
Nearly Tight Bounds on the Block Number of Boolean
Functions in Terms of Sensitivity

Sourav Chakraborty∗ Anna Gál†

Abstract

This paper explores the previously studied measure called block number of Boolean
functions, that counts the maximum possible number of minimal sensitive blocks for
any input. We present close to tight upper bounds on the block number in terms of
the function’s sensitivity and the allowed block size, improving previous bounds by
a quadratic factor. Moreover, our bound on the block number yields sharper upper
bounds on DNF size and decision tree size. We obtain these results by introducing and
estimating a novel measure called brick number, which not only upper bounds the block
number but also leads to a new characterization of block sensitivity.

1 Introduction
Since the early nineties when Nisan [16] and Nisan and Szegedy [17] first conjectured till
2019 when Huang [10] proved the conjecture, the sensitivity conjecture was one of the most
widely studied and fascinating conjectures in theoretical computer science. The conjecture,
now theorem, can be stated in several equivalent forms and it establishes that a number of
interesting complexity measures are all polynomially related to sensitivity.

Definition 1.1. For a Boolean function f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n
the sensitivity of f at x, denoted s(f, x) is the number of indices i ∈ {1, . . . , n} such that
f(x) ̸= f(xi), where xi denotes the string x with the ith bit flipped. If for an input x and an
index i we have f(x) ̸= f(xi), we call i a sensitive bit for x. The sensitivity of f at x is the
number of sensitive bits of f for x. The sensitivity of the function f , denoted s(f), is defined
as

s(f) = max
x∈{0,1}n

s(f, x).

The block sensitivity of f at x, is defined as the number of disjoint blocks that are sensitive
for x.

Definition 1.2. A subset (or block) B ⊆ {1, . . . , n} is said to be sensitive for x if f(x) ̸=
f(xB), where xB is the string obtained from x by flipping every index in B. For an input

∗Indian Statistical Institute, Kolkata, India, Email: sourav@isical.ac.in
†University of Texas at Austin, Austin, USA, Email: panni@cs.utexas.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 10 (2026)

x ∈ {0, 1}n the block sensitivity of f at x, denoted bs(f, x) is defined as the size of the largest
collection Bx of disjoint sensitive blocks for x. The block sensitivity of f , denoted bs(f), is
defined as

bs(f) = max
x∈{0,1}n

bs(f, x).

The sensitivity conjecture in its original form [16, 17] stated that there exists a universal
constant c ∈ R+ such that for any Boolean function f ,

bs(f) ≤ s(f)c. (1)

This conjecture remained open for nearly three decades. Finally in 2019, Huang [10]
proved the conjecture, by proving a tight quadratic upper bound on degree in terms of
sensitivity.

Minimal Sensitive Blocks and Block Number

A simple observation of Nisan [16] is that the definition of block sensitivity is in fact equivalent
to defining block sensitivity with respect to minimal sensitive blocks only.

Definition 1.3. A block B ⊂ {1, . . . , n} is said to be a minimal sensitive block for x if
f(x) ̸= f(xB), but for any strict subset B ̸= D ⊂ B, f(x) = f(xD).

To see that we can equivalently define block sensitivity considering minimal sensitive
blocks only, first notice that disjoint minimal sensitive blocks are of course disjoint sensitive
blocks, thus bs(f, x) ≥ bs′(f, x) (where bs′ denotes block sensitivity with minimal sensitive
blocks only). On the other hand, notice that bs′(f, x) ≥ bs(f, x), since each sensitive block
contains at least one minimal sensitive block as a subset, and if two blocks are disjoint, then
their subsets are also disjoint.

While block sensitivity is defined with respect to disjoint blocks, what happens if we do
not insist on the blocks being disjoint has also been considered [15, 13, 5].

Definition 1.4. For a Boolean function f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n the
block number of f at x, denoted Nbs(f, x) is the number of (not necessarily disjoint) minimal
sensitive blocks of f for x. The block number of the function f , denoted Nbs(f), is defined as

Nbs(f) = max
x∈{0,1}n

Nbs(f, x).

The ℓ-block number of f at x, denoted Nbsℓ(f, x) is the number of minimal sensitive blocks
of size at most ℓ for x. The ℓ-block number of the function f , denoted Nbsℓ(f), is defined as

Nbsℓ(f) = max
x∈{0,1}n

Nbsℓ(f, x).

Note that the size of any minimal sensitive block is at most s(f), so Nbs(f, x) =
Nbss(f)(f, x).

2

1.1 Our Results

Bounds on block number and brick number In this paper we further strengthen the
previous upper bounds [15, 13] on block number, and prove the following.

Theorem 1.5. For any Boolean function f : {0, 1}n → {0, 1} and 1 ≤ ℓ ≤ n,

Nbsℓ(f) ≤ (6s(f))ℓ

and thus we have Nbs(f) ≤ (6s(f))s(f).

We obtain our results by proving a stronger statement about a more general measure.
Instead of considering minimal sensitive blocks for x, we consider blocks B such that f is
sensitive to each bit of B on the input xB. We refer to these blocks as bricks. We formally
define the brick number of a function in Section 2, and prove upper bounds on it which will
imply Theorem 1.5.

We show that our bounds on ℓ-block number and ℓ-brick number are tight up to constant
factors for every fixed block size ℓ in Section 5. In addition, we also show that the block number
as well as the brick number can be an exponential function of sensitivity (see Section 5). Note
that this is in sharp contrast to block sensitivity which by now we know to be polynomially
related to sensitivity [10].

Furthermore, we compare our new measure brick number with block number and show
that brick number can be exponentially larger than block number. However, for monotone
functions the two measures are equivalent (see Section 4).

New Characterization of Block Sensitivity Our main motivation to consider brick
number was that this allows us to obtain upper bounds on the block number, but we find it
to be an interesting measure on its own right. Recall that both measures count the number of
possibly overlapping subsets (bricks and sensitive blocks, respectively). While brick number
may be exponentially larger than block number (see Section 4), we observe that considering
pairwise disjoint bricks we get a measure that turns out to be equivalent to block sensitivity
(see Section 3).

Improved Bounds on Decision Tree Size and DNF Size Block number was used in
[5] to obtain upper bounds on deterministic decision tree size in terms of randomized decision
tree size. This was achieved in [5] by using block number as an intermediate measure two
ways: in an upper bound on DNF size in terms of randomized decision tree size, and as a
lower bound on a function of randomized decision tree size. Combining these two bounds
implies upper bounds in terms of randomized decision tree size on DNF size directly, and on
deterministic decision tree size using a theorem of Ehrenfeucht and Haussler [7]. We observe
that using our upper bound on block number at various steps of the above reasoning gives
improved bounds on deterministic decision tree size as well as DNF size. For some functions,
our upper bounds on decision tree size and DNF size may be exponentially smaller than
those obtained by previous methods. We discuss these implications in Section 6.

