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Abstract6

In this work, we establish separation theorems for several subsystems of the Ideal Proof7

System (IPS), an algebraic proof system introduced by Grochow and Pitassi (J. ACM, 2018).8

Separation theorems are well-studied in the context of classical complexity theory, Boolean9

circuit complexity, and algebraic complexity.10

In an important work of Forbes, Shpilka, Tzameret, and Wigderson (Theory of Computing,11

2021), two proof techniques were introduced to prove lower bounds for subsystems of the IPS,12

namely the functional method and the multiples method. We use these techniques and obtain13

the following results.14

15

1. Hierarchy theorem for constant-depth IPS. Recently, Limaye, Srinivasan, and Tave-16

nas (J. ACM 2025) proved a hierarchy theorem for constant-depth algebraic circuits. We17

adapt the result and prove a hierarchy theorem for constant-depth IPS. We show that18

there is an unsatisfiable multilinear instance refutable by a depth-∆ IPS such that any19

depth-(∆{10q IPS refutation for it must have superpolynomial size. This result is proved20

by building on the multiples method.21

22

2. Separation theorems for multilinear IPS. In an influential work, Raz (Theory of Com-23

puting, 2006) unconditionally separated two algebraic complexity classes, namely multi-24

linear NC1 from multilinear NC2. In this work, we prove a similar result for a well-studied25

fragment of multilinear-IPS.26

Specifically, we present an unsatisfiable instance such that its functional refutation, i.e., the27

unique multilinear polynomial agreeing with the inverse of the polynomial over the Boolean28

cube, has a small multilinear-NC2 circuit. However, any multilinear-NC1 IPS refutation29

(IPSLIN) for it must have superpolynomial size. This result is proved by building on the30
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functional method.31

32

Given a polynomial ppxq, let Imagepppxqq denote the set of values obtained when ppxq is33

evaluated over the Boolean cube. Our crucial observation is that if the cardinality of this set34

is Op1q, then the functional method and multiples method can be used to prove separation35

theorems for subsystems of the IPS. We obtain such polynomial instances by lifting the hard36

instances arising from algebraic circuit complexity with addressing gadgets.37

Acknowledgments. The authors would like to thank Varun Ramanathan for helpful discussions38

during the early stages of the project.39
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1 Introduction57

A proof system is defined by a collection of axioms together with a set of inference rules that58

determine how new statements can be derived from existing ones. The objective is to begin with59

the given axioms and apply these inference rules to derive theorems (or tautologies) within the60

system. A proof system is said to be sound if it proves only valid statements, and complete if every61

valid statement can be derived within it.62

The field of Propositional Proof Complexity studies the comparative strength and efficiency of63

such systems in the propositional setting. A foundational result by Cook and Reckhow [CR79]64

established that if one could exhibit propositional tautologies that require exponentially large proofs65

(that is, proofs whose length—roughly corresponding to the number of inference steps—grows66

exponentially) in every propositional proof system, then this would separate the complexity classes67

NP and coNP. Thus, lower bounds in proof complexity are deeply connected to some of the central68

open problems in computational complexity theory.69

In this work, we focus on algebraic proof systems, in which we consider unsatisfiable systems of70

polynomial equations, and reasoning proceeds through algebraic manipulations such as addition and71

multiplication of polynomials. Here, more specifically, we consider an algebraic proof system called72

the Ideal Proof System (IPS), which was introduced by Grochow and Pitassi [GP18]. In the last73

decade, different facets of this proof system have been investigated by a series of works [FSTW21;74

AF22; GHT22; ST21; HLT24a; LST25; BLRS25; EGLT25; CGMS25]. Our paper contributes to75

this line of research by studying separation theorems in this context.76

Hierarchy theorems are a class of separation theorems that establish that more resources yield77

strictly more power. For instance, the classical Time Hierarchy Theorem [HS65] states that in-78

creasing the available running time strictly increases the computational power of a machine. Anal-79

ogous results are known for several resources such as space [SHI65], circuit depth [Sip83; Has86],80

and circuit size [Juk12; Sha49]. Here, we raise the question about hierarchy theorems, and more81

generally we study separation theorems for different subsystems of the IPS.82

In order to describe our results, we first start by giving a brief introduction to the Ideal Proof83

Systems Section 1.1. We then review some results from Algebraic Circuit Complexity in Section 1.2,84

which we will use crucially in our work. Our results and techniques are described in Section 1.385

and in Section 1.4.86

1.1 Ideal Proof System87

We begin by recalling the general framework of algebraic proof systems, focusing on the so-called88

static systems.1 Let x denote the set of variables tx1, x2, . . . , xNu. Given a collection of polynomial89

axioms f1pxq, f2pxq, . . . , fmpxq P Frxs, the goal is to certify that there is no Boolean assignment to90

the variables that simultaneously satisfies all the equalities f1pxq “ f2pxq “ ¨ ¨ ¨ “ fmpxq “ 0. To91

ensure that solutions are Boolean, the system is augmented with the Boolean axioms tx2i ´ xi “92

0uiPrns.93

By Hilbert’s Nullstellensatz, the unsatisfiability of this augmented system can be expressed al-94

1 In the literature, systems of this type are often referred to as static proof systems. Other variants, where proofs
are given line-by-line, are known as dynamic proof systems. In this paper, we only consider static systems.

1



gebraically. Specifically, if the system has no common zero over F, then there exist polynomials95

A1pxq, . . . , Ampxq and B1pxq, . . . , BN pxq such that96

ÿ

iPrms

Aipxq ¨ fipxq `
ÿ

jPrNs

Bjpxq ¨ px2j ´ xjq “ 1. (1)

This identity serves as a refutation (or proof ) of the original system. The complexity of such a97

refutation is measured in terms of the complexity of the polynomials tAiu and tBju.98

In the Ideal Proof System (IPS) introduced by Grochow and Pitassi [GP18], the polynomials Aipxq99

and Bjpxq are represented by algebraic circuits. This gives rise to natural complexity parameters100

such as the circuit size and circuit depth of IPS proofs. We now formally define the ideal proof101

system.102

103

Definition 1.1 (Ideal Proof System [GP18]). Let f1, . . . , fm P Frx1, . . . , xns be a system of unsat-104

isfiable polynomials over the Boolean cube t0, 1un. In other words, there is no Boolean assignment105

a P t0, 1un to the variables x1, . . . , xn so that fipaq “ 0 for all i P rms.106

Given a class of algebraic circuits C, a C-IPS refutation of the system of equations defined by107

f1, . . . , fm is an algebraic circuit C P C in variables x1, . . . , xn, y1, . . . , ym, z1, . . . , zn such that108

• Cpx,0,0q “ 0, and109

• Cpx, f1, . . . , fm, x21 ´ x1, . . . , x
2
n ´ xnq “ 1.110

The size of the refutation is the size of the circuit C.111

Further, if the circuit C has individual degree at most 1 in the variables y and z, then we say that112

C is a C-IPSLIN refutation. If the circuit C has individual degree at most 1 in the variables y (but113

not necessarily in z), then C is said to be a C-IPSLIN1 refutation.114

115

The general IPS where the class C is allowed be to be an algebraic circuit can polynomially sim-116

ulate Extended Frege [GP18], one of the strongest known propositional proof systems. Moreover,117

establishing lower bounds for these kind of general IPS would imply strong algebraic circuit lower118

bounds, a central open problem in algebraic complexity.119

While this continues to be an ambitious open problem we have many compelling new lower bound120

results for several restricted classes C such as roABPs, constant-depth circuits, and multilinear121

formulas [FSTW21; GHT22; HLT24b; BLRS25; EGLT25].122

These lower bounds were established by using the already known lower bounds for the corresponding123

models of computation in algebraic complexity. We are also inspired by this framework. Namely,124

we use the separation results and hierarchy theorems from algebraic complexity theory to obtain125

similar results for the IPS. We now review the known separation results.126

1.2 Algebraic Circuit Complexity127

We start by recalling some of the standard models of computation relevant to our results.128

