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Abstract

Let g(X) be a polynomial over a finite field Fq with degree o(q1/2), and let χ be the quadratic residue
character. We give a polynomial time algorithm to recover g(X) (up to perfect square factors) given the
values of χ ◦ g on Fq, with up to a constant fraction of the values having errors. This was previously
unknown even for the case of no errors.

We give a similar algorithm for additive characters of polynomials over fields of characteristic 2. This
gives the first polynomial time algorithm for decoding dual-BCH codes of polynomial dimension from a
constant fraction of errors.

Our algorithms use ideas from Stepanov’s polynomial method proof of the classical Weil bounds on
character sums, as well as from the Berlekamp-Welch decoding algorithm for Reed-Solomon codes. A
crucial role is played by what we call pseudopolynomials: high degree polynomials, all of whose derivatives
behave like low degree polynomials on Fq.

Both these results can be viewed as algorithmic versions of the Weil bounds for this setting.

1 Introduction

This paper is about efficient algorithms for some noisy polynomial interpolation problems over finite fields,
where only a small amount of information about each evaluation is available.

Let q be an odd prime power, and let χ : Fq → {0,±1} be the quadratic residue character (which takes
values 0 on 0, +1 on nonzero perfect squares, −1 on everything else). Let g(X) ∈ Fq[X] be an unknown
polynomial of degree at most d ≪ q. We consider the problem of computing g given a noisy version of
χ ◦ g : Fq → {0,±1}. Concretely, given r : Fq → {0,±1}, such that for 99% of the α ∈ Fq we have
r(α) = χ(g(α)), can we efficiently recover g(X)?

There is an immediate obstacle to recovering g: it may not be uniquely specified by r. This arises because
χ cannot detect perfect square factors of g. Indeed, if g1(X), g2(X) ∈ Fq[X] of degree at most d satisfy
g2(X) = g1(X) · h2(X) for h(X) ∈ Fq[X], then whenever h(α) ̸= 0:

χ ◦ g2(α) = (χ ◦ g1(α)) ·
(
χ ◦ h2(α)

)
= χ ◦ g1(α),

and so the Hamming distance ∆(χ ◦ g1, χ ◦ g2) ≤ d≪ q.

The deep and fundamental Weil bounds for character sums imply that this is essentially the only obstacle
to uniqueness. It states that if f(X) is a polynomial of degree at most d that is not of the form λ · h2(X)
for λ ∈ Fq and h(X) ∈ Fq[X], then: ∣∣∣∣∣∣

∑
α∈Fq

χ(f(α))

∣∣∣∣∣∣ ≤ 2d
√
q.
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(In words, if d is small, a random α ∈ Fq has f(α) being a perfect square with probability approximately
1/2).

Thus if g1(X), g2(X) ∈ Fq[X] are distinct, monic (the leading coefficient is 1), squarefree (no irreducible
factor appears with multiplicity ≥ 2), and of degree at most o(

√
q), then χ ◦ g1 and χ ◦ g2 are not only

distinct, they are almost orthogonal:

|⟨χ ◦ g1, χ ◦ g2⟩| =

∣∣∣∣∣∣
∑
α∈Fq

χ(g1(α)) · χ(g2(α))

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
α∈Fq

χ((g1 · g2)(α))

∣∣∣∣∣∣ ≤ O(d
√
q) = o(q).

This implies that as g varies among the monic, squarefree polynomials of degree at most d = o(
√
q), the

vectors χ ◦ g ∈ {0,±1}q have all pairwise Hamming distances ∆(χ ◦ g1, χ ◦ g2) at least
(

1
2 − Ω( d√

q )
)
· q. This

defines an error-correcting code, and makes the problem of finding g given a noisy version of χ ◦ g that of
unique decoding of this error-correcting code.

We give a polynomial time algorithm for recovering such g from χ ◦ g in the presence of a constant fraction
of errors.

Theorem 1

Let ϵ > 0. Let g(X) ∈ Fq[X] be monic, squarefree, with deg(g) ≤ ϵ
√
q.

Suppose r : Fq → {0,±1} is such that:

∆(r, χ ◦ g) <
(
1

8
− ϵ

)
q.

There is a poly(q) time algorithm, which when given r, computes g(X).

If g(X) is a general monic polynomial of degree d ≤ ϵ
√
q and r is such that ∆(r, χ ◦ g) < ( 18 − ϵ)q,

then this algorithm will find the unique monic squarefree polynomial ḡ(X) of degree at most d such that
∆(χ ◦ g, χ ◦ ḡ) ≤ d.

Such an algorithm was previously unknown even for the case of no errors. The previously fastest known
algorithm was given by Russell and Shparlinski [RS04] and ran in O(d2 · qd+o(1)) time. This algorithm made
use of the Weil bounds as a black box, and improved upon the trivial O(qd+1) time brute force search.

In [VDHI06], van Dam, Hallgren and Ip gave efficient quantum algorithms to solve the d = 1 case in time
poly(log q), which is sublinear in the input size. Russell and Shparlinski [RS04] showed that the general d
case can be solved with O(d) quantum queries, but as far as we understand this does not lead to a fast
quantum algorithm. Further results in this direction were given in [BGKS12, IKS+18].

We also prove an analogous result for additive characters over fields Fq of characteristic 2. Here the underlying
codes are the classical dual-BCH codes, which are the duals of the classical BCH codes [BRC60, Hoc59].

Let q = 2b, and let Tr : Fq → F2 be the F2-linear field trace map given by Tr(β) =
∑b−1

i=0 β
2i . Additive

characters ψ of Fq are closely related to Tr (they are of the form ψ(β) = (−1)Tr(a·β)), and for notational
convenience, we formulate our problem in terms of Tr instead of ψ.

Let g(X) ∈ Fq[X] be an unknown polynomial of degree at most d. Suppose for each α ∈ Fq, we are given a
value r(α), such that for 99% of the α ∈ Fq, r(α) = Tr(g(α)). Can we efficiently recover g(X)?

Again, there is an immediate obstacle coming from the fact that r (or even Tr ◦ g) does not uniquely identify
g(X). This arises because Tr cannot distinguish between a polynomial and its square. Indeed, if g1(X), g2(X)
are such that g2(X) = g1(X) + h(X) + h2(X) for some h(X) ∈ Fq[X], then1 for all α ∈ Fq:

Tr ◦ g2(α) = (Tr ◦ g1(α)) +
(
Tr ◦ (h+ h2)(α)

)
= Tr ◦ g1(α),

1This is because Tr(β + β2) = 0 for all β ∈ Fq .
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and so Tr ◦ g1 = Tr ◦ g2.

The Weil bound for additive character sums tell us that this is the only obstacle to uniqueness. It says that
if f(X) ∈ Fq[X] is of degree at most d and not of the form λ+ h(X) + h(X)2 for λ ∈ Fq and h(X) ∈ Fq[X],
then: ∣∣∣∣∣∣

∑
α∈Fq

(−1)Tr(f(α))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.

(In words, if d is small, a random α ∈ Fq has Tr(f(α)) being roughly equally likely to be 0 and 1).

Thus if g1(X), g2(X) ∈ Fq[X] are distinct polynomials with only monomials of odd degree, and of degree
d = o(

√
q), then Tr ◦ g1 and Tr ◦ g2 are not only distinct, they are almost as far apart as random vectors:∣∣∣∣∣∣

∑
α∈Fq

(−1)Tr(g1(α)−g2(α))

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
α∈Fq

(−1)Tr((g1−g2)(α))

∣∣∣∣∣∣ ≤ O(d
√
q) = o(q),

and so:

∆(Tr ◦ g1,Tr ◦ g2) ∈
(
1

2
±O(

d
√
q
)

)
· q.

This gives us the definition of the dual BCH code. For an odd integer d, codewords are indexed by polynomials
g(X) of degree at most d with only odd degree monomials:

g(X) = a1X + a3X
3 + . . .+ adX

d,

and the codewords themselves are the functions Tr ◦ g : Fq → F2. This is a linear code over F2, and has
length q and F2-dimension d+1

2 log2 q. The problem of finding g given a noisy version of Tr ◦ g is thus the
problem of unique decoding of this dual BCH code.

We give a polynomial time algorithm for recovering g from Tr ◦ g in the presence of a constant fraction of
errors.

Theorem 2

Let ϵ > 0. Let g(X) ∈ Fq[X] be a polynomial with only odd degree monomials, and with deg(g) ≤ ϵ
√
q.

Suppose r : Fq → F2 is such that:

∆(r,Tr ◦ g) <
(
1

8
− ϵ

)
q.

There is a poly(q) time algorithm, which when given r, computes g(X).

If g(X) is a general polynomial of degree d ≤ ϵ
√
q with 0 constant term, and r is such that ∆(r,Tr ◦ g) <

( 18 − ϵ)q, then this algorithm will find the unique polynomial ḡ(X) of degree at most d with only odd degree
monomials such Tr ◦ g = Tr ◦ ḡ.

There were several previously known results for this problem (namely, the problem of decoding dual BCH
codes).

• For all d < O(
√
q), if there are no errors at all, then g(X) can be found in time poly(q). This is because

the map g(X) 7→ Tr ◦ g is F2-linear; so g(X) can be found from Tr ◦ g by solving a system of linear
equations over F2.

• For all d < O(
√
q), if the number of errors is at most O( qd ), then there is a poly(q) time algorithm to

recover g(X). This is a consequence of efficient decoding algorithms for Reed-Muller codes (multivariate
polynomial codes over Fb

2). The key fact is that the function Tr◦g is a b-variate F2-polynomial of degree
at most ⌈log2 d⌉ when Fq is viewed as Fb

2 via an F2-linear isomorphism.
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• For small d, the work of Kaufman-Litsyn [KL05], Kaufman-Sudan [KS07] and Kopparty-Saraf [KS10]
gave sublinear time algorithms for decoding dual BCH codes from a constant fraction of errors. The
running time of these algorithms is O(dd · poly(log q)). For d = O( log q

log log q ), they run in time poly(q),

while for slightly smaller d they run in time qo(1).

These algorithms use the fact that there are many short linear dependencies between the coordinates of
codewords; namely, that their duals have many low weight codewords. Interestingly, they use decoding
algorithms for BCH codes as a subroutine.

Theorem 2 gives the first algorithm to decode from a constant fraction of errors in poly(q) time for d >
ω( log q

log log q ).

Our results can be viewed as algorithmic versions of Weil-type bounds for character sums. To the best of
our knowledge, the only known proof that the error-correcting codes underlying Theorem 1 (for d ≥ 3) and
Theorem 2 (for d ≥ Ω(log q)) have distance Ω(q) go through the Weil bounds. Any algorithm that decodes
these codes from Ω(q) errors must either use a Weil-type bound or prove a Weil-type bounds. Our results
fall in the latter category.

We use ideas from Stepanov’s polynomial method proof of the Weil bounds, as well as from the Berlekamp-
Welch decoding algorithm for Reed-Solomon codes. A crucial role is played by what we call pseudopolyno-
mials: high degree polynomials, all of whose derivatives behave like low degree polynomials on Fq.

The number of errors that these algorithms can handle falls short of the unique decoding radius of these
codes, which is about

(
1
4 − ϵ

)
q. It would be interesting to get efficient decoding from these many errors.

1.1 Related Work

The Weil bounds on character sums were proved by Weil [Wei41, Wei48, Wei49] as a corollary of his proof
of the Riemann hypothesis for curves over finite fields. They capture some very basic pseudorandomness
phenomena in finite fields in a very strong quantitative form. For this reason, they have found extensive
applications in the explicit constructions of pseudorandom objects. We mention some notable applications
in theoretical computer science: the universality of the Paley graphs by Graham and Spencer [GS71], the
construction of epsilon biased sets by Alon, Goldreich, H̊astad and Peralta [AGHP92], and the construction
of affine extractors by Gabizon and Raz [GR08].

Another remarkable application is the dual-BCH code, mentioned above. Dual-BCH codes are F2-linear

codes of length q with q(d+1)/2 codewords and minimum distance at least
(

1
2 − d−1√

q )
)
· q. For small d these

are unmatched codes: without the Weil bounds, there is no known proof of existence, for all constant t, of
binary codes of length n with nt codewords and minimum distance ( 12−Ot(

1√
n
))·n. (A nonlinear binary code

with similar strong parameters can also be made out of the quadratic residue character applied to squarefree
polynomials over fields of odd characteristic; one just has to replace the small number of 0 coordinates with
either +1 or −1, arbitrarily.) This also yields nt unit vectors in Rn with pairwise inner products all at most
O(t/

√
n). This is an even smaller upper bound on the maximum inner product than what random vectors

would achieve, O(
√
(log n)/n).

The original proof of the Weil bounds used machinery from algebraic geometry. Many years later, Stepanov [Ste69,
Ste70, Ste74] discovered an elementary proof of Weil-type bounds. This used a very clever version of what
is now known as the polynomial method (with multiplicities) – understanding a set of interest by first in-
terpolating a polynomial vanishing on that set (with high multiplicity), and then studying that polynomial.
Subsequently Schmidt [Sch76], Bombieri [Bom73] and Stohr-Voloch [SV86] strengthened, simplified and gen-
eralized Stepanov’s method greatly. See [Sch76, HKT08, LN97] for excellent introductions to this and related
topics. Our algorithms are heavily influenced by ideas from Stepanov’s method.