3

Implications on Randomized Query Complexity Midrijanis [15] proved that R0(f) =
O(R2(f) logNbs(f)), thus block number can be used to upper bound the zero-error randomized
query complexity in terms of randomized query complexity. Our upper bound on block
number gives at least a quadratic improvement over the previous best bounds by Kulkarni
and Tal [13] for functions with a large enough gap between fractional block sensitivity and
sensitivity, thus we also get a small (at most constant factor) improvement for the upper
bounds on R0 for such functions.

1.2 Prior Work

Sensitivity vs. Block Sensitivity

Block sensitivity was defined by Nisan [16], who showed that the CREW PRAM complexity
of any Boolean function f is equal to Θ(log bs(f)). It was then shown that block sensitivity
is polynomially related to a number of interesting complexity measures such as certificate
complexity and decision tree depth [16], as well as degree and approximate degree [17]. See [3]
and [9] for a survey of more related measures and conjectures. It remained open for decades
how these measures relate to sensitivity. Since all the above measures are polynomially
related to block sensitivity, proving for any one of them a polynomial upper bound in terms
of sensitivity implies the sensitivity conjecture as stated in Equation 1. Huang [10] achieved
this by proving a tight quadratic upper bound on degree in terms of sensitivity.

Huang’s result [10] was further strengthened by Laplante et al. [14] who showed that
the degree of any Boolean function f is at most s0(f)s1(f), where s0(f) and s1(f) denote
maximum sensitivity over 0-inputs and 1-inputs, respectively. Huang’s result implies the
statement in Equation 1 about block sensitivity vs sensitivity with c = 4. It is still open
whether the constant c can be lowered to 2, which is the current best lower bound on the
value of c in Equation 1 [18, 4, 2, 21, 8, 6].

Before Huang’s result one of the most significant attempts towards proving the sensitivity
conjecture was made by Kenyon and Kutin [12]. They defined a refinement of the block
sensitivity, restricting attention to blocks of bounded size.

Definition 1.6. For any x ∈ {0, 1}n, the ℓ-block sensitivity of f at x, denoted bsℓ(f, x), is
the size of the largest collection Bx of disjoint sensitive blocks of x where each block in Bx has
size at most ℓ. We define the ℓ-block sensitivity of f as

bsℓ(f) = max
x∈{0,1}n

bsℓ(f, x).

Kenyon and Kutin [12] proved that for any Boolean function f and any 1 ≤ ℓ ≤ n,
bsℓ(f) ≤ O(s(f)ℓ).

Block Number To the best of our knowledge, this measure was first considered by
Midrijanis [15] and later by Kulkarni and Tal [13] who used it to upper bound the zero-error
randomized query complexity in terms of randomized query complexity. Chattopadhyay et
al. [5] used this measure to estimate deterministic vs randomized decision tree size, and
introduced the name “block number” for the measure.

4

It is not hard to see [15] that for f : {0, 1}n → {0, 1} we have Nbs(f) ≤ ns(f). Kulkarni
and Tal [13] further improved this bound to Nbs(f) ≤ 2fbs(f)s(f), by proving that

Nbsℓ(f) ≤ 2fbs(f)ℓ, (2)

where fbs(f) denotes fractional block sensitivity.

1.3 Comparison with Previous Bounds

Our upper bounds show that essentially the same bounds (up to constant factors for fixed ℓ)
hold for the ℓ-block number as the bounds of Kenyon and Kutin [12] for ℓ-block sensitivity.
This is somewhat surprising, since the bound of [12] was proved for disjoint minimal sensitive
blocks, and we prove that essentially the same bound holds even if the blocks are not required
to be disjoint. This is a significantly different scenario, and the number of overlapping
sensitive blocks may be exponentially larger than the number of pairwise disjoint sensitive
blocks (see e.g. the examples in Section 5). In fact, the argument of Kenyon and Kutin [12]
breaks down when trying to directly generalize it to "block number", that is, when relaxing
the requirement that the blocks have to be disjoint. We discuss this further below.

We obtain our bounds by considering the brick number instead of directly estimating the
block number, and this allows us to circumvent the difficulties in generalizing the proof.

The current best upper bound on fractional block sensitivity in terms of sensitivity is
fbs(f) ≤ O(s(f)4) [1], thus the bound in Equation 2 of [13] gives

Nbsℓ(f) ≤ 2fbs(f)ℓ ≤ (c · s(f))4ℓ).

for some constant c > 1. Our theorem refines this upper bound on Nbsℓ(f) from (c · s(f))4ℓ
to (6s(f))ℓ. Since fbs(f) ≥ bs(f) ≥ s(f) for any Boolean function f (see e.g. [13]), our
theorem yields a better bound than Equation 2 on the block number of functions f with s(f)
significantly smaller than fbs(f). It is currently open what is the largest possible separation
between s(f) and fbs(f), but we do know examples with bs(f) (and thus fbs(f)) quadratically
larger than s(f) [18, 4, 2, 21, 8, 6]. Thus, our bound gives at least a quadratic improvement
over the previous bounds for functions with a large enough gap between fractional block
sensitivity and sensitivity. Using our bounds on block number to upper bound deterministic
decision tree size and DNF size leads to exponential improvements over the previous bounds
in [5] for some functions.

Obstacles in Generalizing the Argument of Kenyon and Kutin

We briefly describe why the argument of Kenyon and Kutin [12] breaks down when trying
to generalize it to "block number", that is when relaxing the requirement that the sensitive
blocks have to be disjoint.

For the argument to work, it is crucial that the objects in Ak (see notation in Section
2) are the same type of objects with respect to xk, as the objects we are trying to count
with respect to x. In Kenyon and Kutin’s argument, these are DISJOINT sensitive blocks.
For their argument, it is ok to assume in addition that the blocks are MINIMAL sensitive
with respect to x, but minimality with respect to xk is not required to be included in Ak

(otherwise the argument would break down).

5

If we try to extend this directly to block number (that is to counting minimal sensitive
blocks without requiring disjointness), then in order to have the same type of objects in
Ak with respect to xk as the objects we are trying to count, we would have to include only
MINIMAL sensitive blocks with respect to xk into the set Ak. But then the argument breaks
down, because the number of ways a block can fail to be a minimal sensitive block for xk

becomes too large. This is a subtle but crucial difference between the original argument for
disjoint blocks and allowing overlappig blocks.

Our proof gets around these obstacles by working with brick number instead of block
number.