Algebraic circuits, formulas, constant-depth circuits, multilinear polynomials and circuits. An al-129

gebraic circuit is a directed acyclic graph in which each node either computes a sum (or a linear130
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combination) of its inputs, or a product of its inputs. The leaf nodes are either variables or con-131

stants. The size of an algebraic circuit is the number of edges or wires in the circuit, and the132

depth of an algebraic circuit is the longest path from a leaf node (a source) to the output node133

(a sink). An algebraic formula is an algebraic circuit where the output of each node feeds into134

at most one other node; in other words, the underlying graph of an algebraic formula is a tree.135

An algebraic circuit/formula is said to be constant-depth circuit/formula, if its depth is a fixed136

constant independent of other parameters.137

A polynomial fpxq P Frx1, . . . , xns is multilinear if in every monomial of the polynomial, the degree138

of any variable is at most 1. An algebraic circuit/formula is multilinear if every gate computes a139

multilinear polynomial. An algebraic circuit is syntactically multilinear if polynomials computed140

by the children of any multiplication gate compute polynomials on disjoint sets of variables.141

1.2.1 Separation results142

Our work relies heavily on the separation results known in algebraic complexity theory. Our result143

related to multilinear IPS is based on the following multilinear separation result.144

Multilinear formulas vs circuits. One of the celebrated results in algebraic complexity is the145

separation between multilinear formulas and multilinear circuits. The result was established in an146

influential work of Raz [Raz04], which presented a polynomial that is computed by a polynomial147

sized multilinear circuit, but any multilinear formula for it requires superpolynomial size.148

The key idea involves coming up with a complexity measure for polynomials, which attains a large149

value for the hard polynomial, but it is considerably small for all multilinear formulas of small size.150

The measure from [Raz04] is defined as follows.151

152

Definition 1.2 (Rank measure [Raz04]). Let x “ tx1, . . . , x2nu. Let y Y z be an equipartition153

of x, i.e. |y| “ |z|. For a given polynomial fpxq, let My,zpfq be a matrix with rows labeled by154

multilinear monomials in y variables and columns labeled by multilinear monomials in z variables.155

For a monomial my in y variables and mz in z variables, the My,zpfqrmy,mzsth entry of the matrix156

is the coefficient of the monomial my ¨ mz in f . The measure is the rank of this matrix.157

We will say that a polynomial f is full-rank with respect to a partition y, z if the rank of My,zpfq158

is full, i.e. 2n.159

160

It was shown by Raz [Raz04] that a multilinear formula computing any full-rank polynomial fpxq161

requires size nΩplognq. In our work, we build on the full-rank polynomial defined in a subsequent162

work of Raz and Yehudayoff [RY08].163

Constant-depth hierarchy theorem In our work we establish a constant-depth hierarchy the-164

orem for constant-depth IPS. For this, the starting point is the constant-depth hierarchy theorem165

by Limaye, Srinivasan, and Tavenas [LST21]. For every depth ∆, they design a polynomial that166

is computable by polynomial size depth ∆ circuits but any circuit of depth even one smaller than167

∆ requires superpolynomial size for it. As circuits can be converted to formulas with polynomial168

blow-up when the depth is constant, we state the formula version of the hierarchy theorem below.169
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Formally, it states the following.170

171

Theorem 1.3 (Constant-depth algebraic formulas hierarchy). [LST21, Theorem 5]. For every172

depth parameter ∆ “ Op1q, there exists an explicit set-multilinear polynomial Q∆ P Frx1, . . . , xns173

such that:174

1. There exists a constant-free2 algebraic formula with input gates carrying labels from xY t0, 1u175

which computes Q∆pxq in depth ∆ and size s.176

2. Any algebraic formula computing Q∆pxq in depth p∆{2 ´ 1q requires size sωp1q.177

Remark 1.4. In [LST21], a tighter separation is obtained. Namely, the depth hierarchy separates178

two consecutive depths, ∆ vs. ∆ ´ 1. However, the formulas arising from this are not constant-179

free. Depth hierarchy for constant-free formulas can be obtained by a slight loss in parameters, as180

mentioned in the statement above.181

We are now ready to state our contributions.182

1.3 Results and Techniques: the constant-depth IPS hierarchy theorem183

As our first result, we prove a depth-hierarchy theorem for constant-depth IPS. More specifically,184

we prove the following theorem.185

186

Theorem 1.5 (Constant-depth IPS hierarchy). Let F be a field of characteristic zero. The following187

holds for every growing parameter N P N and a depth parameter Γ P N where Γ “ Op1q. For every188

depth parameter Γ, there exists a multilinear polynomial fΓ P Frx1, . . . , xN s which is unsatisfiable189

over t0, 1uN (i.e. there exists no a P t0, 1uN for which fΓpaq “ 0) such that the following two190

conditions hold:191

1. There exists an IPS refutation for fΓpxq in depth Γ and size Ops5q.192

2. Any IPS refutation for fΓpxq with depth ď Γ{10 requires size sωp1q.193

To describe the proof strategy, we prove the above theorem for a simpler case. Let Q∆pxq be the194

polynomial used by [LST21] in Theorem 1.3. Now consider g∆px, yq defined as Q∆pxq ¨ y ¨ p1 ´ yq,195

where y is a new variable. First, observe that the polynomial evaluates to 0 over the Boolean cube.196

In fact, this is true if we only consider the Boolean evaluations of y. Therefore, g∆px, yq ´ 1 is197

unsatisfiable. Moreover, g∆px, yq ´ 1 ” 1 mod y2 ´ y. And it is easy to see that g∆px, yq has the198

same upper bound as Q∆pxq. Thus, we get the upper bound.199

For the lower bound, we will use the multiples method. The method was introduced in [FSTW21]200

and it has been used successfully for IPS lower bounds in [FSTW21; AF22; And25]. We now201

describe how one can use this method to obtain a lower bound.202

Consider g∆px, yq ´ 1. Using Theorem 1.3, we know that it does not have polynomial sized for-203

mulas of depth p∆{2 ´ 1q. Moreover, due to the recent work on factors of constant-depth formu-204

las [BKRRSS25], we also know that every multiple of the polynomial of depth p∆{2 ´ Op1qq must205

have superpolynomial size. That is, the polynomial g∆px, yq ´ 1 and all its multiples are hard for206

2 A circuit or formula Cpxq is constant free if it has no constants except at the inputs where all input gates have
labels from x Y t´1, 0, 1u.

4



depth p∆{2´Op1qq. This property suffices for the multiples method to be applicable, as we explain207

next. Specifically, our polynomial system is f∆ “ g∆px, yq ´ 1, tx2i ´ xiuiPrNs, and ty2 ´ yu. IPS208

refutation is such that Cpx, y, u,0, 0q “ 0 and Cpx, y, f∆,x
2 ´x, y2 ´ yq “ 1, where x2 ´x denotes209

tx2i ´ xiui.210

We now express Cpx, y, f∆,x
2 ´ x, y2 ´ yq as a univariate in f∆ and we obtain211

ÿ

iě1

Cipx, y,x
2 ´ x, y2 ´ yqf i

∆ “ 1 ´ Cpx, y, 0,x2 ´ x, y2 ´ yq

for some Cis. This shows that a multiple of f∆ has the same complexity as Cpx, y, 0,x2 ´x, y2 ´yq.212

But we know that all the multiples of f∆ are hard. This gives an IPS lower bound.213

Remark 1.6. The above proof outline basically proves Theorem 1.5 when the hard instance is non-214

multilinear. Note that the polynomial Q∆ is multilinear, but the hard instance is non-multilinear in215

y. We extend the ideas presented in the outline above and obtain a hard instance that is multilinear.216

A hard multilinear instance. The technical challenge in our work is designing an instance that217

is multilinear. We seek such an instance for the following reason: In algebraic proof complexity, the218

goal is to find an instance that is itself quite easy to compute, but its refutation is hard. There are219

many different ways to quantify easiness. However, one of the standard ways is to ask for a hard220

instance to be multilinear. Almost all the known hard instances in this literature are multilinear.221

