
New Polynomial-Depth Res(+) Lower Bounds

Yaroslav Alekseev∗†1 and Nikita Gaevoy‡1

1Technion – Israel Institute of Technology, Haifa, Israel

Abstract

Res(⊕) is the simplest fragment of AC0[2]-Frege for which no super-polynomial lower bounds
on the size of proofs are known. Bhattacharya and Chattopadhyay [BC25] recently proved lower
bounds of the form exp(Ω̃(Nε)) on the size of Res(⊕) proofs whose depth is upper bounded by
O(N2−ε), where N is the number of variables in the unsatisfiable CNF formula. Their proof
employs the “random walk with restarts” technique, which is unlikely to be used to prove lower
bounds for proofs of depth greater than N2. The next natural step would be to prove a lower
bound for proofs of depth polynomial in the number of variables. In this work, we address this
issue by proposing a new method for proving bounded-depth lower bounds.

We introduce a natural extension of the Bit Pigeon Hole Principle called the Constrained Bit
Pigeon Hole Principle (CBPHP, for short), for which we will prove the following lower bounds:

• Under some natural combinatorial assumption, for any constant k, there is a collection
of instances of CBPHP such that any Res(⊕) proof of CBPHP of depth Nk requires size
exp(NΩ(1)).

• Unconditionally, for any constant k, there is a collection of instances of CBPHP such that
any RevRes(⊕) proof of CBPHP of depth Nk requires size exp(NΩ(1)), where RevRes(⊕)
is the fragment of Res(⊕) defined similarly to RevRes [GHJ+24].

• Unconditionally, for any small enough ε > 0 there is a collection of instances of CBPHP
such that any Res(⊕) proof of CBPHP of depth N2−ε requires size exp(NΩ(ε)).

1 Introduction

Propositional proof systems are used to certify that given CNF formulas are unsatisfiable. Cook
and Rekhow [CR79] showed that NP ̸= coNP implies that for every propositional proof system,
there is a family of hard formulas that require superpolynomial proof sizes. However, we currently
cannot prove superpolynomial proof-size lower bounds for many particular proof systems.

One of the most well-studied proof systems is the Resolution proof system. Given an unsatis-
fiable collection of Boolean disjunctions of literals C1, . . . , Ck, one can always derive ⊥ (the empty
disjunction) with the following derivation rule:

A ∨ x B ∨ ¬x
A ∨B

.

∗Supported by ISF grant 507/24.
†e-mail: tolstreg@gmail.com
‡e-mail: nikgaevoy@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 7 (2026)

This particular rule is called the Resolution rule. Many lower bounds are known for the Resolution
proof system (see, for example, [Urq87, BSW01, ABSRW04]). One way to generalize the Resolution
proof system is to allow the proof system to work with bounded-depth formulas instead of clauses.
This is known as the AC0-Frege proof system. For this proof system, we also know how to prove
lower bounds (see, for example, [Ajt88, H̊a20, HR25, H̊a23]). If we allow formulas to contain
XOR gates, we get the AC0[2]-Frege proof system. Obtaining superpolynomial lower bounds for
AC0[2]-Frege for any unsatisfiable formula in CNF is still wide open.

Resolution over parities (Res(⊕), for short), introduced in [IS14], is a generalization of the
Resolution proof system that operates with disjunctions of XORs instead of disjunctions of literals.
It is easy to see that Res(⊕) is the subsystem of AC0[2]-Frege. So, the superpolynomial Res(⊕)
lower bounds are a stepping stone towards the AC0[2]-Frege lower bounds. Unfortunately, we still
do not have superpolynomial-size lower bounds, even for Res(⊕). Nevertheless, recent progress has
been made for certain fragments of Res(⊕).

Tree-like lower bounds There are plenty of tree-like Res(⊕) lower bounds for particular formu-
las obtained by different techniques: Prover-Delayer games [IS14, IS20, Gry19, GOR24], reductions
from communication complexity [IS14, IS20, IR21, Kra18], reductions from polynomial calculus
degree [GK18]. Chattopadhyay et al. [CMSS23] proved that resolution depth can be lifted to tree-
like Res(⊕) size using stifling gadgets. Independently, Beame and Koroth [BK23] obtained similar
results.

Bounded-depth Res(⊕) lower bounds Inspired by the lower bound for Regular Res(⊕)1

from [EGI24], Alekseev and Itsykson [AI25] proved an exponential lower bound for the Res(⊕)
refutations of depth up to O(N log logN). Their result was subsequently refined to depths up to
O(n log n) (see [EI25]), O(N3/2−ε) (see [BI25]), and O(N2−ε) (see [BC25]). All of these results use
the same key technique: random walk with restarts. The main issue with this technique is that it
seems impossible to prove Res(⊕) superpolynomial size lower bounds for depth greater than N2, as
we explain later. The central goal of this work is to overcome this issue by presenting a technique
that can potentially prove lower bounds for arbitrarily large polynomial depth.

1.1 Our Results

In this paper, we consider a new formula CBPHPN,M
k,f over O(N logN) variables for which we prove

the following conditional polynomial-depth lower bound:

Theorem 1.1. Suppose that Conjecture 1.4 holds for q > 1 and r = k − 2. Then any Res(⊕)

refutation of CBPHPN,M
k,f of size at most 2(log(N))q/2 requires depth d such that

d ≥ Ω
(
N (k−2)·c

)
,

where c > 0 only depends on q.

Conjecture 1.4 will be described in Section 1.2. For more details, see Section 4.

1Regular Res(⊕) is a fragment of depth-n Res(⊕) similar to regular Resolution, which we are not going to define
in this paper.

2

By restricting ourselves to RevRes(⊕), we can get an unconditional lower bound. RevRes(⊕)
is the fragment of Res(⊕), that was first defined in [AG25] and is similar to Reversible Resolution
(see [GHJ+24] for reference). Informally, in this proof system, we make all the derivations on a
blackboard, and every time we apply a derivation rule, we erase the premises from the board and
add the conclusion. Göös et al. [GHJ+24] proved that Reversible Resolution is strictly weaker than
Resolution. Therefore, proving RevRes(⊕) lower bounds might be a potentially easier task than
proving Res(⊕) lower bounds. On the other hand, obtaining lower bounds on this system is also in-
teresting as a potential approach to proving lower bounds on Res(⊕). Alekseev and Gaevoy [AG25]
proved that RevRes(⊕) is equivalent to Res(⊕) ⋏ CatRes(⊕), which means, for example, that su-
perpolynomial RevRes(⊕) lower bounds for Pigeon Hole Principle imply superpolynomial lower
bounds for Res(⊕).

In this paper, we give the first example of a lower bound for RevRes(⊕) which does not imme-
diately follow from a Res(⊕) lower bound. So, this is the first evidence that proving RevRes(⊕)
lower bounds might be technically easier than proving Res(⊕) lower bounds.