2 Upper Bounds on Block Number and Brick Number
In this section we prove Theorem 1.5. In fact, we prove a stronger result, upper bounding
brick number instead of block number.

Definition 2.1. A block B ⊂ {1, . . . , n} is said to be a brick of f for x if for all i ∈ B,
f(xB) ̸= f(xB\{i}).

Notice that every minimal sensitive block of f for x is also a brick of f for x, but not the
other way around. In fact, we do not even require that f(x) ̸= f(xB) for a brick B, only that
f is sensitive to each bit in B on xB.

Definition 2.2. For a Boolean function f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n the
ℓ-brick number of f at x, denoted Nbrℓ(f, x) is the number of bricks of size at most ℓ of f
for x. The ℓ-brick number of f , denoted Nbrℓ(f), is

Nbrℓ(f) = max
x∈{0,1}n

Nbrℓ(f, x).

The brick number of f at x, denoted Nbr(f, x) is the number of bricks of f for x. The brick
number of the function f , denoted Nbr(f), is defined as

Nbr(f) = max
x∈{0,1}n

Nbr(f, x).

Note that since the size of any brick of f is at most s(f), Nbr(f, x) = Nbrs(f)(f, x).
We prove the following theorem, which immediately implies Theorem 1.5.

Theorem 2.3. For any Boolean function f : {0, 1}n → {0, 1} and any 1 ≤ ℓ ≤ n,

Nbrℓ(f) ≤ (6s(f))ℓ

Proof. This argument is a generalization of an argument of Kenyon and Kutin [12]. Kenyon
and Kutin counted the maximum possible number of disjoint blocks B, such that f(x) ̸=
f(xB).

We change the conditions on what to count two ways: In our case, the blocks we count
do not have to be disjoint, and instead of requiring that f(x) ̸= f(xB), we require that for
subsets B′ of B that only differ from B in one coordinate, f(xB′

) ̸= f(xB).

6

Remark 2.4. Notice that our first change in the conditions is quite significant: we do not
require the blocks to be disjoint. The number of overlapping blocks may be exponentially larger
than the number of pairwise disjoint blocks (see e.g. Section 5). Thus while our argument
follows the general approach of [12], there are subtle but important differences. Our second
change corresponds to considering "bricks" instead of "sensitive blocks". We note that the
argument of [12] breaks down when trying to directly generalize it to "block number", that
is when relaxing the requirement that the blocks have to be disjoint. We discuss this in
Section 1.3.

Definition 2.5. Given x ∈ {0, 1}n and an integer ℓ, denote by BRf
x,ℓ the set of all blocks

B ⊆ [n] with the following properties:

1. 1 ≤ |B| ≤ ℓ

2. for any j ∈ B we have f(xB) ̸= f(xB\{j})

We refer to the blocks in BRf
x,ℓ as good blocks for x.

Note that with our terminology, BRf
x,ℓ is the set of bricks of f of size at most ℓ for x,

thus the good blocks for x are simply the bricks of size at most ℓ for x.
We will estimate the maximum possible cardinality of BRf

x,ℓ as a function of the sensitivity
of the given Boolean function f . Similarly to Kenyon and Kutin’s argument, we will use a
sequence of weights w1 ≥ . . . ≥ wℓ = 1 that we specify later. For a collection C of blocks of
size at most ℓ, we define

t(C) =
∑
B∈C

w|B|.

Notice that since each weight is at least 1, we have for any x,

t(BRf
x,ℓ) ≥ |BRf

x,ℓ| . (3)

Definition 2.6. For given f : {0, 1}n → {0, 1} let x be an input where t(BRf
x,ℓ) is largest

possible over all inputs in {0, 1}n. For the next part of the argument, we fix such x, and use
the notation B = BRf

x,ℓ.

Definition 2.7. For each k ∈ [n] we define Ak as follows.

• For each block B ∈ B of size |B| ≥ 2 that contains k, include B \ {k} in Ak.

• In addition, if f(x) ̸= f(xk) then include the block {k} in Ak.

• For each block B ∈ B that does not contain k, include B in Ak if B is a good block for
xk.

Recall that by our notation, each block in B is a good block for x, but may or may not
be a good block for xk. Next we show that each block in Ak is a good block for xk.

Claim 2.8. Ak ⊆ BRf
xk,ℓ

7

Proof. First note that if f(x) ̸= f(xk), then the block {k} is a good block for xk (as well as
for x). Given the way we defined Ak, now we only have to show that when k ∈ B for B ∈ B
of size |B| ≥ 2, then the block B \ {k} is a good block for xk. Note that for any block A that
contains k, we have (xk)A\{k} = xA. Therefore, considering A = B \ {j} for k ̸= j ∈ B, we
see that the conditions on B being a good block for x imply that B \ {k} is a good block for
xk.

Let Γk denote the set of blocks B ∈ B of size |B| ≥ 2 that contain k, and let Λk denote
the set of blocks B ∈ B that do not contain k and are not good for xk. Then, we have

t(Ak) = t(B) +
∑
B∈Γk

(w|B|−1 − w|B|)−
∑
B∈Λk

w|B| . (4)

Since all the weights are positive, we have that for each k ∈ [n]

t(Ak) ≤ t(BRf
xk,ℓ

) ≤ t(B) ,

where the first inequality follows by Claim 2.8, and the second follows by our choice of x and
the set B in Definition 2.6. Thus, we get that

0 ≤
n∑

k=1

(t(B)− t(Ak)) . (5)

For 1 ≤ i ≤ ℓ, let mi denote the number of blocks of size i in B. Notice that

n∑
k=1

∑
B∈Γk

(w|B|−1 − w|B|) =
ℓ∑

i=2

i ·mi · (wi−1 − wi) , (6)

since each block B ∈ B of size i belongs to sets Γk for i different values of k.
Next, note that (since each block in B is good for x) if a block B ∈ B that does not contain k

is not good for xk, then either f(xB) ̸= f((xk)B), or for some j ∈ B, f(xB\{j}) ̸= f((xk)B\{j}).
Since for any block A we have (xk)A = (xA)k, we get that any block B ∈ B of size i can be
not good for xk for at most s(f)− i+ i(s(f)− 1) ≤ s(f)(i+ 1) different values of k.

Thus, if s(f) ≤ s, combining equations 4, 5, and 6 we get

0 ≤
ℓ∑

i=1

mi · wi · s · (i+ 1)−
ℓ∑

i=2

i ·mi · (wi−1 − wi) . (7)

Now, set wℓ = 1 and wi = w for 1 ≤ i ≤ ℓ− 1. (We will fix the value of w later.) Then (7)
gives

0 ≤ sw

(
ℓ−1∑
i=1

mi(i+ 1)

)
+mℓs(ℓ+ 1)− ℓmℓ(w − 1) .

