
Separating RAM and Multitape Turing Machines with Short
Random Oracles

Lijie Chen∗ Yichuan Wang†

2026-01-04

Abstract

We prove that relative to a random oracle answering O(log n)-bit queries, there
exists a function computable in O(n) time by a random-access machine (RAM) but
requiring n2/polylog(n) time by any multitape Turing machine. This provides strong
evidence that simulating RAMs on multitape Turing machines inherently incurs a nearly
quadratic time overhead, since the random oracle can be heuristically instantiated by a
concrete hash function such as SHA-256.

∗UC Berkeley. lijiechen@berkeley.edu.
†UC Berkeley. yichuan-21@berkeley.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 6 (2026)

1 Introduction
Random-access machines (RAMs) [CR73] and multitape Turing machines represent two fun-

damental models of computation that differ significantly in their memory access capabilities. A
RAM can access any memory location in constant time, allowing it to jump directly to arbitrary
positions in its memory array. In contrast, a multitape Turing machine must move its tape heads
sequentially, requiring linear time to traverse between distant memory locations. Indeed, multitape
Turing machines are the standard definition of computation in complexity theory (see, e.g., [AB09]),
while RAMs are more similar to how modern CPUs operate in practice.

It is well known that RAMs can simulate a T -time multitape Turing machine in O(T) time
(throughout the paper, we make the standard assumption that the word size of a RAM is O(log n)),
whereas the best-known simulation of a RAM on multitape Turing machines runs in T 2 time [CR73].
This naturally raises the following question:1

Can multitape Turing machines simulate T -time RAMs in T 1.99 time?

Additionally, a recent breakthrough by [Wil25] (following the tree-evaluation algorithm of Cook
and Mertz [CM24]) shows that a T -time multitape Turing machine can be simulated by a Õ(

√
T)-

space Turing machine.2 This provides an additional motivation to study the question above—if
the answer is yes, then one can also simulate T -time RAMs in T 1−ϵ space, which is the major open
question left by [Wil25].

1.1 Our Results
In this work, we show a tight separation between RAMs and multitape Turing machines in the

random oracle model.

Theorem 1.1 (Informal version of Theorem 4.3). With high probability over a uniformly random
oracle O : {0, 1}O(logn) → {0, 1}O(logn), there exists a function that is computable in O(n) time by
an O-oracle RAM but requires at least n2/polylog(n) time by an O-oracle multitape Turing machine.

We believe our result provides strong evidence that simulating RAMs on multitape Turing
machines inherently incurs a quadratic time overhead (i.e., the answer to the motivating question
is negative), since the random oracle can be heuristically instantiated by a concrete hash function,
such as SHA-256. This gives a concrete candidate function that separates RAMs and multitape
Turing machines.

An immediate question is whether one can remove the short random oracle and prove the
separation in the plain model (i.e., unconditionally). We note that this might be challenging—
it is known that a nondeterministic multitape Turing machine can simulate T -time deterministic
RAMs in T · polylog(T) time [GS89]. Hence, if one can prove an unconditional separation between
RAMs and multitape Turing machines similar to Theorem 1.1, then one would be able to show
that NTIME[n] ̸⊆ DTIME[n1.99], a significant breakthrough result in complexity theory.3

1We note that the answer is obviously no for sublinear T , since a RAM can implement the O(log n)-time binary
search for finding an element in a sorted input array, while a multitape Turing machine must scan all elements of the
array in linear time. Here we are interested in the setting in which T is at least linear, meaning both models have
time to read the whole input.

2For space, multitape Turing machines and RAMs can simulate each other with only linear overhead [vEB90,
SvEB88]. Therefore, the choice of a particular Turing machine model is not that consequential for space complexity.

3Here, DTIME[T (n)] and NTIME[T (n)] are defined with respect to multitape Turing machines. The best we know
is NTIME[n] ̸⊆ DTIME

[
o
(
n · (log⋆ n)1/4

)]
[PPST83, Wil09].

1

Remark on the locality barrier. [CHO+22, Yao89] show that many complexity results localize
in the sense that they hold for any short oracle. Indeed, Williams’s result [Wil25] also localizes:
DTIME[T] ⊆ SPACE[Õ(

√
T)] holds for any oracle of input length at most

√
T . Our result uncondi-

tionally shows that there is a locality barrier for simulating RAMs on multitape Turing machines
in subquadratic time (if one believes such simulation is indeed possible despite the random oracle
separation).

2 Proof Overview
Below we give an overview of our proof of Theorem 1.1.

2.1 Defining the Hard Function
We first present a function Hard that is computable in linear time on RAMs but requires

quadratic time on multitape Turing machines.
We partition the input string x ∈ {0, 1}10n logn as

x = (x1, x2, . . . , xn), |xi| = 10 log n.