Theorem 1.2. Any RevRes(⊕) refutation of CBPHPN,M
k,f of size at most exp

(
N1/(2k+3)

)
requires

depth d such that
d ≥ Ω(Nk−2).

Finally, as a byproduct of the construction of our formula, we can directly apply the random walk
with restarts, without using any of the advanced techniques such as lifting [BCD24, AI25, BC25],
amortized closure [EI25, BC25], or any non-trivial sampling [BC25, BI25], to prove an unconditional
lower almost N2-depth Res(⊕) refutations of CBPHPN,M

k,f .

Theorem 1.3. Any Res(⊕) refutation of CBPHPN,M
k,f of size S requires depth d such that

d ≥ Ω
(
N2 k−2

k+2 / logS
)
.

So, by choosing k, we can get a lower bound of the form Ω
(
N2−ε/ logS

)
for any ε > 0.

1.2 Our Techniques

We showcase the technique of random walk with restarts on the case of lower bounds for the
bounded depth Res(⊕) proof system on the formula BPHP. Informally, the random walk with
restarts works in two phases: random walk and restart. The random walk starts in some vertex
of a proof DAG and, using a random full assignment to all variables, traverses the proof graph
for a certain number of steps. In the case of BPHP, we can afford doing O(

√
N) steps with 0.99

probability of not detecting a collision. If we are given a clause with a width much larger than
the width of the starting clause, the probability that the random walk stops in this clause is small.
Therefore, we can either obtain the lower bound on the proof size or find a clause of small width
that does not contain a collision. In the latter case, we increase the width of the clause by O(logS).
Now, we can do a restart and repeat the process with the start in this clause. Naively, we can do
it for O(

√
N/ logS) iterations and obtain a linear lower bound on the depth of the proof. One can

also improve this process by changing the sampling method after the restart and increasing the
number of iterations to O(N/ logS), obtaining O(N1.5−ε) depth lower bound (see [BI25]).

As one can see, this method has a fundamental limitation. One random walk iteration can only
run for at most N steps because we can simply query all variables. Additionally, one can hope

3

R

p

1

x

1−O
(
x
N

)

(a) BPHPM
N

R

p

1

x

1−O
(

xk+2

Nk−2

)

(b) CBPHPN,M
k,f

Figure 1: Graphs of collision probability p for the new pigeon if R pigeons are already chosen
without collisions.

for only a linear number of restarts. As a result, surpassing an N2-depth lower bound with this
technique appears highly unlikely. Bhattacharya and Chattopadhyay [BC25] achieved such a bound
using a different formula, along with clever sampling strategies at each step and an amortized closure
invariant. Using our formula CBPHPN,M

k,f , we can almost match this lower bound using the most
naive approach that gives only a linear depth lower bound for BPHP. The detailed explanation of
this proof would be given in Section 5. In the following paragraph, we describe our formula and
how it gives us an advantage over BPHP.

New formula The Constrained Bit Pigeon Hole Principle (CBPHPN,M
k,f for short) is the gener-

alization of BPHP. This formula also works with pigeons and holes, but utilizes them in a different
manner.

To better explain our formula, let us first imagine the following scenario: suppose we assigned
values to R pigeons out of N in BPHPM

N without collisions. Now, if we sample the value of any
other pigeon uniformly at random, the probability of the collision would be 1− R

N .

We construct CBPHPN,M
k,f in a way that the probability of collision in the same scenario is

1−O
(

Rk+2

Nk−2

)
, where k > 0 is a constant of our choice (see Figure 1).

In a process where pigeons are assigned to holes one by one, it would require more pigeons to
detect a collision with constant probability in the case of our formula compared to BPHP This
allows us to do a longer random walk on a parity decision DAG (equivalently, a Res(⊕) proof)
without getting a collision. As a result, we can apply the random walk with restarts technique and
almost immediately get the following lower bound for Res(⊕).

To construct such a formula, we take M greater than N , and then, to achieve unsatisfiability,
we pick a random function f : [M]k → [M], and for any k + 1 pigeons out of N with values
p1, . . . , pk, pk+1 we add to our formula a constraint encoding the fact that

f(p1, . . . , pk) ̸= pk+1.

Polynomial-depth lower bounds Our new formula CBPHPN,M
k,f allows us to implement a new

counting technique for proving lower bounds. The new technique is similar in spirit to the previously
known technique of random walk with restarts, but does not share the common process of random
traversal over the decision DAG. Both techniques count the number of “nice” assignments on each
layer of the proof DAG. The random walk with restarts implements it using several iterations of

4

a random walk. In contrast, our technique does it more directly, counting the number of nice
assignments on each layer one by one. This allows us to overcome the limitation of N2 on the
maximal depth for which our technique could be applied. However, it also comes with a drawback:
a single step is harder to perform.

We propose two methods for proving a lower bound on the total number of nice assignments on
each step, where both methods have the same core idea: focus on the number of nice assignments
for each clause of “small” width that remain nice in the next level, and then use either a structure
of the proof (in the case of RevRes(⊕)), or the combinatorial conjecture (in the case of Res(⊕)),
which we believe to be true. In these two methods, the notion of nice assignments differs slightly.
In the case of RevRes(⊕), due to the structure of the proof DAG, we count each assignment the
same number of times it appears in the clauses on this particular layer. But in the case of Res(⊕),
we can not do the same, so we use the conjecture to circumvent this issue. We first describe the
first method used for RevRes(⊕) and then proceed with the Res(⊕) case.

Reversible Resolution over parities Introduced by Alekseev and Gaevoy [AG25], Reversible
resolution over parities (RevRes(⊕), for short) is the following generalization of Reversible Resolu-
tion (see [GHJ+24]), which is also a fragment of Res(⊕):

• Each line of the refutation in RevRes(⊕) is the multiset of affine clauses C1, C2, . . . , Cm, where
an affine clause is a disjunction of affine equations over F2.

• During application of any rule, we replace the clauses from the premises with the clauses from
the conclusion. All other clauses of the current multiset remain unchanged.

• All the derivation rules are reversible in the sense that if we can derive the collection of clauses
{Ai}i∈r from {Bj}j∈q, then we can do the inverse: derive {Bj}j∈q from {Ai}i∈r.

• RevRes(⊕) uses the resolution rule and its inverse, reversible weakening:

A

A ∨ (ℓ = 0) A ∨ (ℓ = 1)

Additionally, we can replace each affine clause A with the semantically equivalent one B.

To prove the lower bound on the number of nice assignments on each layer of RevRes(⊕), we prove
a lower bound on the number of remaining nice assignments for each particular clause on the layer
and then use the structure of our refutation, i.e., the fact that conclusions replace premises, to get
a lower bound for the total number of those assignments. For more details, we refer to Section 4.2.

