Electronic Colloquium on Computational Complexity, Report No. 12 (2026)

Perfectly Satisfiable Systems of Linear Equations
and Fixed Weight Solutions

Johan Hastad
KTH — Royal Institute of Technology

February 3, 2026

Abstract
We study systems of linear equations modulo two in n variables with
three variables in each equation. We assume that the system has a solution
with pn variables taking the value 1 for some value 0 < p < 1. We prove
that for any § > 0 it is hard to find a solution of the same weight that
satisfies at least a fraction ¢, + 0 of the equations. The constant ¢, is
upper bounded by .9 for any value of p.

1 Introduction

Systems of linear equations take an almost unique place in mathematics. They
are surprisingly expressive and when satisfiable they can be solved efficiently by
Gaussian elimination. Gaussian elimination is a very efficient but also a rather
fragile algorithm. It is sensitive to errors and even though it efficiently finds
some solution it is difficult to use it to find solutions with special structure.
It turns out that some computational problems related to systems of linear
equations are computationally difficult.

In this paper we are interested in the special case where each equation only
contains three variables. This can also be phrased as a Constraint Satisfaction
Problem (CSP) and this is the context from which we arrive. In a CSP each
variable takes a value in a finite domain and we have a large number of con-
straints of constant arity over these variables. A particular CSP is defined by
the type of constraints allowed. The general study of CSPs is a huge research
area covering many aspects. We do not wish to survey the results but let us
mention some highlights.

A basic question is which CSPs allow an efficient algorithm to determine
whether a given instance is satisfiable. After a long sequence of results, Bulatov
[13] and Zhuk [19] independently completed the characterization of when this is
possible and in particular proved that the problem is either in P or NP-hard.

Another important area of research is approximability of CSPs. Here one is
given an instance in which a fraction ¢ of the constraints are simultaneously sat-
isfiable and the question is whether it is possible to efficiently find an assignment

ISSN 1433-8092

that satisfies at least a fraction s of the constraints. Both the case of s = ¢ is
interesting (but usually hard) as well as s < ¢. Here a very important result by
Raghavendra [17] shows that, under the unique games conjecture, semidefinite
programming can be used to get an algorithm that, within an arbitrarily small
€, gives an optimal value of s.

A special case that combines the two views is approximability in the case of
satisfiable instances, i.e., ¢ = 1. In this situation, proving hardness turns out to
be much more difficult. Two of the main problems are that we cannot reduce
from unique games as it has non-perfect completeness and we cannot introduce
noise in the reductions. For many CSPs it is sometimes difficult to even guess
what the best approximation algorithms on satisfiable instances should look
like. We refer to the sequence of papers [7, 8, 9, 10, 11] and the references in
these papers for a more detailed discussion.

As mentioned initially, we are in this paper interested in satisfiable systems of
linear equations with three variables in each equation and only study equations
over the field of two elements. Superficially it might seem that there is not
much more to say in this case as it is easy to find a solution by Gaussian
elimination. As we are in a finite field we do not even have problems with
numerical accuracy. What makes the situation interesting, however, is that we
are interested in special solutions. In particular we limit the number of variables
that take the value 1.

There are several previous paper that study CSPs under the restriction of
fixed weight solutions and many have studied CSPs of arity 2. As a prime
example one can consider Max-Bisection, the problem of Max-Cut when the
cut is required to split the graph in to two pieces of equal size. The hardness
results for Max-Cut apply also to Max-Bisection while so far it has not been
possible to transfer the algorithmic results. For instance the famous algorithm of
Goemans and Williamson [14] gives an approximation ratio of roughly .8786 for
Max-Cut while the best approximation algorithm for Max-Bisection by Austrin
et el [2] gives a ratio closer to .8776. There is recent work by Brakensiek et al
[12] that suggests that the two constants might be different, or at least cannot
be proven to be equal without new ideas. It would be amazing if these two very
similar problems have optimal approximation ratios that are this close but still
distinct.

Austrin and Stankovi¢ [4] give detailed results what approximation ratios can
be obtained as a function of ¢ and the relative weight p for several CSPs of arity
two but do not study the case ¢ = 1 in detail. In general this problem of finding
fixed weight solutions for satisfiable instances for Boolean CSPs is not so well
studied. Tt is not difficult to see that for Max-Cut (and, more generally linear
equations with two variables in each equation) it is possible to find a perfectly
satisfying assignment of a given weight if it exists. For 2Sat the problem is
NP-hard by a reduction from Vertex Cover. For any edge (i, j) one writes down
the clause (z; V ;) and a satisfying assignment with ¢ ones is now equivalent
to a vertex cover of size t. Furthermore, by using the result of Austrin et al [3]
that vertex cover on graphs of bounded degree d is hard to approximate within

2 — 04(1), it follows that fixed weight 2Sat is hard to approximate!. While [3]
depends on the unique games conjecture using the techniques of [6] it follows
that the problem is NP-hard under randomized reductions.

As stated above, in this paper we are interested in instances of 3Lin that
have perfect solutions of a given weight and the question is whether it is possible
to find a solution of the correct weight that satisfies all or many of the equations.
As far as we can tell this question has not been addressed previously.

We prove that there are constants ¢, such that given a linear system with the
guarantee that there is an assignment with weight pn that satisfies all equations,
it is hard to find an assignment of weight pn that satisfies more than a fraction
¢p + 0 of all equations for any 6 > 0. We can assume that p < % as we can
negate all right-hand sides which negates all values of a solution.

The proof is based on a natural PCP and is very similar to that of [15] but
as we cannot introduce noise, modifications are needed. A direct proof yields
¢y = 1 —p+ 2p? but this can be improved for p # % by an easy reduction. One
simply adds some new variables and new equations on these new variables that
are easy to satisfy. For example, starting with instance constructed for p = 1/4
and adding 50% more variables and some equations on these it is possible to
get Ci2 = 9/10

Our first construction results in a system were we have some few frequent
variable and a large number of variables that are less frequent. In this situation,
the cardinality constraint only reflects what happens to the many variables.
This is not quite satisfactory as a majority (in fact two thirds) of all variable
occurrences are not really affected by the cardinality constraints. Motivated by
this and by adding a few complications we extend our results to regular systems
where each variable appear the same number of times. The bounds are not so
different from the non-regular case and for instance for balanced solutions we
obtain the constant 10/11.

2 Basic definitions

We call the problem of study 3Lin which is thus given by linear systems of
equations modulo 2 where each equation contains three variables. A generic
system is denoted L and use n to denote the number of variables in the system
and m to be the number of equations. An assignment has relative weight p if it
gives the value one to pn variables.

Let us comment on one annoying detail. Clearly the relative weight of any
assignment is a rational number. Furthermore suppose that p = p;/pa where
p1 and po are integers. Then to construct a system with a solution of relative
weight p we need the number of variables in the system to be a multiple of
p2 which gives a very annoying condition to address in the construction. We
basically sweep this problem under the rug. When claiming that we create

ITake any d such that it is hard to distinguish graphs which has a vertex cover of size 3n/5
and 4n/5. Then it is NP-hard to find a solution of weight 3n/5 that satisfies more than a
1- %) fraction of the clauses.

systems where there is a solution of relative weight p, we in fact create a system
with a solution of weight that is fixed and known and very close to pn. The
error in the relative weight can be made arbitrarily small and is ignored.

When studying systems that can be satisfied by an assignment of relative
weight p it turns out to be interesting to study assignments of relative weight s
also for s # p. Our main interest is in s = p but to have good information on a
system L formed from two systems L; and Lo on disjoint sets of variables it is
not enough to know how each system behaves on assignments of relative weight
p.

The first quality measure of solutions that comes to mind is the fraction of
equations satisfied. In many situations, however, it is rather simple to satisfy
half the equations. Thus we have the following definition.

Definition 2.1 An assignment to the variables of L has advantage § if it sat-
isfies a fraction (1 +0)/2 of the equations.

As all our hardness results are through defining a PCP where the verifier
accepts depending on the exclusive-or of three bits in the proof, we use the term
“verifier accepts with advantage §” to indicate the the verifier accepts with
probability (1 + §)/2.

3 Overview of the proof

Our current proof is very much based on the proof of [15] showing that it hard
to distinguish instances of 3Lin where it is possible to satisfy a (1 — €) fraction
of the equations from those where you can only satisfy a fraction (1+4§)/2. This
overview is easier to read if one has that proof fresh in ones mind and thus a
quick glance at [15] before continuing can make the rest of this section easier to
follow.