Using that i+ 1 ≤ ℓ inside the sum and rearranging, we get

8

mℓ(ℓw − ℓ− s− ℓs) ≤ sℓw

(
ℓ−1∑
i=1

mi

)
.

This gives mℓ ≤
(∑ℓ−1

i=1 mi

)
sℓw

ℓw−ℓ−s−ℓs
and

t(B) = mℓ + w

ℓ−1∑
i=1

mi ≤

(
ℓ−1∑
i=1

mi

)(
w +

sℓw

ℓw − ℓ− s− ℓs

)
. (8)

Let Nℓ denote the maximum possible cardinality of the set BRf
x,ℓ for any x ∈ {0, 1}n

and any Boolean function f with sensitivity at most s. Let f ∗ and x∗ denote the function
and input where this maximum is achieved for ℓ. Note that by definition, if mi denotes the
number of blocks of size i in BRf∗

x∗,ℓ, then
∑ℓ

i=1mi = Nℓ and
∑ℓ−1

i=1 mi ≤ Nℓ−1.
Since (8) holds for any Boolean function f with sensitivity at most s, repeating the above

argument with f ∗ and x∗ in mind, by (8) and (3) we get

Nℓ ≤ Nℓ−1

(
w +

sℓw

ℓw − ℓ− s− ℓs

)
.

Setting w = 3s gives Nℓ ≤ 6sNℓ−1 for ℓ ≥ 2. Since N1 ≤ s, we get Nℓ ≤ (6s)ℓ. It remains to
note that for any Boolean function f : {0, 1}n → {0, 1}, any x ∈ {0, 1}n and any 1 ≤ ℓ ≤ n,

Nbrℓ(f, x) = |BRf
x,ℓ| ≤ Nℓ,

and the statement of the theorem follows.

3 A New Characterization of Block Sensitivity
One could ask what happens if we insist on disjoint bricks, and one could consider defining
the disjoint brick number denoted dbr(f, x). We note that this definition is equivalent to
block sensitivity.

Observation 3.1. For any Boolean function f : {0, 1}n → {0, 1} and any input x ∈ {0, 1}n
we have dbr(f, x) = bs(f, x) and dbrℓ(f, x) = bsℓ(f, x).

Proof. To see this, first note that since each minimal sensitive block is also a brick, we
immediately have that dbr(f, x) ≥ bs(f, x). The perhaps more interesting (but still simple)
direction is that bs(f, x) ≥ dbr(f, x) also holds: Let B be a brick of f for x. This implies
that there is a subset B′ ⊆ B (where possibly B′ = B) such that f(xB′

) ̸= f(x). This in turn
implies that there is a subset B′′ ⊆ B′ (where possibly B′′ = B′) such that B′′ is a minimal
sensitive block of f for x. Since if two blocks are disjoint, then their subsets are also disjoint,
we get that bs(f, x) ≥ dbr(f, x). By the same reasoning as above dbrℓ(f, x) = bsℓ(f, x).

Furthermore, we observe that this argument extends to considering arbitrary blocks where
the function value is not constant on the corresponding subcube.

9

Given an input x ∈ {0, 1}n and a subset of coordinates B ⊆ [n], we denote by x[n]\B the
(n− |B|)-bit string that agrees with x on coordinates outside B. For y ∈ {0, 1}|B| we denote
by x[n]\B|y the n-bit string that agrees with x on coordinates outside B and agrees with y
on coordinates in B. We denote by fB,x the sub-function fB,x : {0, 1}|B| → {0, 1} defined as
fB,x(y) = f(x[n]\B|y).

Observation 3.2. For any Boolean function f : {0, 1}n → {0, 1} and any input x ∈ {0, 1}n,
the block sensitivity bs(f, x) is equal to the size of the largest collection Cx of pairwise disjoint
subsets of [n], such that for each subset B ∈ Cx the sub-function fB,x is not constant.
Furthermore, the ℓ-block sensitivity bsℓ(f, x) is equal to the largest number of pairwise disjoint
subsets of size at most ℓ such that for each subset B, the corresponding sub-function fB,x is
not constant.

The proof is similar to the proof of the previous observation.
Thus, one could equivalently define the block sensitivity of f at input x as the largest

number of pairwise disjoint bricks of f for x, and we could also equivalently define block
sensitivity of f at x as the largest number of pairwise disjoint subsets resulting in non-constant
sub-functions fB,x. Furthermore, these equivalences extend to ℓ-block sensitivity.

4 Brick Numbers vs Block Numbers
It is interesting to note that while considering disjoint bricks we get a measure that turns
out to be equivalent to block sensitivity, brick number and block number (both allowing
overlapping blocks) can be very different. Since every minimal sensitive block is also a brick,
we have

Nbrℓ(f, x) ≥ Nbsℓ(f, x),

as well as Nbr(f, x) ≥ Nbs(f, x) and Nbr(f) ≥ Nbs(f).
On the other hand, the brick number can be significantly larger than the block number.

Consider the parity function, PARITY, where PARITY(x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn. For
any x ∈ {0, 1}n note that PARITY is sensitive to every bit of x. Thus, the only minimal
sensitive blocks are the sets of size 1, implying

Nbs(PARITY, x) = Nbs1(PARITY, x) = n.

But we note that every nonempty set is a brick of PARITY for any input x. Thus, the
ℓ-brick number is the number of nonempty subsets of [n] of size at most ℓ, and we have
Nbrℓ(f, x) =

∑ℓ
i=1

(
n
i

)
, and

Nbr(PARITY, x) = Nbrn(PARITY, x) = 2n − 1.

For the special case of monotone functions, the brick number is the same as the block
number.

Lemma 4.1. For any monotone Boolean function f : {0, 1}n → {0, 1} and any input
x ∈ {0, 1}n, we have Nbr(f, x) = Nbs(f, x) and Nbrℓ(f, x) = Nbsℓ(f, x).

10

Proof. For any x ∈ {0, 1}n let Onex and Zerox be the partition of {1, . . . , n} where Onex is
the set of indices of x that are 1 and similarly Zerox is the set of indices of x that are 0.

The following simple observation follows directly by the definition of monotone functions.

Observation 4.2. For a monotone Boolean function f , if x, y, z ∈ {0, 1}n are such that
Onex ⊊ Oney ⊊ Onez then it cannot be that f(x) = f(z) but f(x) ̸= f(y).

Now we have the following claim:

Claim 4.3. If f : {0, 1}n is a monotone function then for any x, if B is a brick for x, then
either B ⊆ Zerox or B ⊆ Onex.

