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Abstract

A major open problem at the interface of quantum computing and communication complexity is
whether quantum protocols can be exponentially more efficient than classical protocols for computing
total Boolean functions; the prevailing conjecture is that they are not. In a seminal work, Razborov
(2002) resolved this question for And-functions of the form

F px, yq “ fpx1 ^ y1, . . . , xn ^ ynq,

when the outer function f is symmetric, by proving that their bounded-error quantum and classical
communication complexities are polynomially related. Since then, extending this result to all And-
functions has remained open and has been posed by several authors.

In this work, we settle this problem. We show that for every Boolean function f , the bounded-
error quantum and classical communication complexities of the And-function f ˝ And2 are polyno-
mially related, up to polylogarithmic factors in n. Moreover, modulo such polylogarithmic factors,
we prove that the bounded-error quantum communication complexity of f ˝ And2 is polynomially
equivalent to its deterministic communication complexity, and that both are characterized—up to
polynomial loss—by the logarithm of the De Morgan sparsity of f .

Our results build on the recent work of Chattopadhyay, Dahiya, and Lovett [CDL25] on structural
characterizations of non-sparse Boolean functions, which we extend to resolve the conjecture for
general And-functions.

1 Introduction

Communication complexity, introduced by Yao [Yao79], studies the amount of communication required to
compute a function whose input is distributed among multiple parties. Since its inception, communication
complexity has become a central tool in theoretical computer science, with applications ranging from
streaming algorithms and time–space tradeoffs to data structure lower bounds and circuit complexity.
See the textbooks [KN97,RY20] for excellent introductions to the area and its applications.

In the most standard setting—the two-party model—two players, Alice and Bob, wish to compute a
Boolean function F : XˆY Ñ t0, 1u, where Alice receives x P X and Bob receives y P Y . They exchange
messages according to a pre-agreed protocol in order to compute F px, yq, with the goal of minimizing
the total number of bits communicated in the worst case.

Several variants of communication complexity arise depending on the type of interaction allowed and
whether the protocol is permitted to err with small probability. In this work, we focus on three such
models: two classical models and one quantum model.

In the classical deterministic model, the deterministic communication complexity of F , denoted
Dcc

pF q, is the minimum number of bits that must be exchanged by a protocol that computes F px, yq

∗TIFR, Mumbai. Email: sreejata.bhattacharya@tifr.res.in. Supported by the Department of Atomic Energy,
Govmt. of India, under project #RTI4001 and by a Google PhD Fellowship.

†UC San Diego. Email: fbyramji@ucsd.edu. Supported by a Simons Investigator Award #929894, and NSF awards
CCF-2425349 and AF: Medium 2212136.

‡TIFR, Mumbai. Email: arkadev.c@tifr.res.in. Supported by the Department of Atomic Energy, Govmt. of India,
under project #RTI4001 and by a Google India Faculty Award.

§UC San Diego. Email: ydahiya@ucsd.edu. Supported by Simons Investigator Award #929894 and NSF award CCF-
2425349.

¶UC San Diego. Email: slovett@ucsd.edu. Supported by Simons Investigator Award #929894 and NSF award CCF-
2425349.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 13 (2026)



correctly on all inputs. In the public-coin randomized model, Alice and Bob have access to shared public
randomness and are required to compute F px, yq with error probability at most 1{3 on every input; the
corresponding complexity measure is the randomized communication complexity, denoted Rcc

pF q.
The quantum variant of communication complexity, also introduced by Yao [Yao93], allows the mes-

sages exchanged between the parties to be quantum states (qubits). At the end of the protocol, one
of the parties performs a measurement on its quantum state to produce the output. In addition, the
parties may share an arbitrary entangled state prior to the start of the protocol, at no communication
cost [CB97]. The minimum number of qubits exchanged by such a protocol that computes F px, yq with
error probability at most 1{3 is called the bounded-error quantum communication complexity of F , and
is denoted Qcc

pF q.
A central question in quantum computation is to understand when quantum models enable efficient

solutions to problems that are believed to be hard for classical models. In the context of communication
complexity, this question asks when quantum protocols can be super-polynomially more efficient than
classical (randomized) protocols, and has been a major driving force behind research in the area.

Exponential quantum advantages are known for structured problems arising from partial functions
and sampling problems [Raz99,BCWdW01,ASTS`03,GKRdW06]. However, no such separation is known
for total Boolean functions. The largest gap currently known between bounded-error quantum and
randomized communication complexity for a total function is only polynomial: a cubic separation (up to
polylogarithmic factors), obtained by lifting cubic separations between quantum and randomized query
complexity [BS21,SSW21].

These results have led to the prevailing belief that, in the absence of special structure—most notably
for total Boolean functions—quantum and randomized communication complexities are always poly-
nomially related. This belief was explicitly formulated by Shi and Zhu [SZ09] as the Log-Equivalence
Conjecture (LEC).

Conjecture 1.1 (Log-Equivalence Conjecture [SZ09]). For every total Boolean function, the bounded-
error quantum and randomized communication complexities are polynomially related in the two-party
communication model.

Despite intensive research efforts, this question remains wide open. In light of the lack of progress on
general total functions, several authors [BdW01,Raz03,Kla07, SZ09] have proposed studying composed
communication problems of the form F “ f ˝ g, where g : t0, 1ub ˆ t0, 1ub Ñ t0, 1u is a small, preferably
constant-size, gadget. Among such restricted classes, And-functions of the form

F px, yq “ fpx1 ^ y1, . . . , xn ^ ynq

have received particular attention. This is partly motivated by the fact that some of the most studied
problems in communication complexity, such as Set Disjointness and Inner Product, are And-functions.

To the best of our knowledge, And-functions, especially in the context of quantum communication
complexity, were first systematically studied by Buhrman and de Wolf [BdW01]. They showed that for
this class, deterministic communication complexity and zero-error quantum communication complexity
are polynomially related when the outer function f is symmetric or monotone. However, the relation-
ship between bounded-error quantum and randomized communication complexity for And-functions re-
mained poorly understood at the time. Indeed, very few lower bounds were known against bounded-error
quantum protocols, essentially limited to those—such as Inner Product—obtained via the discrepancy
method [Kre95]. In particular, no polynomial lower bound on the quantum communication complexity
of Set Disjointness was known.

In a major breakthrough, Razborov [Raz03] established the optimal Ωp
?
nq lower bound for the

bounded-error quantum communication complexity of Set Disjointness over a universe of size n. More
generally, his method yielded that for And-functions f ˝ And2 with symmetric outer function f , the
bounded-error quantum communication complexity is polynomially equivalent even to the deterministic
communication complexity. Extending this result to all And-functions remained open since then and
this has been investigated by several authors [BdW01,Raz03,Kla07,She08,SZ09,She10]. Our main result
resolves this problem.

Theorem 1.2. Let f : t0, 1un Ñ t0, 1u be any Boolean function. Then:

1. Dcc
pf ˝ And2q “ O

`

Qcc
pf ˝ And2q8 ¨ plog nq2

˘

.
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2. Dcc
pf ˝ And2q “ O

`

Rcc
pf ˝ And2q6 ¨ plog nq2

˘

.

Ignoring polylogarithmic factors in n, this shows that for all And-functions, deterministic commu-
nication complexity is polynomially equivalent to bounded-error quantum communication complexity.
Notably, prior to our work it was not even known whether randomized communication complexity is
polynomially equivalent to deterministic complexity for this class of functions. Before describing our
results, we briefly review prior developments related to this question.