In recent years, a number of extensions of the Weil bounds for character sums were developed for applications
in theoretical computer science and coding theory, see [Kop11, KL11, CGS16, KTSY24, CDGM25] and
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[Kop10, Chapter 6].

The problems we consider in this paper are a kind of noisy polynomial interpolation problem. This is an
old and very well studied topic in coding theory and theoretical computer science. Our algorithms are also
heavily influenced by the polynomial method (with multiplicities) techniques from this domain, especially the
“interpolation + algebra” framework of the fundamental Berlekamp-Welch and Guruswami-Sudan decoding
algorithms for Reed-Solomon codes [BW86, Sud96, GS99].

The Guruswami-Sudan algorithm solves a polynomial reconstruction problem of a very general type that
nicely captures the problem of recovering polynomials from character values. We now describe this problem,
known as the list-recovery problem for Reed-Solomon codes. In list-recovery of Reed-Solomon codes, for
every α ∈ Fq we are given a set Sα of size at most ℓ, and we want to find all polynomials f(X) ∈ Fq[X] of
degree at most d with

|{α ∈ Fq | f(α) ∈ Sα}| ≥ 0.99q.

The Guruswami-Sudan algorithm [GS99] efficiently finds all such f(X) in time poly(q), provided ℓ < (0.99)2 q
d

(and in particular, proves that the number of such f(X) is at most poly(q) ). When we are given r : Fq →
{0,±1} with ∆(χ ◦ g, r) ≤ 0.01q for some low degree g(X), the problem of finding g(X) translates into a
list-recovery problem as follows. For each α ∈ Fq, let Sα = χ−1(r(α)). Then the set of all f(X) of degree at
most d satisfying

|{α ∈ Fq | f(α) ∈ Sα}| ≥ 0.99q,

contains g(X) (and in fact all such f(X) are of the form λ · g(X) · h2(X)). Thus the problem of recovering
g is a special kind of list-recovery problem.

In this setting, |Sα| ≤ ℓ = (q − 1)/2, and d = ω(1), so we are outside the range of where the Guruswami-
Sudan algorithm applies. Our result can be viewed as a way of using the extra algebraic structure of the Sα

to nevertheless enable some kind of list-recovery.

Our algorithms use higher order derivative information about the polynomials being interpolated. In this
sense, they are related in spirit to a recently flourishing line of work on decoding algorithms for multiplicity
codes [RT97, Nie01, KSY14, GW13, Kop14, Kop15, KRZSW23, BHKS23, Tam24, BHKS24, GHKS24, CZ25,
Sri25, GHK+25, AHS25] (Multiplicity codes are error-correcting codes based on evaluations of polynomials
and their derivatives).

The dual-BCH code C with d = Θ(q0.1) is a binary code that has: (1) block length n, (2) dimension
k = Ω(n0.1 log n), (3) distance

(
1
2 − o(1)

)
n, and (4) dual distance (i.e., distance of C⊥) Ω(n0.1). Theorem 2

shows that it also has: (5) efficiently decoding from Ω(n) errors.

Explicit binary codes with distance n
2 −o(1), dual distance n

Ω(1), and efficiently decodable from Ω(n) fraction
errors were not known until quite recently. The first such codes were constructed by Kopparty, Shaltiel, and
Silbak [KSS19]. These codes, known as raw Reed-Solomon codes, are closely related to dual-BCH codes; their
codewords are formed by taking juxtapositions of related dual-BCH codewords, and their minimum distance
is proved by appealing to the same Weil bounds. The efficient decoding algorithm for these codes, which can
actually list-decode from ( 12 − o(1))n errors, is based on a suitable instantiation of the Guruswami-Sudan
algorithm mentioned above.

If we relax the distance requirement on the code to simply be Ω(n), then one can even achieve this with
dual distance Ω(n) using algebraic-geometric codes; this is an important result of Ashikhmin, Litsyn and
Tsfasman [ALT01] discovered in the context of quantum codes (see also Guruswami’s appendix to [Shp09]).

1.2 Techniques

Let q be odd. Let g(X) be a monic squarefree polynomial of degree d = q0.1. We first describe the algorithm
to recover g when we are given χ ◦ g with no errors.
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Let G̃(X) = (g(X))(q−1)/2. Then2 χ ◦ g(α) = G̃(α) for each α ∈ Fq. Our input thus gives us q evaluations of

the polynomial G̃(X). However G̃(X) has much higher degree ≈ d q
2 , and this is not enough to interpolate

G̃ from degree considerations alone.

To motivate the algorithm, we begin by noting something striking about the derivative3 of G̃(X). We
calculate:

G̃′(X) =
q − 1

2
· g(X)(q−3)/2 · g′(X) = −1

2
· g

′(X)

g(X)
· G̃(X).

Thus for all α ∈ Fq:

G̃′(α) = −1

2
· g

′(α)

g(α)
· (χ ◦ g(α)).

Let S0, S1, S−1 be the subsets of Fq where G̃ takes values 0, 1,−1 respectively. We know that S0 is tiny, and
that S1, S−1 are both of size about q

2 (by the Weil bounds). The above calculation shows that there is a

very low degree rational function h(X) = − 1
2g

′(X)/g(X), such that the huge degree polynomial G̃′ agrees
with h on S1 and agrees with −h on S−1. This is a very special kind of behavior: not only is a huge degree
polynomial becoming a low degree rational function on the large sets S1 and S−1, the two rational functions
themselves are closely related. This phenomenon continues for the higher derivatives too. Our algorithm
will be based on this.

First some small adjustments. To avoid denominators, we pick an integer M = O(d) and define G(X) =
(g(X))(q−1)/2+M . Instead of standard derivatives, we will use Hasse derivatives, which work better over
finite fields. Let G[ℓ](X) denote the ℓ-th (Hasse) derivative of G(X). Then we have the following fact: for
each ℓ with 0 ≤ ℓ < M , there is a polynomial Vℓ(X) of degree at most O(dM) ≪ q such that:

G[ℓ](α) = (χ ◦ g(α)) · Vℓ(α) (1)

for all α ∈ Fq.

This gives the first step of the algorithm: by solving a system of linear equations, we search for a polynomial
F (X) of degree at most d · ((q− 1)/2+M), and polynomials U0(X), U1(X), . . . , UM−1(X) of degree at most
O(dM), such that for all α ∈ Fq, F

[ℓ](α) = (χ ◦ g(α)) · Uℓ(α).

We know these equations have a solution, since G and the Vℓ satisfy them. But whatever solution F and the
Uℓ the algorithm finds may not equalG and the Vℓ. This could really happen: if h1(X) and h2(X) are very low
degree polynomials, and f(X) is of the form g(X) ·h2(X)2, then taking F (X) to be h1(X) · (f(X))(q−1)/2+M

also yields a valid solution to these equations.

The next step of the algorithm recovers g(X) from F (X) by factoring F (X) and inspecting the factor
multiplicities of F (X). Let g(X) =

∏
i gi(X) be the factorization of g(X) into distinct irreducible factors.

We show that the set of gi(X) is exactly the set of all irreducible factors of F (X) whose factor multiplicity,
after reducing mod q, is approximately q/2. This is clearly true if F (X) = G(X). That it holds for any
F (X) found by the first step of the algorithm is the main step of the analysis.

The proof of this is quite indirect. First, using a polynomial interpolation argument, we show that there are
special polynomials A(X), B(X) ∈ Fq[X] such that:

A(X) · F (X) = B(X) ·G(X). (2)

These special polynomials are what we call pseudopolynomials. They are of the form C(X) =
∑

i Ci(X)(Xq−
X)i, with Ci(X) having low degree k (much lower than q). The choice of this class of polynomials, as well
as the idea of the interpolation argument, come from Stepanov’s method. Pseudopolynomials have two key
properties that we use:

2We now view the character χ as Fq-valued.
3This is just the standard derivative of polynomials, defined by (Xi)′ = iXi−1, and extended by linearity.

6



• For each ℓ, there is a polynomial C⟨ℓ⟩(X) of degree at most k such that the ℓ-th derivative C [ℓ] and
C⟨ℓ⟩ agree on all points of Fq. This is used in the interpolation argument, to get the identity (2).

• Every irreducible factor of C(X) has factor multiplicity approximately a multiple of q. This ensures,
using (2), that the only factors of F with multiplicity approximately q/2 mod q are the factors of G
with multiplicity approximate q/2 mod q, as we want.

This completes the sketch of the proof in the error-free case.

To handle errors, we use the idea of the Berlekamp-Welch decoding algorithm for Reed-Solomon codes.
However, instead of using an error-locator polynomial to zero out the errors, we have to use a high multiplicity
error-locator pseudopolynomial E(X). Then ensures that the derivatives of E(X)·G(X) also have a property
similar to the property of G(X) given in Equation (1).

For the additive character case, the algorithm becomes slightly more complicated. To recover g given a
noisy version r of Tr ◦ g, we set up a system of linear equations capturing some special low-degree property
of the derivatives of the polynomial G(X) =

∑b−1
i=0 g

2i(X). Specifically, we search for nonzero polynomi-
als F (X) and E(X), where E(X) is a pseudopolynomial, such that there exist low degree polynomials
U0(X), . . . , UM−1(X) with:

F [ℓ](α) = E[ℓ](α) · r(α) + Uℓ(α)

for all α ∈ Fq. If E(X) is a high multiplicity error-locator pseudopolynomial and F (X) = E(X) · G(X),
then the above equations are satisfied. However the solution found by the algorithm may not be this one.

From this solution to this system of equations, we try to recover g(X); however, unlike in the case of the
quadratic residue character, where the relevant problem was factoring polynomials and there was an off-the-
shelf algorithm known, we have to work a little harder. Here we only manage to use the solution of the
system of equations to extract the largest degree coefficient of g(X). We can then peel it off and repeat, and
thus get the whole of g(X). The analysis again uses an interpolation argument involving pseudopolynomials.

Our presentation of the algorithms and their analyses in Sections 3 and 4 is done from scratch and does not
explicitly use the language of pseudopolynomials. Later, in Section 5, we formally define pseudopolynomials
and the pseudodegree, state some basic properties, and explain some ideas from previous sections in a cleaner
context. We also formulate Stepanov’s proof of the Weil bounds in this language.

In the appendix, we briefly describe how these algorithms generalize to the m-th power residue character
and additive characters over finite fields of small characteristic.

1.3 Questions

Below we highlight some interesting questions.

1. Is there an efficient algorithm to decode these codes from a ( 14 − ϵ)-fraction of errors? This is the
unique decoding radius for these codes.

2. More ambitiously, we could ask whether there is an efficient algorithm for list-decoding these codes
from a

(
1
2 −O(

√
ϵ)
)
-fraction of errors. This is the (binary) Johnson radius for these codes, so we know

that there are only Oϵ(1) codewords within this radius of any given function r.

In some ways, our result is analogous to the Berlekamp-Welch algorithm decoding algorithm for Reed-
Solomon codes. Is there an analogue of the Guruswami-Sudan algorithm for this context?

3. Both the decoding problems that we give algorithms for are instances of the following more general
problem.

Let G(X,Y ) ∈ Fq[X,Y ] be an unknown polynomial of degree d. Suppose we are given as input the
projection S = ΠX(G), where:

ΠX(G) = {x ∈ Fq | ∃y ∈ Fq with G(x, y) = 0}.
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Can we find, in time poly(q), some polynomial F (X,Y ) of degree at most d such that |ΠX(F )△S| ≤
Od(1)?

Such sets are definable sets with complexity Od(1) in the sense of Chatzidakis, van den Dries and
Macintyre [CVDDM92] and Tao [Tao14, Tao13]. The results of [CVDDM92], which are based on more
general forms of the Weil bounds, imply that the symmetric difference of any two such definable sets
is of size either Od(1) or Ωd(q). This suggests that one could even hope to solve this given a noisy
version of ΠX(G).

4. Let q be a prime, and let H ⊂ Fq be the set {0, 1, . . . , (q − 1)/2} and let 1H : Fq → {0, 1} be its
indicator function. Suppose g(X) is an unknown polynomial in Fq[X] of degree at most d, and we are
given all evaluations of (1H) ◦ g : Fq → {0, 1}.

The additive character sum Weil bounds over Fq imply that if d < O(q
1
2−ϵ), then g(X) is uniquely

determined, up to the constant term, by the function 1H ◦ g.

Can we find g(X) (up to the constant term) in time poly(q)?

To the best of our knowledge, the only elementary proofs of the uniqueness statement above are very
indirect, involving the Stepanov method in multiple extension fields Fqc . It will be very interesting to
find a more direct proof, and adapt it to the algorithmic problem above.
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2 Preliminaries

F∗
q denotes Fq \ {0}.