Conditional lower bound To prove a lower bound on the total number of nice assignments in
Res(⊕), we need to make sure that after we delete a small fraction of nice assignments for each
clause, the total number of nice assignments will not decrease by much. This fact is captured in
the following conjecture:

Conjecture 1.4. Let r and q be some constants greater than 0. Let Φ1, . . . ,Φm be collections of
affine subspaces of Fn

2 of codimention at most (log n)q such that∣∣∣∣∣∣
⋃

j∈[m]

Φj

∣∣∣∣∣∣ ≥ 2n−1.

5

For each i ∈ [m] let Φ′
i be any subset of Φi such that

|Φ′
i| ≥

(
1− 1

nr

)
|Φi|.

Then there is a constant c > 0, depending only on q, such that∣∣∣∣∣∣
⋃

j∈[m]

Φ′
j

∣∣∣∣∣∣ ≥
(
1− 1

nr·c

) ∣∣∣∣∣∣
⋃

j∈[m]

Φj

∣∣∣∣∣∣ .
The reason why we believe this conjecture is true is the following: any naive counterexample

has the structure of a sunflower in the sense that all Φ′
j belong to some core, and Φj \Φ′

j are petals.
Intuitively, it seems like it is impossible to construct such a sunflower using affine subspaces.

Assuming this conjecture, we can prove the superpolynomial lower bound on the size of poly-
nomial depth Res(⊕) refutations for any fixed polynomials. For more details, see Section 4.3. Also,
note that if we assume the conjectures with better parameters, we can achieve an exponential lower
bound for any polynomial depth Res(⊕) refutations.

1.3 Organization of the Paper

In Section 2, we define the framework we work with and provide formal definitions of the proof
systems (via DAGs). In Section 3, we define the formula we work with and prove that we can
sample such a formula. In Section 4, we prove both polynomial-depth lower bounds. Finally, we
give a proof of the almost-quadratic lower bound in Section 5.

2 Preliminaries

Definition 2.1 (Falsified clause search problem). Consider an unsatisfiable CNF-formula φ =
C1∧C2∧· · ·∧Cm. The falsified clause search problem is a problem of finding for a given assignment
σ find a clause Ci that is falsified by σ.

One of the models for solving falsified clause search problem is parity decision DAG, which is
a generalization of the standard model of parity decision tree. This model is also known under the
name of linear branching program (see [GPT22, EGI24]). We define it next.

Definition 2.2 (Parity decision DAG). A parity decision DAG solving falsified clause search
problem for an unsatisfiable formula φ on variables x1, x2, . . . , xn is a DAG on set of vertices
V and set of edges E = Ed ⊔ Ew with the following structure.

• Each vertex v ∈ V is associated with a linear system Lv over F2 on variables xi. We do not
distinguish between different linear systems defining the same linear subspace.

• The DAG has exactly one vertex with in-degree equal to 0, which we call the source. The
linear system corresponding to the source is empty.

• There are two types of edges: decision edges Ed and weakening edges Ew. All decision edges
are mapped into linear equations (which we denote ℓe = be, where be ∈ F2), and the following
conditions hold.

6

– For each directed decision edge v → u, Lu = Lv ∪ {ℓe = be}.
– For each directed weakening edge v → u, Lu is a subsystem of Lv.

• For every vertex v, out-degree of v is at most 2. Moreover,

– If out-degree is 0, then Lv encodes the negation of some clause Ci of φ. We call such
vertex a sink.

– If out-degree is 1, then the only outgoing edge is a weakening edge.

– If out-degree is 2, then both the outgoing edges e1 and e2 are decision edges, and their
corresponding equations are ℓ = b and ℓ = 1− b for some linear form ℓ.

• Except for the source, each vertex may have either exactly one incoming decision edge or any
positive number of incoming weakening edges.

Solving falsified clause search problem with parity decision DAG Using a parity decision
DAG for a formula φ we can solve the falsified clause search problem for φ. To do this, we consider
the given assignment σ and traverse the DAG with the following procedure starting in the source.

• If the out-degree of the current vertex is 1, we need to traverse the only outgoing edge.

• If the out-degree of the current vertex is 2, we take the linear form ℓ associated with two
outgoing decision edges, compute it on our assignment σ and choose the edge, which equation
we satisfy.

• Once we reach a sink (i.e. a vertex of out-degree 0), we stop.

Our process maintains the invariant that σ always satisfies the linear system associated with
the current vertex. Therefore, when our process inevitably ends in a sink, we will find a clause
falsified by σ, which will be our answer.

Equivalence with Res(⊕) Our general goal is to prove lower bounds on the number of vertices
of parity decision DAG with a small diameter (longest path from the source to a sink) for a
particular family of formulas. This problem is equivalent to the problem of finding the lower
bounds for bounded-depth Res(⊕) proof system (see [EGI24], for example). Each Res(⊕) proof
can be equivalently rewritten into a parity decision DAG preserving the following metrics.

• The length of Res(⊕) proof is equivalent to the number of vertices of the parity decision DAG.

• The depth of the proof is equivalent to the diameter (which we also call depth) of the DAG.

• The width of the proof is equivalent to the maximal size of all linear systems Lv associated
with vertices.

Also, we would like to prove lower bounds for bounded depth RevRes(⊕) refutations. Those
refutations could also be effectively associated with the following DAG.

Definition 2.3 (Reversible parity decision DAG). A reversible parity decision DAG for formula φ
is a parity decision DAG with the following two additional properties.

7

• The in-degree of each vertex is at most 2.

• If the in-degree of vertex v is exactly 2, then the pair w1 and w2 of parents of v satisfy
the following property: there exist some linear form ℓ such that Lw1 = Lv ∪ {ℓ = b} and
Lw2 = Lv ∪ {ℓ = 1− b} for some constant b ∈ F2.

The reversible parity decision DAG has the same relation to the RevRes(⊕) proof system as
the parity decision DAG relates to Res(⊕), maintaining the same complexity measures. The formal
definition of RevRes(⊕) can be found in [AG25]. The proof of equivalence between RevRes(⊕) and
reversible parity decision DAG is similar to the proof of equivalence between Res(⊕) proof system
and parity decision DAG [EGI24]. We provide the formal proof in the full version of the paper.

Remark 2.4. If we add a requirement for each vertex to have the in-degree at most 1, we obtain
the parity decision tree, which is equivalent to the tree-like Res(⊕) proof system.

Following the definitions from [EGI24], we define safe linear systems and closure of the linear
systems.