While not stated explicitly in Razborov’s work, his quantum lower bound for Set Disjointness can
be used to obtain lower bounds for a broader class of composed functions. In particular, consider any
constant-size gadget g : t0, 1ub ˆ t0, 1ub Ñ t0, 1u whose communication matrix contains both And2 and
Or2 as submatrices. For such gadgets, the bounded-error quantum communication complexity of f ˝ g
is Ωp

a

bspfqq, where bspfq denotes the block sensitivity of f . This follows from the fact that a promised
Set Disjointness instance of size bspfq can be embedded into f ˝ g.

Combining this lower bound with Nisan’s classical result [Nis91], which upper bounds the determinis-
tic query complexity of f by a polynomial in bspfq, yields a quantum–classical equivalence for composed
functions f ˝ g whenever g embeds both And2 and Or2. We refer to this class as And-Or-functions.

Subsequently, using different techniques, Sherstov [She08] gave an independent proof of quantum–classical
equivalence for And-Or-functions via his pattern matrix method. In related and independent work, Shi
and Zhu [SZ09] proved quantum–classical equivalence for composed functions with gadgets satisfying
certain pseudorandomness properties, although their gadgets were required to have size Ωplog nq.

Another important line of work concerns Xor-functions, i.e., functions composed with the Xor2

gadget. Shi and Zhang [ZS09] showed that, up to polylogarithmic factors, the Log-Equivalence Con-
jecture holds for Xor-functions when the outer function f is symmetric. Subsequently, Montanaro
and Osborne [MO09] proved a polynomial equivalence between deterministic and zero-error quantum
communication complexity for Xor-functions with monotone outer functions. With the And-function
case resolved in this work, extending the Log-Equivalence Conjecture to Xor-functions in full generality
emerges as a natural next milestone toward a complete understanding of the conjecture.

More recently, Chattopadhyay, Dahiya, and Lovett [CDL25] revisited the Log-Equivalence Conjec-
ture. In all previously known classes of functions satisfying the conjecture, an even stronger statement
holds: deterministic communication complexity is polynomially related to bounded-error quantum com-
munication complexity. In [CDL25], the authors studied composed functions of the form f ˝EQ4, where
EQ4 denotes equality on four bits. Since And˝EQ4 (which is just the equality function) belongs to this
class, deterministic communication complexity is exponentially separated from randomized communica-
tion complexity; nevertheless, they showed that the Log-Equivalence Conjecture continues to hold (up
to polylogarithmic factors). Our work builds on and extends the ideas developed in [CDL25], which we
elaborate on in subsequent sections.

1.1 Our Results

For any Boolean function f : t0, 1un Ñ t0, 1u, our main result shows that the bounded-error quantum
and deterministic communication complexities of the And-function f ˝ And2 are polynomially related,
up to polylogarithmic factors in n. That is,

Dcc
pf ˝ And2q “ Qcc

pf ˝ And2qOp1q ¨ plog nqOp1q.

To establish such a relationship, it is helpful to characterize Dcc
pf ˝And2q in terms of structural prop-

erties of the outer function f . This was achieved by Knop, Lovett, McGuire, and Yuan [KLMY21], who
showed that the deterministic communication complexity of f ˝And2 is characterized—up to polynomial
loss and ignoring poly-logpnq factors—by the logarithm of the De Morgan sparsity of f .

Recall that every Boolean function f admits a unique multilinear polynomial representation over the
reals,

fpxq “
ÿ

SĎrns

aS
ź

iPS

xi.

The (De Morgan) sparsity of f , denoted sparpfq, is the number of nonzero coefficients aS .
Knop et al. [KLMY21] showed that the deterministic communication complexity of an And-function

satisfies
Dcc

pf ˝ And2q “ O
`

plog sparpfqq5 ¨ log n
˘

.
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This characterization has an immediate and important consequence. Since the sparsity of f coincides
with the rank of the communication matrix of f ˝ And2, this bound yields a resolution of the log-rank
conjecture for And-functions, up to a logn factor.

Given this characterization of Dcc
pf ˝ And2q, our task reduces to showing that large sparsity of f

forces large bounded-error quantum communication complexity. Concretely, we show that

Qcc
pf ˝ And2q “ plog sparpfqqΩp1q,

ignoring polylogarithmic factors in n. In fact, we prove a stronger statement: large sparsity of f implies
a large approximate γ2 norm of the communication matrix Mf˝And2

. This is a strengthening of a direct
lower bound on quantum communication complexity, since the approximate γ2 norm is a known lower
bound on bounded-error quantum communication complexity.

The approximate γ2 norm of a two-party Boolean function F : X ˆ Y Ñ t0, 1u, denoted rγ2pF q, is
defined as the minimum total weight of a rectangle decomposition that approximates the communication
matrix MF within constant error:

rγ2pF q “ min
!

ÿ

i

|αi|

ˇ

ˇ

ˇ

›

›MF ´
ÿ

i

αiRi

›

›

8
ď 1{3

)

,

where each Ripx, yq “ gipxqhipyq is a combinatorial rectangle.
Any bounded-error quantum protocol for F using c qubits of communication induces a pointwise

approximation of MF of the form
MF «

ÿ

i

αiRi,

with total weight
ř

i |αi| ď 2Opcq. While such decompositions are immediate for deterministic and
randomized protocols, they also hold in the quantum setting by unpacking the definition of quantum
communication protocols (see, e.g., [LS07]).

Our main technical contribution is to show that large sparsity of f lifts to a lower bound on the
approximate γ2 norm of f ˝ And2.

Theorem 1.3. For every total Boolean function f : t0, 1un Ñ t0, 1u,

log rγ2pf ˝ And2q “ Ω

˜

ˆ

log sparpfq

log n

˙1{4
¸

.

We now record several immediate consequences of Theorem 1.3. Recall that for a communication
problem F : X ˆY Ñ t0, 1u, the rank of F is the rank (over the reals) of its communication matrix MF ,

and the approximate rank, denoted ĆrankpF q, is the minimum rank of a real matrix that approximates
MF entrywise within a small error 1/3.

The approximate γ2 norm can be viewed as a convex relaxation of the approximate rank and is known
to be essentially equivalent to it. It is shown in [LS09a] that, on the logarithmic scale, the two measures
coincide up to an additive Oplog log |X||Y |q term: for every communication problem F : X ˆY Ñ t0, 1u,

Ω
`

log rγ2pF q
˘

ď logĆrankpF q ď O
`

log rγ2pF q ` log log |X||Y |
˘

.

Combining this observation with our result and the result of Knop et al. [KLMY21], we obtain

Rcc
pf ˝ And2q ď Dcc

pf ˝ And2q “ O
`

plog sparpfqq5 ¨ log n
˘

“ O
´

plogĆrankpf ˝ And2qq20 ¨ plog nq6
¯

.

While the exponents above are not optimized and can be improved (see Section 4.2), this implies that
the log-approximate-rank conjecture holds for And-functions, up to poly-logpnq factors.

The Log-Approximate-Rank Conjecture (LARC), a term first coined by Lee and Shraibman [LS09b],
is a natural approximate analogue of the classical Log-Rank conjecture. It asserts that, just as the loga-
rithm of the rank of the communication matrix is believed to characterize deterministic communication
complexity up to polynomial loss, the logarithm of the approximate rank should similarly characterize
randomized communication complexity up to polynomial loss.
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Somewhat surprisingly, the LARC was recently shown to be false by Chattopadhyay, Mande, and
Sherif [CMS20], by exhibiting an Xor-function as a counterexample. In contrast, our results show that
LARC does hold for And-functions, up to polylogarithmic factors in n.