For two functions r1, r2 : Fq → Fq, we define their Hamming distance to be the number of evaluation points
where they disagree:

∆(r1, r2) = |{α ∈ Fq | r1(α) ̸= r2(α)}|.

We use poly(n) to denote an expression bounded by A · nB for absolute constants A,B.

2.1 Polynomials, Hasse Derivatives and Multiplicities

Let F be a field.

We use deg(A) to denote the degree of a polynomial A(X) ∈ F[X]. For polynomials A(X), B(X) ∈ F[X],
we will use A(X) mod B(X) to denote the remainder when A(X) is divided by B(X).

We now define Hasse derivatives, a notion of higher-order derivative that is suited for polynomials over finite
fields. See [HKT08, DKSS13] for more on this.

Definition 2.1 (Hasse Derivatives). For a polynomial A(X) ∈ F[X], we define the ℓ-th Hasse derivative of
A(X), denoted A[ℓ](X), to be the coefficient Aℓ(X) ∈ F[X] of Zℓ in the expansion:

A(X + Z) = A0(X) +A1(X)Z + . . .+Aℓ(X)Zℓ + . . . .
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Definition 2.2 (Multiplicity). For a nonzero polynomial A(X) ∈ F[X] and α ∈ F, we define the multiplicity
of vanishing of A(X), denoted mult(A,α), to be the largest r ∈ N such that (X − α)r divides A(X).

Equivalently, it is the largest r such that for all ℓ with 0 ≤ ℓ < r,

A[ℓ](α) = 0,

and A[r](α) ̸= 0.

Lemma 2.3 (Hasse derivative rules). Let A(X), B(X) ∈ F[X], and α, β ∈ F. Then for all ℓ ≥ 0:

•
(αA+ βB)[ℓ](X) = αA[ℓ](X) + βB[ℓ](X).

•
(A ·B)[ℓ](X) =

∑
ℓ1+ℓ2=ℓ
ℓ1,ℓ2≥0

A[ℓ1](X) ·B[ℓ2](X).

Now we specialize to the finite field Fq. Here the polynomial

Λ(X) = Xq −X

plays a special role.

We recall some basic derivative calculations.

For A(X) = Xi:

A[ℓ](X) =

(
i

ℓ

)
Xi−ℓ.

For Λ(X):

Λ[ℓ](X) =


Λ(X) ℓ = 0

−1 ℓ = 1

1 ℓ = q

0 otherwise

.

Lemma 2.4. Suppose U(X), V (X) ∈ Fq[X], deg(V ) < q, i ≥ 0, and:

U(X) = V (X) · Λi(X),

Then for 0 ≤ ℓ < q:
U [ℓ](X) ≡ (−1)i · V [ℓ−i](X) mod Λ(X),

(where we adopt the convention that V [j](X) = 0 if j < 0.)

Proof. By the product rule for Hasse derivatives:

U [ℓ](X) =
∑

ℓ0,ℓ1,...,ℓi∑
ℓj=ℓ

V [ℓ0](X) ·
i∏

j=1

Λ[ℓj ](X).

If ℓ < i, then in every term in the sum one of ℓ1, . . . , ℓi must equal 0, and thus all the terms are multiples of
Λ(X). So U [ℓ](X) is a multiple of Λ(X), as claimed.
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If ℓ ≥ i, then we will see that all but at most one of these terms is a multiple of Λ(X).

Since ℓ < q, every term has all the ℓj < q.

By our computation of derivatives of Λ, the only terms that are nonzero must have ℓ1, . . . , ℓi all equal to
either 0 or 1.

If at least one of ℓ1, . . . , ℓi equals 0, then Λ(X) is a factor of the term.

The only term remaining is ℓ1 = ℓ2 = . . . = ℓi = 1, and ℓ0 = ℓ− i, and this term equals:

V [ℓ−i](X) · (−1)i.

This completes the proof of the lemma.

2.2 The quadratic residue character over fields of odd characteristic

Let q be an odd prime power.

Let χ : Fq → {0,±1} be the quadratic residue character:

χ(β) =


+1 β ∈ F∗

q is the square of an element of Fq

−1 β is not the square of an element of Fq

0 β = 0.

Usually the range is viewed as a subset of C, but we will view it as a subset of Fq. Then we have the formula:

χ(β) = β(q−1)/2.

Let g(X) ∈ Fq[X] with g of degree d. We will use χ ◦ g to denote the function from Fq to {0,±1} ⊆ Fq

whose values are given by:
χ ◦ g(α) = χ(g(α)).

(We will never use χ ◦ g to refer to the polynomial g(q−1)/2(X).)

For an arbitrary nonzero g(X) of degree d, we can write it as:

g(X) = λ · ḡ(X) · h(X)2

where λ ∈ F∗
q , ḡ(X), h(X) ∈ Fq[X], satisfy:

• ḡ(X) is monic and squarefree,

• h(X) is monic.

ḡ(X) is the “squarefree core” of g(X), and essentially determines χ ◦ g.

Indeed, for all α where h(α) ̸= 0,
χ ◦ g(α) = χ(λ) · χ ◦ ḡ(α).

Thus, either ∆(χ ◦ g, χ ◦ ḡ) ≤ d or ∆(χ ◦ g,−χ ◦ ḡ) ≤ d.
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2.3 Additive characters in fields characteristic 2

Let q be a power of 2, say q = 2b.

Let Tr : Fq → F2 be the field trace map:

Tr(β) =
b−1∑
i=0

β2i .

Let TR(X) ∈ Fq[X] be the polynomial:

TR(X) =

b−1∑
i=0

X2i .

For a polynomial g(X) ∈ Fq[X], we will use Tr ◦ g to denote the function from Fq to F2 whose values are
given by:

Tr ◦ g(α) = Tr(g(α)).

(We will never use Tr ◦ g to refer to the polynomial TR(g(X)) =
∑b−1

i=0 (g(X))2
i

.)

For an arbitrary nonzero g(X) of degree d, we can write it as:

g(X) = λ+ ḡ(X) + h(X) + h2(X),

where λ ∈ Fq and ḡ(X), h(X) ∈ Fq[X] satisfy:

• ḡ(X) has only odd degree monomials,

• h(X) has 0 constant term.

This is proved by repeatedly taking the highest even degree monomial a2iX
2i and writing it as the sum

of (a
1/2
2i X

i) and (a
1/2
2i X

i + a2iX
2i) – the former having lower degree, and the latter being of the form

h(X) + h2(X).

ḡ(X) is the “odd degree core” of g(X) and essentially determines Tr ◦ g.

Indeed, for all α ∈ Fq,
Tr ◦ g(α) = Tr(λ) + Tr ◦ ḡ(α).

Thus either Tr ◦ g = Tr ◦ ḡ or Tr ◦ g = 1 + Tr ◦ ḡ.
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3 χ ◦ g
Let q be an odd prime power.

Let g(X) ∈ Fq[X] be a monic squarefree polynomial. In this section, we give an efficient algorithm to recover
g(X) given access to a noisy version r of χ ◦ g.

Algorithm A:
Parameters: degree d ≤ O(ϵ

√
q), error-bound e ≤

(
1
8 − ϵ

)
q.

Input r : Fq → {0,±1}

1. Set

• M = 16
ϵ d

• c = M
2

• h = 2 · e.

• D = d · ((q − 1)/2 +M) + cq = (1 +O(ϵ)) · 1
2 ·M · q,

• u = h+ dM = 2e+O(d
2

ϵ ).

2. Solve an Fq system of linear equations to find polynomials F (X), U0(X), . . . , UM−1(X) ∈ Fq[X], not
all zero, where:

• deg(F ) ≤ D

• for each ℓ, deg(Uℓ) ≤ u

• For all α ∈ Fq, 0 ≤ ℓ < M :

F [ℓ](α) = r(α) · Uℓ(α). (3)

3. Factor F (X) into irreducible factors:

F (X) = λ
∏
j

H
µj

j (X),

where the Hj(X) ∈ Fq[X] are distinct and monic, and λ ∈ F∗
q .

4. Define

J =

{
j such that µj ∈

[
3

8
q,

7

8
q

]
mod q

}
.

5. Set
f(X) =

∏
j∈J

Hj(X).

6. Return f(X).

It is clear from the description of the algorithm (and the fact that factoring univariate polynomials of degree
D over Fq can be done in time poly(q,D) [Ber70]), this algorithm can be implemented to run in time poly(q).

We now show correctness.
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3.1 Correctness of the Algorithm

Theorem 3.1. Let ϵ > 0, and suppose:

• d ≤ ϵ
16

√
q

• e ≤
(
1
8 − ϵ

)
q.

Suppose g(X) ∈ Fq[X] is a monic squarefree polynomial with degree ≤ d such that ∆(χ ◦ g, r) ≤ e.

Then Algorithm A returns g(X).

Proof. The proof has three steps.

Let G(X) = (g(X))(q−1)/2+M .

First, using the hypothesis that r is close to χ ◦ g, we show that the system of linear equations in Step 2 has
a nonzero solution. Specifically, we carefully design polynomials E(X) (which is a kind of high multiplicity
error-locator pseudopolynomial) and V0(X), . . . , VM−1(X) so that F (X) = E(X) ·G(X) and Ui(X) = Vi(X)
satisfies the linear equations. Thus the algorithm will find a nonzero solution in that step.

The algorithm may not find the above mentioned “intended” solution. In the second step of the proof, we
show that whatever solution (F,U0, . . . , UM−1) it does find, F (X) has some nontrivial relation to G(X).

Finally, we use this nontrivial relation to show that the multiplicities of irreducible factors of F are closely
related to those of G, and hence of g, and deduce the result from that.

We now proceed with the details.

Step 1: The system of linear equations has a nonzero solution.

The key observation is that if the received word r : Fq → {0,±1} had been exactly Tr ◦ g, then F = G would
have given a valid solution to the system of equations. Instead, our received word r is merely close to χ ◦ g.
So, following the idea of the Berlekamp-Welch decoding algorithm for Reed-Solomon codes, we will zero out
G at the error locations to get a valid solution.

Let S = {α ∈ Fq | χ ◦ g(α) ̸= r(α)} be the error set. Let ZS(X) be the error locator polynomial:

ZS(X) =
∏
α∈S

(X − α).

Recall that c =M/2 and h = eM
c = 2e. We now take E(X) to be a nonzero multiple of ZM

S (X) of the form:

E(X) =

c−1∑
i=0

Ei(X)Λi(X),

with deg(Ei) ≤ h. (Recall that Λ(X) = Xq−X). Such an E(X) exists, since vanishing mod ZM
S (X) imposes

eM constraints on the c·(h+1)-dimensional Fq-linear space {(E0(X), . . . , Ec−1(X)) ∈ Fq[X]c | deg(Ei) ≤ h},
and c · (h+ 1) > ch = eM .

This gives us two nice properties:

• E[ℓ](α) = 0 for all α ∈ S and ℓ with 0 ≤ ℓ < M . This is because E is a multiple of ZM
S (X), and thus

of (X − α)M .

• For each ℓ with 0 ≤ ℓ < M , there is a polynomial E⟨ℓ⟩(X) ∈ Fq[X] of degree at most h = 2e such that
for all α ∈ Fq:

E⟨ℓ⟩(α) = E[ℓ](α).
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Indeed, by Lemma 2.4:

E[ℓ](X) =

c−1∑
i=0

(−1)iE
[ℓ−i]
i (X) mod Λ(X),

and thus if we define:

E⟨ℓ⟩(X) =

c−1∑
i=0

(−1)iE
[ℓ−i]
i (X),

we have for all α ∈ Fq,:

E[ℓ](α) =

c−1∑
i=0

(−1)iE
[ℓ−i]
i (α) = E⟨ℓ⟩(α).

We will take our solution F (X) to be:

F (X) = E(X) ·G(X),

(recall that G(X) = g(q−1)/2+M (X)).

Before we compute its derivatives, we need a quick lemma.

Lemma 3.2. Let g(X) ∈ Fq[X] be a polynomial of degree at most d. Then the ℓ-th derivative of gj(X) is
of the form:

(gj)[ℓ](X) = Hg,j,ℓ(X) · g(X)j−ℓ,

where Hg,j,ℓ(X) ∈ Fq[X] has degree at most dℓ− ℓ.

Proof. Using the product rule for Hasse derivatives.

Set w = (q − 1)/2 +M . Then by the above lemma:

G[ℓ](X) = Hg,w,ℓ(X) · gw−ℓ(X) = Hg,w,ℓ(X) · gM−ℓ(X) · g(q−1)/2(X),

and so for all α ∈ Fq:

G[ℓ](α) = Hg,w,ℓ(α) · gM−ℓ(α) · g(q−1)/2(α) =
(
Hg,w,ℓ(α) · gM−ℓ(α)

)
· χ ◦ g(α). (4)

Now we compute the derivatives of E ·G at α ∈ Fq:

(E ·G)[ℓ](α) =
∑

ℓ1+ℓ2=ℓ

E[ℓ1](α) ·G[ℓ2](α)

=
∑

ℓ1+ℓ2=ℓ

E⟨ℓ1⟩(α) ·Hg,w,ℓ2(α) · gM−ℓ2(α) · χ ◦ g(α)

=

( ∑
ℓ1+ℓ2=ℓ

E⟨ℓ1⟩(α) ·Hg,w,ℓ2(α) · gM−ℓ2(α)

)
· χ ◦ g(α)

= χ ◦ g(α) · Vℓ(α), (5)

where we defined:
Vℓ(X) =

∑
ℓ1+ℓ2=ℓ

E⟨ℓ1⟩(X) ·Hg,w,ℓ2(X) · gM−ℓ2(X).
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It is easy to check that:

deg(E ·G) ≤ d ·
(
q − 1

2
+M

)
+ c · q = D,

deg(Vℓ) ≤ h+ d ·M = u.

