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Abstract

We introduce the SHEDAG (Somewhere Honest Entropic sources over Directed
Acyclic Graphs) source model, a general model for multi-block randomness sources with
causal correlations. A SHEDAG source is defined over a directed acyclic graph (DAG)
G whose nodes output n-bit blocks. Blocks output by honest nodes are independent
(by default uniformly random, more generally having high min-entropy), while blocks
output by corrupted nodes are arbitrary functions of their causal views (all predecessors

in G). We tightly characterize the conditions under which randomness extraction from
SHEDAG sources is possible.

Zero-error extraction: We show that perfect extraction from SHEDAG sources with
t corruptions is possible if and only if G' contains an “unrelated set” (an antichain
under reachability) of size at least ¢ + 1. Conversely, if every unrelated set has
size at most ¢, we show that no function can output a perfectly uniform bit. We
also provide a polynomial-time algorithm to find a maximum unrelated set, thus
efficiently identifying the largest corruption threshold ¢ allowing perfect extraction.

Negligible-error extraction: We identify a quantity that we call “resilience” of a
DAG G, denoted res(G), that characterizes the possibility of randomness extrac-
tion with negligible error (in the block length). We show that negligible-error
extraction is impossible whenever ¢ > res(G), and, to complement this, for every
t < res(G) we construct explicit extractors with polynomial output length and
negligible error.

Our results generalize prior online source models studied by (Aggarwal, Obremski,
Ribeiro, Siniscalchi, Visconti, Eurocrypt 2020) and (Chattopadhyay, Gurumukhani,
Ringach, FOCS 2024), which correspond to the special case of a SHEDAG source
whose DAG G is a path.
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1 Introduction

Randomness is a fundamental resource across computer science. It can help speed up algo-
rithms significantly and simplify and speed up interactive and distributed protocols. Ran-
domness is inherent to cryptography, and many cryptographic tasks are impossible without
uniform randomness. Conceptually, two of the most fundamental questions in this area are:

e How to model weak randomness to mimic the behavior of real systems?
e When is it possible to convert such weak randomness into uniform randomness?

Decades of work has established both the power and limitations of deterministic extraction:
for many natural models of sources (such as min-entropy sources) exact extraction is impos-
sible, motivating both the study of structured models and relaxed goals that capture useful
properties that can still be achieved.

A large body of work has studied sequential and block-structured weak sources. Clas-
sical Santha-Vazirani and Chor-Goldreich sources [SV86, CG88| capture bounded unpre-
dictability per bit/symbol. More recently, sources tailored to online settings (e.g., model-
ing communication in protocols) where honest blocks are mixed with adversarial ones that
may depend arbitrarily on the past, were formalized as SHELA sources [AOR"20]. These
sources have been studied both from the perspective of building randomness extractors
and randomness condensers. For Chor-Goldreich sources, errorless condensing is impossi-
ble [GP20]|, while non-trivial condensing with error was shown for certain regimes with very
small block lengths [DMOZ23, GLZ24|. For online and non-oblivious symbol-fixing models
(oNOSF/NOSF), sharp condensing thresholds and separations from extraction have recently
been established [CGR24, CGRS24].

1.1 Owur contributions

We introduce the SHEDAG source model, where “SHEDAG” stands for “Somewhere Honest
Entropic sources over Directed Acyclic Graphs”. A SHEDAG source is parameterized by a
DAG G = (V, FE) whose nodes each output an n-bit block, and a corruption threshold ¢. The
nodes of (G are partitioned into set of honest nodes and a set of at most ¢t corrupted nodes.
The blocks output by honest nodes are independent of each other, while the block output
by a corrupted node is an arbitrary function of their causal view (all predecessors along
directed paths). Unless otherwise stated, in this work we assume that the blocks output by
honest nodes are uniformly distributed. This DAG abstraction generalizes SHELA sources
(the corresponding DAG being a path), and captures causal signal propagation and general
dependency structures (a special case of Bayesian networks).

We now formally define the SHEDAG source model. Before that, we define some basic
notions related to DAGs.

Given a directed acyclic graph (DAG) G = (V, E) we denote the in-degree and out-degree
of a vertex v € V' by in-deg(v) and out-deg(v), respectively.

Definition 1 (View of a vertex). Given a DAG G = (V, E) and a vertex v € V, the view
of v (in G), denoted view(v), is the set of all vertices u for which there is a path from u to
vin G.



Definition 2 (SHEDAG source). Fiz a DAG G = (V, E) with vertex set V.= [N]. Then,
X = (Xy,...,Xy) is said to be an (n,k,G,t)-SHEDAG source if there is a subset S CV of
size at most t such that

1. {X;}iev\s are independent (n, k)-sources;'
2. For every j € S there is a possibly randomized function f; (using fresh independent
randomness) such that

X=Xy X5),
where view(j) = {j1,. .., Je}-

We call G the base graph of X. When X; for i & S are uniformly random over {0,1}", we
say that X is an (n,G,t)-SHEDAG source.

Remark 1. When the base graph G = (V, E) has edge set E = {(i,i+ 1) : i € [N — 1]} (see
Figure 1), we recover the SHELA source model from [AOR™20].

)=l - (]

Figure 1: Base graph of a SHELA source from [AOR™'20].

Definition 3 (Extractor for SHEDAG sources). We say that a function Ext : ({0,1}")N —
{0,1}™ is an (n,k,G,t,e)-extractor for SHEDAG-sources if A(Ext(X) ; U,,) < € for every
(n,k,G,t)-SHEDAG source X, where A denotes statistical distance and U, denotes the
uniform distribution over {0,1}™.

We study randomness extraction from SHEDAG sources, with a focus on zero-error and
negligible-error extraction (here, “negligible” means negligible in the source block length n, as
usual in the randomness extraction literature). Zero-error extraction is of mostly theoretical
interest — it is a nice starting point for understanding SHEDAG sources because it leads to
a particularly clean landscape. Negligible-error extraction is highly relevant for applications
in cryptography. Namely, we are interested in understanding the following:

e For which tuples (n, G, t) of block length, base graph, and corruption threshold is there
a zero-error /negligible-error randomness extractor for the class of all (n, G, t)-SHEDAG
sources?

e In cases where randomness extraction is possible, can we construct explicit extractors
with matching parameters?

In both the zero-error and negligible-error settings, we completely characterize the pa-
rameters (n,G,t) for which randomness extraction is possible, and give matching explicit
extractors.

We say that X is an (n, k)-source if X € {0,1}" and X has min-entropy H.(X) > k.



Zero-error randomness extraction. When k£ < n, it is not hard to see that zero-error
extraction is impossible even when G is the empty graph (and so all blocks are independent
(n, k)-sources). Therefore, we focus on the case k = n, and obtain a necessary and sufficient
condition for the existence of a zero-error extractor for (n, G, t)-SHEDAG sources. Namely,
we show that there zero-error extraction is possible if and only if the base graph G can be
decomposed into at least ¢ + 1 “unrelated sets”, which we define next.

Definition 4 (Unrelated set). Given a DAG G = (V, E), a subset of vertices U C'V is said
to be an unrelated set if for any two distinct vertices u,v € U there are no paths from u to
v or from v to u in G. In this case, we also say that u and v are unrelated.

Our complete characterization is formalized in the following theorem.

Theorem 1. For any n € N, fitred N € N, t < N, and N-vertex DAG G, zero-error
randomness extraction from (n,G,t)-SHEDAG sources is possible if and only if G has an
unrelated set of size at least t + 1.

Randomness extraction with negligible error. If we allow a small extraction error
¢, then the landscape for feasibility changes. To state our results we need some additional
definitions.

Definition 5 (Head vertex). Given a DAG G = (V, E), we say that v € V is a head vertex
(in G) if out-deg(v) = 0. We denote the set of all head vertices in G by Head(G).

In words, our positive result states that if any corruption pattern always leaves some
head of the base graph G and its view uncorrupted, then there is a low-error extractor for
(n,G,t)-SHEDAG sources. In fact, we are also able to extract with low error from entropic
SHEDAG sources, as opposed to only SHEDAG sources whose good blocks are uniformly
distributed. For simplicity, we focus on the latter task here and leave a discussion of the
more general result to Section 4.3.2.

We begin by defining the resilience of a DAG G, which captures the scenario mentioned
in the previous paragraph.

Definition 6 (Resilience). Given a DAG G = (V, E), the resilience of a subset of vertices
S CV, denoted resg(G), is defined as

resg(G) == (|S| - 1) — meagc\view(s) n.sS.

We define the resilience of G as res(G) := maxgcy resg(G).

In Remark 3 we give a outline of the proof of res(G) > 0 for any DAG G. We show that
the feasibility of extracting randomness with negligible error is completely characterized by
the resilience of the base graph. This is formalized in the following theorems.

Theorem 2 (Feasibility of negligible-error extraction). Fiz an integer N > 1 and an N -
verter DAG G. Then, for any t < res(G), there exists an explicit (n,k = pn,G, t,e =
2_”9(1))-SHEDAG extractor, for some constant p < 1 depending only on N.



We complement the explicit construction in Theorem 2 with an impossibility criterion.
Formally we have the following theorem (restated at Corollary 1).

Theorem 3 (Impossibility of negligible-error extraction). Fix an integer N > 1 and an N-
vertex DAG G. Then, there is a constant ¢ > 0 such that for every function f : ({0,1}")Y —
{0,1} there exists an (n,G,t =res(G) + 1)-SHEDAG source X with

AF(X) 5 Uy) > ™",

1.2 Related work

At a high level, our work focuses on randomness extraction from multiple sources of random-
ness with structured correlations, as opposed to the widely studied setting of randomness
extraction from multiple independent sources. This direction has seen plenty of interest. We
provide a brief survey of previous models and results, and compare our SHEDAG model to
other existing models.