The random oracle O is modeled as a uniformly random function

O : {0, 1}30 logn → [n]3.

Thus, each query of the form (xa, xb, xc) maps to a random triple (a′, b′, c′) ∈ [n]3.
We now define a sequence of indices {(ik,1, ik,2, ik,3)}nk=1 as follows:

• Start with (i1,1, i1,2, i1,3) = (1, 1, 1).

• For each k ∈ {2, 3, . . . , n}, set

(ik,1, ik,2, ik,3) := O(xik−1,1
, xik−1,2

, xik−1,3
).

Finally, define Hard as the first bit of in,1. (Here we encode in,1 as a ⌈log n⌉-bit string.) Note that
Hard indeed depends on O and should have been denoted as HardO; we write Hard for simplicity in
the overview.

This function can be evaluated in O(n log n) = O(|x|) time on a RAM: each oracle query yields
the next indices, and random access allows immediate retrieval of the required array entries.

Intuitively, a multitape Turing machine must perform the queries sequentially. To compute
O(xik−1,1

, xik−1,2
, xik−1,3

), it must first locate the entries (xik−1,1
, xik−1,2

, xik−1,3
). Since the indices

(ik−1,1, ik−1,2, ik−1,3) are only revealed after the previous query, each step forces a fresh search
across (most of) the input, requiring Ω̃(n) time per query. Summed over n steps, this yields an
almost quadratic lower bound. Below we elaborate on these two points separately.

Notation. Let M be a multitape Turing machine that computes Hard. Now we fix an input x of
nearly maximal Kolmogorov complexity (i.e., K(x) ≈ |x|; see Section 3.1 for the definition), and
consider randomness only from the oracle O. We will show that M must spend almost quadratic
time to compute Hard on such x.

2

2.2 Sequential Necessity of Oracle Queries
We first show that, with high probability over the choice of O, M must perform all queries

O(xik−1,1
, xik−1,2

, xik−1,3
), and exactly in the prescribed order.

• No queries can be skipped. Note that the answer depends on (in,1, in,2, in,3) (i.e., it is the
first bit of in,1), and every (ik,1, ik,2, ik,3) is only revealed after queryingO(xik−1,1

, xik−1,2
, xik−1,3

).4

If even one such O(xik−1,1
, xik−1,2

, xik−1,3
) query is skipped (i.e., the machine never queries O

at xik−1,1
, xik−1,2

, xik−1,3
), then we can show that, conditioned on the machine’s computation

history, the machine has no information at all about the subsequent tuples (it,1, it,2, it,3)
(t ≥ k). Therefore, the output of Hard also remains almost uniformly random. In this case,
M succeeds with probability at most 1/2 + o(1).

• Correct order of queries. Similarly, we can argue that the queries O(xik−1,1
, xik−1,2

, xik−1,3
)

must be performed in the prescribed order, with high probability over O. The intuition is
that M is very unlikely to query O(xik,1 , xik,2 , xik,3) before O(xik−1,1

, xik−1,2
, xik−1,3

), since,
as discussed before, ik,1, ik,2, ik,3 can only be revealed by querying O(xik−1,1

, xik−1,2
, xik−1,3

);
without knowing the values ik,1, ik,2, ik,3, the probability that the machine queries this par-
ticular oracle input by chance is small.

2.3 Lower Bounding the Time Gap Between Queries
Following the discussions above, we can from now on assume that M has made all oracle queries

and that they are in the correct order (i.e., we condition on this event, which happens with high
probability over O).

Define stopping times
0 < T1 < T2 < · · · < Tn−1,

where Tk is the step when M makes the query O(xik,1 , xik,2 , xik,3). We note that here T1, . . . , Tn−1

are random variables that depend on O.
The central part of our proof is to show that for each p = 2, 3, . . . , n − 1, the gap Tp − Tp−1

must be large (say, ≥ n) with high probability over O.
We recall that Tp−1 is the timestamp at which M queries

O(xip−1,1 , xip−1,2 , xip−1,3) = (ip,1, ip,2, ip,3),

and Tp is the time when M next queries

O(xip,1 , xip,2 , xip,3).

Fix the computation history Hist up to time Tp−1, and, specifically, Hist does not yet contain the
outcome of the query at time Tp−1,5 and thus the triple (ip,1, ip,2, ip,3) is still completely unknown.