In fact, our results give the following chain of inequalities:

Ω
`

log rγ2pf ˝ And2q
˘

ď Qcc
pf ˝ And2q ď Rcc

pf ˝ And2q ď Dcc
pf ˝ And2q,

Dcc
pf ˝ And2q ď plog sparpfqqOp1qplog nqOp1q ď log rγ2pf ˝ And2qOp1qplognqOp1q.

As a result, for an And-function F :“ f ˝ And2, up to polylogarithmic factors in n, the quantities

Dcc
pF q, Rcc

pF q, Qcc
pF q, log rγ2pF q, logĆrankpF q, log rankpF q, and log sparpfq

are all polynomially equivalent. In other words, for And-functions, diverse notions of complex-
ity—from communication-theoretic to algebraic—coincide. Interestingly, this striking equivalence of
various measures was already suspected in the early work of Buhrman and de Wolf [BdW01] on And-
functions more than two decades ago. Our results confirm their intuition and, in a sense, complete the
story they set in motion.

1.2 Proof overview

As discussed above, our main technical contribution is Theorem 1.3, which lifts the sparsity of a Boolean
function f to a lower bound on the approximate γ2-norm of the lifted function f ˝ And2. We now give
a high-level overview of the proof.

We begin with a concrete example that will later help illustrate the general argument. The canonical
Boolean function with large sparsity is the n-bit Orn function, whose sparsity equals 2n ´ 1. When
composed with the And2 gadget, the function Orn ˝And2 corresponds to the Set Intersection problem,
the negation of the well-known Set Disjointness function.

Lower bound for Set Intersection. We illustrate our approach using the Set Intersection function

pOrn ˝ And2qpx, yq “ Ornpx1 ^ y1, . . . , xn ^ ynq,

where we write zi :“ xi ^ yi.
The key structural property of Orn is that it remains an Or under every restriction ρz P t0, ˚un:

the restricted function retains full degree on the free variables. This hardness under t0, ˚u-restrictions is
precisely what gives Orn its large sparsity. More importantly, as we show later, the existence of many
such max-degree restrictions is a general consequence of large sparsity, allowing the argument to extend
beyond Set Intersection to arbitrary And-functions.

To lift this hardness to the communication setting, we map restrictions on the z-variables to restric-
tions on the input pairs pxi, yiq. Given ρz P t0, ˚un, we define a lifted restriction ρ by

pρpxiq, ρpyiqq “

#

p∆, 0q, if ρzpziq “ 0,

p˚, 1q, if ρzpziq “ ˚,

so that pxi ^ yiq|ρ “ ρzpziq. Here ∆ denotes a free but masked variable: although syntactically free, the
restricted function does not depend on it.

These lifted restrictions have three crucial properties: (i) all y-variables are fixed, (ii) the restricted
function pOrn ˝ And2q|ρ computes an Or on exactly the ˚-variables, and (iii) it is independent of the
masked variables. As a result, if ρz has exactly d stars, then

deg
`

ExMpρq
rpOrn ˝ And2q|ρs

˘

“ d,

where Mpρq denotes the masked variables and ExMpρq
r¨s denotes expectation over independent uniform

assignments to them.
This motivates the following restriction-and-averaging procedure. We sample an unlifted restriction

ρz P t0, ˚un uniformly at random subject to having d “ Θp
?
nq stars (we will explain shortly why this

specific parameter is chosen), lift it to obtain ρ, and then take expectation over the masked variables.
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Under this restriction-and-averaging procedure, Orn ˝ And2 retains its hardness—in terms of de-
gree—with degree Θp

?
nq. On the other hand, we show that the same procedure simplifies any small-

weight rectangle decomposition arising from a small approximate γ2 norm. Concretely, it converts such a
decomposition into a low-degree polynomial (more precisely, one whose total Fourier mass on high-degree
monomials is small).

This leads to a contradiction. From a small approximate γ2 norm of size 2Opn1{4
q for Orn ˝And2, we

would obtain a low-degree polynomial of degree Opn1{4q that approximates ExMpρq
rpOrn˝And2q|ρs, even

though the latter has degree Θp
?
nq. This contradicts the known quadratic relationship between degree

and approximate degree, forcing the approximate γ2 norm of Orn ˝ And2 to be 2Ωpn1{4
q. Extracting

low-degree approximating polynomials from a decomposition exhibiting low approximate γ2 norm of a
matrix, in the context of communication complexity, was initiated in the work of Razborov [Raz03],
followed by other works, including that of [BVdW07, She16]. Our particular method is inspired by the
work of [CDL25] and the work of Krause and Pudlák [KP95] who used it in the context of proving lower
bounds on the Fourier sparsity of lifted functions.

We now briefly explain why our restriction-and-averaging procedure simplifies a small-weight rectangle
decomposition into a low-degree polynomial. Let

Πpx, yq “

m
ÿ

i“1

bi gipxqhipyq

be an approximator for Set Intersection with small total weight
ř

i |bi|. Under any lifted restriction, all
y-variables are fixed, so each rectangle collapses to a function of the x-variables alone. Moreover, for any
Boolean function g : t0, 1un Ñ t0, 1u on x-variables, we show that the expected Fourier mass of g above
level k after restriction and averaging decays as 2´Opkq (this is where our choice of d “ Θp

?
nq plays a

part). Intuitively, this happens because any Fourier character involving a masked variable vanishes upon
averaging. An averaging argument then yields a restriction ρ such that the Fourier mass of ExMpρq

rΠ|ρs

above level k “ Opn1{4q is negligible, provided
ř

i |bi| ď 2Opn1{4
q. Discarding higher-degree monomials

produces a low-degree Opn1{4q approximator for ExMpρq
rpOrn˝And2q|ρs, contradicting its degree Θp

?
nq.

This shows a 2Ωpn1{4
q lower bound on the approximate γ2 norm of Set Intersection. Moreover, if you

observe closely, the same argument also yields a 2Ωpn1{4
q lower bound for the approximate γ2 norm of

Inner Product function Xorn ˝ And2, another central problem in communication complexity.

Generalization to arbitrary functions with large sparsity. In the discussion above for Set Inter-
section and Inner Product, we relied crucially on a structural property of the outer functions Orn and
Xorn: under every restriction in t0, ˚un, the restricted function retains full degree on the surviving free
variables. As hinted earlier, the existence of many such max-degree restrictions is not specific to these
functions. Rather, it is a general consequence of large sparsity—and this is the key insight of our work
that allows us to extend the argument to arbitrary And-functions.

More concretely, we show that any Boolean function f : t0, 1un Ñ t0, 1u of large sparsity admits a
fixed set of variables V Ď rns, which we call the core variables, with the following property. For every
assignment α P t0, ˚uV , the remaining variables in rnszV can be fixed—possibly depending on α—so that
the resulting restriction of f has full degree on the free variables. We refer to the resulting collection of
restrictions as a semi-adaptive max-degree restriction tree. For Orn and Xorn, the core set is simply
V “ rns, but in general this need not be the case. For a function of sparsity s, we show that one can
always find V of size Ωplog s{ log nq, which we call the depth of the restriction tree.