We now show that for all α ∈ Fq and all ℓ with 0 ≤ ℓ < M :

(E ·G)[ℓ](α) = r(α) · Vℓ(α). (6)

For α ̸∈ S, we have r(α) = χ ◦ g(α), and so (6) follows from Equation (5).

For α ∈ S, we have that Vℓ(α) = 0 (since E⟨ℓ1⟩(α) = E[ℓ1](α) = 0 for all ℓ1 ≤ ℓ < M). Thus (E ·G)[ℓ](α) = 0
too (by Equation (5)), and again we get (6) for this case.

Thus the tuple (E ·G,V0, . . . , VM−1) satisfies the Equations (3), as desired.

Step 2: Relating F and G

It turns out that whatever F (X) the algorithm finds must be somewhat related to G(X).

First we quickly note that F (X) must be a nonzero polynomial. We know that at least of one of F and
the Uℓ is nonzero. If some Uℓ(X) is nonzero, then using the facts that (1) χ ◦ g has at most d zeroes, (2)
∆(χ ◦ g, r) < 1

8q, (3) Uℓ(X) has at most h < 1
4q zeroes, we get (χ ◦ g(α)) · Uℓ(α) must be nonzero for some

α: and Equation (3) tells us that F (X) is nonzero.

Now choose t, k ∈ N as follows:

t =
3

8
M.

k = e+ 4dM.

We will show that there exist nonzero polynomials A(X), B(X) of the form:

A(X) =

t−1∑
i=0

Ai(X)Λi(X),

B(X) =

t+c−1∑
i=0

Bi(X)Λi(X),

with deg(Ai) ≤ k, deg(Bi) ≤ k + 2e, such that:

A(X) · F (X) = B(X) ·G(X).

We do this by dimension counting again. The number of coefficients of the Ai and Bi together is:

N = (t) · (k + 1) + (t+ c) · (k + 2e+ 1)

>
3

8
M · (e+ 4dM) +

7

8
M · (3e+ 4dM)

= 3Me+ 5dM2. (7)

and we treat them as unknowns. By imposing at most N − 1 homogenous linear constraints on these
unknowns, we will ensure that for each ℓ with 0 ≤ ℓ < M , and each α ∈ Fq \ S:

(A · F )[ℓ](α) = (B ·G)[ℓ](α). (8)
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This latter equation implies that the polynomial (A · F − B · G)(X) vanishes with multiplicity M at each
α ∈ Fq \ S, and thus has at least

M · |Fq \ S| ≥M · (q − e) >

(
7

8
+ ϵ

)
Mq

roots, counting multiplicity. But the degree of (A · F −B ·G)(X) can be bounded as:

deg(A · F −B ·G) ≤ max(deg(A · F ), deg(B ·G))
≤ max(tq +D, (t+ c)q + ((q − 1)/2 +M) · d)
≤ max(tq +D, tq +D)

=
3

8
Mq + d · ((q − 1)/2 +M) + cq

<

(
7

8
+
ϵ

2

)
Mq

This implies that (A · F −B ·G)(X) = 0.

It remains to show how to ensure equations (8) using at most N − 1 linear constraints on the coefficients of
the Ai and the Bi.

First, observe that for each ℓ, there are polynomials A⟨ℓ⟩(X), B⟨ℓ⟩(X), of degrees at most k, k+2e respectively
(and whose coefficients are homogenous linear combinations of the coefficients of A,B), given by:

A⟨ℓ⟩(X) =

t−1∑
i=0

(−1)iA
[ℓ−i]
i (X)

B⟨ℓ⟩(X) =

t+c−1∑
i=0

(−1)iB
[ℓ−i]
i (X)

such that for all α ∈ Fq:

A[ℓ](α) = A⟨ℓ⟩(α).

B[ℓ](α) = B⟨ℓ⟩(α).

(Here we used Lemma 2.4 to compute A[ℓ] and B[ℓ] and evaluate them at α ∈ Fq).

Next, recall that F [ℓ](α) = r(α)Uℓ(α) for all α ∈ Fq and all ℓ with 0 ≤ ℓ < M . Then:

(A · F )[ℓ](α) =
∑

ℓ1+ℓ2=ℓ

A[ℓ1](α)F [ℓ2](α)

= r(α) ·
∑

ℓ1+ℓ2=ℓ

A⟨ℓ1⟩(α)Uℓ2(α). (9)

Similarly, G[ℓ](α) = χ ◦ g(α) ·Hg,w,ℓ(α) · gM−ℓ(α) for all α ∈ Fq and all ℓ with 0 ≤ ℓ < M . Then:

(B ·G)[ℓ](α) =
∑

ℓ1+ℓ2=ℓ

B[ℓ1](α)G[ℓ2](α)

= χ ◦ g(α) ·
∑

ℓ1+ℓ2=ℓ

B⟨ℓ1⟩(α)Hg,w,ℓ2(α) · gM−ℓ2(α). (10)
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We can now write down the linear constraints that we impose on the coefficients of the Ai and the Bi. We
ask that for each ℓ with 0 ≤ ℓ < M , the following equality of polynomials holds:∑

ℓ1+ℓ2=ℓ

A⟨ℓ1⟩(X)Uℓ2(X) =
∑

ℓ1+ℓ2=ℓ

B⟨ℓ1⟩(X)Hg,w,ℓ2(X)gM−ℓ2(X). (11)

The coefficients of all these polynomials are homogoeneous linear combinations of the coefficients of the Ai

and the Bi.

The polynomials on the left hand side of the equality are of degree at most

k + u = k + dM + h = 3e+ dM.

The polynomials on the right hand side of the equality are of degree at most

(k + 2e) + dM = 3e+ dM.

Thus the total number of Fq-linear constraints imposed by these M equalities is at most:

M · (3e+ dM + 1) < 3Me+ 5dM2.

Combining this with Equation (7), we get that there exist A(X), B(X), not both 0, satisfying Equations (11).

Finally, from Equations (9), (10) and (11), and using the fact that r(α) = χ ◦ g(α) for each α ∈ Fq \ S, we
conclude that Equation (8) holds. This gives us the desired polynomial identity:

A(X) · F (X) = B(X) ·G(X).

Step 3: Relating the factor multiplicities of F and G

Finally, we use the identity and the special form of A and B to relate the factor multiplicities of F and
G. Lemma 3.3 below shows that both A and B have the special property that every irreducible factor
has multiplicity being approximately a multiple of q. On the other hand, the irreducible factors of g(X)
appear in G with a multiplicity mod q being approximately q/2 (this is the crucial step where we use the
squarefreeness of g(X)). This lets us identify the nonsquare factors of g(X), and hence g(X).

Lemma 3.3. Let k < q. Let C(X) ∈ Fq[X] be a nonzero polynomial of the form:

t−1∑
i=0

Ci(X)Λi(X),

where deg(Ci) ≤ k for all i.

Let H(X) ∈ Fq[X] be an irreducible polynomial. Let µ be the highest power of H(X) which divides C(X).

Then µ mod q ∈ [0, k + t− 1].

Proof. Let α ∈ Fq (the algebraic closure of Fq) be a root of H(X).

Then we have:
µ = mult(C,α).

By definition of multiplicity,
C [µ](α) ̸= 0.

We will show that C [ℓ](X) = 0 whenever ℓ mod q ∈ [k+ t, q−1]. This implies that µ mod q ∈ [0, k+ t−1].
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Suppose ℓ mod q ∈ [k + t, q − 1].

We now compute4, using the product rule for Hasse derivatives:

C [ℓ](X) =

t−1∑
i=0

(
Ci · Λi

)[ℓ]
(X)

=

t−1∑
i=0

 ∑
ℓ0,ℓ1,...,ℓi∑

ℓj=ℓ

C
[ℓ0]
i (X) ·

i∏
j=1

Λ[ℓj ](X)



We now see that all terms in this sum are 0.

• Every summand with ℓ0 > k is 0, since each Ci has degree ≤ k.

• Every summand where at least one of ℓ1, . . . , ℓj does not lie in the set {0, 1, q} is 0 (because that
derivative of Λ is 0).

Thus if any summand is nonzero, it must have ℓ0 ∈ [0, k] and ℓ1, . . . , ℓi ∈ {0, 1, q}.

But if ℓ mod q ∈ [k+ t, q− 1], then we cannot have ℓ written as the sum of one integer in [0, k] and at most
i ≤ t− 1 integers from the set {0, 1, q}.

Thus if ℓ mod q ∈ [k + t, q − 1], C [ℓ](X) = 0, as claimed.

Now let H(X) be any irreducible polynomial in Fq[X]. Let µF , µA, µB , µG, µg be the highest power of H(X)
that divides F (X), A(X), B(X), G(X), g(X) respectively. By our squarefreeness assumption on g, we have
that µg ∈ {0, 1}.

Then by the identity AF = BG,
µF = µG + µB − µA.

By Lemma 3.3,

µB ∈ q · Z+ [0, 3e+ 4dM +
7

8
M ],

µA ∈ q · Z+ [0, e+ 4dM +
3

8
M ].

Thus µF ∈ µG + q · Z+ [−e− 5dM, 3e+ 5dM ].

Note that µG = ((q − 1)/2 +M) · µg, and thus:

• if µg = 1, then:
µG = q/2 + (M − 1)/2,

and thus:
µF ∈ q · Z+ q/2 + [−e− 5dM, 3e+ 6dM ] ⊆ q · Z+ (3q/8, 7q/8).

• if µg = 0, then:
µG = 0,

and thus:
µF ∈ q · Z+ [−e− 5dM, 3e+ 5dM ] ⊆ q · Z+ (−q/8, 3q/8).

4We cannot use Lemma 2.4 here, since that only talks about derivatives of order < q. But it is the same idea.
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Here we used the fact that e ≤
(
1
8 − ϵ

)
q and 6dM < 96d2

ϵ < ϵq.

Thus the set J created in Step 4 ensures that {Hj | j ∈ J} is exactly the set of all irreducible factors H(X)
that divide the squarefree polynomial g(X).

This means that the f(X) found in Step 5 equals g(X), as desired.

3.2 A remark

An alternate analysis, which is quantitatively slightly weaker and conceptually slightly simpler, is given in
Section 5.6. It replaces the slightly opaque interpolation argument of Step 2 with another use of a high
multiplicity error-locator pseudopolynomial.
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4 Tr ◦ g
Let q be a power of 2.

Let g(X) ∈ Fq[X] be a polynomial of degree at most d with only odd degree monomials:

g(X) = a1X + a3X
3 + . . .+ adX

d.

In this section, we give an efficient algorithm to recover g(X) given access to a noisy version r of Tr ◦ g.

The main subroutine, Algorithm B, finds the monomial of g(X) of degree d. Given that, we can subtract Tr
of that monomial from r and repeat: this recovers the full polynomial g.

Algorithm B:
Parameters: degree d ≤ O(ϵ

√
q) (an odd integer), error-bound e ≤

(
1
8 − ϵ

)
q.

Input r : Fq → F2

1. Set

• M = 16
ϵ d

• c = 1
2 ·M

• h = 2 · e

• u = h+ dM = 2e+O(d
2

ϵ ).

2. For each h∗ ∈ [0, h]

• Try to solve a system of Fq-linear equations to find polynomials F (X), E(X), U0(X), U1(X), . . . , UM−1(X) ∈
Fq[X], where:

– F (X) has degree exactly (d/2 + c)q + h∗.

– E(X) has degree exactly cq + h∗, and is of the form:

c∑
i=0

Ei(X)Λi(X),

where each deg(Ei) ≤ h.

– each Uℓ(X) has degree at most u.

– For all α ∈ Fq, 0 ≤ ℓ < M :

F [ℓ](α) = r(α) · E[ℓ](α) + Uℓ(α), (12)

3. If no such h∗ exists, return 0 ·Xd.

4. Otherwise take one solution E(X), F (X) with degrees DE , DF .

5. Let a ·XDF , b ·XDE be the leading monomials of F (X), E(X) respectively.

Set ad = (a/b)2.

6. Return adX
d.
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We now give the main algorithm, which repeatedly invokes the above subroutine.

Algorithm C:
Parameters: degree d ≤ O(ϵ

√
q) (an odd integer), error-bound e ≤

(
1
8 − ϵ

)
q.

Input r : Fq → F2

1. Initialize:

• f(X) = 0.

