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Abstract

In this short expository note, we provide an introduction to a distribution testing (and,
more generally, indistinguishability) lower bound method based on moment-matching via
polynomials. This method, which underlies several of the tight lower bounds on estimating
symmetric properties, had for many years appeared mysterious and near-magical to the author.
With this note, he hopes to avoid to others a similar years-long confusion, and enable them to
use this very elegant, yet not quite magical, technique.

There exists a handful of techniques to establish information-theoretic indistinguishability
lower bounds, for instance for distribution testing problems: some better known than others, and
some rediscovered in different communities under different names. Le Cam’s two-point method,
Ingster’s method, and the Wishful Thinking theorem of Valiant [Val08] are such examples (for a
coverage of these, see, e.g., [Can22, Chapter 4]).

One very powerful method, which led to a series of quite unexpected Ω(k/ log k) sample
complexity lower bounds on tolerant testing and estimation of symmetric properties of discrete
distributions [VV11; WY19], relies on designing “hard instances” from univariate polynomials,
leveraging their properties to then argue that all low-order moments of the resulting distributions
match. The idea is then that two probability distributions whose first L − 1 moments match cannot
be distinguished unless an L-wise collision is observed; which requires many samples.

This method of reducing a lower bound construction to a question about univariate polynomials
seemed mysterious and almost magical to the author during his Ph.D., and for many years after: this
short exposition is meant to provide a clear and helpful introduction to this technique, illustrated
with two examples, for testing and tolerant testing. This note is, by choice, not exhaustive: for more,
in more depth, and more insights, the reader is encouraged to consult the monograph [WY20] by
Yihong Wu and Pengkun Yang on this very topic.

1 The lower bound method

Let us first recap the “standard” approach to prove distribution testing lower bounds (or, maybe
more generally, indistinguishability lower bounds) given i.i.d. samples: to fix notation, we are
considering domain [k] = {1, 2, . . . , k}, a property P of distributions over [k], and (possibly tolerant)
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testing with parameters 0 ≤ ε′ < ε (tolerant testing being the case ε′ > 0). Given a probability
distribution p over X , we write p⊗n for the probability distribution over X n defined by sampling n
i.i.d. samples from p.

1. Construct two distributions (over probability distributions) Y, N such that

Pr
p∼Y

[
p is ε′-close to P

]
= 1 − o(1), Pr

p∼N
[ p is ε-far from P ] = 1 − o(1)

that is, Y is a distribution over (mostly) yes-instances, and N is a distribution over
(mostly) no-instances.

2. Show that a randomly chosen instance p from Y is hard to distinguish from a randomly
chosen instance q from N , given n i.i.d. samples from p and q; that is,

dTV
(
Ep∼Y [p⊗n],Eq∼N [q⊗n]

)
= o(1)

(this is sometimes referred to as Le Cam’s lemma. Parsing the above: “the distribution of
n-tuples obtained by first choosing p from Y and then drawing n i.i.d. samples from it
is statistically close to the distribution of n-tuples obtained by first choosing q from N
and then drawing n i.i.d. samples from it.”

3. Conclude that since Ω(n) samples are necessary to distinguish Y from N , this also
holds for the harder problem of distinguishing “ε′-close to P” from “ε-far from P .”

The first and second steps are of course where the main action is: coming up with (and analyzing)
distributions over k-element probability distributions, and then proving that the corresponding
n-sample mixtures are close in total variation (statistical) distance, can be quite daunting.

Thankfully, for symmetric properties P (also known as “label-invariant”, i.e., those who are
closed under permutations of the domain: p ∈ P implies p ◦ π ∈ P for every permutation π of
[k]), then the second item is “morally” equivalent to having p and q matching as many moments as
possible (exactly or approximately), that is, to having

∥p∥ℓ
ℓ ≈ ∥q∥ℓ

ℓ

for as many values of ℓ as possible. The reason is that these moments of the distributions capture
the probability of having an ℓ-way collision, and for symmetric properties, these collision statistics
are all that matters. So if the moments match up to L − 1, then you “intuitively” would need to
see at least an L-way collision to have any meaningful information allowing you to distinguish
between p and q, and to see such an L-way collision you “expect to” need

Ω
(
k

L
L+1

)
samples. There are many quotes and informal, wishful statements in the short discussion above,
but that’s the rough idea – which can be make precise.
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For instance, if your yes- and no-instances have matching first (trivial, probabilities sum to
one) and second (a bit less trivial) moments, then you need to see at least one 3-way collision
among your n samples, and that gives an n = Ω(k2/3) sample complexity lower bound.

