SS25, Sinl6a], it was shown that reconstruction of any XIIX(k)
circuit could be reduced to reconstruction of homogenous XII¥ (k) circuits with poly(n, d) overhead.

Therefore, from now on, we are only concerned with the reconstruction of YXII¥ (k) circuits in this
paper and all XII¥ (k) circuits we consider will be assume to be homogeneous.

Lemma 3.2 (Section 1.5, [Sinl6a];Lemma 3.1,[SS25]). Let f € Flx1,...,zy,] be a degree-d poly-
nomial computed by a XII3(k) circuit C. Then in time poly(n,d) (per query), one can sim-
ulate a black-box access to a homogeneous LIX (k) circuit computing a homogeneous fhom ¢
Flx1,..., o, 2], such that any reconstruction algorithm for fh*™ immediately implies a reconstruc-
tion algorithm for f, with only a poly(n,d) overhead in time complezity.

11

3.2 Generalized Depth-3 circuits
Definition 5. A generalized depth-3 circuit XIIX(k,d, r) is of the form

k d; 3 B
c=% (] 11 (zlz))

i=1

where 1,1 are linear forms in Flzy, ..., z,] and d = maz;(d; + deg(h;)).

In particular, in the setting where r is small (say constant or O(log d)), the representation looks
like a XIIX (k) circuit where every product gate is further multiplied by a polynomial in a few (i.e.
r) linear forms. Without loss of generality we can also assume that the h;’s have no linear factors.

3.3 Polynomial Identity Testing and Rank Bounds

Lemma 3.3 (Schwartz-Zippel Lemma,[Sch80, Zip79]). Let f € Flzy,...,zy,] be a polynomial of
total degree d that is not identically zero. Let S C F be any finite set. For si,...,s, chosen
independently and uniformly at random from S,

Prif(si,...,sn) =0] < i
5]

A finite set of points S with the property that every line through two points of S passes through
a third point in S is called a Sylvester-Gallai configuration. The famous Sylvester-Gallai theorem
states that the only Sylvester-Gallai configurations in R™ are those formed by collinear points. This
basic theorem about point-line incidences was extended to higher-dimensional flats in [Han65, BE67]
over the real numbers and in [BDWY13, DSW14] over C. We define the rank of a set of vectors to
be the dimension of the linear space they span.

Definition 6 (SG(FF,m)). Let S be a set of non-zero vectors in "1 such that no two vectors in
S are scalar multiples of each other. Suppose that for every set V. C S of k linearly independent
vectors, the linear span of V contains at least k + 1 vectors of S. Then, the set S is said to be
SGy-closed. The largest possible rank of an SGy-closed set of at most m vectors in F™ (for any n)
is denoted by SGy(F, m).

It is known that SG; (R, m) = 2(k — 1) [Han65, BE67]. The rank of high-dimensional Sylvester-
Gallai configurations over C was bounded by 2¢° for a fixed constant ¢ in [BDWY13]. This bound
was further improved to SG;(C,m) = cF (for a fixed constant ¢) in [DSW14]. In Theorem 7
of [SS13], it was shown that for any field F, SGx(F,m) < 9klogm, while for F = F,, we know
constructions such that SGy(F,, m) = Q(k log, m).

The polynomial time black-box PIT algorithms for XII3(k) circuits follow from some strong
structural properties of identically zero XIIX (k) circuits. In [KS09b] it was shown that the rank of
any identically zero, simple and minimal XTI (k) circuit is at most some constant depending on k.
This bound was improved in [SS11, SS13], and the theorem below gives the best bound we know.

Theorem 3.4 ([SS13]). Let C be a LIIX(k) circuit, over field F, that is simple, minimal and zero.
Then, we have rank(C) < 2k? + k - SG4(F, d).

Combining the above theorem with the best bounds we know for SGi(R,m), SG;(C, m) and
SGg(F,, m) we obtain the following:

12

Theorem 3.5. Let C' be a simple, minimal and identically zero X1I¥(k) circuit over R, C or [F,.
Then there is an absolute constant Rp(k,d) depending only on k,d such that rank(C) < Rp(k,d).
If C is over R then we can bound rank(C) by 3k%. If C is over C then we can bound rank(C) by
2k% + k- c* for some absolute constant c¢. If C is over F,, then we can bound rank(C') by 9k logd.

We represent the rank bound for simple, minimal generalized X1I1%(k, d, p) circuit by Rr(k, d, p).

Lemma 3.6 (Lemma 4.2,[KS08]). Let C be a simple and minimal X1I3(k, d, p) circuit in n inde-
terminates computing the zero polynomial. Then rank(C) < Rpr(k,d,p) = Rr(k,d) + k - p.

3.4 Other Known Results

Theorem 3.7 (Effective Hilbert irreducibility, Theorem 1.1[KSS14]). Let S C F be a finite set and
9(X, A1, ..., Ay) a monic polynomial in X of total degree at most d. If g is irreducible then it holds
that

Pa.slg(X, 00T + pi,...,a0,T + Br) is not irreducible] < o(d>/|S)),

where a and B are chosen uniformly and independently from S™.

Lemma 3.8 (Black-box multivariate polynomial interpolation, [BOT88, KSO01]). Let n,m,d be
parameters and F be a field that is R, C, or a large enough finite field. There exists a deterministic
algorithm that runs in time (nmd)o(l), and outputs a set S of points in F", such that given black-
boz access to any degree-d polynomial f € Flxy, ..., x,] with at most m monomials, the coefficients
of all monomials can be recovered in (nmd)°M) time using evaluations from the set {f(s): s € S}.

Lemma 3.9 (Black-box Factoring, [KT90]). There exists a randomized algorithm that takes as
input black-box access to a degree-d, n-variate polynomial f with coefficients in some field F, runs
in time poly(nd) and outputs black-box access to polynomials fi,..., fm (m < d) along with integers
€1, ...,em such that,

Pr(f=fit...fom /\fl, ooy fm are irreducible] > 1 — o(1).

Using the above, we can also decompose any circuit into its linear factors (which we can inter-
polate) and NonLin(f) in randomized poly(n,d) time.

3.5 Solving a System of Polynomial Equations

We obtain the vanishing spaces of our circuit by solving a system of polynomial equations. The
problem of solving a system of polynomial equations is generally considered to be difficult, even
undecidable for certain fields. A longer discussion on the complexity of finding a single solution to
a system of polynomial equations for various fields can be found in [BSV21].

The system of polynomial equations we will solve in this paper will have an extra condition that
the number of solutions is finite. In this case, the problem can be solved in time that is exponential
in number of variables for various fields as described below. We will also need to find all possible
solutions of the system that we set up (instead of a single solution), and in order to do this, we
show that the number of solutions is finite, and in particular polynomially bounded. Note that
once we can find a single solution, then by iteratively adding additional equations, we can find all
solutions.

In this work, the polynomial systems we solve have a small (O(1)) number of variables, and
hence once can find solutions efficiently. The theorem we state below is a variant of an analogous
one that appears in [BSV21], and it describes the current known upper bounds for solving a system
of polynomial equations for various fields.

Let F denote the algebraic closure of F.

13

Theorem 3.10. Let fi, fao,... fm € Flx1,...,2,] be n-variate polynomials of degree at most d.
Suppose that the system of equations fi(x) = 0,..., fm(z) = 0 has N solutions in the algebraic
closure of F, where N is finite. Then, the complexity of finding all the solutions in an appropriate
extension is as follows:

1. [GVJ88] For F =R, there is a deterministic poly((mdN)™) time algorithm. Here the authors
assumed that the constants appearing in the system are integers (or rationals). Note that for
all computational applications we can WLOG assume this by simply approzimating/truncating
a given real number at some number of bits.

2. [ler89] For F = C (or any algebraically closed field), there is a deterministic (mn)®™ .
(dN)O™) time algorithm.

3. [Laz01] For ® = T, there is a randomized (mdnN)P°Y") time algorithm that computes
solutions in a degree N extension of FF.

Thus, in randomized time (mdn.N)P°Y(™) we can find all the solutions of fi(x) =0,..., fm(z) =
0 if it has N solutions in the algebraic closure of F.

Remark 3.11. In the results used above, we have suppressed a poly(s) multiplicative dependence in
the running time, where s is the maximum bit complexity of any coefficient appearing in the input
circuit (log |F| for finite fields). We use the above algorithm only in cases where n is poly(log d) and
the number of solutions N = poly(d), and hence the solutions are only in poly(d) degree extensions
and there is an additional quasipoly(s,d) running time factor, which we suppress throughout the

paper.

3.6 Essential Variables of a Polynomial

This notion will be useful in reconstruction when the input circuit is low rank, as well as when one
of more gates is low rank. We start by defining essential variables in a polynomial.

Definition 7 (Essential variables, [Kayll]). The number of essential variables in f(z1,...,2y)
is the smallest t for which there exists an invertible linear transformation A € F") such that
f(A-Z) depends on only t variables.

The number of redundant variables is the number of essential variables subtracted from n. We
will use the following result from [Car06] that allows us to compute ¢, the number of essential
variables, and the linear transformation A.

Theorem 3.12 ([Car06],[Kayl1]). Let n,d be positive integers and F be a field with char(F) > d or
= 0. There is a randomized algorithm that takes as input black-box access to an n-variate degree-d
polynomial f(x) € F[Z] with t essential variables, runs in time (nd)®WY, and outputs an invertible
matriz A € F") such that f(A-Z) depends only on the first t variables.

Remark 3.13. Theorem 3.12 is the only tool we use that requires the characteristic of the under-
lying field to be at either O or greater than d. This is used in Lemma 7.2 and Lemma 8.1, both of
which contribute to Theorem 1.1 requiring char(F) to be 0 or greater than d.

The partial derivative 0;f is used to represent 8%. We use df to denote (O1f,...,0,f). We
define the partial derivative matrix of a polynomial f, M(f), as the matrix with columns indexed
by monomials over n variables and degree d — 1, while the rows are indexed by [n], and M;; =
coeff;(0; f) where coeff;(g) is the coefficient of monomial j (represented as vector) in g.

14

We denote df" as the set of vectors a € F” such that a - df = 0. The proof of the above
theorem relies on the following lemma which describes the relation between the partial derivative
matrix and the number of essential variables.

Lemma 3.14 ([Car06], Lemma B.1[Kayl1]). The number of redundant variables in a polynomial
f(z1,...,2,) equals the dimension of Of*. In particular, the number of essential variables of f is
the rank of the partial derivative matriz M(f).

The following lemma from [Shp07] will also be useful to us.

Lemma 3.15 (Lemma 23, [Shp07]). Let f(z1,...,2,) € Flz1,...,2,] be a polynomial with k es-
sential variables and two different representations: f = g(l1,...,lg) = h(l},...,1}) for polynomials
g:h € Flyr,...,yx], and linear forms Iy,... Iy, 15,...,l; € Floy,...,z,]. Then, span({li}icr)) =
span({l;}ic))-

3.7 Gluing Projections

Using lower bounds for locally-decodable codes in [Shp07], the authors gave an algorithm that could
learn a product of linear forms exactly with multiplicities if given access to £(logd) independent
non-zero projections of the product. This is summarized in the theorem below.

Theorem 3.16 (Implicit in [Shp07]). Let L be a multiset containing d linear functions in n vari-
ables. Let {p1,...,om} be a set of linearly independent linear functions such that m > 100 log(d).
For each j € [m] define the multiset

L;i ={l mody;:l€L}.
Then there exists a deterministic algorithm that, given {L;}J",, outputs L in poly(n,d) time.

In [KS09a], the authors gave a way to similarly glue projections of gates in a generalized circuit.
The two key ingredients were the theorem above, and the following lemma below that allows one
to glue the projections of low-rank polynomials.

Lemma 3.17 (Special case of Lemma 4.20 in [KS09al). Let h be a non-zero n-variate polynomial
of degree d with r essential variables. Let ly,ly be two independent linear forms in Flxy, ..., zy]
such that h mod (ly,ls) also has r essential variables. Then, there exists a deterministic algorithm
which when given as the input the two polynomials {h mod l1,h mod l2}, outputs a representation
of h as a polynomial of v linear functions in O(n - d") time.

4 Upper bounding the size of S,.(f)

Let f be an n-variate degree-d polynomial in F[zy,...,x,] computed by a XIIX(k) circuit C' =
T+ T+ -+ Ty

Definition 8 (Vanishing Spaces). A codimension-r space V(li,...,l,) is a vanishing space for
a polynomial f if f mod (ly,...,l;) = 0. The vanishing space is maximal if it is not properly
contained in any vanishing spaces, i.e. for any q < r linear forms l’l,...,l; € (ly,..., L), f
mod (I}, ...,1l;) # 0.

We define V,(f) to be the set of all codimension-r vanishing spaces of f, and S,(f) to be the
set of all mazximal codimension-r vanishing spaces of f.

Sp(f) ={V :V € V.(f) is mazimal }.

15

For most of our proofs, we will need the actual linear forms 1, ..., [, instead of the codimension-r
subspace, so we define the r-kernel of the polynomial f as

ICVT(f) = {span(ll, - ,l,,«) : V(ll, A ,l,«) € VT(_]C)},

and the minimal r-kernel

KS,(f) = {span(ly,...,l.) : V(l1,...,l;) € S;(f)}.
We will refer to a space V € KS,(f) as a minimal vanishing kernel.

Definition 9. Let f be a polynomial computed by a XII¥(k) circuit C, and c¢q = Ry(k,d) + 2¢°.
A g-dimensional space span(ly,...,l;) is a crashing space of f if

(1) rank(sim(C' mod (l1,...,l;))) < cq41;
(1) C mod (ly,...,l;) #0;
(717) and C mod (ly,...,l) is not a product of linear forms.

A crashing space is minimal if it does not contain any other proper crashing spaces.
Define
Cq = {minimal g-dimensional crashing spaces of f}.

We can only bound and compute those kernels that do not contain any crashing spaces, so we
define

S.(f) ={V € S:(f) : ker(V) does not contain any space in €, (f) for all ¢ < r — 2},
and
KS.(f) ={V € KS,(f) : V does not contain any space in 6,(f) for all ¢ <r — 2}.

Theorem 4.1. Let f be a polynomial computed by a degree-d X1I%(k) circuit C. For any r < k,
let ¢, = Rp(k,d) + 2r2. If rank(sim(C)) > c,, then

|S(f)| = O(d*™)

Proof. We will show this using induction on r and k. First, for any k, |[KS1(f)| < d = O(d*") since
each linear form generating a KS1 space must be a factor of f. Assume for our induction hypothesis
that for some & and some r > 2, we know that for all h < k and ¢ <r — 1, |[KS}| = O(d?*¢*). Our
proof is divided in two cases.

Case 1. We bound the number of V = span(ly,...,l.) € KS.(f) such that some gate T; vanishes
modulo (V).

Suppose without loss of generality that T; = T7. There must be some linear form [€ V that
divides T1; extend this to a basis {l, 15, ...,I.} for V. Define V' = span{ls, ...,I..}. Then, the circuit
C'=Ty+ -+ T mod (l) is nonzero by the minimality of V, and ¢’ mod V' = C mod V = 0.
This shows that V' is a vanishing kernel for C’. We want to apply our induction hypothesis to C’
and bound the number of possible extensions of V' to V.

16

First, we need to show that V' € KS/_;(C"). If V' contains a proper vanishing kernel U’ C V'
such that ¢’ mod U’ = 0, then span{U’, [} is a proper subspace of V such that C' mod span{U’, [} =
0, contradicting the minimality of V. So, V' is a minimal vanishing (r — 1)-kernel for C’. Similarly,
suppose V' contains a g-dimensional crashing space W C V' such that rank(sim(C’ mod W)) <
Cq+1, for some ¢ < r — 3. Then, span{W,l} C V is a (¢ + 1)-dimensional crashing space for C,
since rank(sim(C' mod span{W,[})) = rank(sim(C’ mod W)) < ¢441 < cg+2, contradicting that
V does not contain any crashing spaces of dimension at most r — 2. So, V' € KS,_1(C").

If r = 2, then V' is a KS; space, i.e. it is generated by a linear factor of the circuit C’; so there
are at most d choices of V’. And there are at most d choices of the linear form [as a factor of the
gate Ty, so there are at most d2 = O(d?*™*) choices for the space V = span{V”, [}.

If r = dim V > 3, then the circuit C” satisfies our high-rank hypothesis since

rank(C’) = rank(sim(7% + - - - + Tx) mod (l)) = rank(sim(C mod (l)) > ¢,_1,

where the last inequality holds since span{l} C V' cannot be a crashing space.
From the induction hypothesis, there are at most O(d2*("=)*) choices for span{l}, ..., I.} from
KS._1(f mod), and there are at most d choices for a divisor [of T7. Therefore, in this case there

are at most O(d?*™*) possibilities for V € KS,.(f).

Case 2. We bound the number of V.= span{ly,...,l,} € KS.(f) such that no gate T; vanishes
modulo V.

First, suppose the circuit has the form C = G x (T} + --- + Tx) where G = gcd(C) and
Ty + -+ + T = sim(C). Define

L(T;) = {l:1is a linear form dividing T;};

k
L(sim(C)) = | L(T3).
=1

Since C' vanishes modulo V, the rank bounds in Theorem 3.5 imply that rank(C mod V) <
Rr(k,d). For each i =1,... k, define

A; ={l € L(T;) : | divides ged(C mod V)},
B = L(T;) \ Ai.

Since V is r-dimensional, rank{l mod VI € By U---U B} > rank{l : |l € BiU---U By} —r,
so rank(A; U--- U A,) = rank{l € L(sim(C)) : [divides gcd(C' mod V)} > rank(sim(C)) — r —
Rr(k,d) > 3r +1. We will actually prove something stronger: we will show by induction that the
number of r-dimensional spaces V such that rank(C' mod V') < Rp(k,d) and no gate T; vanishes
mod V is at most O(d?)..

For the base case of » = 1, we want to bound the number of linear forms / such that rank(C
mod I) < Rp(k,d) and [does not divide any gate of C'. Since rank(sim(C)) > Rr(k,d) + 2, there
are at least 2 independent linear forms l1,ly € £(C) that divide ged(C' mod [). That is, for each
j = 1,2, there are k linear forms l1 ; € L(T1), ..., € L(T}) and scalars A1 j, ..., Apj, 015, - -, Ok j
such that

lij = il + N jlj.

So, for j = 1,2, the vector space
Vi =span{lyj, ..., ly;} =span{l,l;}

17

has dimension 2. The intersection Vi N Va = span{l}, so [is determined by at most 2 linear forms
from each of £(T1),...,L(T), so there are at most d** possibilities for 1.

For the inductive step, suppose we know that for all ¢ < r, the number of ¢g-dimensional spaces
U € K8, such that rank(C' mod U) < Rp(k,d) and no gate T; vanishes modulo U is O(d***). To
bound the number of r-dimensional spaces V € K8 such that rank(C mod V) < Ryp(k,d) and
no gate vanishes mod V', we consider two cases: the case when V contains a (r — 1)-dimensional
subspace W such that rank(C' mod W) < Rp(k,d), and the case where it does not. Recall by
definition of KS/., V' cannot contain any crashing spaces of dimension < r — 2.

Case 2a. We bound the number of spaces V' that contain some (r — 1)-dimensional subspace W
such that rank(C' mod W) < Rp(k, d).

This proof is similar to the proof of case 1. Let V = span{W, [} for some linear form [. Then,
the circuit C’ = C mod W is nonzero by the minimality of V', but C’ mod [= 0, so [is a factor
of C’. No gate of the original circuit C' vanishes modulo W, so the number of choices for W is
O(d%(T*l)Q) by the induction hypothesis applied to C' and W. Then, we have at most d choices for
the factor of C’, which implies we have O(d%rz) choices for the space V.

Case 2b. We bound the number of spaces V' such that for any (r —1)-dimensional subspace W C V,
rank(C mod W) > Rp(k,d).

This proof uses a linear algebra trick similar to the base case. We know that least 2r 4+ 1
independent linear forms collapse into ged(C' mod V), so let Iy,...,l., for some ¢ > 2r + 1, be
independent linear forms that divide ged(C' mod V). Again, for each j € [c], we have linear forms
l;j € L(T;),i=1,...,k such that

l@j mod V = Ai,jlj
for some scalars A; ;. Define
‘/j = span{le, N ’lkJ}

so dim(V; NV) = dim(V;) — 1.
Note that dim V; > 2, otherwise the linear forms Iy j,...,[; ; would all belong to the ged of C'.