The heart of the argument of [15] is a two-prover protocol turned into a
PCP. In the two-prover protocol one prover, Py, receives k clauses from a 3SCNF
and returns a satisfying assignment for these clauses. The other prover, P,, gets
one variable from each clause and returns an assignment to these k variables.
The verifier checks that the assignment returned by P; does satisfy the chosen
clauses (this is easy to achieve) and that it is consistent with the values from
P, (which is the interesting part). It is NP-hard to distinguish the two cases
when the provers can make the verifier always accept (as the underlying 3-CNF
is satisfiable) from the case where best strategy of the provers makes the verifier
accept with probability at most c* for some ¢ < 1.

This is turned into a PCP and we let W be the set of variables sent to P; and
U the set of variables sent to P,. We replace the answers of the provers by their
long codes. Thus for each set W there is a table, B(g), indexed by functions g
mapping {0,1}" to {0,1}. For a correct proof of a correct statement the value
at g is g(y) where y is the answer from P;. Similarly we have tables Ay (f)
replacing the answers of of Ps.

The proof is checked by picking a random function, f, on {0,1}Y, and ran-
dom function, g1, on {0,1}", and setting g2(y) = g1(y) + f(7(y)) + u(y) where
w1 is random noise, addition is exclusive-or, and 7 is the projection operator
from W to U. The noise u takes the value one randomly and independently for
each y with probability € and is otherwise zero. After expanding both A and B
by the Fourier Transform and and doing some simple calculations one concludes
that if the verifier accepts with advantage ¢ then

5= Ar,5B5(1—2¢), (1)
B

where 75 is a “mod 2 projection”. From this relationship it is possible to extract
strategies in the two-prover game. For instance, P; picks 8 with probability Bg
and then answers with a random element from 5. To analyze this strategy it is
important to bound the expected size of # and the factor (1 — 2¢)!8l is crucial
for this. The origin of this factor is the noise function pu.

In the current paper we follow the same approach but as we want perfect
completeness we cannot allow any noise and we end up with (essentially) the

expression
> Ay B (2)
B

and we need to worry about large size 8. In the current situation we prove a
weaker theorem than [15] and we only need to analyze the case when (2) is close
to one. It is easy to see that to make it exactly one, A and B have to be matching
exclusive-ors. It is also not difficult to construct explicit solutions where the
verifier accepts with probability one and we give examples in Section 7.1 below.
This is unavoidable as determining whether there is a proof in the PCP that is
accepted with probability one can be done in polynomial time.

We are, however, interested in solutions where only a fraction p of the vari-
ables take the value 1 and to achieve this we change f to take the value one with
(roughly) probability p. In this situation a correct long code also has a fraction p
of values that are one while large exclusive-ors are essentially unbiased. Modulo
some technicalities this implies that we can focus on sets 8 such that wa(8) is
small with high probability. One could have hoped that such S are themselves
small, but only something weaker is true. There is a small set, S?, such that
if m9(/3) is small, it is, with high probability, contained in 7(S?) (which equals
72(8#) with high probability). This set, S”, is not in general a subset of 3 and
might not even give possible answers for P;. It is true, however, that elements
of mo() are possible answers for P,. By adding the variables of tk clauses to
both U and W for a large parameter ¢ we can prove that contributions from
terms that do not satisfy the clauses sent to P; is small. Let us turn to the
formal argument and start with some preliminaries.

4 Preliminaries

In the current paper we have both bits (which we view as elements of the finite
field Fy) and real numbers. To avoid having two different variants of “+” we,
in the technical part of the paper, use +1 to denote the elements of Fy and
addition in Fs turns into multiplication of real numbers. In other words, a
linear equation which in Fo-notation reads as

r+y+z=1

turns into an equation
ryz = —1.

This change turns 1 into —1 and hence if z is of relative weight p then

sz (1-2p)n

As stated earlier, as we can negate variables, we focus on p < % and hence this
sum is positive. The distribution p, on n bits picks each bit, independently of
the other bits, to be 1 with probability 1 — p and to be —1 otherwise. We have

the basic characters x%(z;), depending on a single input which take the value

v/p/(1 —p) at 1 and —/(1 — p)/p at —1. For general sets o C [n] we have
z) = [x¥ ().

i€

It is well known and easy to check that these form a complete orthonormal basis
of {—1,1}" under p,. Of particular interest to us is the case p = 1/2 where we
drop the superscript and simply use p for the probability measure and x,, for
the characters.

Any function {—1,1}"™ can be expanded as the Fourier transform in any such

basis and K
= fhxh(x)
aCn

where .
f& = Ex[f(z)xh(2)]

in which z is selected according to . It is easy to go from one basis to another
and in particular y;(z) = = and this can be expressed in the p-biased basis as

xi(z) = (1 = 2p)xj(x) +2¢/p(1 = p)x} (=

We use the long code, introduced in [5], to code an element, z, from a set
S. Let Fg denote the set of functions f mapping S to {—1,1}.

Definition 4.1 The long code of x € S is a table A mapping Fs to {—1,1}
where A(f) = f(x).

Note that the definition depends both on the element x and the set, S, from
which it is chosen. In our PCPs the proof contains tables that are supposed to
be long codes of certain strings. In some cases such a table is of size 2!5! with
one entry for each f. In some other cases the table contains only 2/°1=1 bits
with one entry for each pair f,—f giving the value for A(f). This is a folded
table. If the value for —f is desired this is defined as —A(f). We use folded
tables that come in complementary pairs, A° and A'. If A° contains the value
for f then A' contains the value for —f. This ensures that for any assignment
correctly coded by the two tables A and A', we have exactly half ones when
looking at the union of the tables. This step might seem unnecessary as one
normally thinks of a folded long code as unbiased. It is true that the resulting
logical long code is unbiased. We want, however, that the actually stored bits of
the long code are equally often 1 and —1 which is a different property. Suppose
for instance, that we, for some input y, choose f to represent that pair (f, —f)
iff f(y) = 1. Then with this folding the long code for y consists of all ones. The
coding of any other input is unbiased but we want it to be unbiased for many
input. There are many ways to achieve this and complimentary pairs is just one
possibility that is convenient for us.

Suppose U C W, then for y € {—1,1}", we let my(y) be the string = €
{—1,1}Y, such that z; = y; for i € U. When U is clear from the context we
drop it for readability and simply write 7(y).

5 The basic protocol to show hardness

As is standard we construct a PCP where the Verifier flips O(logn) random
coins, reads three bits, and accepts if the exclusive-or of the three bits have a
prescribed value. While most modern hardness results start with arbitrary label
cover, we start with the specific? label cover used in [15]. To be more precise,
we start with a 3Sat instance ¢ = V], C; where each clause C; is of size exactly
three and each variables appears in exactly 5 clauses. It has n variables and
hence m = 5n/3.

By [1], one can construct such CNFs where it is NP-hard to distinguish
whether ¢ is satisfiable or any assignment falsifies a fraction 7 of the clauses.
Here v is an absolute constant strictly greater than 0 and we do not need its
actual value as it is absorbed in other constants. We use ¢ to create a two-
prover game and let k£ and ¢ be two constants to be specified later. The protocol
of [15] is the same but uses ¢t = 0.

Basic two-Prover protocol

e The verifier V uniformly at random selects (¢ + 1)k clauses C;; from o.

2We use the particulars of this system when proving Lemma 6.5 and Lemma 6.6 below. It
is possible that one could work with a general label cover, but this would require a different
argument.

e V sends the (¢ + 1)k clauses to P; which returns values to all 3(¢t + 1)k
variables in these clauses.

e V randomly selects k of the chosen clauses and a random variable in each
of these clauses. It sends these k variables jointly with the remaining tk
clauses to P, which returns values to the k£ chosen variables as well as the
3tk variables in the clauses.

e 1 accepts iff the assignment sent by the two variables are consistent on
the common variables and satisfy all the chosen clauses.

We have the following, by now standard, theorem.

Theorem 5.1 If ¢ is satisfiable then there is a strategy for P, and P that
makes V always accept. If any assignment of the wvariables of ¢ falsifies a
fraction v > 0 of the clauses, then there is a constant ¢, < 1 such that for
any strateqy of P1 and Py, V accepts with probability at most c’fy.