Here comes a second idea: instead of coming up for Y and N with a way to randomly generate
full-fledged probability distributions (which are k-length non-negative vectors summing to one) with
nice properties, since we are looking at a symmetric property P anyway, it’s enough to look at a
way to randomly generate a single probability by defining a random variable U and V , and then
draw k i.i.d. copies of each:

p := (U (1), . . . , U (k)), q := (V (1), . . . , V (k))

These may not exactly sum to one, but if U, V ≥ 0 with

E[U ] = E[V ] = 1
k

(1)

then E[∥p∥1] =
∑k

i=1 E
[
U (i)

]
= E[∥q∥1] = 1 , and ∥p∥1 = ∥q∥1 ≈ 1 with high probability. (Whether

that’s sufficient is not entirely obvious; but one can show, maybe with a little extra work or a small
variation of (1) on a case-by-case basis, that it’s indeed enough.)1

The above requirement already requires the first moment: for our indistinguishability, we will
need more, as many as possible. The reason is provided is the next two lemma, similar in spirit, but
incomparable in practice: the first requires to exactly match as many moments of U, V as possible,
while the second allows for some approximate matching of moments.

Lemma 1 ([WY20, Theorem 3.3.4]). Let U, V be two random variables taking value in [0, M ],
where M ≥ 0. If

E
[
U ℓ
]

= E
[
V ℓ
]

for all 0 ≤ ℓ ≤ L, then, for every n ≥ 1

dTV(EU [Poisson(nU)],EV [Poisson(nV )]) ≤ 3(nM)L+1

(L + 1)!

(One can relax the RHS to
(

enM
2L

)L
, which is simpler and “typically enough” for large L).

Now, that may seem a bit odd, but to parse this: using a standard technique called Poissonization
(taking a random number, Poisson(n), of independent samples from a probability distribution p,
instead of deterministically n), the number of times Ni an algorithm sees element i is a Poisson(npi)
random variable (instead of Bin(n, pi), and, more importantly, the random variables N1, . . . , Nk

1For instance, one could argue that (by concentration of independent bounded random variables) E
[
∥p∥1

]
∈

[1 − O(ε), 1 + O(ε)] with high probability, and that renormalization to 1 does not affect the rest of the argument. Or,
alternatively, require instead that E[U ] = E[V ] = 1

20k
, so that, by Markov’s inequality, ∥p∥1, ∥q∥1 ≤ 1 simultaneously

with probability 9/10, and assign the remaining probability mass to a “dummy” domain element under both p and q.
The sky’s the oyster, the world’s your limit.
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are now independent. (Also, this Poissonization is for nearly all matter and purposes without loss of
generality.)

So for our lower bounds, we can assume the algorithms we are trying to defeat use Pois-
sonization, and, combined with our construction of p, q based on k i.i.d. copies of U, V , we get
that the number of times element i of the domain is observed, for a fixed realization of U, V , is a
Poisson(nU) under p, and Poisson(nV ) under q. That’s for a fixed realization of U, V , which represent
the probabilities of our given element i of the domain. Since these U, V are themselves random
variables, when we take into account their randomness, we get that

The number of times Ni any given element of the domain, say i, is observed under p (resp.
Mi under q) is a mixture of Poisson random variables, distributed as

Ni ∼ EU [Poisson(nU)]

under p, and EV [Poisson(nV )] under q. Moreover, the N1, . . . , Nk are mutually independent
(and same for M1, . . . , Mk).

But going back to the very beginning, to show indistinguishability given n samples, we want to
show that

dTV
(
Ep∼Y [p⊗n],Eq∼N [q⊗n]

)
= o(1)

i.e., that the distributions of the tuples (N1, . . . , Nk) and (M1, . . . , Mk) (over the choices of p, q and
the drawing of the samples) are very close in total variation distance. Well, by the above, this is
now equivalent to showing that

dTV

(
EU [Poisson(nU)]⊗k,EV [Poisson(nV )]⊗k

)
= o(1)

and, by subbaditivity of total variation distance for independent random variables, it is enough to
show that

dTV(EU [Poisson(nU)],EV [Poisson(nV )]) = o

(1
k

)
(2)

which is great, since that’s exactly what Lemma 1 gives us:

Match the first L moments of U, V ∈ [0, M ] so that

(nM)L+1

(L + 1)! ≪ 1
k

,

conclude that Ω(n) samples are necessary to distinguish Y from N .