Our goal is to use a subset of the spaces {Vi,...,V.} to learn a subspace U’ of V.
We say a set of spaces Vi, ..., V, is independent if for every i € [a], V; ¢ span{V1,...,Vi_1,Viy1,..., Vo }.
Suppose (relabelling the spaces if necessary) Vi, ..., V, is a maximal independent set of spaces in

{V; : j € [c]}. This implies that span{V,...,V,} = span{V; : j € [¢]}. Since dim(V; mod V) =1
for al i € [a], we know that

dimspan{Vi,...,V,} =dim (span{V; mod V..., V, mod V}UV) <a+r.
On the other hand,

dimspan{Vi,...,V,} = dimspan{V; : j € [c]} > 3r +1,

so a > 2r + 1. Thus, we can find r independent spaces Vi,..., V.
Now, by Lemma 4.2, for some m < r, the space U’ = span{Vi,...,V;,,—1} NV}, is nonzero and
contained in V. There are d* choices for each of the spaces Vi,..., Vi, so there are at most d*"

choices for the space U’. If U’ = V, this shows there are at most O(d2k7"2) choices for V.

Suppose U’ is a proper subspace of V. Consider the circuit C’ = C mod U’ and two cases, one
where dim(U’) = r — 1, and the other where dim(U’) < r — 2. In the first case, if U’ is (r — 1)-
dimensional then the linear form V' mod U’ divides the circuit C’, so we have at most d possible
extensions of U’ to V, and therefore at most d - d*" = O(d**") choices for C.

18

In the second case, suppose 1 < dimU’ = ¢ < r — 2. We know that V does not contain
any crashing spaces of dimension < r — 2, so rank(sim(C’)) > ¢,—1. We will now argue that V
mod U’ is in fact in KS,—4(C”). First, V. mod U’ is a vanishing kernel for C' = C' mod U’ since
V is a vanishing kernel for C. Next, if V' mod U’ contains a proper subspace V' mod U’ that
is vanishing for C’, then V' is a proper subspace of V that is vanishing for C, contradicting the
minimality of V. Finally, if V' mod U’ contains a subspace V' mod U’ that is crashing for C’,
then V' is a subspace of V that is crashing for C, which is again a contradiction. This all shows
that V' mod U’ € KS,_4(C’). Recall that r — ¢ < r — 1, so by the induction hypothesis, there are
at most O(d2=1*) choices for V' mod U’. So, there are at most O(d2Fr=D%). ghr = O(d?)
choices for the space V. O

Definition 10. We say a collection of spaces Vi,...,V, is independent if for every i € [a], V; ¢
Spa‘n{vl') R ‘/’i—la ‘/’H—la ceey Va}'

Lemma 4.2. Let Vy,...,V, be a set of independent spaces®, and let U be an r-dimensional space,
for some 1 < r < a, such that dim(U N'V;) = dim(V;) — 1 for all j = 1,...,a. Then, for some
i <r, the space span(Vy,...,V;)NViy1 CU and dim(span(Vy,...,V;)NViy1) > 1.

Proof. Define U; = UNV, fori=1,...,a. Choose the maximum 7 such that the spaces U, ..., U; are
independent. Note that since U is r-dimensional, the maximum such ¢ is at most r, which is strictly
less than a. We will show that span{Vj,...,V;} NV;4; C U and dim(span{Vy,...,V;} NV;41) > 1.

For each j, since V; mod U is 1-dimensional, choose a nonzero vector w; so that V; = span(wj;, U;).
Suppose for contradiction that span{Vy, ..., V;}NV;;1 € U. Equivalently, span(wy, ..., w;)NVit1 #
{0}. So, we can choose a nonzero vector z11 € (span(wi,...,w;) N V1) \U.

By the maximality of i, U;y; C span{U,...,U;_1}. Since Vi1 € span{Vi,...,V;} by indepen-
dence, it follows that w; 1 ¢ span(Vi,...,V;), which implies that w;y; ¢ span(Uit1, zit1)-

Finally, this tells us that span(Ut1, wit1,2i+1) C Viyr and dim(Viyy) > dim(Usqq) + 2 =
dim(V;41) + 1, a contradiction. O

5 Structural results about vanishing spaces

In this section we prove a variety of useful structural results on vanishing spaces. Many of these
statements are generalizations of similar statements that appeared in [SS25] in the setting of k = 3.
The proofs are a simple variation of those when k = 3, but we include them for completeness.

The first structural result that will be useful in our reconstruction is the following lemma, which
bounds the dimension of the set of rank-reducing linear forms. The proof of Claim 4.8 in [DS05]
implies this result. It can also be inferred as a special case of Lemma B.1 (restated with better
notation in section B.1.2) in [KS09a], with A = [k], 7 = rank(sim(Th + 1o+ --- +T})), re = r, and
X = {#Aong' We omit the proofs when they can be found in the referenced papers.

Lemma 5.1 (Implied from Claim 4.8,[DS05]). Let C be a XIIX(k) circuit of the form Th + Ta +
-+« + Ty such that ged(Th, ..., Tx) = 1. Fizr’ > 0 to be any constant such that rank(sim (T + T +
<o+ Tg)) > 2r'logd + 2k. We define a linear form 1 to be rank-reducing if Vi € [k] |t T; and
rank(sim(C mod 1)) < r'. If we define a set of rank-reducing linear forms for C as

L :={l:1 is rank-reducing for C'}
then dim(span(L)) < maxz(r'logd, 2k log dk + 2k).

2As defined in the proof of case 2b of Theorem 4.1, a set of spaces Vi, ..., V, is independent if for every i € [a],
Vi g_ﬁ span{Vl, ey ‘/7;_1, ‘/i+17 ey Va}.

19

Using the above lemma along with rank bounds for XII¥(k) circuits, we show how to bound
the dimension of linear forms that divide f but do not divide the ged G. This is a generalization
of Lemma 6.4 from [SS25] which showed it for k = 3.

Lemma 5.2. Let Rp(k,d) be as defined in Theorem 3.5. Let f € Flz1,...,x,] be a degree-d
polynomial computed by LIIX(k) (k > 2) circuit of the form C = G x (T1 + --- + Tx) such that
ged(Th, ..., T) = 1. Define

Lo :={l: V() eSi(H)y={l:1]f}.
Then, we have dim(span(Ls; \ Lin(@))) < 28 Rp(k, d) log d.

Proof. The only interesting case is when rank(T; +- - -+T) > 28Ry (k, d) log d, as the contribution
of linear forms dividing T} + - - - + T} has to be less than rank(7} + - -- + T}). So, assuming that
rank(Ty + - - - + Tj,) > 2"’ Rp(k, d) log d, we will prove the statement by induction on k, where the
base case is simply [SS25, Lemma 6.4].

For the induction hypothesis, suppose that for any ¥’ < k and f’ computed by a XIIX(k)
circuit, we have dim(span(Lq (f') \ Lin(G))) < 2~D*Ry(k — 1,d) logd. Let [be any linear form
that divides T7 + - - - + T}. We divide our proof into two cases.

Case 1. Vi€ [k], 11 T;.

As f =0 mod [, the circuit (C' mod) computes the zero polynomial. Let C' mod [be of the
form G’ x (T{ + --- + T}) with ged(T7,...,T}) = 1. Note that (T} + --- + T}) is a simple circuit
computing 0, and hence by Theorem 3.5, rank(7{ + --- + T}) < Rp(k,d). Let L., be the set of

linear forms in L which do not divide any 7;. We can use Lemma 5.1 with 7' = Ryp(k, d) and
rank(sim(Th + - - - + T%)) > 2Rr(k, d) logd + 2k, to obtain

dim(span(L.;)) < max(Rr(k,d)logd, 2klog(kd) + 2k) < 2Rp(k,d) logd + 2k.

Case 2. i € [k] such that l|T;.

Since we have [€ L \ Lin(G), there must be a set of gates K C [k] such that [{ T},j € K.
We also know |K| > 2. Now, since I|(Ty + --- + T) and I|T;,i € [k] \ K, we have I|(3;cx T})-
By the induction hypothesis, [lies in a set of dimensions at most 2/ |2RF(I<:, d)logd. The number
of such subsets would be (| qu) Therefore, all such [will lie in a space of dimension at most
Sk ()27 Re(i,d) logd < 2V Rp(k, d) log d.

Combining the two cases we get that dim(span(Ls) \ Lin(G)) < 28’ Rg(k, d) log d + 2k.

O

A very interesting corollary of the above result is that for our reconstruction algorithm, we can
essentially reduce to the case where the ged of the gates in the input circuit is low-dimensional.

Corollary 5.3. Let f be a n-variate degree-d polynomial computed by a S1IX(k) circuit C' =
Gx(Th+---+Tx) and ceang be any integer. Given black-box access to C, there exists an algorithm
that runs in time dORekd)logd) oymuts o size dORekd)logd) it £ of pairs of polynomials (L, [
such that

o foreach (L, f") € L, L is a product of linear forms and L - f' = f, and
o for at least one of the (L, f') € L, f" can be computed by a Y1IX(k) circuit C' = G’ x (Ty +
-+ T},) with dim(span(L (C"))) < 2¥"Rp(k, d) log d + 2k.

20

Note that the above corollary implies that we can assume for our reconstruction algorithm that
dim(span(Ls1(C))) < 2R (k, d) log d + 2k for input SIIX(k) circuits C. This is because we can
run our reconstruction for each f’ such that (L, f’) € L, and once the reconstruction succeeds, we
can verify the correct one using a PIT algorithm.

Proof. Using Lemma 3.9, we can get access to the set of linear factors L41 of f in poly(n,d) time
with high probability. This set will contain linear factors of G and sim(C'). From Lemma 5.2, we
know the linear factors of sim(C) lie in a <2k2RF(k, d)logd + 2k> -dimensional space. Therefore,
we guess a set of up to QkQRF(k:, d)log d + 2k independent linear forms from L4 and divide f by
all linear forms in L4 not in the span of the linear forms we guessed. For the correct guess, we will
have guessed the space corresponding to linear factors of sim(C) and therefore, all divisions will
correspond to linear forms in Lin(G).

The number of possible guesses is at most d0Re(k:d)logd) 4nq hence the running time and size
of the list. O

5.1 Special and regular vanishing spaces

The vanishing spaces of the XIIX(k) circuit, as we saw in Theorem 4.1, can be of two types: First,
where some gate vanishes, and second, where the simple part of the circuit becomes identically 0
mod them without any gates vanishing. The first type of spaces (Special spaces) is useful to us as
they give information about linear forms in the circuit, while the second (Regular spaces) interfere
with us learning the first type of spaces. The actual definition of the spaces below in Definition 11
is a little more technical, which allows us to bound the structure of regular spaces.

Definition 11 (Regular and Special Spaces). We classify vanishing spaces in V,(f) into two kinds,
the regular spaces

S9(f) =A{V(ly,...,l;) € V(f): For a random W € span(ly,...,l,) with dim(W) =r —1 and
span(l’) := (span(ly,...,l;) mod),!'|sim(C mod W) with probability 1 — op(1)},

and the special spaces

S =V \§(f)

Observe that for r =1, §] = {V(l) : L € L1 \ Lin(G)} and S;¥ = {V(I) : | € Lin(G)}.

Notice that Lemma 5.2 above shows that the kernels of spaces in §7*/ span a low-dimensional
space. We will prove a generalization of this result to higher-dimensional kernels of regular spaces.
We first introduce a definition to make the statement formal.

Definition 12 (Totally independent regular set). We define a subset V,, C S/°9(f) to be a totally
independent reqular set if

dim (span ({l1,...,0 : V(I1,..., 1) € V.})) =7|V,|,
i.e. the kernels of the spaces in W, are totally independent.

We will argue in the following lemma that the size of any totally independent regular set W, is
small.

21

Lemma 5.4. Let f be a n-variate degree-d polynomial over any field F such that |F| > O(d®),
computed by a circuit C = G x (Ty + -+ - + T}) such that ged(Th,...,Tx) = 1. Let Rp(k,d) be as
defined in Theorem 3.5. Then, for any totally independent reqular set W, C S19(f), where r < k,
we have

W] < 28 Rp(k, d) log d

We will prove this using induction on r. The base case is for » = 1 which is in Lemma 5.2.
We first state and prove a simple claim that will be useful for the proof. Note that this claim only
requires a weaker assumption that the spaces are independent, that is, no space is in the span of
the others.

Claim 5.5. Let S = {U1,Us,... Uy} be any collection of independent r-dimensional subspaces of
F™ (where F is an infinite or large enough field). For i € [b], let l; be a linear form corresponding to
a uniformly random vector sampled from U;. Let f € Flxy ... x,] be a nonzero degree-d polynomial.
Then, the probability that f =0 mod (ly,...,l;) < bd/|F|.

Proof. First observe that it suffices to prove the above result for b = 1 and then use induction to iter-
ate this on the polynomials f mod (l1), f mod (l1,13),...,f mod (l1,...,ly) (since Uy, Us,...U,
are all independent) and apply the union bound. For b = 1, note that for any linear form [such
that f = 0 mod (I), [must be a linear factor of f. Since f can have at most d distinct linear
factors (up to scaling), the result follows. O]

We now prove Lemma 5.4

Proof of Lemma 5.4. Let t = |W,|. Let W, = {Wy, Wy, ... W;}. Now each W; € W, is of the form
V(li, ..., lir). Let V; = span{v;1, ..., vy} where v;; € F™ is the vector corresponding to l;;.

For each i, let [; be the linear form corresponding to a uniformly random vector sampled from
Vi. Let V/ be a space of dimension r — 1 such that span{l;, V/} = V;.

Let A={l;:i € [t]}.

Now, we consider the circuit C' = C mod (A). Let f' = f mod (A).

Let C’ be of the form C" = G’ x (T} + - - - + T}), where ged(17,...,T}) = 1. Observe that by
Claim 5.5, C" # 0. Moreover each of G',T7,...,T} compute nonzero polynomials. We will show
that V{,VJ,...,V/ are all in S, (f") (in the space V(l1,ls,...,l;)) i.e. are regular vanishing spaces
of codimension r — 1. Then, by the induction hypothesis, the bound on ¢ follows.

We first show that V/ is a ;%) of C mod l;. As C vanishes mod V; = span(V/,[;), C' mod I,
must vanish mod V. Consider any random r —2 space V;” of V;/. As we first chose [; randomly from
Vi, span(V;”,1;) is a random codimension r — 1 space of V;, and therefore for I} such that I} = V/
mod V" =V; mod (V/l;), we have [} divides sim(C" mod (l;,V/")) = sim((C mod [;) mod V).

We would like to show that V; continues to be a regular codimension r — 1 vanishing space of C'
mod [, i.e. I} divides sim(C' mod (A4,V/)). Let C mod (l;, V") be of the form G; x (T1;+- - -+Tj;)
with ng(Th’, cee 7Tk’i) =1 and 2 < k‘l S k.

Let T1; be a gate such that [} 1 T1;. Such a gate exists as ged(T1;, . . ., Tkr;) = 1. It suffices to show
that no linear form dividing T3; becomes equal to I, when we consider it over V(V/ 11,la,...,1;).
Consider any linear form [dividing 73;. By assumption, span{l;} cannot contain any factor of
Ty;. Thus | ¢ span{l;} and hence it is of the form B3I, + ' where I’ ¢ span{l/}. By Claim 5.5
(applied to Bl + I’ but in the space V(I})), I’ remains nonzero with high probability when we go
mod I, 12, ...,li—1,lit1, . .. lt, and moreover is still not in span{l}}. O

22

5.2 Essential variables and rank

We now state a lemma which will eventually be useful in analyzing circuits where some gates have
their linear forms only spanning a low dimensional space. This is a variant of Lemma 6.9 of [SS25],
where a very similar result was shown for k = 3; the proof is essentially the same as well.

Lemma 5.6. Let f be a homogeneous polynomial computed by a LIIX(k) circuit C = G X
(Th + -+ T) and ged(Th,...,T) = 1. Lett > 0 be any nonnegative integer such that Vi €
[k], dim(span(Lin(G x T;))) >t and for any r < k let l1,...,l, € Flxy,...,z,] be arbitrary linear
forms. Ry(k,d) as defined in Theorem 3.5. Then,

o The number of essential variables (Definition 7) in G x (T + - -+ T},) is at least w.

o Iff mod (ly,...,l) has less than M essential variables, then f mod (l1,...,l,) =

0
Proof. We will first prove the first item. In the case where dim(span(Lin(G))) > M,

then clearly we are done as the number of essential variables in G x (T1 + --- + T}) is at least
(t — Rr(k + 1,d))/3. Therefore, we assume dim(span(Lin(G))) < M and hence Vi €
[k], dim(span(Lin(7}))) > w. Let the number of essential variables in 77 + - - - + T}, be c.
Thus by definition (T +---+1)) = g(l1, . .., l.) for some homogeneous polynomial ¢ in Flz1, ..., z.]
and linear forms Iy, ...,l. in Flz1,...,2,]. Let z be a new variable and consider a random linear
isomorphism ® which for each i € [c] maps I; — «;z for a random a; € F. Then with high
probability ¢ is nonzero and is of the form az? for some constant a € F. Therefore, we have
®(Ty + -+ +Tr) — az? = 0. Now we have a XIIX(k) circuit equalling 0 and hence we can use rank
bounds! By Theorem 3.5, rank(sim(®(T; + - -- + T}) — az?)) < Ryp(k, d).

We will first show that the linear forms contributing to the GCD have rank at most c.

Consider any two linear forms I, € Ty, [, € T, such that span(l,) # span(ly) which we can find
as ged(Th, ..., Ti) = 1, and hence these linear forms do not contribute to the ged already. Suppose
after applying ®, two distinct linear forms got “collapsed” to the same and moved into the ged. In
other words span(®(l,)) = span(®(ly)). We will now show that the only way this can happen is if
laylp € span(ly,...,l.). This will then imply that the linear forms in the ged have rank at most c.

Let Iy = Il + 3251 Baili where B,; € F, and I, = 0 or I, & span(ly,...,l.). Similarly i, =
I, +> 71 Bp,ili where B,; € F, and [= 0 or [j & span(ly,...,l.). We have ®(l) =1/, + > i fa,iviz
and ®(ly) =l + > 5 Bz

Case 1: span(l},) # span(l}). In this case ®(l,) and ®(I;) clearly remain independent.

Case 2: span(l,) = span(l). In case these spans are actually 0, then we are done. So let us
assume the span is nonzero. In this case, without loss of generality assume the linear forms are
scaled such that [j, = [;. Then, since span(l,) # span(lp), for some ¢, q; # Bp,;. Hence with high
probability Y5 Baici # > 5—1 PBpici. Therefore ®(I,) and ®(l;) remain independent with high
probability.

So, the only linear forms that move to the ged of ®(71),...,®(T)) are the ones that lie in
span(ly,...,l.). Therefore, the linear forms that move into the ged lie in a space of dimension at
most c¢. Moreover, after applying ®, the span of the linear forms from 7, that do not move to the
ged can get shrunk by at most ¢. Therefore, rank(sim(®(Ty + - - - + Ty) — az?)) > 2t/3 — 2¢. By
the rank bound, (2t + Rp(k + 1,d))/3 — 2¢ < Rp(k + 1,d), which gives us ¢ > w. Thus,
we finish the first part of the lemma.

We now show that if f mod (l1,...,l.) is non-zero then it must have a large number of essential
variables, and we will show how to deduce this either from the gcd or from the simple part of the
circuit.

23

C mod (ly,...,1;) is of the form G' x (1] + --- + T})) with ged(T7,...,T}) = 1 with at least

t—Ry(k+1,d)—r
1

some T that are non-zero. Now, if dim(span(Lin(G’))) > , then clearly the number

of essential variables of C' mod (ly,...,l.) is greater than or equal to w (except C
mod (ly,...,l;) = 0) since G’ is a product of linear forms which will continue to have a high
rank under any linear isomorphism. In the other case, when dim(span(Lin(G"))) < M,
then for all nonzero 7}, dim(span(Lin(77))) > w. Therefore, by part 1 of the current
lemma, we see that C' mod (li,...,[,) has at least w

mod (ly,...,l,) has less than w essential variables, then C' mod (l,...,l,) =0. O

essential variables. Therefore, if C

5.3 p-Cluster Representation

For a YIIX(k) circuit C, recall that A(C) = rank(sim(C)), and for two XIIX(k) circuits C1, Cy,
A(C1,Cq) = rank(sim(Cy + C2)). Based on this notion of distance, we can cluster the gates close
to each other together into a representation given by the following lemma.

Lemma 5.7. For any p and Y11 (k) circuit C = G x (T1 + --- + T}), there is a partition of [k]
into nonempty sets A, ..., As (where s depends on the circuit and p) such that for C; =3 4, T}
and C =G x (Cy + -+ Cs), we have Vi # j € [s], A(C;,Cj) > p and Vi € [s], A(C;) < 28 - .

We call such a representation a p-cluster representation.