The first part of the theorem is obvious as P; and P, can just agree to
answer according to a fixed satisfying assignment. The second part follows by
the parallel repetition theorem for two-prover games by Raz [18].

We denote a typical set of variables sent to P; by W and a typical set of
variables sent to P, by U. Rather than adding more notation we assume in
some places that each of these sets also carries the information of the identity of
the picked clauses. Thus W is sometimes a set of variables and sometimes a set
of clauses. As the notions are very close hopefully this is not confusing. Most
of the time W contains 3(t + 1)k variables and U contains (3t + 1)k variables
while always U C W. A technical point is that we pick the (¢t + 1)k clauses
with repetition. This implies that the k£ single variables in U are picked with
the uniform probability independent of the other tk clauses. It might be the
case that we have duplicated variables in W or U, but this happens only with
probability O(k*t?/n) = O(1/n) and, for notational convenience, we ignore this
possibility in our analysis of soundness. This small probability can be absorbed
in the error terms.

Let Sy be the set of assignments on U that satisfy the clauses sent to P, and
similarly we have sets Sy,. For any answer, y € Sy there is a unique answer,
m(y) € Sy that makes V accept. It is simply the restriction of the assignment
y on W to the subset U. Of course m depends on the identity of W and U but
we suppress this dependence.

We now turn this basic two-prover protocol into a PCP. This written proof
contains a number of tables. In a correct proof for a satisfiable (these tables are
long codes of local views of a satisfying assignment. Of course when analyzing
soundness we do not have any control over these tables as they might not contain
any systematic information. We use the term “supposed long codes” to hopefully
give the reader the correct intuition. To be able to adjust the relative weight of
a correct proof we use multiple copies of some tables.

e For each possible set U sent to P, we have M supposed long codes AiU of
elements in Sy for 1 < i< M.

e For each possible set W sent to P; we have a pair of complementary
supposed long codes, Bjy,, of elements in Sy for ¢ € {0,1}.

We turn to the basic PCP. We have a parameter ¢ which controls the bias
of the function f. This is a number close to p and we give details in Lemma 5.3
below. The algorithm for the verifier is as follows.

e Pick U and W as in the two-prover protocol.
e Pick arandom ¢ € [M] and random j1, jo € {0, 1}, all three independently.

e Define f € Fg, by setting f(z) = —1 with probability ¢ and 1 otherwise
for each = € Sy independently and uniformly.

e Define g1 € Fs,, by setting g;(y) to an unbiased bit independently for all
y € Sw.

e Set g2(y) = g1(y) f(m(y)) for each y € Sw.
e Accept iff B%(gg)B{;(gl)Ag(f) =1

We emphasize that A’i] is not folded while BY, and B, is a complementary pair
of folded tables.

5.1 Analyzing completeness

If ¢ is satisfiable then for each U we let xy be the restriction of a fixed satisfying
assignment to U and similarly yw is the restriction to W. We let A}, and B},
be the long codes of xyy and yw, respectively. In other words, A}, (f) = f(zv)
and B{;V(g) = g(yw) for any 4,7, f, and g. As w(yw) = 2y, the definition of go
implies that the verifier always accepts.

We want to calculate the relative weight of this proof, i.e. the fraction of
bits that take the value —1. In order to do this we add an extra step as follows.

e If the number of = such that f(z) = —1 is not contained in the range
[(g — €)|Sul, (g + €)|Sul], reject this choice for f and make a new choice.
Call this a biased choice of f.

This extra step has the consequence that we can remove a big part of A%, that
is never used. The step does not affect the completeness and, as we see below,
it hardly affects soundness, but it changes the relative weight of the proof. As
written originally, A}, contains entries for all possible f and if it is a correct
long code then half of the entries are —1. By removing entries corresponding
to very unlikely f we make the relative weight close to ¢q. Let us first state a
standard lemma.

Lemma 5.2 The probability that f is biased is at most exp(—ce27*) for an
absolute constant c.

Proof: (Sketch) The function f is picked by at least 7** independent bits. The
expected fraction of ones is q. The probability that we get a deviation of at
least € is, by standard Chernoff bounds, as stated in the lemma. .

Suppose that for the setting M = 1, the proof has N bits of which 4N
come from A-tables and 65N = (1 — §4)N come from the B-tables. Here d4 is
a constant depending only on ¢, ¢, t and k that can be calculated but, as this is
not needed, let us not make an explicit formula for this constant.

The table A contains an entry for each f such that the number of x with
f(x) = —1 is in the given range. By symmetry, the number of —1s in such
a table does not depend on which input it codes and it easy to see that this
number is between (¢ — €)d4N and (g + €)d4N. Suppose that the true number
is ¢04N. Here ¢’ is a number that can be calculated from ¢, ¢, k and ¢ and
does not depend on the assignment that satisfies ¢. The number of —1s in the
B-tables is, by the complementarity property, %5 sN. With M copies of each
A-table the total number of bits in the proof becomes M§s N + dgN and the
number of —1s becomes Mq'd4 N + %5BN. This implies that the fraction of —1s
is

q’MéA + %(53 3
Mb, + 6B (3)

which tends to ¢’ as M increases. We summarize the argument in the current
section as a lemma.

Lemma 5.3 If ¢ is satisfiable then there is a proof that makes V always accept.
The relative weight of this proof does not depend on the assignment that satisfies
@ and can be made arbitrarily close to q by making € small and M large.

For a given value of p and given values of ¢ and M we get a value ¢ =
q(p,e, M, k,t) such that the relative weight of the given proof is, essentially,
p. As discussed earlier we cannot make it exactly p. This happens when p
is irrational or has an awkward denominator that does not fit well with the
PCP. We can, however, make it very close to p and we ignore this point and
q(p, e, M, k,t) is a number such that the relative weight of the solution is as
close to p as we desire. The below observation follows directly from (3) and
that |¢' — ¢| <e.

Lemma 5.4 We have

lim |p_ q(p,e,M,k,t)| Se
M—o00

10

6 Analyzing soundness

Let us analyze the probability that V' accepts a given proof. Let us fix the values
of U and W and drop these as indices of A and B. Define

1 M—-1)
A(f) =57 D A,

i=0
and

Blg) = 5(B"(9) + B'(9)).

These functions are not Boolean but take values in [—1, 1]. If a verifier accepts
with advantage v for this fixed value of U and W, then

Y= Bijige g [A(F)B(a1)B(93)] = Ey., [A(f)B(91)B(g2)]- (4)

Set C(f) = Ey,[B(91)B(g2)] and expanding B by the Fourier transform we get.

C(f) = Bg,[Y_ Boixs (91) Y Baaxsa (g1 (fom)] = Y Bixa(f o),
B1 B1 B

as terms with 8; # (2 have expectation zero. Now

Xa(rom) = | (7)) = Xma(s) (),

yeB

where x € () iff there is an odd number of y such that 7(y) = x. We conclude

that . A
C, = Z B2,
B |m2(B)=c

and we note that C,, are positive numbers whose sum is ||B|3 < 1. Plugging
this into (4) we get

v = Ef[ANC()] = Ef[AS) Y Caxal). (5)

In the analysis of [15] one extracts a good strategy for the provers in the two-
prover game as soon as (5) is strictly greater than zero. Currently we are trying
to do less and only extract a strategy when the expectation is at least ¢ for some
constant ¢ which is quite close to, but strictly smaller than, 1. Before going into
the details how to do this, let us give some intuition.

As all the Fourier coefficients of C' are positive and they sum to at most one,
the only way that (5) can equal one is that C, = 1 for some a and A = y,. If
we on top of this require that A only contains a fraction ¢ of values that are —1
the only alternative is that « is a singleton. As the size of « increases, the bias
of xa(f) tends to 0 and the following simple lemma is useful.

11

Lemma 6.1 Let X and Y be two discrete random variables taking values in
[—1,1] and such that E[X]| = e, and E]Y] =e,. Then E[XY] <1 — |e; — €]

Proof: First we claim that we can assume that the two variables only take
values £1. Suppose a pair of values (z;,y;) appears with probability s and
|z;| # 1. We can replace this by (—1, y;) appearing with probability (1 —x;)s/2
and (1,y;) appearing with probability (1 + 2;)s/2. This does not change any of
E[X], E[Y], and E[XY]. We can repeat this to make also Y take values +1.
Now we can observe that pairs with x = —y must appear with probability
at least %\ex — ey to give the assumed difference in absolute value. .