Having obtained such a collection of restrictions D for f , we lift them to restrictions for the two-party
function f ˝ And2, extending the construction used for Set Intersection. Given a restriction ρz P D, we
define a lifted restriction ρ on the variables pxi, yiq by

pρpxiq, ρpyiqq “

$

’

’

’

&

’

’

’

%

p∆, 0q, if ρzpziq “ 0 and i P V,

p˚, 1q, if ρzpziq “ ˚ and i P V,

p1, 1q, if ρzpziq “ 1 and i R V,

p1, 0q, if ρzpziq “ 0 and i R V,

ensuring that pxi ^ yiq|ρ “ ρzpziq. As in the Set Intersection case, this construction guarantees that
pf ˝And2q|ρ coincides with f |ρz

(up to renaming of variables) and is independent of the masked variables
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Mpρq. As a result, for every max-degree restriction ρz,

deg
`

ExMpρq

“

pf ˝ And2q|ρ
‰˘

“ degpf |ρz
q “ |ρ´1

z p˚q| “ |ρ´1p˚q|.

Thus, the lifted function f ˝ And2 retains its hardness under the same restriction-and-averaging
procedure used for Set Intersection. Moreover, the lifting has an additional convenient feature: all non-
core x-variables are fixed to 1. This allows the same Fourier-analytic argument to go through, showing
that the restriction-and-averaging procedure simplifies any small-weight rectangle decomposition into a
low-degree polynomial.

The only quantitative change from the Set Intersection analysis is that the effective parameter n is
replaced by the number of core variables |V | “ Ωplog s{ log nq. Carrying out the argument yields

log rγ2pf ˝ And2q “ Ω

˜

ˆ

log s

log n

˙1{4
¸

,

which is exactly the bound stated in Theorem 1.3.
Finally, we place our work in the context of the results of Chattopadhyay, Dahiya, and Lovett [CDL25].

Among other results, that work studies the sparsity of Boolean functions and provides a structural
characterization in terms of max-degree restriction trees. Their restriction trees are fully adaptive: the
choice of which variable to restrict next depends on the outcomes of previous restrictions, and there is
no fixed set of core variables, as in our setting. Moreover, their framework applies to a broader class of
complexity measures, which they call one-sided and two-sided nice measures.

While this adaptive viewpoint is powerful, we do not know how to use such fully adaptive restriction
trees to control analytic quantities such as the approximate γ2 norm. In contrast, our work construct a
more structured, semi-adaptive form of max-degree restriction trees directly from sparsity, with a fixed
core set of variables on which all t0, ˚u-restrictions occur. This additional structure is crucial for our
analysis and enables us to lift sparsity to lower bounds on the approximate γ2 norm.

Organization. In Section 2, we introduce the necessary preliminaries and notation. In Section 3, we
formally define semi-adaptive max-degree restriction trees and show how to construct them for Boolean
functions with large sparsity. Finally, in Section 4, we prove our main technical contribution: a lifting
theorem that lifts the sparsity of a Boolean function f into a lower bound on the approximate γ2 norm
of its lifted function f ˝ And2, and we discuss the resulting consequences for And-functions.

2 Preliminaries

All functions considered are defined on the Boolean hypercube t0, 1un and unless stated otherwise, all
polynomials are real and multilinear.

Multilinear representations. Over the Boolean domain, Boolean functions admit a canonical poly-
nomial representation.

Definition 2.1 (Multilinear polynomial representation). A polynomial Q P Rrx1, . . . , xns is multilinear
if each variable appears with degree at most one in every monomial. Every function f : t0, 1un Ñ R ad-
mits a unique multilinear polynomial representation; that is, there exists a unique multilinear polynomial
Q P Rrx1, . . . , xns such that Qpxq “ fpxq for all x P t0, 1un.

We freely identify Boolean functions with their unique multilinear polynomial representations, and
use the two interchangeably.

Polynomial complexity measures. Let Q P Rrx1, . . . , xns be a multilinear polynomial written as

Qpxq “
ÿ

SĎrns

aS
ź

iPS

xi.

The degree of Q is degpQq :“ maxt|S| : aS ‰ 0u, and the sparsity of Q, denoted sparpQq, is the number
of nonzero coefficients aS .
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For a function f : t0, 1un Ñ R, let Ppfq denote its unique multilinear polynomial representation. We
define

degpfq :“ degpPpfqq, sparpfq :“ sparpPpfqq.

Approximate degree. Let f : t0, 1un Ñ R and ε ą 0. The ε-approximate degree of f is defined as

Ądegεpfq :“ min
␣

degpQq : |Qpxq ´ fpxq| ď ε for all x P t0, 1un
(

.

When ε “ 1{3, we write Ądegpfq :“ Ądeg1{3pfq.

Theorem 2.2 ( [BT22, Theorem 10, Section 3.4]). Let f : t0, 1un Ñ t0, 1u be a Boolean function. For
any 0 ă ε ă 1{2,

Ădegεpfq “ O
`

Ădegpfq ¨ logp1{εq
˘

.

Theorem 2.3 ( [ABDK`21, Theorem 4]). For every Boolean function f : t0, 1un Ñ t0, 1u,

degpfq “ O
`

Ădegpfq2
˘

.

Fourier basis. Another fundamental representation of Boolean functions is given by the Fourier basis,
where each monomial χSpxq “ p´1q

ř

iPS xi represents the ˘1-valued parity function on the subset S Ď rns

of variables.

Definition 2.4 (Fourier complexity measures). Let f : t0, 1un Ñ R have the Fourier expansion

fpxq “
ÿ

SĎrns

pfpSqχSpxq.

The Fourier degree of f is the maximum size of a set S Ď rns with pfpSq ‰ 0. Since χSpxq “
ś

iPSp1´2xiq,
the Fourier degree coincides with the ordinary degree.

The Fourier sparsity of f , denoted
›

›

›

pf
›

›

›

0
, is the number of nonzero Fourier coefficients pfpSq. The

Fourier ℓ1-norm of f is
›

›

›

pf
›

›

›

1
:“

ÿ

SĎrns

| pfpSq|.

For t ě 0, the Fourier ℓ1-mass above level t is

›

›

›

pf
›

›

›

ět

1
:“

ÿ

SĎrns

|S|ět

| pfpSq|.

Communication complexity. We assume familiarity with the standard model of communication
complexity and refer the reader to [KN97] for background. In this model, two parties—Alice and
Bob—aim to compute a Boolean function F : X ˆ Y Ñ t0, 1u, where Alice receives x P X and Bob
receives y P Y . The deterministic communication complexity of F , denoted Dcc

pF q, is the minimum
number of bits exchanged by any deterministic protocol that always outputs F px, yq. In the public-coin
randomized model, Alice and Bob have access to shared randomness and must compute F px, yq with
error at most 1{3; the corresponding measure is the randomized communication complexity Rcc

pF q.
We also assume familiarity with quantum communication complexity [dW02]. We use Qcc

pF q to
denote the bounded-error (error at most 1{3) quantum communication complexity of F in the model
with unlimited shared entanglement.

The γ2 and approximate γ2 norms.

Definition 2.5 (γ2 and approximate γ2 norms). Let F : X ˆ Y Ñ t0, 1u be a Boolean function, and let
MF P t0, 1uXˆY denote its communication matrix, defined by MF px, yq “ F px, yq.

The γ2 norm of F is

γ2pF q “ min
!

ÿ

i

|αi| : MF “
ÿ

i

αiRi

)

,
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where each Ri is a combinatorial rectangle, i.e., Ripx, yq “ gipxqhipyq for Boolean functions gi : X Ñ

t0, 1u and hi : Y Ñ t0, 1u.
For 0 ă ε ă 1{2, the ε-approximate γ2 norm is

γε
2pF q “ min

!

γ2pAq : A P RXˆY , }A ´ MF }8 ď ε
)

.