Proof. We do this greedily. Start with k clusters, each containing a single gate and merge any
two clusters into one if they do not satisfy A(C;,C;) > p. Therefore, the greedy merge stops
either if there is only 1 cluster remaining or the distance condition between clusters is satisfied
for all clusters. At each merge for any cluster C;, A(C;) at most doubles. Also, after the first
merge for any cluster C;, A(C;, C;) < p and there are at most k — 1 merges. Therefore, we have
Vi € [s|A(Cy) < 2F - . O

6 Algorithmically Computing Vanishing Spaces

In this section we will show how to compute a large and interesting subset of all vanishing spaces,
which we will later use to compute linear forms from the circuit. Though we cannot even bound
the size of S.(f), we are able to bound the size of the set S.(f) (maximal vanishing spaces of
codimension r which don’t have crashing spaces of dimension r — 2 in their kernels) in Theorem 4.1
assuming the circuit is high rank. The high-level goal will be to try and compute these spaces,
and then use them to compute linear forms from the circuit. The way we learn these spaces is
by encoding the property of being a vanishing space as the solution of a system of polynomial
equations. However, in order to set up a polynomial system for computing S/.(f) spaces, one has
to first get a handle on how to compute crashing spaces, which is quite challenging.

The way we get around this challenge is to show that there exist low-dimensional spaces W,
(LDICR spaces, to be formally defined later) which intersect all crashing spaces of dimension at most
r — 2. Moreover, we can even algorithmically compute these spaces (this step is quite challenging).
Thus, though we aren’t even able to compute S/.(f) for various r, we will show how to compute a
large enough subset of them (those that don’t intersect W,), and then show that this essentially
suffices.

To make all this more precise we introduce some definitions and notation. We will deal with
a more general notion of crashing spaces, which we define below as rank-reducing spaces. These

24

capture reduction of rank to any prespecified threshold, unlike crashing spaces for which we fix a
certain threshold.

Definition 13 (Rank-Reducing Spaces). Let f be a polynomial computed by a XIIX(k) circuit C,
and t > 0. A g-dimensional space span(ly,...,l;) is a t-rank reducing space of f if

1. rank(sim(C mod (l1,...,ly))) <t,
2. C mod (ly,...,ly) #0,

3. and C mod (ly,...,l;) is not a product of linear forms.
Define
Cq,t(C) = {minimal q-dimensional t-rank reducing spaces of C'},
and .
C<2(0) = [6:4(0).
i=1

Note that the set of all minimal crashing spaces of dimension r (as defined in Section 4) is
Cricrn -

Computing and avoiding all the crashing spaces seems very complicated so we instead deal with
LDICR (Low-Dimensional Intersecting Crashing and Regular) spaces as defined below. These will
be low-dimensional spaces intersecting all the crashing spaces of dimension up to r — 2, (moreover
we will also ensure that W, intersects all regular spaces - we will see why this is useful only later
on) and thus avoiding intersection any such space will allow us to avoid containing any crashing
space.

Definition 14 (LDICR (Low-dimensional Intersecting Crashing and Regular) Space). Let f be
a n-variate, degree-d polynomial in Flz1,...,x,| that is computed by a XIIX(k) circuit. We will
call a space W, an LDICR space with parameter r (for r > 3) if it has all of the following three
properties:

o dim(W,) < 22P Ry (k, d)(k* log d)" 2

o every space V € C<,_a ., non-trivially intersects VW,

e cvery space V € S;ig_l non-trivially intersects W,.
We define Wi = {0} and W = Lin(f).

We will show that with iterative computation, we can algorithmically compute a @Pe¥(108d) get
of spaces, at least one of which will be an LDICR space, but we may not be able to identify which
one it is. Thus we will branch on all possible choices of these spaces (this will blow up our run time
by a quasi-polynomial factor), and for the correct choice of space, our reconstructing will succeed.
Thus one can essentially assume that we are able to pick a true and canonical choice of LDICR
space and we fix it to be W, for given r. We also have W; = 0 and W, = span({l : [|C'}). From
Corollary 5.3, we can assume dim(W,) < 2V Rp(k, d) log d + 2k.

Therefore, instead of computing S, or S;., we will compute S, up to a LDICR space W,, i.e.,
compute all spaces in S, whose kernels do not intersect W,. We will define this set to be S as
follows

S :={V € S:(f) : dim(Ker(V)NW,) =0}.

25

Claim 6.1. S C S/

Proof. Since, every space in €<,_2, intersects W,, any space in S,(f) whose kernel contained a
crashing space of dimension up to r — 2 will intersect W,.. Therefore S} C S!. O]

Thus, our size bounds on S, in Theorem 4.1 also hold for S;.

In Section 6.1 we will show how to compute W, and in Section 6.2 we will show how to compute
Sr.

The spaces in S have a lot of information, but to effectively use the information, we use S;
to first learn a richer collection of possibly non-maximal vanishing spaces (We call this set S,.(f))
which will have some additional properties that will allow us to extract information about the
circuit.

The spaces in S,(f) are harder to define concisely, but they have the interesting property of
“saturation” as described below.

Definition 15 (S, spaces). Let f be computed by a SIIX(k) circuit of the form G x (Ty +---+Tg).
Let W, be an LDICR space for f with parameter r. We say that a collection of spaces of codimension
at most r is an S, family for f if it has the following properties.

1. Consider any space V(l1,...,lx) of codimension r where ¥i € [k],l; € Lin(T;), and such
that span(ly,...,l;) N W, = {0}. Then, there is a space V in a S, such that Ker(V) C
span(ly,...,lx) and contains at least one of the l;’s.

2. Consider any crashing space W € 6.1, (f) such that it doesn’t intersect W,. Let 1 be a
linear form and e be a positive integer such that 1¢| gcd(C' mod W), span(W,1) N W, = {0}
and [{ sim(C' mod W). We say that such a linear form [is saturated by the set of spaces
S,, if S, contains a space V with the following properties.

(a) Ker(V) C span(W,1). Let W' = Ker(V)NW.
(b) There exist e linear forms 1y, ... 1., each of the form I+1', wherel' € W such that ged(C
mod W') is divisible by [];cf(l; mod W’).

Then, the dimension of the span of linear forms [in gcd(C' mod W), such that (1) span(W,1)N
W, = {0}, (2) 1 {sim(C mod W) and (3) | is not saturated by S, is at most k.

We will learn the spaces in W,, S and S, in an iterative manner, with spaces corresponding
to the lower values of r being used in the construction of spaces with larger r.

The space W, will be constructed from S7,..., 8% ,81,...,S,_1 as described in Lemma 6.6.
We will then use W, to compute S and S, which we will describe in Lemma 6.12 and Lemma 6.14.

We will only be able to compute W,, and hence S¥, S, in cases when the circuit doesn’t have a
certain property which we call the SCS-property (Single Cluster Survives Property) for a given r,
as defined below. We will later see that in cases where the circuit does have the property, it only
makes our life easier and we are even more easily able to learn linear forms without even learning

additional vanishing spaces (see Lemma 6.19).

Definition 16 (SCS (Single Cluster Survives) Property). Let t = 228 Rg(k, d)(k*log d)*3 and
w = 2tlogd + 2k. Let f be a n-variate, degree-d polynomial in Flx,...,xy] that is computed by
a XIIX(k) circuit C = G x (Th + -+ + T) with ged(Th, ..., Ty) = 1 such that it has a p-cluster
representation C' = G x (C1 + - -+ + Cs) as defined in Lemma 5.7.

We say a circuit has the SCS(r)-Property if v is the smallest positive integer less than s such
that for some j € [s], there exists two totally independent spaces® Wo, Wy, such that

3dim(span(Wa, Wy)) = dim(W,) + dim (W)

26

1. Wa, Wy € Gar_ay, for ty := 22X Ry(k, d)(k* log d)" 3

2. There exists space W1, Wy € C<p_2, such that W, C Wy, Wy C Wa.
3. Wa, Wy do not non-trivially intersect W, _1

4. C mod (Wy) =C; mod (W,) and C mod (W,) =C; mod (Wp).

In cases where the SCS(r)-Property is satisfied, we give up on computing S and S,, but
instead directly compute linear forms in the ged of a cluster using Lemma 6.19.

Else, for any r such that the circuit doesn’t have this property, we will show that given W, _1,
Sy, 8k 1,81,...,8—1, we can learn W,, SF, S,. This will be the main goal of this section.
The goal of Section 7 will then be to use these W,,, S¥, S, (for all r < s) to compute enough linear
forms from one of the gates.

Theorem 6.2. Let t = 22k27?,[[?(k‘, d)(k*logd)*=3. Let f be a n-variate, degree-d polynomial in
Flz1,...,zy,] that is computed by a XIIX(k) circuit C = G x (Th +- - -+ Ty) with ged(T1, ..., T;) =1
such that it has a 2tlog d+3k-cluster representation C' = Gx (C1+- - -+Cs) as defined in Lemma 5.7.
Let v be in [s] and t, := 22’ Ry (k, d)(k*log d)"3. Then, given access to any LDICR space Wy_1 of
parameter r — 1 and the corresponding sets KS5,...,KS* 1,KS1,...,KS,—1, and given black-box
access to f either

1. SCS(r)-Property is not satisfied. In this case, we show that there are efficient randomized
algorithms for the following tasks.

A There is an algorithm that runs in time (nd)P°Y1°8 D and outputs a dP°Y1°8 D _gsized list
of spaces such that at least one of the spaces W, that is output is an LDICR space with
parameter r as defined in Definition 14. (proved in Lemma 6.6)

B Given W,, there is an algorithm that runs in randomized time (nd)P°Y1°8 D) and computes
S;(f) with 1 — o(1) probability. (proved in Lemma 6.12)

C Given W, and S}, there is an algorithm that runs in randomized time (nd)P°Y18) gnd
computes S, with 1 — o(1) probability. (proved in Lemma 6.14)

2. SCS(r)-Property is satisfied. Let A = min;cp(dim(span(Lin(7;)))). Then there exists an
algorithm that computes in poly(n,d) time, a set of linear forms Leqng such that |Legnd| =
d°W) and 3j € [k] such that dim(span(Lin(T})NLeana)) > A—2F-(2t, log d+2k). (Lemma 6.19)

6.1 Computing W,

In this section we will show how to compute an LDICR space of paramater r, W,., given access to any
LDICR space W, _1 of parameter r—1 and the corresponding sets KSj, ..., KS!_{,KS1,...,KS,—1.
We will also assume that the SC'S(r) property is not satisfied. We will first prove some preliminary
lemmas which don’t assume anything about the SC'S(r) property. This property will only be used
in Lemma 6.6. Lemma 6.3 and Lemma 6.5 will also eventually be useful to prove Lemma 6.19 when
the SCS(r) property is satisfied.

Lemma 6.3. Let f € Flxy,...,z,] be a degree-d polynomial computed by a X11X(k) circuit C
such that rank(sim(C)) > ¢ + dimW,41 +2r. Let 1 <r < k—2, and t' := ¢, + dim(W,11) +
2k2721F(k, d)log d+6k. There is an algorithm that takes as input Wy41,KSt, ..., K8k 1, KS1, ..., K841,
runs in time dO*() | and outputs a set P, with the following properties:

27

(i) The number of subspaces in Py is |Py| = dO*1), and

(ii) for every W € €<y, (C) with WNW,11 = {0}, there is a subspace W C W such that W € P,
and W € €<, (C).

Proof. Let us fix some notation first. Define K, = KSTU---UKS ;U KS1U---UKS, 1. Given
a crashing space W € €<, ., (C) with W N W, 1 = {0}, define

L(W) ={l:11is a linear factor of gcd(C mod W)}
LW)={le LW) :span(W,l) " W,11 = {0}}.

Since W is crashing, m = rank(L£(WW)) > rank(sim(C')) — ¢ — dim W,41 > 2r. We say a subspace
W C W saturates a linear form [€ L(W) if any space V € K, with V' C span(W,l) satisfies
VNW CW. We say W is saturating if rank{l € L(W) : W does not saturate [} < 2r. We will first
construct a set P, such that for any space W € €<, ., with WNW,; = {0}, there is a saturating
subspace W C W such that W € P,. Then we will show that this saturating subspace W is also
in €<, for t' = ¢ + dimWy41) + 2k2RF(k, d)log d + 6k, as in the statement of the lemma.

We will construct P, iteratively. First, define

7351) = {span(V1, ..., V,) Nspan(Vy41,..., Vo) : V1,..., Vo, € K.},

Set P, = U, P, Fix W € €epe, with W N Woyq = {0}, and define P (W) = {V e P . vV C
W}, and P (W) = U;?:lpﬁl)(W) analogously. We will show by induction on ¢ that any maximum-
dimensional subspace in P,@(W) is either saturating or has dimension at least . Then, since W
itself is an r-dimensional saturating subspace of itself, this shows that there must be a saturating
space W € P.(W).

For the base case, we only need to show that qgl)(W) contains a nonzero subspace. For each
linear form [€ L(W), the space span(W,!l) is a vanishing kernel for the circuit C. Choose a
subspace V; € K, with V; C span{W,1}, and define W = span(Vj : I € L(W)) N W. Since
dim W < r, we can choose r linear forms Iy, ...,l, € L(W) such that W = span(Vj,,..., V) N W.

Since rankL(W) > 2r, we can choose linear forms l,41,...,lo, € L(W) that are independent
from {l1,...,1,} and define W’ = span(l;41,...,l2,) N W. By construction, the spaces Vj,_,
mod W, ..., Vi, mod W are all independent from {V;, mod W,...,V;, mod W}, so the inter-

section span(Vy,, ..., V) Nspan(Vi,,,,...,Vj,,) must in fact be contained in W. In particular,
span(Vi,, ..., Vi,)Nspan(Vi,,,, ..., Vi,,) = W/'NW. Note that by our choice of Iy, ..., I, we actually
have W/ C W, so W/ NW = W’. Finally, recall that for each I € L(W), span(W,1)NW,+1 = {0}, so
span(W, 1) does not contain any linear factors of C. This implies that each of the spaces Vi,,..., Vi,
is at least 2-dimensional and thus has nonzero intersection with W, so the space W’ is a nonzero
space in Pr(l)(W).

For the inductive step, suppose we know that any maximum-dimensional subspace in 737@_1) (W)

is either saturating or has dimension > ¢ — 1. Let V € Pﬁi_l)(W) be a maximum-dimensional

subspace. We will show that if V' is not saturating, then we can find a space in 777@ (W) that strictly
contains V. For each unsaturated linear form [€ £(W), choose a space V; € K, with V; C span(W, 1)
such that V; N W & V. As in the base case, define W = span(V; : [is not saturated by V) N .
Once again, since dim W < r, we can find linear forms [, ...,[, that are unsaturated by V such
that W = span(Vy,,..., Vs,) N W. Since V is not saturating, we can also find unsaturated linear
forms l,41,...,lo independent from {ly,...,l,}, and set W’ = span(V] ., Vi,,) N W. Then,

10t

28

following the same reasoning as the base case, W/ C W by definition, W’/ ¢ V since V is not
saturating, and span(Vj,_,,,..., Vi,) Nspan(Vy,,...,V;) = W’ since the linear forms l,41,...,la,
are independent from {l1,...,l,}. The fact that W' € V" and the expression span(Vj,_,,..., V)N

span(V,,...,V;,) = W’ tell us that W’ is a nonzero subspace in P,(I)(W). This shows that V +
W' e Pﬁz)(W) is a strictly larger space than V, so the maximum-dimensional subspace of 737@ has
dimension at least 3.

Claim 6.4. Let W € %,., be a rank-reducing space such that dim(W N W,41) =0. Let W C W
be a subspace of W of dimension v’ such that W is a saturating space.
Let t = ¢y, + dim(W,11) + 2¥" R (k, d) log d + 6k. Then W € G .

Proof. As W € €,,, we know rank(sim(C mod W)) < ¢;. Our goal is to show that rank(sim(C
mod W)) < ¢ +dim(Wy41) + 28 Re(k, d) log d + 6k. Let C mod W = C” := G x (T +---+1T},).
Therefore, mod W, each gate T; either vanished or the following holds: some of the linear forms
in Lin(7;) get mapped to linear forms in 7}, and some get mapped to the ged. Thus, we can
write Lin(7;) as A; U B; where A; gets mapped to the linear forms in G’ and B; gets mapped to
the linear forms in 7). Let us assume that k' of the gates remain nonzero, and WLOG these are
Ty, Ts,...,Tj. Thus rank(By, ..., By) < cx +r (since W has dimension 7). When we go mod W,
the linear forms in B;’s continue to be a part of sim(C mod W). The rank they contribute is at
most ¢ + dim(W) — dim(W) < ¢ +r.

The major part of the rank drop when we go mod W comes from the linear forms in the A;’s
as they move into G’. These linear forms can be considered in tuples (1, ...,lxs) with a linear form
[such that Vi € [k'],l; mod W = ol for some a; € F. We will show that except for those tuples
whose corresponding [lies in a small-dimensional space, all other tuples will have their linear forms
move into the ged of ' mod W. We will give up on all those [such that span(W,[) intersects W, 11,
as well as on all those [that are not saturated by W. We also give up on [such that [divides the
sim(C mod W). All such [must lie in a (dim(WrH) +2r + 2% . Ryp(k, d) log d + Qk) -dimensional

space as W is a saturating space and using Lemma 5.2.

Notice that the space span(W,[) is such that C' vanishes modulo it. Also, span(ly,...,lx) C
span(W,1). From the saturation property of S, 1, described in property 2 of Definition 15, we have
that unless [lies in a k-dimensional space, XS, will have a subspace V of span(W,[) such that [
has same multiplicity in C mod (V NW) as in C mod W. Since W is a saturating space, for any
such V, we have VW C W. Therefore, when we go mod W, all the linear forms in the previously
mentioned tuples in A;’s, except those whose span intersect a k-dimensional space (from property
of S, spaces), do move into the ged, just as they did mod W.

Therefore, every | € gcd(C' mod W) has the same multiplicity in gcd(C' mod W) as in ged(C
mod W) unless it lies in a (dim(WrH) + 2 Ry (k, d) log d + 3k + 2r)—dimensional space. As dis-

cussed, the rank increase in linear form from B;’s as we go mod W compared to going mod W is
at most ¢, 4 r. Thus, rank(sim(C' mod W) < ¢ + 3r + dim(W,41) + 28" R (k, d)logd + 3k. O

O]

Definition 17 (Totally Independent Rank-Reducing Sets). We define a subset U, of €<, +(C) to
be a Totally independent rank-reducing set if

dim(span({W € U, })) = Z dim (W)
wel,

i.e. the spaces in U, are totally independent.

29

Similar to Lemma 5.4 for spaces in S,%9, we will prove a similar structural result for rank-
reducing spaces.

Lemma 6.5. Let f be an n-variate, degree-d polynomial in Fxy, ..., x,]| that is computed by a
YIIX(k) circuit C = G x (Th + - - + Ty) with ged(Ty, ..., T;) = 1 such that it has a 2tlogd + 2k-
cluster representation C = G x (Cy + -+ -+ Cs) as defined in Lemma 5.7. Let r be any integer such
that 1 <r <s—2, and let U, C €<, be a totally independent rank-reducing set for f. Then one
of the following two scenarios must hold.

1. There is a positive integer j < s, and at least two totally independent spaces* Wo, W, €
C<rt(C) such that C mod (W,) = C; mod (W,) and C mod (Wp) =C; mod (Wp).

2. |U| <r-(k*tlogd+ 2k - t)

Proof. We will show the lemma for totally independent sets of €, +(C) and the results for €<, +(C)
follows with a factor of . The proof will follow the same outline as Lemma 5.4. We will prove this
using induction over r. Consider any space W € %,..(C).

For the base case of r = 1, we need to bound the number of independent linear forms modulo
which the rank crashes. In case there are two independent linear forms, such that mod them, a
single cluster survives, we are done. Therefore, there are at most s independent linear forms for
which only one cluster survives, and the rest of all linear forms in %7 (¢) are such that at least two
clusters survive mod them. Since, we have at least 2 cluster that survive, which means that the
rank of the simple part of the surviving clusters (A(C;, C;)) drops from 2tlogd + 2k (because of
distance condition from clustering) to below ¢. From Lemma 5.1, we know that the number of such
independent linear forms is at most tlogd. Since, there is are k? choices for which clusters survive,
we have |W1| < k®tlogd + 2s - t.

Now for the induction hypothesis, assume the size bound to be true for all Wy,...,W,_1. Let
a=|W,|. Let W, ={V1,Va,...,V,}.

For each i, let [; be the linear form corresponding to a uniformly random vector sampled from
Vi. Let V/ be a space of dimension r — 1 such that span{l;, V/} = V;.