The SHEDAG model is an online source model. The DAG G induces an ordering of
the nodes/blocks, such that if the i-th node is corrupted then its block may only depend
on (some of) the blocks of nodes j < i. More generally, an online source is a source that
outputs a sequence of blocks B, Bs, ..., By, where the value of B; may depend in some
way on Bi,...,B;_1 only. The study of online sources goes back to the work of Santha
and Vazirani [SV86] and Chor and Goldreich [CG88|, and extensions of these models, such
as almost Chor-Goldreich sources [DMOZ23| and unpredictable sources [DMOZ25]|, are still
being studied. In an orthogonal direction, Aggarwal, Obremski, Ribeiro, Siniscalchi, and
Visconti [AOR™20] introduced the model of SHELA sources, which was later also studied
by Chattopadhyay, Gurumukhani, Ringach, and Servedio [CGR24, CGRS25|, under the
alternative name of online non-oblivious symbol fixing (0NOSF) sources. There are two
important differences between SHELA sources and Chor-Goldreich-type sources: First, in
SHELA sources only a subset ¢ of blocks is corrupted, while the other blocks are independent
and high-entropic — in Chor-Goldreich-type sources all blocks are (somewhat) dishonest.
Second, dishonest blocks in SHELA sources may depend arbitrarily on previous blocks,
including being fixed to a “worst-case” value. In contrast, in Chor-Goldreich-type sources
the new block always carries some “uncertainty” (the uncertainty measure of interest may
vary). Randomness extraction is impossible in all of these models. Because of this, prior
work has focused on more relaxed tasks, such as extracting somewhere-random sources or
deterministic condensing.

Our SHEDAG source model generalizes the SHELA /oNOSF source model by considering
correlations described by DAGs other than a path. As we show in this work, there are
interesting choices of the underlying DAG that allow for low-error (and sometimes even
zero-error) randomness extraction (and we completely characterize all such DAGs).

Finally, we also note that there has been recent work on correlated multi-source models
that do not fit the online source model. Examples include adversarial sources [CGGL20],
where each corrupted source is allowed to depend arbitrarily on any bounded subset of
sources, and somewhat correlated sources [BGM22|, where there is bounded “dependence”
between sources (according to some metric).
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2 Technical Overview

In this section we give an overview of the results and proofs. We begin with a more detailed
definition of SHEDAG sources. Given a directed acyclic graph G, each node has n bit value
associated with it, and can be corrupted or honest. For the purpose of this exposition, the
honest nodes values are simply independently sampled from uniform distribution (in general
we allow them to be sampled from weak sources with some min-entropy). A corrupted node
value can depend arbitrarily on the nodes it has in its view, the view of node v is defined
as all nodes that have a path towards v (we exclude v from its own wview). The direction of
arrows corresponds to signal propagation, if there is an edge from u to v one should think of
v “talking” later, i.e., picking its value after it saw value in node u. The (n,G,t)—SHEDAG
source is defined on a directed acyclic graph GG where honest nodes are uniform n bit strings,
and there are at most ¢ corrupted nodes.

We ask for which DAGs extraction of uniform randomness from SHEDAG sources is pos-
sible, how many corruptions the best extractor can withstand, and if we can give the explicit
efficient construction of such optimal extractor. We resolve all of the above questions in two
variants: perfect extraction (where output is perfectly uniform), and statistical extraction
(where output is negligibly close to uniform).

For the simplicity of the exposition we focus on the scenario with single bit output, but
we obtain strongest possible results: impossibility for a single bit output and a matching
constructions for multi-bit output.

2.1 Perfect extraction

Let us begin with the definition: a set of nodes is unrelated if there is no path in the graph
that leads from one node of the set to another node in this set. This can also be expressed
in terms of wiew: for each node in the set its view does not contain any other node in the
set. This means that in unrelated set all honest nodes are independent of each other, and
importantly, independent of corrupted nodes (as each corrupted node can only depend on
nodes in its view).

Extraction. Let us consider a DAG G with a large unrelated set: since all nodes in such
set are independent we can simply XOR them, if at least one of them is honest we are done-
output will be uniform. Extraction is therefore trivially possible if number of corruptions is
strictly smaller than the size of largest unrelated set (as this clearly guarantees that at least
one node in the set will be honest).

Naturally, the question is, can we do better? The answer is negative, above condition is
tight. A detailed and formal statement can be found in Theorem 5.



The algorithm. We also provide an efficient algorithm to find the largest unrelated set,
this completes the above construction. The key observation is that “reachability” in a DAG
defines a partial order on its vertex set, and any set of unrelated vertices forms an antichain
in this poset.

Impossibility. We show that if number of corruptions is greater or equal than the size of
the largest unrelated set then it is not possible to extract even a single uniform bit. For a
formal statement see Lemma 5.

Idea behind the proof: we start with an observation that the extraction from (n, G, |G|)-
SHEDAG source (i.e. all of the nodes are corrupted) is clearly not possible. And then
we inductively reduce the number of corruptions: we show that as long as the number of
corruptions is greater than the size of the largest unrelated set, we can drop one corruption
at a time and the output of extractor will remain biased. The intuition for the inductive step
is following: since we have more corruptions than the size of the largest unrelated set, we
know that there are two corrupted nodes v and v such that there is a path from u to v. We
show that we can “uncorrupt” one of those two nodes and the extractor will remain biased
(although the bias might get smaller). The gist of the proof is that node v can depend on
the node u, and if we “uncorrupt” u (i.e. set it to something uniform), adversary can pick
v accordingly and maintain some bias. One should note here that there is a small caveat:
simply “uncorrupting” u might not work, as extractor might not depend on the node v at
all, in that scenario we have to “uncorrupt” v - nevertheless corruption of both of the nodes
is not necessary to bias the extractor. We can apply this inductive step as long as we have
more corruptions than the size of the largest unrelated set. The argument stops exactly at
number of corruptions being equal to the largest unrelated set, which tightly matches the
extractor discussed earlier.

What if honest nodes are entropic instead of uniform. In this exposition we focus on
honest nodes being uniform, but one can also consider honest nodes being sampled from some
entropic distributions with guarantee that the output has at least k bits of entropy. We show
that even if DAG has no edges i.e. all nodes are independent, and there is no corruptions, it is
not possible to obtain perfect randomness in such scenario. Proof is inductive over number of
sources. For single weak source it’s a well known fact that extraction is not possible (simply
pick X uniform over Ext ' (i) for i = 0 or 1, the extraction output is fixed, and X has almost
full entropy). Then we proceed with inductive step: given sources X1, ..., X;11, and assume
there exists an extractor Ext that produces perfect randomness. Fix any = € supp(Xyy1).
By the inductive hypothesis we know that Ext(X7, ..., X;, z) has to be biased else we’d have
perfect extractor for ¢ weak sources. Consider two distributions: Ext(Xj,..., X;,U) and
Ext(Xy,..., X3, U\ {z}) where U is uniform over all n bit strings, and U \ {z} is uniform over
all n bit strings except = (both distributions have very high entropy). Since Ext(Xj, ..., X}, z)
is biased it is not possible that both Ext(Xy, ..., X3, U) and Ext(X7, ..., X;, U\ {x}) are perfect.
In Observation 1 we give a more formal proof sketch.



2.2 Statistical extraction

Let us start with a definition: given a directed acyclic graph G, we call vertex v a head if
there is no other vertex that has v in its view. Given any subset of nodes S we also consider
a DAG G° which is a graph with node set S and preserved paths, more precisely: for any
u,v € S if there was a path from u to v in G then there will be a path from u to v in G?.
We can also consider head vertices with respect to S, which are vertices that do not have
any node in S that would have them in their view (i.e. they are head vertices for graph G*).

Let us first consider a DAG G that has a single head vertex v. This means that every
other node of GG is in the view of v. There is a temptation to just corrupt v, since it can see
all the nodes, we can change its value accordingly and bias the output of extractor towards
0 or 1. But the extractor can just “ignore” v, i.e. not depend on v at all, or depend on it
in a very “weak” way. To capture this we define the notion of influence. The influence of
node v with respect to extractor/function f is defined as follows: imagine we sample every
node but v uniformly at random: Z_, < U, and then we sample two independent uniform

version of node v: xg, 2 < U, we measure influence InfS(f) as (for formal definition see
Definition 14):

InfS(f) = Pr | f(wo, o) # f(21,7-0)],

this probability is taken over randomness in choice of xg, 1, —,. The reason why we resample
Zo, 1 from uniform distribution, instead of simply checking if there exist xq, x; for which
the value of the extractor changes, will be apparent later on.

We will proceed with impossibility result first:

Impossibility. Given DAG G, we will show that there exists a resilience threshold, which
once exceeded allows to bias any function f.

The intuition behind the earlier, naive attack was that, if a node v has a view of all
other nodes and it has non-negligible influence over the extractor, then we are done. We set
X, = xg or X, = x1 depending on which way we want to bias the output of the extractor f.

Notice that simply corrupting one node with influence does not guarantee bias: the
problem is that even if v has a full power to flip output of the extractor, it has to know which
way he is biasing the output. Simply imagine a DAG without any edges, and extractor just
XORs all nodes: each node has a power to flip the output of the function, but it has to know
all other nodes’ inputs to actually bias the output of f.

Given function/extractor f let us consider its influence set V/: set of nodes with influence
non-negligible in n, where n is the size of the string each node produces.For now, let us assume
that all other nodes have influence 0. Consider graph Gvf, as defined before it is a graph
defined on nodes V/ that maintains the view structure of the original graph. If there is a
head node v in graph G/ that has all nodes from V/ in its view then we are done - just
corrupt single node v, and since by definition v has non-negligible influence, and it sees all
inputs, it has the power to bias the output of the function whichever way he wants.