Suppose, toward contradiction, that with high probability Tp − Tp−1 ≤ n. This means that
after learning the triple (ip,1, ip,2, ip,3) at time step Tp−1 + 1, the machine M is able to prepare
the subsequent query (xip,1 , xip,2 , xip,3) in at most n steps. But in n steps, M can only move its
tape heads within distance ≤ n of their previous positions. Hence, the portions of the tapes that

4Ending up with (ik,1, ik,2, ik,3) by chance is unlikely since there are n3 possible triples.
5Precisely, the machine makes the query to O(xip−1,1 , xip−1,2 , xip−1,3) at time Tp−1, and receives the answer at

time Tp−1 + 1.

3

influence this computation have size O(n) and therefore Kolmogorov complexity at most O(n) (note
that there are at most a constant number of tapes in a multitape Turing machine).

Now consider the following procedure: Given the tape contents visible within distance n at
time Tp−1, one can enumerate all possible outcomes of the oracle call O(xip−1,1 , xip−1,2 , xip−1,3) =
(ip,1, ip,2, ip,3) (there are n3 possibilities), simulate M ’s next n steps for each case, and observe the
resulting access pattern. In particular, this process reveals xip,1 , xip,2 , xip,3 (with high probability
over the choice of (ip,1, ip,2, ip,3)). Thus, we obtain a procedure that reconstructs a large fraction of
the xi’s (i ∈ [n], and recall that each |xi| = 10 log n) from only O(n) bits of initial information.

But this contradicts our assumption that x was chosen to have near-maximal Kolmogorov
complexity (≈ 10n log n). Therefore, the assumption that Tp − Tp−1 ≤ n with high probability
must be false. We conclude that, with constant probability, each gap Tp − Tp−1 is at least Ω(n),
establishing the quadratic lower bound.

3 Preliminaries
3.1 Kolmogorov Complexity

For a pair of strings x, y ∈ {0, 1}∗, we define the following encoding of the pair (x, y):

⟨x, y⟩ := 1⌈log |x|⌉0 |x|xy,

whose length is |x|+ |y|+O(log |x|).6
We briefly recall standard definitions from Kolmogorov complexity, following the plain (non-

prefix-free) variant.

Definition 3.1 (Kolmogorov complexity). For any binary string x, the Kolmogorov complexity of
x is

K(x) := min{|⟨M,w⟩| : M is a Turing machine, w ∈ {0, 1}∗, and M(w) = x }.

Here |M | denotes the description length of M in a fixed encoding, and |w| is the length of the input.

Definition 3.2 (Conditional Kolmogorov complexity). For strings x, y, the conditional Kolmogorov
complexity of x given y is

K(x|y) := min{|⟨M,w⟩| : M is a Turing machine, w ∈ {0, 1}∗, and M(⟨w, y⟩) = x}.

Proposition 3.3 (Basic properties).

• For any string x, K(x) ≤ |x|+O(1).

• For any integers n ≥ k > 0,

Pr
x∼{0,1}n

[
K(x) ≤ n− k

]
≤ 2−k+O(1).

Thus, most n-bit strings have complexity at least n−O(1).

• For any integer n > 0,
E

x∼{0,1}n
[K(x)] ≥ n−O(1).

6Any reasonable encoding suffices, as it only changes complexities by an additive O(log(|x|+ |y|)).

4

• For any string y and integers n ≥ k > 0,

Pr
x∼{0,1}n

[
K(x|y) ≤ n− k

]
≤ 2−k+O(1).

• For any string y and integer n > 0,

E
x∼{0,1}n

[K(x|y)] ≥ n−O(1).

• For any x, y, we have K(x|y) ≤ K(x) +O(1).

We also need the following well-known result regarding Kolmogorov complexity.

Theorem 3.4 (Symmetry of Information [ZL70]). For any x, y ∈ {0, 1}∗,∣∣K(xy)−K(x)−K(y|x)
∣∣ ≤ O(log |xy|).

3.2 Oracle Machines
An oracle machine (either a multitape machine or a RAM) has an additional read-write oracle

tape and two special states qquery and qanswer. To make a query to the oracle O, the machine first
writes something to its oracle tape,7 and then enters the query state qquery. Then, at the next time
step, the machine enters the answer state qanswer, with the content of the oracle tape replaced by
O(y), where y is the content of the oracle tape upon entering qquery.

We say the machine makes a query w at time step t if, upon entering the state qquery at time
step t, the content of the oracle tape is w. Crucially, at time t the machine does not know the
answer to the query w —it only receives the answer at time step t+ 1 when it enters qanswer.