Proof. Assume the contrary, and let B be a brick for x, with B∩Zerox ≠ ∅ and B∩Onex ̸= ∅.
Let i ∈ B ∩ Zerox and j ∈ B ∩ Onex be two such indices. By the definition of a brick,
f(xB\{j}) ̸= f(xB) and f(xB\{i}) ̸= f(xB). That is f(xB\{j}) = f(xB\{i}).

But notice that OnexB\{i} = OnexB \ {i} and OnexB = OnexB\{j} \ {j}. Thus,

OnexB\{i} ⊊ OnexB ⊊ OnexB\{j} .

Observation 4.2 says that this is impossible for a monotone function f .

Using the above claim we will be able to complete the proof of the lemma. We will show
that if f : {0, 1}n is a monotone Boolean function then for any x ∈ {0, 1}n, if B is a brick for
x then B is a minimal sensitive block for x.

Let B be a brick for x. Assume that B ⊆ Zerox, which means that Onex ⊊ OnexB . By
Claim 4.3, the only remaining case is that B ⊆ Onex, which can be handled analogously.

If |B| = 1 (say B = {i}), then, by the definition of a brick, f(xB) ̸= f(xB\{i}) = f(x) and
thus clearly B is a minimal sensitive block.

Next if |B| ≥ 2, let i ∈ B. Then by the definition of a brick f(xB) ̸= f(xB\{i}). Also,
observe that Onex ⊊ OnexB\{i} ⊊ OnexB . So by Observation 4.2 it must be that f(x) ̸= f(xB).
Thus, any brick for x is a sensitive block.

Finally, we show that any brick for x is also a minimal sensitive block. The arguments
are similar. Let A ⊊ B be a smaller sensitive block. Thus, f(xA) ̸= f(x) and f(xA) = f(xB)
(since we just proved that f(x) ̸= f(xB). But by the definition of a brick, we know that
|B \A| ≥ 2, else A = B \{i} and in that case f(xB) ̸= f(xB\{i}) = f(xA). Thus, let j ∈ B \A,
with A ⊊ B \ {j}. So we have f(xA) = f(xB) ̸= f(xB\{j}). But OnexA ⊊ OnexB\{j} ⊊ OnexB

and this cannot be possible by Observation 4.2. So B must be a minimal sensitive block.

Recall that we observed yet another characterization of block sensitivity of f at x as the
largest number of pairwise disjoint blocks resulting in non-constant sub-functions fB,x. While
considering pairwise disjoint blocks with this property is again equivalent to block sensitivity,
the number of possibly overlapping blocks yielding non-constant sub-functions can be much
larger than either the brick number or the block number. In contrast to brick number and
block number, this is not bounded by any polynomial function of sensitivity for block sizes
up to fixed ℓ, and can be as large as 2Ω(s(f)ℓ). Please see Section C for more details.

11

5 Tightness of Our Result
Since bs(f) ≤ O(deg(f))2 [17], as a consequence of Huang’s proof of the sensitivity conjecture
[10] we know that bs(f) ≤ O(s(f)4). This implies that bsℓ(f) ≤ O(s(f)4) for all ℓ.

In contrast, we argue that our bounds on ℓ-block numbers and ℓ-brick numbers (considering
non-disjoint minimal sensitive blocks and non-disjoint bricks) are close to tight, and the block
number (as well as the brick number) can be an exponential function of sensitivity.

Consider the threshold function, Thresholdnt : {0, 1}n → {0, 1}, defined as

Thresholdnt (x) = 1 iff |x| ≥ t,

where |x| denotes the number of 1-s in x (the Hamming weight of x). We know that for any
t ≥ 1, s(Thresholdnt) = max(t, n− t) = Θ(n).

In contrast, both the block number and the brick number of Thresholdnt heavily depend
on t. For any x, with |x| < t a block S is a brick for x if and only if |xS| = t and if |x| ≥ t
then a block S is a brick for x if and only if |xS| = (t− 1). Notice that this means that each
brick of a threshold function is also a minimal sensitive block. Thus, in the special case of
threshold functions, the brick numbers are equal to the corresponding block numbers. (In
fact, this property holds for any monotone function, as noted in Lemma 4.1.) We get that for
any x, with t− ℓ ≤ |x| < t,

Nbrℓ(Threshold
n
t , x) ≥

(
n− |x|
t− |x|

)
Similarly, if t ≤ |x| < t+ ℓ

Nbrℓ(Threshold
n
t , x) ≥

(
|x|

|x| − t+ 1

)
.

Thus, for ℓ ≤ min(t, n− t+ 1) we have

Nbrℓ(Threshold
n
t) ≥ max

{(
t+ ℓ− 1

ℓ

)
,

(
n− t+ ℓ

ℓ

)}
.

If t is constant then the brick number, and thus the block number, of Thresholdnt are
polynomially related to its sensitivity. However, if t is large say ⌊n/2⌋, then the brick number
and block number can be a super-polynomial function of sensitivity.

The TRIBES function illustrates that our results are tight up to constant factors for every
fixed ℓ. The function TRIBES(w,s) : {0.1}ws → {0, 1} is defined as

TRIBES(w,s)(x) =
w∧
i=1

s∨
j=1

xij,

where x = x11 . . . x1sx21 . . . x2s . . . xw1 . . . xws. The sensitivity of TRIBES(
√
n,
√
n) is

√
n. Now

consider the input x where for all (ℓ + 1) ≤ i ≤
√
n, xi1 = 1 and rest of the bits are 0.

Clearly, TRIBES(
√
n,
√
n)(x) = 0 and a block B is sensitive if and only if for all 1 ≤ i ≤ ℓ the

set {xi1, . . . , xi
√
n} has a non-zero intersection with B. Thus, the number of minimal sensitive

12

blocks of size ℓ for x is
√
n
ℓ. Hence, the ℓ-block number for TRIBES(

√
n,
√
n) is at least

√
n
ℓ.

Hence,
Nbrℓ(TRIBES(

√
n,
√
n)) ≥ Nbsℓ(TRIBES(

√
n,
√
n)) ≥ s(TRIBES(

√
n,
√
n))

ℓ.

Both the TRIBES function and the Threshold function are monotone. Hence for both of
these functions fractional block sensitivity is the same as sensitivity and also the ℓ-brick
number is the same as the ℓ-block number. Thus, for both functions the upper bound on
the ℓ-block number of [13] is also tight. However for the Rubinstein function [18] sensitivity
is O(

√
n) but fractional block sensitivity is Θ(n), and the upper bound on ℓ-block number

obtained by [13] is (O(n))ℓ, whereas our upper bound is (O(
√
n))ℓ.