We split C' in to its high and low degree parts. To be more precise we let ¢
be an odd integer and set set

Cg(f) = Z éaXa(f)'

laf<£

and C(f) = C(f) — C*(f). Let ¢ = 2 lal<e C. be the sum of the Fourier

coefficients of C*. Note that [C*(f)| < ¢’ for any f and IC(f)] < 1—¢.
Remember that B is folded and hence any « such that C, # 0 is of odd size.
For notational convenience define e4 = E;[A(f)].

Lemma 6.2 We have
Ef[A(/)C()) < (1= c")min(1,14 (1 —2¢)* —ea, 1+ €a).

Proof: First note that if 0 < ey < (1—2¢)“*2, the lemma true as |C(f)| < 1—¢*
and |A(f)] < 1. Assume first that e > (1 —2¢)**2. We have, by Lemma 6.1
and using that E[x.(f)] = (1 — 2¢)l®l and that |a| > ¢ + 2,

E[A(f)Xa(f)] € 1—lea—(1-29)"] < 14(1-2¢)1* —eq <14+ (1-2¢)F —c,.

We conclude that

EfANCH = > CaBlAFXa(H] < (1=)1+ (1—29) " —ea).

|| >0+2
The case when e4 < 0 is similar using that E[x, (f)] > 0for any a as ¢ < 3. .
The key lemma to establish soundness is the following.

Lemma 6.3 If the provers can win the two-prover game with probability at most

€1 then E[A(f)C(f)] < ¢*(1 — 2¢q) max(0,ea) + ey + /1]t

Proof: To estimate E[A(f)C*(f)] we expand both factors in the basis y%. As
noted above, for singletons « we have

Xa(f) = (1 =2¢)x§(f) +2v/q(1 — @)x&(f),

12

and by multiplicativity

Xa(f) = (1 - QQ)la‘X%(f) + Z Cq,|a’\,|a\Xg/(f)v (6)

a’'Ca

where the sum is over non-empty o’ and, by Plancherel,

Y Clartial S 1 (7)

o' Ca

We are interested in, possibly large, 8 such that mo(3) is of size at most £, and
start with a preliminary observation useful for studying projections.

Lemma 6.4 Suppose o C {—1,1}V is a set of size ly, then there is a U' C U
of size at most by — 1 such that for any x # x’, both in o, y:(x) # my/ ().

Proof: We prove the lemma by induction of ¢y. It is clearly true for ¢y = 1.
For the general case take any coordinate, ¢, on which all elements in a do not
agree. Split a into a disjoint union of a® and a' where the elements with z; = b
are included in a®. By induction we have coordinates U b" that split these sets.
Setting U’ to be the union of U%" and UY together with the element i gives a
set with the requested property. .

Let us fix W and study what happens when we pick a random partner U
and first look at the case when () is of size one.

Lemma 6.5 Suppose (is a set of odd size. Then there is an assignment z such
that if |m2(B8)] = 1, then ma(B) = w(z).

Proof: For each i € W divide 3 into two sets, 83 and 3}, depending on the
value of y;. Define z; to the bit, b, such that 3; is of odd size.

Now if ¢ € U then m(5) must contain an element with ith coordinate z;.
This follows as there is an odd number of elements with y; = z; in 8. If m(53)
is a singleton then it must hence equal 7(z). .

Note that we do not claim that z belongs to 8 and it is easy to come up with
examples where it does not. For instance 8 might be a sub-hypercube with one
element, w, removed and in this case z = w. We proceed to study that case
when m5(8) is small but of size larger than one.

Lemma 6.6 Suppose [is a set of odd size and that there is some U such that
72(B) is of size at most £. Then there is a set, S®, of size at most ¢ such that

Pr{jm(B)| < L Ama(B) # w(S7)] < O(¢/1).

Proof: Fix a value U° of U such that |m2(8)| < ¢ and such that |m2(3)| is as
large as possible given that the size is at most ¢. Suppose m3(8) = « and let
U’ be the set of size at most |a| — 1 found by Lemma 6.4. For each element
x € myr(a), B contains an odd number of elements, y, such that 7y (y) = «.

13

For each such z we can find an assignment z* as in the proof of Lemma 6.5.
Namely look at all y € 8 such that 7y (y) = 2. As this is an odd number, for
each ¢ there is a value 27 such that there is an odd number of such y with ith
coordinate z¥. Let S? be the set of all such z°.

Now for any U that contains U’ and any x € o we must have at least an
element y in 72 (8) such that 7y (y) = my/(x). Thus 72(8) contains at least £
elements. By definition, m2(3) either contains exactly ¢y elements or more than
¢ elements. In the former case, 72(3) must equal 7(S”). As the probability that
U contains U’ is 1 — O(¢/t), Lemma 6.6 follows. .

We return to the proof of Lemma 6.3 and expand A by its g-biased Fourier
transform and using (6) we derive the g-biased expansion of C* resulting in the
equality

BIA(HCT = Co [(@ =20)1"Nea+ D ALcqiaral | » (8)

o' Ca

where we the last sum is over non-empty o. As)" C,, = ¢! where each number
is positive and || > 1 the first term in all the summands is bounded by the
first term of the lemma and we need to look at the inner sum.

Say that a term is unusual if o’ is not a subset of m2(S?). By Lemma 6.6,
the expectation of contribution from unusual terms is at most O(¢/t). Summing
only over usual terms and using Cauchy-Schwarz and Plancherel each twice we

get

o .
DB Y Alcgjaial <

B a'Cma(59)
1/2 1/2

N2 19 \2 2
YBi Y (AL Y Cletal] <

3 o' Cra(S8) o’ Cra(S8)
1/2

ool
@
—~
s
Q<
N
N
IN
—
=)
=

1/2

9
N
N
R =
o
IN

Let us look at the following strategy in the two-prover game.

e Py, upon receiving W looks at B = By and picks 8 with probability E%
If S8 is a set of size at most ¢ it returns a random element from this set
and otherwise it returns any default message.

14

e P, upon receiving U, looks at A = Ay and picks o with probability
(A9)2. If v is a non-empty, P returns a random string from this set and
otherwise any default message.

The probability that the two strings returned are consistent is at least

S By (. (10)
B

aCma(SP)

Indeed if the two provers pick a an 3, where a@ C 72(S?) then the probability
the two strings are consistent is at least 1/¢. The verifier also checks that the
answers satisfy the corresponding clauses. This is always true for the answers
from P,. We claim that the expected contribution to (10) from answers where
the answer from P; does not satisfy the clauses picked is at most 1/¢. To see
this pick any such answer by P;. The probability that it contributes anything
to (10) is 1/t as any violated clause is sent also to P, with probability (1 —1/¢).
We conclude that the expectation of (10) is at most €; + 1/¢. By convexity we
have that E[v/X] < y/E[X] and hence the expectation of (9) is bounded by

€(61+%>§\/E+m-

Collecting terms we have established Lemma 6.3. .

Having established both soundness and completeness we can finally state
our first theorem. Let Fj,(e) = 1 — 2pe be the line through the points (0, 1) and

(1,1 2p).

Theorem 6.7 For any § >0, p <
3Lin such that

1

5, it is NP-hard to distinguish instances of

e There is an assignment of relative weight p that satisfies all equations.

— For any s, such that 0 < s < 1/2, any assignment of relative weight
s has advantage at most F,(1 — 2s) 4 0.

— For any s, such that 1/2 < s < 1, any assignment of relative weight
s has advantage at most 2 — 2s + 6.

Proof: Assume first that s < % In the proof we set ¢ (the analysis parameter),
t (controlling the number of clauses sent to both players), k (the the number of
clauses actually used in the two-prover protocol), and M (the number of copies
of the A-tables) large enough and € (the tolerance in the bias in the selection of
the f input) small enough. We later check that we do not get conflicts among
the different conditions but let us for the moment suppose not. Then to make
the arguments more transparent we, in this proof, drop terms that can be made
arbitrarily small as follows.

e Since M is large and € is small, we, by Lemma 5.4, set p = q.