We write rγ2pF q :“ γ
1{3
2 pF q.

Remark 2.6. The γ2 norm is often defined via a factorization-based formulation. For a real matrix M ,
one may equivalently define

γ2pMq “ min
X,Y :XY J“M

rpXq rpY q,

where rpXq denotes the maximum ℓ2-norm of a row of X. This formulation, sometimes called the µ-
norm, is equivalent to the rectangle-based definition up to constant factors; see, e.g., Chapter 2 of [LS09b].
We use the rectangle-based definition throughout.

Theorem 2.7 ( [LS07, Theorem 1]). For every Boolean function F : X ˆ Y Ñ t0, 1u,

Rcc
pF q “ Ωplog rγ2pF qq and Qcc

pF q “ Ωplog rγ2pF qq.

3 Semi-Adaptive Max-Degree Restriction Trees from Sparsity

Definition 3.1 (Restrictions). A restriction ρ on a set of variables V Ď tx1, . . . , xnu is a partial assign-
ment ρ : V Ñ t0, 1, ˚u, where for xi P V , ρpxiq P t0, 1u indicates that xi is fixed, and ρpxiq “ ˚ means xi

is left free. For a polynomial Q P Rrx1, . . . , xns, we write Q|ρ for the polynomial obtained by substituting
xi “ ρpxiq for all fixed variables xi.

A central tool in our work is to extract structural consequences of a function having large polynomial
sparsity. In particular, we seek restrictions under which a function remains maximally hard, in the sense
of retaining full degree.

At a high level, large sparsity guarantees the existence of many restrictions under which the function
retains full degree. More concretely, if a multilinear polynomial has sparsity s, then there exists a set of
variables V of size Ωplog s{ lognq such that, for every assignment of the variables in V to values in t0, ˚u,
one can fix the remaining variables so that the restricted polynomial has full degree in the variables left
free.

We capture this collection of restrictions using what we call semi-adaptive max-degree restriction
trees. The term semi-adaptive reflects the following structure. There is a fixed set of variables V such
that every assignment in t0, ˚uV appears as a restriction, rather than variables being chosen adaptively
based on previous assignments, as in fully adaptive restriction trees (e.g., in the work of [CDL25]).
However, the restrictions are not fully non-adaptive: although the set V is fixed, for each assignment
ρ P t0, ˚uV , the fixing of the remaining variables in rnszV that ensures full degree may depend on ρ.
This intermediate structure motivates the term semi-adaptive.

The qualifier max-degree indicates that under every restriction in the tree, the polynomial retains full
degree on the variables that remain free. This notion compactly encodes the key structural consequence
of large sparsity that we exploit later.

We now formalize this notion.

Definition 3.2 (Max-degree restriction). Let Q P Rrx1, . . . , xns be a nonzero multilinear polynomial
and let ρ : tx1, . . . , xnu Ñ t0, 1, ˚u be a restriction. We say that ρ is a max-degree restriction of Q if
degpQ|ρq “ |ρ´1p˚q|, that is, the restricted polynomial has full degree in its free variables.

Definition 3.3 (Semi-adaptive restriction tree). A semi-adaptive restriction tree of depth d on n vari-
ables is a collection D of 2d restrictions ρ : tx1, . . . , xnu Ñ t0, 1, ˚u for which there exists a fixed set of
variables V Ď tx1, . . . , xnu with |V | “ d, called the core variables, such that:

• For every ρ P D and every xi R V , ρpxiq P t0, 1u.

9



• For every assignment α P t0, ˚uV , there exists a unique ρ P D such that ρpxiq “ αpxiq for all
xi P V .

Equivalently, D consists of all restrictions obtained by assigning each variable in V either 0 or ˚, while
fixing all variables outside V as a function of this assignment.

Definition 3.4 (Semi-adaptive max-degree restriction tree). Let Q P Rrx1, . . . , xns be a multilinear
polynomial and let D be a semi-adaptive restriction tree. We say that D is a max-degree restriction tree
for Q if every ρ P D is a max-degree restriction of Q, i.e., degpQ|ρq “ |ρ´1p˚q|.

Examples. To illustrate the definitions, we give two informative examples.

Example 3.5. Orn. The function Ornpx1, . . . , xnq has sparsity 2n ´ 1. It admits a semi-adaptive
max-degree restriction tree of depth n with core variables V “ tx1, . . . , xnu. Let D “ t ρ : tx1, . . . , xnu Ñ

t0, ˚u u. For any ρ P D, the restricted function Orn|ρ is an Or over the free variables ρ´1p˚q, and hence
degpOrn|ρq “ |ρ´1p˚q|. Thus D is a semi-adaptive max-degree restriction tree for Orn.

Example 3.6. Andn ˝ Or2. Consider

pAndn ˝ Or2qpx1, . . . , xn, y1, . . . , ynq “ AndnpOr2px1, y1q, . . . ,Or2pxn, ynqq,

which has sparsity 3n. We construct a semi-adaptive max-degree restriction tree of depth n with core
variables V “ tx1, . . . , xnu. For a restriction ρx P t0, ˚utx1,...,xnu, define a restriction ρρx

y on ty1, . . . , ynu

by

ρρx
y pyiq “

#

0, if ρxpxiq “ ˚,

1, if ρxpxiq “ 0.

Set D “
␣

ρx Y ρρx
y

ˇ

ˇ ρx P t0, ˚utx1,...,xnu
(

. For any ρ P D, each gate Or2pxi, yiq evaluates to a free
variable when ρpxiq “ ˚, and to the constant 1 when ρpxiq “ 0. As a result, pAndn ˝ Or2q|ρ computes
an And over exactly the free core variables ρ´1p˚q, and therefore deg

`

pAndn ˝Or2q|ρ
˘

“ |ρ´1p˚q|. Thus,
D is a semi-adaptive max-degree restriction tree of depth n for Andn ˝ Or2.

x1

x2

x3

p0, 0, 0q

p1, 1, 1q

0

p0, 0, ˚q

p1, 1, 0q

˚

0

x3

p0, ˚, 0q

p1, 0, 1q

0

p0, ˚, ˚q

p1, 0, 0q

˚

˚

0

x2

x3

p˚, 0, 0q

p0, 1, 1q

0

p˚, 0, ˚q

p0, 1, 0q

˚

0

x3

p˚, ˚, 0q

p0, 0, 1q

0

p˚, ˚, ˚q

p0, 0, 0q

˚

˚

˚

x:

y:

Figure 1: A semi-adaptive max-degree restriction tree for And3 ˝ Or2 with core variables V “

tx1, x2, x3u. Leaves correspond to the 2|V | restrictions in the tree. For each leaf restriction, the re-
stricted function pAnd3 ˝ Or2q|ρ computes an And over exactly the variables left free.

The following lemma shows that large sparsity guarantees the existence of deep semi-adaptive max-
degree restriction trees.

Lemma 3.7. Let Q : t0, 1un Ñ R be a nonzero multilinear polynomial of sparsity s. Then Q admits a
semi-adaptive max-degree restriction tree of depth Ωplog s{ lognq.

Proof. Let MQ Ď 2tx1,...,xnu denote the family of supports of monomials appearing in Q. Let V Ď

tx1, . . . , xnu be a largest set shattered by MQ. Recall that V being shattered by MQ means that for
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every S Ď V , there exists T P MQ such that T XV “ S. The Sauer–Shelah–Perles lemma [Sau72,She72]
states that that for a set system F containing subsets of rns, if d is the maximum size of a set shattered
by F , then |F | ď Opndq. Using this lemma, we obtain |V | “ Ωplog s{ log nq; write |V | “ d.