(See for instance [FSTW21; GHT22; HLT24b]). In fact, the hard instance naturally arising from222

the algebraic encoding of CNF SAT is also multilinear.223

There are some challenges that arise when we require a multilinear instance.224

Making the instance multilinear. As mentioned above, the hard polynomial Q∆ from [LST21]225

is already multilinear. However, unfortunately, we do not know how to upper bound the complexity226

of IPS refutations of Q∆ itself with respect to depth ∆. To fix this, we modify Q∆ so that the227

(new) hard instance takes only Op1q distinct values over Boolean evaluations. We rely on this fact228

for our upper bound (see the discussion below). Our upper bound proof is further simplified if229

the polynomial takes only 0-1 values over the Boolean cube. So, we bake these two properties into230

the design of the polynomial: (a) it is multilinear, and (b) it takes only Boolean values over the231

Boolean hypercube.232

We start with Q∆ as in Theorem 1.3 and take the constant-depth formula implementation for it.233

In this formula, we introduce an addressing gadget for each ` gate. An addressing gadget is a234

multilinear polynomial that works like a multiplexer. For a 0-1 values as inputs to the gadget235

polynomial, it activates one of the inputs to the plus gate and suppresses all the other inputs. As236

a result, if we inductively maintain 0-1 evaluations for all the gates over the Boolean cube, the237

gadget allows us to propagate this property to the next gate.238

Proving the upper bound. We work with the formula C that computes our hard polynomial239

instance. By construction of the polynomial, we have the guarantee that every gate in the formula240

evaluates to 0 or 1 over the hypercube. Using this fact, we prove by induction on the depth of the241

formula that for a gate g, the polynomial g2 ´ g is in the ideal generated by tg2i ´ giui and the242

Boolean axioms, where tg1, . . . , gtu are the inputs to the gate g. This suffices to obtain the overall243

upper bound.244
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Proving the lower bound. The lower bound proof proceeds by observing that there exists an245

assignment to the gadget variables such that under that assignment, the hard instance becomes246

equal to the hard polynomial Q∆ from Theorem 1.3. As this polynomial and all its multiples are247

hard (due to [BKRRSS25]), we obtain our lower bound using the multiples method.248

The advantage of using the multiples method (instead of the functional) is that we obtain the lower249

bound theorem for IPS and not just for the more restrictive IPSLIN.250

1.4 Results and Techniques: multilinear-NC1 vs. multilinear-NC2
251

In this section, we state our separation theorem for a multilinear-IPS system. We say that for a252

polynomial instance Qpxq unsatisfiable over the Boolean cube, a functional refutation is a polyno-253

mial Gpxq such that Gpxq ¨ Qpxq ” 1 mod x2 ´ x. Further, we will say that it is a multilinear254

functional refutation is Gpxq is multilinear. We prove the following theorem.255

Theorem 1.7 (multilinear NC1 vs multilinear NC2-IPS). Fix a field, F of characteristic 0. For256

every growing parameter N P N, there is a multilinear polynomial Q P Frx1, . . . , xN s which is257

unsatisfiable over t0, 1uN such that258

1. There is a multilinear functional refutation for Qpxq, say Gpxq, computable by a syntactic259

multilinear circuit of polynomial size and Oplog2Nq depth.260

2. Any multilinear-NC1-IPSLIN1 for it requires size NΩplogNq.261

Remark 1.8. Note that in the above theorem the lower bound holds for multilinear-NC1-IPSLIN1.262

However, the upper bound is not multilinear-NC2-IPSLIN1. Instead, we only get that the refutation263

has multilinear-NC2 circuits modulo the Boolean axioms. We do not get a bound on the complexity264

of the refutations of the Boolean axioms. In spite of this, we believe that the above result gives265

something we did not know before.266

• Lower bounds for multilinear-NC1-IPSLIN1 are known since the work of [FSTW21]. Their267

hard instance is a lifted subset-sum, i.e. fpx, zq “
ř

i,j zi,jxixj. We observe that its func-268

tional refutation is quite hard. Specifically, it encodes the Clique polynomial over the Boolean269

cube. This means that it cannot have small functional refutations unless VP equals VNP.270

(See Appendix A).271

• It is known that there are subsystems of multilinear-IPSLIN and multilinear-IPSLIN1 that can272

refute interesting unsatisfiable instances (Section 4, [FSTW21]). For example, they can refute273

the subset-sum instances of the type
ř

i αixi´β, where αis are Op1q and β is chosen such that274

the instance becomes unsatisfiable3. While such instances have multilinear upper bounds, the275

upper bound proofs seem to heavily rely on the fact that the subset-sum polynomial has degree276

1. Consider a simple instance xy “ 2. This is an unsatisfiable instance over the Boolean277

cube. Here is one of its refutations:278

x2y2 ´ xy “ x2y2 ´ x2y ` x2y ´ xy “ x2py2 ´ yq ` ypx2 ´ xq.

Notice that the refutation for the Boolean axiom y2 ´ y is not multilinear. (There is an-279

other refutation for the same and in that, the refutation of the other Boolean axiom is not280

multilinear.) In fact, any refutation of this example is not multilinear. (See Example 4.7281

3 They can allow slightly general αis. See Proposition 4.15 from [FSTW21] for more details.
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in [FSTW21].) This gives an indication that a degree-2 (or degree-greater-than-2) hard in-282

stance may not necessarily have multilinear proofs.283

• Our lower bounds are obtained using the functional method. This ensures that the hardness284

of our instance can be ascribed to the hardness of refuting the instance irrespective of the285

complexity of the refutations of the Boolean axioms. Thus, the result achieves a separation286

for the functional refutation of our instance.287

To describe the components of the proofs, we start with a very simple example. Let z P t0, 1u. In288

this case, it is easy to see that 2 ´ z is unsatisfiable and 2 ´ z ˆ 1`z
2 ” 1 modulo z2 ´ z. That is,289

1`z
2 is a refutation of 2 ´ z modulo the Boolean axioms. We make use of this idea in our proof.290

In order to prove the theorem, we again design a polynomial ppxq such that it evaluates to 0 or 1291

over the Boolean cube. Then, our unsatisfiable instance is 2 ´ ppxq and its functional refutation is292

p1 ` ppxqq{2.293

If we can design a multilinear polynomial such that294

• it is computed by multilinear NC2 circuits,295

• any multilinear NC1 circuit for it requires NΩplogNq size,296

• and it takes only Boolean values over the Boolean cube297

then we get the separation. From a famous work of Raz [Raz04] we get a polynomial that satisfies298

the first two properties listed above. A subsequent work of Raz and Yehudayoff [RY08] also gives299

another candidate polynomial. Unfortunately, neither of them have the third property. We tweak300

the polynomial from [RY08] using the addressing gadgets to ensure that we get a multilinear301

polynomial with all these properties.302

Applicability of the technique. The proof method used for proving Theorem 1.7 points to its303

applicability to other scenarios. For example, the same proof method can be applied in the context304

of the constant-depth hierarchy theorem (as in Theorem 1.5). The upper bound stays as is, but the305

lower bound is obtained using the method described above. This will work and will give a lower306

bound for IPSLIN instead of a lower bound for IPS.307

There are other separation results known in algebraic complexity, especially in the multilinear308

setting. For example, results of [RY09; CELS18]. Our proof method is likely to be applicable in309

all these settings to obtain separation results originating for different sub-systems of the IPS from310

these separation results, just like we proved Theorem 1.7 from the separation results of Raz [Raz04;311

RY08].312

2 Constant-depth Hierarchy313

In this section, we will prove Theorem 1.5. To do so, we start with the hard polynomials from314

Theorem 1.3 and modify them by using addressing gadgets.315

Throughout this section, we will assume without loss of generality that every algebraic formula C is316

layered and has alternating addition and multiplication gates, with the top gate being an addition317

gate. For every gate g in a formula Cpx1, . . . , xN q,318
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• fgpx1, . . . , xN q will denote the polynomial computed at the gate g.319

• Let depthpgq denote the depth of gate g, i.e. the length of the longest path from inputs to320

the gate. Let sizepgq denote the number of wires in the sub-formula rooted at g. Finally, let321

faninpgq denote the fan-in of gate g.322

2.1 Adding addressing gadgets at sum gates323

In this subsection, we define a modification for any given algebraic formula, ensuring that the new324

formula is a t0, 1u-valued on Boolean inputs. Furthermore, the polynomial computed by the origi-325

nal formula can be easily retrieved from the new formula via partial evaluation of its variables.326

327

Definition 2.1. Let n P N. For each 0 ď j ď n, let tn P N denote the smallest tn such that328

2tn ą n. Let Bn,0pjq Ď t0, 1, ..., tnu denote the indices which are 0 in the binary representation of329

j ` 2tn. Similarly, let Bn,1pjq Ď t0, 1, ..., tnu denote the set of indices which are 1 in the binary330

representation of j ` 2tn.331

The addressing gadget of j in n is defined as

An,jpy0, ..., ytnq “
ź

iPBn,0pjq

p1 ´ yiq
ź

iPBn,1pjq

yi.