15

e Since / is large we replace the term (1 — 2¢)**2 in Lemma 6.2 by 0.
e Since k is large, €; in Lemma 6.3 is very small and is replaced by 0.

e Since t is large, ¢/t in Lemma 6.3 is very small and is replaced by 0.
Firstly, from Lemma 6.2 we have
Ef[A(HC() < (1=)min(l,(1 —ea), 1+ ea) < (1=)Fplea) (11)
and, from Lemma 6.3,
E[A(f)CY(f)] < (1 — 2p) max(0,e4) < ' Fy(ea). (12)

As the A-tables give almost all the variables, again up to small error we know
that Eyfea] = 1 —2s. We do not have control over ¢’ but clearly from (11) and
(12) we can conclude that

E[A(F)C(f)] < Fea) (13)

and as F is linear this gives the bound of the lemma (without the error term &
which comes from the dropped error terms on the way). To look at errors more
closely let us first recall where we dropped terms.

e The ignored case of a biased f as discussed in Lemma 5.2.
e The term (1 — 2¢)**? in Lemma 6.2.
e The terms /¢/t and 1/fe; in Lemma 6.3.

e The difference between p and ¢ as implicitly discussed in Lemma 5.3.

To make them all small we fix parameters in the following order.
e Pick € small enough so that p + 3e < % and € < §/7.
e Determine ¢ such that (1 — 2¢)“*? < §/7 for any |p — q| < 2e.

e Determine ¢ and k such that /£/t and v/fe; are both bounded by §/7 and
such that the error term in Lemma 5.2 is bounded by §/7.

e Find a values of M such that |F,(t) — F,(t)| < 6/6 for any t € [0, 1].

We get no conflicts and hence for each constant value of § we can make the sum
of the error terms stay below §. This completes the proof when s < %

If s > % we replace F(e4) in the above bounds by 1+ e4 which is a valid
upper bound in both Lemma 6.2 and Lemma 6.3 (after we have dropped the
error terms). We conclude that E[A(f)C(f)] < 2 — 2s yielding the claimed
bound. u

16

Let us point out that the given theorem is the best that can be proved
without using information from the structure of pairs (U, W) that show up in
the proof. Let us consider the interesting case s < % It can be that for a fraction
(1 — 2s) of all pairs (U, W) we have that Ay is the constant 1 and By is the
long code of some assignment satisfying the local constraints. For the remaining
2s fraction of the proof, Ay and By give a perfect (but unbiased) solution to
that part of the proof, as described in Section 7.1 below. This situation cannot
appear exactly in a real proof as the bipartite graph of appearing pairs (U, W)
is connected but no such property was used in the the current proof. Let us
look at the given proof more closely.

The fraction of all entries in the A-tables that take the value —1 is s and as
these are most of the bits of the PCP, the relative weight of the given proof is
close to s. In the part of the proof where the A-tables are the constant 1 we
have that B(g1)B(gz2) is equal to f at a single input which is 1 with probability
1 — ¢ and thus gives an advantage of 1 — 2q. In the other part of the proof the
verifier always accepts and thus has advantage one. Thus the overall advantage
is

(1-2s5)(1—2¢q)+2s=1-2¢(1 —2s) = F,(1 — 2s),
matching the bound of the theorem.

The case of s = p is possibly the most natural to analyze which results in
the following corollary.

Corollary 6.8 Suppose 0 < p < % and § > 0. Then its NP-hard to distinguish
o Instances of 3Lin that has a satisfiable assignment of relative weight p.

o Instances of 3Lin where any assignment of relative weight p has advantage
at most 1 — 2p + 4p® + 6.

7 Hardness for s = 1/2 and non-degenerate sys-
tems

Theorem 6.7 gives a non-trivial bound for any s # 1/2 but this is easy to obtain
by a padding argument. We add n’ new variables and m’ equations of the form
x; + x; + o = 1. We want the property that any assignment with tn’ ones
on the new variables satisfy (3 + 3t(1 —)2 + o(1))m’ of the added equations.
Such a system can either be constructed randomly (assuming that m = w(n)) or
by choosing all possible combinations of (i, j, k). The parameters n’ and m’ are
derived from parameters of the system to pad, but as we can duplicate equations
in this original system we can get a suitable value for m’. To make calculations
simpler note that satisfying a fraction t3 + 3t(1 — t)? of equations is the same
as having advantage (2t — 1)3.

Take the system as given by Theorem 6.7 for p = 1/4 and suppose it has n
variables and m equations. Add a system as described in the previous paragraph
with n’ = n/2 new variables and m’ = m/4 equations on these new variables.

17

This creates a system with 3n/2 variables which, in the positive case, can be
perfectly satisfied by an assignment of relative weight 1/2. Namely the solution
of relative weight 1/4 on the old variables combined with the all ones solution
on the new variables.

Let us look at soundness and let us again drop error terms. Take any solu-
tion of relative weight 1/2 and suppose it assigns tn’ = tn/2 ones on the new
variables. As the total number of ones in the solution is 3n/4 the relative weight

3t

on the old variables is § — 5. If we let D(s) give the upper bounds found in

Theorem 6.7, then the maximal advantage, up to error terms, is

1 <D(i - %) + i(Zt - 1)3) : (14)

Let us maximize this over ¢. If ¢ < % then 2 — L > 1 and both terms (14)

are increasing with ¢. For % <t <1, as D is linear in this range, the second
1

derivative of (14) is non-negative and hence it is maximized either by ¢ = 3
ort = 1. The value at t = 1/2 is 2(1 4+ 0) = 2 while the value at ¢t = 1 is
2(D(3) + %) = 2. We summarize this analysis in a theorem.
Theorem 7.1 Suppose 6 > 0. Then its NP-hard to distinguish

o Instances of 3Lin that has a satisfiable assignment of relative weight %

o Instances of 3Lin where any assignment of relative weight % has advantage
at most % + 6.

This theorem takes care of the case p = 1/2 but of course we can get improved
results also for other values of p. For suitable parameters ¢, a, and b we take the
system obtained from Theorem 6.7, add an new variables and bm’ equations on
these new variables and optimize over a, b and ¢ such that ¢ + a = p(1 + a).
This optimization is not very difficult but let us not do it explicitly and state
only the big picture.

Theorem 7.2 Suppose 6 >0 and 0 < p < % Then its NP-hard to distinguish
e Instances of 3Lin that has a satisfiable assignment of relative weight p.

e Instances of 3Lin where any assignment of relative weight p has advantage
at most D(p), where D(p) = 3/4 for 0 < p < 1 and then monotonically
increases to & at p=1/2.

Proof: Suppose first that p < % and start with the system given by Theo-
rem 6.7 with ¢ = 1/4. Now add (g; — 1)n new variables, but no equations.
The total number of variables is now n/4p and thus a solution that has relative
weight i on the old variables and is all zero outside has relative weight p. Thus
completeness is clear.

As for soundness take any assignment of relative weight p to all variables.

It has relative weight as most 1/4 on the old variables and as the bound of

18

Theorem 6.7 is increasing in s for s < % and s = i gives the bound of the
theorem, the theorem is true in this case.

It is a bit disappointing to have the new variables not appear in any equations
but as we have no lower bound on the number of times a variable appears this
is, formally speaking, OK.

Now let us turn to the case p > i. Let us give the argument that gives
some function D with the given property but not the best. Set ¢ = 1/4 and add
n' = an new variables that we in the completeness case all set to one. To get a
relative weight of p we need

1
Z—ka:p(l—i—a)

which is satisfied by ¢ = (4p — 1)/(4(1 — p)). When analyzing soundness we
assume again that relative weight of a solution is ¢ on the new variables. The
situation is quite similar to the case when p = 1/2 and it easy to see that it is
non-optimal to have relative weight above one half on the original variables. For
p > 2/5 it is possible to get relative weight one half with ¢, = (5p —2)/(4p —1).
We add bm equations to make this case and t = 1 equally good. The objective
value at ¢t = 1is 2 + b and for t = ¢, it is 1+ b(2t, — 1) and it is easy to solve
for b. When p < 2/5 we instead compare ¢ = 0 and ¢t = 1 and do a similar
optimization. It is not difficult to see that the result is monotone in p and the
values at the end-points of the interval are already calculated. .

It is not difficult to, by a similar analysis, derive statements similar to Theo-
rem 7.2 when we bound solutions of relative weight s # p. We leave the details
to the reader.