What if there are multiple head vertices in GV’ and none of them has full view? We
can simply pick v to be one of the heads with the largest | view(v)|, corrupt v and all nodes
outside its view that still have influence: R := V/\ (view(v) U {v}). The idea is simple:

9



v has influence, and knows the values of all other nodes with influence?, so it can bias the

output of the function. One has to be slightly careful here, influence of v is defined over
uniform distribution of everything else, so even that nodes in R are corrupted they have to
be set to uniform values- the only purpose of corrupting those nodes is to know their value.
As it will become apparent soon this is the best attack possible and we recommend keeping
it in mind throughout the technical introduction.

There are three issues to resolve: 1. this strategy seems to be function specific, 2. we
assumed that nodes outside V/ had zero influence, 3. is there a better strategy? Let us
address the first issue, by defining resilience of the graph as follows:

res(G) = max ||S| — max |S Nview(v)| — 1],
SCV veES

where V' is a set of all nodes in graph G. If one looks at the attack above, it required exactly

[VI| — max [VI N view(v)]
veV S

corruptions. Thus if number of corruptions is greater than res(G) we can bias any func-
tion/extractor.

For the second issue-the case where nodes outside of V/ have negligible but not 0 influ-
ence. The matter seems quite obvious: execute the attack as earlier, and since the influence
of each node outside of V/ is negligible, they can only impact the bias of the output distri-
bution by negligible factor, and when corrupting v we can predict the output of the function
with 1 — negl probability. More precisely, if we group the inputs of f into four input classes:
the value at node v, values in the view(v), values in corruptions of the rest of influence set® r
and the values of remaining nodes with negligible influence, one would be tempted to write:
Pr[f (v, view,r,U) = f(v,view,r,U’)] > 1—negl(n), and thus one would like to conclude that
output of the function is basically known to v, even that v does not know the exact values
outside of V/. However, there is a delicate caveat here: influence of the nodes outside of V/
is defined with respect to uniform distribution of all nodes. This is precisely the reason why
we pick values in V7 \ (view(v) U {v}) as uniform, and even value in the node v is picked
as choice between two uniform samples (one can think of picking a value at random, and
we have a choice to reset it once). The distribution in v is not quite uniform, but we show
that such “single-reset” source does not impact the influence of nodes outside V/ too much
- to be precise we show that if the influence of the node measured over uniform distribution
is €, then the influence of that node counted over “single-reset” distribution is at most 2¢.
And thus, we can still obtain that the output of the function is basically already determined
from the point of view of node v, i.e. Pr[f(v,view,r,U) = f(v,view,r,U")] > 1 — negl(n),
even if v, view, r are sampled from this not-quite-uniform distribution. This concludes that
the strategy of corrupting |V/| — max,cy s |V/ N view(v)| nodes works. By the previous dis-
cussion it is also clear that if number of corruptions exceeds res(G) then every function can
be biased, and thus it is not possible to extract from such source. Formal statement can be
found in Corollary 1.

ZNode v “sees” all honest nodes in his view, and all remaining nodes (set R) are corrupted, and thus
known to v.
3That is values in V7 \ (view(v) U {v}).

10



Finally we address the third issue: can we do better? The answer is negative. We can
build extractor that is resilient to res(G) corruptions, which completes the picture.

Extraction. We have discussed set of nodes with non-negligible influence v/, and we have
established that for any function it suffices to corrupt |V/ — max,cy s |[V/ N view(v)| many
nodes to bias it. Let us begin the quest for building the extractor with finding* the set S
that maximizes resilience, i.e.

|S| — max |S Nview(v)| — 1 = res(G).

When building extractor, S has to be the set of nodes that have high impact on the output,
while nodes outside of S should have negligible impact. Let us simplify this task a bit: we
will make extractor depend only on nodes in S and completely ignore nodes outside of S.
The corrupted nodes introduce a lot of correlations, and a natural tool to break them is the
two-source non-malleable extractor: Aslong as X,Y are independent and have high entropy,
output of 2nmExt(X,Y’) remains indistinguishable from uniform distribution even given the
outputs of the extractor on correlated/tampered inputs. More precisely, let X/, X", ..., X®
be arbitrarily correlated with X but not equal to X, symmetrically define Y’,...,Y®  im-
portantly X', ..., X® do not depend on Y, and Y”, ..., Y® do not depend on X, then

2nmExt(X,Y) ~ U even given |2nmExt(X’,Y"),2nmExt(X",Y"), ..,2nmExt(X® Y ®)|.

Using the above tool, a naive idea would be to run the extractor over all pairs of nodes
in the set S (defined earlier as set that maximizes resilience) and just XOR the outputs.
However, this approach has a number of technical issues, which will become apparent soon.

One issue is: if u € view(v) then 2nmExt(X,, X,) does not bring much to the table, as
a single corruption of v gives full control over such pair. Similarly, if u,w € view(v) then
v depends on both u,w and therefore 2nmExt(u, w) & 2nmExt(u, v) & 2nmExt(v, w) is fully
controlled by a single corruption in v. Strictly speaking, these are not attacks, but soon it
will be clear they cause unnecessary technical difficulties.

To make technical proofs simpler instead of XOR~ing over all pairs, let us just XOR over
unrelated pairs, that is, w, u such that w ¢ view(u) and u ¢ view(w) and w # u.

Notice that if we want to match impossibility result then we do not have much to work
with, adversary is controlling most of the nodes in S. We are only guaranteed that there
is one pair of nodes a,b, such that adversary does not have both a,b in a single view,
but potentially “sees” each of them separately. This is a crucial information: if adversary
can corrupt only res(GG) many nodes, and S maximizes resilience, then there must be one
node outside® of view(v) that is not corrupted, thus our single pair a,b € S for which
Yo € S, (a ¢ view(v)) or (b & view(v)).

But this pair a,b is a great news, it will work perfectly with the 2nmExt. We want to
XOR over all unrelated pairs:

@ 2nmExt(X,, X,).

(w,u) unrelated

4We'll discuss the task of actually finding the set later on.
®Please recall the corruption strategy: given set S we singled out one node v € S with the largest
| view(v) N S|, and proceeded to corrupt v, and everything outside its view S\ view(v).
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Let us consider a few groups of elements in above sum with respect to their relationship to
our uncorrupted pair a, b.

1. First group consists only of nodes a, b, those nodes are independent and not corrupted,
X,, X, are high entropic and 2nmExt(X,, X;) will provide us with uniform output.
IMPORTANTLY note that we do not need to know a, b, it is sufficient to know that
they are somewhere in the XOR.

2. All w,u € S such that a,b ¢ view(w) U view(u) U {w, u}, those will bring nothing
important to the table as X,,, X, will be independent of X,, X, and thus XOR of
2nmExt(X,,, X,) over all pairs in this group will remain independent of 2nmExt(X,, X;)

3. For the third group consider w,u such that a € view(u) U {u}, and b ¢ view(u) U
view(w) U {w, u}. For thisms group 2nmExt(X,,, X,) depends only on X,, and thus

@ 2nmExt(X,,, X,)

elements in this group

can be seen as single small leakage from X,, we can reveal it and fix it, which will
reduce entropy of X, slightly, but well within the parameters that allow us to use
two-source non-malleable extractor. Note that we will reveal whole

L(X,) = ar) 2nmExt(X,,, X,)

elements in this group

as one single leakage instead of revealing each extractor output separately:

{QnmExt(Xw, Xu)}
(u,w) in this group

else the loss in the entropy of X, would be too large. We have to be delicate here,
and reveal X, as it randomizes the leakage function, and not revealing it would lead
to correlations between leakages from X, and X, (see next group). However, we only
need to reveal X, when w cannot “see” a, i.e if a ¢ view(w) U {w}, else we don’t need
to reveal X, or X,,, as in this case since both u,w can “see” a and thus neither u, w or
their parents can “see” b (since Yv € S, (a ¢ view(v)) or (b ¢ view(v))) and thus none
of those variables will show up in the leakage from X, group and there won’t be any
correlation between leakage caused by those variables.

4. Same happens for the forth group consisting of w,u such that b € view(u) U {u}, and
a ¢ view(u)Uview(w)U{w,u}. This group constitutes leakage from X;. And since the
same X, may be used to randomize both leakage from X, and X, those two random
variables will not be independent given the leakages unless we reveal all X, such that
a,b ¢ view(w) U {w}.

5. Finally, the fifth group: w, u such that a € view(w)U{w} and b € view(u)U{u}. Note
that since V,cs(a ¢ view(v)) or (b ¢ view(v)) we know that there is no "cross-over",
i.e a ¢ view(u)U{u} and b ¢ view(w)U{w}. This group is taken care of by two-source
non-malleable extractor that guarantees that 2nmExt(X,,, X,) are all independent of
2nmExt(X,, X3).

12



6. Note that there is no other pairs in our XOR. In particular, we are not having that
2nmExt(X,, X,) + 2nmExt(X,, X,) where a,b € view(v) as X, could depend on both
X, and X, and we could not model it as a leakage or use the non-malleable extractor

property.

We are nearly done, there are two issues to take care of, one is actually quite serious.
First, remember that two-source non-malleable extractor requires X’ # X and Y/ # Y.
This can be taken care of by a simple trick: just append id of the node:

@ 2nmExt( X, [|w , Xu||u).

(w,u) unrelated

The second issue is far more serious. Remember the definition says:
2nmExt(X,Y) ~ U even given {2nmExt(X’,Y’),2nmExt(X”,Y”), ., 2nmExt(X® Yy Oy |

Note that variables correlated to X are always first input, while variables correlated to Y
are second input, we have no guarantee on

2nmExt(X,Y) ~ U given 2nmExt(Y", X").