The recipe above is very successful: in some cases, one may want to use a variant of that moment-
indistinguishability lemma mentioned earlier, which provides slightly different guarantees:

Lemma 2 ([Han19, Theorem 4]). Let U ′, V ′ be two random variables taking value in [−ν, ∞),
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where ν ≥ 0. Then

dTV
(
EU ′ [Poisson

(
n(ν + U ′)

)
],EV ′ [Poisson

(
n(ν + V ′)

)
]
)

≤ 1
2

 ∞∑
ℓ=0

nℓ
(
E[U ′ℓ] − E[V ′ℓ]

)2

νℓℓ!


1/2

.

Moreover, if E[U ′] = 0 and |U ′| ≤ M , then

χ2(EU ′ [Poisson
(
n(ν + U ′)

)
] || EV ′ [Poisson

(
n(ν + V ′)

)
]
)

≤ enM
∞∑

ℓ=0

nℓ
(
E[U ′ℓ] − E[V ′ℓ]

)2

νℓℓ! .

In this case, note that if the first L moments match, then the first L terms of the series are
zero. (Again, this is somewhat more robust, as one does not require them to exactly match to
obtain a meaningful bound.) The key difference, however, is that this allows to use ν as an “offset”
when U, V are both centered around a common value: we will see an example shortly. Another
advantages is that the part after the “Moreover” allows us to bound the χ2 divergence instead of
total variation distance, which can be better than relying on the subadditivity of total variation: for
any two product distributions P ⊗k, Q⊗k,

dTV

(
P ⊗k, Q⊗k

)
≤
√

χ2(P ⊗k || Q⊗k) ≲
√

k ·
√

χ2(P || Q) (3)

so to conclude the TV distance is o(1) is suffices to show that χ2(P || Q) = o(1/k), instead of
showing as before that dTV(P, Q) = o(1/k). This can be better by up to a

√
k factor, as “morally”

χ2(P || Q) ≃ dTV(P, Q)2. As said before, we’ll see an example soon.
But before this: we have almost all the ingredients, except for one crucial one:

How do we design these random variables U, V with many matching moments?

The answer (surprise!) is polynomials. Specifically, polynomials with simple roots, leveraging
the following “standard” fact.2

Lemma 3. Let P be a degree-d univariate polynomial with distinct roots λ1, . . . , λd. Then, for
every 0 ≤ ℓ ≤ d − 2,

d∑
i=1

λℓ
i

P ′(λi)
= 0 .

Also, one can check that the signs of P ′(λ1), . . . , P ′(λd) alternate. One easy consequence is that

∑
1≤i≤d

P ′(λi)>0

λℓ
i

P ′(λi)
=

∑
1≤i≤d

P ′(λi)<0

λℓ
i

|P ′(λi)|

2I don’t have a good reference for this lemma, except “homework.” If anybody has one, that’d be welcome.
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which, if one squints for long enough, starts looking like matching the first d moments of some
strange random variables: say, U, V with take value λi with probability proportional to 1{P ′(λi)>0}/P ′(λi)
and 1{P ′(λi)<0}/|P ′(λi)|, respectively!

Recipe. Given a degree-d univariate polynomial P with distinct roots λ1, . . . , λd ≥ 0, let Λ+,
Λ− be defined as

Λ+ :=
{

1 ≤ i ≤ d : P ′(λi) > 0
}

, Λ− :=
{

1 ≤ i ≤ d : P ′(λi) < 0
}

and let U, V be the random variables defined on Λ+ and Λ−, respectively, and given by

Pr[ U = λi ] = CP

|P ′(λi)|
, i ∈ Λ+

Pr[ V = λi ] = CP

|P ′(λi)|
, i ∈ Λ− ,

where CP :=
∑

i∈Λ+
1

|P ′(λi)| =
∑

i∈Λ−
1

|P ′(λi)| (by Lemma 3). Then 0 ≤ U, V ≤ M :=
max1≤i≤d λi, and

E
[
U ℓ
]

= E
[
V ℓ
]
, 0 ≤ ℓ ≤ L := d − 2 .

(In case α := E[U ] = E[V ] ̸= 1
k , normalize by considering instead Ũ = U

αk , Ṽ = V
αk , i.e.,

replacing P (X) by P̃ (X) = P (X/(αk)). The moments still match, but M scales by 1/(αk).)

For this recipe to work well, what do we need from our polynomial P ?

1. To have simple roots, and a “high” degree d (this will give us L)

2. To have “small” roots, so that M is small (after renormalization/scaling of E[U ],E[V ])

3. Its positive-derivative roots (for U ) to be consistent with a yes-instance, and the
negative-derivative roots (for V ) to be consistent with a no-instance (what “consistent”
means depending on which task you are trying to prove a lower bound against)

2 Two concrete examples

The above outline was kept quite abstract: to make it more concrete, in this section we instantiate it
with two examples.