Let A={l;:i€[t]}.

Now, we consider the circuit C’ = C' mod (A). Let f/ = f mod (A).

Let C’ be of the form C' = G' x (C{+---+C"%), where C1, ..., C. are all projections of C1, ..., Cs
modulo (A). Observe that by the definition of rank-reducing spaces, C' # 0. Moreover each of
G',C},...,C% compute nonzero polynomials because of Claim 5.5. We will show that V{, V5, ... V!
are all in €,_1+(C") i.e. are rank-reducing of codimension r — 1 for C’. Then, by the induction
hypothesis, the bound on a follows.

From Claim 5.5, we see that no two distinct linear forms in the circuit C' become the same, and
hence there is no new ged. Consider two clusters C1, Cy that survive when we go mod V;. We know
A(C1,C2) > 2tlogd + 2k and A(Cy mod V;,Cy mod V;) < t. As there is no new ged mod (A),
we have A(C; mod (A),Cy mod (A4)) > 2tlogd + 2k — a. Let the drop in A(Cy,C2) when we

go mod (A) be §, which we know is at most a. The independence of spaces Vi, ..., V, means that
A(C; mod (A,V/),Cy mod (A,V/)) < t—03+1. Therefore, the rank crashes from 2tlog d+ 2k — 0
to at most ¢t — 0, and therefore V; is in 4,._1 +(C’). O

We now show how to learn W, using access to W,_1, S;T_l,gg,l.

Lemma 6.6. Let t = 22’ Ry (k,d)(k*logd)* 3. Let f be an n-variate, degree-d polynomial in
Flxy,...,zy] that is computed by a X1IX(k) circuit C = G x (Th +- - -+ Ty) with ged(Ty, ..., Tx) =1

dim(W, + Ws) = dim W, + dim W,

30

such that it has a 2tlogd + 2k-cluster representation C = G x (Cy + --- + Cy) as defined in
Lemma 5.7 with s > 3. Let r be in [3,s] and t, := 22K R (k, d)(k*log d)=3. Assume that the
circuit C' doesn’t satisfy the SCS(r)-property as defined in Definition 16. Given access to Wy_1
and the sets KS§,...,KSF_1,KS1,...,KS,—_1, there exists an algorithm that outputs a list of size
droy(08d) i time (nd)Po(108d) which contains spaces of dimension 228 Ry (k, d)(k*log d)™2 = t,11
and at least one space satisfies the properties of LDICR spaces as defined in Definition 14.

Proof. We initialize W, := W, _1. We then consider all the spaces in KS;_;, and find all completely
set of independent spaces that span a space of dimension at most r - 2’“27%]1:(]{:, d)log d, and append
them to W,. From Lemma 5.4, we know that the maximal set of independent regular spaces of
dimension r has size at most 2k2RF(k:, d) log d. Therefore, for the right guess of spaces, every regular
space of dimension r must from intersect the space spanned by these independent spaces. Note
that any regular space of dimension r, not in S, must intersect WW,_;. The number of such guesses
is at most d°1°29) and we can find them in time d°1°89) as well.

We then use Lemma 6.3 to obtain the set P,_o such that for every space V € €<,_o,, thereis a
subspace W of it in P,_ such that W € €<,_op where t’ = t—l—dim(Wr+1)+2k2R]F(k‘, d)log d+6k <
t-. Note the existence of at least two clusters having a large distance is enough to meet the rank
requirements of Lemma 6.3. Therefore, there exists a subset of P,_o N €<,_2;, which contains a
subspace of every space in ¢<,_2,. From Lemma 6.5, we know that this subset will have a maximal
independent rank-reducing set of size at most r - (k2t, logd + 2k - t,) < 22**Rp(k, d)(k* log d)" 2.
Therefore, an LDICR space as defined in Definition 14 exists and is the span of all the spaces in the
maximal independent rank-reducing set described above, union with the independent set of S,/
and W,_1.

To find such a W,, we construct completely independent sets of size 22k2RF(k, d)(k*logd) 2
from P,_o. The number of such sets is dr-(K*trlogd+2k-tr) — droly(logd) " the gpan of the spaces in

these sets forms the list of spaces we required. O

6.2 Computing S;

In this section we will show how to compute S’ (f) given that we have computed S%,._,(f) and W,.
We will first show how to obtain a quasipolynomial time algorithm to compute S?(f) when the
number of variables in the circuit is about poly(logd). This algorithm will crucially use algorithms
for solving systems of polynomial equations in few variables, which can be efficiently done over R, C
and finite fields, see Theorem 3.10.

6.2.1 Small variate case

Lemma 6.7. Let t = 22" Rp(k,d)(k*logd)* 3. Let f be a m-variate, degree-d polynomial in
Flxy,...,zn] that is computed by a LIIX(k) circuit C = G X (T1+- - -+ Ty) with ged(Ty, ..., Tx) =1
such that it has a 2tlog d + 2k-cluster representation C' = G x (C1+ -+ -+ Cs) with s > 2 as defined
in Lemma 5.7. Let r be in [s|. Then, given access to W, and the sets KSy,...,KS_,, there ezists
a randomized algorithm (Algorithm 1) that computes S3(f) in time poly(dPo¥(™)).

Proof. Let ® be a random linear isomorphism on F[xi,...,x,,] such that Vi € [m], ®(x;) =
> ity aijzj where a;; are sampled randomly from [d™]. We first observe that if f vanishes over
a codimension r space V(ly,...,l), then after a random linear isomorphism ® on the variables,
g=®(f) = f(®(x)) will vanish over a space V(®(l1),...,P(l,)) and moreover this space can be rep-
resented in the form V(z1 —lg1, 22 —la2, . .., 2y — lgr) for linear forms Vj € [r],1l,; € Flapq1,. .., xy].
Using Lemma 3.8, we can get monomial access to g in time poly(d™).

31

Let lo; = 377, 41 aijzj for variables a;j,i € [r],j € [r+1,m]. We will substitute z; = l,; into the
monomial representation of the polynomial, and obtain the polynomial ¢ mod (x1 — la1, ..., % — lar)-
We equate the coefficients in 41, . ..,z to 0 to obtain a system of polynomial equations in r(m—r)
variables of degree d and at most d" equations. This system of polynomial equations might have
infinitely many solutions unless we discard all those codimension r spaces that are contained in
SZ, spaces and those which intersect W,. We also know from Theorem 4.1 and the fact that
W, is an LDICR space (Definition 14) that this suffices as m > ¢,. The challenge remains to
remove these spaces. To discard all those codimension r spaces that are contained in SZ, spaces,
we add additional polynomial equations to the system of polynomial equations, that ensure for
any ' < rand V(l},...,ll,) € S(g), dim(span(ly, ..., U, 21 — la1, ..., @ — lop)) > 7+ 1. We
assume we are given a bas1s of W, computed in Lemma 6.6. Then, we add another equation to
ensure that span(z) —la1, ..., 2y — l4r) doesn’t intersect W,, which ensures the spaces computed do
not contain any crashing spaces of dimension at most » — 2. Finally, having computed the spaces
V(z1 —la1,- .., 2y — lgy) on which g vanishes by solving the system of equations, we simply apply
d~1 to get V(Iy,...,1).

We now give a more detailed analysis.

We first observe that in Step 1 of Algorithm 1, the random linear forms I, . . ., I, will be inde-
pendent with high probability (as otherwise it will correspond to a certain determinant evaluating
to 0, which happens with probability at most d~(™~1 due to Lemma 3.3).

Thus, with high probability ® is a random isomorphism, and we obtain the polynomial g = ®(f)
which is also computable by a XII¥ (k) circuit over m variables, and the simple part of the circuit
has rank m. From now onwards, let us assume that ® is an isomorphism.

g vanishes on spaces of the form V(x; — lg1,...,2, — lar) As & is an isomorphism, f
vanishes on V(ly,...,l,) if and only if g vanishes on V(®(l;),. @(lr)). We will first observe
that with high probability, for any space V(®(ly),. ,<I>(lr) € S.(g), there are linear forms
lats -y lar € Flzrgq, ..., zm] such that V(zq — g1, .. —lar) = V(®(ly),...,P(l;)). The reason

is the following: For i € [r], let [; = > jcm] WijTy- As V(ll, ...,1.) is a codimension r space, hence
dim(span(ly,...,[,)) = r. After applying the isomorphism @, they remain independent with high
probability and coefficients of z, in ®(l;) as 2?21 0, jui;z;. As they were independent, the deter-
minant of the r x r matrix formed by the coefficients of z1,...,z, from ®(ly),...,®(l,) will be a
non-zero polynomial in oy 1, ..., &, and will vanish with low probability due to Lemma 3.3. This
means that for space V(l1,...,l,) € S;(g) there is a space V(z1 — la1,..., 2y — lor) € Sr(g) where
lals .-y lar € F[.’E,url, ce ,l’m].

Setting up a system of equations Observe that we can use interpolation to get monomial
access to ¢ in time poly(d") using Lemma 3.8.

For all i € [r], we set lo; = > 7", 1 aijz; for variables {a;; : i € [r],j € ([m]\ [r])}. Substituting
x; = lg; into the monomial form, we obtain a system of dem) equations of degree at most d in
r(m — r) variables by equating the coefficients of monomials in the variables x,11,..., 2z to 0.
Solutions to this would correspond to codimension r spaces that g vanishes on.

To remove the codimension r spaces that are contained in S (f) for ' < r, we apply ® on the
linear forms that are the basis of the spaces in S¥(f),...,S_1(f), to compute S7(f),..., S 1(f)-

Then, we need to ensure that the solution to our system of equations x1 — lg1,..., T — lgr i
such that V(I},...,l,) such that V(I},...,ll,) € S%(g), we have that dim(span(z1 — la1,..., 2, —
lar,11,...,1l,)) = r+ 1. This is the same as saying that the m x (r’ + r) matrix A(lg,...,l;,) with

!/

1 — lat, ..., Tr — lap, 1, ..., I, as rows have rank at least r + 1. This means at least one of the

32

(r+1) x (r+1) minors of Ay yis full rank, with a non-zero determinant. Let the number of

: . (m r+r’ . .
such minors be k. := (,';) - (71]). To handle these, we introduce new variables y1,. .., Yk, ,,
and for each relevant (17,...,1},) we consider the inequalities sSUm@ 1) = > j’“:’1 y;M; # 0, where

M; are the determinants of the (r +1) x (r 4+ 1) minors of Ay). The inequality has solutions

if and only if there exists a solution for which at least one of the M is non-zero. We note that
we can use the same new variables y,/1,...,ym , in all of the inequalities. Observe that the set
of inequalities V V(l3,....1.,) € S(g), sumqy) # 0 is the same as having a single inequality

Prod, = (HV(ZQ,---J/,)EST/(g) sum,.r,)) # 0. We can further combine these inequalities further

for all ' € [r — 1], by using the inequality Hie[r—l] Prod; # 0, which is same as requiring that
[Licjr—1y Prod; - z = 1 has a solution for a new variable z.

Thus, we can handle the condition of the solution not lying in any S (g) space for ' < r, by
simply adding one extra equation of degree 271 (r4-2)-|S,(g)| = d°M) and (3=} k;)+1 = poly(m)
variables to the system of equations we had earlier.

Removing Spaces intersecting VV, In this algorithm, we assume we have already computed
/

the LDICR space W, we are going to avoid. Let W, = span(l},..., dim(Wr)) where 1}, ..., lﬁhm(wr)
Ziim(Wr)‘
To ensure that the new spaces we find don’t intersect W,, we will ensure that dim(span(W,,z1 —
laly -y Tr — lgr)) = dim(W,) + r. We do this by ensuring the matrix(M) with the basis of W,
and 1 — lg1,...,Tr — lg as rows is of full rank, i.e., it has a non-zero determinant. This can be
ensured by introducing a new variable 2z’ and adding the equation 2’ - det(M) = 1 to our system of

equations. The equation adds one extra variable and has degree dim(W,) +r <t +r < m.

format basis of W, which we are given. We first compute W, for g by applying ® to l},. ..,

Running Time Analysis The sampling of the random «; ; can be done in randomized poly(m, log d)
time. From Lemma 3.9, we can get black-box access to the factors in time randomized poly(m, d).
We can do interpolation and get monomial access to g in time dom) using Lemma 3.8. As
ISl (g)] < d°M from Theorem 4.1, combined with the loop on line 11 runs d°() times, doing
poly(m) computation. Finally, the system of equations has d°("™ equations with degree (md)°™)
in poly(m) variables. The system has d°®) solution by combining Theorem 4.1 and Claim 6.1.
Therefore, we can find l41,...,lq by solving the system of equations in time poly(deIY(m)) using
Theorem 3.10. Thus, the entire algorithm works in poly(dP°¥(™)) time. O

33

Algorithm 1 Computing Vanishing S, (f) for constant variate polynomials

Input: Black-box access to circuit C' of form XIIX(k) computing polynomial f € Flz1,..., 2]
with properties as described in Lemma 6.7, W,, S7,...5;_;
1: function S;(f)
2: Sample m? random values a;;; 4,7 € [m] uniformly from {1,...,d™}, and use them to define
m linear forms [; = > ey ajjzj. Check if they are independent, otherwise repeat. Define
isomorphism ® such that for all i € [m], ®(z;) :=I. Let g = ®(f) = f(®(x)).

3: Using randomized black-box factoring from Lemma 3.9 and get access to the linear factors
of g

4: Interpolate g to get monomial access to it

5 for i € [r] do

6: Substitute z; = 377, . a;jz; for linear form x; — lg; in g.

7 Obtain equations in {a;; : ¢ € [r],j € ([m] \ [r])} by equating the coefficients of monomials
in the variables z,41,...,Zm—1,Zm to 0.

8: foric[r—1]do

9: Let ki = (,7) - (137). Introduce new variables yi1, ..., yik,- Set Prod; := 1.

10: for V(1i,...,1}) + S'(g) do

11: Consider the (i+7) X m matrix A(l’l,...,l;) formed by I}, ..., 0l and 1 —la1, ..., Ty —lgr.

12: Compute the determinant of each (r + 1) x (r + 1) minor M; of Ay 1y. Compute

k

sumy, iy = 50 YiMj.

13: Prod; :== Prod; x suma iy

14: Introduce a new variable z. Add Equation [[;c, 1) Prod; -z =1 to the system of equations
in Step 7.

15: Construct M with basis of ®(W,) and z1 — la1, ..., 2y — lgr. Introduce a new variable 2’.
Add equation 2’ - det(M) =1 to the system of equations.

16: Solve the system of equations in {a;; : i € [r],j € [m]\[r]} and {y; ; : ¢ € [r—1],j € [ki]}, 2, 2’
using Theorem 3.10 to obtain a set of (x1 — lg1,..., %y — lar).

17: Verify for each (21 —la1, ...,y — lg) if f vanishes on V(@1 (21 —l41),..., 2 (2, —l4)) =
V(li,...,1l;) using Lemma 3.3, then add V(ly,...,1,) to S} (f)
18: Output S/ (f).

6.2.2 General case

We will now discuss how we can use the solution for the low-variate case to compute S;(f) in the
general case.

Let t = 22k272]17(k, d)(k*log d)¥—3. We will start by using a random linear isomorphism ® on f
such that ®(x;) = >7%_; a;jx;, where ;; are chosen randomly from [d"], and define g = ®(f) =
f(®(x)). Let m = 2tlogd + 2k + 2. We will then consider the m variate polynomials g; (for i > m)
which are obtained from g by setting all variables x; for j > m — 1 to zero, except x;.

Thus

gz — g|xm:"‘:$i71:wi+1:"':xn:O

We will then find S7(g;) spaces using the low-variate algorithm and then show how to glue the
learned spaces to get S;(g) and then S;(f). The W, we use for computation of g;, will be the W,
we obtain from Lemma 6.6, with ® and projected down same as g;.

We will need the following collection of simpler properties about g;’s summed up in the following
lemmas to prove the correctness of the algorithm computing S(f).

34

Lemma 6.8. Let t = QQkQRF(k, d)(k*logd)*=3. Let f be a n-variate, degree-d polynomial in
Flxi,...,zy] that is computed by a X1IX(k) circuit C = G x (Ty +- - -+ T},) with ged(T1,...,T) =1
such that it has a 2tlog d+2k-cluster representation C = Gx(C1+---+C5) as defined in Lemma 5.7.

With probability 1 — o(1), For each i € {m,...,n}, the polynomials g; can be computed by
YIIX (k) circuits C; such that they have 2tlog d + 2k-cluster presentation C; = G x (Cj+- -+ Cy;)
as defined in Lemma 5.7.

Proof. The circuit C' after applying the isomorphism & will be of the form
P(C) = 0(G) x (2(Ch) + -+ + O(Cy)),

We denote I'; as the homomorphism from Flz; ..., z,] to Flzi,...,2m_1,2;] mapping z; — 0 for
je{m,...,i—1}U{i+1,...,n}. Then for each i, g; is computable by the following circuit

gi = Li(g) = Ti(®(G)) x (Ti(2(C1)) + - - - + Tu(2(Cy)))

We will first argue that with high probability A(I';(®(Cy)),Ti(2(Ch))) > 2tlogd + 2k for any
a # b € [s]. Consider any two linear forms [= 7' ;| ¢;z; and ' = Y71 cia; such that span(l) #
span(l’) and [€ ged(C,),l" € ged(Cy) respectively. After applying @, the coefficients of x1,x2 in
O(1), (') will be Y aicim; and Yo ag i for @(1) and Y oy iche; and Yo g icha; for
®(1"). As span(l) # span(l’), if these two linear forms were distinct, they would become equal and
move to the ged of Cp + Cp only if the determinant of the 2 x 2 matrix with these coefficients as
entries becomes identically 0. This happens with vanishingly small probability (by Lemma 3.3) as
the determinant is a non-zero polynomial in aq1,..., a2, and we choose «;; from a large set of
size d".

Also, as A(Cy, Cp) > 2tlogd + 2k, we have rank(sim(C; + C;)) > 2tlogd + 2k. From above
we have that the linear forms that were in sim(C; + Cj), stay in sim(I;(®(Ca)) + I';(2(Cg))).
These linear forms spanned a space with dimension at least 2tlogd + 2k, and after the random
projection with high probability still span a space of dimension 2t logd + 2k. Therefore, for each i,
and a, b € [s] we conclude that rank(sim(Cy + Cyp)) > 2tlogd + 2k. Thus, all g; have 2tlogd + 2k
cluster representation with the same top fan-in as C' with 1 — o(1) probability.

O

We show that after the random projection, crashing spaces of g; continue to intersect W, that
was computed for f.

Lemma 6.9. Let t = 22k27€1p(k, d)(k*logd)*=3. Let f be a n-variate, degree-d polynomial in
Flxi,...,zy] that is computed by a X1IX(k) circuit C = G x (Th +- - -+ T,) with ged(Ty,...,T) =1
such that it has a 2tlog d+2k-cluster representation C = Gx(C1+---+C5) as defined in Lemma 5.7.
Let m = 2tlogd + 2k + 2.

Then with probability 1 — o(1), for all r € [k] and every V € €<,—2.,(9i)

dm(V O BV, a1 —mrne) > 1

Proof. Note that g; is obtained by first applying a random linear isomorphism and then setting
several variables to zero. To prove the lemma, it is enough to handle the simpler case where we
apply a random linear isomorphism and then set just one variable to zero. If we can show that, with
very high probability, the resulting circuit still retains the desired property in this case, then we
can iterate the process: alternately applying random linear isomorphisms and setting one variable
to zero at a time. This allows us to reduce the circuit to m variables while maintaining, with high

35

probability, any crashing space which r — 2 dimensional continues to intersect W, projected to
the m variables. Note that by Lemma 6.8, the intermediate polynomials till g; continue to have a
2t log d + 2k-cluster representation.

Note that, repeatedly applying random isomorphisms and zeroing variables one by one is equiv-
alent to applying a single random isomorphism and then zeroing several variables simultaneously.
We will thus work with the iterated process. Adapting the argument to the original distribution
(or redefining g; to be drawn from the recursive distribution) is straightforward.

Therefore, what we need to show is that for a random linear form [(coefficients are chosen
randomly from [d"]), all (r — 2)-dimensional crashing spaces of C' mod [intersect W,. To show
this, we will first show the following claim:

Claim 6.10. For C = G x (Ty + -+ + T}) with ged(Ty,...,Tx) = 1 and rank(sim(C)) > t,
any minimal rank-reducing space V. € €, of C is in the span of t +r - (k + 1) linear forms in
Lin(TY), ..., Lin(Ty).