To combat this issue we need one more definition and a crucial observation. For w,u € S we
will call (w,u) a headless pair if there does not exist v € S such that w,u € view(v) U {v}.
We call this pair headless because in particular there is no head v in S that has both
nodes in its view. Notice that we are guaranteed an honest pair a, b for which Vv € S, (a ¢
view(v)) or (b ¢ view(v)), which means that a,b is headless pair. Crucial observation: if we
only XOR over headless pairs instead of unrelated pairs, we have the following property: for
every (w,u) headless pair and any head vertices in S - h, g such that w € view(h) U {h}
and u € view(g) U {g} and there is no cross-over: u is not “seen” by h and w is not “seen”
by g. We can enforce ordering on all heads of S, and this ordering will translate into an
ordering of elements within each headless pair: given (w,u) the smaller of w,u is the one
with the smaller head (note that each of them can have multiple heads, just pick the smallest
of them).

Our extractor is XOR-ing over headless pairs (w, u) such that w < u. As this is a subset
of unrelated pairs the previous discussion about leakages and non-malleable extractors still
holds. For formal statement and proof one can refer to Theorem 9, followed by Corollary 2
and 3.

A small remark, when comparing this to the perfect extraction case: if S is the largest
unrelated set then res(G) > |S| — max,es |S N view(v)| — 1 = |S| — 1, but res(G) might be
much larger than that, which leads to a clear gap between perfect and statistical extraction.
Simple example would be: Figure 2. The largest unrelated set there has two elements
so we can withstand at most 1 corruption if we want perfect coin. However if we take
S ={B,C,D,F,G,H} the resilience of this graph is 3, we are resilient to 3 corruptions.

13
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Figure 2: DAG with a small unrelated set (size 2), and larger resilience (equal 3).

Algorithm to find the most resilient subset of nodes. The above extractor relied on
finding the set that maximizes the resilience of the graph. We show how to do it efficiently.
There might be multiple such maximal sets. We show that among them there must be a
set that does not truncate the view of nodes, to be more precise: There exists a set S that
maximizes resilience of the graph and S can be written as union of complete wiews of its
heads: 3y, .., S = U, (viewv; U {v;}). This significantly narrows down the space we have
to search, and we can do it in time linear in the size of the graph.

What if nodes are not uniform? Notice that at no point we really needed uniformness
of the nodes, we just needed honest headless pair X,, X, to have high enough entropy to
work with non-malleable extractor, this puts a constant entropy rate requirement on the
sources (constant is quite close to 1 and depends on size of the graph, but it clearly is far
from uniform requirement). Also, the size of the output will have an impact on the entropy
requirements (note that we have to handle both extraction with a longer output, and the
entropy loss of sources as leakages become longer).

3 Preliminaries

3.1 Notation

We use uppercase roman letters such as X and Y to denote random variables. U, denotes
the uniform distribution over {0, 1}". For any 7' C {0, 1}", we use Uy to refer to the uniform
distribution over the set T'. For a set S and random variable X, we write X ~ S to denote
that X is supported on S and r ~ X to denote that r is sampled according to X. Finally,
r < S denotes that r is uniformly sampled from the set S. For any m € N, we write [m]
for the set {1,2,...,m}. For any set S C [N] and r € ({0,1}")"*! we use the notation
f(Xs = r, X[n)\s) to define another function on variables {X; : i € [N]\ S}, obtained by
fixing X¢ = r in f. For any two strings =,y € {0,1}", we use the notation z||y to denote
their concatenation.

3.2 Basic probability theory

Now we will proceed to introduce a few useful definitions and related lemmas. Let us start
by stating a Markov like inequality which will be useful.
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Lemma 1. Let Z be a random variable that takes values from the range [0, 1] and its expec-
tation E[Z] > p. Then for any 0 < p < 1 we have Pr[Z < p| < (1 —u)/(1 —p).

Proof. Consider the random variable Y = 1 — Z. Note, Y is also a random variable that
takes value from [0,1] and E[Y] < 1 — u. Applying Markov’s inequality on Y we get
Pr[Y >1—p] <(1—pu)/(1—p)and from here replacing Y = 1 — Z our proof follows. [

Definition 7 (Support). For a random variable X ~ {0, 1}", we say support of X,
supp(X) := {z € {0,1}" : Pr[X = 2] # 0} .

Definition 8 (Min-entropy). For a random source X ~ {0,1}", min-entropy of X (denote

it as Hyo (X)) is defined as,

1
H, (X) := in_log =———.
)= el 8 PrX = o]

We say X is an (n, k) source if X ~ {0,1}" and H(X) > k.

Next we will state a lemma on conditional min-entropy of a distribution. Informally, the
lemma asserts that for any two distributions X and Y, if X has some entropy, then condi-
tioning on a random y ~ Y does not significantly reduce the entropy with high probability.

Lemma 2 (Min-entropy chain rule [MW97, Lemma 5]). X ~ Q and Y ~ Q' be two distri-
butions so that Y takes at most ¢ values from Q. Then, for any e > 0,

P{([HOO(X |Y =y) > H(X) —logl —log(l/e)] > 1—¢.
y/\/

The statistical distance is a standard measure for the proximity of two random variables
sampled from the same set.

Definition 9 (Statistical Distance). Given two random variables X, Y ~ €, we define the
statistical distance as

AX;Y) = %Z|Pr[X:w] — Pr[Y = w]|.

weld
We shorthand A((X,Z) ;(Y,Z)) by A(X; Y |Z) and A(X; Y)<ebyX~=.Y.

The following lemma asserts that if X, Y are statistically close, then f(X), f(Y) are also
statistically close, for any function f.

Lemma 3 (Data processing inequality [Vadl2, Lemma 6.3|). For any possibly randomized
function f :{0,1}" — {0,1}* and random sources X, Y ~ {0,1}", we have A(f(X) ; f(Y)) <
AX;Y).
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3.3 Extractors and non-malleable extractors

In this section we define extractors and non-malleable extractors.
Extractors are deterministic functions that take a weak source as input and outputs a
distribution that is close to uniform. Formally the definition is as follows.

Definition 10 (Extractor for a class of sources). Let X be a class of sources supported on
a set S. The function Ext : & — {0,1}™ is a e-extractor for X' if for all X € X we have
Ext(X) ~. U,,.

Two source non-malleable extractors were defined by Cheraghchi and Guruswami in
[CG14]. Informally, a two-source non-malleable extractor is a function that, on two weak
input sources, outputs a distribution that stays close to uniform even when the output on
any tampered version of the inputs is known. We will need a multi-tampering version of the
above which was first introduced in [CGL20].

Definition 11 (Two source non-malleable extractor [CGL20]). A function 2nmExt : {0, 1} x
{0,1}™ — {0,1}™ is called an (£, ky, ko, €)-two source non-malleable extractor if for every pair
of independent sources X, Y ~ {0,1}" so that Hoo(X) > ky and Hoo(Y) > ko and for every
family of tampering functions gy, gio = {0,1}" — {0,1}" where for alli = 1,...,¢ at least
one of gi1 and gix has no fized points,

A2nmExt(X,Y) ; U, | 2nmExt(g11(X), g12(Y)), - . ., 2nmExt(gs1(X), 9,2(Y))) < € .

If ky = ko = k, we call it a (¢, k,e)-two source non-malleable extractor.

Lemma 4 (JAOR'22, Lemma 4|). Let 2nmExt : {0,1}"x{0,1}"* — {0,1}™ be an (¢, k1, ko, €)-
two source non-malleable extractor and R be an arbitrary distribution on some set R. Then
for every family of functions g;1, giz : {0,1}" x R — {0, 1}" so that for every R € R at least
one of gi1(., R) and gi(., R) has no fized points, it holds that,

A2nmExt(X,Y); U, | 2nmExt(g11(X, R), g12(Y, R)), -+ ,2nmExt(g,1 (X, R), gi2(Y, R)), R)

is at most € for every independent sources X, Y ~ {0,1}" with Hoo(X) > ki, Hyo(Y) > ko
so that both X and Y are independent of R.

Finally we will state a few constructions of two source non-malleable extractors.

Proposition 1 ([CGL20]). There exists a constant v > 0 so that for alln >0 and £ < n?
there is an explicit (¢,k,e)-two source non-malleable extractor CGL : {0,1}" x {0,1}" —
{0,1}™ where k > n—n", ¢ < 27" and m = n2O.

Proposition 2 ([ACO23|). For every constant ¢, for all n > 0 there exists an explicit
(0, ky, ks, €)-two source non-malleable extractor ACO : {0, 1} x {0,1}" — {0, 1} with k; >

(logn)°W, ky > (1 — ﬁ)n, m = Qky) and ¢ < 27D for some ¢ < 1/2 .
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4 Randomness extraction from SHEDAG sources

4.1 Head vertices, and parents

In this section we present a few more definitions related to DAGs that will be useful in our
impossibility arguments and extractor constructions.

Definition 12 (Head vertex). Given a DAG G = (V, E), we say that v € V is a head vertex
(in G) if out-deg(v) = 0. We denote the set of all head vertices in G by Head(G).

Definition 13 (Parents of a vertex). Given a DAG G = (V, E) and a vertex v € V, the set
of parents of v, denoted parents(v), is the set of vertices u such that there is a path from v
to u.

Note that for any u,v € V we have u € view(v) if and only if v € parents(u).

4.2 Zero-error randomness extraction

Firstly, we proceed to give a complete characterization of the scenario under which perfect-
coin extraction with zero error is achievable. The key idea is that, if we have a large number
of nodes that cannot see each other, meaning that none of the nodes are in view of the
rest, then the adversary has no way to corrupt the nodes in such a way that extraction is
impossible.