Example 1: The Usual Suspect (Uniformity Testing) We want to test whether an arbitrary
distribution over [k] = {1, 2, . . . , k} is the uniform distribution uk over the domain, is is ε-far from
it in total variation distance. In this case, the property to be tested is P := {uk} (this is clearly
symmetric!), we have ε′ = 0, and the (tight) sample complexity lower bound we want to establish is

Ω(
√

k/ε2) .
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This lower bound has been shown already in several ways, starting with [Paninski08] for ε ≥
1/ab1/4 (see also [Can22, Chapter 3]). Which does not mean we cannot prove it differently! Now,
Paninski’s no-instances were the distributions with half of the domain elements with probability
1+2ε

k and the other half with probability 1−2ε
k (and, obviously, the only yes-instance is the uniform

distribution itself): to emulate this, we should have U taking value 1/k with probability one (this
will give us the uniform distribution), and V taking values 1±2ε

k with equal probability 1/2.
Since we want a polynomial which encodes this, let’s take

P (X) = −
(

X − 1 − 2ε

k

)(
X − 1

k

)(
X − 1 + 2ε

k

)
This has degree d = 3, three distinct roots λ1 = 1−2ε

k , λ2 = 1
k , λ3 = 1+2ε

k , and one can check that3

Λ− = {1, 3}, Λ+ = {2}

Moreover, L = d − 2 = 1, M = 1+2ε
k ≤ 2

k , and (always a good exercise to check)

CP =
∑

i∈Λ+

1
P ′(λi)

= 1
P ′(1/k) = k2

4ε2

so that we get

Pr[ U = 1/k ] = 1

Pr[ V = (1 ± 2ε)/k ] = 1
2 ,

which is what we wanted. It’s easy to see that setting

p := (U (1), . . . , U (k)), q := (V (1), . . . , V (k))

will result in (1) p = uk, and (2) ∥q − uk∥1 = 2ε (as each coordinate contributes 2ε/k to the ℓ1
distance). Since we also have

E[U ] = E[V ] = 1
k

and (e.g., by Hoeffding) ∥q∥1 ∈ [1 − O(ε), 1 + O(ε)] with probability e−Ω(k), by renormalizing we’ll
have a valid probability distribution, Θ(ε)-far from uniform, with overwhelming probability.

For the lower bound itself, if we appply Lemma 1 with L = 1, M ≤≤ 2
k , we get a lower bound

for any n such that (
n

k

)2
≍ (nM)L+1

(L + 1)! ≪ 1
k

,

that is, n ≪
√

k. A lower bound of Ω(
√

k), which is correct, but seriously underwhelming: no
dependence on ε?!

The reason is that here, the bound on M loses the ε: or, put differently, the “baseline 1/k” is
hiding the “perturbation ±ε/k” around it. But that’s OK: we have our second option, Lemma 2,
which can handle specifically this case!

3The only reason I chose to put a minus sign in the definition of P (X) was to be consistent with my choice of Λ+ for
U . Besides that, it’s inconsequential, and one could have picked P (X) =

(
X − 1−2ε

k

)(
X − 1

k

)(
X − 1+2ε

k

)
instead.
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Set U ′ := U − 1/k, V ′ := V − 1/k, ν := 1/k, M := 0: since E[U ′] = 0 (trivially), we can use the
second conclusion to get4, using E[|V ′|ℓ] = (2ε/k)ℓ, that

∞∑
ℓ=0

nℓ
(
E[U ′ℓ] − E[V ′ℓ]

)2

νℓℓ! =
∞∑

ℓ=L+1

nℓ
(
0 − E[V ′ℓ]

)2

(1/k)ℓℓ! ≤
∞∑

ℓ=2

4ℓnℓε2ℓ

kℓℓ! ≲
n2ε4

k2

(the last inequality as long as nε2/k ≪ 1, recalling that
∑∞

ℓ=2
xℓ

ℓ! = ex − x − 1 = O(x2) for x ≪ 1).
So by the discussion after Lemma 2 get our indistinguishability lower bound as long as the RHS is
o(1/k), that is, whenever

n2ε4

k2 ≪ 1
k

which, reorganizing, gives us our lower bound of n = Ω(
√

k/ε2) for distinguishability.

Example 2: The (Un)usual Suspect (Tolerant Uniformity Testing) The above example was meant
to show that the polynomial method described in this note can be used for “standard” testing
(ε′ = 0): but we have other methods for these. For tolerant testing (ε′ > 0), however, we have much
fewer arrows in our toolbox (hammers in our quiver): but this method is one.