Proof. For the purpose of this proof, note that we can without loss of generality assume that
ged(C) = 1, so that C = sim(C) = Ty + -+ 4+ T. Let the circuit C' mod V be of the form C
mod V =G x (T{+---+1Ty), where G' = ged(C' mod V) and T +- - -+ T}, = sim(C' mod V). For
eachi=1,...,k, we can write each T; as T; = A;B;, where A; mod V =G’ and B; mod V =1TJ.

First, for each linear factor [of G’ (with multiplicity), we can find linear forms [y dividing
Aiq,..., Il dividing Ay such that [y mod V = --- = mod V = 1[. Define V; = span(ly,...,l),
and let W4 = span (U”G/ V}) N V. By construction, ged(C' mod Wy) = ged(C mod V). Since

dim W, < r, Wy is contained in the span of at most r of the spaces V, where [divides G’, so it is
contained in the span of at most rk linear forms in 77,...,T}.

Next, we turn our attention to sim(C' mod V). We know that ¢ > rank(sim(C mod V)) =
rank (Zi-“:l B; mod V) > rank (Zle BZ) —r. So, we can choose t+r linear forms {1, ..., 4, from
Lin(By),...,Lin(By) that span span(Lin(Bi)U---ULin(By)). Define W = span(l1,...,lir) N V.
Then, rank (Zle B; mod W) = rank (Zle B; mod V) by construction.

Finally, set W = W4 + Wg. The space W is contained in the span of ¢ + r(k + 1) linear forms
in 71,...,T;. We know that gcd(C mod W) = ged(C' mod V') by construction of W4. And by
the construction of Wp, this implies that rank(sim(C' mod W)) = rank(sim(C' mod V)) < ¢, so

W is a crashing space. By the minimality of V', W must be equal to V' which concludes our proof.
O

For the sake of contradiction, let I be a random linear form and let V' € ¥<,_2 ., (C' mod l) be a
crashing space that doesn’t intersect W, mod (. First observe, with 1 — o(1) probability, [doesn’t
lie in W,.. This follows from the fact that if [lied in W,, the matrix formed by linear forms in
basis of W, and [will have rank dim(W,), which means the determinant of the sub-matrices of size
(dim(W,)+1) x (dim(W,) 4+ 1) is zero, which happens with o(1) probability from Lemma 3.3. Then,
we consider the space span(V,[), which is a crashing space of dimension r — 1 for C. We will first
argue that span(V,) is a minimal crashing space and therefore is in €,_1 ¢, (C). For contradiction,
assume there is a strict subspace V' that is the the minimal crashing space in span(V,1),i.e. V' C V
such that rank((C' mod V')) < ¢k. As it is a proper subspace, dim(V’) < r — 2. Therefore, V'
must intersect W, non-trivially from definition of W,. But we know V' mod [doesn’t intersect W,
mod [, which means span(V,[) doesn’t intersect W, and therefore V'’ doesn’t intersect W, which is
a contradiction. Therefore, we have span(V,1) € €,_1,.

From Claim 6.10, we have that span(V,[) must lie in a space spanned by ¢ + k(r + 1) linear
forms in sim(C), which means the random linear form [lies in the span of these linear forms.

36

For any fixing of ¢ + k(r + 1) linear forms, we will show that the probability that [lies in their
span is very small, and then we will take a union bound over all possible choices of ¢ + k(r + 1)
linear forms in the circuit. Let S be any set of ¢; + k(r + 1) linear forms in sim(C) and let their
span have dimension a where a < ¢; + k(r + 1). This means the matrix formed by the vectors
corresponding to the linear forms in S and our random linear form [has rank a and therefore the
sub-matrices of dimensions (a+ 1) x (a+ 1) have zero determinant, which happens with probability
atl < ‘ngjlm by Lemma 3.3. The number of possibilities for the choice of S is (kd)eT#(r+1),

Taking union bound over all such choices, we get that the probability that [lies in the span of at
(eph(r) 41 ()0 Dy O
dr = :

most ¢x + k(r + 1) linear forms in sim(C) is at most

We will also need to show that there are no new minimal vanishing spaces of 7" dimensions for
r’ < r that will affect the computation of S*. We don’t show this, but rather show that any such
new space must intersect W, (and hence W,), and therefore still doesn’t affect the computation
of §;.

Lemma 6.11. If f is computed by a 11X (k) circuit C as described in Theorem 6.2, then with proba-
bility 1—o(1), for allr € [k—1], any V € S (g;) such that V & {®(S; (/) Ham==2i_1=2is1==2n=0;
we have dim(Ker(V) N @Wri1)|em==2;1=si1==wn=0) = 1.

Proof. We already argued in Lemma 6.9, that we can use the same W, projected down for the
calculations of S, and therefore only need to argue that there is no new codimension r space over
which g; vanishes, which doesn’t correspond to a space in S}(g) for r < k—1 or it intersects W,41.

Similar to Lemma 6.9, we argue this recursively and therefore only need to show that no new
S; spaces are added when we consider f mod [for a random linear form [.

Consider a new space V(l1,...,l,) € §(f mod [) such that it doesn’t correspond to a space in
SE(f), ie. V(Iq,...,0) & {S}(f)}i=o- This means that the space V(li,...,l,,1) is a codimension
r+1 space on which f vanishes. If span(ly,...,[,) intersects W, 11, we are done. We will now argue
that if span(ly,...,[,) doesn’t intersect W, 41, then span(ly,...,l., 1) doesn’t intersect W, either
with high probability. For that to happen, the matrix with basis of W,41 and [, ..., [,] will need
to have rank at most dim(W,+1) + r, which using Lemma 3.3 happens with o(1) probability.

Therefore, we know now that V' = span(ly,..., 1., 1) doesn’t intersect W, ;1 with high probabil-
ity. Thus, it must have a subspace in KS%, ;. Let this subspace be V'. If V' doesn’t contain I,
then either V' is just span(ly,...,l.) or its a subspace of span(ly,...,[;) is not minimal and not in
S;. Therefore, V/ must contain [. Also, V' must be in KS, for some r’ < r+1. For a given V', the
probability that [lies inside it is equal to probability that the rank of matrix formed by ! and basis
of V' has rank equal to dimension of V' which happens with probability at most r + 1/d™. From
Claim 6.1 and Theorem 4.1, we know the number of V' spaces will be at most d°1), and taking
union bound over it, we see that it happens with probability o(1).

O

We will now combine the above lemmas and use a gluing procedure to show that we can use
the computation of S;(g;)’s to obtain S;(f).

Lemma 6.12. Let t = 22 Rp(k, d)(k*logd)*3. Let f be a n-variate, degree-d polynomial in
Flxy,...,zy] that is computed by a X1IX(k) circuit C = G x (Th +- - -+ Ty) with ged(Ty, ..., Tx) =1
such that it has a 2t log d+2k-cluster representation C = Gx (Cy+---+Cs) as defined in Lemma 5.7.
Let r be in [s]. Then, given access to W, and the sets KSy,...,KS_,, there exists a randomized
algorithm (Algorithm 2) that outputs S;, in poly(n, dP°Y))-time with probability 1 — o(1).

37

Proof. We first apply a random linear isomorphism and obtain g = ®(f). For m = 2tlogd+ 2k +2,
we obtain n — m polynomials ¢g; € Flxy,...,zm_1,2;] by setting all except z1,...,ZTm_1,2; to 0.
Then we solve the low variate cases, using Lemma 6.7 discussed above to recover S;(g;). We will
then recover Sf(g) by gluing together spaces from S;(g;) (across different choices of i) when the
spaces are consistent when restricted to x1,...,z;,—1. Once, we have §f(g), we can immediately
obtain Sf(f) by using &~ 1.

By Lemma 6.8, the random invertible linear isomorphism ensures that when we set some
of the variables to 0, that the distance between the clusters remains high (equal to m) with
high probability. Given access to W,_1,KS7,...,KS_{,KS1,...,KS,_1, we can compute W,
from Lemma 6.6. Also, from Lemma 6.9, we know all crashing spaces of g; must intersect
SWp)| 2= =2;_1=2i41==2,=0- Therefore, we use it as VW, in the computation of S;(g;).

As discussed in the proof of Lemma 6.7, we see that for a vanishing codimension r space
V(li,...,1ly) of f, there will be a V(1 — l1q4,..., 2, — lq) vanishing space of codimension r of g,
where Vj € [r],1jq € Flzy41,...,2y]. It is fairly straightforward to see that if g vanishes on V(z; —
l1,...,2, —1;) then g; vanishes on V(x1 —ly;, ..., 2 —ly;) where lj; = lj[z,,=0,... i 1=0,2:41=0,....0n=0-

We will now show that if V(I1,...,l,) € §}(f), then we have V(z1 — l1;,..., 2z, — l;i) € S} (gi)-
As we use the same W, projected down for calculations of S*(g;), if span(ly, ..., l,) doesn’t intersect
W, (as V(ly,... 1) € S}(f)), we have span(z1 —ly;, . .., 2, — ;) doesn’t intersect I';(®(W,.)). From
Lemma 6.11, we know any vanishing space of S (g;) for 7’ € [r—1] that doesn’t correspond to a space
in 8% (f), must intersect I';(®(W,)). Since, span(x1—Iis, ..., 2, —ly;) doesn’t intersect I';(®(W;)), it
cannot be blocked by a new minimal vanishing space of g;. Hence, we have V(1 —11;,..., 2, — 1) €
S*(gi). We can find S/ (g;) in d”°Y(™) time as described in Lemma 6.7.

To obtain S;(g) (wlog of the form V(x; —11,...,z, —1;)), we will show how to glue these spaces
learned in the low-variate case. To do this, we will look at spaces in S;(g;) and S (g;) (for i # j)
and “glue” them if they are consistent in the first m — 1 variables. For this to be efficient, it will
be very useful to have the property that distinct spaces in S7(g;) are distinct when restricted to
the first m — 1 coordinates. However to make the argument simpler to analyze, we consider and
apply another random linear isomorphism ¥ (we will apply these to the spaces in S(g;) for each)
defined as follows: Vi < m, ¥(z;) = z; and Vi € [m,n], V(z;) = ; + Birt1Zr41 + - - + Bim—1Tm—1
where f; ; are sampled independently and uniformly from [d"]. The goal of introducing the map ¥
is to ensure that distinct spaces in S)(g;) are distinct when restricted to the first m — 1 coordinates,
and we prove this formally in the claim below.

Claim 6.13. For alli € {m,...,n}, let V(l1,...,l.) and V(I},... 1) be distinct spaces in S}(g;)
such that ly, ... 1,1, ...,1l. only depend on xyi1, ..., em—1,%;. Then V(U (x; —11)z,=0, ..., V(x, —
I)z;=0) # V(U(x1 — 1) a;=0, -, U(xr — 11.)g;=0). In particular

(‘Ij(ll)‘CEi:Ua R \I](lr)’xi:0> 7& <\I](l,1)|33¢=07 R \p(l;)|xz=0>

Proof. Consider 2 distinct elements V(zy — ly,...,z, — ;) and V(z1 —},..., 2, —) in S} (g:),
with ll, lll, RN lr, l:n S F[Z'T_H, e, Tim—1, .%'z] Let 1 = a1,r+1%r+1 + -+ a1,m—1Tm—1 + Q1iTgy « -y
I, = Crr+1Tr+1 + -+ CGrm—1Tm—1 + Qr ;%5 lll = a,17r+1557“+1 + o+ a,17m_1xm—1 + allyixiv ceey
I, = a1 %rs1 + o+ Ay 1T + @y ;1. Therefore, we have

38

li = (a1p41 + Bipt101,3)Trs1 + - + (@1,m—1 F+ Bim—101,4)Tm—1 + a1,;2;

l, = (ar,rJrl + ﬁi,r+1ar,i)xr+1 + -+ (ar,mfl + ﬁi,mflar,i)xmfl + ar;x;

1= (all,r—l—l + ﬁi,r+1a,1,i)$r+1 +oeee (a,Lm—l + /Bi,mflallﬂ‘)xmfl + all,il‘i

r = (1 + Birr10y)T+ 4 (G 1+ Bim—105)Tm—1 + @) ;7

Now, if (U(z1 —11),...,Y(xy — 1)) |z;=0 = (¥(z1 = 1)), ..., ¥(zp — L)) |2,=0, we have a system
of linear equations in f;,41,...,Bim—1 given by Vj € {r+1,...,m — 1} B; j(a1; — a’u) = (a1, —
all,j)" - Biglar; — a;7i) = (ar; — ai“’j). Since (1 —1l1,...,x, —) and (zq —1},..., 2, —) are
distinct, there is some choice of p, ¢ for which a,, # a;g must hold. This gives a nonzero linear
equation in f3; ; (when viewed as formal variables) which must become zero for the specific choice
of sampled values. By using Lemma 3.3,the probability this can happen is din as we choose the (; ;
from [d"]. From Theorem 4.1, Claim 6.1, and Lemma 6.8 we know the S7(g;) = d°)), and taking
the union of all pairs from S;(g;) gives us that with probability 1 — o(1) no two spaces in any of

the S¥(g;) are equal after applying ¥ and setting z; to zero. O
As described in Algorithm 2, for each V(z1—ln1, ..., Zr —lmr) € S (gm) we “glue” or combine it
with a corresponding V(z1 —li1, ..., zr — liy) € SF(g;) if they are consistent in first m — 1 variables,

fe. (W(li)le;=0s - V(lir)|2i=0) = (Y(Im1)|zm=0s- - -» ¥(lmr)|zm=0). We each fixed space in S} (gpm)
with high probability there is a unique space in S (g;) where this happens by the above claim. Note
that every space in S)(g) corresponds to some unique space in S;(g,) (since the spaces in S (g)
are distinct restricted to first m — 1 coordinates). To recover the spaces of S (g) with information
for all coordinates, for each i, we use the information present in the glued space in S’ (g;) to recover
the information for the coordinate corresponding to z;. Thus we obtain all spaces V(ly,...,[,) on
which ¢ vanishes and use ®~! to obtain S,(f). O

39

Algorithm 2 Computing Vanishing Codimension r Subspaces

Input: Black-box access to circuit C of form XIIX(k) computing polynomial f € Fxy,..., ;]

with properties as described in Theorem 6.2, W,, &7,...,S_;
1: function S;(f)
2: Sample n? random values «;j;4,;j € [n] uniformly from {1,...,d"}, and use them to define
n linear forms I} = Z?:l aj;x;. Check if they are independent, otherwise repeat. Define

isomorphism ® such that for all i € [n], ®(x;) := 1. Let g = ®(f) = f(P(x)).
3: Set t = ¢ + 2k2RF(k,d) logd and m = 2tlogd + 2k + 2. For i € [m,n], Obtain ¢; =
92,,=0,...,x;_1=0,1;_1=0,...,2,=0
4: For each ¢;,i € [m,n] and ' € [r], Compute S%(g;) using Algorithm 1 with
SWr)|zm=0,....2 1=0,2;_1=0,....0n=0 as the LDICR space.
We now describe how to glue these spaces across g;.
Consider an isomorphism ¥ obtained as follows. Sample (n —m + 1) x (m — r) random
values §; ; where i € [m,n],j € [r,m — 1] uniformly from {1,...,d"}. For all i € [1,m — 1], let
U(z;) = x; and for all i € [m,n], let ¥(z;) = z; + BiyTry1 + - + Bim—1Tm—1.

T: for V(z1 — 1, ..y 2 — ly) € SF(gm) do

8: lot == Uiy la2 := U, ..y lar = Ly

9: forie {m+1,...,n} do

10: Search for V(x1 — l;1,...,2, — l;) such that

<\Ij($1 - lml)‘xm:m ceey qj(fcr - lmr)‘:vm:0> = <\Il(x1 - lil)’azi:()a cee \I’(xr - lir)|xi:0>

11: If multiple such spaces are found, break out of the loop, and go to the next space in
the outer loop.

12: If only one such space is found then update l,1 = o1 — 1%4, .. -, lar = lor — Qpx;
where aq,...,qa, are coefficients of x; in [;1, ..., l; respectively.

13: Add V(z1 — la1, 2 — la2, - - -, & — lar) t0 Si(9)

14: For each V(Iy,...,l.) € 8(g), Verify f vanishes on V(®~1(i1),...,®71(l.). Output the set
thus obtained, as S;(f).

6.3 Computing S,

In this section, we will show how to compute S,(f) spaces as defined in Definition 15, given that
we have already learned W,, S7(f), S5(f),..., S (f).

Lemma 6.14. Let t = ¢ + 2k2RF(kz, d)logd. Let f be a m-variate, degree-d polynomial in
Flxi,...,zy] that is computed by a XIIX(k) circuit C = G x (Ty +- - -+ T},) with ged(T1,...,T) =1
such that it has a 2tlog d+3k-cluster representation C = Gx (C1+- - -+Cs) as defined in Lemma 5.7.
Let 7 be in [s]. Then, there exists an algorithm(Algorithm 3) that runs in time poly(n, d”°Y®)) and
with probability 1 — o(1), it outputs a set of spaces S, of size poly(d) such that it satisfies the
properties described in Definition 15.

We will break this further into two separate lemmas which will show the first and second
properties of S, spaces, respectively. As described in Algorithm 3, S, spaces are computed as a
union of spaces S, := 39) UE,(?) U--- u?ff). We will also make grow W, slightly (which we will be
able to do since we assume we have learnt S;, so that is also now intersects kernels of all regular

spaces of codimension r (and not just those of codimension r — 1). To not overload notation, we
will continue to call this space W,.

40

Update of W,: Once we have computed S, we can use it to update W, so that any space in
S79 also has to intersect W,. To do this, we look at all maximal sets of independent spaces in S}
that span a space W/, of dimension at most r - 28 Rp(k, d) log d which is at most poly(logd) for a
suitable polynomial from Theorem 3.5. From Lemma 5.4, we know that there is right choice of W/
that it would intersects all spaces in S79. As |S}| is d°(), the number of choice of W is dPoy(logd),
Wlog we assume that we chose the right W/ (our algorithm will iterate over all choices of W/, and
eventually all the wrong choices get pruned out by a final PIT step at the end. This adds a factor of
droly(logd) t4 the running time, which we can handle). The new W, is obtained by taking the span
of W/ with the original W,, and this increasing its dimension by at most r - 2k272]1:(k, d)logd. W,
now also intersects all kernels of spaces 5;%9. We will assume this going forward for computation
of S,.

Lemma 6.15. Let f be a polynomial and C be a circuit computing it as described in Lemma 6.14.
Then, there exists an algorithm that runs in time poly(n,d”*Y®)) and with probability 1 — o(1),

it outputs a set of spaces 37(}) of size poly(d) such that it satisfies the property 1 described in
Definition 15, i.e. for every space V(ly,...,l;) of codimension r, l; € Lin(T;), and such that
span(ly,...,lx) "W, = {0}. Then there is a space V in a 37(”1) such that Ker(V') C span(ly ...,),

f mod (li,...,l;) =0 and Ker(V) contains at least one of the l;’s.

Proof. We will first show that there exists an algorithm that shows how to grow vanishing kernels
to larger spaces which have interesting properties (such as containing a linear form of the circuit.)

Claim 6.16. There exists an algorithm such that given any vanishing kernel W of dimension at
most r such that W N W, = {0}, blackbox access to f and W, it runs in poly(n, d?°Y®))-time and
outputs a poly(d)-sized set S of spaces of dimension at most r with the following properties:

e VXS WCX

o Let U be any r dimension space which is of the form span(ly,...,lx) for l; € Lin(T;), such
that UNW, = {0}. If W C U with C mod (W) = 0 and if for all i € [k],l; ¢ W then
X eS,XCU.

Proof. Given access to W s.t dim(W) = r/, we pick a random (7’ — 1)-dimensional subspace V. C W
and a linear form !’ such that span(l’,V) = W. Next, consider the circuit C' mod (V). As W
doesn’t contain any regular space, as it doesn’t intersect W, I’ will divide ged(C' mod (V')) and
not sim(C' mod (V')). Let the multiplicity of I’ in C' mod (V') be e, which we can find by factoring
C mod (V) using Lemma 3.9. Let C := C mod (V) /(I')¢. We first argue that C will have a
structure similar to that of C' and in fact, (W, mod V') will satisfy the required properties of W,
for this. The algorithm will compute S¥(C) for all a € [1,r — 7’ + 1] using Lemma 6.12, and then
take the span of each of those spaces with W (in other words we grow W by dimension at least 1)
and this will be the set of spaces S.