332

333

Note that An,j uses the same set of variables ty0, ..., ytnu exactly once for all 0 ď j ď n since j `2tn334

always uses exactly tn ` 1 bits for j ă 2tn . In particular, An,j is multilinear.335

336

Lemma 2.2. Let n, j P N with 0 ď j ď n and let pb0, ..., btnq P t0, 1utn`1, with tn as defined in337

Definition 2.1. Then the following is true over any field, F, of characteristic p ‰ 2:338

1. An,jpb0, ..., btnq “

#

1 if bi “ 0 for all i P Bn,0pjq and bi “ 1 for all i P Bn,1pjq,

0 for all other choices of pb0, ..., btgq P t0, 1utg`1
339

2. An,jp
1
2 ,

1
2 , ...,

1
2 , 2

tnq “ 1.340

Proof. 1. This is clear by construction.341

2. Since the bit corresponding to ytn is always 1 in the binary representation of j ` 2tn , we have
that ytn is a factor of An,j . Thus the evaluation becomes

¨

˝

ź

iPBn,0pjq

ˆ

1 ´
1

2

˙

ź

iPBn,1pjqzttnu

1

2

˛

‚¨ 2tn “
1

2tn
¨ 2tn “ 1,

since |Bn,0pjq| ` |Bn,1pjqzttnu| “ tn.342

■343

The following lemma shows how these addressing gadgets are applied:344

345
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Lemma 2.3. Let Cpxq be a constant-free formula of size s and depth ∆ computing some polynomial346

fpxq. We construct a new formula C 1px,yq computing a new polynomial, f 1px,yq, as follows:347

For any addition gate,

gpxq “

faninpgq´1
ÿ

j“0

gjpxq

of Cpxq, we replace g by the subcircuit,

g1px,ygq “

faninpgq´1
ÿ

j“0

gjpxq ¨ Ag,jpygq,

where we abuse notation and write Ag,j :“ Afaninpgq´1,j and tg :“ tfaininpgq´1 and where yg “

tyg,0, ..., yg,tgu is a fresh set of variables for each addition gate, g. Then

y “
ď

g addition gate in Cpxq

yg,

with |y| “ Ops log sq. We leave multiplication gates unchanged.348

Then the following are true over any field, F, of characteristic p ‰ 2:349

1. g1px,bq “ gjpxq if b is the binary representation of j ` 2tg as a vector.350

2. f 1pa,bq P t´1, 0, 1u for any choice of pa,bq P t0, 1u|x|`|y|.351

3. There exists b P F|y| such that f 1px,bq “ fpxq.352

4. C 1px,yq is of size Ops log sq and depth at most 2∆ ` 2.353

Proof. 1. This follows directly from Lemma 2.2.354

2. This follows directly from part 1 and induction on the circuit layers. The base case follows355

from the assumption that C is constant-free.356

3. For each addition gate, g1, we let

bg “

ˆ

1

2
,
1

2
, . . . ,

1

2
, 2tg

˙

.

Then by Lemma 2.2 every addition gate, g1, under this evaluation becomes

g1px,bgq “

faninpgq´1
ÿ

j“0

gjpxq ¨ Ag,jpbgq “

faninpgq´1
ÿ

j“0

gjpxq “ gpxq.

4. Let ng denote the fanin of gate g (addition or multiplication). Since Ag,j can be computed357

by formula of size Oplog ngq and as ng ď s for any g, we get that C 1 has a formula size at358

most Ops log sq.359

For each addition gate, g, we need to add a multiplication layer to multiply all the gj ¨ Ag,j .360

Since Ag,j has depth 2, we get a depth of at most 2∆ ` 2.361

■362
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Only part 3 of Lemma 2.3 requires F to be of characteristic p ‰ 2. The rest of the statement holds363

true over any field.364

Remark 2.4. If the input gates of Cpxq carry labels from x Y t0, 1u, then f 1pa,bq P t0, 1u for any365

choice of pa,bq P t0, 1u|x|`|y|. In particular, this applies to the formula of Q∆ from Theorem 1.3.366

2.2 Proof367

Proof of Theorem 1.5. Let F be a field of characteristic zero and fix any depth ∆ P N. Let Q∆ P368

Frx1, . . . , xns be the polynomial from [LST21, Theorem 2.1] satisfying the following conditions:369

1. There is a constant-free algebraic formula computing Q∆ in depth ∆ and size s. Denote this370

by Cpx1, . . . , xnq.371

2. For every algebraic formula computing Q∆ with depth ∆{2 ´ 1 requires size sωp1q.372

Unsatisfiable instance. Let Cpxq be the formula of depth ∆ computing Q∆pxq. Let C 1px,yq373

denote the formula we get after applying the process mentioned in Lemma 2.3 to Cpxq, and let374

f 1
∆px,yq denote the polynomial computed by C 1px,yq. By Lemma 2.3, C 1 is of depth 2∆ ` 2 and375

size Ops log sq.376

Define the polynomial f∆ as377

f∆px,yq :“ f 1
∆px,yq ´ 2.

Let pa,bq P t0, 1u|x|`|y| be any Boolean assignment to the variables in f 1
∆. By Lemma 2.3 (and378

Remark 2.4), we get that f 1
∆pa,bq P t0, 1u, so f∆pa,bq P t´2,´1u. Hence, f∆ “ 0 is not satisfiable379

over the Boolean cube. Let C∆ denote the formula for f∆ of depth 2∆`2 and size s∆ “ Ops log sq.380

Now we show that f∆ satisfies the two properties stated in Theorem 1.5. That is, we prove upper381

and lower bounds on the complexity of the refutation of f∆.382

2.2.1 Upper bound on the refutation of f∆383

This section is dedicated to the proof of the following lemma.384

Lemma 2.5 (Upper Bound). Let f∆ P Frx,ys be as defined above. There exists a constant-depth385

IPS refutation of depth ∆1 “ 4∆ ` 6 and size s1 ď 100s5∆.386

In order to prove the lemma, we use induction on the structure of C∆. We prove the following387

inductive lemma, which implies Lemma 2.5.388

Lemma 2.6. Let g be any gate in C∆. Then,389

g2 ´ g “

n
ÿ

i“1

Eg,i ¨ px2i ´ xiq `

m
ÿ

j“1

Fg,j ¨ py2j ´ yjq,

where m is the number of y variables and390

• sizepEg,iq, sizepFg,iq is at most 100 ¨ psizepgqq4,391
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• and depthpEg,iq, depthpFg,iq is at most 2 ¨ depthpgq.392

We assume Lemma 2.6 and prove Lemma 2.5. We know that f 1
∆ can be computed by a formula393

of depth 2∆ ` 2 and size s∆. Using Lemma 2.6, we know that there exists polynomials Ej and Fj394

such that395

pf 1
∆q2 ´ f 1

∆ “

n
ÿ

j“1

Ejpx,yq ¨ px2j ´ xjq `

m
ÿ

j“1

Fjpx,yq ¨ py2j ´ yjq,

where396

• For every j, the polynomial Ej can be computed by a formula of depth 2p2∆ ` 2q and size397

100 ¨ s4∆.398

• For every j, the polynomial Fj can be computed by a formula of depth 2p2∆ ` 2q and size399

100 ¨ s4∆.400

As f∆ “ f 1
∆ ´ 2, we get,401

´1

2

˜

pf 1
∆px,yq ` 1q ¨ f∆px,yq `

n
ÿ

j“1

Ejpx,yq ¨ px2j ´ xjq `

m
ÿ

j“1

Fjpx,yq ¨ py2j ´ yjq

¸

“ 1.