4 Separation of RAM and Multitape Turing Machines
In this section, we prove Theorem 1.1.

4.1 The Hard Function
We first define the hard function.

Definition 4.1 (The hard function). Let n, ℓ ∈ Z+ and let O : {0, 1}3ℓ → [n]3 be an oracle. The
function HardOn,ℓ : ({0, 1}ℓ)n → {0, 1} is defined by the following procedure:

Algorithm 1 Definition of HardOn,ℓ
1: Input: x1, x2, . . . , xn with xi ∈ {0, 1}ℓ.
2: Initialize (i1,1, i1,2, i1,3)← (1, 1, 1).
3: for k = 2 to n do
4: (ik,1, ik,2, ik,3)← O(xik−1,1

, xik−1,2
, xik−1,3

).
5: end for
6: Output: The first bit of in,1.

7In this paper, we assume the oracle tape has a fixed length Θ(log n).

5

For brevity, we will often write HardO when n and ℓ are clear from context.
The following proposition follows immediately by running the algorithm in Algorithm 1 on a

RAM.

Proposition 4.2 (Easy for RAMs). There is an oracle RAM computing HardOn, 10 logn in O(|x|)
time.

4.2 Multitape Turing Machine Lower Bound
We are now ready to prove the multitape Turing machine lower bound.

Theorem 4.3 (Formal version of Theorem 1.1). Let M be an oracle multitape Turing machine
running in time n2/(log n)ω(1). For sufficiently large n, we have

Pr
O,x

[
MO(x) = HardOn,10 logn(x)

]
≤ 1/2 + o(1),

where the probability is over a uniformly random oracle O : {0, 1}30 logn → [n]3 and a uniformly
random input x ∼ {0, 1}10n logn.

Proof.
Let timeM := n2/(log n)ω(1) be the upper bound of M ’s running time on x (i.e., the maximum

number of steps that M takes on x before it halts).
We restrict attention to inputs x of (almost) maximal Kolmogorov complexity. Specifically, fix

x ∈ {0, 1}10n logn with
K(x) ≥ 10n log n− log n.

We will show that for such x,

Pr
O

[
MO(x) = HardOn,10 logn(x)

]
≤ 1/2 + o(1). (1)

Since almost all (more precisely, ≥ 1− o(1) fraction of) inputs satisfy the above complexity bound,
the theorem follows directly.

xi-s are pairwise distinct. It is easy to show that if x = x1x2 · · ·xn has Kolmogorov com-
plexity K(x) ≥ 10n log n − log n, then all xi-s (1 ≤ i ≤ n) are pairwise distinct. In fact, if
xp = xq for some p < q, we obtain the following short description of x: encode x into a string
x1 · · ·xq−2xq−1xq+1xq+2 · · ·xn and a tuple (p, q) ∈ [n]2. Since each xi has length 10 log n, we have
K(x) ≤ (n− 1) · 10 log n+ 2 log n+O(log log n) < 10n log n− log n, which leads to contradiction.

Notations. From now on, we only consider a fixed input x and oracle TM M , and we only consider
the randomness over the random oracle O. Now the tuples (i1,1, i1,2, i1,3), · · · , (in,1, in,2, in,3) in the
definition of Hard (Definition 4.1) are random variables that are functions on O.

Let’s define some more random variables:

• For t = 0, 1, · · · , timeM , let Histt be M ’s computation history by time t (including the t-th
step). Specially, if M enters qquery at the t-th step and enters qanswer at the (t + 1)-th step,
then Histt contains the query string y but not the answer O(y), while Histt+1 contains the
answer O(y). Let Hist+∞ be M ’s full computation history.

6

• Define stopping times 0 = T0 < T1 < · · · < Tn−1 as follows: for 1 ≤ k ≤ n− 1, let Tk be the
first time step M queries O(xik,1 , xik,2 , xik,3) after Tk−1. (M enters qquery at the Tk-th step and
enters qanswer at the (Tk +1)-th step. Thus, HistTk

contains the value of (xik,1 , xik,2 , xik,3) but
not the value of O(xik,1 , xik,2 , xik,3), while HistTk+1 contains the value of O(xik,1 , xik,2 , xik,3).)
If M never makes that query, set Tk := +∞.

• For k = 1, 2, · · · , n−1, let Goodk denote the event that M has not queried O(xik,1 , xik,2 , xik,3)
before Tk. It is clear that Goodk is a function on HistTk

, since the value of (xik,1 , xik,2 , xik,3)
is revealed in HistTk

, and HistTk
contains all query histories before Tk. Let Good := Good1 ∧

Good2 ∧ · · · ∧ Goodn−1. (Intuitively, Good captures that M made all queries in the correct
order.)

We remark that all Histt (0 ≤ t ≤ timeM), Hist+∞, Tk (0 ≤ k ≤ n − 1), Goodk (1 ≤ k ≤ n − 1),
Good are random variables that are functions of O (since M and x are fixed).