We first argue C has a 2t log d+2k-cluster representation with the fan-in s. Since W is not a
regular space (as it doesn’t intersect W,.), by definition sim(C”) will not be divisible by I’ and hence
C is still a XIIX(k) circuit. Since V is chosen randomly from W, with high probability the linear
forms in the T;’s won’t vanish modulo V. Let C;, C; be 2 clusters in the cluster representation of
C. We know A(Cj, Cj) > 2tlogd+ 3k. Dividing by I, doesn’t decrease A(C}, C;) as I’ only divides
ged(C mod V). Therefore, A(Cj,C;) can decrease only if two independent linear forms become
the same mod V. We argue this happens only if the two-dimensional space spanned by these linear
forms lies inside W. If the space is outside and doesn’t intersect V', they stay independent mod V.

41

If the space intersects W in a 1-dimensional line, then they become the same only if V' contains
this line, which happens with o(1) probability. Thus, the only linear forms lost from sim((C; + C})
mod V') are those that are contained in W, which has dimension ' < k. Hence, for any 2 clusters
1,7 in 6, A(C;, Cj) > 2tlogd + 2k.

We will first show that any crashing space of dimension at most r» — 2 of C will intersect W,
mod V. Therefore, we can use the same W, mod V to play the role of W, for computation of &*
in Lemma 6.12.

Any Crashing space of C intersects W, mod V: We will show that any crashing space
X € C<rpr_2e (C) would intersect W, mod V. For the sake of contradiction, assume there
is a crashing space X € €<,__2.,(C) that doesn’t intersect W, mod V. Clearly, span(X,V)
(this is that subspace of F" which contains V' and such that when we go mod V it equals X) is
a crashing space for C, i.e. span(X,V) € G<,_2.,(C), as I’ doesn’t divide the sim(C' mod V)
and only the gecd and therefore division by it, doesn’t affect the rank of the simple part. Since,
span(X,V) € €<r_2.,(C), it must intersect W, from Lemma 6.6. Recall V NW, = {0} as V is
a subspace of W and W only intersects W, at {0}. Since span(X,V) mod V = X, thus it most
hold that the space which means the intersection of X and W, mod V is non-zero, which is a
contradiction to the assumption. Hence, all X € €<,_,v_o, (C) would intersect W, mod V.

Thus, we can compute the spaces S*(C) for all a € [1,7 — 7’ + 1] using Lemma 6.12 with W,
mod V playing the role of W,. We will now show that the conclusions of the claim hold. The first
conclusion is immediate. Let U be as in the assumption of the second conclusion. We will now argue
that one of these spaces in S}(C) is a subspace of U mod (V) or is equal to U mod (V). Notice
that this will suffice in proving the claim. Next, we show that C' vanishes mod (U mod (V')). This
suffices as U N W, = {0}.

Notice that C' mod V vanishes mod (U mod (V)). To obtain C, we divided C mod V by
(I")¢. As argued earlier, C is a X1 (k) circuit.

We will show that this division does not impact the vanishing property. We know from definition
of U = span(ly,...,lx), the linear forms [; divide their respective T; in C. We will show that ;
mod V continues to divide T; mod V for each i even after the division. For this, it suffices to show
that I; does not become equal to I’ when we go modulo V', and this is what we will show now.

Since by assumption, none of the I;’s lie inside W it immediately follows that when we go mod
(V), they will not be in span(l’). Thus division by I’ does not affect their presence in the 7;’s and
if we set U mod V to zero, each [; mod V will get set to zero, and hence each of the gates in C
vanishes and hence C vanishes mod U mod (V).

Hence, U mod V is a space on which C vanishes on, and it doesn’t intersect YW, mod V which
we use in the computation of S*(C). Thus U mod V is a vanishing kernel, but it may not be a
minimal vanishing kernel of C. We conclude that either U mod V or some subspace of it must be

computed in S*(C).

As C doesn’t vanish on I’ (we divided out the multiplicity of I’ in C' mod V'), the spaces
computed will be of dimension at least 1 outside W and when extended by W will contain W.
Thus, the subspace computed of U mod V will extend to a subspace of U strictly containing W.
Hence, we can lift W to a strictly larger subspace of U. The time complexity is the time complexity

of computing S%,_,.,,(C) which is poly(n, &*¥®) from Lemma 6.12. O

Our final algorithm will run the algorithm from Claim 6.16 using the spaces from KSY, ..., KS;_;
which don’t intersect W,, playing the role of W, to learn a new set of “grown" spaces, and then run
the algorithm again on this new set of slightly larger spaces. We do this iteratively r — 1 times. For
every space U = span(ly,...,lx), in each iteration we either learn a larger space in U or we learn a

42

subspace containing one of the [;. Thus, at the end we would have either learned a subspace which
contains one of the [;’s, or the space U itself, and hence proving the lemma. The runtime analysis
easily follows from the runtime of the algorithm in the claim.

O

Lemma 6.17. Let f be a n-variate, degree-d polynomial in Fz1, ..., x|, as described in Lemma 6.1},
Then there exist an algorithm that computes a set S, such that it satisfies property 2 of Defini-
tion 15, i.e. If we consider any crashing space W € €1, such that it doesn’t intersect W,.. Let
be any linear form and e a positive integer such that 1¢| gcd(C' mod W), span(W,)W, = {0}, and
[+sim(C mod W). We say such an l is saturated by a space V', if it has the following properties.

1. Ker(V) C span(W,1). Let W' = Ker(V)NW.

2. There exists e linear forms ly,... 1., each of the form | +1', where I € W such that ged(C

mod W) is divisible by [1;c(l; mod W’).

Then, for any crashing space W € 6,_1., which doesn’t intersect W, the dimension of the
span of linear forms in gcd(C' mod W) that are not saturated by any space in S, is at most k.
<) <(r)

by Sy

1)

r

Proof. We will compute the set S, iteratively as a union of We already saw how

we can compute 37(}) in Lemma 6.15. For every pair of spaces in XS, ’, the algorithm takes their

intersection W’ and considers C' mod W’. It then computes g(glz—dim(W’)(C mod W') and then
takes the span of each space in ICSSZ—dim(W/)(C mod W') with W’ to obtain ICS@(C) and hence

35,2). We repeat this step 7 times, and use the union of these sets as our S,.
In order to analyze why this algorithm works, we will first state and prove a claim which shows

that 351) already has some interesting saturation properties.

Let W € €,-1,,. Thus rank(sim(C mod W)) < ¢;. When we go modulo W, some of the T;
might vanish. Wlog suppose that 171,...,T} do not vanish mod W and Ty 41,...,T; do vanish
mod W for some k' > 2.Thus C mod W is of the form C' := G" x (T} +--- +T},).

For each i € [k'], the linear forms in Lin(7;) can be partitioned into A; U B; such that the linear
forms that become part of G are in A;, and the linear forms that became part of T} are in B;.

Vi € [k’ + 1,k], as T; vanishes mod W, there must exist a linear form [; dividing 7; such that
l; € W. There may be multiple such linear forms in every gate that vanish modulo W, but we fix
any one such linear form per gate.

We focus on the linear forms in A;’s as they are the ones we are concerned for moving into the
G’'. Consider any [€ ged(C mod W), and let e be the multiplicity of [in ged(C' mod W). We
also assume that [is such that span(W,l) N W, = {0}, and [{ sim(C' mod W). Then there are e
different &’-tuples (l11,...,l1g'), .-, (le1, - -, lerr), such that any I;; € A; and is of the form av;l +1};
where [;; € W.

We consider such e different k-tuples of the form (l;1, ..., L, lgry1, ..., ;) for @ € [e].

We first show that for any such [(corresponding to the above tuples), either we have a space
V in 37(“1) satisfying the properties of the lemma (i.e. V saturates [), or we have a space V € Kgil)
such that at least one of lx/yq,...,{; is in V. Note that of V doesn’t saturate [, we still make
progress by learning one of the [; within V, since distinct choices of V' for distinct choices of [will
allow us to start learning some of the l; (we actually learn subspaces of W containing one of the ;)
by taking intersections.

Claim 6.18. Let W be as above. Consider anl € gcd(C mod W) such that span(W,1)NW, = {0}
and 1 1sim(C' mod W). Then there exists a space V in ICSS) such that

43

1. either V saturates 1
2. or3je kK +1,k st. lje Wandl; €V.

Proof. Observe that C vanishes modulo span(W,1). Also, span(li1, ..., lig, L1, - -+, lk) C span(W, 1)
and C' vanishes mod it (since every gate vanishes). Since this space also does not intersect W,,
at least one subspace of span(l;1,..., L, lk11,---,lk) (any minimal vanishing kernel) must be in
KSZ,. Basically, all the tuples from (ool Dty ooy)y ooy (lety o ooy ey Lgrg1s - -+ L) whose
span is a minimal vanishing kernel, are in KSZ,. Thus even if one of the tuples spans a minimal

vanishing kernel, then since ICgil) contains KSZ,, thus choosing V' to be span of the linear forms
satisfies property (2) of the claim and we are done.

Therefore, we are left to deal with the case where V(l;1,..., Lk, lg11,...,1;) is not a maximal
vanishing subspace for all choices of i € [e].

Since span(li1, ..., Ly lgri1, ..., ;) doesn’t intersect W, and [1 sim(C' mod W), the span
cannot be contained in a kernel of a regular space. Therefore, from Lemma 6.15, we know that
there will be a subspace V' of span(l;1,..., Lk, k11, ..,0;) in ICSS), such that at least one of the
linear forms in (l;1,..., Lk, k41, -- -, k) will be in V. Wlog, let V' be the largest such subspace of
span(W, 1) learned in ICE(}). If V' is span(W, 1), then we are already done (property (2) is satisfied).
So assume V' is not span(W,1). This means at some point in computation of S,gl), the computation
learned V' and did not learn a larger space even though the computation is iterated r — 1 times.
We will now argue that the only way this can happen is that V either satisfies property (1) or (2).

If V satisfies property (1) of the current claim, then we are done. If any of the lg/iq1,... 1
are in V, then we are done as well. Let us assume that V doesn’t satisfy either property. We will
strengthen the analysis of Lemma 6.15 and show that, we will have learned a larger subspace of
span(W,1) in ICSS) containing V', contradicting the maximality of V.

Consider a random (dim (V) — 1)-dimensional subspace of V', which we call V' and a linear
form I’ such that V' = span(V’,l’). Let ¢’ be the multiplicity of I’ in C' mod V’. Consider C’ = (C
mod V')/(I')¢" and look at it’s SZ,_dim(v)+1 Spaces. As discussed in Claim 6.16, we have that C' is
computed by XII3(k) circuit with almost the same cluster structure as C' and any crashing space
of C' of dimension at most r — 2 must also intersect W,. Therefore, we can use the same W, for
computation of S;r_dim(v)+1(0’).

As property (1) is not satisfied by V, we must have ¢/ < e. Note that I'¢" divides the ged and
not the simple part of the circuit, and hence it divides each gate of the circuit. Since each gate T}
(7 € [K']) had e linear forms {l},...,le;}, when we divide by I'e" after going mod V', at least one
of the e linear forms "survives' in the gate. In other words, it gets mapped modulo V’, but does
not get eliminated by division. WLOG let the surviving linear form in gate T} for j € [K'] be Iy;
mod V'. As lj41,...,l, are not in V by assumption, hence when we go modulo V', they do not
get mapped to I'. Hence the division by !¢ does not impact these linear forms as well, and they
survive. Thus for i € {k' +1,...,k}, T; is is still divisible by I; mod V' even after the division.

Consider (I11,..., 0%, lpr41,--.,1x). From the above discussion we know that in every gate
T; in C’, we still have either 1; (j € [K]) or I; (j € [k’ + 1,k]) dividing the gate. Therefore,
V(11 mod V', ... lipr mod V' [y 1 mod V' ... I mod V') must be a vanishing space of C’.
Therefore, the vanishing space must have been combined with V' to give a larger space than V' (but

still containing in span(W,1)) in 35,1). That gives a contradiction to maximality of V. O

Consider any crashing space W € 6,1, which doesn’t intersect W,.. Let Tj/11, ..., T} be the
gates which vanish modulo W and for each of these gates T}, let us fix a linear form /; dividing

44

T; which vanishes on W. Let | € ged(C' mod W) such that span(W,l) " W, = {0} and [{ sim(C
mod W). By the above claim, we either learn V' € span(W,[) that saturates [, or else V' contains
one of {lj/41,...,lk}. Suppose there are at most k independent linear forms [that are not saturated

by some V € 39), then we are done. Otherwise there are k + 1 distinct and linearly independent
mod W choices of I (I1,...,l}), such that for each i € [k] we learn some V; € S such that

N
V; € span(W,[}) and V; contains one of {ly11,...,l;}. Observe that distinct ¢ and j, V; and Vj are
distinct and their intersection is a subspace of W. By the pigeon hole principle, there must exist
distinct V; and V; that both contain the same choice of linear form in {ly41,...,l;}. Thus their
intersection is a subspace of W’ of W that contains one of {lj/11,...,l;}.

This we can learn W', by looking at intersections of spaces in ICSS). Recall that ICES) is
(1)

., taking their intersection W', and computing

obtained by looking at every pair of spaces in XS
K:g(l)

r—dim (W) for C mod W’'. Thus for the right choice of W’ which corresponds to a subspace of
W containing one of {lx/11,...,l;}, our algorithm will compute Kggl) for C mod W’. This will
give us a space which either saturates all but k& independent linear forms (when we consider its span
along with W’) or a subspace of W mod W’ which contains another non-zero linear form from
{lgr41, ..., 1k} mod W’. Since we iterate this process r times, we will either recover a saturating
space that saturates all but k independent linear forms or recover a subspace W of W that contains
all of {lr41,...,11}. When we consider C mod W then we get a saturating space by Claim 6.18.

O]

Algorithm 3 Computing codimension r Totally-Special vanishing spaces

Input: Black-box access to circuit C' of form XIIYX (k) computing polynomial f € Flzq,...,z,],

Wy, St 8581, S

1: function S, (C)

2 if r <2 then return ¢

3 SW.=st

4: for ' € [1,r — 1] do

5: for V(Iy,...,0lv) € (S5H(f)US(f)) do

6: Pick a random vector space V of dimension ' — 1 in span(ly,...,[)
7 Let C':= C mod V and any !’ such that span(!’, V) := span(ly, ...,).
8 Let e be the multiplicity of I in Lin(C")

9: Let C := (C'/ (I")%).
10: Compute SF_,(C) with W, mod V as the LDICR space.
11: for V(I1,...,1,_..1) €S_,,1(C)) do
12: if I’ € span(ly,...,0._.) then
13 Add V(L. 0l 1) to 8L
14: for i + [2,7] do
15: for Vi,Vs € KS" Y do
16: Let W =Vi NV, If W = {0}, continue.
17: Compute 35,1) for C mod W.
18: for V e ICES)(C mod W) do
19: Add V(V, W) to S,

20: Output S, := 37(“1) U---U Sﬁ”

45

6.4 Learning linear forms when SCS(r) property is satisfied

Lemma 6.19. Let t = 22k27€]p(k, d)(k*logd)*=3. Let f be a n-variate, degree-d polynomial in
Flxi,...,xy] that is computed by a ETIX(k) circuit C = G x (Th +- - -+ Ty) with ged(Th,...,T) =1
such that it has a 2tlog d+2k-cluster representation C' = Gx (C1+- - -+Cs) as defined in Lemma 5.7.
Let r be in [s| and t, := 22k2R]F(k, d)(k*logd)"=3. Also, for any Ceana and X = Ceqna+2F-(2t, log d+
2k), we have Vi € [k],dim(span(Lin(T;))) > \. Assume the circuit satisfies the SCS(r) property
for some r € [s]. Then, given access to Wy_1 and the sets KSt,...,KS}_,KS1,...,KS,_1, there
exists an algorithm that computes a set of linear forms Leqna such that |Leanal = d°W and 3j € (k]
such that dim(span(Lin(T5) N Leand)) > Ceand in time poly(n, d).

Proof. Let r = max(dim(W,), dim(W})), where W, and W}, are the smallest possible totally inde-
pendent spaces in €<,_2;, contained in spaces in €<,_2 ., such that such that C' mod (W,) = Cj
mod (W,) and C' mod (Wp) =C; mod (W).

We can compute P,_o as described in Lemma 6.3, and therefore W, and W}, would be two spaces
in Pr_a. The rank requirement of Lemma 6.3, is satisfied by at least two clusters in the circuit
with enough distance. We guess two spaces in P,_o, and for the correct guess we have access to
W, and Wy, such that C' mod (W,) = C; mod (W,) and C' mod (W) = C; mod (W,). Using
Lemma 3.9, we have access to the linear factors of C; mod (W,) and C; mod (W,). Consider
any linear form in {| ged(Cj). It can be written as | =1 + I, + I, where [, and [, are linear forms
in W, and Wj. So, we find linear forms Iy, in Lin(C; mod (W,)) and Lin(C; mod (W3)) such
that I3 mod (W) =13 mod (W,). There will be l; =1+ [, and ly =" 4+ [, in the choices. From
these, we can recover [= l; + 2 — (1 mod (W3)). Thus, we can find all linear forms [such that
I £cd(C;).

Since C' has a 2t, log d + 2k cluster representation, we know rank(sim(C;)) < 2% (2t, log d + 2k).
Since, dim(span(Lin(7}))) > ceand + 2% - (2t log d + 2k), we have dim(span(Lin(ged(C})))) > Ceana
and hence, we learn c.q,q independent linear forms from a gate in C. L]

We will divide the computation of §)(f) into two parts, where we first compute it when the
number of variables (n) is small, such that n = ¢, and then do it in the general case.

7 Using S*(f) and S,(f) to learn some linear forms appearing in

C

Armed with W,, 8¢ and S, for various choices of r, we then show that considering intersections
of the kernels of spaces in S} and S, (for various choices of 7) suffices in learning several linear
forms from at least one multiplication gate of C'. This step uses the assumption that all gates of
C have “high rank”. We show how to do this in Section 7.1. In the section after, we will show how
to effectively reduce to the case where all gafes have high rank.

7.1 All large rank gates

Lemma 7.1. Let t = 22k27€1p(k, d)(k*logd)*=3. Let f be a n-variate, degree-d polynomial in
Flxi,...,zy] that is computed by a XIIX(k) circuit C = G x (Th+- - -+T}) with ged(Th, ..., Tg) = 1.
Let Ceana > 0 be an arbitrary constant (it can depend on d). Let X = 2F - (2tlogd + 3k) 4t + 2k? -
(Ceand + k). If it holds that Vi € [k],dim(span(Lin(7;))) > A, then there exists an algorithm that
runs in time poly(n, deIY(t’Cw"d)) and computes a set of linear forms Leqng such that |Legna| = d°M
and 3j € [k] such that dim(span(Lin(T5) N Leand)) = Ceand-

46

Proof. Let f have a 2tlogd + 3k-cluster representation C' = G x (C; + --- 4+ Cs) as defined in
Lemma 5.7.

If there is some r € [s] for which the SCS(r)-property is not satisfied, then take the first r for
which this holds, and by Theorem 6.2 we can learn the desired set of linear forms. Thus, we now
assume that for all € [s], the SCS(r)-property is not satisfied by all r. By applying Theorem 6.2
iteratively, we can thus compute the spaces S}(f) and S,.(f) for all r € [s] in poly(n, dPW¥(t:ccana))
time.

We construct Leqnq as follows. For each pair of spaces in the union of S*(f) and S,(f) over all
r, we consider the intersections of kernels of these spaces. If they intersect in a one-dimensional
space, we add a linear form corresponding to the intersection to Leqng. As both |SF(f)| and |S,(f)]
are d°W) for all choices of r, clearly |Lecandl is d°M) and the runtime of the algorithm is at most
polynomial in the runtime of the algorithm from Theorem 6.2, which is poly(n, dP°W(t:¢cand)),

We now show that the set L.,,q has the desired properties.

Consider any set of independent linear forms L; C Lin(ged(C1)) such that any [€ Ly, I € Ws
and |L1| = 2k(Ceand + k) = a. Similarly for i € [s], let L; C Lin(ged(C;)) such that any [€ L;,
I & span(Ws, L1, ..., L;—1) and |L;| = 2k(ceang + k) = a. We will now justify that such L; exist by
the assumption of all gates being of high rank.

In any gate, the number of independent linear forms that can contribute to sim(C;) is at
most 2% - (2tlog d + 3k), as shown in Lemma 5.7. As W; is a LDICR space, we know dim(W;) <
22K R (k, d) (k*log d)*—3 < t from Definition 14. Since, we have dim(span(Lin(T}))) > 2*-(2tlog d+
3k) +t + 2k% - (ceana + k), we can find enough independent linear forms to construct these sets
Lqy,..., L.

Consider the set of spaces S = {V(ly,...,ls) : Vi € [s],l; € L;}. Note that each space in S is
a vanishing space for C' that does not intersect Wy. We have |S| = (2k(ceana + k))° = o°. We
have learnt all the minimal vanishing kernels corresponding to each space in S in S% as shown in
Lemma 6.12. B

From Lemma 6.14, for any space V(l1,...,ls) € S we can either learn V(ly,...,ls) or we learn
some space V' in S<;, such that KV’ C span(ly,...,ls) and KV’ contains at least one of the I;’s.