Observation 1. For every function f : ({0,13")N — {0,1} there exists a source X =
(X1,...,Xn) so that each X; are independent (n, k) source with k < n. By induction over
N we can show it. If N =1 it is indeed true because if f: {0,1}" — {0,1} be any function
then one of |f~1(0)| and |f~(1)| is at least 2"~ . For a € {0,1} say |f~'(a)| > 2! and
X to be flat source over |f~(a)|. Then f(Xy) is constant and X; has min-entropy at least
n—1.

Let f : ({0,1}")! — {0,1} be a function. Pick any x € {0,1}" and note that by
induction hypothesis, there exists a source X = (Xy,...,Xy) so that A(f(X,z) ; Uy) > 0.
Consider the source X' = (X, = X, X, = Uy,). Note that

Pr(f(X') = 0] = 27" Pr[f(X,z) = 0] + (1 — 27") Pr[f(X,Us) = 0],

where S = {0,1}"\{z}. Since, Pr[f(X,x) = 0] # 1/2, it is not possible that both Pr[f(X') =
0] =1/2 and Pr[f(X,Us) = 0] = 1/2. Hence by induction our proof follows.

As we proved that perfect extraction from general (n, k, G, t)-SHEDAG sources is impos-
sible for k£ < n, even when G is an empty graph (i.e. each block is independent) we start
with analyzing the condition when the zero error extraction from (n, G, t)-SHEDAG source
(when honest sources are independent and uniform) is possible.

4.2.1 Feasibility

At first we will show that when the base graph G has a unrelated set of size at least ¢t + 1,
it is possible to extract from any SHEDAG source with at most ¢ corruptions. Formally we
state our first main theorem as follows.
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Theorem 4. For alln € N, fited N € N andt < N — 1 the following holds: Let G = (V, E)
be any directed acyclic graph with V- = [N] and G has a unrelated set of size at least t + 1.
Then, there exists an explicit extractor Ext : ({0,1}")Y — {0,1}" so that for every (n,G,t)-
SHEDAG source X = (Xy,...,Xy), we have Ext(X) = U,,.

Proof. Let, T C V be an unrelated set of G of size t + 1. By our assumption such 7" would
exist and say T' = {vy,...,v:11}. Define,

Ext(Xy,...,Xy) =P X..

ueT

Since there are at most ¢ many corrupted blocks, at least one of X, ,..., X is honest.

Without loss of generality, say X,, = U, and independent from X,,,...,X

3 EXVEy1

This implies, under every fixing of (Xu,,...,Xu, 1) = (W2, -, ¥t1) for yo, ...,y €
{0,1}", we have @, .1 Xu|(Xy, = Y2, ..., Xy, = Yeg1) is still uniform. Hence, @, . X, is

ueT ) LRV u€eT
uniform over {0, 1}" and it completes our proof. ]

Vi+1

4.2.2 Impossibility

We will next prove that this bound on size of unrelated set is actually tight for zero error
extraction from (n,G,t)-SHEDAG source. That is, if maximum unrelated set of the base
graph G has size at most ¢, then it is impossible to extract from SHEDAG source with ¢
corruptions.

Since, Head(G) is a unrelated set of G, the number of head vertices of G is at most ¢
when the size of maximum unrelated set of G is at most ¢ . Now the main idea is, if the
number of corrupted vertices is ¢ then the adversary can control vertices of the maximum
unrelated set and make the output of the extractor biased.

At first, we make an observation to the adversary behavior. If A corrupts a vertex v
which is under view of another corrupted vertex u, then by corrupting only u the adversary
can induce non-zero bias on the extractor’s output.

Lemma 5. For alln € N, fited N € N and t < { < N the following holds: Let G = (V, E)
be any directed acyclic graph with V- = [N] and G has at most t many unrelated sets. Let
f:({0,1}")N — {0,1} be any function. Then the following two are equivalent:

(i) There exists a (n,G,{)-SHEDAG source X so that A(f(X) ; Uy) > 0.
(ii) There exists a (n,G,t)-SHEDAG source X so that A(f(X) ; Uy) > 0.

Proof. We focus on proving that (i) = (ii), as the other direction is immediate. Let X be
a (n,G,0)-SHEDAG source, for which A((f(X) ; U;) > 0. Without loss of generality we
can assume that Pr[f(X) = 1] > 1/2. Define a set, V4 C V', with |V4] < ¢, to be the set of
vertices in the source X which are corrupted by the adversary A.

Assume |Vy| > t. Then there must exist two distinct vertices i,j € V4, such that
J € view(i). Define set R =V \ {3, j}, and let X be a marginal distribution of source X on
coordinates in the set R. Let us consider two cases:
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Case 1: There exist yo, y1, 2 € {0,1}", such that®

Pr [f(Xi=yo,X;=2Xgp=r)=1# Pr [f(Xi=y,X;=2Xg=71)=1].

r~Xp r~Xpg

Therefore both quantities of the above cannot be equal to 1/2. Without loss of generality
let Pr,.[f(X; = yo, X; = 2, Xr =7) = 1] = p # 1/2. Now consider the (n, G, {—1)-SHEDAG

source X defined as:
X: (Xl :Z/{WJXJ :Z/{S,XR:XR) (1)

where S = {0,1}" \ {z}, note that the node i is not corrupted here thus ¢ — 1 corruptions.

If we have, Pr[f(X) = 1] = Pr[f(U,,Us,Xr) = 1] # 1/2, then we are done. Assume
Pr[f(U,,Us, Xg) = 1] = 1/2, consider the source X’ defined as follows:

X,_{yg ifX}:Z

(] .
U, otherwise

and X, = U,, Xz = X , notice that since j € view(i), X; can depend arbitrarily on X; .
Note that it’s a (n, G, ¢ — 1)-SHEDAG source as now the node j is not corrupted. We have:
Pr[f(X}, X}, X}) = 1]
= Pr[X) =z] - Pr[f(X}, X}, Xp) = 1| X = 2]
—I—Pr[X} + z] -Pr[f(Xg,X;,XR) =1 X} + z}
=2""-Pr[f(vo, 2, Xg) =1+ (1 —27") - Pr[f (U, Us, XR) = 1]
=27 p+(1-27") 3
73
The second equality holds because (X | X} # 2) = Ug where S = {0,1}" \ {2} The third

equality follows from our assumption that Pr[f(X) = 1] = 1/2, where X is as defined in 1.
Therefore, we have A(f(X') ; Uy) > 0.

Case 2: For all z € {0,1}" and for all yo, 91 € {0,1}" we have,

Pr [f(Xi=yo,X;=2Xgp=r)=1= Pr [f(Xi=y,X;,=2Xgp=71)=1].

r~Xpg r~Xpg

This implies, for all y € {0,1}" the value of Pr,..x . [f(X; =y, X; = 2, Xg = r) = 1] depends
only on z. Now define the (n,G, ¢ — 1)-SHEDAG source X’ in the following way:

X' = (X} = U, X, =X;, X =Xg).

Then clearly we will have Pr[f(X) = 1] = Pr[f(X') = 1] # 3.
Iteratively we can apply the above process, until we will have that |V4| <t and V, is a
set of independent vertices in G. This concludes our proof. m

6Note that such triple might not exist, the crucial observation is that the influence of the node is defined
over uniform distribution of nodes in the view, while Xz might have arbitrary distribution.
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Using the above lemma, we are ready to prove the main result of impossibility of extrac-
tion with zero error.

Theorem 5. For alln € N, fired N € N and t < N the following holds: Say G = (V, E) be
any directed acyclic graph with V = [N] and f : ({0,1})" — {0,1} be any function. Further
assume that mazimum unrelated set of G has size t. Then there exists a (n,G,t)-SHEDAG
source X = (Xy,...,Xy), such that A(f(X); Uy) > 0.

Proof. Fix a (n,G, N)-source X so that A(f(X) ; Uy) = 1. We can always find such a source
by picking = € ({0,1}™)" so that f(z) = 0 (if such « does not exist, pick z so that f(z) = 1)
and fixing X = x. Then by applying Lemma 5 the proof follows.

[

4.2.3 Algorithm for locating unrelated sets with maximum size

As discussed previously, to extract randomness with zero-error against as many corruptions
as possible, the primary goal is to find the largest number of k such that there exist unrelated
set of size k.

Observation 2. If G = (V, E) be a directed acyclic graph, then reachability in G induces a
partial order in V. Formally (V,<) is a partially ordered set, where for u,v € V we have
u <X v if and only if there is a path from u to v in G. Here A C V is an anti-chain if and
only if for all x,y € S there is no path from x toy and from y to x. Hence, finding mazimum
unrelated set in G is same as finding mazimum anti-chain in (V,<).

In [FRS99]|, a polynomial time algorithm was given to find the maximum antichain in a
partially ordered set (poset).

Theorem 6 (Locating maximum antichain [FRS99]|). Let (P, <) be a partially ordered set.
There is an O(k|P|?) time algorithm deciding whether the size of mazimum antichain of P
is at most k. Additionally, if the size of mazimum antichain is exactly k, this algorithm can
be adapted to find the mazimum antichain in O(k|P|?) time.

The construction is based on Dilworth’s Theorem |[Dil50], which states that the maximum
size of an antichain of a poset P equals the minimum number of chains required to cover P.

At first corresponding to each vertex u € V we make a list L, so that v € L, if and
only if there is a path from u to v. This can be done in O(|V|?) time (by BFS from each
vertex). Then by Theorem 6 we find the maximum antichain C, the vertices in C thus form an
unrelated set with maximum size. If the number of corruptions is less than |C|, by Theorem 4,
it is possible to extract from sources at vertices in C to obtain perfect randomness.