• d̃ = d.

• r̃ = r.

2. While d̃ > 0:

• Run Algorithm B on r̃, with parameters d̃, e.

• Let ad̃X
d̃ be the monomial it returns.

• Update f(X) = f(X) + ad̃X
d̃.

• For each α ∈ Fq, update:

r̃(α) = r̃(α)− Tr(ad̃α
d̃)

• Update d̃ = d̃− 2.

3. Return f(X).

It is clear from the description of the algorithm that it can be implemented to run in time poly(q). In the
next subsection show correctness.

4.1 Correctness of the Algorithm

Our main theorem about Algorithm C is as follows.

Theorem 4.1. Let ϵ > 0, and suppose:

• d ≤ ϵ
16

√
q is an odd integer,

• e =
(
1
8 − ϵ

)
q.

Suppose g(X) ∈ Fq[X] is a polynomial with degree ≤ d and only odd degree monomials such that ∆(Tr◦g, r) ≤
e.

Then Algorithm C returns g(X).

The key claim is about the behavior of Algorithm B.

Theorem 4.2. Let ϵ > 0, and suppose:

• d ≤ ϵ
16

√
q is an odd integer,

• e =
(
1
8 − ϵ

)
q.

Suppose g(X) ∈ Fq[X] is a polynomial with degree ≤ d and only odd degree monomials such that ∆(Tr◦g, r) ≤
e.

Then Algorithm B returns adX
d.
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Given Theorem 4.2, the correctness of Theorem 4.1 is quite easy.

The algorithm maintains the invariant that:

∆(r̃,Tr ◦ (g − f)) ≤
(
1

8
− ϵ

)
q,

and:
deg(g − f) ≤ d̃.

By the end, we have f = g.

We just demonstrate the first step below. Suppose g(X) has only odd degree monomials and equals a1X +
a3X

3 + . . .+ adX
d. Let g′(X) = a1X + a3X

3 + . . .+ ad−2X
d−2. and g′′(X) = adX

d. So g′ = g − g′′.

Then Theorem 4.2 shows that Algorithm B on input r returns adX
d. Next, it updates r̃ = r−Tr ◦ g′′. Then

we have:

∆(r̃,Tr ◦ g′) = ∆(r − Tr ◦ g′′,Tr ◦ g − Tr ◦ g′′) = ∆(r,Tr ◦ g) ≤
(
1

8
− ϵ

)
q,

and deg(g′) = deg(g − g′′) ≤ d− 2, as desired.

We now prove Theorem 4.2 about the correctness of Algorithm B.

Proof. We begin by handling the (main) case where ad ̸= 0.

The proof has three steps.

Recall that TR(X) is the Trace polynomial:

TR(X) =

b−1∑
i=0

X2i ,

where q = 2b.

Let G(X) = TR(g(X)), which is of degree exactly d · q
2 (because of our assumption ad ̸= 0).

First, using the hypothesis that r is close to Tr ◦ g, we show that for some h∗, the system of linear equations
in Step 2 of Algorithm B has a nonzero solution. Similar to the case of the quadratic residue character, we
find the polynomials E0(X), . . . , Ec(X) so that E(X) is a high multiplicity error-locator pseudopolynomial
polynomial, and V0(X), . . . , VM−1(X) so that with this choice of the Ei(X), we have that F (X) = E(X) ·
G(X) and Ui(X) = Vi(X) satisfy the linear equations. Thus the algorithm will find a nonzero solution in
that step.

The algorithm may not find the above mentioned “intended” solution. In the second step of the proof, we
show that whatever solution (F,E,U0, . . . , UM−1) it does find, F (X) and E(X) have some nontrivial relation
to G(X).

Finally, we use this nontrivial relation to extract the coefficient of Xd in g(X) from F and E, and deduce
the result from that.

We now proceed with the details.
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Step 1: The system of linear equations has a nonzero solution.

We now show that for some h∗ ∈ [0, h], the system of linear equations in Step 2 has a nonzero solution.

The key observation is that if the received word r : Fq → F2 had been exaclty χ ◦ g, then F (X) = G(X),
E(X) = 1, Uℓ(X) = 0, would have given a valid solution to the system of equations. Instead, our received
word r is merely close to Tr ◦ g. So, following the idea of the Berlekamp-Welch decoding algorithm for
Reed-Solomon codes, we will zero out G at the error locations to get a valid solution.

Let S = {α ∈ Fq | Tr ◦ g(α) ̸= r(α)} be the error set. Let ZS(X) be the error locator polynomial:

ZS(X) =
∏
α∈S

(X − α).

Recall that c =M/2 and h = eM
c = 2e. We now take E(X) to be a nonzero multiple of ZM

S (X) of the form:

E(X) =

c∑
i=0

Ei(X)Λi(X),

with deg(Ei) ≤ h. Such an E(X) exists, since vanishing mod ZM
S (X) imposes eM constraints on the

(c + 1) · (h + 1)-dimensional Fq-linear space {(E0(X), . . . , Ec(X)) ∈ Fq[X]c+1 | deg(Ei) ≤ h}, and (c + 1) ·
(h+ 1) > ch = eM .

Whatever the degree of E(X) is, it is of the form iq+ j for some i ∈ [0, c] and j ∈ [0, h]. By multiplying this
E(X) by Λc−i(X), the degree becomes cq + j. We will show that the linear equations have a solution when
h∗ = j.

Exactly as in the case of the quadratic character, this E(X) has two nice properties:

• E[ℓ](α) = 0 for all α ∈ S and ℓ with 0 ≤ ℓ < M .

• There is a polynomial E⟨ℓ⟩(X) ∈ Fq[X] of degree at most h = 2e such that for all α ∈ Fq:

E⟨ℓ⟩(α) = E[ℓ](α).

We will take our solution F (X) to be:

F (X) = E(X) ·G(X),

(recall that G(X) = TR(g(X))).

Before we compute its derivatives, we need a quick lemma.

Lemma 4.3. Let g(X) ∈ Fq[X] be a polynomial of degree at most d. Then the ℓ-th derivative of G(X) =
TR(g(X)) is of the form:

(G)[ℓ](X) =

{
G(X) ℓ = 0

Hg,ℓ(X) ℓ > 0,

where Hg,ℓ(X) ∈ Fq[X] is a polynomial of degree at most d · ℓ.

Proof. The ℓ = 0 case is immediate.
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Now assume ℓ ≥ 1. Using the product rule for Hasse derivatives, we have:

(g2
i

)[ℓ](X) =
∑

ℓ1+ℓ2=ℓ

(g2
i−1

)[ℓ1](X) · (g2
i−1

)[ℓ2](X)

=
∑

ℓ1<ℓ/2

2 · (g2
i−1

)[ℓ1](X) · (g2
i−1

)[ℓ−ℓ1](X) +


0 ℓ is odd((

g2
i−1
)[ℓ/2]

(X)

)2

ℓ is even.

=


0 ℓ is odd((

g2
i−1
)[ℓ/2]

(X)

)2

ℓ is even.

This implies that

(g2
i

)[ℓ](X) =


(
g[ℓ/2

i](X)
)2i

2i divides ℓ

0 otherwise.

If ℓ = 2s · (2s′ + 1) ≥ 1, we can then explicitly write:

G[ℓ](X) = Hg,ℓ(X) =

min(s,b−1)∑
i=0

(
g[ℓ/2

i](X)
)2i

.

Inspecting the degrees of the terms in this expression, we see that deg(Hg,ℓ) ≤ d · 2s ≤ d · ℓ, as claimed.

Now we compute the derivatives of E ·G at α ∈ Fq:

(E ·G)[ℓ](α) =
∑

ℓ1+ℓ2=ℓ

E[ℓ1](α) ·G[ℓ2](α)

= E[ℓ](α)G(α) +
∑

ℓ1+ℓ2=ℓ
ℓ1<ℓ

E[ℓ1](α) ·G[ℓ2](α)

= E[ℓ](α) ·G(α) +

 ∑
ℓ1+ℓ2=ℓ
ℓ1<ℓ

E⟨ℓ1⟩(α) ·Hg,ℓ2(α)


= Tr ◦ g(α) · E[ℓ](α) + Vℓ(α), (13)

where we defined:
Vℓ(X) =

∑
ℓ1+ℓ2=ℓ
ℓ1<ℓ

E⟨ℓ1⟩(X) ·Hg,ℓ2(X).

Then:
deg(Vℓ) ≤ h+ d ·M = u.

Since deg(G) = d ·
(
q
2

)
, we get:

deg(F ) = deg(E ·G) = (cq + h∗) + d · q
2
,

We now show that for all α ∈ Fq and all ℓ with 0 ≤ ℓ < M :

F [ℓ](α) = (E ·G)[ℓ](α) = r(α) · E[ℓ](α) + Vℓ(α). (14)
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For α ̸∈ S, we have r(α) = Tr ◦ g(α), and so (14) follows from Equation (13).

For α ∈ S, we have that E[ℓ](α) = 0 and Vℓ(α) = 0 (since E⟨ℓ1⟩(α) = E[ℓ1](α) = 0 for all ℓ1 ≤ ℓ < M). Thus

(E ·G)[ℓ](α) = 0 too (by Equation (13)), and again we get (14) for this case.

Thus F = E ·G, E, U0 = V0, . . . , UM−1 = VM−1 satisfies the Equations (12), as desired.

Step 2: Relating F , E, and G

Let F (X), E(X) be the polynomials that the algorithm found. By our constraints on the degrees, deg(F )−
deg(E) = dq/2. It turns out F (X) and E(X) must be somewhat related to G(X).

Concretely, choose t, k ∈ N as follows:

t =
3

8
M.

k = e+ 4dM.

We will show that there exist nonzero polynomials A(X), B(X) of the form:

A(X) =

t−1∑
i=0

Ai(X)Λi(X),

B(X) =

t+c+ d
2−1∑

i=0

Bi(X)Λi(X),

with deg(Ai) ≤ k, deg(Bi) ≤ k + h+ dM , such that:

A(X) ·
(
F (X)− E(X) ·G(X)

)
= B(X).

The proof is analogous to what we did in the quadratic residue character case; namely, setting up a system
of homogenous Fq-linear equations with more unknowns than constraints.

The total number of unknown coefficients of A(X), B(X) equals:

N = t(k + 1) + (t+ c+ (d/2)) · (k + h+ dM + 1)

>
3

8
M · (e+ 4dM) +

7

8
M · (3e+ 5dM)

> 3eM + 5dM2. (15)

By imposing at most N − 1 homogenous linear constraints on these unknowns, we will ensure that for each
ℓ with 0 ≤ ℓ < M , and each α ∈ Fq \ S:

(A · (F − E ·G))[ℓ] (α) = B[ℓ](α). (16)

This latter equation implies that the polynomial A(X) · (F (X) − E(X) · G(X)) − B(X) vanishes with
multiplicity at least M at each α ∈ Fq \ S, and thus has at least

M · |Fq \ S| ≥M · (q − e) >

(
7

8
+ ϵ

)
Mq
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roots, counting multiplicity. But the degree of A(X) · (F (X)− E(X) ·G(X))−B(X) can be bounded as:

deg(A · (F − EG)−B) ≤ max(deg(A) + deg(F − EG), deg(B))

≤ max(tq + ((c+ (d/2))q + h), (t+ c+ (d/2))q)

≤ (t+ c+ (d/2))q + h

=
7

8
Mq + (d/2)q + 2e

<

(
7

8
+
ϵ

2

)
Mq.

This implies that A(X) · (F (X)− E(X) ·G(X)) = B(X).

It remains to show how to ensure Equations (16) using at most N − 1 linear constraints on the coefficients
of the Ai and the Bi.

First, observe that for each ℓ, there are polynomials A⟨ℓ⟩(X), B⟨ℓ⟩(X), of degrees at most k, k + h + dM
respectively (and whose coefficients are homogenous linear combinations of the coefficients of A,B), given
by:

A⟨ℓ⟩(X) =

t−1∑
i=0

(−1)iA
[ℓ−i]
i (X)

B⟨ℓ⟩(X) =

t+c+(d/2)−1∑
i=0

(−1)iB
[ℓ−i]
i (X)

such that for all α ∈ Fq:

A[ℓ](α) = A⟨ℓ⟩(α) (17)

B[ℓ](α) = B⟨ℓ⟩(α). (18)

(Again, we used Lemma 2.4).

Next, observe that our assumed form on E(X) implies the existence of similar low degree polynomials
E⟨ℓ⟩(X) ∈ Fq[X] whose evaluations match E[ℓ] on Fq. Namely, (recalling the definition of the Ei from
Algorithm B) define:

E⟨ℓ⟩(X) =

c∑
i=0

(−1)iE
[ℓ−i]
i (X),

and notice that deg(E⟨ℓ⟩) ≤ h, and:

E[ℓ](α) = E⟨ℓ⟩(α).