Thus we have an IPS refutation for f∆ of depth 2p2∆ ` 2q ` 2 and size at most s∆ ` Op1q ` pn ¨402

p100 ¨ s4∆ ` Op1qq ` pm ¨ p100 ¨ s4∆ ` Op1qqq. As both m and n are bounded by s∆, we get that this403

quantity is bounded by 100s5∆. This completes the proof4 of Lemma 2.5. In what follows, we prove404

Lemma 2.6.405

Proof of Lemma 2.6. We will prove the statement by induction on the structure of C∆. The base406

case is trivial. For the induction step, we have two cases: either g is a ˆ gate or a ` gate.407

case 1: g “
śr´1

ℓ“0 gℓ.408

In this case,409

g2 ´ g “pg0 ¨ g1 ¨ . . . ¨ gr´1q2 ´ pg0 ¨ g1 ¨ . . . ¨ gr´1q

“pg0 ¨ g1 ¨ . . . ¨ gr´1q2 ´ g0pg1 ¨ . . . ¨ gr´1q2 ` g0pg1 ¨ . . . ¨ gr´1q2 ´ pg0 ¨ g1 ¨ . . . ¨ gr´1q

“pg20 ´ g0qpg1 ¨ . . . ¨ gr´1q2 `
`

pg1 ¨ . . . ¨ gr´1q2 ´ pg1 ¨ . . . ¨ gr´1q
˘

Using the same idea as above, i.e., a telescoping summation, we get410

g2 ´ g “

r´1
ÿ

ℓ“0

ź

tăℓ

gt ¨
ź

tąℓ

g2t ¨ pg2ℓ ´ gℓq, (2)

where t takes values between 0 and r´ 1 and
ś

tăℓ gt “ 1 if ℓ “ 0 and
ś

tąℓ g
2
t “ 1 if ℓ “ r´ 1. Let411

Hℓ “
ś

tăℓ gt ¨
ś

tąℓ g
2
t . Then note that Hℓ has size at most 2 ¨ sizepgq. By induction hypothesis for412

4 Note that we get a bound on the size of the Nullstellensatz refutation, thus a bound on IPSLIN refutation.
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g2ℓ ´ gℓ, we get that413

g2 ´ g “

n
ÿ

i“1

r´1
ÿ

ℓ“0

Hℓ ¨ Egℓ,i

loooooomoooooon

Egi

¨px2i ´ xiq `

m
ÿ

j“1

r´1
ÿ

ℓ“0

Hℓ ¨ Fgℓ,i

loooooomoooooon

Fg,j

¨py2j ´ yjq

The above expression now allows us to bound the size and depth of Eg,i for every i P rns and the414

size of Fg,j for every j P rms as follows.415

Size bound. Before we start the analysis, we recall that we measure the size of a formula by the416

number of wires in the formula. We also note some bounds on our parameters. We will assume417

that sg ą 1. Let sg be the short-hand for sizepgq and for a fixed g let sg,ℓ denote sizepgℓq for418

0 ď ℓ ď r ´ 1.419
ÿ

ℓ

sg,ℓ ď psg ´ rq and
ÿ

ℓ

s4g,ℓ ď psg ´ rq4 (3)

Moreover, we have for any parameter s ą 1, ps ´ 1q4 ď s4 ´ s3{2.420

Now we will bound the size of Eg,i. In order to so that, we have already seen that size of Hℓ is at421

most sg. We can also bound the size of Egℓ,i inductively. Thus,422

size of Eg,i ď

´

ř

ℓ 2sg ` 100s4g,ℓ

¯

` 3r ď 3 ¨ sg ¨ r ` 3r ` 100 ¨ psg ´ 1q4.423

A similar bound can be proved on the size of Fg,j .424

The first bound comes from applying the bounds for Hℓ, Egℓ,i and counting the wires feeding425

into the outer summation. The second bound comes from using Equation (3) and the fact that426

sg ´ r ď sg ´ 1.427

size of Eg,i ď 6 ¨ sg ¨ r ` 100 ¨ s4g ´ 100s3g{2 ď 100 ¨ s4.428

Depth bound. depthpEg,iq ď 2 ¨ pdepthpEgℓ,iqq ` 2 ď 2 ¨ pdepthpgq ´ 1q ` 2 ď 2 ¨ depthpgq. The429

depth of Fg,i can be bounded similarly.430

case 2: g “
řr´1

ℓ“0 gℓ ¨ Ag,ℓ.431

In order to prove this case, we will make use of a couple of simple lemmas.432

Lemma 2.7. Let g “
řr´1

ℓ“0 gℓ ¨Ag,ℓ, then for any ℓ, pAg,ℓq
2 ´pAg,ℓq “

řtg
j“0Cℓ,j ¨ py2g,j ´yg,jq, where433

sizepCℓ,jq ď 6 ¨ r.434

Proof. Notice that for any addressing gadget attached to a gate g, it only uses variables from yg.435

For concreteness let the addressing gadget be given by Ag,ℓpygq “
ś

tPY yg,t ˆ
ś

tPY 1p1 ´ yg,tq, for436

some partition of the indices of yg into Y and Y 1.437

Then, we get438

pAg,ℓq
2 ´ pAg,ℓq “

˜

ź

tPY

yg,t ˆ
ź

tPY 1

p1 ´ yg,tq

¸2

´

˜

ź

tPY

yg,t ˆ
ź

tPY 1

p1 ´ yg,tq

¸

12



Again using the idea of telescoping summations with respect to the yg variables, we can show that439

pAg,ℓq
2 ´ pAg,ℓq “

tg
ÿ

j“0

Cℓ,j ¨ py2g,j ´ yg,jq

where, Cℓ,j consists of monomials in yg and it is a ΠΣ circuit in yg variables. The input the product440

gates could be one of the following: either a variable appears as itself, or its square appears, or as441

p1´ yq or as p1´ yq2. The size of each linear factor can be bounded by 3 ¨ tg and hence, the overall442

size can be bounded by 6 ¨ tg. This is upper bounded by 6 ¨ r. ■443

Lemma 2.8. Let g “
řr´1

ℓ“0 gℓ ¨ Ag,ℓ, then for any ℓ ‰ ℓ1, there exists a j P t0, . . . , tgu such that444

Ag,ℓ ˆ Ag,ℓ1 “ Cℓ,ℓ1,j ¨ py2j ´ yjq, where sizepCℓ,ℓ1,jq ď 6 ¨ r.445

Proof. Here, it is easy to observe that for ℓ ‰ ℓ1, there must exist a variable yj such that either yj446

divides Ag,ℓ and p1 ´ yjq divides Ag,ℓ1 or vice-versa. Thus, yj ¨ p1 ´ yjq divides Ag,ℓ ˆ Ag,ℓ1 . Thus,447

we get Ag,ℓ ˆ Ag,ℓ1 “ Cℓ,ℓ1,j ¨ py2j ´ yjq, where Cℓ,ℓ1,j is simply the circuit consisting of a polynomial448

in yg variables. As in Lemma 2.7, here again we get sizepCℓ,ℓ1,jq ď 6 ¨ r. ■449

We will now resume the proof of case 2, i.e., the case when g is a sum gate. We will again analyze450