2.1 Safe and Dangerous Sets of Linear Forms

For a set of vectors U from a vector space V we denote by ⟨U⟩ the linear span of U . We consider
the set of propositional variables X = {xi,j | i ∈ [m], j ∈ [ℓ]}. The variables from X are divided
into m blocks by the value of the first index. The variables xi,1, xi,2, . . . , xi,ℓ form the ith block, for
i ∈ [m].

Consider sets of linear forms using variables from X over the field F2. The support of a linear
form f = xi1,j1 + xi2,j2 + · · ·+ xik,jk is the set {i1, i2, . . . , ik} of blocks of variables that appear in f
with non-zero coefficients. We denote the support by supp(f). The support of a set of linear forms
F is the union of the supports of all linear forms in this set. We denote it by supp(F). We say that
a linearly independent set of linear forms F is dangerous if |F | > |supp(F)|. We say that a set of
linear forms F is safe if ⟨F ⟩ does not contain a dangerous set. If F is linearly dependent but ⟨F ⟩
contains a dangerous set, instead of saying that F is dangerous, we say it is not safe.

Every linear form corresponds to a vector of its coefficients indexed by the variables from the
set X. Given a list of linear forms f1, f2, . . . , fk, one may consider their coefficient matrix of size
k × |X| in which the i-th row coincides with the coefficient vector of fi.

Theorem 2.5 ([EGI24]). Let f1, f2, . . . , fk be linearly independent linear forms and let M be their
coefficient matrix. Then, the following conditions are equivalent.

(1) The set of linear forms f1, f2, . . . , fk is safe.

(2) One can choose k blocks and one variable from each of these blocks such that the columns of
M corresponding to the k chosen variables are linearly independent.

2.2 Closure

Let S ⊆ [m] be a set of blocks; for a linear form f we denote by f [\S] a linear form obtained from
f by substituting 0 for all variables with support in S. For a set of linear forms F we will use the
notation F [\S] = {f [\S] | f ∈ F}.

A closure of a set of linear forms F is any inclusion-wise minimal set S ⊆ [m] such that F [\S]
is safe.

8

Lemma 2.6 (Uniqueness [EGI24]). For any F , its closure is unique.

We denote the closure of F by Cl(F).

Lemma 2.7 (Monotonicity [EGI24]). If F1 ⊆ F2, then Cl(F1) ⊆ Cl(F2).

Lemma 2.8 (Span invariance [EGI24]). Cl(F) = Cl(⟨F ⟩).

Lemma 2.9 (Size bound [EGI24]). |Cl(F)| + dim⟨F [\Cl(F)]⟩ ≤ dim⟨F ⟩, and hence |Cl(F)| ≤
dim⟨F ⟩.

We would abuse our notation in the sense that for any system of affine equations L with linear
part F , we define rk(L) := dim⟨F ⟩ and Cl(L) := Cl(F).

3 Constrained Bit Prigeon Hole Principle

We are going to consider the following generalization of BPHP, which we will denote as CBPHPN,M
k,f :

• Let M be the number of holes, N be the number of pigeons. Note that M is not necessarily
less than N in our case. In fact, N would be equal to M1/(k−1)+ε, where k is the constant we
would choose later and ε > 0 is an arbitrary small constant of our choice.

• We want to consider a function f : [M]k → [M] such that for any S ⊆ [M], |S| = N − 1, the
size of the image of Sk under f is equal to M (i.e. f(Sk) = [M]). We will construct this
function at random.

• The formula then would be the following: let M = 2m for some m. The variables would be
xi,j where i ∈ [N] and j ∈ [m]. For any p1, . . . , pk+1 ∈ [N]k such that pi ̸= pj for i ̸= j we
write the following statement as a CNF:

f(xp1 , xp2 , . . . , xpk) ̸= xpk+1

and add it to our formula via conjunction. Also, for any i ̸= j ∈ [N], we add the following
predicate via disjunction, expressed in the CNF:

xi ̸= xj .

Now, we will explain how to write down the statement f(xp1 , xp2 , . . . , xpk) ̸= xpk+1
as CNF

(xi ̸= xj is expressed similarly). Observe that[
f(xp1 , xp2 , . . . , xpk) ̸= xpk+1

]
=

∧
h1, . . . , hk ∈ [M]k

f(h1, . . . , hk) = hk+1

(xp1 ̸= h1∨xp2 ̸= h2∨· · ·∨xpk+1
̸= hk+1),

where each xpi ̸= hi can be expressed bitwise as

xpi,1 ̸= hi,1 ∨ xpi,2 ̸= hi,2 ∨ · · · ∨ xpi,m ̸= hi,m,

where hi,1, hi,2, . . . , hi,m is a bit representation of hi. Note that each expression xpi,j ̸= hi,j is
represented by a single literal.

9

• As we can see, the size of the formula is polynomial in M and N if k is a constant. This CNF
is unsatisfiable for the following reason: let us consider the first N − 1 pigeons. Suppose we
assigned them different values from the set S of size N − 1 (if two values coincide, then we
get a contradiction immediately). Then, no matter which value we assign to the last pigeon,
it clearly belongs to f(Sk) = [M] and thus produces a contradiction to the formula.

3.1 Sampling the Function f

Let ε > 0 be a constant and N ≥ M1/(k−1)+ε. In this section, we show that each of the following
two properties holds with probability greater than 1/2 for a uniformly random f while M is large
enough:

(i) The formula CBPHPN,M
k,f is unsatisfiable.

(ii) Let us consider the smallest relation Symf such that

∀π ∈ Sk+1∀(h1, h2, . . . , hk) ∈ [M]k : π(h1, h2, . . . , hk, f(h1, h2, . . . , hk)) ∈ Symf .

For any collection of values γ1, γ2, . . . , γk ∈ [M] holds

|y : (h1, h2, . . . , hk, y) ∈ Symf | ≤ (logM)k,

Unsatisfiability probability lower bound First, let us denote N0 := N − 1 for simplicity.
Consider any fixed S ⊆ [M], |S| = N0. We want to analyze the probability that |f(Sk)| = M and
use the union bound over all possible S.

This probability is the same as the following one: let X1, X2, . . . , XNk
0

be i.i.d. variables

distributed uniformly over [M]. We want to prove an upper bound on the probability that
|{X1, X2, . . . , XNk

0
}| ≤ M − 1. We know that

E
[∣∣∣{X1, X2, . . . , XNk

0
}
∣∣∣] = M ·

(
1− (1− 1/M)N

k
0

)
≥ M ·

(
1− e−Nk

0 /M
)
.

Let us denote N0 := Mα. By Markov’s inequality, we get that

Pr
[∣∣∣{X1, X2, . . . , XNk

0
}
∣∣∣ ≤ M − 1

]
≤ M · exp

(
−Mk·α−1

)
.

