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Abstract

Proving super-linear lower bounds on the size of circuits computing explicit linear
functions A : Fn → Fn is a fundamental long-standing open problem in circuit
complexity. We focus on the case where F is a finite field. The circuit can be either a
Boolean circuit or an arithmetic circuit with scalar products and sum gates over F.

We extend the notion of natural proofs [RR97] to the context of proving circuit
lower bounds for linear functions. Let Ln = Fn2

denote the set of all linear functions
A : Fn → Fn, represented by their corresponding n × n matrices over F. We say
that a lower bound proof for the circuit complexity of a linear function A : Fn → Fn is
natural, if either implicitly or explicitly, the proof defines for every n a subset Cn ⊂ Ln,
such that, there exists a polynomial-time recognizable subset C ′

n ⊆ Cn, such that,
|C ′

n| ≥ 1
poly(n) · |Ln| and the lower bound applies for every function A ∈ C ′

n. This
definition is analogous to the original definition of natural proofs by Razborov and
Rudich [RR97], modified to the study of linear functions A : Fn → Fn, represented by
their corresponding n×n matrices, rather than general Boolean functions, represented
by their truth tables.

We observe that recent works on trapdoored matrices, by Vaikuntanathan and
Zamir [VZ26] and Braverman and Newman [BN25], imply that, assuming (strong but
plausible) cryptographic assumptions, natural proofs cannot establish circuit lower
bounds higher than n · polylog(n) for linear functions A : Fn → Fn.

We study the problem of proving super-linear lower bounds on the size of circuits
computing explicit linear functions A : Fn → Fn. We focus on the case where F is a
finite field. The circuit can be either a Boolean circuit (that uses the Boolean gates ∧,∨,¬),
or an arithmetic circuit (that uses scalar products and sum gates1 over F). Since a linear
function A : Fn → Fn can be represented as an n × n matrix over F, a simple counting
argument implies that the circuit complexity of most linear functions A : Fn → Fn is at
least Ω(n2/ log n). However, for explicit linear functions, no lower bound better than Ω(n)
is known. In this note, we investigate whether there are natural-proofs barriers for proving
super-linear lower bounds for such functions.

*Department of Computer Science, Princeton University. Research supported by a Simons Investigator
Award. Email: ran.raz.mail@gmail.com

1It is well known that non-scalar product gates do not decrease the arithmetic circuit complexity of a
linear function.
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A landmark work by Razborov and Rudich introduced the notion of Natural Proofs in
the context of proving circuit lower bounds [RR97]. Let Fn = {0, 1}2n denote the set of all
Boolean functions f : {0, 1}n → {0, 1}, represented by their truth tables. A lower bound
proof for the circuit complexity of a function f : {0, 1}n → {0, 1} is called natural, if either
implicitly or explicitly, the proof defines for every n a subset Cn ⊂ Fn, such that, there exists
a subset C ′

n ⊆ Cn, satisfying the following three properties:

1. Usefulness: The lower bound applies for every function f ∈ C ′
n.

2. Constructivity: There is a polynomial time algorithm that given the truth table of a
function f : {0, 1}n → {0, 1}, determines whether f ∈ C ′

n.

3. Largeness: |C ′
n| ≥ 2−O(n) · |Fn|.

These conditions formalize the idea that a natural proof identifies a large, efficiently
recognizable class of functions for which the lower bound holds. Razborov and Rudich
proved that, assuming standard cryptographic assumptions, natural proofs cannot establish
super-polynomial circuit lower bounds, or other strong circuit lower bounds [RR97]. This
result is often viewed as a barrier for proving strong circuit lower bounds.

While the view of natural proofs as a barrier for proving strong circuit lower bounds is
highly controversial (see for example [For24]), natural proofs have been extensively studied
in numerous works from a wide range of perspectives, and were found to be relevant to many
other issues in computational complexity theory (see for example [Razb95, Cho11, MV15,
Wil16, CIKK16, GKSS17, FSV18, KPI25, KLMS25]).

We extend the notion of natural proofs to the context of proving circuit lower bounds
for linear functions. Let Ln = Fn2

denote the set of all linear functions A : Fn → Fn,
represented by their corresponding n× n matrices over F. We say that a lower bound proof
for the circuit complexity of a linear function A : Fn → Fn is natural, if either implicitly or
explicitly, the proof defines for every n a subset Cn ⊂ Ln, such that, there exists a subset
C ′

n ⊆ Cn, satisfying the following three properties:

1. Usefulness: The lower bound applies for every function A ∈ C ′
n.

2. Constructivity: There is a polynomial time algorithm that given the n×n matrix over
F corresponding to a linear functions A : Fn → Fn, determines whether A ∈ C ′

n.

3. Largeness: |C ′
n| ≥ 1

poly(n)
· |Ln|.