For each subset S Ď V , we construct a restriction ρS . The resulting family tρS : S Ď V u will form a
semi-adaptive max-degree restriction tree for Q.

Fix an arbitrary S Ď V . Define the free restriction ρfreeS : V Ñ t0, ˚u by setting ρfreeS pxq “ ˚ for all
x P S and ρfreeS pxq “ 0 for all x P V zS. Under this restriction, every monomial of Q containing a variable

from V zS vanishes. As a result, the restricted polynomial can be written asQ|ρfree
S

“
ř

TĎS

´

ś

xPT x
¯

¨RT ,

where each RT is a multilinear polynomial over the variables txi : xi R V u.
Since V is shattered by MQ, there exists a monomial of Q whose support intersects V exactly in S.

Equivalently, the coefficient polynomial RS is nonzero. We now fix the remaining variables to witness
this nonzeroness. Choose a fixing restriction ρfixS : tx1, . . . , xnuzV Ñ t0, 1u such that RS |ρfix

S
‰ 0.

Let ρS :“ ρfreeS Y ρfixS . Then Q|ρS
has degree exactly |S|, and its set of free variables is ρ´1

S p˚q “ S.
Hence, ρS is a max-degree restriction of Q.

Therefore, the family tρS : S Ď V u forms a semi-adaptive max-degree restriction tree of depth
|V | “ Ωplog s{ lognq.

4 Lifting with the And2 Gadget

In this section, we present our main technical contribution: a lifting theorem that lifts the sparsity of
a Boolean function f : t0, 1un Ñ t0, 1u into a lower bound on the approximate γ2 norm of the lifted
function F :“ f ˝ And2. We begin with a high-level overview of the proof.

Proof overview. Let f : t0, 1un Ñ t0, 1u be a Boolean function of sparsity s. Our goal is to lower
bound the approximate γ2 norm of the lifted function f ˝ And2 in terms of log s. Suppose, toward a
contradiction, that f ˝ And2 admits a small approximate γ2 norm. Then there exists an approximator

Πpx, yq “

m
ÿ

i“1

bi gipxqhipyq

with
ř

i |bi| small. Our goal is to show that such an approximator cannot exist. The proof proceeds via
a carefully designed random restriction argument that preserves the hardness of f ˝ And2, in terms of
degree, while simplifying any such approximator.

Step 1: Structure from sparsity. A key consequence of large sparsity is that f admits a semi-
adaptive max-degree restriction tree D of depth d “ Ωplog s{ log nq. Equivalently, there exists a fixed set
of core variables V Ď tz1, . . . , znu, with |V | “ d, such that for every assignment in t0, ˚uV , the remaining
variables can be fixed so that the restricted function has full degree in the surviving free variables. This
provides a large family of restrictions under which f remains maximally hard in terms of degree.

Step 2: Lifting restrictions through the And2 gadget. We lift the restriction tree D for f to a
collection of restrictions D ˝ And2 for the lifted function

pf ˝ And2qpx1, . . . , xn, y1, . . . , ynq “ fpAnd2px1, y1q, . . . ,And2pxn, ynqq.

Each restriction ρf P D is mapped to a restriction ρ on the variables pxi, yiq so that And2pxi, yiq|ρ “

ρf pziq for every i. Concretely, the lifted restriction is given by

pρpxiq, ρpyiqq “

$

’

’

’

&

’

’

’

%

p∆, 0q, if ρf pziq “ 0 and zi P V,

p˚, 1q, if ρf pziq “ ˚ and zi P V,

p1, 1q, if ρf pziq “ 1 and zi R V,

p1, 0q, if ρf pziq “ 0 and zi R V.

Here both ˚ and ∆ denote free variables. Algorithm 1 formalizes this construction.

The lifted restrictions satisfy two immediate properties. First, all y-variables are fixed under every
lifted restriction. Second, the lifting introduces a special type of free variable, called a masked variable:
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these are free xi-variables assigned ∆, whose corresponding yi is fixed to 0; consequently, the restricted
function is independent of them.

As a result, for every lifted restriction ρ, averaging over the masked variables yields a function that
coincides (up to renaming variables) with f |ρf

. For a restriction ρ, we denote the set of masked variables
by

Mpρq :“ txi | ρpxiq “ ∆ u,

and write ExMpρq
r¨s for expectation over independent, uniform assignments to the variables in Mpρq. We

will use this notation throughout.
Since D is a max-degree restriction tree, it follows that

deg
`

ExMpρq
rpf ˝ And2q|ρs

˘

“ |ρ´1p˚q|.

Step 3: Random restrictions and Fourier decay. We place a uniform distribution over lifted
restrictions ρ P D ˝ And2 having exactly Θp

?
dq many ˚-variables. And analyze the effect of sampling

such a restriction and then taking expectation over the masked variables on the following:

1. The target function f ˝ And2. This operation preserves hardness: by construction, the resulting
function has degree Θp

?
dq.

2. An arbitrary Boolean function g on the x-variables. We show that the same operation causes the
Fourier ℓ1-mass above level k to decay exponentially in k.

Step 4: Deriving a contradiction. Applying this random restriction-and-averaging procedure to the
approximator Π, each function hipyq collapses to a constant, while the Fourier tails of the correspond-
ing gipxq terms decay rapidly. Since

ř

i |bi| is small, we conclude that the expected Fourier mass of
ExMpρq

rΠ|ρs above level k “ Θpd1{4q is negligible.

Discarding this high-degree mass yields a polynomial of degree Opd1{4q that still approximates
ExMpρq

rpf ˝And2q|ρs. However, by the construction above, this target function has degree Θp
?
dq, contra-

dicting the general fact that the exact degree of a Boolean function is at most quadratic in its approximate
degree. Choosing parameters appropriately, this contradiction implies

log rγ2pf ˝ And2q “ Ω

˜

ˆ

log s

log n

˙1{4
¸

,

completing the proof.

4.1 Lifting De Morgan Sparsity to the Approximate γ2-Norm via the And2

Gadget

We now formalize the proof strategy outlined in the proof overview. The first step is to lift a max-degree
restrictions for f to a collection of restrictions for the lifted function f ˝ And2. Algorithm 1 describes
this lifting procedure.
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Algorithm 1 LiftedRestriction

1: Input: A semi-adaptive max-degree restriction tree D for f : t0, 1un Ñ t0, 1u

2: Output: A collection of lifted restrictions D ˝ And2, where each ρ : txi, yiu
n
i“1 Ñ t0, 1, ˚,∆u is a

restriction for f ˝ And2

3: Let V be the set of core variables of the semi-adaptive restriction tree D.
4: for each restriction ρf P D do
5: Define the lifted restriction ρ “ LiftDpρf q as follows:
6: for each i P rns do

7: Set pρpxiq, ρpyiqq “

$

’

’

’

&

’

’

’

%

p∆, 0q, if ρf pziq “ 0 and zi P V,

p˚, 1q, if ρf pziq “ ˚ and zi P V,

p1, 1q, if ρf pziq “ 1 and zi R V,

p1, 0q, if ρf pziq “ 0 and zi R V.
8: end for
9: end for

10: return D ˝ And2 :“ tLiftpρf q : ρf P Du

A lifted restriction assigns each variable a value in t0, 1, ˚,∆u. When applying such a restriction to
f ˝And2, both symbols ˚ and ∆ are treated as free variables. Variables marked by ∆ are called masked
variables; although syntactically free, the restricted function does not depend on them. Tracking masked
variables explicitly will be convenient for the subsequent analysis.