Now, the number of different S is equal to
(
M
Mα

)
≤ elogM ·Mα

. So, altogether we want to find α such
that

M · exp
(
−Mk·α−1

)
· exp(logM ·Mα) ≤ exp

(
logM + logM ·Mα −Mk·α−1

)
< 1/2.

So, if we take α > 1/(k − 1), we would get the desired bound.

Symmetrization of f and size of the image Symf consists of permutations of all the possible
inputs together with the output of the function on these inputs. We want to show that with high
probability for the random function f : [M]k → [M] and for all x1, x2, . . . , xk ∈ [M]k we can prove
an uniform upper bound on number of y’s such that (x1, x2, . . . , xk, y) ∈ Symf . This again can be

10

done with a union bound. Let us fix x1, x2, . . . , xk ∈ [M]k and the position of the variable y. Let
us estimate the probability that for at least t different y’s holds

f(x1, . . . , xi, y, xi+1, . . . , xk−1) = xk.

This probability is equal to the probability that the sum of i.i.d. Bernoulli distributions X1, . . . , XM

is at most t, where Xi = 0 with probability 1 − 1/M and Xi = 1 with probability 1/M . This
probability is at most e−t by Multiplicative Chernoff’s inequality (for t > 7). So, if we take
t = (logM)k, then probability that for all x1, x2, . . . , xk ∈ [M]k the number of y’s such that
(x1, x2, . . . , xk, y) ∈ Symf is at most t can by lower bounded by

1−Mk · k! · e−t/k! > 1/2.

This means that we can find a function f : [M]k → [M] for which our formula is unsatisfiable, and
at the same time for all x1, x2, . . . , xk ∈ [M]k the number of y’s such that (x1, x2, . . . , xk, y) ∈ Symf

is at most (logM)k.

4 poly(n)-Depth Lower Bounds for CBPHPN,M
k,f .

For the rest of this section, we will fix the parameter k. For each N we will take M = Nk−1−ε,
where ε > 0 is a constant of our choice (we can take an arbitrarily small one). We consider a large
enough N such that there exists a function f : [M]k → [M] satisfying properties (i) and (ii) from
Section 3.1. We want to prove the following theorem first, and then explain how to modify it to
get a conditional polynomial-depth Res(⊕) lower bound.

Theorem 4.1. Any RevRes(⊕) refutation of CBPHPN,M
k,f of size S requires depth d such that

d ≥ Ω

(
Nk−1−ε(

logS + (logN)O(1)
)2k+2

)
.

In particular, if S ≤ exp
(
N1/(2k+3)

)
, then d ≥ Ω(Nk−2).

Moreover, we propose the following combinatorial conjecture, which implies the polynomial-
depth Res(⊕) lower bound.

Conjecture 4.2. Let r and q be some constants greater than 0. Let Φ1, . . . ,Φm be the collection
of affine subspaces of Fn

2 of codimention at most (log n)q such that∣∣∣∣∣∣
⋃

j∈[m]

Φj

∣∣∣∣∣∣ ≥ 2n−1.

For each i ∈ [m] let Φ′
i be any subset of Φi such that

|Φ′
i| ≥

(
1− 1

nr

)
|Φi|.

Then there is a constant c(q) > 0 depending only on q such that∣∣∣∣∣∣
⋃

j∈[m]

Φ′
j

∣∣∣∣∣∣ ≥
(
1− 1

nr·c

) ∣∣∣∣∣∣
⋃

j∈[m]

Φj

∣∣∣∣∣∣ .
11

Theorem 4.3. Suppose that Conjecture 4.2 holds for q > 1 and r = k − 2 with some parameter
c(q) > 0. Then any Res(⊕) refutation of CBPHPN,M

k,f of size at most 2(log(N))q/2 requires depth d
such that

d ≥ Ω

((
Nk−1−ε

(logN)2kq+O(1)

)c)
.

where c only depends on q.

Note 4.4. If we assume the conjecture for any constant q, it will imply a tradeoff between super-
polynomial size and polynomial depth.

Before proving those theorems, we want to define the key concept we will be working with and
explain the high-level idea behind the proofs.

4.1 Subsets of “Nice” Assignments and Main Tool

Definition 4.5 (Nice substitutions). Let L be a system of linear equations over the variables of
CBPHPN,M

k,f . Let γ ∈ {0, 1}N×logM be a substitution into those variables that satisfies L. We abuse
the notation and denote by γi ∈ [M] the value of the pigeon with index i ∈ [N].

We would say that γ is nice if it does not have any collisions on the pigeons from Cl(L).
Formally, this means that γp1 ̸= γp2 for any pigeons p1 ̸= p2 ∈ Cl(L) and f(γp1 , . . . , γpk) ̸= γpk+1

for any distinct p1, . . . , pk+1 ∈ Cl(L).

High-level proofs’ idea We divide the parity decision DAG into layers. To do it, we compute
for each vertex the length of the longest path with a start in the source that ends in this vertex.
As the contents of the layer t, we define all vertices that are sinks from previous levels or have the
computed distance of at least t and a parent with the computed distance of at most t. In other
words, we split all vertices into levels by the maximal distance from the source, move all sinks to
the last level, and then define layers as the contents of a level and the ends of all edges that pass
through this level.

• Consider each layer of the decision DAG for RevRes(⊕) (or Res(⊕)). On the top layer,
we have a system L0 = ∅. Let K1 be the number of nice assignments for L0. Since any
substitution is nice for L0, this number is MN .

• We define Ki differently depending on the lower bound we are currently proving

– In the case of RevRes(⊕), let Ki be the sum of the numbers of nice assignments for each
of the systems on layer i.

– In the case of Res(⊕), let Ki be the total number of assignments that are nice for at
least one system L on layer i.

The difference between the two metrics is motivated by the fact that the number of vertices
associated with equivalent linear systems plays a crucial role for reversible parity decision
DAG (similarly, using duplicate clauses is crucial for RevRes(⊕) proofs). In contrast, in the
non-reversible case, all such vertices can be combined into one in a single step using weakening
edges.

12

We show that we can choose the parameter δ(k) growing to the ∞ with growth of k, if the
size of the RevRes(⊕) (or Res(⊕)) refutation is bounded by some S, then

Ki+1 ≥ Ki ·

(
1−

(
poly logS

N

)δ
)

if Ki > 1/2 ·MN . In the case of Res(⊕), this lower bound would be conditional.

• Since for the bottom layer d we know that Kd = 0, we get that

d ≥ Ω

(
N

poly logS

)δ

.

Before proving the main result, we would need the following lemma, which we will use in both
RevRes(⊕) and Res(⊕) lower bounds.