The constructed system splits into two parts, one interesting (the one from
Theorem 6.7) and one trivial with a known solution and we feel this is artificial
and let us discuss one definition that rules out such behavior.

Definition 7.3 A system L is non-redundant if it does not imply any equation
of the forms x; = x; + ¢ or x; = ¢ for any values of i, j and c.

It is not difficult to prove that we can find good almost balanced solutions
to non-redundant systems.

Theorem 7.4 Suppose L is a non-redundant and satisfiable system with n vari-
ables and m equations. Then it is possible to efficiently find an assignment of
relative weight % that satisfies m(1 — O(1/y/n)) equations.

Proof: By Gaussian elimination we can find a basis of over Fy of the linear
space of solutions to L. This basis allows us to pick a uniformly random point
in this space. From the assumption that L is non-redundant it follows that
the coordinates of such a random point are unbiased and pairwise independent.
This implies that for a random point

E <i xi> =n (15)
i=1

19

and by using conditional expectations we can, in polynomial time, find a solution
to L that satisfies (>, #;)®> < n. Suppose for concreteness that the sum
is positive and equals r. Of all variables x; that equal 1 we choose the /2
variables that occur in the fewest number of equations. As we have more than
n/2 variables that equal one, the total number of equations in which the chosen
variables appear is at most 3rm/n. Changing the values on the chosen variables
produces the solution needed to prove the lemma. .

It is clear that we could allow a few variables to be fixed by L and some pairs
of variables being equal and prove a slightly weaker version of Theorem 7.4. All
we need is that the space of all solutions to L is nice enough that we get a good
bound in (15). Let us check that the systems underlying Theorem 6.7 do have
a fairly nice set of solutions.

7.1 Solutions satisfying all equations in system from The-
orem 6.7

Take any global assignment, 7 and for each clause C, let us associate one or
three assignments. If C is satisfied by 7 then we associate the restriction of 7
to the variables of C. If it does not, we instead associate the three assignments
that, on the variables of C, equal to 7 in exactly one point. The construction
implies that if we let 8 the the set of assignments associated with C' then if
U is any singleton set containing a variables in C' we have that 7y 2(83) is the
singleton set with the assignment given by 7 to the variable in U.

Now for a set of clauses sent to P; let Ty, be the direct product of the sets
of assignments assigned to the clauses in W. If 7 falsifies r of these clauses
in W, then Ty is a set of 3" assignments. Similarly we let Ty be the set of
assignments constructed in the same way from U where each singleton variable
is given the value according to 7. We set

Au(h) =1 f@)

€Ty

and

Bw(g)= [] 9.

yeTw

It is now easy to check that this proof is accepted with probability one. This
follows from the fact that w9 (T) = Ty which in its turn follows by construction.

As 7 was arbitrary this gives a rich family of solutions. It is not quite non-
redundant as we have values in B-tables corresponding to g being identically 1
and also in complementary tables we have pairs of variables that are each others
negations. It is, however, non-redundant enough to explain the fact that we do
not get any hardness for s = 1/2 in Theorem 6.7.

20

8 The regular case

In the proof of Theorem 6.7 we constructed a system of equations where each
equation contains one variable from an A-table and two variables from a B-
table. We made many copies of each A-table and as a consequence the variables
from the B-tables are much more frequent in the resulting linear system. As
a result, a fraction 2/3 of all variables occurrences are not really affected by
our global relative weight constraints, a fact that can be seen as aesthetically
not very pleasing. One can argue that rather than restricting the fraction of
variables that are true one should weight this by the number of occurrences to
make frequent variables be more important. One very structured case where the
two notions agree is given by regular instances where each variable appears the
same number of times. The purpose of this section is to modify the construction
to make the resulting system regular. Let us first ignore the possibility that W
might contain intersecting clauses.

There are two major reasons for non-regularity of the current PCP. One, as
pointed out above, is the unbalance between the A-tables and B-tables. Each
query in the B-tables is uniformly random and hence all these variables appear
the same number of times. The functions f used to query the A-table are
however biased and this is a major cause for non-uniformity. If you look at
binary strings of length N then the number of strings with N/3 ones are only
about half as many as those with 1+ N/3 ones and this is a major source of non-
regularity. To address these problems we make the following two modifications.

e For suitable values M4 and Mpg, we have M4 copies of each A-table and
M p copies of each B-table. The latter in the form of complementary pairs.

e We pick a random f such that f(z) = —1 for exactly a fraction ¢ of all z.

Since each equation contains two variables from the B-tables and one from
the A-tables we balance M4 and Mp such that the total size of the B-tables is
twice that of the total size of the A-tables. As each question inside an A-table
or a B-table is uniformly random this is enough to get regularity. Let us give
some details.

If all the selected clauses are disjoint then the size of Sy is 7¢**D* and hence
the size of each such B-table is 27" and we have m(t+D* different B-tables.
The size of Sy is 7t%2% and if we denote number by N the size of each A-table
is (q]y\f)' There are m**n* different A-tables and using m = (5n/3) it is easy to
determine M4 /Mp to make the total size of the B-tables be twice the total size
of the A-tables. To make the instance exactly regular we need some additional
modifications and let us only sketch these.

Suppose some clauses in W intersect resulting in a Sy of a different size.
Let S be the maximal possible size of Sy, (which certainly is less than 23(t+1)k
and possibly equals 7(”1)’“), then we make 2515wl copies of this By making
the total size of all these tables independent of . The duplication of A tables
due to intersecting clauses gets slightly more involved as numbers do not divide
as nicely, but there is only a constant number of different table sizes and hence

21

we hope that the reader is convinced that this can be done. From now on we
skip this detail and analyze the given PCP.

The analysis of the completeness remains as before and the only notable
change is the final calculation of the relative weight of the resulting proof. The
A-tables have relative weight ¢ and the B-tables have relative weight 1/2 and as
the latter make up for two thirds of the proof, the relative weight of the overall

pIOOf 1S]

and we summarize this in a lemma.

[SCI)

Lemma 8.1 If ¢ is satisfiable then there is a proof in the modified regularized
PCP that makes V' always accept. The relative weight of this proof is (14 ¢q)/3.

Let us look at soundness and fix a pair (U, W). Naturally we define

1 Mp

" 2Mp i=1

B(g) (B(9) + Bi(9)) - (16)

and as we are equally interested in the bias of A and B we define e4 = Ef[A(f)]
and eg = E4[B(f)]. It is not difficult to see that biasing B comes with an
immediate cost.

Lemma 8.2 We have ||B|j3 <1 — |ep].

Proof: Look at the pairs (BY(g), B} (g)). As the two tables are complementary,
these two bits are represented in different ways. If BY(g) is given by the stored
bit in BY then B}(g) is given by the complement of the bit stored in B}. If the
two bits stored are equal then in fact the two values cancel each other in the
sum (16). This must happen for a fraction |eg| of all pairs and hence

EqlIB(g)] <1—lesl,
and as |B(g)| <1 we have
Eg[B(9)*] < Eg[|B(g)l] <1~ |esl.

An important fact used in the soundness proof is that x.(f) is close to
unbiased when |a] is large. This is no longer true as for instance when o = Sy
the value of x4 (f) is constant and in general, o and its complement give the same
value for |x4(f)|. This proves that very large « give large expectations but also
tells us that it is enough to analyze « that contains at most half the elements.
To study the relevant expectations we recall the Krawtchouk polynomials.

Suppose we have N Boolean variables, z, then we have let

KM (s)=) Xal2)

lee|=£

22

where x is any input with s coordinates equal to —1. As we sum over all « of
size £, the value only depends on the number of ones in z and hence this is well

defined. Note that L .
N\~ N\~
(7) wre=(7) o

The left hand side is the expectation of x,(z) when « is of size £ and x has
weight s. On the right hand side ¢ and s trade places but as x,(z) is symmetric
with respect to o and z this gives the same value. From the definitions we get
the following lemma.

Lemma 8.3 Suppose |a| = ¢, then

1S\ ™" s 1Sul\ ™ isel
Bl = (7)) w2 aiseh = (o) K-
The size of the Krawtchouk polynomials is well studied and one source is
[16]. Let us only give the main points. If ¢ and ¢ are fixed then

i ())_1Kév (aN) = (1 - 20)".