These conditions are analogous to the corresponding usefulness, constructivity and largeness
conditions in the original definition of natural proofs. Note that while the description of
a Boolean function f : {0, 1}n → {0, 1} by its truth table is of exponential length, the
description of a linear function A : Fn → Fn by its corresponding n×n matrix is of quadratic
length. It is hence reasonable to scale-up the fraction 2−O(n) in the largeness condition in the
original definition of natural proofs to 1

poly(n)
in our new definition, as they are both inverse

polynomial in the length of description of the corresponding function.
Striking recent works by Vaikuntanathan and Zamir [VZ26] and Braverman and

Newman [BN25] introduced the concept of trapdoored matrices. A distribution of n × n
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trapdoored matrices is a distribution Dn over Ln, satisfying the following two properties:
(See Definition 2.1, Definition 2.2 and Definition 2.3 in [VZ26])2

1. Efficiency: Every function A : Fn → Fn in the support of Dn has a circuit of size
almost linear in n.

2. Indistinguishability: Dn is indistinguishable from the uniform distribution over Ln

by a polynomial time algorithm. Specifically, for any polynomial time algorithm T ,
the probability that T outputs 1 on a matrix A drawn from the distribution Dn is
almost equal to the probability that T outputs 1 on a matrix A drawn from the
uniform distribution over Ln, where almost equal means that the difference between
them vanishes faster than any inverse polynomial in n.

Our main result is the following observation:

Corollary 1. Assume that there exists a family of distributions {Dn : n ∈ N}, such that,
for every n, Dn is a distribution over Ln, and:

1. Efficiency: Every function A : Fn → Fn in the support of Dn has an arithmetic circuit
of size at most s(n).

2. Indistinguishability: The distribution Dn is indistinguishable from the uniform
distribution over Ln by a polynomial time algorithm.

Then, natural proofs cannot establish lower bounds higher than s(n) on the arithmetic circuit
complexity of linear functions A : Fn → Fn.

Proof. Similarly to [RR97], assume for a contradiction that there exists a natural proof that
establishes a lower bound higher than s(n) on the arithmetic circuit complexity of linear
functions A : Fn → Fn. Let C ′

n ⊆ Ln be the corresponding subset that satisfies the three
required properties: Usefulness, Constructivity and Largeness. Denote by D′

n the support
of Dn.

By the Efficiency property of Dn and the Usefulness property of C ′
n, the subsets C ′

n and
D′

n are disjoint. By the Constructivity property of C ′
n, there is a polynomial time algorithm

T that determines whether a matrix A is in C ′
n. Thus, T is a polynomial time algorithm

that outputs 1 on inputs in C ′
n and 0 on inputs in D′

n. By the Largeness property of C ′
n,

we have that T outputs 1 with non-negligible probability over Ln (that is, T outputs 1 with
probability larger than some inverse polynomial in n), while it outputs 0 on inputs in D′

n,
and thus violates the Indistinguishability property of Dn.

Note that a lower bound higher than c·s(n) on the Boolean circuit complexity of a function
A : Fn → Fn implies a lower bound higher than s(n) on the arithmetic circuit complexity
of the same function (when F is a finite field and c is a sufficiently large constant). Hence,
Corollary 1 also implies that natural proofs cannot establish lower bounds higher than c·s(n)
on the Boolean circuit complexity of linear functions A : Fn → Fn.

2We ignore here the requirement of efficient sampleability in [VZ26], as this requirement is immaterial for
our work.
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Explicit constructions of distributions of trapdoored matrices (under cryptographic
assumptions) were given in [VZ26, BN25, BCHIKMRR25]. For example, Vaikuntanathan
and Zamir proved the following theorem: (Theorem 3.1 in [VZ26]. A similar construction
was given by Braverman and Newman [BN25])

Theorem 2. [VZ26, BN25] There exists a family of distributions {Dn : n ∈ N}, such that,
for every n, Dn is a distribution over Ln, and:

1. Efficiency: Every function A : Fn → Fn in the support of Dn has an arithmetic circuit
of size O(n · polylog(n)).

2. Indistinguishability: Assuming the sub-exponential hardness of learning parity with
noise, generalized to the field F (for exact statement and parameters, see Section 3
in [VZ26]), the distribution Dn is indistinguishable from the uniform distribution over
Ln by a polynomial time algorithm.3

Corollary 3. Assuming the sub-exponential hardness of learning parity with noise,
generalized to the field F (for exact statement and parameters, see Section 3 in [VZ26]),
natural proofs cannot establish lower bounds higher than n · polylog(n) on the arithmetic
circuit complexity of linear functions A : Fn → Fn (for some polylog(n)).

Proof. The proof follows immediately from Corollary 1 and Theorem 2.

As before, since lower bounds on Boolean circuit complexity imply lower bounds on
arithmetic circuit complexity, Corollary 3 applies to Boolean circuits as well.
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