Our proof is divided into proving the following three claims:

Claim 4.3.1.
Pr
O

[
MO(x) = HardO(x)

∣∣(Tn−1 = +∞) ∧ Good
]
≤ 1/2 + o(1).

Claim 4.3.2.
Pr
O

[¬Good] ≤ o(1).

Claim 4.3.3. For any p = 2, 3, · · · , n− 1, we have

Pr
O

[(Tp − Tp−1 ≤ n) ∧ (Tp−1 < +∞) ∧ Goodp−1] ≤ o(1).

Intuitively, Claims 4.3.1, 4.3.2 state that M cannot compute Hard without making all queries,
and with high probability, M makes queries in order. Claim 4.3.3 is the core claim, showing that
the expected gaps between T0, T1, · · · , Tn−1 are large. We first show why Claims 4.3.1–4.3.3 imply
Theorem 4.3, then we prove Claim 4.3.3 (the core step), and finally we prove Claims 4.3.1, 4.3.2.

Proof of Theorem 4.3 assuming Claims 4.3.1–4.3.3.
By Claim 4.3.1, to prove

Pr
O

[
MO(x) = HardOn,10 logn(x)

]
≤ 1/2 + o(1),

it suffices to show PrO [(Tn−1 = +∞) ∧ Good] ≥ 1 − o(1). By Claim 4.3.2, we then only need to
show PrO [(Tn−1 < +∞) ∧ Good] ≤ o(1).

Note that Claim 4.3.3 gives that for any 2 ≤ p ≤ n− 1, we have

Pr
O

[(Tp − Tp−1 ≤ n) ∧ (Tn−1 < +∞) ∧ Good] ≤ o(1).

Also note that when (Tn−1 < +∞)∧Good holds, we have Tn−1 ≤ n2/(log n)ω(1) from our assumption
on the running time of M , and thus the fraction of p-s (2 ≤ p ≤ n− 1) such that Tp − Tp−1 ≤ n is
at least (1− o(1)). So there exists p∗ ∈ {2, 3, · · · , n− 1} such that

Pr
O

[Tp∗ − Tp∗−1 ≤ n|(Tn−1 < +∞) ∧ Good] ≥ 1− o(1).

Since Claim 4.3.3 shows

Pr
O

[(Tp∗ − Tp∗−1 ≤ n) ∧ (Tn−1 < +∞) ∧ Good] ≤ o(1),

we have PrO [(Tn−1 < +∞) ∧ Good] ≤ o(1).

7

Now, we present the core step, showing that the expected gaps between T0, T1, · · · , Tn−1 are
large.

Proof of Claim 4.3.3.
Denote the head state and the cells on the tapes of M that are within distance ≤ n of the heads

at time Tp−1 by Tape (it also includes the cells close to the corresponding head at the input tape
of M). We have K(Tape) ≤ O(n). We remark that Tape is a random variable that is a function of
O. We also let

Ep−1 := [(Tp−1 < +∞) ∧ Goodp−1]

be the event that we will consider during the proof. It is easy to see that Ep−1 and Tape are
determined by HistTp−1 .

xip,1 can be easily extracted from Tape and O when Tp−Tp−1 ≤ n. Note that if Tp−Tp−1 ≤ n,
then given Tape and O, we can simulate the subsequent steps of M , and at time Tp (which is at
most n steps later), the oracle query tape is xip,1 , xip,2 , xip,3 . Thus, given Tape and O, and also the
description of M and the value of Tp − Tp−1 (which is ≤ n), we can recover xip,1 . Therefore,

Tp − Tp−1 ≤ n =⇒ K(xip,1 |Tape,O) ≤ log n+O(1) ≤ 2 log n. (2)

Bounding the description length of a random xa given Tape and O. Note that ip,1 is
determined by Tape and O. Next, we show that if Tp − Tp−1 ≤ n occurs with high probability,
then the same is true even for a uniformly random index a ∼ [n]. In particular, we show that the
probability that K(xa|Tape,O) is small is at least the probability that K(xip,1 |Tape,O) is small.