4.3 Randomness extraction with negligible error
4.3.1 Impossibility

In this section we will see the condition when we cannot extract from SHEDAG source with
small error. Before diving into the main theorem, we will first define the notion of influence
of a node of G on a function.
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Definition 14 (Influence). G = (V, E) be a directed acyclic graph with V- = [N] and f :
(0,1} — {0,1}" be any function. Then influence of i-th coordinate (or i-th vertex) on
f in presence of G, denoted as Inf(f) is:

Pr f(XZ‘:ZEmXSz':T)%f(XZ‘:J,’l,XSz':T)
re({o, 1)
x0<_{071}n
z1+{0,1}"

where S* =V \ {i}.

Now, we need another definition of the graph induced by influence vertices with respect
to reachability in the original graph. We will state a more general definition.

Definition 15 (View preserving graph with a subset of vertices). Given a directed G =
(V, E) acyclic graph with V' = [N] and S C 'V be any non-empty subset of the vertices. We
construct a graph H with the vertex set S (denote it by H(S) = (S, E(S))) by the following
Algorithm 1.

Stmply speaking, we remove vertices that is not in S, and we add edges in such a way
that if one vertex was in the view of another, this relation will be preserved in the new graph.

Algorithm 1 Construction of the view preserving graph with vertex set S.
1: Start with (V’, E') where V' =V and E' = E.
2: while There is v € V' so that v ¢ S do
3:  Define in(v) = {u € V' : (u,v) € E'} and out(v) ={w € V': (v,w) € E'}.
4: V'« V'\{v} and from E’ remove all the edges connected to v.
5. Define E” = {(u,w) : u € in(v) and w € out(v)}.
6
7
8
9

E +— E'UFE".
: end while
: E(S) «— F.
: Return H(S) = (S, E(9)).

Remark 2. Note that, for any S CV and u,v € S, we have u € view(v) in H(S) if and
only if u € view(v) in G. Hence, number of unrelated sets of H(S) is at most the number of
unrelated sets in G.

We need a definition of negligible function to quantify the influence of vertices on a
function.

Definition 16 (Negligible function). A function 6 : N — [0, 1] is called a negligible function
if for all constant ¢ > 0 we have §(n) € o(n=°). We define negl(n) as the set of all negligible
functions. Any function that is not in negl(n) we call it a non-negligible function.

Now we need another definition of resilience of a directed acyclic graph G.
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Definition 17 (Resilience of a graph). Given a directed acyclic graph G = (V,E) and a
subset S CV we defined resilience of S as

res(S) :=|S| — max|v1ew( yns|—1

Further we define resilience of G as res(G) := maxgcy res(S).

Remark 3. Note that for every S C V, number of head vertices in G° is at least 1 and

max | view(s) NS| = max |view(u)NS|.

seS u€Head(GS)
Hence, from definition of view it follows that res(S) > 0 for all S C V. Therefore, res(G) > 0
for every directed acyclic graph G.

Now we are ready to state our results on impossibility of extraction from SHEDAG
source. At first we will show that in a given directed cyclic graph G and a function f if
there is a vertex with non-negligible influence then it is impossible to extract from SHEDAG
source with res(G) many corruptions. Prior to stating the theorem we will introduce a few
notation.

let G = (V, E) be a directed acyclic graph and f : ({0, 1}")N — {0,1} be a function.
VI C V be the set of vertices v so that Inf¢(f) ¢ negl(n). If V/ is non-empty define
the graph G/ = H(V/) to be the induced graph we have from the algorithm mentioned in
Definition 15. For every vertex u € V/ we define view (u) = view(u) N V7.

Theorem 7 (Impossibility of extraction with negligible error). For all large enough n € N
and fized N the following holds: Let G = (V, E) be a directed acyclic graph with V = [N]
and f: ({0, 1}”)N —{0,1} be any function. Assume V7 is non-empty. Then there exists a
non-negligible function eq(n) and a (n,G,t)-SHEDAG source X with t = res(G) + 1 so that
A(f(X) 5 th) = go(n).

Proof. By our assumption V/ is non-empty. Without loss of generality let us assume that
number of a € ({0,1}")" so that f(a) = 0 is at least 2°N~1. Say S =V \ V/ and |S| = m

Let 1o € Head(GY) so that for all u € Head(GY) we have | view’ (ug)| > | view’ (u)|. Let
R be the set of vertices v in V' such that v € view’ (ug) U{up}. Now, we define the source X
as: Xp = (Un)"™, X ot (ug) = Un )lview! (o)l then sample z, 2’ uniformly and independently
from {0,1}", when Xg =y, and X = yy define X, as:

view? (ug) —

/

x if E(z,y1,y2) occures .
2’ otherwise .

where E(x,y1,y2) is the event that: number of 2’ € ({0, 1}")™ so that f(Xu, = 2, Xview(uo) =
Y2, Xp = y1, Xynvr = 2/) = 0 is at least 2"~ 1. Finally set Xy s = (Uy)™.

Notice that X is a (n, G, t)-SHEDAG source with ¢ = res(G) + 1. As, | view/ (ug)| is at
least | view” (u)| for every u € G and every vertex of Gf is in view of some head vertex, we
have

| view ()| = max | view’ (u)] .
ueV/S
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Hence, res(G¥) = |V/|—| view/ (ug)| —1 and number of corrupted blocks is |V /| —| view” (ug)|”
which is at most res(G) + 1.
Sample zy uniformly from ({0,1}")™ and set f., = f(Xys, Xs = 20). Note that,

Pr[f(X) = 0] > Pr[f.,(Xys) = 0| 20 € Good] Pr[z, € Good] (2)
where, Good is the set of all z € ({0,1}"™)™ so that,
o Inf (f.) & negl(n).
e Pr [f.(y) =0] >1/2 - (n) for some §'(n) € negl(n).
Claim 1. Przy € Good | > 1 — d(n) for some d(n) € negl(n).

At first we continue proving Theorem 7 assuming the preceding claim and prove the claim
after that. Let E;(x,y1,y2) be the event that f. (Xu, = =, Xview(uo) = Y2; Xr = ¥1) = ¢ and
Ei(2',y1,y2) be the event that f. (Xu, = &', Xview(uy) = Y2, Xr = y1) = ¢ for i = 0, 1. Notice
that, when zy € Good , uy has non-negligible influence on f,,. Hence, from Definition 14
we have,

Pre a1 50 [Eo(%yl,%) A E1($/7y17 3/2) ‘ Zp € GOOd]
+ Pry o yy 40 [E0($/7yl7 y2) A El(% Y1, y2) | Zp € GOOd] = 5(”)

where e(n) ¢ negl(n). As both x,z’ are uniformly chosen, by symmetry, we have that
Pry s [ Eo(2, y1, y2) A Er(2',y1,y2) | 20 € Good] = €(n)/2. Now, notice that

Pr(f.,(Xys) =0 20 € Good|
[Eo(z,v1,92) | 20 € Good] + Pr  [Eo(2',y1,y2) A E1(z,91,92) | 20 € Good] .

Pr
T,Y1,Y2 2", Y1,Y2

As, Pry 0 [Eo(x,y1,y2) | 20 € Good] > 1/2 — ¢§'(n) we have,
Prlf(Xys) =01 20 € Good ] > (1/24¢(n)/2—0d(n)) .

Finally from Claim 1 and Equation (2) we can conclude that,

Pr(f(X) =0] = (1/2+¢(n)/2 = '(n))(1 = 6(n)) .
Since € is non-negligible function and ¢§'(n) € negl(n) we have £(n)/2—¢'(n) is non-negligible.

Also, 4(n) is a negligible function. Hence Pr[f(X) = 0] > 1/2+¢(n) for some £y(n) & negl(n)
and from the definition of statistical distance our proof follows. O

Proof of Claim 1. For a vertex u € V/ define S* = V/ \ {u}. As all the vertices in V \ V/
has negligible influence, by hybrid argument we have: there is a function §(n) € negl(n) so
that for large enough n,

Pr [fZO(XU = maXS“ = y) 7é f(Xu = anS” = anS = Z)] <m:- 5(”) (3)

ZO 7x7y7'z

"As the adversary is fixing Xz by uniformly sampled y;, it may seem like we are only corrupting X,
But notice that the adversary needs to see y; to sample X,,, which it cannot do unless it corrupts Xg.
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= Pr [fzo(Xu - anS“ = y) = f(Xu - :EaXS“ = y7XS - Z)] Z 1 - mé(n) (4)

Z20,T,Y,2
Consider the uniform random variable Z over ({0,1}")™, defined as follows,

Z(Z> = xf;rz[fzo(Xu =z, Xgu = y) = f(XU =z, Xgu =y, Xg = Z)] :
Clearly from Equation (3), E[Z] > 1—md(n). By Lemma 1 we have, Pr, [Z < 1—+/md(n)] <
vmd(n). We can rewrite this as,

Pr( Prlfa ) = o, 2)] > 1= Vb)) = 1= i) 5)
z0 xT,Y,z
Define the set Great C ({0,1}")™ as, for every 2/ € ({0,1}")™ we have 2’ € Great if

Pr,,.[fo(z,y) = f(z,y,2)] > 1—/md(n). Also, recall that uy € V7 hence InfS (f) = e,,(n)
where g,,(n) & negl(n). Now by union bound we have,

Pr fZO (XUO = X, Xguo = y) = f(Xuo = g, Xguo = Y, Xg = Z)
A on(Xuo = xlaXS“O = y) = f(Xuo = l'l,XSuo = anS = Z)

Zp € Great}

Z0,T1,Y,2

is at least 1 — 24/md(n). From the definition of influence (see Definition 14) and again by
union bound we have,

Pr [f.,(Xu, = 20, Xswo = y) # [ (Xuy = 71, Xsuo = y) | 20 € Great] > g,,(n) — 24/md(n) .
0o,T1,Y
(6)

Since Pr[zy € Great] > 1 — 2y/md(n), combining with 6 we get: with probability at least
1 —24/md(n) over the choice of zy it holds that Inffo(fz()) > 4y (n) — 24/md(n).