N—oo
N\
<qN) K0

is a decreasing function from ¢ = 0 to the first zero of K,x that appears at
=4 —(1+0(1))Ny/q(1 — q) after which it remains o(1) (as function of N)
until £ = % We note that the stated properties are, up to o(1), the same
properties as used of E[x,(f)] in the proof of Lemma 6.2.

We return to the case of estimating E[A(f)C(f)] in the modified PCP. We
use a similar split C = C* + C as in the previous proof but let C* also contain
the Fourier terms of size at least |Sy| — ¢. We let ¢ be sum of the Fourier
coefficients of C'. Note that, by Lemma 8.2, ¢/ + & < 1 — |eg|. We now have
the following Lemma 6.2 using the above stated properties of the Krawtchouk
polynomials.

Furthermore

Lemma 8.4 In the modified reqular case, we have
By A(F)C(f)] < emin(1,1+ (1= 20)*2 + o(1) — ea, 1+ o(1) + ea):

To estimate E[A(f)C*(f)] we proceed as in the previous proof and one com-
plication we need to address is to estimate the probability that mo(5) is very
large and in particular when it contains all but at most ¢ elements of Sy. This
is only a small extension of Lemma 6.6.

Lemma 8.5 Suppose B is a set of odd size and that there is some U such that
72(B) is of size at least |Sy| — £ where £ < k. Then there is a set, S, of size at
most £ such that

Pr{my(B)| = [Su| — £ Ama(B) # Su/m(S7)] < O(¢/t).

23

Proof: The proof is very similar to the proof of Lemma 6.6. We use that some
sets are of even size and then a subset is of odd size iff its complement is off odd
size.

Take any U such that m3(/5) is of minimal size conditioned on it being of
size at least |Sy| — ¢. Suppose that m2(8) = Sy — o’ where || < £. Take a
set U’ splitting o’ as given by Lemma 6.4. Suppose the ith element of o’ takes
the value z; on U’ where, by construction, z; # x; for i # j. Let us look at
set the y € B such that 7y (y) = z; and let z denote the coordinates of y on
U\ U’ writing y = (z, 2). Define z; such that (z;,y;) is the element in o/ with
mu(y) = z;. Since ma(f) = Sy — o for z # z;, we have an odd number of
y € B such that 7y (y) = (x4, 2) while there is an even number of y such that
mu(y) = (w;,2;). As £ < k, we have that U \ U’ contains at least one of the
singleton variables of U. This implies that the number of possible values of z is
even and hence the number of z with z # z; is odd and hence the number y € 8
with 7/ (y) = x; is odd. Define 2" as in the proof of Lemma 6.6, namely 2? is
such that there is an odd number of y € 8 with 7y (y) = x; and jth coordinate
equal to z;

Now consider any other partner U; of W that contains U’ and suppose that
|m2(B8)| > |Suy| — £. For any ¢ there is an odd number of elements in w2 (f)
such that 7y (y) = z;. As there is an even number of elements z in Sy, with
7y (x) = x; there is some value z such that the number of y € 8 such that
7y, (y) = (i, 2) is even. In particular there is some element outside mo(/3) that
projects onto x;. By our choice of U there must be a unique such element. By
our choice of z; there is an odd number of elements in 7 (/3) that project onto x;
and has j coordinate equal to z; As there is an even number of elements in Sy,
that project onto x; there is also an odd number of elements outside 72(3) that
project onto x; and have jth coordinate z; As there is a unique element outside
m2(B) that project onto x; we conclude that the missing element is (z;, 2%).

As in the proof of Lemma 6.6 the lemma now follows from the fact that the
probability that U! does not contain U’ is O(¢/t). .

The other crucial lemma for the soundness is Lemma 6.3 where we show that
if E[A(f)C*(f)] is too large then it is possible to extract a good strategy for
the two provers. One difference is that since A is only defined for f of relative
weight exactly ¢ we do not immediately have the Fourier transform of A in the
g-biased basis and hence it is not clear how to extract a strategy for P.

For any f not of relative weight ¢, define f to be a uniformly random element
of relative weight ¢ as close as f as possible. In other words if f has more
than fraction ¢ of coordinates that are —1 we randomly select a subset of these
coordinates to change to 1 in order to make the relative weight exactly ¢. If it has
relative weight below ¢ we instead change a random fraction of the coordinates
that are 1. Now define

A(f) = BFIA(D)].

In particular for f of relative weight ¢ we have A(f) = A(f) while for other
f it is the average over some nearby points. We claim that E;[A(f)Ct(f)]

24

where f has relative weight exactly ¢ is close to Ey [A(f)CY(f)] where f has
each coordinate equal to —1 with probability ¢. As we know how to extract a
strategy in the latter case this is enough. Let us first see that the C? is likely
to be almost the same for f and f

Lemma 8.6 Suppose f according to g, then
E[IC*(f) = C*(f)l] < O(¢/Vtk).

Proof: By the triangle inequality it is enough to prove this inequality for
Xo where |a] < £. In expectation when we change f to f we modify O(V'tk)
coordinates where each is uniformly chosen. As the probability that any single
of these coordinate belongs to « is £/tk we have

Efllxa(f) = xa(HI] < O(/VtE),
and the lemma follows. .

By definition B
Efeu, [A(£)C*(F)]

equals

Efep, [ANC ()],
which, by Lemma 8.6, is within O(¢/v/tk) of

Efep, [ANC (),

which equals
Ef[A())C*(f)];

when f is chosen to take the value exactly at fraction ¢ of the points. The
strategy of P, and P based on the A and B tables can now be defined in a very
similar way to the proof of Lemma 6.3. One very small difference is that we
possibly have to look at sets S? both in the case when 7 (/3) is of size at most
¢ and when it is of size at least |Sy| — £. It is not obvious whether the same
can give both small and large projections, and we did not investigate this. The
possibility, however, only results in a factor of two as if both are possible we
simply choose from each of the two sets with probability 1/2. Repeating the
previous proof we now get the following lemma.

Lemma 8.7 If the provers can win the two-prover game with probability at
most €1, then in the modified, regular PCP we have E[A(f)C*(f)] < (1 —
2¢) max(0,e4)(1 + o(1)) + /2le; + O(L/\/tk), where the o(1) is true for fized £
as t and k increases.

Having established the key lemmas for completeness and soundness we get a
hardness result. We only state the result when we are looking for a proof with
at most half ones.

25

Theorem 8.8 Suppose % <p< % and set g = 3p — 1. Then for any 6 > 0, it
18 NP-hard to distinguish regular instances of 3Lin such that

o There is an assignment of relative weight p that satisfies all equations.

e For any s, such that 0 < s < 1/2, any assignment of relative weight s
gives an advantage as follows.

—Ifqg> % then the advantage is at most 2s + 0
—Ifqg< % and s > % then the advantage is at most 1 — 6q(1 —2s) + 4.
— Ifg < % and s < % then the advantage is at most 3s(1 — 2q) + 0.

Proof: The completeness is clear by Lemma 8.1 and let us turn to soundness.
As we need to average over all pairs (U, W) let us set e}y = Ey[Bw(g)] and
define eg similarly. We have a number of error terms that, as in the previous,
proof can be incorporated in the error bound § and let us ignore them. Thus in
all calculations from now on we drop any term that goes to 0 when ¢, k and ¢
tends to infinity. First note that it is never optimal to have a negative Y or e}¥.
This follows as all our bounds are increasing for negative value of the densities
and decreasing for positive values. Thus we can always increase the bounds if
there are terms of both signs. As the total expectation is positive we can hence
assume that all expectations are non-negative.

With the convention of dropping the terms that can be made arbitrarily

small, the advantage over a random assignment as given by

Evuw.f.0.[Av(f)Bw (91) Bw (92)],

and is bounded by
Eyw|(1— leg NFy(ed)] = Euwl(l — e}y)Fy(el)], (17)

as we assume that eB is non-negative. We bound this using the assumption
that the proof has relative weight s which is the same as

Eywl(2ely 4+ e4] = 3(1 — 2s). (18)

Let us find the solution to this by inspection rather than heavy calculation.
We are picking random pairs of table Ay and By resulting in random pairs
(€4, e%). The pairs have some additional structure as the same number appears
in many pairs but let us ignore this and allow arbitrary pairs that satisfy (18)
and get an upper bound of (17) valid for all such probability distributions of
pairs.