Let (a, b, c) ∼ [n]3 be uniformly random and independent of O. We prove that

Pr
O

[
(K(xip,1 |Tape,O) ≤ 2 log n) ∧ Ep−1

]
≤ Pr

O,a,b,c
[(K(xa|Tape,O) ≤ 6 log n) ∧ Ep−1] (3)

To show (3), consider another “punctured” random oracle O′ : {0, 1}30 logn → [n]3 defined as fol-
lows: O′ is identical toO except for the value ofO′(xip−1,1 , xip−1,2 , xip−1,3): we setO′(xip−1,1 , xip−1,2 , xip−1,3) :=
(a, b, c). Note that conditioned on HistTp−1 , if Tp−1 < +∞ and Goodp−1, thenO(xip−1,1 , xip−1,2 , xip−1,3)
has not been queried in HistTp−1 and is distributed uniformly at random. So conditioned on HistTp−1 ,
it holds that the two tuples (xip,1 ,Tape,O) and (xa,Tape,O′) have the same distribution, this fur-
ther implies that K(xip,1 |Tape,O) and K(xa|Tape,O′) have the same distribution. Taking the
expectation over HistTp−1 we get

Pr
O

[
(K(xip,1 |Tape,O) ≤ 2 log n) ∧ Ep−1

]
= Pr

O,a,b,c

[
(K(xa|Tape,O′) ≤ 2 log n) ∧ Ep−1

]
. (4)

Also note that
K(xa|Tape,O) ≤ K(xa|Tape,O′) + 3 log n+ o(log n). (5)

This is because given Tape,O, to compute O′, we only need the value of (a, b, c), which has length
3 log n, and (xip−1,1 , xip−1,2 , xip−1,3), which can be directly retrieved from Tape. Combining Equa-
tions (4) and (5) we get (3).

Now combining Equations (2) and (3), we have

Pr
O

[(Tp − Tp−1 ≤ n) ∧ Ep−1] ≤ Pr
O,a

[(K(xa|Tape,O) ≤ 6 log n) ∧ Ep−1] . (6)

8

Bounding the description length of x given O. Note that for any Tape,O, we have

K(x|Tape,O) ≤
∑
a∈[n]

K(xa|Tape,O) +O(n log log n)

≤ 10n log n− 4 log n · |{a ∈ [n] : K(xa|Tape,O) ≤ 6 log n}|+O(n log log n).

To see the first inequality, given the descriptions of n machines M1, . . . ,Mn such that Ma outputs
xa given Tape,O, we can combine them into a single machine that outputs x = (x1, . . . , xn) given
Tape,O with an additional O(n log log n) bits specifying the lengths of each machine Mi. The
second inequality uses the fact that K(xa|Tape,O) ≤ |xa|+O(1) ≤ 10 log n+O(1).

Also note that since K(Tape) ≤ O(n), we have

K(x|O) ≤ K(x|Tape,O) +O(n)

≤ 10n log n− 4 log n · |{a ∈ [n] : K(xa|Tape,O) ≤ 6 log n}|+O(n log log n). (7)

Below we consider the following quantity:

E
O
[(K(x|O) · I[Ep−1])] .

We give an upper bound using Equations (6) and (7) and a lower bound using Theorem 3.4, and
putting them together proves Claim 4.3.3.

Upper Bounding EO [(K(x|O) · I[Ep−1])] using Equations (6) and (7). In Equation (7),
multiplying both side by I[Ep−1] taking the expectation over O, we get

E
O
[(K(x|O) · I[Ep−1])]

≤ 10n log n · Pr
O

[Ep−1]− 4n log n · Pr
O,a

[(K(xa|Tape,O) ≤ 6 log n) ∧ Ep−1] +O(n log log n).

Combining with Equation (6) (a lower bound of PrO,a [(K(xa|Tape,O) ≤ 6 log n) ∧ Ep−1]), we get

E
O
[(K(x|O) · I[Ep−1])]

≤ 10n log n · Pr
O

[Ep−1]− 4n log n · Pr
O

[(Tp − Tp−1 ≤ n) ∧ Ep−1] +O(n log log n). (8)

Lower Bounding EO [(K(x|O) · I[Ep−1])] using Theorem 3.4 (Symmetry of Information)
By Theorem 3.4 (Symmetry of Information), we have

E
O
[K(x|O) · I[Ep−1]] ≥ E

O
[(K(O|x) + K(x)−K(O)−O(log n)) · I[Ep−1]] .

For each part in the above equation:

• The K(O|x)−K(O) part: Note that K(O|x)−K(O) ≤ O(1), so

E
O
[(K(O|x)−K(O)) · I[Ep−1]] ≥ E

O
[(K(O|x)−K(O))]−O(1).

By Proposition 3.3, we have EO [K(O|x)] ≥ |O| − O(1), and for any O, K(O) ≤ |O| + O(1),
where |O| = n30 · 3 log n is the length of O when encoded as a binary string. So we have

E
O
[(K(O|x)−K(O)) · I[Ep−1]] ≥ −O(1).