6 Bounds on Decision Tree Size and DNF Size
First we discuss some definitions and notation. Additional (standard) definitions related to
decision trees can be found in Appendix A.

Definition 6.1 (Cover Number by Monochromatic Subcubes). Let f : {0, 1}n → {0, 1} be a
Boolean function. A subcube of {0, 1}n is a set of inputs obtained by fixing some subset of
variables and leaving the others free. Formally, for a partial assignment p ∈ {0, 1, ∗}n, define

C(p) = {x ∈ {0, 1}n : ∀i (pi ̸= ∗ ⇒ xi = pi) }.

We say that C(p) is a 1-subcube of f if f(x) = 1 for all x ∈ C(p).
A collection of 1-subcubes C = {C(p1), C(p2), . . . , C(pt)} is said to cover f−1(1) if f−1(1) =⋃t

i=1C(pi).
The 1-cover number of f , denoted Cov1(f), is the minimum number of 1-subcubes needed

to cover all 1-inputs of f .
Similarly, the 0-cover number of f , denoted Cov0(f), is defined as the minimum number

of 0-subcubes needed to cover all 0-inputs of f :
Finally, the cover number of f is defined as Cov(f) = Cov0(f) + Cov1(f)..

Relation to DNF Size Here we refer to DNF size (denoted DNFSize) as the number of
terms of the DNF and to CNF size (denoted CNFSize) as the number of clauses of the CNF.
A DNF representation of size s for f gives a 1-cover of f with s 1-subcubes. On the other
hand, a 1-cover of f with s 1-subcubes gives a DNF of size s for f .

Similarly, we have a DNF of size t for ¬f if and only if there is a 0-cover of f with t
0-cubes. By De Morgan rules, there is a DNF of size t for ¬f if and only if there is a CNF of
size t for f . Thus we have the following observation.

Observation 6.2. DNFSize(f) = Cov1(f) and CNFSize(f) = Cov0(f).

Relation to Decision Tree Size Every leaf of a deterministic decision tree computing f
corresponds to a monochromatic subcube of {0, 1}n (all inputs reaching that leaf share the
same function value). Hence, any decision tree of size s yields a cover of both f−1(1) and
f−1(0) by at most s subcubes.

13

Thus, the cover number of f provides a lower bound on the deterministic decision tree
size, and an upper bound on DNF size (and CNF size):

DSize(f) ≥ Cov(f) ≥ DNFSize(f).

The following theorem of Ehrenfeucht and Haussler [7] upper bounds the deterministic
decision tree size by a function of the cover number.

Theorem 6.3. [[7], see also Theorem 14.32 in [11]] For any Boolean function f : {0, 1}n →
{0, 1}

DSize(f) = O((Cov(f))2 log n).

Using this theorem, Chattopadhyay et al. [5] gave the following upper bound on the
deterministic decision tree size by randomized decision tree size.

Theorem 6.4. [5] For any Boolean function f : {0, 1}n → {0, 1},

log(DSize(f)) = O((log(RSize 1
3
(f)))4 log3 n).

They achieved proving this in two steps, and then using Theorem 6.3.
(1) They proved an upper bound on the block number in terms of randomized decision

tree size.
Nbs(f) ≤ O(RSize 1

3
(f)2 logn). (9)

(2) They proved the following upper bound on the cover number

Cov(f) ≤ nRSize 1
3
(f)2 log(Nbs(f)). (10)

This together with their bound in step (1) gives

log(Cov(f)) = O((log(RSize 1
3
(f)))2 log n) (11)

Using our upper bound on block number (Theorem 1.5), we obtain the following bounds
on the cover number and on the deterministic decision tree size respectively, in terms of the
randomized decision tree size and sensitivity.

Theorem 6.5. For any Boolean function f : {0, 1}n → {0, 1},

log(Cov(f)) = O(s(f) log(s(f)) log(RSize 1
3
(f))

Theorem 6.5 follows by using our upper bound on the block number from Theorem 1.5 in
Equation 10.

Theorem 6.6. For any Boolean function f : {0, 1}n → {0, 1},

log(DSize(f)) = O(s(f)2(log(s(f))2(logRSize 1
3
(f))2 log n).

14

Theorem 6.6 follows by combining Theorem 6.3 and Theorem 6.5.
The upper bounds obtained by [5] are in terms of randomized decision tree size alone, while

our upper bounds on decision tree and DNF size are in terms of sensitivity and randomized
decision tree size together. It is natural to consider what bounds can we obtain in terms of
sensitivity alone. Upper bounds on decision tree size in terms of sensitivity alone follow by
bounds on decision tree depth, denoted D(f), since DSize(f) ≤ 2D(f). Huang’s breakthrough
work [10] (upper bounding degree by the square of sensitivity) together with [15], where
D(f) is upper bounded by the cube of the degree, imply that for any Boolean function
f : {0, 1}n → {0, 1}

log(DSize(f)) = O(s(f)6). (12)

We observe that our Theorem 6.6 may give better upper bounds on deterministic decision
tree size, compared to both Theorem 6.4 and Equation 12, depending on the relation
between randomized decision tree size and sensitivity. We get improved bounds compared to
Theorem 6.4 when sensitivity is small with respect to the logarithm of randomized decision
tree size. Notice that this is the case for example when sensitivity is small with respect to
randomized query complexity. Comparing with Equation 12 we get better bounds as long
as the logarithm of randomized decision tree size is smaller (by at least logarithmic factors)
than O(s(f)2).

Similarly, our Theorem 6.5 may give better upper bounds on DNF and CNF size compared
to Equation 11 obtained by [5] when sensitivity is small with respect to the logarithm of
randomized decision tree size. Considering upper bounds in terms of sensitivity alone, one
can upper bound DNF size in terms of sensitivity by noticing that log of DNF size is at most
O(log n) times the certificate complexity of the function, which by Huang’s result is at most
O(s(f)5). Thus, for any Boolean function f : {0, 1}n → {0, 1}

log(DNFSize(f)) = O(s(f)5 log n). (13)

Our Theorem 6.5 gives better bounds on DNF size as long as the logarithm of randomized
decision tree size is smaller (by at least logarithmic factors) than O(s(f)4).

In Appendix B we construct a Boolean function whose sensitivity is significantly smaller
than the logarithm of the randomized decision tree size, which in turn is significantly smaller
than O(s(f)2). This shows that our results may yield stronger upper bounds on deterministic
decision tree size and DNF size, compared to previous bounds.

References
[1] Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal.

Degree vs. approximate degree and quantum implications of Huang’s sensitivity theorem.
In STOC, pages 1330–1342. ACM, 2021.