g2 ´ g.451

g2 ´ g “

˜

r´1
ÿ

ℓ“0

gℓ ¨ Ag,ℓ

¸2

´

r´1
ÿ

ℓ“0

gℓ ¨ Ag,ℓ

“

r´1
ÿ

ℓ“0

pgℓ ¨ Ag,ℓq
2

`
ÿ

ℓ‰ℓ1

gℓ ¨ Ag,ℓ ¨ gℓ1 ¨ Ag,ℓ1 ´

r´1
ÿ

ℓ“0

gℓ ¨ Ag,ℓ

“

r´1
ÿ

ℓ“0

pgℓ ¨ Ag,ℓq
2

´

r´1
ÿ

ℓ“0

gℓ ¨ pAg,ℓq
2

`

r´1
ÿ

ℓ“0

gℓ ¨ pAg,ℓq
2

´

r´1
ÿ

ℓ“0

gℓ ¨ Ag,ℓ `
ÿ

ℓ‰ℓ1

gℓ ¨ gℓ1 ¨ Ag,ℓ ¨ Ag,ℓ1 ,

where we added and subtracted the same quantity (second and third summation). After rearrang-452

ing, we get453

g2 ´ g “

r´1
ÿ

ℓ“0

`

g2ℓ ´ gℓ
˘

¨ pAg,ℓq
2

`

r´1
ÿ

ℓ“0

gℓ ¨
`

A2
g,ℓ ´ Ag,ℓ

˘

`
ÿ

ℓ‰ℓ1

gℓ ¨ gℓ1 ¨ Ag,ℓ ¨ Ag,ℓ1 ,

We now apply induction on the first term and apply Lemma 2.7 and Lemma 2.8 on the second and454

third terms, respectively.455

g2 ´ g “

n
ÿ

i“1

r´1
ÿ

ℓ“0

pAg,ℓq
2 ¨ Egℓ,i

looooooooomooooooooon

pEg,iq

¨px2i ´ xiq `

m
ÿ

j“1

r´1
ÿ

ℓ“0

pAg,ℓq
2 ¨ Fgℓ,j

looooooooomooooooooon

pIq

¨py2j ´ yjq

`

tg
ÿ

j“0

r´1
ÿ

ℓ“0

Cℓ,j ¨ gℓ
looooomooooon

pIIq

¨py2j ´ yjq `
ÿ

ℓ‰ℓ1

gℓ ¨ gℓ1 ¨ Cℓ,ℓ1,j

looooooooomooooooooon

pIIIq

¨py2j ´ yjq
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Using this expression, we can now derive size and depth bounds on the refutation size.456

Size bound.457

We will now bound each term in the expression above.458

Bounding the size of Eg,i. The size of Ag,ℓ can be bounded by 2r. The size of each Egℓ,i can459

be bounded inductively. Finally, the numbers of wires feeding into the outer summation can be460

bounded by 3r. Thus we have, the following bound461

sizepEg,iq ď

r´1
ÿ

ℓ“0

p2r ` 100s4g,ℓq ` 3r ď 2r2 ` 100
ÿ

ℓ

s4g,ℓ ` 3r ď 5r2 ` 100
ÿ

ℓ

s4g,ℓ

ď 5r2 ` 100ps ´ rq4 Using Equation (3)

ď5r2 ` 100s4 ´ 100s3{2 ď 100s4. Using the bound on s ´ r and ps ´ 1q4

Bounding the size of Fg,i. The bound on the size of Fg,i can be obtained by analyzing terms462

(I), (II), and (III) above. Note that, the bound on term (I) is identical to the bound on Eg,i. So,463

we will have464

size of pIq ď 5r2 ` 100
ÿ

ℓ

s4g,ℓ paq.

To bound the size of (II), we will use Lemma Lemma 2.7. We get465

size of pIIq ď

˜

ÿ

ℓ

6 ¨ r ` sg,ℓ

¸

` 3 ¨ r ď 9r2 `
ÿ

ℓ

sg,ℓ pbq

Finally, we bound the size of (III).466

size of pIIIq ď

˜

ÿ

ℓ‰ℓ1

6 ¨ r ` sg,ℓ ` sg,ℓ1

¸

` 4 ¨ r2

“
ÿ

ℓ‰ℓ1

6 ¨ r `
ÿ

ℓ‰ℓ1

sg,ℓ `
ÿ

ℓ‰ℓ1

sg,ℓ1 ` 4 ¨ r2

ď 6r3 ` 2r
ÿ

ℓ‰ℓ1

sg,ℓ ` 4r2 pcq

Putting (a), (b), and (c) together and by combining terms we get that467

sizepFg,iq ď 25r3`3rs`100
ř

ℓ s
4
ℓ ď 25r3`3rs`100ps´1q4 ď 25r3`3rs`100s4´100s3{2 ď 100s4468

Depth bound. The depth is bound is similar to the one we had in case 1 above. depthpEg,iq ď469

2 ¨ pdepthpEgℓ,iqq ` 2 ď 2 ¨ pdepthpgq ´ 1q ` 2 ď 2 ¨ depthpgq. The depth of Fg,i can be bounded470

similarly. ■471

2.2.2 Lower bound on the refutation of f∆472

In this section we focus on the lower bound of the size of the constant-depth IPS refutation of f∆.473

Recall that Q∆pxq denotes the polynomial from [LST21, Theorem 2.1] and let s denote the size of474

the depth-∆ circuit computing Q∆.475
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Lemma 2.9 (Lower Bound). Let f∆ be as defined above. Every constant-depth IPS refutation of476

depth ∆2 ď ∆{2 ´ 11 requires size s2 “ sωp1q.477

Proof. Let C2ppx,yq, u,v, zq be an IPS refutation of f∆px,yq. Let s2 and ∆2 denote the circuit478

size and the depth of C2, respectively. Then we have the following facts:479

1. By definition C2ppx,yq, 0,0,0q “ 0 and C2ppx,yq, f∆,x
2 ´x,y2 ´yq “ 1 so using [FSTW21,

Lemma 6.1] we have that

1 ´ C2ppx,yq, 0,x2 ´ x,y2 ´ yq “ f∆ ¨ h,

for some polynomial hpx,yq.480

2. By [BKRRSS25, Theorem 1.1], from 1´C2ppx,yq, 0,x2´x,y2´yq we can extract an algebraic481

formula for f∆px,yq whose size is polyps2q and whose depth is at most ∆2 ` 10.482

3. By construction of f∆px,yq and by Lemma 2.3 there exists some b P F|y| such that

f∆px,bq “ Q∆pxq,

so any formula computing f∆ at depth ∆2 ` 10 also computes Q∆ at depth ∆2 ` 10.483

4. [LST21, Theorem 2.1] (also stated in Theorem 1.3) states that every algebraic formula com-484

puting Q∆ at depth ∆{2 ´ 1 requires size sωp1q.485

Putting all this together, we get that if ∆2 ` 10 ď ∆{2 ´ 1 then C2ppx,yq, u,v, zq requires size486

sωp1q. ■487

Remark 2.10. We use the recent factorization result of [BKRRSS25] to obtain our lower bound.488

However, we would like to also note that this is not necessary in our case. Due to a results489

of [CKS19], it is known that small-degree factors of any polynomial computed by constant-depth490

circuits/formulas of polynomial size can also be computed by constant-depth circuits/formulas of491

polynomial size. The hard polynomial from [LST21] as well as our addressing gadgets have small492

degree, our hard instance has small degree (i.e. logarithmic in the number of variables). Thus, all493

its factors are also of small degree. That is, [CKS19] is applicable in our case.494

We present the proof using [BKRRSS25] as it will help adapt our proof strategy to other scenarios495

more directly if we obtain strong algebraic complexity lower bounds in the future.496

We now use Lemma 2.5 and Lemma 2.9 to finish the proof of Theorem 1.5. Note that the depth497

of the IPS refutation for f∆ is 4∆ ` 6 and size is polypsq, whereas any circuit of depth less than498