Next note that from our assumption, Pr,, .[f(X, = =, Xgu =y, Xg = 2)| is at least 1/2.
Therefore from 5 the following holds: With probability at least 1 — /md(n) over the choice
of zp, the following holds:

Prifsg(y) = 0] 2 5 = 3v/md(n) .

As, m < N and N is fixed, we have md(n) € negl(n) which further implies c¢y/md(n) €
negl(n) for any constant c¢. Since &,,(n) is non-negligible, so is ,,(n) — 24/md(n). Finally
by union bound we have Pr[zy € Good] > 1 — 44/md(n). Setting d(n) = 4y/md(n) yields
the proof. n

Next we will proceed to show that if in the directed acyclic graph G = (V, E) and function
f we have, Inf®(f) € negl(n), for all u € V, then with high probability over the uniformly
random inputs the function f is constant.

Theorem 8. For all large enough n € N and fired N € N the following holds: Given
direct acyclic graph G = (V, E) with V = [N] and f : ({0,1}")Y — {0,1} be any function.
Further assume that for all w € V., InfS(f) € negl(n). Then there exists a € {0,1} so that
Pr.. oy [f(z) =a] = 1=10do(n) for some do(n) € negl(n).
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Proof. Note that, by our assumption and Definition 14, for all u € V the following holds:
There exists a function §(n) € negl(n) so that,

Pr [f(Xu = IO,XS“ = y) 7é f(Xu = xlaXS“ = y)] S 5(”)

Z0,T1,Y

where S* = V' \ {u}. Now, note that, by hybrid argument we have,

Pr f(z) # f(z')] < No(n) (7)
2 ({0,1}7)
2o,V

which implies that Pr,.[f(z) = f(2/)] > 1 — Né(n). Say, Pr[f(U,n) = 1] = p and
Pr[f(U,n) = 0] = 1 — p. Without loss of generality we can assume p > 1/2. As, colli-

sion probability of f(U,,x) is more than 1 — N§(n), we have p*> + (1 —p)? > 1 — N§(n). That
implies,

2p — 2p* < N&(n) = 2p(1 —p) < Né(n) = p>1— Ni(n).

The last implication holds because of our assumption that p > 1/2. As, N is fixed and
d(n) € negl(n) we have Nj(n) € negl(n). Setting dop(n) = NJ(n) the proof follows. O

Combining Theorem 7 and Theorem 8 we get the following corollary.

Corollary 1. For all large enoughn € N and fired N € N the following holds: Let G = (V, E)
be a directed acyclic graph with V- = [N|. Then for every function f : ({0, 1}")N — {0,1}
there exists a (n,G,t)-SHEDAG source with t = res(G) + 1 so that A(f(X) ; Uy) > n=¢ for
some constant c.

4.3.2 Explicit extractor

We will start by recalling the definition of resilience of a directed acyclic graph.

Definition 18 (Resilience of a graph). Given a directed acyclic graph G = (V, E) and a
subset S C'V we defined resilience of S as

res(S) :=|S| — masx|view(s) ns|—1
s€

Further we define resilience of G as res(G) := maxgcy res(.S).

In the previous section we proved that in a given directed acyclic graph G = (V = [N], F)
if we allow number of corruptions is strictly more than the resilience of the graph then it is
impossible to extract from SHEDAG sources with negligible error. In this section we will
show that in fact it is tight in the sense that if number of corrupted vertices is at most res(G)
then there exists an explicit function that can extract from SHEDAG sources with negligible
€error.

Before stating the construction of the extractor we need a few definitions which will be
useful.
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Definition 19 (Headless pair of vertices). In a given directed acyclic graph G = (V, E) with
V = [N] a pair {z,y} CV is called headless pair of vertices if x and y are unrelated (see
Definition 4) and there does not exist any h € Head(G) so that x,y € view(h).

Next we need to define a order between headless vertices of (.

Definition 20. Given a directed cyclic graph G = (V = [N], E), and Head(G) is the set of
head vertices of G. Take any arbitrary order < of the head vertices. We extend this order
for any pair of headless vertices in the following way:

For any two headless pair of vertices {u,v} CV define,

g _ parents(u) N Head(G)  if u & Head(G)
T {u} otherwise .
Similarly we define S,. Say u' is the smallest head vertex in S, and v’ is the smallest vertex
in S, in the order <. Then, we say u < v if u' < v'.

Remark 4. If {u,v} C V be a pair of headless vertices then, parents(u) N parents(v) is
empty. Otherwise since every vertex is in view of some head vertez, it contradicts the fact
that u,v are headless. Moreover, for any headless pair {wy,ws} so that wy € parents(u) and
wy € parents(v), we have wy < wy.

Next we will define set of ordered pair of headless vertices based on the order defined
before.

Definition 21 (Set of ordered pair of headless vertices). Given a directed acyclic graph
G = (V,E) with V = [N]. =< is the order defined between headless vertex pair. The set of
ordered pair of independent vertices of G is defined as

I:= {(u,v) : {u, v} is headless pair of vertices of G and u < v} .

We now proceed to define the construction of our extractor. Our construction is built
upon two source non-malleable extractors (see Definition 11). At first we will prove a general
statement and after that plugging the current state-of-the-art constructions of non-malleable
extractors we will give explicit extractors for SHEDAG sources in various parameter regimes.

Theorem 9 (Explicit extractor for SHEDAG source with negligible error). For alln,m € N,
fited N € N, k <n and € > 0 the following holds: Let G = (V, E) be a directed acyclic graph
with V = [N]. Suppose there exists an explicit (N2, k,€)-two source non-malleable extractor
2nmExt : {0, 1} e N x {0, 1} e N — L0,1}™. Then we have an explicit (n, k', G, t,€')-
SHEDAG extractor with t = res(G), k' > k+m +log(1/¢€), ¢’ < e+ 2¢.

Proof. Without loss of generality we can assume that res(G) > 1 because otherwise number
of corrupted blocks is 0.

Since t = res(G), by definition of resilience, there exists S C V so that ¢ = res(S). In
the next section (Section 4.3.3) we will show that we can find this subset S in poly(/N) time.
Let, G° = H(S) be the graph that we can find by the algorithm mentioned in Definition 15.
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Observe that, for every s € S we have | view(s) N S| is at most max, cpeaq(as) | view(u) N S,

hence formally,

res(S) = |S| — ma>(< S)|View(u) NnsS|—1.
u€Head (G

Since res(G®) > 1, we have |Head(G®)| > 2. Moreover, as t = res(S), from the above
observation and Remark 4 it follows that, there exist a pair of headless vertices {ig, jo} C S

so that X, X, are independent (n, k") sources.
Let I° be set of ordered pair of headless vertices of G° (see Definition 21). Define
shedagExt(X,...,Xy) :== @D 2nmExt(X;|[bit(i), X,]|bit(j)) . (8)
(i,9)el’

where bit(i), bit(j) are the binary representations of i, j respectively. Notice that by Re-
mark 4, for any i, j' € S so that i’ € parents(iy) and j' € parents(jy), we have {7, j'} is also
a headless vertex pair with i’ < j’. Define the partition of I° = LU_, A, where,

o Ay ={(i,j) € I° : i’ € parents(ip) U {ig} and j” € parents(jo) U {jo} }.
. {(z’,]’) € 9 : i € parents(ig) U {ip} but j' & parents(jo) U {]0}}
o Ay ={(i',j') € I° : i’ & parents(ip) U {io} but j/ € parents(jo) U {jo}}.
o Ay={(i,j') € I° : i & parents(ip) U {ig} and j/ & parents(jo) U {jo}}
Define Zo = @ ; jyc 4., 2nmExt(X;||bit(z), X;||bit(j)) for a = 1,2,3,4 and we rewrite 8 as,

shedagExt(Xl, e 7XN) = Zl D Z2 D Z3 D Z4 .

At first we define the set A’ = S\ (parents(iy) U parents(jo) U {io, jo}). Now for every v € A’
and for z, ~ X, we will fix the random variable X, to z,. Note that this will fix Z, and
it will not cause any entropy loss to X, for u = iy, jo and u € parents(ip) U parents(jo).
Moreover, for every (4, j) € A;, the random variables X;, X; will remain independent.

Next, for 2z ~ Zy we next fix Zy to z,. Observe that X, and Z, are independent. Hence
this fixing will not cause entropy loss to X,,. And by Lemma 2 we have Ho (X;,|Z2 = 22) >
k' —m —log(1/€) with probability at least 1 — £ over the choice of z,.

Similarly we fix Z3 by some z3 ~ Z3, by Lemma 2, Ho(X;,|Z3s = 23) > k' —m —log(1/¢)
with probability at least 1 — ¢ over the choice of z3. Since Z3 and X, are independent this
fixing will not cause entropy loss to Xj,.

After the fixings of X, for all v € A’, Zy and Z3, we have Zy ® Z3 & Z, is fixed and

Z, = 2nmExt(Y,, ||bit(d), Y}, || bit(jo)) & @ 2nmExt(Y;||bit(7), Y ||bit(5))
(i,4)€AL
(4,3)#(i0,50)
where Yz = XZ|(ZQ = Z9, {XU = xv}veA’) and Yj = XJ|(Zg = Z3, {Xv = Iv}veA’); for (Z,j) c
A;. Moreover, for every (i,j) € A; we have Y,;,Y; will still remain independent and there
does not exist any u so that X,, depends on both X;, X since {4, j} is headless pair. Note that
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for (i,7) # (io, Jo), there exist randomized tampering functions ggi’j), gg’j) :{0,1}" — {0, 1}
so that all of them are sharing same randomness independent of Y;,Y; for all (i,5) € A4;
and we can write

Y, ||bit(i) = g7 (Y, [|bit(io)) and Y;|bit(j) = g5 (Y, [[bit(jo)) -

Moreover for every fixing of the randomness of the tampering functions, for all (i, j) # (io, Jo)

we have at least one of g?’j ) or géi’j ) has no fixed point. As, 2nmExt is (¢, k, €) two source non-

malleable extractor with £ = N? and Heo (Y, ||bit(io)), Hoo (Y, ||bit(j0)) > k, from Lemma 4
we have,

A(2nmExt(Yipoit(i0),Y]-OHbit(jo)) ) um’{2nmEXt(YiHbit(7;),YjHbit(j))}Al3(i,j)75(i07j0)) <eg.