For any fixed choice of the values e%, as the bound is linear in e‘g, we can
assume that (except for one W that we ignore as it gives a small error term)
that el equals 0 or 1.

For any W such that e}y = 1, and any U that is paired with such a W it
is optimal to make e = 1. Indeed increasing any such e to 1 and decreasing

26

other values usually increases, but certainly does not decrease, (17). By the
same argument as above (and using that eg is non-negative) we can assume
that ey only takes the values 0 and 1. Assume that el = eY = 1 happens
probability e and %% = 0 and €{ = 1 happens with probability ey. With this
notation (18) turns into

3e+ep =3(1—2s) (19)

while the expectation of (18) becomes
1
eoFy(1)+(1—eg—€e)=1—e—2geg =25+ 60(§ —2q),

where we used (19) in the last step. If ¢ > % this is optimized when ey = 0
giving the first part of the lemma. When ¢ < 1/6 we want to make e as large
as possible but we need to satisfy the constraints e > 0 and e + eg < 1. When
5 > & the optimal solution is ey = 3(1 — 2s) and e = 0 giving the optimal value
1—6¢(1—2s). For s < % the optimal value is eg = 3s and e = 1 — 3s giving the
optimal value 3s(1 — 2q).

Setting s = p we get a corollary.

Corollary 8.9 Suppose 1—78 <p< % and 6 > 0. Then its NP-hard to distinguish

e Reqular instances of 3Lin that has a satisfiable assignment of relative
weight p.

e Regular instances of 3Lin where any assignment of relative weight p as
advantage at most 2p + §.

For % <p< 1—78 a stmilar statement holds with the bound in the soundness

replaced by 7 — 30p + 36p? + 4.

As in non-regular case we can improved bounds for some values of p by
padding. A difference here is that if add an variables when we must also add
am equations to keep the system regular. The case p = % gives nice rational
numbers also in this situation.

Theorem 8.10 Suppose § > 0. Then its NP-hard to distinguish

e Regular instances of 3Lin that has a satisfiable assignment of relative
1
weight 5.

e Regular instances of 3Lin where any assignment of relative weight % has
advantage at most 1% +9.

Proof: We start with the system with a solution of relative weight % and add
2n/9 new variables and 2m/9 new equations on this variables with right hand
sides one. This gives a system with 11m/9 equations which has a solution with
relative weight %

In the soundness, the two interesting cases are all new variables getting the
value one and when half the old variables are one. It is easy to check that in
either case the objective value is at most m(1 + ¢).

27

The case for general p is slightly less nice compared to the non-regular case.

Theorem 8.11 Suppose § >0 and 0 < p < % Then its NP-hard to distinguish

o Regular instances of 3Lin that has a satisfiable assignment of relative
weight p.

e Regular instances of 3Lin where any assignment of relative weight p has
advantage at most D(p) + 0, where D(p) =1 — 47” for 0 <p < % and and
7

is upper bounded by .86 when {5 <p < %

Proof: In all cases we start with a system with n variables and m equations
and a perfect solution with 7n/18 variables being true. In the soundness case
we only have advantage % + ¢ and hence falsify (% — 0/2)m equations.

When p < 7/18, we add (ﬁ — 1)n variables and (ﬁ — 1)m equations with
right hand sides zero. In the soundness case the best solution is to make all these
new variables 0 and thus we falsify the same number of equations. This means
that we falsify a fraction slightly smaller than 27’) and this gives the advantage
stated.

For 1—78 <p< % we do not have a clean argument and the bound has been
verified by computer. The function D(p) that one obtains does not seem to be

monotone. n

9 Final remarks

Most of the current paper deals with hardness results and hence it would seem
natural to complement this by some more algorithmic results. There are two
natural and simple algorithms. One was used already in Theorem 7.4 and picks
a random element from the set of satisfying assignment and then (greedily or
randomly) modifies it to get the correct weight. This is straightforward to
analyze in the non-redundant situation. It is not hard to analyze this algorithm
in the general case but it does not turn into a nice to state theorem.

Another natural algorithm is to give each variable the value true with prob-
ability p to create a solution of relative weight close to p (and later make a
small adjustment). Also this is easy to analyze but the result depends on the
distribution on the right hand sides.

The instances produced by our hardness reductions are a bit non-symmetric.
We have two types of variables, those from A-tables and those from B-tables.
While the former are biased the latter are not. The right hand sides of these
instances are unbiased due to complementarity property of the B-tables.

Thus apart from the lack of algorithmic results also in hardness analysis there
are many potential cases (regular or not, redundant or not, biased right hand
sides or not). Maybe we still do not have the most natural class of instances of
perfectly satisfiable instances of 3Lin with solution sets of fixed relative weight.
Possibly there is no such class but it is always nice to dream of a nice class with
matching hardness and algorithmic results.

28

Looking at other problems, it would be interesting to study the approxima-
bility of fixed weight 2Sat on satisfiable instances. Here there is also room for
both algorithmic results as well as more explicit hardness reductions.

Acknowledgment. I am grateful to Per Austrin and Pasin Manurangsi for
pointing out that it is NP-hard to approximate fixed weight 2Sat on Satisfiable
instances. I also thank Per Austrin for many very helpful comments on an early
version of the current paper as well as pointing out that [6] can use to eliminate
the unique games conjecture in [3].

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M.Szegedy. Proof verifi-
cation and intractability of approximation problems. Journal of the ACM,
45:501-555, 1998.

[2] P. Austrin, S. Benabbas, and K. Georgiou. Better balance by being biased:
A 0.8776-approximation for max bisection. ACM Trans. Algorithms, 13(1),
2016.

[3] P. Austrin, S. Khot, and M. Safra. Inapproximability of vertex cover and
independent set in bounded degree graphs. Theory of Computing, 7(1):27—
43, 2011.

[4] P. Austrin and A. Stankovié. Global Cardinality Constraints Make Approx-
imating Some Max-2-CSPs Harder. In Dimitris Achlioptas and Laszlé A.
Végh, editors, Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques (APPROX/RANDOM 2019), volume
145 of Leibniz International Proceedings in Informatics (LIPIcs), pages
24:1-24:17, Dagstuhl, Germany, 2019.

[6] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-
approximability—towards tight results. SIAM Journal on Computing,
27:804-915, 1998.

[6] A. Bhangale and S. Khot. UG-hardness to NP-hardness by losing half.
Theory of Computing, 18(5):1-28, 2022.

[7] A. Bhangale, S. Khot, and D. Minzer. On approximability of satisfiable
k-CSPs: 1. In Proceedings of the 54th Annual ACM Symposium on Theory
of Computing, pages 976-988, 2022.

[8] A. Bhangale, S. Khot, and D. Minzer. On approximability of satisfiable
k-CSPs: II. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, pages 632—6442, 2023.

[9] A. Bhangale, S. Khot, and D. Minzer. On approximability of satisfiable k-
CSPs: III. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, pages 643-655, 2023.

29

[10]

A. Bhangale, S. Khot, and D. Minzer. On approximability of satisfiable k-
CSPs: 1V. In Proceedings of the 56th Annual ACM Symposium on Theory
of Computing, pages 1423-1434, 2024.

A. Bhangale, S. Khot, and D. Minzer. On approximability of satisfiable
k-CSPs: V. In Proceedings of the 57th Annual ACM Symposium on Theory
of Computing, pages 62-71, 2025.

J. Brakensiek, N. Huang, A. Potechin, and U. Zwick. MAX BISECTION
might be harder to approximate than MAX CUT, 2025.

A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS),
pages 319-330, 2017.

M. Goemans and D. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 42:1115-1145, 1995.

J. Hastad. Some optimal inapproximability results. Journal of ACM,
48:798-859, 2001.

G. Kalai and N. Linial. On the distance distribution of codes. IEEE
Transactions on Information Theory, 41(5):1467-1472, 2002.

P. Raghavendra. Optimal algorithms and inapproximability results for ev-
ery csp? In Proceedings of the Fortieth Annual ACM Symposium on Theory
of Computing, STOC 08, page 245-254, New York, NY, USA, 2008. Asso-
ciation for Computing Machinery.

R. Raz. A parallel repetition theorem. SIAM J. on computing, 27:763-803,
1998.

D. Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM,
67(5), 2020.

30

ECCC

https://eccc.weizmann.ac.il

ISSN 1433-8092