∆{2´11 requires superpolynomial size. Thus, for Γ “ 4∆`6, we get that fΓ has an IPS refutation499

of depth Γ and any IPS refutation of depth less than Γ{10 requires superpolynomial size. This500

completes the proof of Theorem 1.5. ■501

3 Multilinear separation theorem502

We start by proving a lemma that will be useful in the rest of the section.503

Lemma 3.1. Let N P N and let x “ tx1, . . . , xNu. Let fpxq be a multilinear polynomial such that504

fpaq P t0, 1u for any a P t0, 1uN , then505
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1. The following identity holds.506

p2 ´ fpxqq ˆ
1 ` fpxq

2
” 1 mod x2 ´ x

2. 2 ´ fpxq “ 0 is unsatisfiable over the Boolean cube.507

3. The unique multilinear function gpxq obeying gpxqp2´fpxqq ” 1 mod x2 ´x is p1 ` fpxqq{2.508

Thus, it has the same multilinear circuit size and depth as 2 ´ fpxq.509

Proof. The first part of the lemma is a simple check. If fpaq “ 1 the left hand side evaluates to510

1. Similarly, when fpaq “ 0 it again evaluates to 1. The second part follows because we have511

assumed that fpxq only takes Boolean values. Finally, the third part follows immediately from the512

first part. ■513

3.1 Multilinear-NC1 vs. multilinear-NC2-IPS514

In this section we prove Theorem 1.7.515

We will construct a polynomial such that it is computable by a multilinear NC2 circuit and such516

that it only takes Boolean values over the Boolean hypercube. This along with Lemma 3.1 will517

give us the desired separation.518

Notation. Let rns “ t1, . . . , nu and let u “ tu1, . . . , u2nu and v “ tvi,j,kui,j,kPr2ns. For i, j P rns519

let ri, js denote the interval tk | i ď k and k ď ju. Let ℓpri, jsq denote the length of the interval,520

i.e., j ´ i ` 1. When j ă i, then ri, js “ H.521

We first recall the hard polynomial defined by [RY08], which is a simplification of the polynomial de-522

fined by [Raz04], which showed the first separation between multilinear formulas and circuits.523

The polynomial is defined inductively as follows. For i P rns, let fi,ipu,vq “ 1. If ℓpri, jsq is an even524

number more than 0, then525

fi,jpu,vq “ p1 ` uiujq ¨ fi`1,j´1pu,vq `
ÿ

rPri`1,j´1s

vi,r,j ¨ fi,rpu,vq ¨ fr`1,jpu,vq

Finally, the hard polynomial is F pu,vq “ f1,2npu,vq. They prove the following theorem about the526

polynomial.527

Lemma 3.2 ([Raz04], [RY08]). Let n P N and let u “ tu1, . . . , u2nu and v “ tvi,j,kui,j,kPr2ns be two528

sets of variables. Let F pu,vq be the polynomial defined above. Then the following holds.529

1. F pu,vq can be computed by a multilinear circuit of size polypnq and depth Oplog2 nq.530

2. Any multilinear formula computing F pu,vq must have size nΩplognq.531

Remark 3.3. Note that F pu,vq when evaluated over the Boolean hypercube can take large values.532

(In fact, F p1,1q grows exponentially with n.) For Lemma 3.1 to be applicable, we need a polynomial533

that takes only Boolean values over the hypercube.534
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We construct such a polynomial by modifying F pu,vq. We design the polynomial using new set of535

gadget variables, which we call w. These will serve a dual purpose, first, they will help us create536

addressing gadgets for the ` gates and they will assume the role of v variables in the definition of537

F pu,vq.538

Let u “ tu1, . . . , u2nu. For an interval ri, js, let W ri,js denote the following set of variables.539

W ri,js “ tw
ri,js

top u Y tw
ri,js

leaf u Y W̃ ri,js,

where W̃ ri,js consists of variables we will use for the addressing gadgets. Recall that for n P N, tn540

denotes the smallest integer such that 2tn ą n. Let ti,j be the shorthand for tℓpri`1,j´1sq and ni,j be541

a shorthand for ℓpri ` 1, j ´ 1sq. Let W̃ ri,js “ tw
ri,js
r | 0 ď r ď ti,ju.542

Finally, we define w “
Ť

ri,js W
ri,js, where the union is over all intervals ri, js, where 1 ď i ă j ď n543

and ℓpri, jsq is even5. Here, the size of any set W ri,js is Oplog nq and hence we have Opn2 log nq-544

many w variables. We will use mpnq to denote the cardinality of w and m, when n is clear from545

the context.546

Definition 3.4. The hard polynomial is defined inductively as follows: If ℓpri, jsq “ 0 then pri,jspu,wq “547

1. If ℓpri, jsq ą 0 and even, then548

pi,jpu,wq “ p1 ´ w
ri,js

top q

´

p1 ´ w
ri,js

leaf q ` w
ri,js

leaf ¨ ui ¨ uj

¯

ˆ pi`1,j´1

` w
ri,js

top ˆ

´

ř

rPri`1,j´1s grpW̃ ri,jsq ˆ pi,r ¨ pr`1,j

¯

,

gr is the addressing gadget, i.e.549

grpW̃ ri,jsq “
ź

tPBni,j ,0
prq

p1 ´ w
ri,js

t q ¨
ź

tPBni,j ,1
prq

w
ri,js

t

Here, the sets Bni,j ,0 and Bni,j ,1 are defined as in Definition 2.1.550

Finally, P pu,wq “ p1,2npu,wq.551

We will now prove that the polynomial P pu,wq defined above retains the properties of the polyno-552

mial F pu,vq, that is, it is computed by multilinear circuits and it is hard for multilinear formulas.553

Additionally, we will show that the polynomial only takes Boolean values over the Boolean hyper-554

cube. Formally, we prove the following theorem.555

556

Theorem 3.5. Let n P N and let u and w be as defined above. Also, let P pu,wq be the polynomial557

from Definition 3.4. Then, the following statements hold.558

1. P pu,wq P t0, 1u when evaluated over the Boolean hypercube.559

2. P pu,wq can be computed by a multilinear circuit of size polypnq and depth Oplog2 nq.560

3. Any multilinear formula computing P pu,wq must have size nΩplognq.561

Before we present the proof for the theorem, we will use it to prove our main theorem Theorem 1.7,562

which we recall below.563

564

5 We only use intervals of even length inductively.
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Theorem 1.7 (multilinear NC1 vs multilinear NC2-IPS). Fix a field, F of characteristic 0. For565

every growing parameter N P N, there is a multilinear polynomial Q P Frx1, . . . , xN s which is566

unsatisfiable over t0, 1uN such that567

1. There is a multilinear functional refutation for Qpxq, say Gpxq, computable by a syntactic568

multilinear circuit of polynomial size and Oplog2Nq depth.569

2. Any multilinear-NC1-IPSLIN1 for it requires size NΩplogNq.570

Proof of Theorem 1.7. Let N “ n ` m, where n is the cardinality of u and m is the cardinality of571

w and let x “ u Y w. We will define Qpxq “ 2 ´ P pxq, where P is as in Theorem 3.5. Clearly572

Qpxq is unsatisfiable over the Boolean hypercube. Using Lemma 3.1, we know that the refutation573

for Qpxq is ppP pxqq ` 1q{2 modulo the Boolean axioms. Thus, the functional refutation of Qpxq is574

computable by multilinear circuit of size polypnq and depth Oplog2 nq.575

Moreover, from Theorem 3.5 we know that P pxq requires multilinear NC1 circuit of size nΩplognq.576

As the refutation is pP pxq ` 1q{2, we also get that the multilinear NC1-IPSLIN1 refutation6 for it577

must have size nΩplognq. As N and n are polynomially related, this also gives a NΩplogNq lower578

bound on the proof size of multilinear NC1-IPSLIN refutations. ■579

3.2 Proof of Theorem 3.5580

Part 1 of Theorem 3.5. We prove this statement by using the inductive structure of P pu,wq.581

Specifically, we will show that for any interval ri, js, the polynomial corresponding to it, i.e.,582

pi,jpu,wq P t0, 1u when evaluated over the Boolean hypercube. We induct on the length of the583

interval. We only need to consider even length intervals.584

Base case. Suppose ℓpri, jsq “ 0 then the statement trivially holds.585

Inductive step. Suppose ℓpri, jsq ą 0 . The polynomial pi,j is as defined in Definition 3.4.586

Suppose w
ri,js

top “ 0, then587

pi,j “

´

p1 ´ w
ri,js

leaf q ` w
ri,js

leaf ¨ ui ¨ uj

¯

¨ pi`1,j´1.