Finally, recall that F [ℓ](α) = r(α)E[ℓ](α) + Uℓ(α) for all α ∈ Fq and all ℓ with 0 ≤ ℓ < M .
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Thus, for any α ∈ Fq \ S:

(F − E ·G)[ℓ](α) =
(
r(α)E[ℓ](α) + Uℓ(α)

)
−

∑
ℓ1+ℓ2=ℓ

E[ℓ1](α)G[ℓ2](α)

=
(
r(α) · E⟨ℓ⟩(α) + Uℓ(α)

)
−

E⟨ℓ⟩(α)G(α) +
∑

ℓ1+ℓ2=ℓ
ℓ1<ℓ

E⟨ℓ1⟩(α)Hg,ℓ2(α)



= (r(α)−G(α)) · E⟨ℓ⟩(α) +

Uℓ(α)−
∑

ℓ1+ℓ2=ℓ
ℓ1<ℓ

E⟨ℓ1⟩(α)Hg,ℓ2(α)


= 0 +Wℓ(α)

=Wℓ(α), (19)

where Wℓ(X) is the polynomial of degree at most h+ dM given by:

Wℓ(X) = Uℓ(X)−
∑

ℓ1+ℓ2=ℓ
ℓ1<ℓ

E⟨ℓ1⟩(X)Hg,ℓ2(X).

and we used the fact that r(α) = G(α) for all α ∈ Fq \ S.

So for any α ∈ Fq \ S, we have:

(A · (F − E ·G))[ℓ](α) =
∑

ℓ1+ℓ2=ℓ

A[ℓ1](α) (F − E ·G)[ℓ2] (α)

=
∑

ℓ1+ℓ2=ℓ

A⟨ℓ1⟩(α) ·Wℓ2(α). (20)

We can now write down the linear constraints that we impose on the coefficients of the Ai and the Bi. We
ask that for each ℓ with 0 ≤ ℓ < M , the following equality of polynomials holds:∑

ℓ1+ℓ2=ℓ

A⟨ℓ1⟩(X)Wℓ2(X) = B⟨ℓ⟩(X). (21)

The coefficients of all these polynomials are homogenous linear combinations of the coefficients of the Ai and
the Bi.

The polynomials on the left hand side of the equality are of degree at most

k + (h+ dM) = 3e+ dM.

The polynomials on the right hand side of the equality are of degree at most

k + h+ dM = 3e+ dM.

Thus the total number of Fq-linear constraints imposed by these M equalities is at most:

M · (3e+ dM + 1) = 3eM + dM2 +M < 3eM + 5dM2.

Combining this with Equation (15), we get that there exist A(X), B(X), not both 0, satisfying Equa-
tions (21).

Finally, from Equations (18), (20) and (21), we conclude that Equation (16) holds. This gives us the desired
polynomial identity:

A(X) · (F (X)− E(X)G(X)) = B(X).
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Step 3: Relating the leading coefficients of F , E and G

From the above identity, we have:

deg(A) + deg(F − E ·G) = deg(B).

By choice of A and B, we have:

deg(A) ∈ q · Z+ [0, k] = q · Z+ [0, e+ 4dM ] ⊆ q · Z+

[
0,

1

8
q

)
,

deg(B) ∈ q · Z+ [0, k + h+ dM ] ⊆ q · Z+ [0, 3e+ 5dM) ⊆ q · Z+

[
0,

3

8
q

)
.

Thus

deg(F − E ·G) = deg(B)− deg(A) ∈ q · Z+

(
−1

8
q,

3

8
q

)
.

Now we study deg(F ) and deg(E ·G).

By design, and using the fact that d is odd:

deg(F ) = deg(E ·G) = (c+ d/2)q + h∗ ∈ q · Z+
[q
2
,
q

2
+ 2e

]
⊆ q · Z+

[
1

2
q,

3

4
q

)
.

Now for the crucial point. Since the intervals
(
− 1

8q,
3
8q
)
and

(
1
2q,

3
4q
)
are (comfortably5) disjoint mod q, we

have that deg(F − E ·G) ̸= max(deg(F ), deg(E ·G)).

This means that F and E ·G must have the same leading monomial!

We have F and E in our hands with leading coefficients a, b ̸= 0, and so the leading coefficient of G (which

we know equals a
q/2
d ) must equal a

b .

Thus:

ad = aqd = (a
q/2
d )2 =

(a
b

)2
,

which is as computed by the algorithm.

This shows that Algorithm B correctly returns adX
d whenever ad ̸= 0.

Finally we have to show what happens if ad = 0. We show that there is no h∗ for which the system of linear
equations is solvable (and thus it will return 0 ·Xd, as desired).

If there was a solution F,E found, then deg(F ) − deg(E) = dq/2, and by our Step 2 and Step 3 of our
proof above, F (X) and E(X)G(X) have the same leading monomial. However ad = 0 implies that deg(G) <
dq/2 = deg(F )− deg(E), a contradiction.

This completes the proof of correctness of Algorithm B.

5There is some slack here. The decoding radius can be improved a little bit (but not much) by tuning the choices of c, h in

the algorithm and k, t in the analysis, to 1
2

(
1− 1√

2
− ϵ

)
· q ≈ (0.145− ϵ)q, with slightly more complicated calculations and no

new conceptual ideas. This improved decoding radius equals 1
2
(J(1/2)− ϵ) · q, where J(δ) is the alphabet-free Johnson radius

for codes of relative distance δ.
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4.2 A remark

Recall Step 2 of the proof of correctness of Algorithm B, where we deduced that G was related to F,E via
a relation of the form:

A(X) · (F (X)− E(X) ·G(X)) = B(X),

with A(X), B(X) of a special form.

It turns out that this information already implies that g is uniquely deterimined by F,E. However, we do
not know how to efficiently find g from just F and E. This is why we had to take the longer route of just
getting the leading coefficient of g, and then repeating (which involves solving for a new F,E).

Why do F and E uniquely determine g? Suppose not, and that g1, g2 are distinct polynomials with only
odd degree monomials such that G1 = TR(g1(X)), G2 = TR(g2(X)) both satisfy equations as above:

A1(X)(F (X)− E(X)G1(X)) = B1(X),

A2(X)(F (X)− E(X)G2(X)) = B2(X),

Eliminating F (X), we get:

A1(X)A2(X)E(X)

(
G1(X)−G2(X)

)
+ (B2(X)A1(X)−B1(X)A2(X)) = 0.

This kind of polynomial was explicitly considered by Stepanov, and he showed that it cannot equal 0.

The key point is that G1(X)−G2(X) is a nonzero polynomial with degree in q · Z+ q/2.

This means that the two polynomialsA1(X)A2(X)E(X)·
(
G1(X)−G2(X)

)
andB1(X)A2(X)−B2(X)A1(X)

cannot have equal degrees: the former has degree in the interval [q/2, q/2 + 2k+ h] mod q, while the latter
has degree in the interval [0, 2k + h] mod q, and these are disjoint intervals mod q.

Therefore their sum cannot be zero, and we get a contradiction to the assumption that g was not uniquely
determined.
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5 Theory of Pseudopolynomials

The results of the previous sections made extensive use of high degree polynomials, all of whose derivatives
behaved like low degree polynomials on Fq.

We call these objects pseudopolynomials. In this section, we formally define them and build up some basic
theory. We hope this will be useful for other algebraic and algorithmic problems involving polynomials over
finite fields.

Definition 5.1 (Pseudoderivative). Let A(X) ∈ Fq[X].

Define the ℓ-th pseudoderivative of A, denoted A⟨ℓ⟩(X), to be the unique polynomial of degree at most q − 1

whose evaluations on Fq agree with the evaluations of A[ℓ](X). Explicitly:

A⟨ℓ⟩(X) =
(
A[ℓ](X) mod Λ(X)

)
,

where Λ(X) = Xq −X.

Abusing notation, we will sometimes use A⟨ℓ⟩ to denote the function

A⟨ℓ⟩ : Fq → Fq,

defined by A⟨ℓ⟩(α) = A[ℓ](α).

Definition 5.2 (Pseudodegree). Let A(X) ∈ Fq[X].

We define the pseudodegree of A, denoted pdeg(A) to be:

max
ℓ≥0

deg(A⟨ℓ⟩).

We say A(X) is a k-pseudopolynomial if
pdeg(A) ≤ k.

With this notation in place, we now list an assortment of useful facts about pseudopolynomials.

5.1 Basic Properties

With this notation in place, we now list an assortment of basic properties of pseudopolynomials.

• pdeg(A+B) ≤ max(pdeg(A), pdeg(B)).

• pdeg(A ·B) ≤ pdeg(A) + pdeg(B).

• We have the following algebraic characterization of pseudodegree.

Lemma 5.3. Let A(X) ∈ Fq[X], and let

A(X) =
∑
i≥0

Ai(X)Λi(X),

with each deg(Ai) < q, be the base-Λ(X) expansion of A(X).

Then
pdeg(A) = max

i≥0
deg(Ai).

The proof appears in Appendix A.
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• For polynomials A(X) of moderate degree, the pseudodegree can be approximately expressed in terms
of the standard monomial expansion of A(X).

If A has pseudodegree ≤ k and degree D, then A(X) can be written in the form

⌊D/q⌋∑
i=0

Âi(X)Xiq,

where deg(Âi(X)) ≤ k + ⌊D/q⌋. In the reverse direction, if A(X) can be written in the form

t∑
i=0

Âi(X)Xiq,

with deg(Âi) ≤ k, then A(X) has pseudodegree at most k + t and degree at most tq + k.

For all the applications in this paper, we could have worked with the standard monomial basis with
negligible losses.

• Suppose A(X) ∈ Fq[X] with deg(A) < Mq. Suppose deg(A⟨ℓ⟩) ≤ k for all ℓ with 0 ≤ ℓ < M . Then A
has pseudodegree ≤ k.

That is, to check that A has small pseudodegree, it suffices to check low degreeness of A⟨ℓ⟩ for ℓ up to
⌈deg(A)/q⌉.

This follows from the proof of Lemma 5.3.

5.2 Multiplicities

• Suppose A(X) ∈ Fq[X] has pseudodegree ≤ k and degree at most D. Let H(X) ∈ Fq[X] be irreducible,
and let µ be the highest power of H(X) that divides A(X). Then:

µ mod q ∈
[
0, k +

D

q

]
.

This is Lemma 3.3.

• Suppose A(X) ∈ Fq[X] has pseudodegree ≤ k. Then:

deg(A) mod q ∈ [0, k].

This is immediate from Lemma 5.3.

This is the analogue of the previous fact for the place at infinity.

5.3 The number of high multiplicity zeroes

• For any S ⊆ Fq, and any c, k,M satifying:

|S| < c

M
· k,

there exists a nonzero A(X) ∈ Fq[X] with deg(A) < cq and pdeg(A) < k such that for all α ∈ S,

mult(A,α) ≥M.

This follows from dimension and constraint counting. We saw this in the construction of the error-
locating pseudopolynomials in Step 1 of the proofs of both Theorem 3.1 and Theorem 4.2.
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• In the reverse direction, the next theorem shows that when q is prime, every nonzero A(X) with
deg(A) < cq and pdeg(A) < k has at most 2 c

M k roots of multiplicity at least M . The bound improves
to almost (1 + ϵ) c

M k when c < O(ϵ)M or c > (1−O(ϵ))M .

Theorem 5.4. Let q be prime.

Let A(X) ∈ Fq[X] be a nonzero polynomial with deg(A) < cq and pdeg(A) < k. Let M be such that
c < M < q.

Then:

|{α ∈ Fq | mult(A,α) ≥M}| ≤ min

(
c

M − c+ 1
· k + c, k

)
.

The proof uses an argument of Guruswami and Kopparty [GK16] on ranks of Wronskians, originally
discovered in the context of subspace designs and multiplicity codes.

It seems plausible that there is an upper bound much closer to c
M · k. We do not know whether the

primality of q is needed for such a statement.

• There is a natural error-correcting code here, closely related to multiplicity codes. There are 4 governing
parameters: q,M, c, k.

Let Σ = FM
q . The codewords of this code will lie in ΣFq . For each A(X) ∈ Fq[X] with deg(A) < cq

and pdeg(A) < k, we define the codeword yA : Fq → Σ by:

yA(α) = (A[0](α), A[1](α), . . . , A[M−1](α)).

This code has cardinality |Σ|ck/M , block length q, rate R = c
M · k

q , and minimum distance at least(
1−min

(
k

q
,

c

M − c+ 1
· k
q
+
c

q
,

c

M

))
· q,

which is always at least (1− 2R) · q.

When k = q, this is a multiplicity code, and the distance of the code is (1−R) · q. When c = M this
is an interleaved Reed-Solomon code, and the distance of the code is (1 − R) · q. Maybe the distance
of this code is always (1−R)q?

5.4 Twisted pseudopolynomials

Towards presenting (a mild varation of) Stepanov’s proof of the Weil bound for multiplicative character sums,
we now define twisted pseudopolynomials and demonstrate a clean version of the interpolation argument
that we saw in Section 3.

• Suppose r : Fq → Fq is a function. Let k < q. We say F (X) ∈ Fq[X] is an r-twisted (h,M)-
pseudopolynomial, if for all ℓ < M , there is some Uℓ(X) ∈ Fq[X] of degree at most h such that:

F⟨ℓ⟩ = r · Uℓ.