Basic structure of lifted restrictions. Let V Ď tz1, . . . , znu denote the set of core variables of the
semi-adaptive restriction tree D, and let Vx :“ txi : zi P V u be the corresponding set of x-variables,
which we refer to as the core x-variables. We will use this notation throughout.

By construction, every lifted restriction ρ P D ˝ And2 fixes all y-variables and fixes all x-variables
outside Vx to 1. Moreover, the assignment on Vx uniquely determines the entire restriction: for every
α P t∆, ˚uVx , there exists a unique ρ P D ˝ And2 such that ρpxiq “ αpxiq for all xi P Vx. This follows
directly from the defining property of D, which guarantees that for every β P t0, ˚uV there is a unique
ρf P D satisfying ρf pziq “ βpziq for all zi P V . As a result, the family D ˝ And2 is parametrized by
assignments to the core x-variables.

The construction of the lifted restrictions, together with the fact that D is a max-degree restriction
tree, implies the following structural properties. In particular, these properties show that f ˝ And2

retains its hardness (in terms of degree) under the lifted restrictions.

Claim 4.1. Let D˝And2 be the collection of lifted restrictions for f˝And2 obtained from a semi-adaptive
max-degree restriction tree D for f via Algorithm 1. Then the following properties hold:

1. For every ρ P D˝And2, the restricted function pf ˝And2q|ρ does not depend on the masked variables
Mpρq.

2. For every ρ P D ˝ And2, deg
`

ExMpρq
rpf ˝ And2q|ρs

˘

“ deg
`

pf ˝ And2q|ρ
˘

“ |ρ´1p˚q|.

Proof. For (1), if xi is masked in ρ, then by construction ρpyiq “ 0. Hence And2pxi, yiq|ρ “ 0 regardless
of the value of xi, and therefore pf ˝ And2q|ρ is independent of all masked variables.

For (2), fix ρ P D ˝ And2, and let ρf P D be the restriction used to generate ρ, i.e., ρ “ Liftpρf q.
By construction, for every i P rns we have And2pxi, yiq|ρ “ ρf pziq. Thus, pf ˝ And2q|ρ depends on the
variables txi, yiu only through the tuple pρf pz1q, . . . , ρf pznqq. After ignoring the masked variables (which
pf ˝ And2q|ρ does not depend on by part (1)), the resulting function coincides with f |ρf

. Since ρf is a

max-degree restriction of f , we obtain degppf ˝ And2q|ρq “ degpf |ρf
q “ |ρ´1

f p˚q| “ |ρ´1p˚q|.
Finally, since pf ˝And2q|ρ does not depend on the variables inMpρq, the function ExMpρq

rpf ˝And2q|ρs

is obtained by simply viewing pf ˝ And2q|ρ as a function on the remaining free variables. In particular,
taking expectation over the masked variables leaves the function unchanged as a polynomial in the
remaining free variables. Hence, deg

`

ExMpρq
rpf ˝ And2q|ρs

˘

“ deg
`

pf ˝ And2q|ρ
˘

.

Next, we introduce a probability distribution on the restrictions in D ˝ And2 for use in a random
restriction argument. Fix a parameter p P p0, 1q, and recall that every restriction ρ P D ˝ And2 satisfies
|ρ´1p˚q| ` |ρ´1p∆q| “ d, where d is the depth of the semi-adaptive restriction tree D.

13



We consider the uniform distribution over all restrictions in D ˝And2 that leave exactly pd variables
marked by ˚. Formally, let U :“ t ρ P D ˝ And2 | |ρ´1p˚q| “ pd u. By construction, |U | “

`

d
pd

˘

. We

sample a restriction uniformly at random from U , i.e., Prrρs “ 1{
`

d
pd

˘

for all ρ P U . We denote this

distribution by UppD ˝ And2q.

Next, we analyze the effect of sampling a restriction ρ „ UppD ˝And2q, applying it to f ˝And2, and
then taking expectation over the masked variables Mpρq. By Claim 4.1, the resulting function retains
degree pd. On the other hand, we show that applying the same process—sampling ρ „ UppD ˝ And2q

and taking expectation over Mpρq—to an arbitrary Boolean function g over the x-variables causes its
Fourier tail to decay exponentially when p ! 1{

?
d. Combining these two observations yields our main

result: a lower bound on the approximate γ2 norm of f ˝ And2 in terms of the sparsity of f .

Claim 4.2. Let D ˝ And2 be the collection of lifted restrictions for f ˝ And2 obtained from a semi-
adaptive max-degree restriction tree D of depth d via Algorithm 1. Let g : t0, 1un Ñ t0, 1u be an arbitrary
Boolean function on the x-variables tx1, . . . , xnu. Suppose p “ c{

?
d for a constant 0 ă c ă 1. Then for

every integer k ě 0,

Eρ„UppD˝And2q

”
›

›

›

{ExMpρq

“

g|ρ
‰

›

›

›

ěk

1

ı

ď
ck

1 ´ c
.

Proof. By construction, every restriction ρ P D ˝ And2 fixes all x-variables outside the set Vx to 1. Let
h : t0, 1u|Vx| Ñ t0, 1u be the Boolean function obtained from g by fixing all variables outside Vx to 1.
Then for every ρ P D ˝ And2, we have g|ρ “ h. Without loss of generality, assume Vx “ tx1, . . . , xdu.

Taking expectation over any variable kills all Fourier monomials containing it. Therefore,

Eρ„UppD˝And2q

”
›

›

›

{ExMpρq

“

g|ρ
‰

›

›

›

ěk

1

ı

“ Eρ„UppD˝And2q

”
›

›

›

{ExMpρq

“

h
‰

›

›

›

ěk

1

ı

“
ÿ

SĎrds

|S|ěk

|phpSq| ¨ Pr
ρ

“

S Ď ρ´1p˚q
‰

.

Under the uniform distribution over restrictions with exactly pd variables marked by ˚, the probability
PrρrS Ď ρ´1p˚qs is zero when |S| ą pd, and for |S| ď pd we have

Pr
ρ

“

S Ď ρ´1p˚q
‰

“

`

d´|S|

pd´|S|

˘

`

d
pd

˘ ď p|S|.

Therefore,
ÿ

SĎrds

kď|S|ďpd

|phpSq| ¨ Pr
ρ

“

S Ď ρ´1p˚q
‰

ď

pd
ÿ

t“k

ÿ

|S|“t

|phpSq| pt.

Applying the Cauchy–Schwarz inequality, together with Parseval’s identity (which implies
ř

S
phpSq2 ď

1 for the Boolean function h), we obtain
ř

|S|“t |phpSq| ď

b

`

d
t

˘

. Hence,

pd
ÿ

t“k

ÿ

|S|“t

|phpSq| pt ď

pd
ÿ

t“k

d

ˆ

d

t

˙

pt ď

8
ÿ

t“k

pp
?
dqt “ pp

?
dqk

ÿ

tě0

pp
?
dqt ď

ck

1 ´ c
,

where we used c “ p
?
d ă 1. This completes the proof.

Theorem 1.3 (Restated). For every total Boolean function f : t0, 1un Ñ t0, 1u,

log rγ2pf ˝ And2q “ Ω

˜

ˆ

log sparpfq

log n

˙1{4
¸

.