We divide our set S into Sgegen and Spon—degen, Where for each space V' in S,,0n—degen, We learn
V itself in S< or in S% s> While for each space V' € Sgegen, we only learn a strict superspace in S<s.
Equivalently, we only learn a strict subspace of its kernel in KS<;. However the subspace kernel
contains one of the [;’s that defined V.

For each space V' € Sgegen such that V' is of the form V(ly,...,l;) we say that V is “associated"
with the linear form [; if the kernel of the learned subspace in SSS contains [;.

For any linear form [that is in one of the L;’s, if there are two distinct spaces in Syon—degen
whose kernels intersect in exactly [, then such an [gets learnt in L.q,q. We also learn [in L.4pq if
there are at least two spaces in Sgegen, that are both associated with [and the kernels of the spaces
intersect in exactly [.

For any linear form [€ L; for some j € [s], there are (a spaces in § whose kernels contain
[. For aset &’ C S, we say that &’ is a matching with respect to [if it has the following properties.
(1) Each element of &’ contains [in the kernel, (2) |S’| = « and each linear form in L; (for any
L; # Lj),is in exactly one of the kernels of spaces in S’

For each [€ L; for some j € [s], we define S(I) to be a subset of S containing all those spaces
whose kernel contains I. Observe that we can partition S(I) into a®~2? matchings with respect to .
This partition is not unique, but we fix any partition and thus obtain for any [, a set of a*~2 sets
of spaces that are “matchings with respect to [".

Note that for any linear form [, if there is a single matching with respect to [that contains

)s—l

47

two spaces in Syon—degen, then their intersection recovers [, and thus we can learn [. We call such
an [as “good". If there are more than kceqng “good" linear forms, then we are done, as there will
be at least one gate from which we have learned c.qyq linear forms. Therefore, let us assume that
for all except kcegng — 1 linear forms, there is at most one space in S,op—degen i each matching
corresponding to it. We call these linear forms “bad".

Thus we get the following bound on the size of Sgegen (justification to follow).

|Sdegen| > (a)s - (kccand) : (a)s—l - (Sa - kccand) : (a)s—2

we get this expression because (a)® is the size of S. We first remove all elements of S that
correspond to any “good" linear form. Thus, we remove at most (kceang) - (a)*~! elements. Thus,
all remaining spaces correspond to all bad linear forms. Some of these spaces might be non-
degenerate, and we would like to remove those. Since each bad linear form corresponds to at most
(a)*~2 nondegenerate spaces, thus by eliminating at most a further (s — kceang) - (a)*~2 spaces,
we are left only with degenerate spaces.

If a linear form is associated with at least T = (a)*~2 + 1 degenerate spaces, then we learn the
linear form, as it will be associated with at least two spaces in the same matching corresponding to
it. If we can lower bound the number of linear forms which are associated with at least (a)*~2 + 1
degenerate spaces and show that it is at least kccqnq, then we will be done.

To do this, we upper bound the number of linear forms which are associated with at most T — 1
degenerate spaces. Let this quantity be a. Then we have a - (T — 1) + (as — a) - (a)*~! is at least
|Sdegen |- Comparing the upper bounds and lower bound that we get on |Sgegen|, we get that

1 s—2

a- -2+ (as—a) a1 >af — (kcegng) -

a?s — o 4 kCegna® + S — kCeand

— (s — kceand) - @

a < substituting
- a—1 Da -
a < (2kceang + 2k*) - (s — 1) 4 kCeang + 5. 2k(ccana + k)

Therefore, we get the number of linear forms associated with at least a® 2 +1 degenerate spaces
is at least as — a > o — kcegng — S = kcCeang. Thus, even in this case, we learn at least cgqyg linear
forms from one of the gates. O

7.2 Some small rank gates

In this section, we will show how to learn enough linear forms from some gate assuming there are
some low rank gates. We still will require that the rank of the simple part of the circuit is high. If
this is not the case, then as in previous works, we can recover the circuit as a sparse polynomial of
linear forms (this part is quite standard), and we will handle this in the next section.

In the next lemma we will show how to learn enough linear forms when some of the gates are
low rank. In proof we will show how to in some sense simulate blackbox access to the high rank
part of the circuit and show how to compute S* and S spaces for the high rank gates. Once we
can do this then we can learn the required linear forms as in Lemma 7.1.

Lemma 7.2. Let t = 2%27{1@(16, d)(k*logd)*=3. Let f be a n-variate, degree-d polynomial in
Flxi,...,zy] that is computed by a S1IX(k) circuit C = G x (T1+- - -+ T},) with ged(Th, ..., T) = 1.
Let Ceana > 0 be an arbitrary constant (it can depend on d). Let X = 2F - (2tlogd + 3k) 4t + 2k? -
(Ceand + k). If it holds that rank(sim(C)) > 28% . k- \, then, there exists a randomized algorithm
that runs in time poly(n, dPoY (beeand)) and computes with probability 1 — op(1) a set of linear forms
Leand such that |Legna| = d°Y and 35 € [k] such that dim(span(Lin(7}) N Leand)) = Ceand-

48

Proof. We have already handled the case when all gates have rank at least A in Lemma 7.1.
Therefore, we only need to handle the case when there are some gates which have rank less than .

We will reduce this case to the case where all gates in the circuit have a rank at least A. To do
this, we will first partition the circuit into high rank and low rank gates. Gates with low rank, will
have low number of essential variables (see Definition 7). Observe that if V' is a vanishing space
for the high rank gates, then when we consider the circuit restricted to V, the resulting polynomial
has only few essential variables. This observation will motivate our algorithm. We will learn spaces
of codimension upto r restricted to which the polynomial has few essential variables. We will show
that these spaces are precisely the vanishing spaces for the high rank part of the circuit. Once we
have a rich enough set of vanishing spaces (§* and S) for the high rank gates, then we can learn
Ceand independent linear forms in a gate using the previous lemma.

Partitioning the gates in high and low rank: The idea will be to partition the gates T}, € [k]
by partitioning [k] into two sets K and K’ = [k] \ K such that all low rank gates have indices in
K’ and there is a large separation between the ranks of gates with indices in K and the combined
rank of gates with indices in K’.

Formally, K’ C [k] is such that Vj € K,dim(span(7})) > 8 - dim(span(U;ex-Lin(73))) + A. To
find such a set K’, we first choose (and add to K’) all indices corresponding to gates T; such that
dim(span(Lin(7;))) < A. Let the number of such chosen indices be a;. Then, there must exist a
gate in Tj (with index not in the current K’), such that dim(span(7})) < (8ai;+1) -\, as otherwise,
we are done. In this next step, we add indices corresponding to all such gates with dim(span(7})) <
(8a1+1)-X to K'. Suppose that the number of indices added is as. Similarly, now there must exist a
gate (with index not in the current K”) T}, such that dim(span(7Tj)) < (8a;+1)-(8az+1)-A (or again
we are done). Suppose that this goes on for r steps and we get a, new indices, and after that no gate
remains, i.e. K’ = [k]. We will now argue that this is not possible. If no gate remains after r steps,
then dim(span(U;eLin(73))) < 3 cp(1+8a1) ... (14+8aj-1) -aj- A < (1+8ar)...(1+8ar) -
Using a; + -+ a, < k and r < k, we have (1 + 8a1)...(1 + 8a,) < 2%%. Therefore, we have a
contradiction as we know from assumption rank(sim(C)) > 28% . k- X\. Thus we conclude that when
the process terminates, K’ is not the full [k] and thus its complement K (or high rank gates) is
nonzero.

From the above argument, it immediately follows that dim(span(U;cx-Lin(T}))) < 28%X. Let
the rank of >, x+ T; (which is precisely dim(span(U;cx/Lin(73)))) be m, for some integer m. We
will assume henceforth that m is known to us. This is because we will run the algorithm for all
m € [2%% - k- A] and our final set will be the union of all linear forms returned. Thus, it will include
the linear forms for the correct choice of m.

Note that for every ¢ € K, the rank of T; is at least 8m + A. Note that if for any choice
of (l1,...,1l), if C mod (l1,...,l,) has at most m essential variables, then it implies > ;cx T;
mod (l1,...,l,) has at most 2m essential variables. The second part of Lemma 5.6 thus implies it
must be that Y, T3 mod (l1,...,l,) = 0. In our algorithm, we will compute spaces V(I1,...,[;)
such that restricted to them f has at most m essential variables. By the above reasoning, such
spaces will be vanishing spaces for) ;cx T;.

We will discuss now how we can show an analog of Theorem 6.2 for Y, T; (i.e. we will
algorithmically compute a rich class of vanishing spaces) but only using blackbox access to C.
First, we will show that if the SCS(r) property doesn’t hold for }*,c; T; for any choice of r < | K],
we can compute S} (3 ;cx T;) and S, (3 ;cx ;). We will also show that if SC'S(r) property does
hold for some 7, then we can use S, (X ;e T3) and S<,—1(X;cx T3), with blackbox access to C
to compute Ceng independent linear forms from one gate.

49

Learning the S spaces of), T; We will recursively learn these spaces. We will assume we
have already learnt W1, 57 (X icx Ti)s - - Sp 1 (OCiex 1), S1(icx 1), - - - Sr—1(Xie i Ti) and we
assume that the SCS(r) property does not hold.

The algorithm for computation of a LDICR space, W,., corresponding to the circuit ;. x T;
using the spaces KST (Y icx Ti)s -, KSF 1 (X iex Ti), KS1(Xick Ti)s - - -, KSr—1(X ;e Ti) remains
exactly the same as in Lemma 6.6. The algorithm for learning S (>°;cx T) is almost identical to
that of learning S;(C') (Algorithm 2) with one key change - when we set up the system of equations,
we don’t set it up so that some polynomial vanishes, but set it up so that some polynomial has at
most m essential variables. We elaborate below.

Similar to Algorithm 2, we take a random linear isomorphism ® which is defined by ®(z;) =
> j—1 @i jzj(where a; ; are chosen randomly from [d"]) to get polynomial g = ®(f) = f(®(x)). We
then obtain polynomials g; for i € [8m+ 1, n], by setting all but the first 8m variables and z; to 0 in
C. We can interpolate these (since they are only few variate) to get white-box access to the mono-
mial representation of the g;’s. Let ®(C)|zg, 41— mas 1=ps 11— —an=0 = Gl x (Tlm +-- —i—T,EZ}). For
J € K, As dim(span(Lin(7}))) > 8m+ A (which is greater than 8m), after projecting down the gates
would still have high rank (at least 8m) with high probability, similar to Lemma 6.8, while projected
> ek’ T][l] will have at most m essential variables. Now, any [, ..., 1, such that C mod (l3,...,[,)

has at most m essential variables must be such that (3°;cx T]M) mod (l1,...,l,) has at most 2m
essential variables. From part 2 of Lemma 5.6, any [y, ..., [, such that (3¢ T][Z]) mod (ly,...,1)

has at most 2m essential variables must be such that (3_,cx T]-M) mod (ly,...,l,) = 0 (Since we
know that all T;,7 € K have rank at least 8m + \).

We will first show that we can preprocess the circuit such that we reduce to the case where the
linear forms in G are in the span of the linear forms appearing in) ;.5 T;. The argument is very
similar to Corollary 5.3. We first observe that if [is any linear form dividing sim(C') then (3;c 15)
mod (I) equals 0. By the rank bound Theorem 3.5 and the difference in ranks among the gates,
it must hold that (3°,cxs 73) mod (I) equals 0. Thus any such [is in the span of linear forms
appearing in) ;o T;. We can look at all linear forms dividing C', guess the m-dimensional subset
of linear forms corresponding to span of linear forms in) ;. T; and divide out the remaining
linear forms (which will not divide sim(C). This follows the argument in Corollary 5.3, and thus
we reduce to G having the required property.

Note, to learn 87(3 ek Tj[l]), it suffices to learn the codimension r spaces on which GI# x
(Tlm +- T,Li]) has at most m essential variables. Similar to Lemma 6.7, we have that if >, 7T}
vanished mod (ly,...,l,), then YieK T][Z] must vanish modulo (x1 — li;, ..., 2, — lys) where [j; €
Flzri1, ... 28m, 5], Let lji = ajrp1@pp1 + -+ - + @jgmTam + ajx;. For each j € r, we substitute
Tj = Qjrp1Tr41 + -+ + 0 8gmTem + 0 iz into g; which we have monomial access to (which we can
obtain by interpolation since these polynomials are sparse). As seen in Lemma 3.14, the number
of essential variables in any polynomial is the rank of the corresponding partial derivative matrix.
Using white-box access to the g;’s, we can get access to its partial derivative matrix, and then we can
set up a system of polynomial equations in for j € [r], aj 41, .., @1 8m, @, that bounds its rank to
be at most m. We get this by equating all (m+1) x (m+1) minors of the matrix to 0, thus ensuring
that the rank of the matrix is at most m. This ensures g; mod (x1 — ly;,..., 2, — ;) has at most m
essential variables. We will also add an equation ensuring that span(zq —ly4, ..., 2, — ;) intersects
DWW)| wsmii=..=ti 1 =wis1=..—en—=0 trivially, similar to Lemma 6.7. The system of equations is in
8m variables and has d°("™) equations with a degree at most m + 1 and hence can be solved
in poly(d”°¥(™)) time using Theorem 3.10. We can then glue these solutions for g;, similar to
Lemma 6.12, by comparing coefficients in x,y1,...,2gm, to get codimension r vanishing spaces

50

of > ek Tj[l] Hence, we can compute S spaces of };cx Tj in time dPoY(™) time with 1 — o(1)
probability.

Learning S, spaces: Next, we argue how to compute the S, spaces of > jex Tj. We will again as-
sume that SCS(r) property is not satisfied and we have computed W,., St (> icx Ti), - - - Sk (X ick Ti)

and gl(ZiEK Tz)a s 7ST—1(Zi€K TZ)

Recall that to learn 351)(0), we considered an r dimensional space span(ly,...,l;) for (I; €
Lin(7;)) which was not learned in KS; because it contained a smaller space V' in KSZ,. In
Claim 6.16, we showed how to use V to learn a larger space in span(ly,...,lx). The steps af-

= =1
N ,SY) we consider the circuit mod intersections of spaces in S£)
and repeat the computation r times.

ter that for computation of 3(2)

We need to now carry out these steps for) ;. T;. All the later steps of computing 3(2) ,S(T)

r Sy
once we can compute g,(nl) are identical to Lemma 6.17. The only change required is in the procedure
in Claim 6.16 to learn larger spaces that contained V' but that are also in span(ly,...,[x).

To learn these larger spaces, in Algorithm 3, we consider a random (dim (V') — 1)-dimensional
subspace V' of V and a linear form [’ such that span(V’,l') = V. Let e be the largest integer such
that (I')¢|C' mod V’. We then considered the circuit C' = C' mod V’/(I')¢, and found S* spaces
of C" whose kernels contained I’. We appended the kernel of these spaces with V'’ to obtain larger
vanishing spaces than V', and showed one of them was inside span(ly,...,l;). More details of the
analysis are in Lemma 6.15 and Lemma 6.17.

The one step in all this that we cannot carry out is where we divide the circuit C' mod V' by
(1")¢ simply because we do not have black box access to the circuit we are computing S, spaces for,
i.e. > jcx Ty, as we only have black-box access to the full circuit C.

)

We will show that we can still compute the 351 spaces. We have black box access to the circuit

ek Tj+>jexr T, and we want to learn spaces of the form V(ly, ..., [k), where dim(span(ly, ..., [x|)) =

7, 1l; € Lin(T;) for i € K and span(ly, ..., x)) intersects W, (3_ ek Tj) trivially. Let span(ly, ..., k)
contain a space V' of smaller dimension such that } ;c; 7; mod V = 0 and hence V(l,... ,Z‘K|)
couldn’t be learned in §7(3_ ek Tj). Similar to the Claim 6.16, we consider a random (dim(V) — 1)-
dimensional subspace V' of V' and a linear form I’ such that span(V’,l') = V. Let e be the largest
integer such that (I')°|(X;cx Tj) mod V'. Since span(ly,...,l) intersects W,.(3;cx Tj) triv-
ially, we will have span(ly,... g K|) doesn’t contain any vanishing regular kernel, and hence [’
doesn’t divide sim(3;cx T; mod V'). The circuit C' mod V' is of the form (I')®- A + B where
A= ((Xjex Tj) mod V')/(I')¢ and B = (3 ek Tj) mod V'. We know the number of essential
variables in A is at least 8m+ A —r, while the number of essential variables in B is at most m. Wlog,
we can consider an invertible linear isomorphism ® from n variables to n variables such that I” — 1
and it keeps the rank of T;’s in K still high. After ®, C' mod V' looks like (z1)¢ - ®(A) + ®(B).
Similar to Claim 6.16, we want to find Sgrfdim(v/)(q)(A)) such that it contains x; in the kernel, so
we can append them to V and learn larger vanishing spaces. Assuming, we know e, this was easy
to do in Claim 6.16, as we had black-box access to ®(A). In our current case, we will simulate
the same, by looking at partial derivatives of C' wrt z1, and then looking for spaces such that mod
them the circuit has at most m essential variables.

To carry out the above plan, we first “guess" e from {1,...,d} (we will in fact run the algorithm
for choices of €) and thus assume that we have the right choice of e. Then we look at the e-th order

partial-derivative of ®(C' mod V), i.e. WCTW with respect to x1. Using product rule, it
1
will be of the form ®(A)+z- P+ 868(1;(63) where P(x1,...,xy) is some non-zero polynomial. Observe
1

51

that aeg; (TB) has almost m essential variables.

We will now compute the set of codimension upto » — dim V' spaces such that %ﬁmv’)
1

has almost m essential variables (similar to above) and their kernel contains x1, which is equivalent
to setting 1 = 0 and finding vanishing spaces of ®(A) and hence having no contribution from
x1 - P. Thus, we find S;_dim(v)(@(A)) containing x1, and hence vanishing spaces of A such that
it contains I’ in the kernel by inverting ®.

Therefore, we are able to learn the larger spaces from V, and hence learn 351)(Zj€ xkTj) as
well. Once, we can compute 351)(Zj€ k Tj), we can look at intersections of these spaces and
<) <(2) <(r)

, to learn § ., S, 7 and

consider the circuit mod them, and repeat the computation of S, NP
hence S, (3 ek Tj)-

Learning linear forms if SCS(r) property holds Fix r to be the smallest such that SC'S(r)
property holds. As seen above, we can compute 8%, (Yicx Ti) and S<,—1(3;cx T3)- In Lemma 6.19,
we saw if the SCS(r) property is satisfied for C' then we can use S, _{(C) and S<,_1(C) to learn
Ceand independent linear forms from a gate. To do this, we went mod the two independent spaces
that satisfied the SCS(r) property, learned the projections linear forms in the ged of the cluster
that survived by factoring, and then glued these projections back to learn the required linear forms.
In current lemma, we are trying to learn linear forms from gates in) ;. T;, and we have access
to 8%, 1 (Xiex i) and S<,—1(X ;e T3), but we no longer have blackbox access to > ;o5 T; for
factoring the surviving cluster. We will bypass this by finding codimension 1 spaces restricted to
which the polynomial has at most m essential variables, instead of factoring.

Let W, and W} be the two completely independent spaces that come from the SCS(r) prop-
erty of > ,cx T;. When we go modulo W, and W, only one cluster of the 2tlogd + 3k-cluster
representation of) ;. - T survives. We also know W, and W}, are in the set P,._3 computed using

t1(Ciex Ti) and S<,—1(X;ex Ti)- Since |Py_a| = d°M), we run the algorithm for all possible
choices and output the set of linear forms as a union, and hence it will contain the linear forms
computed when we picked the correct W, and W,

We consider ' mod W, and C' mod W;. We will then compute codimension 1 spaces modulo
which the circuits have at most m essential variables, and these will be the linear forms mod which
(>ierx Ti) mod W, and (3 ;cx T3) mod W, vanish respectively. This computation is exactly the
S (X iex Ti) computation for » = 1, we discussed earlier. Since, only one cluster survives, the
linear forms in gcd of the surviving cluster will also be in this list. Thus, we compute the linear
forms in ged of the cluster mod W, and W;. As discussed in Lemma 6.19, we can compute the
linear forms in gecd of cluster exactly by gluing the two projections as the spaces W, and W are
completely independent.