• The following lemma shows that any two r-twisted (h,M)-pseudopolynomials with degree at most cq
are very closely related, provided h and c are small enough.

Lemma 5.5. Let c, h,M be parameters, with c < M/2. Let r : Fq → Fq.

Suppose F (X), G(X) ∈ Fq[X] with deg(F ), deg(G) < cq are both r-twisted (h,M)-pseudopolynomials.

Suppose

k >
M

M − 2c
· (h+ 1).
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Then there exist nonzero k-pseudopolynomials A(X), B(X), with deg(A), deg(B) < Mq, such that:

A(X) · F (X) = B(X) ·G(X).

Proof. If k ≥ q then the result is trivial, so we may assume that k < q.

Suppose for each ℓ < M , we have:
F⟨ℓ⟩ = r · Uℓ,

G⟨ℓ⟩ = r · Vℓ,

where Uℓ(X), Vℓ(X) ∈ Fq[X] have degrees at most h.

We search for the polynomials A,B of the form:

A(X) =

M−c−1∑
i=0

Ai(X)Λi(X),

B(X) =

M−c−1∑
i=0

Bi(X)Λi(X),

where deg(Ai), deg(Bi) ≤ k.

The number of unknowns is strictly greater than 2 · (M − c) · k.

We now apply homogeneous Fq-linear constraints to these unknowns. These constraints are meant to
express the equality:

(A · F )⟨ℓ⟩ = (B ·G)⟨ℓ⟩,

for each ℓ < M . Both sides of this can be expanded in terms of the pseudoderivatives of A,B, F,G,
the latter two of which can be written in terms of r · Uℓ and r · Vℓ.

All these constraints can be written compactly in the ring Fq[X,T ] as:( ∑
ℓ1<M

A⟨ℓ1⟩(X) · T ℓ1

)
·

( ∑
ℓ2<M

Uℓ2(X) · T ℓ2

)
=

( ∑
ℓ3<M

B⟨ℓ3⟩(X) · T ℓ3

)
·

( ∑
ℓ4<M

Vℓ4(X) · T ℓ4

)
mod TM

There are M equalities of polynomials of degree at most h + k in Fq[X], each having coefficients
being homogenous linear combinations of the coefficients of the Ai and Bi. Thus there are a total of
(h+ k + 1) ·M Fq-linear constraints.

By choice of k, we have:
(h+ k + 1) ·M < 2k · (M − c),

and so this system of equations has a nonzero solution.

Finally, we show that A · F = B ·G. By design of A and B, for each ℓ < M we have:

(A · F −B ·G)⟨ℓ⟩ = 0.

Thus mult(A · F −B ·G,α) ≥M for each α ∈ Fq. On the other hand,

deg(A · F −B ·G) < cq + (M − c)q < Mq.

This means that A · F = B ·G, as desired.
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• The next lemma shows that if we have many r-twisted (h,M)-pseudopolynomials with degree at most
cq with c, h small, then they are nontrivially related. The smallness requirement on c is weaker, but
the deduced relation is also weaker.

Lemma 5.6. Let m, c, h,M be parameters, with c < m−1
m M . Let r : Fq → Fq.

Suppose F1(X), . . . , Fm(X) ∈ Fq[X] with deg(Fi) < cq are all r-twisted (h,M)-pseudopolynomials.

Suppose

k >
M

(m− 1)M −mc
· (h+ 1).

Then there exist k-pseudopolynomials A1(X), . . . , Am(X) with deg(Ai) < Mq and not all zero, such
that: ∑

i

Ai(X)Fi(X) = 0.

The proof is exactly like that of Lemma 5.5, which is the m = 2 case.

• The exact same argument also gives us robust versions.

Lemma 5.7. Let c, h, γ,M be parameters, with c < (1− 2γ)M/2. Let r1, r2 : Fq → Fq, with:

∆(r1, r2) ≤ γq.

Suppose F (X), G(X) ∈ Fq[X] with deg(F ), deg(G) < cq which are r1-twisted and r2-twisted (h,M)-
pseudopolynomials respectively.

Suppose

k >
M

(1− 2γ)M − 2c
· (h+ 1).

Then there exist nonzero k-pseudopolynomials A(X), B(X), with deg(A), deg(B) < Mq, such that:

A(X) · F (X) = B(X) ·G(X).

The only change to the proof is that now we search for A(X) and B(X) of degree less than ((1−γ)M−
c)q, so that the fewer agreements we are given still translate into a polynomial identity.

Lemma 5.8. Let m, c, h, γ,M be parameters, with c < (m−1)−mγ
m M . Let r1, . . . , rm : Fq → Fq, with:

|{α ∈ Fq | ri(α) ̸= rj(α) for some i, j}| ≤ γq.

Suppose F1(X), . . . , Fm(X) ∈ Fq[X] with deg(Fi) < cq are ri-twisted (h,M)-pseudopolynomials.

Suppose

k >
M

(m− 1−mγ)M −mc
· (h+ 1).

Then there exist k-pseudopolynomials A1(X), . . . , Am(X), with deg(Ai) < Mq, not all zero, such that:∑
i

Ai(X)Fi(X) = 0.
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5.5 The Weil bounds

• We can now prove the Weil bound for the quadratic residue character.

Let f(X), g(X) ∈ Fq[X] be distinct monic squarefree polynomials of degree at most d ≤ O(ϵ
√
q). We

will show that

∆(χ ◦ f, χ ◦ g) ≥
(
1

2
− ϵ

)
q.

Set M = 2
ϵd, c = d. Let F (X) = f(X)(q−1)/2+M , G(X) = g(X)(q−1)/2+M .

Then F and G are (χ ◦ f)-twisted and (χ ◦ g)-twisted (dM,M)-pseudopolynomials respectively.

Now set h = dM and γ = 1
2 − ϵ. If ∆(χ ◦ f, χ ◦ g) ≤ γq, then Lemma 5.7 tells us that for:

k =
1

ϵ
· (h+ 1) ≤ O(

d2

ϵ2
) <

q

4
,

there exist nonzero k-pseudopolynomials A(X), B(X), with deg(A), deg(B) < Mq, such that:

A(X) · F (X) = B(X) ·G(X),

Let H(X) be a polynomial that divides one of f(X), g(X) but not the other.

Lemma 3.3 applied to H(X) and the above identity then gives us a contradiction.

• Next we prove the Weil bound for the m-th power residue character χm, for m prime.

Suppose f, g ∈ Fq[X] are of degree at most d ≤ Om(ϵ
√
q), and are distinct, monic, with each irreducible

factor appearing with multiplicity ∈ {1, 2, . . . ,m − 1}. This last condition generalizes squarefreeness
in the case m = 2. We will show that

∆(χm ◦ f, χm ◦ g) ≥
(
1− 1

m
− ϵ

)
q.

Let M = Om(dϵ ), c = Om(d). Let F (X) = f (q−1)/m+M (X), G(X) = g(q−1)/m+M (X).

Let r1, . . . , rm : Fq → Fq be given by:

ri(α) = (χi−1
m ◦ f(α)) · (χm−i

m ◦ g(α)).

Let F1(X), . . . , Fm(X) be given by:

Fi(X) = F i−1(X) ·Gm−i(X).

Then Fi is a ri-twisted (Om(dM),M)-pseudopolynomial.

Now set h = Om(dM) and γ = 1− 1
m − ϵ. If ∆(χm ◦ f, χm ◦ g) ≤ γq, then

|{α ∈ Fq | ri(α) ̸= rj(α) for some i, j}| ≤ γq,

Then the Lemma 5.8 tells us that for:

k =
1

ϵ
· (h+ 1) ≤ O(

d2

ϵ2
) <

q

2m
,

there are k-pseudopolynomials Ai(X), with deg(Ai) < Mq, not all zero, such that:

m∑
i=1

Ai(X) · F i−1(X) ·Gm−i(X) = 0.
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LetH(X) be an irreducible polynomial that appears with distinct factor multiplicity in f(X) and g(X).
Then Lemma 3.3 tells us that all the nonzero terms in the above sum have distinct factor multiplicity
of H(X) (because they are distinct mod q), and thus the sum cannot be 0, a contradiction.

• A similar argument can be given for the Weil bounds for additive character sums over fields of small
characteristic. We just give a sketch.

Let q have characteristic p. Let Tr : Fq → Fq and TR(X) ∈ Fq[X] be the field trace map and trace
polynomial respectively.

Let r : Fq → Fq be a function. We call a polynomial F (X) an r-guided (h,M)-pseudopolynomial if: for
all ℓ < M , there exists Uℓ(X) ∈ Fq[X] with deg(Uℓ) ≤ h, such that whenever α ∈ Fq satisfies r(α) = 0,
we have:

F⟨ℓ⟩(α) = Uℓ(α).

Let f(X) ∈ Fq[X] have degree d ≤ Op(ϵ
√
q) and all monomials having degree relatively prime to p.

We will show there are at most
(

1
p + ϵ

)
q values of α ∈ Fq such that Tr ◦ f(α) = 0. (By linearity, this

gives us a lower bound of
(
1− 1

p − ϵ
)
q on the distance between any two distinct Tr ◦ f and Tr ◦ g of

this form).

Let F (X) = TR ◦ f(X).

Then we have that for all i ∈ [1, p−1], F i(X) is a (Tr◦f)-guided (dM,M)-pseudopolynomial. Further,

deg(F i) = i·deg(f)
p · q < dq, and thus the F i for i ∈ [1, p− 1] have degrees mod q that differ pairwise by

at least q
p .

Suppose Tr ◦ f(α) = 0 for more than ( 1p + ϵ)q values of α ∈ Fq.

Now letA0(X), . . . , Ap−1(X) be unknown polynomials with deg(Ai) <
((

1
p + ϵ

2

)
M − d

)
q and pdeg(Ai) <

O(dMϵ ) < q
4p . By counting constraints, we can ensure that the polynomial:

B(X) =

p−1∑
i=0

Ai(X) · F i(X),

which has degree at most
(

1
p + ϵ

2

)
Mq, vanishes with multiplicityM at all α ∈ Fq where (Tr◦f)(α) = 0.

(We use the (Tr ◦ f)-guidedness of F i here.) This means that the polynomial B(X) equals 0.

The final contradiction come from the fact that the degrees of the different terms in B(X) are distinct
mod q, and hence the sum cannot be 0.

5.6 Alternate analysis of Algorithm A

We now present a slightly different (and possibly more conceptual) analysis of Algorithm A, using some
of the language that we just developed. For the case of zero errors this is perhaps the simplest proof of
correctness.

This analysis can handle a smaller (but still Ω(q)) number of errors. For simplicity of exposition, let we
assume that g(X) does not have any degree 1 irreducible factors – and thus χ ◦ g is only {±1}-valued. We
will also assume that r is only {±1}-valued.

We keep notation from the proof of Theorem 3.1, and pick up at the beginning of Step 2 of the proof.
The F (X) found by the algorithm is an r-twisted (h,M)-pseudopolynomial. We know that G(X) is an
(χ ◦ g)-twisted (O(dM),M)-pseudopolynomial.

36



Then (F ·G)(X) is an (r · (χ ◦ g))-twisted (h+O(dM),M)-pseudopolynomial.

Now observe that the function r · (χ ◦ g) : Fq → Fq is close to the constant 1 function. It evaluates to 1
on at least q − e values of α ∈ Fq. Had it been 1 valued everywhere, (F · G) would have been a genuine
pseudopolynomial.

We can fix it using a high multiplicity error-locator pseudopolynomial, as in Step 1 of the proof. Let c′, h′, be
given by c′ =M/4, h′ = 4e. Then, since c′ ·(h′+1) > eM , we can get a polynomial E′(X) with deg(E′) < c′q
and pdeg(E′) ≤ h′ that vanishes at all points of S with multiplicity M .

Then (E′ · F ·G)(X) has the property that for all ℓ < M :

deg((E′ · F ·G)⟨ℓ⟩(X)) ≤ h′ + h+O(dM).

Furthermore, deg(E′ · F ·G) < c′q + cq + 2d · ((q − 1)/2 +M) < Mq.

By the facts in Section 5.1, this means that (E ·F ·G)(X) is a genuine (h+h′ +O(dM))-pseudopolynomial.
Thus we get the equation:

E′(X) · F (X) ·G(X) = B(X),

where E′(X) is an (h′+O(dM))-pseudopolynomial and B(X) is a (h+h′+O(dM))-pseudopolynomial, and
deg(E′), deg(B) < Mq.

Applying Lemma 3.3 to E′(X) and B(X) to analyze factor multiplicities, we get that all irreducible factors
of (F ·G)(X) have factor multiplicity approximately a multiple of q, as desired.

5.7 Proof of Theorem 5.4

Recall the statement of Theorem 5.4.

Theorem 5.4. Let q be prime.

Let A(X) ∈ Fq[X] be a nonzero polynomial with deg(A) < cq and pdeg(A) < k. Let M be such that
c < M < q.