Notice that if w
ri,js

leaf “ 0 then pi,j “ pi`1,j´1, which by induction hypothesis is Boolean. If w
ri,js

leaf “ 1588

then pi,j “ uiujpi`1,j´1, which is either 0 or 1 for Boolean values of ui, uj and pi`1,j´1.589

On the other hand, if w
ri,js

top “ 1, then590

pi,j “

¨

˝

ÿ

rPri`1,j´1s

grpW̃ ri,jsq ˆ pi,r ¨ pr`1,j

˛

‚.

Now, suppose the variables in the set W̃ ri,js are set to 0s and 1s such that the boolean assignment591

equals r`2ti,j , then we get pi,j “ pi,r¨pr`1,j . By inductive assumption pi,r P t0, 1u and pr`1,j P t0, 1u.592

That finishes the proof.593

6 As we use functional method, we get a lower bound in IPSLIN1 and not just for IPSLIN.

18



Part 2 of Theorem 3.5. Notice that polynomial F pu,vq defined by [RY08] is very similar to594

P pu,wq. Instead of v variables, we have small local changes using the addressing gadgets. The595

addressing gadgets themselves are constant-depth (unbounded fan-in) multilinear circuits. It is596

easy to see that by implementing the inductive definition of ppu,vq, we will obtain a polynomial597

size and polynomial depth multilinear circuit. By using a depth reduction result of [RY08], we can598

obtain a polynomial size and Oplog2 nq-depth multilinear circuit for the polynomial.599

Part 3 of Theorem 3.5. Firstly, we will prove that for every partition of variables in u into two600

sets of equal size say, u “ y Y z, the rank of the matrix My,zpp1,2nq is equal to 2n. The bound will601

then imply a lower bound for the IPS proof size. This step is quite standard, but we will present602

it for completeness.603

Lemma 3.6. Let n P N and p1,2n be as defined above. Then, for any partition of u into y Y z604

each of cardinality n, there exists an assignment to variables in w to field constants, such that605

rankpMy,zpp1,2nqq “ 2n.606

Proof. We will prove this by induction on n.607

Base case. Suppose n “ 1, then p1,2 “

´

p1 ´ w
r1,2s

leaf q ` w
r1,2s

leaf ¨ u1 ¨ u2

¯

. By setting w
r1,2s

leaf “ 1{2, we608

get p1,2 “ 1
2 ¨ p1 ` u1 ¨ u2q and the statement trivially holds.609

Inductive step. Let n ą 1. We consider two cases. Either u1 and u2n are in the same part under610

the partition of u into y Y z or they are in different parts.611

u1 and u2n in different parts We will set w
r1,2ns

top “ 0 and w
r1,2ns

leaf “ 1{2. Under this substitution,612

p1,2n “ 1
2 p1 ` u1 ¨ u2nq ¨p2,2n´1. By induction hypothesis, p2,2n´1 is full rank, i.e. 2n´1, under every613

equi-sized partition of its variables. And the rank for p1 ` u1u2nq is 2. Note also that p2,2n´1 does614

not use the variables u1 and u2n. Hence, we are done in this case.615

u1 and u2n in same part In this case, there is an r P ri ` 1, j ´ 1s such that the intervals r1, rs and616

rr ` 1, 2ns evenly split y and z variables. We set w
r1,2ns

top “ 1 and the variables in the addressing617

gadget to the binary encoding of r ` 2ti,j . This gives p1,2n “ p1,r ¨ pr`1,2n. Using induction on618

p1,r, pr`1,2n and observing that the two polynomials do not share any variables we get the desired619

bound on the rank of p1,2n. ■620
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A The complexity of refuting lifted subset-sum742

Let F px, zq “
ř

iăjPrns zi,jxixj ´ β be the lifted subset-sum instance, where β P Θpn3q. Clearly,743

it is an unsatisfiable instance. It was used in [FSTW21] to prove a lower bound on the the size744

of the multilinear formula IPSLIN1 . Here, we further analyze the hardness of refuting this instance.745

We show that its refutation must have high complexity under a standard complexity assumption.746

Specifically, we prove the following.747

748

Lemma A.1. If F px, zq has a polynomial size multilinear IPSLIN1 refutation, then VP “ VNP.749

This makes our hard instance in Theorem 1.7 interesting. On the one hand we obtain an equally750

strong lower bound as in [FSTW21], and on the other hand we also obtain a reasonably good upper751

bound on the functional refutation of our instance.752

In order to prove the lemma, we start with some notation and preliminaries. Let V Ď rns and let753

KV “ tpi, jq | i, j P V, i ă ju. Let e “ pi, jq denote a pair from the set KV , then we use ze to denote754

zi,j .755

Lemma A.2 ([Bür98]). Let Cℓpx, zq be the Clique polynomial defined as follows.756

Cℓpx, zq “
ÿ

V Ďrns,|V |“ℓ

ź

ePKV

ze
ź

iPV

xi

Cn{2px, zq is VNP complete7.757

We are now ready to prove Lemma A.1.758

Proof of Lemma A.1. We introduce some notation. We use
`

rns

2

˘

to denote the set tpi, jq | i, j P759

rns, i ă ju. Let the subset-sum instance (without the lift) be760

fpzq “
ÿ

pi,jqPprns

2 q

zi,j ´ β “ 0

for β ą n2 . (This instance is the same as the subset-sum instance in [FSTW21, Section 5] up761

to relabeling.) In [FSTW21, Proposition B.1], they gave an explicit description of its multilinear762

functional refutation, i.e. they exactly computed the multilinear polynomial gpzq such that763

gpzq “
1

´

ř

pi,jqPprns

2 q
zi,j ´ β

¯ , for every z P t0, 1un.

7 The Clique polynomial from [Bür98] slightly differs from the polynomial we have here. Namely, it is Cℓpzq “
ř

V Ďrns,|V |“ℓ

ś

ePKV
ze. However, by substituting xis “ 1 in the above polynomial, we can obtain this polynomial.
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They showed that every functional refutation of fpzq can be expressed as a linear combination of764

the elementary symmetric polynomials of degree k, for every k P rns. More precisely, they showed765

that766

gpzq “

n
ÿ

k“0

αk ¨
ÿ

SĎprns

2 q
|S|“k

ź

pi,jqPS

zi,j , (4)

where αk is a non-zero constant that only depends on k and β.767

Now, we will first change the input instance to F px, zq “
ř

pi,jq zi,jxixj , where the sum is over the768

set
`

rns

2

˘

. As F px, zq can be obtained from fpzq by a monomial substitution zi,j ÞÑ zi,jxixj , it is769

easy to see that the functional refutation of F px, zq can be obtained from the refutation of fpzq by770

monomial substitution. This is because we only need to preserve the refutation over the Boolean771

cube. Such a monomial substitution can result in a non-multilinear polynomial. Let mlr¨s denote772

the following map defined for monomials over a set of variables, say y: ml r
ś

i y
ai
i s “

ś

i y
mintai,1u

i .773

The map extends linearly and can be defined as a map from Frys Ñ Frys for any polynomial ring774

Frys.775

Let Gpx, zq denote the unique multilinear refutation of F px, zq. Then, using Equation (4) we get776

Gpx, zq “

n
ÿ

k“0

αk ¨
ÿ

SĎprns

2 q,|S|“k

ml

»

–

ź

pi,jqPS

zi,jxixj

fi

fl

Suppose we assume that F px, zq has a polynomial-size IPSLIN1 refutation. This implies that there777

is a multilinear circuit of polynomial size computing Gpx, zq. We further isolate the degree
`

n{2
2

˘

778

component in z variables by interpolating it out and further degree n component in x variables by779

another interpolation. It is easy to see that the polynomial this computes equals Cn{2px, zq (up to780

scaling by a coefficient). Assuming VP ‰ VNP, this gives a contradiction. ■781
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