Therefore, we have learned the linear forms in the ged of the cluster. Since, it is 2tlogd + 3k
cluster representation, the linear forms from any 7; that went to the simple part of cluster is at most
2F.(2tlog d+3k) from Lemma 5.7. We know for any gate index i € K, we have dim(span(Lin(7}))) >
8m + A. And X\ = 2F . (2tlogd + 3k) +t + 2k? - (Ceanq + k). Thus, even after removing the linear
forms lost in simple part of the cluster, we are still able to learn at least 8m + ¢ + 2k - (Ceand + k)
independent linear forms from gcd of the cluster and hence from one of the gates. O

8 Learning Circuit from few linear forms

We saw in Lemma 7.2, if the rank of the simple part of the circuit is large, then we learn a list L4
with Ceqnq independent linear forms in one of the gates (for any ceqng = poly(logd)) in (nd)Pel(oe d)

52

time with high probability. In this section, we will discuss how we can reconstruct the entire circuit
if we have black-box access to a XIIX(k) circuit C = G x (11 + - - - + T}) using the set Logng-

We will first see how to do reconstruction when the rank(sim(C)) is low in Lemma 8.1, i.e. in
case when we cannot use Lemma 7.2 to learn linear forms in a gate. We will use Lemma 3.9 to
factor out the linear factors of C' and then learn the Non-linear part using the Carlini Algorithm
(Lemma 3.14) to obtain a X1I3(1, d, poly(log d)) generalized circuit computing the same polynomial
as C.

Next, we will look at a clustering result from [KS09a], where they show that every XII¥(k)
circuit has a unique clustering if the clusters are far enough (Theorem 8.2). This gives a unique
YIIX(s,d,poly(logd)) (s < k) representation for every XII¥ (k) circuit. We will focus on learning
this unique representation.

Using the linear forms, we have learnt from Lemma 7.2, we will use them to get projections
of sum of other clusters, which we can reconstruct recursively. Using these reconstructions, we
get enough projections of a single cluster that we can combine them using Theorem 3.16 and
Lemma 3.17. Once, we have learnt the cluster, we can subtract it from the circuit and learn the
rest of the circuit with lower top fan-in. At the end we do a PIT check to ensure the output circuit
computes same polynomial as C.

8.1 Low Rank Reconstruction

In this section, we will give a reconstruction algorithm for the case when the rank(sim(C)) <
R R (k, d) (log d)** .

Lemma 8.1. Given black-box access to a XIIX(k) circuit C = G x (Ty + -+ + Tx) computing a
degree-d polynomial f € Flaxy,. .., x,) with rank(sim(C)) < 28+ Rp (k. d)(log d)**, there exists
an algorithm that runs in randomized time (nd)P°Y1°€9) and with probability 1 — o(1) outputs a
YII%(1,d, Qkk+9k2RF(k, d)(log d)kk) generalized depth-3 circuit as defined in Definition 5.

Proof. The input circuit is of the form C' = G x (T} + - - - + T) computing f where dim(span({l :
Ty x -+ x Tp)})) < 2819 R (k, d)(log d)*". Clearly, the non-linear factor of f, NonLin(f) =

I ; will divide T3 +- - -+T} and therefore, will have essential variables less than rank(sim(C)).
IELin(f)

So, we use Lemma 3.9 to get black-box access to NonLin(f) and the linear factors Lin(f) in
randomized poly(n,d) time. As NonLin(f) has at most rank(sim(C')) essential variables, there
exist a linear transformation A such that NonLin(f)(A-Z) depends only on rank(sim(C')) variables.
Using Theorem 3.12, we can compute A in randomized polynomial time. We can do polynomial
interpolation in time (nd)™**G™(C) from Lemma 3.8 to get monomial access to and hence learn
NonLin(f)(A-Z). We use A~! to recover NonLin(f), and then the circuit by multiplying it with
Lin(f). Notice that this would give us a XII3(1,d, 2kk+9k2RF(k,d)(log d)kk) circuit computing
f. O

8.2 Unique Clustering

In this section, we will look at the x-distant clustering as defined in [KS09a]. We will ask the reader
to note that this is not the same as the clustering mentioned in Lemma 5.7.

Definition 18 (k-distant circuit). Let C be a 11X (s, d,) generalized depth-3 circuit(Definition 5)
computing a polynomial f. We say that C is k-distant if for any two multiplication gates of C, M
and M', we have that A(M,M') > k- r.

93

The following theorem in [KS09a| showed that for every XII¥(k) circuit and large enough &,
there exists a unique XIIX(s, d, r) generalized depth 3 circuit, for s < k and r in the suitable range.

Theorem 8.2 (Existence and Uniqueness,(Theorem 3.2,3.6[KS09a])). Let f be a polynomial that
can be computed by a X1IX(k) circuit and let k > % +k. Then, there exists a X11%(s,d,r)
generalized depth-3 circuit C' computing f for s < k and Rp(k +1,d) +k <r < (Rp(k+1,d) +

k)- (k- k+ k)2, Moreover, this representation is unique.

8.3 High Rank Reconstruction
We will focus on learning the unique XIIX(s, d, r) configuration described in Theorem 8.2.

Lemma 8.3. Let f be a n-variate degree-d polynomial in Flx1, ..., x,] such that it can be computed

by a X1IX(k) circuit with rank(sim(C')) > 2kk+9k27€1@(kz, d)(log d)kk. Letk = Z(k_l)k71+9(k_1)2+17?,]1r(k, d)-
(log d)(kfl)(kil)ﬂ. Let C = G x (C1 + -+ + Cs) be the k-distant unique generalized X1 (s, d, 1)
circuit from Theorem 8.2 also computing f with 2 < s < k. Then, we can compute C' =

G x (C1+---+Cy) in (nd)P°Y189D) time with 1 — o(1) probability.

Proof. We have r = 201" +9(=1)*+1 . (150 d)(kfl)(k_l)ﬂ, therefore, from Theorem 8.2, there
must exist a unique circuit XII¥(s,d,r) k-distance generalized depth-3 circuit C = G x (Cy +
.-+ + Cs) computing f, where Rp(k + 1,d) + k < r < (Rp(k + 1,d) + k) - (k- k + k)¥ 72, ie.
r < 20=D" (log @) (+=1)"

Let ceang = 2 Ri(k, d)(log d)** . Since, rank(sim(C)) > 28" 9%’ Ry (k, d) (log d)*", from Lemma 7.2,
we have a poly(d)-sized list L.qnqg which has at least c.qng independent linear forms from one of
the gates. Wlog, that gate is T, which is part of cluster C'. Guess Ceqpng independent linear forms
from Lc.qng, and run the algorithm in parallel for all guesses. There will be at most dand guesses,
and for the right guess, we have lq,...,l.nq independent linear forms from 77.

At least ceqng — 1 of these linear forms must be part of Lin(C4), and C; vanishes mod these
linear forms. Wlog these be l1,...,1.,,, ,—r- We consider the circuit C' mod these linear forms. Now
consider the circuit (Cy + -+ 4+ Cs) mod [; for i € [ceqng — r]. The circuit has top fan-in at most
k — 1 as at least T} vanished. From Corollary 5.3, we have at most ZkZR]F(k:, d) log d linear forms
might be such that all the clusters vanish mod them. We can learn projections of these clusters
recursively, if rank(sim((Cy + --- + C5) mod [;)) > Q(k_l)(k71>+9(k_1)27€1p(k —1,d)(log d)(k_l)(kil).
If only one cluster survives, we learn the projection using Lemma 8.1. Otherwise, we have the
remaining clusters had distance at least k-7 > k- Rp(k+1,d). We will next exclude all linear forms
such that mod them the rank of the simple part of remaining clusters dropped from x - Rg(k+ 1, d)
to 20 DETIHIG=D?Rp(k — 1, d)(logd) D" This is exactly the setting, where we can use
Lemma 5.1 with ' = Z(k_l)(k71)+9(k_1)27€]1:(k —1,d)(log d)(k_1)<k71). Therefore, Lemma 5.1, gives
us that for a given pair of clusters surviving, the rank of the simple part of the circuit can go
be low 7’ for at most 7’logd linear forms. Doing this for all possible pairs, we have to exclude
E*r'logd + r + 2k2RF(/€, d)logd linear forms from I, ..., lcand. Since, Cegnd = QkkRF(k, d)(log d)kk
is much bigger, we easily have k- (100logd + r 4+ 2) independent linear forms [;’s such that which
we can reconstruct (Co + -+ -+ Cs) mod I; exactly due to uniqueness from Theorem 8.2, and get
projections of clusters that did not vanish.

Therefore, we have at least 100logd + 7 + 2 many projections of a single cluster C;. From
Theorem 3.16, we need 100logd independent projections of Lin(G x Cj) to obtain Lin(G x Cj).
From Lemma 3.17 and Claim 7.5 of [SS25], we need r + 2 projections of NonLin(C}), to obtain
NonLin(C}) exactly. Since we have enough independent projections, we can use them to learn
G x Cj.

o4

Once we have learned G' x U, we can simply subtract it from C, and hence learn the remaining
circuit with smaller fan-in to obtain a circuit for C" = C' — G x C}. At the end, we run a PIT check
of Lemma 3.3 to see if C' + G x C; = C, and output C’ + G x Cj if correct. O

8.4 Proof of Theorem 1.1

Finally using Lemma 8.3 and Lemma 8.1 let us finish the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ¢; = 28" and ¢, = k*. Then, if Vi # j € [k], rank(sim(T; 4+ 1)) >
c1(log d)?2, the cluster representation of Theorem 8.2 will be G x (T1 + --- + Tj) as all the gates
will be far enough and each cluster will have only one gate. In this case, Lemma 8.3 will learn the
exact circuit, and we will have proper learning.

If the rank of the simple part is small, we learn a XII¥(1,d, ¢1(log d)“?) circuit in Lemma 8.1.
If the rank is high, but not all gates are far apart, we learn a XII¥(s,d,c;(logd)®?) circuit in
Lemma 8.3 for some s < k — 1. O

9 Future Work

The major open question that remains open is to understand the problem of proper learning for
small rank XII¥ (k) circuits. This remains open even for top fan-in 2. Obtaining hardness results
for the problem would also be very interesting.

It is also a very interesting question to de-randomize the current algorithm, as well as obtain
reconstruction algorithms over low characteristic fields when top fan-in is greater than 2. Finally,
it would also be interesting to obtain reconstruction algorithms for “generalized" depth-3 circuits
and SFIIXIIC circuits for constant k,d as we have recently made good progress on PIT for these
models.

References

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.

[AV08] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 67-75, 2008.

[BBB100] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning
functions represented as multiplicity automata. J. ACM, 47(3):506-530, 2000.

[BCC'18] Alessandra Bernardi, Enrico Carlini, Maria Virginia Catalisano, Alessandro
Gimigliano, and Alessandro Omneto. The hitchhiker guide to: Secant varieties and
tensor decomposition. Mathematics, 6(12):314, 2018.

[BDWY13] Boaz Barak, Zeev Dvir, Avi Wigderson, and Amir Yehudayoff. Fractional sylvester—
gallai theorems. Proceedings of the National Academy of Sciences, 110(48):19213-19219,
2013.

[BEG7] W Bonnice and Michael Edelstein. Flats associated with finite sets in pd. Niew. Arch.
Wisk, 15:11-14, 1967.

95

[BGKS22]

[BOTSS)]

[BS25]

[BSV20]

[BSV21]

[Car06]

[CGK*+24]

[DDS21]

[DGI*+24]

[DS05]

[DSW14]

[FS12]

Vishwas Bhargava, Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning general-
ized depth three arithmetic circuits in the non-degenerate case. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2022). Schloss-Dagstuhl-Leibniz Zentrum fiir Informatik, 2022.

M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynom-
inal interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing (STOC), pages 301-309, 1988.

Vishwas Bhargava and Devansh Shringi. Faster & Deterministic FPT Algorithm for
Worst-Case Tensor Decomposition. In 52nd International Colloguium on Automata,
Languages, and Programming (ICALP 2025), volume 334, pages 28:1-28:20, 2025.

Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction of depth-4
multilinear circuits. SODA 2020, 2020.

Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction algorithms for
low-rank tensors and depth-3 multilinear circuits. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 809-822, 2021.

Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic geometry
and geometric modeling, pages 237-247. Springer, 2006.

Pritam Chandra, Ankit Garg, Neeraj Kayal, Kunal Mittal, and Tanmay Sinha. Learn-
ing arithmetic formulas in the presence of noise: A general framework and applica-
tions to unsupervised learning. In 15th Innovations in Theoretical Computer Science
Conference, ITCS, volume 287 of LIPIcs, pages 25:1-25:19. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2024.

Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic Identity Testing
Paradigms for Bounded Top-Fanin Depth-4 Circuits. In Valentine Kabanets, editor,
36th Computational Complezity Conference (CCC 2021), volume 200 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 11:1-11:27, Dagstuhl, Germany,
2021. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir
Lysikov. Homogeneous algebraic complexity theory and algebraic formulas. In 15th
Innovations in Theoretical Computer Science Conference (ITCS 2024), pages 43-1.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2024.

Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and polynomial
identity testing for depth 3 circuits. In Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing, STOC 05, page 592-601, New York, NY, USA,
2005. Association for Computing Machinery.

Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for design ma-
trices and a new proof of kelly’s theorem. In Forum of Mathematics, Sigma, volume 2,
page e4. Cambridge University Press, 2014.

M. A. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. FElectronic Collo-
quium on Computational Complezity (ECCC), 19:115, 2012.

56

[GKKS13] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Arithmetic circuits: A chasm at

[GKL12]

[GKQ14]

[GKS20]

[GOPS23]

[GOS22]

[GVJISS]

[Han65)

[Ter89)

[Kay11]

[KNS19]

[KNST17]

[Koil0]

depth three. In Proceedings of the 54th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 578587, 2013.

A. Gupta, N. Kayal, and S. V. Lokam. Reconstruction of depth-4 multilin-
ear circuits with top fanin 2. In Proceedings of the 44th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 625-642, 2012. Full version at
https://eccc.weizmann.ac.il/report /2011 /153.

A. Gupta, N. Kayal, and Y. Qiao. Random arithmetic formulas can be reconstructed
efficiently. Computational Complexity, 23(2):207-303, 2014.

Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 889-899. IEEE, 2020.

Abhibhav Garg, Rafael Oliveira, Shir Peleg, and Akash Kumar Sengupta. Radical
sylvester-gallai theorem for tuples of quadratics. In 38th Computational Complezity
Conference (CCC 2023). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2023.

Abhibhav Garg, Rafael Oliveira, and Akash Kumar Sengupta. Robust Radical
Sylvester-Gallai Theorem for Quadratics. In Xavier Goaoc and Michael Kerber, edi-
tors, 38th International Symposium on Computational Geometry (SoCG 2022), volume
224 of Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1-42:13,
Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

D Yu Grigor’ev and Nicolai N Vorobjov Jr. Solving systems of polynomial inequalities
in subexponential time. Journal of symbolic computation, 5(1-2):37-64, 1988.

Sten Hansen. A generalization of a theorem of sylvester on the lines determined by a
finite point set. Mathematica Scandinavica, 16(2):175-180, 1965.

D. Ierardi. Quantifier elimination in the theory of an algebraically-closed field. In Pro-
ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC
'89, page 138-147, New York, NY, USA, 1989. Association for Computing Machinery.

Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equiva-
lence problem. In Proceedings of the twenty-second annual ACM-SIAM symposium on
Discrete algorithms, pages 1409-1421. SIAM, 2011.

Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factoriza-
tion and reconstruction of low width algebraic branching programs. computational
complexity, 28:749-828, 2019.

N. Kayal, V. Nair, C. Saha, and S. Tavenas. Reconstruction of full rank algebraic
branching programs. In 32nd Computational Complezity Conference, CCC 2017., pages
21:1-21:61, 2017.

P. Koiran. Arithmetic circuits: the chasm at depth four gets wider. CoRR,
abs/1006.4700, 2010.

57

[KSO01]

[KS06]

[KSO08]

[KS09a]

[KS09b)]

[KS19]

[KSS14]

[KT90]

[Lanl15)

[Laz01]

[LST22]

[0S22]

[0S24]

[PS21]

A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 216-223, 2001.

A. Klivans and A. Shpilka. Learning restricted models of arithmetic circuits. Theory
of computing, 2(10):185-206, 2006.

Zohar S Karnin and Amir Shpilka. Black box polynomial identity testing of general-
ized depth-3 arithmetic circuits with bounded top fan-in. In 2008 23rd Annual IEEE
Conference on Computational Complexity, pages 280-291. IEEE, 2008.

Zohar S Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In 2009 24th Annual IEEE Conference on Computa-
tional Complexity, pages 274-285. IEEE, 2009.

N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3
circuits. In Proceedings of the 50th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 198-207, 2009. Full version at
https://eccc.weizmann.ac.il/report /2009/032.

Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous
depth three circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 413-424, 2019.

Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial
identity testing and deterministic multivariate polynomial factorization. In 201/ IEEFE
29th Conference on Computational Complexity (CCC), pages 169-180. IEEE, 2014.

FErich Kaltofen and Barry M Trager. Computing with polynomials given by black boxes
for their evaluations: Greatest common divisors, factorization, separation of numerators
and denominators. Journal of Symbolic Computation, 9(3):301-320, 1990.

Joseph M Landsberg. Geometric complexity theory: an introduction for geometers.
Annali dell’universita’di Ferrara, 61(1):65-117, 2015.

Daniel Lazard. Solving systems of algebraic equations. ACM SIGSAM Bulletin,
35(3):11-37, 2001.

Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower
bounds against low-depth algebraic circuits. In 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science (FOCS), pages 804-814, 2022.

Rafael Oliveira and Akash Kumar Sengupta. Radical sylvester-gallai theorem for cu-
bics. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 212-220. IEEE, 2022.

Rafael Oliveira and Akash Kumar Sengupta. Strong algebras and radical sylvester-
gallai configurations. In Proceedings of the 56th Annual ACM Symposium on Theory
of Computing, pages 95-105, 2024.

Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testing algorithm
for BTSN circuits via Edelstein—Kelly type theorem for quadratic polynomials. In

98

[PS22a)

[PS22b)]

[PSV24]

[Sch80]

[ShpO7]

[Shp19]

[Sinl6al

[Sinl6b]

[Sin22]

[SS11]

[SS13]

[9S25]

Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 259-271, 2021.

Shir Peleg and Amir Shpilka. A generalized sylvester—gallai-type theorem for quadratic
polynomials. In Forum of Mathematics, Sigma, volume 10, page ell2. Cambridge
University Press, 2022.

Shir Peleg and Amir Shpilka. Robust Sylvester-Gallai Type Theorem for Quadratic
Polynomials. In Xavier Goaoc and Michael Kerber, editors, 38th International Sym-
posium on Computational Geometry (SoCG 2022), volume 224 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 43:1-43:15, Dagstuhl, Germany, 2022.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

Shir Peleg, Amir Shpilka, and Ben Lee Volk. Tensor Reconstruction Beyond Constant
Rank. In Venkatesan Guruswami, editor, 15th Innovations in Theoretical Computer
Science Conference (ITCS 2024), volume 287 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 87:1-87:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik.

Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 27(4):701-717, 1980.

Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication
gates. In Proceedings of the thirty-ninth annual ACM symposium on Theory of com-
puting, pages 284-293, 2007.

Amir Shpilka. Sylvester-gallai type theorems for quadratic polynomials. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1203—
1214, 2019.

Gaurav Sinha. Blackbox Reconstruction of Depth Three Circuits with Top Fan-In Two.
PhD thesis, California Institute of Technology, 2016.

Gaurav Sinha. Reconstruction of Real Depth-3 Circuits with Top Fan-In 2. In Ran
Raz, editor, 31st Conference on Computational Complexity (CCC 2016), volume 50 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1-31:53, Dagstuhl,
Germany, 2016. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

Gaurav Sinha. Efficient reconstruction of depth three arithmetic circuits with top fan-
in two. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2022.

Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for bounded top fanin
depth-3 circuits: the field doesn’t matter. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 431-440, 2011.

Nitin Saxena and Comandur Seshadhri. From sylvester-gallai configurations to rank
bounds: Improved blackbox identity test for depth-3 circuits. Journal of the ACM
(JACM), 60(5):1-33, 2013.

Shubhangi Saraf and Devansh Shringi. Reconstruction of Depth 3 Arithmetic Circuits
with Top Fan-In 3. In 40th Computational Complezity Conference (CCC 2025), volume
339, pages 21:1-21:22, 2025.

99

[Tav13] S. Tavenas. Improved bounds for reduction to depth 4 and depth 3. In MFCS, pages
813-824, 2013.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International sym-
posium on symbolic and algebraic manipulation, pages 216-226. Springer, 1979.

ECCC ISSN 1433-8092
60
https://eccc.weizmann.ac.il