From here by Lemma 3, we have

Al B 2nmExt(Y[|bit(i), Y |bit(f)) ; Uy, | <=
(i,5)€A1

Therefore, shedagExt(Xy, ..., Xy) ~o U, with &/ < e+ 2¢. O

The above theorem combining with two source non-malleable extractor construction of
[CGL20] leads to the following corollary.

Corollary 2. There exists a constant v € (0,1) so that for all n € N large enough and
fired N € N the following holds: Let, G = (V, E) be a directed acyclic graph with V = [N].

Then for t = res(G) there exists an explicit (n,n — nV/Q,G,t,Q*mp)-SHEDAG extractor
with output length nY/?.

Proof. Let v > 0 be the constant from Proposition 1 and CGL : {0,1}" x {0,1}"* — {0,1}™
is (¢, k,&)-two source non-malleable extractor where 7 = n + logN, ¢ < 7 — ()7, k >
fi — (R)7,m = (R)” and & < 27",

Note that for any constant ¢ and large enough n we have (n+c¢)” > 3n7/4 as (n+c¢)?—n" €
o(n"). So, there exists ng € N so that for n > ny,

(n+logN)—(n+logN)" <n"/4—1logN <n-—n"/2.

Finally in Theorem 9 substituting m = n/? and & = 27""* we get (n+logN) — (n+
log N)? 4+ 2-n7/2 < n —n?/? for large n and from here the proof follows. ]

We can derive another corollary from the construction of [ACO23| and Theorem 9.

Corollary 3. For all large enough n € N and firted N € N the following holds: Let G =
(V,E) be a directed acyclic graph with V' = [N]|. Then there exists ¢ < 1/2 so that for

t = res(G) there exists an explicit (n, (1 — mw, G,t, 2_9(”C)> -SHEDAG extractor with
output length Q(n).
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Proof. Let ACO : {0,1}" x {0,1}" — {0,1}™ be the (¢, k,&)-two source non-malleable ex-
tractor from Proposition 2 with 7 = n + log N, k > (1- i, m = Q(k) and & < 27+
where ¢ < 1/2.

Note that as N is fixed, (1

m =

1
2N2+3)
- m)n > (1 — T%)ﬁ Substituting é = 27" and
— 1 1 ~ c n
IENTTE) I Theorem 9 we have, (1 — m)n > (1 — m)n—l—n + 1enTTs) for large
enough n. From here our proof follows. ]

4.3.3 Algorithm for locating subset with highest resilience

Definition 22 (Resilience). Given a graph G = (V, E), we say that a subset of vertices
S CV has resilience r if

|S| — measg((|view(s) NnS))—1=r

As we discussed in the previous section, if S has the resilience value r, our extractor
can take S as its influence set and such extractor would produce uniform output under r
corruptions. Therefore, the natural goal is to find the subset that maximizes resilience.

First, note that it suffices to consider the maximum view of only the head vertices in S.

|S| — m€a§(|view(s) NS))—1=|S|— max (|view(s)NS]|)—

s€Head(G*S)

where G = H(S) is the graph induced by the set S defined in Definition 15. Since for all
v € S, if there exists u € parents(v) NS, then view(v) NS C view(u) N S.
The next lemma states that when locating subset with maximum resilience, it suffices

to look for sets that do not truncate the view of the nodes, this means that if v € S then
view(v) C S.

Lemma 6. For any S C V, denote the set of heads in S as Head(S). Consider S" defined
as follows:
S"=SU{u € V:3ve Head(S), s.t. u € view(v)}

Then the resilience of S’ is at least the resilience of S.

Proof. By the construction, the sets of heads of S and S are the same. Let us consider any
vertex h in set S’, then:

| view(h) N S| < |view(h) N S|+ 15"\ S|.
Therefore, we can get the following bound:
S| = |view(h) N S| > |9 = (|view(h) N S|+ 1S"\ S|) = |S|—|view(h) N S].
It follows that
15| — max|v1ew(h) ns'l—1 > |S|— maX|V1eW( yNS|—1,
Thus, the resilience of S’ is at least as large as the resilience of S. O
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Following the above lemma, we can always assume that our resilient set S is determined
by the set of head vertices Sy, simply by taking S = Sy U{u €V : 3h € Sy, u € view(h)}.
This means we can optimize resilience by iteratively removing nodes that are currently heads,
without changing non-head vertices.

Definition 23. (Intact Set) When searching for the most resilient set, we will be looking at
sets with the following property v € S = view(v) C S. We shall call such sets intact.

The next lemma indicates we can remove head vertices in a greedy way. Recall that by
the Lemma 6 it suffices to consider sets that are intact.

Lemma 7. Suppose there exists set H that mazimizes resilience, and H C S C V, and
that H,S are both intact. Consider the set of head vertices in S the have maximum view:
So:={h € S :|view(h)NS| = max,es(| view(p) N S|)}. Then either S mazimizes resilience,
or HN Sy = 0.

Proof. If S maximizes resilience, lemma is proven. Otherwise, assume Jv € HNSy. Then by
the Definition 23, we have view(v) = view(v) N H = view(v)NS. Therefore, by the definition
of set Sy we have

| view(v) N H| = | view(v) N S| = I{Llagi(] view(h) N S)),
€

but |H| < |S|, and | view(v) N H| = maxpey (| view(h) N H|) thus:
|H| — max(\mew( JNH|)—1=|H|—(|view(v) N H|) -1 <
<|S| = |view(v) N H| —1=|5] — max(]mew(h) nsl) —1.

This is a contradiction with H optimizing resilience. Therefore, for all intact H that maxi-
mize resilience and are contained in S, we must have H NSy = (). Again, we stress here that
by Lemma 6 it suffices to consider intact sets that maximize resilience. [

Following this lemma, we can design the algorithm as follows. First, preprocess the graph
to compute and store the view size of each vertex. Then, iteratively remove the head with
the largest view, together with its incident edges. At each step, update and record the
maximum resilience attained. After this elimination phase terminates, repeat the process:
continue removing heads until the current resilience equals the previously recorded optimum.
Finally, collect the heads present at this stage, and perform a traversal (e.g., BFS or DFS)
from these heads to recover the entire optimal subset.

We will present the pseudocode for finding maximum resilience of subsets. The rest of
algorithm is similar to the same routine.
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Algorithm 2 Greedy head removal
: Input: DAG G = (V, E)
: OQutput: Set with maximum resilience : best
: Compute and store |view(h)| for all h € V
s <« |V|
. Create array A with length V| (0-index), elements initialized to empty linked list
. For all heads h of G, append h to A|| view(h)|]
: best <0
: Maintain a graph structure G
i |V]—1
while 1 > 0 do
if A[i] is empty then
1 1—1
continue
end if
Remove head of Ali], denote by v
best <— max{best, s — | view(v)|}
for w children of v in G do
if u has no parent except v then
Append u to Af|view(u)|]
end if
end for
Remove v and adjacent edges from G
23 s+« s—1
24: end while
25: return best

© 0 D U W N
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For the first step, we can perform a toposort and then compute and store the size of view
of vertices in order of toposort. This takes time linear in |V| 4+ |E|. After this, we use an
array to store the current head vertices in the same order as their size of view, along with a
graph GG. At each step, we remove the head with largest view, compute new resilience, and
then insert new heads into the array. Note the new heads inserted will always have a smaller
view, thus inserted to an earlier index in the array.

At the second iteration, we use same routine until we find the state of array that results
in largest resilience. Then we record all head vertices and use Lemma 6 to retrieve whole
optimal subset.

Correctness:

Loop invariant: Before best is updated to actual optimal resilience, at the start of each
iteration of outer while-loop, either the remaining vertices in G form an optimal resilient
subset, or there exists an optimal intact subset of vertices in G.

Initialization: observe that the optimal H C V must exist, and that we can assume H is
intact by Lemma 6.

Maintenance: Suppose at the start of an iteration, G = (V’, E’) and loop invariant is sat-
isfied. If V' is an optimal resilience subset itself, this implies best will be updated to optimal
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in current iteration. Otherwise, suppose the intact subset guaranteed by loop invariant is
H c V'. Note since we remove only heads, after removal step, the remaining subset is still in-
tact. By Lemma 7, we know that HN{h € V' : | view(h)NV’| = max,ey- (| view(p)NV'|) = 0.
Since the removed head has largest possible view in subset, it is not in H. Therefore, after
removal, H is still a subset of the remaining vertices in G

Termination: Since the algorithm ends after removing all vertices, upon termination,
best must be correctly updated, otherwise this means that the empty set itself is an optimal
resilience subset.

Afterwards, we re-run the algorithm to find the heads of the intact subset associated with
maximal resilience. Since intact subsets are determined uniquely by head vertices, we are
able to retrieve the entire optimal subset.

Runtime: Preprocessing costs O(|V| + |E|) with toposort. Each vertex is added and
removed from array A at most twice, each costing O(1) time. Keeping and modifying graph
structure in algorithm takes O(|V'| 4 | E|) time. Thus total runtime is O(|V'|+ |E|), which is
asymptotically same as simply reading through the graph G.
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