9

• The K(x) and −O(log n) parts: From our assumption that x has almost maximal Kol-
mogorov complexity, we have K(x) ≥ 10n log n− log n. So

E
O
[(K(x)−O(log n)) · I[Ep−1]] ≥ (10n log n−O(log n)) · Pr

O
[Ep−1]

So we have
E
O
[K(x|O) · I[Ep−1]] ≥ (10n log n−O(log n)) · Pr

O
[Ep−1]−O(1). (9)

Combining these two bounds about EO [K(x|O) · I[Ep−1]] (Equations (8) and (9)), we have

(10n log n−O(log n)) · Pr
O
[Ep−1]−O(1)

≤ E
O
[K(x|O) · I[Ep−1]]

≤ 10n log n · Pr
O

[Ep−1]− 4n log n · Pr
O

[(Tp − Tp−1 ≤ n) ∧ Ep−1] +O(n log log n),

so
Pr
O

[(Tp − Tp−1 ≤ n) ∧ Ep−1] ≤ o(1).

Finally, we give the missing proofs of Claims 4.3.1, 4.3.2:

Proof of Claim 4.3.1.
Consider any fixed value H∗ of Hist+∞ such that Tn−1 = +∞ and Good holds. (It is easy to see

that whether Tn−1 = +∞ and Good holds is determined by Hist+∞.) We prove that conditioned
on Hist+∞ = H∗, the probability that HardO(x) = 0 is 1/2 ± o(1), and thus, no matter what M
outputs, the probability that MO(x) = HardO(x) is at most 1/2 + o(1).

Let
S := {(a, b, c) : M has queried O(xa, xb, xc) in H∗} .

Since M runs in time timeM = n2/(log n)ω(1), and all xi-s are pairwise distinct, we have |S| ≤
n2/(log n)ω(1).

Since T0 = 0 and Tn−1 = +∞, there must exist 1 ≤ p ≤ n − 1 such that Tp−1 < +∞ and
Tp = +∞. Then M has queried all O(xik,1 , xik,2 , xik,3) for k = 1, 2, · · · , p−1, but has never queried
O(xip,1 , xip,2 , xip,3).

The remaining pointer chasing after p is unlikely to run into a collision. We prove that
with high probability, the remaining pointer chasing procedure that is not queried:

(ip,1, ip,2, ip,3)→ (ip+1,1, ip+1,2, ip+1,3)→ · · · → (in−1,1, in−1,2, in−1,3),

does not go back into S or run into a cycle. More precisely, we use induction to prove that:
For q = p, p + 1, · · · , n − 1, the following holds: conditioned on Hist+∞ = H∗, with probability

≥ (1− (|S|+n)/n3)q−p, all triples (ik,1, ik,2, ik,3) (k = p, p+1, · · · , q) are not in S and are pairwise
distinct.

• The case q = p:
Because Good holds, Tp−1 < +∞, and Tp = +∞, we know that M has never queried
O(xip,1 , xip,2 , xip,3). Therefore, (ip,1, ip,2, ip,3) /∈ S.

10

• The case q > p, assuming that the result holds for q − 1:
Consider conditioning on a fixed sequence of

(ip,1, ip,2, ip,3), (ip+1,1, ip+1,2, ip+1,3), · · · , (iq−1,1, iq−1,2, iq−1,3),

as well as O’s corresponding entries except for the last one,8 such that none of them is in
S and they are pairwise distinct. Then the value of O(xiq−1,1 , xiq−1,2 , xiq−1,3) is uniformly
random. So the probability that (iq,1, iq,2, iq,3) is in S or is equal to one of (ik,1, ik,2, ik,3)
(p ≤ k ≤ q − 1) is ≤ (|S|+ q − p)/n3 ≤ (|S|+ n)/n3.
Also note that the induction hypothesis gives that with probability ≥ (1− (|S|+n)/n3)q−p−1,
all triples (ik,1, ik,2, ik,3) (k = p, p + 1, · · · , q − 1) are not in S and are pairwise distinct.
Therefore, with probability ≥ (1 − (|S| + n)/n3)q−p, all triples (ik,1, ik,2, ik,3) (k = p, p +
1, · · · , q) are not in S and are pairwise distinct.

Therefore, with probability ≥ (1−(|S|+n)/n3)n−p−1, all triples (ik,1, ik,2, ik,3) (k = p, p+1, · · · , n−
1) are not in S and are pairwise distinct.