Lemma 4.6. Let w be a parameter less than N . Let L be a linear form of rank at most w and let
Φ be the collection of nice assignments in L. Let P be any set of pigeons such that |P | ≤ w and
Cl(L) ⊆ P . Let Φ′ be the subset of the assignments Φ that do not have any collisions on P . Then

|Φ′| ≥ |Φ| ·

(
1− (3w)k+1 · (logN)O(1)

Nk−1−ε

)
.

Proof of Lemma. Consider any partial assignment ρ on Cl(L) such that ρ can be extended to a
satisfying assignment of L. Let Φ′

ρ and Φρ be the full assignments from Φ′ and Φ, which are
consistent with ρ. We will show that

|Φ′
ρ| ≥ |Φρ| ·

(
1− (3w)k+1 · (logN)O(1)

Nk−1−ε

)
.

This inequality implies the initial one, since the sets Φρ do not intersect for different values of ρ.
Let Lρ be a substitution of ρ into L. We know that Lρ is safe and satisfiable. Let w0 = rk(Lρ) ≤

w. Consider a uniform distribution over Φρ. Not that Φρ is simply the set of all solutions of Lρ.
We can uniformly sample Φρ with the following procedure:

• Choose at most one variable in a block such that our system Lρ can be represented in the
following way:

xp1,j1 = ℓ1, xp2,j2 = ℓ2, . . . , xpw0 ,jw0
= ℓw0 ,

where each of ℓr does not contain variables from {xpz ,jz}z∈[w0] and all pi are distinct. This is
possible since Lρ is safe.

• Sample values for the Boolean variables corresponding to the pigeons from [N] \ Cl(L) ex-
cluding {xpz ,jz}z∈[w0] independently and uniformly at random.

• Assign the values for the variables from {xpz ,jz}z∈[w0] according to Lρ.

13

Now, we show that with a high enough probability, even after the second stage of this sampling,
we will get a partial assignment such that no matter how we assign the values for {xpz ,jz}z∈[w0], we
would not get a collision on pigeons from P . Indeed, on the second step, we uniformly independently
sample the pairs of values for each pigeon from P \ Cl(L) (the pair of the values is connected via
the value of xpz ,jz). Let us sample these pairs one by one |P \ Cl(L)| times and upper bound the
probability that the next pair contains a value that can produce a collision.

Let Q be the values of pigeons from ρ, and H be the union of all chosen pairs so far. The
probability that one of the elements from the next pair forms a collision with Q ∪H is at most

(|Q|+ |H|)k · (logN)O(1)

M/2
.

Indeed, there are at most
(|Q|+|H|

k

)
≤ (|Q|+ |H|)k choices of k values h1, . . . , hk among Q ∪H and

by the choice of f we know that

|y : (h1, h2, . . . , hk, y) ∈ Symf | ≤ (logN)O(1),

where Symf is the relation constructed by symmetrization of f . Now, since we know that |Q| ≤ w
and |H| ≤ 2w and since we repeat this process |P \ Cl(L)| ≤ w times, we can bound the collision
probability as

(3w)k+1 · (logN)O(1)

M/2
.

So, since M = Nk−1−ε, we get the desired bound

|Φ′
ρ| ≥ |Φρ| ·

(
1− (3w)k+1 · (logN)O(1)

Nk−1−ε

)
.

4.2 Proof of Theorem 4.1

Suppose that Ki ≥ 1/2. We want to prove a lower bound on Ki+1, so we consider what happens
with each system of linear equations L on the layer i+ 1.

• On the layer i + 1, system L stays the same. Then the amount of nice assignments for this
system does not change.

• On the layer i+1, system L0 = L∪ (ℓ = 0) is merged with some system L1 = L∪ (ℓ = 1) into
system L. Then L contains all the nice assignments from both L0 and L1, and those sets do
not intersect. This means that the number of nice assignments cannot decrease for this pair
of systems.

• On the layer i + 1, system L is splitted into L0 = L ∪ (ℓ = 0) and L1 = L ∪ (ℓ = 1).
Let P = Cl(L0) = Cl(L1) and ΦL be nice assignments for L. Let Φ′

L be the subset of the
assignments ΦL such that all the assignments from Φ′

L do not have any collisions on P . We
know that |Φ′

L| is equal to the number of nice substitutions in L0 and L1.

Lemma 4.6 implies that

|Φ′
L| ≥ |ΦL| ·

(
1− (3w)k+1 · (logN)O(1)

Nk−1−ε

)
,

where w is the rank of L. Now, we have two subcases here:

14

i If w ≤
(
logS + (logN)O(1)

)2
, then the decrease in the number of nice assignments is at

most (logS+(logN)O(1))2k+2

Nk−1−ε for this particular linear system.

ii If w >
(
logS + (logN)O(1)

)2
, then |ΦL| < MN

2w ≤ MN

(SNk)2
. Since we have at most S

different systems in our refutation and |Ki|/MN ≥ 1/2, all such clauses would only give
us a 1/(SN2k) decrease in the total size.

Altogether, if Ki >
MN

2 we get that

Ki+1 ≥ Ki ·

(
1−

(
logS + (logN)O(1)

)2k+2

Nk−1−ε

)
.

Since K1 = MN and Kd = 0, this means that the total number of layers d should be at least

Ω

(
Nk−1−ε(

logS + (logN)O(1)
)2k+2

)
.

In particular, if S ≤ exp
(
N1/(2k+3)

)
, then d ≥ Ω(Nk−2).

4.3 Proof of Theorem 4.3

Suppose S ≤ 2(logN)q/2 . Let L1, L2, . . . , Lg be the collection of linear systems on layer i. For each

j ∈ [g] let Φj be the collection of nice assignments for Lj . So, the Ki =
∣∣∣⋃j∈[g]Φj

∣∣∣. We assume

that Ki ≥ MN

2 . Note that Φj is not necessarily an affine subspace of FN ·logM
2 . However, for each

j ∈ [g], we can split Φj into the disjoint union of affine subspaces Φρ
j of codimension at most rk(Lj)

where each ρ is the assignment of the variables from Cl(Lj) that does not have any collisions and
Φρ
j is the subset of the assignments from Φj which are consistent with ρ.
First, observe that the union of the subspaces Φj corresponding to the systems Lj with rk(Lj) >

(logS + logN)2 have size at most S · MN

2(log S+logN)2
≤ Ki/N

2k. This means that the union of these

subspaces cannot contain more than Ki/N
2k nice assignments.

Now, let L1, L2, . . . , Lg be the systems with rank at most (logS+logN)2. We want to estimate
the number of nice substitutions that are nice for one of the systems Lj , but are not nice in the
layer i + 1. Let K ′

i = |
⋃

j∈[g]Φj |. For each Lj that is splited by the decision edges on the affine

form ℓj and an assignment ρ on Cl(L), that does not contain collisions, let Ψρ
j be the collection of

full assignments from Φρ
j which do not have any collisions on Lj ∪ {ℓj = β}. For any other Lj , we

know that all the nice substitutions for Lj would also be nice on layer i + 1 for some system. So,

for those systems, we define Ψρ
j = Φρ

j . Let K
′
i+1 =

∣∣∣⋃j∈[g],ρΨ
ρ
j

∣∣∣.
Then, we know that

Ki+1 −Ki ≤ K ′
i+1 −K ′

i +
Ki

N2k
.