[2] Andris Ambainis and Xiaoming Sun. New separation between s(f) and bs(f). Electron.
Colloquium Comput. Complex., TR11-116, 2011.

[3] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

15

[4] Sourav Chakraborty. On the sensitivity of cyclically-invariant boolean functions. Discret.
Math. Theor. Comput. Sci., 13(4):51–60, 2011.

[5] Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Radhakrishnan,
and Swagato Sanyal. Randomized versus deterministic decision tree size. In STOC,
pages 867–880, 2023.

[6] Siddhesh Chaubal and Anna Gál. New constructions with quadratic separation between
sensitivity and block sensitivity. In FSTTCS, volume 122, pages 13:1–13:16, 2018.

[7] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples.
Inf. Comput., 82(3):231–246, 1989.

[8] Parikshit Gopalan, Rocco A. Servedio, and Avi Wigderson. Degree and sensitivity: Tails
of two distributions. In CCC, volume 50 of LIPIcs, pages 13:1–13:23, 2016.

[9] Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the sensitivity
conjecture. Theory Comput., 4:1–27, 2011.

[10] Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture.
Annals of Mathematics, 190 (3), 2019.

[11] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27.
Springer, 2012.

[12] Claire Kenyon and Samuel Kutin. Sensitivity, block sensitivity, and l-block sensitivity of
boolean functions. Inf. Comput., 189(1):43–53, 2004.

[13] Raghav Kulkarni and Avishay Tal. On fractional block sensitivity. Chic. J. Theor.
Comput. Sci., 2016, 2016.

[14] Sophie Laplante, Reza Naserasr, and Anupa Sunny. Sensitivity lower bounds from linear
dependencies. In MFCS, volume 170, pages 62:1–62:14, 2020.

[15] Gatis Midrijanis. On randomized and quantum query complexities, 2005.

[16] Noam Nisan. CREW prams and decision trees. SIAM J. Comput., 20(6):999–1007, 1991.

[17] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.
Comput. Complex., 4:301–313, 1994.

[18] David Rubinstein. Sensitivity vs. block sensitivity of boolean functions. Comb., 15(2):297–
299, 1995.

[19] Michael Saks and Avi Wigderson. Probabilistic boolean decision trees and the complexity
of evaluating game trees. In FOCS, pages 29–38, 1986.

[20] Avishay Tal. Properties and applications of boolean function composition. In ITCS,
pages 441–454. ACM, 2013.

[21] Madars Virza. Sensitivity versus block sensitivity of boolean functions. Inf. Process.
Lett., 111(9):433–435, 2011.

16

A Additional Definitions
Definition A.1 (Deterministic Decision Tree Size). Let f : {0, 1}n → {0, 1} be a Boolean
function. A deterministic decision tree for f is a rooted binary tree where:

• each internal node is labeled with an input variable xi;

• the two outgoing edges correspond to the two possible values of xi: one for xi = 0 and
one for xi = 1;

• each leaf is labeled with an output value in {0, 1}.

The tree computes f if, for every input x ∈ {0, 1}n, the value f(x) equals the label of the leaf
reached by following the path determined by the bits of x.

The size of a decision tree is the number of leaves (or equivalently, the number of nodes)
in the tree. The deterministic decision tree size of f , denoted DSize(f), is the minimum size
among all deterministic decision trees that compute f :

DSize(f) = min
T computes f

size(T).

The deterministic decision tree depth of f , denoted D(f), is the minimum depth of a
deterministic decision tree computing f . While DSize(f) captures the overall size of a decision
procedure, D(f) measures the worst-case number of variable queries.

Definition A.2 (Randomized Decision Tree Size). A randomized decision tree for f :
{0, 1}n → {0, 1} is a probability distribution T over deterministic decision trees, such that
for every input x ∈ {0, 1}n,

Pr
T∼T

[T (x) = f(x)] ≥ 2/3,

where the probability is over the random choice of the tree T from the distribution T .
The size of a randomized decision tree T is defined as the expected size of a tree drawn

from T :
size(T) = ET∼T [size(T)].

The randomized decision tree size of f , denoted RSize 1
3
(f), is the minimum expected size over

all distributions T that compute f with error at most 1/3:

RSize 1
3
(f) = min

T
ET∼T [size(T)] subject to Pr

T∼T
[T (x) = f(x)] ≥ 2

3
for all x.

B Examples of Functions with Improved Bounds on
Decision Tree Size and DNF Size

Let us first consider the function AND-OR-treen : {0, 1}n → {0, 1}.

17

Definition B.1 (AND-OR-tree Function). For any n that is a power of 2, that is, n = 2t

for some integer t, the AND-OR-treen function is a Boolean function defined by a complete
binary tree whose internal nodes alternate between ∧ (AND) and ∨ (OR) gates, and whose
leaves correspond to the input variables.

Formally, for height h ≥ 0, define the function Th : {0, 1}2h → {0, 1} recursively by

T0(x1) = x1,

Th(x1, . . . , x2h) =

Th−1(x1, . . . , x2h−1) ∧ Th−1(x2h−1+1, . . . , x2h) if h is even,

Th−1(x1, . . . , x2h−1) ∨ Th−1(x2h−1+1, . . . , x2h) if h is odd.

For instance, T1(x1, x2) = x1 ∨ x2, and

T2(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x3 ∨ x4).

We make the following observation.

Observation B.2. s(AND-OR-treen) = Θ(
√
n).

Proof. Recall that s0(f) and s1(f) denote maximum sensitivity over 0-inputs and 1-inputs,
respectively. The statement follows from the fact that for f and g over disjoint sets of input
variables, s1(f ∨ g) = max{s(f), s(g)}, while s0(f ∨ g) = s(f) + s(g). On the other hand,
s0(f ∧ g) = max{s(f), s(g)} while s1(f ∧ g) = s(f) + s(g).

Since the AND-OR-tree function has alternate compositions of ∨ and ∧ over disjoint inputs
we obtain the bound on s(AND-OR-treen).

It was proved in [19] that RSize 1
3
(AND-OR-treen) = 2Õ(n0.753...). [5] proved a nearly

matching lower bound, showing that log(RSize 1
3
(AND-OR-treen)) = Θ̃(n0.753...).

For our example we compose this function with the addressing function.

Definition B.3. The “addressing function” ADDRESSk : {0, 1}k+2k → {0, 1} is defined as

ADDRESSk(x1 . . . xky0 . . . y2k−1) = y<x1,...,xk>

where < x1, . . . , xk > is the unique natural number between 0 and 2k − 1 whose binary
representation is x1 . . . xk.

The addressing function ADDRESSk has sensitivity (k + 1) and its randomized query
complexity is Θ(k) (since randomized query complexity is at least sensitivity [16] and at most
deterministic query complexity).