The distribution of the final (in,1, in,2, in,3). Note that conditioned on Hist+∞ = H∗ and a
fixed sequence of triples (ik,1, ik,2, ik,3) (k = p, p + 1, · · · , n − 1) with the above property, (all
triples (ik,1, ik,2, ik,3) (k = p, p + 1, · · · , n − 1) are not in S and are pairwise distinct,) the value
of (in,1, in,2, in,3) := O(xin−1,1 , xin−1,2 , xin−1,3) is uniformly random, and thus, HardO(x) is equally
likely to be 0 or 1. Also note that

(1− (|S|+ n)/n3)n−p−1 ≥ (1− 1/(n(log n)ω(1)))n ≥ 1− o(1),

hence the probability that HardO(x) = 0 is 1/2± o(1). Therefore,

Pr
O

[
MO(x) = HardO(x)

∣∣Hist+∞ = H∗] ≤ 1/2 + o(1).

Taking the expectation over Hist+∞ we get

Pr
O

[
MO(x) = HardO(x)

∣∣(Tn−1 = +∞) ∧ Good
]
≤ 1/2 + o(1).

Proof of Claim 4.3.2.
If ¬Good, then there exist 1 ≤ k ≤ n − 1 and 1 ≤ t ≤ min{Tk − 1, timeM}, such that Good1 ∧

Good2∧ · · · ∧Goodk−1∧¬Goodk holds, and M queried O(xik,1 , xik,2 , xik,3) at time t. Since Tk is the
first time M queries O(xik,1 , xik,2 , xik,3) after Tk−1, we have t ≤ Tk−1.

Now, consider any fixed k, t and any fixed value H∗ of HistTk−1
such that Good1 ∧Good2 ∧ · · · ∧

Goodk−1 holds. Recall that HistTk−1
does not contain the result of O(xik−1,1

, xik−1,2
, xik−1,3

), and
whether Good1 ∧Good2 ∧ · · · ∧Goodk−1 holds is determined by HistTk−1

. Note that ¬Good holding
with respect to k, t is equivalent to the event that the result of O(xik−1,1

, xik−1,2
, xik−1,3

) exactly
matches M ’s query at time t. Since the result of O(xik−1,1

, xik−1,2
, xik−1,3

) is uniformly random
conditioned on HistTk−1

= H∗, and M ’s query at time t is fixed conditioned on HistTk−1
= H∗, we

have
Pr
O

[
¬Good w.r.t. k, t

∣∣HistTk−1
= H∗] ≤ 1/n3.

Taking the expectation over HistTk−1
and the sum over k, t, where 1 ≤ k ≤ n−1 and 1 ≤ t ≤ timeM ,

we get
Pr
O
[¬Good] ≤ n · timeM · 1/n3 ≤ o(1).

8i.e., O(xip,1 , xip,2 , xip,3),O(xip+1,1 , xip+1,2 , xip+1,3), · · · ,O(xiq−2,1 , xiq−2,2 , xiq−2,3)

11

References
[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-

bridge University Press, 2009.

[CHO+22] Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and
Rahul Santhanam. Beyond natural proofs: Hardness magnification and locality. ACM
Journal of the ACM (JACM), 69(4):1–49, 2022.

[CM24] James Cook and Ian Mertz. Tree evaluation is in space O(log n · log log n). In Bojan
Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th Annual
ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June
24-28, 2024, pages 1268–1278. ACM, 2024.

[CR73] Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines. J.
Comput. Syst. Sci., 7(4):354–375, 1973.

[GS89] Yuri Gurevich and Saharon Shelah. Nearly linear time. In International Symposium on
Logical Foundations of Computer Science, pages 108–118. Springer, 1989.

[PPST83] Wolfgang J. Paul, Nicholas Pippenger, Endre Szemerédi, and William T. Trotter. On
determinism versus non-determinism and related problems (preliminary version). In
24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, USA,
7-9 November 1983, pages 429–438. IEEE Computer Society, 1983.

[SvEB88] Cees Slot and Peter van Emde Boas. The problem of space invariance for sequential
machines. Information and Computation, 77(2):93–122, 1988.

[vEB90] Peter van Emde Boas. Machine models and simulations. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity,
pages 1–66. Elsevier and MIT Press, 1990.

[Wil09] Ryan Williams. Answer to: Super-linear time complexity lower bounds for any natural
problem in NP? MathOverflow, December 2009. Answer posted Dec 16, 2009.

[Wil25] R. Ryan Williams. Simulating time with square-root space. In Michal Koucký and
Nikhil Bansal, editors, Proceedings of the 57th Annual ACM Symposium on Theory of
Computing, STOC 2025, Prague, Czechia, June 23-27, 2025, pages 13–23. ACM, 2025.

[Yao89] Andrew C Yao. Circuits and local computation. In Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pages 186–196, 1989.

[ZL70] Alexander K Zvonkin and Leonid A Levin. The complexity of finite objects and the
algorithmic concepts of randomness and information. UMN (Russian Math. Surveys),
25(6):83–124, 1970.

12
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