Then:

|{α ∈ Fq | mult(A,α) ≥M}| ≤ min

(
c

M − c+ 1
· k + c, k

)
.

Proof. First we prove the easier bound:

|{α ∈ Fq | mult(A,α) ≥M}| ≤ k.

Since A is nonzero of degree at < Mq, there exists some ℓ < M and some α0 with A⟨ℓ⟩(α0) = A[ℓ](α0) ̸= 0.
For this ℓ, we have that A⟨ℓ⟩(X) is a nonzero polynomial of degree at most k, and thus there are at most k

values of α where A[ℓ](α) = A⟨ℓ⟩(α) = 0. Thus mult(A,α) > ℓ for at most k values of α ∈ Fq, as desired.

Now we prove the other bound. Write A(X) =
∑c−1

i=0 Ai(X)Xiq, where deg(Ai) ≤ k +M .

Then for ℓ < M ,

A[ℓ](X) =

c−1∑
i=0

A
[ℓ]
i (X)Xiq.

For α ∈ Fq, this lets us get a simple criterion for when mult(A,α) ≥M : namely, if for all ℓ < M ,

c−1∑
i=0

A
[ℓ]
i (α)αi = 0.
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Let R(X) be the M × c matrix, with rows indexed by ℓ ∈ {0, 1, . . . ,M − 1}, and columns indexed by

i ∈ {0, 1, . . . , c− 1}, whose (ℓ, i) entry is A
[ℓ]
i (X).

Let v(X) be the vector (1, X,X2, . . . , Xc−1).

Then mult(A,α) ≥M if and only if:
R(α) · v(α) = 0,

namely, if:
v(α) ∈ ker(R(α)).

We now bound the number of such α. Let W ⊆ Fc
q be the set of all vectors (w0, . . . , wc−1) ∈ Fq with∑

i wiAi(X) = 0. Then for every w ∈W ,
R(X) · w = 0.

Thus for every α ∈ Fq,
W ⊆ ker(R(α)).

Our bound for the number of α ∈ Fq for which v(α) ∈ ker(R(α)) then follows from the following two claims.

Claim 5.9. The number of α ∈ Fq for which ker(R(α)) ̸=W is at most c
M−c+1 · k.

Claim 5.10. The number of α ∈ Fq for which v(α) ∈W is at most c.

The latter claim simply follows from the fact that dim(W ) < c, and that the moment curve in Fc
q does not

intersect any proper subspace in more than c points.

It remains to prove the first claim.

Let I ⊆ {0, 1, . . . , c − 1} be the maximal subset with (Ai(X))i∈I linearly independent over Fq. Then
|I|+ dim(W ) = c, and |I| ≥ 1.

Let S(X) denote the submatrix of R(X) consisting of those columns indexed by I.

Now suppose α is such that the columns of S(α) are linearly independent. We get that rank(R(α)) =
rank(S(α)) = |I|, and thus dim(ker(R(α))) = c− |I| = dim(W ). This means that ker(R(α)) =W .

To finish the proof, we show that there can be at most c
M−c+1 · k values of α for which the columns of S(α)

are linearly dependent. This is simple case of the argument from Theorem 17 of [GK16] (see also [BCDZ25]).

Now we use the primality of q. By the Wronskian criterion for linear independence (see [BD10]), the top
|I|×|I| submatrix of S(X) has nonzero determinant H(X). If α is such that the columns of S(α) are linearly
dependent, then α is a root of multiplicity at leastM−c+1 of H(X). This is because for each ℓ < M−c+1,
H [ℓ](α) is a linear combination of determinants6 of |I| × |I| submatrices of S(α), which are all 0. But H(X)
is a nonzero polynomial of degree at most ck. Thus there can be at most c

M−c+1 · k such α.

This completes the proof of the first claim, and with that, the theorem.

6Here we use the product rule for Hasse derivatives, the multilinearity of the determinant, and the formula for iterated Hasse
derivatives: (F [i])[j](X) =

(i+j
j

)
F [i+j](X).
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A Algebraic characterization of the pseudodegree

We now prove the algebraic characterization of the pseudodegree.

Lemma 5.3. Let A(X) ∈ Fq[X], and let

A(X) =
∑
i≥0

Ai(X)Λi(X),

with each deg(Ai) < q, be the base-Λ(X) expansion of A(X).

Then
pdeg(A) = max

i≥0
deg(Ai).

Proof. Using the product rule for Hasse derivatives:

A[ℓ](X) =
∑
i≥0

(
Ai · Λi

)[ℓ]
(X)

=
∑
i≥0

 ∑
ℓ0,ℓ1,...,ℓi∑

ℓj=ℓ

A
[ℓ0]
i (X) ·

i∏
j=1

Λ[ℓj ](X)



Reducing these terms mod Λ(X), the only terms that survive have all ℓ1, . . . , ℓi ∈ {1, q}, and thus ℓ ≥ i and
ℓ0 ∈ [0, ℓ− i].
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So

A[ℓ](X) mod Λ(X) =

ℓ∑
i=0

 ∑
ℓ1,...,ℓi∈{1,q}

ℓ0=ℓ−(ℓ1+...+ℓi)

A
[ℓ0]
i (X) ·

i∏
j=1

Λ[ℓj ](X)



=

ℓ∑
i=0

ℓ−i∑
ℓ0=0

A
[ℓ0]
i (X) ·

 ∑
ℓ1,...,ℓi∈{1,q}

(ℓ1+...+ℓi)=ℓ−ℓ0

i∏
j=1

Λ[ℓj ](X)


=

ℓ∑
i=0

ℓ−i∑
ℓ0=0

A
[ℓ0]
i (X) · Ci,ℓ,ℓ0,q for some integer Ci,ℓ0,ℓ,q

= (−1)ℓAℓ(X) +

ℓ−1∑
i=0

ℓ−i∑
ℓ0=0

A
[ℓ0]
i (X) · Ci,ℓ,ℓ0,q isolating the i = ℓ, ℓ0 = 0 term (22)

Thus if all the Ai have degree at most k, we get that A[ℓ] mod Λ(X) = A⟨ℓ⟩(X) has degree at most k.

In the reverse direction, the above formula lets us express Aℓ(X) as ±A⟨ℓ⟩(X)+ a linear combination of A
[j]
i ,

with i < ℓ. By induction on ℓ, we get that deg(Aℓ) has degree at most maxi≤ℓ deg(A⟨i⟩).

B m-th power residue character

Let q be a prime power. Let m be a prime dividing (q − 1). Let Γm be the set of m’th roots of 1 in Fq. Let
χm : Fq → {0} ∪ Γm be the (Fq-valued) m-th power residue character given by: χm(α) = α(q−1)/m.

Let g(X) be monic of degree at most d ≤ Om(ϵ
√
q), with each irreducible factor appearing with multiplicity

∈ {1, 2, . . . ,m− 1}.

The following algorithm can efficiently find g(X) given an r : Fq → {0} ∪ Γm with ∆(χ ◦ g, r) being at most
a small enough constant fraction of q. As in the case of m = 2, this decoding radius falls short of the unique
decoding radius, which is about 1

2

(
1− 1

m

)
q.

Algorithm Am:
Parameters: degree d ≤ O( ϵ

m

√
q), error-bound e ≤

(
1
12 − ϵ

)
q.

Input r : Fq → {0} ∪ Γm

1. Set

• M = 16
ϵ dm

• c = M
2

• h = 2 · e.

• D = d ·
(
(q − 1) · m−1

m +M
)
+ cq = (1 +O(ϵ)) · 1

2 ·M · q,

• u = h+ (m− 1)dM = 2e+O(md2

ϵ ).

2. For each ν ∈ {1, 2, . . . ,m− 1}:

• Solve an Fq system of linear equations to find polynomials Fν(X), Uν,0(X), . . . , Uν,M−1(X) ∈
Fq[X], not all zero, with:
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– deg(Fν) ≤ D,

– for each ℓ, deg(Uν,ℓ) ≤ u,

– For all α ∈ Fq, 0 ≤ ℓ < M :

F [ℓ]
ν (α) = rν(α) · Uν,ℓ(α). (23)

3. Factor Fν(X) into irreducible factors:

Fν(X) = λν
∏
j

H
µν,j

j (X),

where the Hj(X) ∈ Fq[X] are distinct and monic irreducible polynomials, and λ ∈ F∗
q .

4. For each j, define µj ∈ {0, 1, . . . ,m− 1} to be the unique number such that for all ν ∈ {1, . . . ,m− 1},
we have:

µν,j −
ν · µj

m
· (q − 1) ∈

(
−
(

1

12
− ϵ

)
q,

(
3

12
− ϵ

)
q

)
mod q.

5. Set
f(X) =

∏
j

H
µj

j (X).

6. Return f(X).

The analysis is very similar to the analysis in Section 3.

Let G(X) = g(q−1)/m+M (X), which is a (χm ◦ g)-twisted (O(dM),M)-pseudopolynomial.

To show that the linear equations have a solution, we first interpolate a high multiplicity error-locator
pseudopolynomial E(X) with deg(E) < cq and pdeg(E) < h. Then we show that taking Fν = E ·Gν yields
a solution to Equations (23).

Next we show that whatever Fν the algorithm finds is related to G. Exactly as in Section 3, we find
polynomials Aν(X), Bν(X) with deg(Aν) <

3
8Mq, deg(Bν) <

7
8Mq, and pdeg(Aν) ≤ e, pdeg(Bν) ≤ 3e +

O(dM) such that:
Aν(X) · Fν(X) = Bν(X) ·Gν(X).

From these equations, we will be able to extract all the irreducible factors of g(X). LetH(X) be an irreducible
polynomial, and let µAν , µFν , µBν , µG, µg be its factor multiplicity in Aν , Fν , Bν , G, g respectively. Then the
above identity gives us:

µAν + µFν = µBν + ν · µg ·
q − 1

m
.

Thus for all ν:

µFν − ν · µg ·
q − 1

m
= µBν − µAν ∈ q · Z+ [−e, 3e+O(dM)] ⊆ q · Z+

(
−
(

1

12
− ϵ

)
q,

(
3

12
− ϵ

)
q

)
.

Thus µg is a solution found in Step 4 of the algorithm. Why is there no other solution? Suppose µ′ ∈
{0, 1, . . . ,m− 1} is distinct from µg and satisfies:

µFν − ν · µ′ · q − 1

m
∈ q · Z+

(
−
(

1

12
− ϵ

)
q,

(
3

12
− ϵ

)
q

)
for all ν. Then subtracting the two equations and setting µ′′ = µ′−µg, we get that for all ν ∈ {1, . . . ,m−1}:

ν · µ′′ · q − 1

m
∈ q · Z+

(
−
(
1

3
− 2ϵ

)
q,

(
1

3
− 2ϵ

)
q

)
.

This is impossible: for any µ′′ ∈ {1, . . . ,m− 1}, there is a ν ∈ {1, . . . ,m− 1} such that µ′′·ν
m ∈ Z+

[
1
3 ,

2
3

]
.
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C Additive characters over fields of small characteristic p

We only give the analogue of the main subroutine, Algorithm B, from Section 4.

Let q = pb with p prime. Let Tr : Fq → Fp be the field trace map.

Let g(X) be a polynomial of degree at most d ≤ Om(ϵ
√
q), with only monomials of degree relatively prime

to m.

The following algorithm can efficiently find the leading coefficient of g(X) given an r : Fq → Fp with
∆(Tr ◦ g, r) being at most a small enough constant fraction of 1

pq. For p = O(1) this is a constant fraction

of q, but for growing p it is far from satisfactory. The distance of the underlying code is about (1− 1
p )q (it

actually grows with p), and there ought to be an efficient unique decoding algorithm to radius half of that.

Algorithm Bp:

Parameters: degree d ≤ Op(ϵ
√
q) (an integer not divisible by p), error-bound e ≤

(
1
4p − ϵ

)
q.

Input r : Fq → Fp

1. Set

• M = 16
ϵ d

• c = 1
2 ·M

• h = 2 · e

• u = h+ dM = 2e+O(d
2

ϵ ).

2. For each h∗ ∈ [0, h]

• Try to solve a system of Fq-linear equations to find polynomials E(X), F (X),
(Uℓ(X))ℓ∈[0,M−1], where:

– F (X) has degree exactly (d/p+ c)q + h∗.

– E(X) has degree exactly cq + h∗, and is of the form:

c∑
i=0

Ei(X)Λi(X),

where deg(Ei) ≤ h.

– each Uℓ(X) has degree at most u.

– For all α ∈ Fq, 0 ≤ ℓ < M :

F [ℓ](α) = r(α) · E[ℓ](α) + Uℓ(α), (24)

3. If no such h∗ exists, return 0 ·Xd.

4. Otherwise take one solution E(X), F (X), with degrees DE , DF respectively.

5. Let a ·XDF , b ·XDE be the leading monomials of F (X), E(X) respectively.

Set ad = (a/b)p.

6. Return adX
d.

The proof of correctness is essentially identical to the proof of Theorem 4.2 in Section 4, and is omitted.
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