The definition of function composition is given below.

Definition B.4 (Composition of Boolean Functions). Let f : {0, 1}m → {0, 1} and g :
{0, 1}n → {0, 1} be Boolean functions. The composition of f and g, denoted f ◦ g, is the
Boolean function on mn variables defined as follows.

For an input
x = (x1,1, x1,2, . . . , x1,n, x2,1, . . . , xm,n) ∈ {0, 1}mn,

18

partition the input into m consecutive blocks:

xi = (xi,1, xi,2, . . . , xi,n) for i = 1, 2, . . . ,m.

Then
(f ◦ g)(x) = f

(
g(x1), g(x2), . . . , g(xm)

)
.

In words, we first apply g to each block of n inputs, obtaining m intermediate bits, and then
apply f to these bits.

Consider the composed function of ADDRESSk : {0, 1}k+2k → {0, 1} and AND-OR-treet :
{0, 1}t → {0, 1}. We make the following observations:

Observation B.5. The function ADDRESSk◦AND-OR-treet is a function from {0, 1}t(k+2k) →
{0, 1} and

1. s(ADDRESSk ◦ AND-OR-treet) = O(k
√
t)

2. log(RSize 1
3
(ADDRESSk ◦ AND-OR-treet)) = Θ̃(t0.753...)

where the tilde hides a polynomial factor of log(t(k + 2k)).

Proof. The upper bound on sensitivity is obtained from the fact that s(f ◦ g) ≤ s(f)s(g) [20].
The bounds on logRSize 1

3
follow by the fact that

max{RSize 1
3
(f),RSize 1

3
(g)} ≤ RSize 1

3
(f ◦ g) ≤ O(RSize 1

3
(f) · RSize 1

m
(g))

≤ O(RSize 1
3
(f) · (RSize 1

3
(g))logm),

where m is the arity of the function f . The first inequality follows from the fact that each
query made in the randomized decision tree of f can be replaced by a randomized decision
tree of g with the error made sufficiently low so that the eventual error is still low (even after
union bound over the queries made on any path of the decision tree of f which is of length at
most m). The second inequality follows by the standard technique of reducing the error of
the randomized decision tree by repeating and then taking majority.

Using Observation B.5, from our theorem (Theorem 6.6) we get the following.

Corollary B.6. Set k such that k + 2k = n2/3 and t = n1/3. Then the function ADDRESSk ◦
AND-OR-treet is a function from {0, 1}n → {0, 1}, and

log(DSize(ADDRESSk ◦ AND-OR-treet)) = Õ(n0.835...).

To see this, note that using Observation B.5 and Theorem 6.6 gives that

log(DSize(ADDRESSk ◦ AND-OR-treet)) = Õ((k
√
t)2(t0.753...)2)

where the tilde hides a polynomial factor of log(t(k + 2k)) = log n.

19

Next we note that the upper bounds obtained by both previous methods for this function
are trivial.

1. The upper bound on log(DSize(ADDRESSk◦AND-OR-treet)) obtained from Theorem 6.4
is Õ((t0.753...)4) = Õ(t3.012...) which gives Õ((n1/3)3.012...) > n.

2. The upper bound obtained on log(DSize(ADDRESSk ◦AND-OR-treet)) via Equation 12
is O((k

√
t)6) > n.

Similarly, we can also get settings where our Theorem 6.5 gives nontrivial upper bounds
on DNF size, while the bounds by Equation 11 and Equation 13 are trivial.

Corollary B.7. Set k such that k + 2k = n1/3 and t = n2/3. Then the function ADDRESSk ◦
AND-OR-treet is a function from {0, 1}n → {0, 1}, and

log(DNFSize(ADDRESSk ◦ AND-OR-treet)) = Õ(n0.835...).

To see this, note that using Observation B.5 and Theorem 6.5 gives that

log(DNFSize(ADDRESSk ◦ AND-OR-treet)) = Õ(k
√
t(t0.753...))

where the tilde hides a polynomial factor of log(t(k + 2k)) = log n. On the other hand, Equa-
tion 11 only gives a bound of the form Õ((t0.753...)2) = Õ(t1.506...) which gives Õ((n2/3)1.506...) >

n. Using Equation 13 gives Õ((k
√
t)5) = Õ(n5/3) > n.

In the above discussion we compared bounds on the logarithm of decision tree and
logarithm of DNF size with those that follow from previous bounds, and ignored polylog n
factors. This was enough for illustrating that our results may give nontrivial bounds while
previous methods would only give trivial bounds. We would like to note that translating to
decision tree size and DNF size our bounds may be exponentially smaller than those that
follow from previous methods, even when previous methods give nontrivial bounds.

C Number of Non-constant Sub-functions vs. Sensitivity
Consider the addressing function ADDRESSk defined in Definition B.3. In this section we
omit the subscript k from notation. For ease of presentation, a subset of the indices of the
input will be described as a subset of {x1, . . . , xk, y1, . . . , y2k}.

Observe that the sensitivity of the ADDRESS function is (k + 1). But observe that for
any x ∈ {0, 1}k if B is any subset of {x1, . . . , xk, y1, . . . , y2k} such that {x1, . . . , xk} ⊂ B and
B ∩ {y1, . . . , y2k} ≠ ∅, then the function ADDRESSB,x is not constant (recall the notation
fB,x from Section 3). This is because for some setting of the address variables x1, . . . , xk

the function value will be the value of the variable in B ∩ {y1, . . . , y2k}. Thus, the number
of possibly overlapping ℓ-size blocks yielding non-constant sub-functions for the ADDRESS
function is the number of subsets B of size ℓ that contain all x-variables and at least one
y-variable. It is easy to see that for any ℓ > k, the number of such sets is equal to

∑ℓ−k
i=1

(
2k

i

)
.

Thus, for the ADDRESS function and ℓ ≥ s(ADDRESS), for any x ∈ {0, 1}k+2k the number
of possibly overlapping blocks of size ℓ yielding non-constant sub-functions is as large as
2Ω(k(ℓ−k)), where k = s(ADDRESS)− 1.

20

Thus, unlike our main results (theorems 1.5 and 2.3) for the block number and brick
number, a similar upper bound on the number of possibly overlapping blocks yielding non-
constant sub-functions is not possible in terms of sensitivity. In contrast, as we noted in
Section 1.1, considering disjoint blocks for a given input x all three notions

• the maximum number of disjoint blocks with non-constant sub-functions fB,x

• the maximum number of disjoint bricks for x

• the maximum number of disjoint minimal sensitive blocks for x

are equal to the block sensitivity of f at x.

21
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