So, we want to estimate K ′
i+1 −K ′

i. For j ∈ [g], by Lemma 4.6 and S ≤ 2(logN)q/2 we get that

|Ψρ
j | ≥ |Φρ

j | ·

(
1− (logN)2kq+O(1)

Nk−1−ε

)
.

15

So, if we assume the Conjecture 4.2, we get that∣∣∣∣∣∣
⋃

j∈[g],ρ

Ψρ
j

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
⋃

j∈[g],ρ

Φρ
j

∣∣∣∣∣∣ ·
(
1−

(
(logN)2kq+O(1)

Nk−1−ε

)c)

for some parameter c(q) from Conjecture 4.2 such that 0 < c(q) ≤ 1. So, in total, we get that

Ki+1 −Ki ≤

(
(logN)2kq+O(1)

Nk−1−ε

)c

·Ki +
Ki

N2k
≤ 2

(
(logN)2kq+O(1)

Nk−1−ε

)c

·Ki.

So, the refutation in Res(⊕) should contain at least d layers, where

d ≥ Ω

((
Nk−1−ε

(logN)2kq+O(1)

)c)
.

5 Almost n2-Depth Lower Bound

For the purposes of this section, we need to introduce one more metric for linear systems.

Definition 5.1 (Safe rank). The safe rank of an affine system L (srk(L)) is the sum of the size of
the closure of A and the rank of the remaining safe system. Formally, if we pick any solution σ of
A and consider partial assignment π = σ|Cl(L), then

srk(L) = |Cl(L)|+ rk(L|π).

By Lemma 2.9 we know that srk(L) ≤ rk(L). It is important to note that the safe rank of
linear systems is not a monotone metric, in the sense that adding linear equations to a system may
decrease its safe rank.

Random walk with restarts To prove an almost n2-depth lower bound for Res(⊕), we want
to do a random walk with restarts. The random walk with restarts works by repeating two phases.

The first phase is the random walk. We start in a system L with a small (less than O(N
k−2
k+2)) safe

rank and traverse the DAG randomly and consistently with L and some assignment to Cl(L). We

show that if we make O(N
k−2
k+2) steps of the random walk, we do not find a collision and thus do

not end up in a sink with high probability.
Then, we can run the second phase: restart. Among the vertices reached by the random walk,

we can find a vertex z associated with a linear system that could be strengthened to a system L′

with srk(L′) ≤ srk(L) +O(logS). Now we can take the vertex z and consider the subgraph of the
decision parity DAG that has a source at z, induced on the vertices reachable from z. Then we
add some linear equations for all vertices in this subgraph to make Lz equal to L′, which allows us
to repeat our process from the first phase, starting at vertex z. Note that this operation does not
increase the size or depth of the graph.

One iteration of our process increases the safe rank of the system by at most O(logS), which

means that we can repeat it Ω
(
N

k−2
k+2 / logS

)
times. Hence, we obtain the lower bound on the

depth of Ω
(
N2 k−2

k+2 / logS
)
.

Formally, we prove the following theorem.

16

Theorem 5.2. Any Res(⊕) refutation of CBPHPN,M
k,f of size S requires depth d such that

d ≥ Ω
(
N2 k−2

k+2 / logS
)
.

To prove this theorem, we need the following lemma.

Lemma 5.3. Let w ≤ N
k−2
k+2 . Let L be a system of linear equations such that the following holds:

• There is a solution π of this system, such that partial assignment π0 = π|Cl(L) does not contain
any collisions.

• srk(L) = |Cl(L)|+ rk(L|π0) ≤ w.

Consider any parity decision tree T of depth w. Let σ be a uniformly random full assignment of
variables of CBPHPN,M

k,f , consistent with π0 and satisfying L. Let Lσ be a system in the leaf of T
corresponding to the assignment σ. Then for a large enough N

Pr
[
there is a collision at σ|Cl(L∪Lσ)

]
≤ δ

for some fixed constant δ > 0.

Proof. We would need the following lemma from [AI25].

Lemma 5.4 ([AI25]). Consider a binary tree with root r and a set of leaves L. We associate every
node v except the leaves with a number pv ̸= 0. For every node v of the tree, there is a number nv

such that if u and w are children of v, then nvpv = (nu + nw). Let for every leaf l the unique path
from the root to l be denoted πl = (s1 = r, s2, . . . , st = l); let us denote p(πl) =

∏t−1
i=1 psi. Then

nr =
∑

l∈L nl
1

p(πl)
.

For each v, let nv be the total number of full assignments σ which are nice for L ∪ Lv (see
Section 4.1). Then, for each vertex of the tree v, the probability pv is equal to the following:

pv = Pr[σ do not have a collision on Cl(L ∪ Lu)|σ is nice for L ∪ Lv],

where u is any of the children of v. So, for each path πℓ we want to prove an lower bound on∏w−1
i=1 psi . This can be done by Lemma 4.6. More precisely, for each i ∈ [w] let ci = |Cl(L ∪ Lsi)|.

Then, since rk(L ∪ Lsi) ≤ w · logM , by Lemma 4.6 we get that for large enough N

psi ≥ 1− (3ci+1)
k+1 · (logN)O(1)

Nk−1−ε
≥ 1− (3N

k−2
k+2)k+1 · (logN)O(1)

Nk−1−ε
≥

1− Nk−2

Nk−1−ε
= 1−N−(1−ε).

So, for
∏t−1

i=1 psi we get the following lower bound:

w−1∏
i=1

psi ≥
(
1−N−(1−ε)

)w
≥ 1− w ·N−(1−ε) ≥ 1−N

k−2
k+2

+ε−1 ≥ 1/2

for large enough N while ε is a small enough constant.

17

Proof of Theorem 5.2. Consider an iteration of the random walk procedure. We start at a vertex

associated with a system L with srk(L) ≤ N
k−2
k+2 which admits a nice partial solution π0. Now we

can choose the random assignment σ consistent with π0 and L and traverse our DAG according to

σ for N
k−2
k+2 steps. This random walk succeeds with at least constant probability due to Lemma 5.3

and the fact that we can transform a parity decision DAG into a parity decision tree by duplicating
vertices. Among the vertices where our random walk may stop, we want to choose a vertex z such
that

• Lz admits a nice solution σ, consistent with π0 and L.

• rk(Lz|π0) ≤ rk(L|π0) +O(logS).