Consider for simplicity the setting where ε′, ε = Θ(1), and we want to distinguish, say, distribu-
tions 0.1-close to uk from distributions 0.7-far from uk. This is known to require

n = Ω
(

k

log k

)
samples (and this is tight) [VV11]. To prove such a lower bound, we we try the same recipe: a
“natural” idea is to start with the same type of instances, uniform or small perturbations around
uniform, as in the previous example of uniformity testing: so, starting with a polynomial like

−
(

X − 1
2k

)(
X − 1

k

)(
X − 3

2k

)
But of course, to get the right lower bound, we need to match a lot more moments than this, so we
need a degree d much larger than a measly 3. So we should look at a polynomial of the form

P (X) = −
(

X − 1
2k

)(
X − 1

k

)(
X − 3

2k

)
P̃ (X)

where (1) P̃ (X) has simple roots, and very large degree (d goes up!), but also (2) small enough
roots (M stays small!), and (3) the derivative of P̃

′ at these “extra” roots is large (not putting a lot
of probability mass for U, V on these!)

To choose the best polynomial P̃ (X), one option is to invoke the theory of best polynomial
approximation or phrase this as an optimization problem and argue about the existence of a
solution. This is a valid, clean way to do this: see for instance [WY19].

The other, maybe more instructive way, is to come up with an explicit construction, recalling
that to have a polynomial satisfying extremal properties such as (1), (2), and (3) above, a good guess
is always to start with the Chebyshev polynomials.5

4I’ll let the interested reader check why the first of the two conclusions of Lemma 2 does not suffice, and why using
the χ2 bound is necessary here.

5In particular, (3) corresponds to saturating the Markov Brothers’ inequality, tight for. . . the Chebyshev polynomials.
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Letting Td be the Chebyshev polynomial (of the first kind) of degree d, given a parameter
M > 2/k of our choosing we can set

P (X) = −
(

X − 1
2k

)(
X − 1

k

)(
X − 3

2k

)
Td

(
1 − X

M

)
which is a simple polynomial of degree d + 3, with roots in [0, M ].
With this, one can (and should) verify that6

• the “intended” roots of P are

λ1 = 1
2k

, λ2 = 1
k

, λ3 = 3
2k

while the “extra” roots satisfy

λ3+r = M

(
1 − cos

(2r − 1
2d

π

))
= Θ

(
Mr2

d2

)
, 1 ≤ r ≤ d

• Turning to the derivative P ′, for the “intended” roots,

|P ′(λ1)|, |P ′(λ2)|, |P ′(λ3)| = Θ
( 1

k2

)
while the “extra” roots have

|P ′(λ3+r)| = Θ
(

M2r5

d4

)

using that |Td
′(1 − Mλ3+r)| = d

|sin 2r−1
2d | = Θ(d2/r).

Going through the calculations, this means that

2CP = 1
|P ′(λ1)| + 1

|P ′(λ2)| + 1
|P ′(λ3)|︸ ︷︷ ︸

Θ(k2)

+
d∑

r=1

1
|P ′(λr+3)| ≍ k2 + d4

M2

d∑
r=1

1
r5 ≍ k2 + d4

M2

which is Θ(k2) as long as
M ≫ d2/k

in which case the total probability mass but by U, V on the “extra” roots will be negligible in front
of the probability of the “intended” roots. Why is that important? This tells us that the yes-instances
defined by U will indeed be close to uk (as most of the probability of U is on 1/k), while the
no-instances defined by V will be close to the “Paninski-type” instances (as most of the probability
of V is on (1 ± (1/2))/k): these “Paninski-type” are far from uk – and so will be our no-instances
themselves.

Similarly, one can also check that E[U ],E[V ] = 1+o(1)
k , which tells us that we can renormalize

our yes- and no-instances to get bona fide probability distributions. We’re almost there!

6See, e.g., [Can+22, Appendix B] for an example.
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How to pick d, M in our construction, subject to the condition M ≫ d2/k?

Recall that, in view of Lemma 1, we want to minimize the quantity(
enM

2L

)L

specifically to make it o(1/k). (We are in the regime where L = (d + 3) − 2 = d + 1 should be large,
so we should be alright using the simpler expression at the end of the lemma.) Since our condition
above requires M ≫ L2/k, we may as well set

M

L2 = C

k

for a sufficiently large constant C > 0, in which case we get(
enM

2L

)L

=
(

CenL

2k

)L (want)
≪ 1

k
. (4)

Equivalently, we want L such that nLk1/L

k is minimized (to get the inequality for the largest n
possible). One can check that L = Θ(log k) does the job, for which we then get (4) as long as
n ≪ k

log k . This gives us the Ω
(

k
log k

)
lower bound.
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