Such a vertex z exists since we have at most S different systems in the leaves of our random walk,
and for any system Lw in the leaf of our random walk, probability that σ end up in Lw is at most
2rk(L|π0)−rk(Lw|π0).

Now, let π1 be a restriction on Cl(Lz|π0) of the nice solution σ of Lz. We want to prove that
L′ = Lz ∪ π0 ∪ π1

2 satisfies the following properties:

• L′
π0∪π1

is safe since (Lz|π0)|π1 is safe.

• Since π0 and π1 are full assignments of the corresponding blocks, Cl(L′) = Vars(π0 ∪ π1).

Lemma 2.9 allows us to write the following inequality:

srk(L′) = |π0|+ |π1|+ rk(Lz|π0∪π1) =

|Cl(L)|+ |Cl(Lz|π0)|+ rk(Lz|π0∪π1) ≤ |Cl(L)|+ rk(Lz|π0) ≤
|Cl(L)|+ rk(L|π0) +O(logS).

So, we can do another iteration of our random walk, starting with a clause L′. We can repeat the

process for Ω(N
k−2
k+2 / logS) times, after which reach a vertex on the depth

Ω
(
N2 k−2

k+2 / logS
)
.

Acknowledgements

We want to thank Yuval Filmus for the fruitful discussions.

References

[ABSRW04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson.
Pseudorandom generators in propositional proof complexity. SIAM Journal on Com-
puting, 34(1):67–88, 2004.

[AG25] Yaroslav Alekseev and Nikita Gaevoy. Intersection theorems: A potential approach to
proof complexity lower bounds. Electron. Colloquium Comput. Complex., TR25-160,
2025.

2Here we view πi as a system of equations xi,j = γi,j , where γi,j ∈ {0, 1}

18

[AI25] Yaroslav Alekseev and Dmitry Itsykson. Lifting to bounded-depth and regular reso-
lutions over parities via games. In Proceedings of the 57th Annual ACM Symposium
on Theory of Computing, STOC ’25, page 584–595, New York, NY, USA, 2025. As-
sociation for Computing Machinery.

[Ajt88] Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14:417–433,
1988.

[BC25] Sreejata Bhattacharya and Arkadev Chattopadhyay. Exponential lower bounds on
the size of reslin proofs of nearly quadratic depth. Electron. Colloquium Comput.
Complex., TR25-106, 2025.

[BCD24] Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvorák. Expo-
nential separation between powers of regular and general resolution over parities. In
Rahul Santhanam, editor, 39th Computational Complexity Conference, CCC 2024,
July 22-25, 2024, Ann Arbor, MI, USA, volume 300 of LIPIcs, pages 23:1–23:32.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[BI25] Farzan Byramji and Russell Impagliazzo. Lower bounds for the bit pigeonhole principle
in bounded-depth resolution over parities. Electron. Colloquium Comput. Complex.,
TR25-118, 2025.

[BK23] Paul Beame and Sajin Koroth. On Disperser/Lifting Properties of the Index and Inner-
Product Functions. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical
Computer Science Conference (ITCS 2023), volume 251 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 14:1–14:17, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
J. ACM, 48(2):149–169, March 2001.

[CMSS23] Arkadev Chattopadhyay, Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif. Lifting
to parity decision trees via stifling. In Yael Tauman Kalai, editor, 14th Innovations
in Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT,
Cambridge, Massachusetts, USA, volume 251 of LIPIcs, pages 33:1–33:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. Journal of Symbolic Logic, 44(1):36–50, 1979.

[EGI24] Klim Efremenko, Michal Garĺık, and Dmitry Itsykson. Lower bounds for regular
resolution over parities. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors,
Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC
2024, Vancouver, BC, Canada, June 24-28, 2024, pages 640–651. ACM, 2024. The
full version is available as ECCC technical report TR23-187.

[EI25] Klim Efremenko and Dmitry Itsykson. Amortized closure and its applications in lifting
for resolution over parities. Electron. Colloquium Comput. Complex., TR25-039, 2025.

19

[GHJ+24] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires,
Robert Robere, and Ran Tao. Separations in proof complexity and TFNP. J. ACM,
71(4), August 2024.

[GK18] Michal Garĺık and Leszek Aleksander Kolodziejczyk. Some subsystems of constant-
depth frege with parity. ACM Trans. Comput. Log., 19(4):29:1–29:34, 2018.

[GOR24] Svyatoslav Gryaznov, Sergei Ovcharov, and Artur Riazanov. Resolution over linear
equations: Combinatorial games for tree-like size and space. ACM Trans. Comput.
Theory, jul 2024. Just Accepted.

[GPT22] Svyatoslav Gryaznov, Pavel Pudlák, and Navid Talebanfard. Linear branching pro-
grams and directional affine extractors. In Shachar Lovett, editor, 37th Computational
Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume
234 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

[Gry19] Svyatoslav Gryaznov. Notes on resolution over linear equations. In René van Bevern
and Gregory Kucherov, editors, Computer Science - Theory and Applications - 14th
International Computer Science Symposium in Russia, CSR 2019, Novosibirsk, Rus-
sia, July 1-5, 2019, Proceedings, volume 11532 of Lecture Notes in Computer Science,
pages 168–179. Springer, 2019.

[HR25] Johan H̊astad and Kilian Risse. On bounded depth proofs for tseitin formulas on the
grid; revisited. SIAM Journal on Computing, 54(5):FOCS22–288–FOCS22–339, 2025.

[H̊a20] Johan H̊astad. On small-depth frege proofs for tseitin for grids. J. ACM, 68(1),
November 2020.

[H̊a23] Johan H̊astad. On small-depth Frege proofs for PHP . In 2023 IEEE 64th Annual
Symposium on Foundations of Computer Science (FOCS), pages 37–49, Los Alamitos,
CA, USA, November 2023. IEEE Computer Society.

[IR21] Dmitry Itsykson and Artur Riazanov. Proof complexity of natural formulas via com-
munication arguments. In Valentine Kabanets, editor, 36th Computational Complexity
Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Con-
ference), volume 200 of LIPIcs, pages 3:1–3:34. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

[IS14] Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by linear combi-
nations. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors,
Mathematical Foundations of Computer Science 2014 - 39th International Symposium,
MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II, volume
8635 of Lecture Notes in Computer Science, pages 372–383. Springer, 2014.

[IS20] Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two.
Ann. Pure Appl. Log., 171(1), 2020.

[Kra18] Jan Kraj́ıček. Randomized feasible interpolation and monotone circuits with a local
oracle. J. Math. Log., 18(2):1850012:1–1850012:27, 2018.

20

[Urq87] A. Urquhart. Hard examples for resolution. JACM, 34(1):209–219, 1987.

21

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