Proof. Let f have sparsity s. By Lemma 3.7, there exists a semi-adaptive max-degree restriction tree D
for f of depth d “ c1 log s{ log n for a suitable constant c1 ą 0.
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Suppose, for the sake of contradiction, that the theorem fails. Let k “ 1
c2

¨ d1{4
?
2c3

for suitable absolute

constants c2, c3 ą 0 to be fixed later. Assume that there exists a decomposition of the communication
matrix Mf˝And2

of the form

Πpx, yq “

m
ÿ

i“1

bi gipxqhipyq,

where each gi, hi is Boolean, such that }Π ´ Mf˝And2
}8 ď 1{3 and

řm
i“1 |bi| ď 1

20 2
k. We derive a

contradiction, thereby proving the theorem.
Let D ˝ And2 be the collection of lifted restrictions for f ˝ And2 obtained from D via Algorithm 1.

Sample a restriction ρ „ UppD ˝ And2q with p “ 1{p2
?
dq. We study the effect of applying ρ and then

taking expectation over the masked variables Mpρq. For notational convenience, define

Fρ :“ ExMpρq

“

pf ˝ And2q|ρ
‰

, Gi,ρ :“ ExMpρq

“

gi|ρ
‰

.

Both are functions of the starred x-variables under ρ.

1. Hardness of the restricted function. By Claim 4.1, degpFρq “ |ρ´1p˚q|. Since every restriction

in the support of UppD ˝ And2q satisfies |ρ´1p˚q| “ pd, we have degpFρq “ 1
2

?
d.

2. Simplification of the approximator Π. For every restriction ρ P D ˝ And2, all y-variables are
fixed. As a result, for each term in the decomposition Πpx, yq “

řm
i“1 bi gipxqhipyq, the restricted

function hi|ρ becomes a constant, which we denote by aρ,i P t0, 1u. Thus, Π|ρ “
řm

i“1 bi aρ,i gi|ρ,
which is a function only of the core x-variables, since all non-core x-variables are fixed to 1 in every
ρ P D ˝ And2.

Fix a restriction ρ. The ℓ1-mass of the Fourier spectrum of ExMpρq

“

Π|ρ
‰

above level k can be
bounded as follows:

›

›

›

{ExMpρq
rΠ|ρs

›

›

›

ěk

1
“

ÿ

SĎrns

|S|ěk

ˇ

ˇ

ˇ

m
ÿ

i“1

bi aρ,i yGi,ρpSq

ˇ

ˇ

ˇ

ď
ÿ

SĎrns

|S|ěk

m
ÿ

i“1

|bi||yGi,ρpSq|

“

m
ÿ

i“1

|bi|
ÿ

SĎrns

|S|ěk

|yGi,ρpSq|

“

m
ÿ

i“1

|bi|
›

›

›

yGi,ρ

›

›

›

ěk

1
.

Taking expectation over ρ and applying Claim 4.2, we obtain

Eρ„UppD˝And2q

”
›

›

›

{ExMpρq

“

Π|ρ
‰

›

›

›

ěk

1

ı

ď

m
ÿ

i“1

|bi|Eρ„UppD˝And2q

”
›

›

›

yGi,ρ

›

›

›

ěk

1

ı

ď

m
ÿ

i“1

|bi| ¨ 2´k`1 ď
1

10
,

where the final inequality follows from the assumed bound on
ř

i |bi|.

Thus, there exists a restriction ρ „ UppD ˝ And2q such that the ℓ1-mass of the Fourier spectrum
of Π|ρ above level k, after averaging over the masked variables Mpρq, is at most 0.1.

Combining the two items, there exists a restriction ρ such that degpFρq “ 1
2

?
d, while the ℓ1-mass of

the Fourier spectrum of ExMpρq
rΠ|ρs above level k is at most 0.1.

Let Π̃ be the polynomial obtained from ExMpρq
rΠ|ρs by deleting all Fourier monomials of degree at

least k. Since the discarded Fourier mass is at most 0.1 and Π is a 1{3-approximator of f ˝ And2, the
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polynomial Π̃ has degree ă k and 0.44-approximates Fρ. By standard error reduction (Theorem 2.2), Π̃
can be converted into a 1{3-approximator of degree at most c2k. As a result,

ĄdegpFρq ă c2k “
d1{4

?
2c3

.

On the other hand, degpFρq “ 1
2

?
d, which contradicts the general inequality degpgq ď c3 ¨ pĄdegpgqq2

for Boolean functions g (Theorem 2.3). This contradiction completes the proof.

4.2 Consequences

Knop et al. [KLMY21] showed that log sparpfq characterizes the deterministic communication complexity
of And-functions (f ˝And2), up to polynomial loss and polylogarithmic factors in n. In particular, they
proved that for every Boolean function f ,

Dcc
pf ˝ And2q “ O

`

plog sparpfqq5 ¨ log n
˘

.

Combining this bound with Theorem 1.3, together with the fact that the logarithm of the approximate
γ2 norm lower bounds bounded-error quantum communication complexity, we immediately obtain that
for every Boolean function f ,

Dcc
pf ˝ And2q “ O

`

Qcc
pf ˝ And2q20 ¨ plog nq6

˘

.

A tighter relationship can be obtained using a more refined structural result of Knop et al., which
relates deterministic And-query complexity to sparsity and a combinatorial measure known as monotone
block sensitivity.

Definition 4.3 (Monotone Block Sensitivity). The monotone block sensitivity of a Boolean function
f : t0, 1un Ñ t0, 1u, denoted MBSpfq, is a variant of block sensitivity that only considers flipping 0’s
to 1’s. A subset B Ď rns is called a sensitive 0-block of f at input x if xi “ 0 for all i P B, and
fpxq ‰ fpx ‘ 1Bq, where x ‘ 1B denotes the input obtained by flipping all bits in B from 0 to 1. For an
input x P t0, 1un, let MBSpf, xq denote the maximum number of pairwise disjoint sensitive 0-blocks of f
at x. Then, MBSpfq “ maxxPt0,1un MBSpf, xq.

Knop et al. [KLMY21] showed that deterministic communication complexity can be bounded in terms
of both sparsity and monotone block sensitivity.

Claim 4.4 ( [KLMY21, Lemma 3.2, Claim 4.4, Lemma 4.6, Theorem 1.2]). For every Boolean function
f : t0, 1un Ñ t0, 1u,

Dcc
pf ˝ And2q “ O

`

MBSpfq2 ¨ log sparpfq ¨ logn
˘

.

Intuitively, a large value of MBSpfq indicates that a large-arity promise-Or function can be embed-
ded into f via suitable restrictions and identifications of variables. When such a function f is lifted via
composition with And2, this structure gives rise to an embedded instance of the unique set disjointness
problem.

The unique set disjointness function UDISJk is a partial Boolean function on inputs x, y P t0, 1uk,
defined as

UDISJkpx, yq “

$

’

&

’

%

0, if |x ^ y| “ 0,

1, if |x ^ y| “ 1,

undefined, otherwise,

where x^y denotes the bitwise AND and | ¨ | the Hamming weight. That is, under the promise that that
the inputs are either bitwise disjoint or intersect in exactly one coordinate, the function distinguishes
between these two cases.

The following result of Knop et al. shows that large monotone block sensitivity forces large embedded
instances of unique set disjointness.

Claim 4.5 ( [KLMY21, Claim 4.7]). Let f : t0, 1un Ñ t0, 1u be a Boolean function with MBSpfq “ k.
Then the communication matrix of f ˝ And2 contains, as a submatrix (up to flipping output bits), the
communication matrix of UDISJk.
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Using known lower bounds for unique set disjointness, we obtain the following.

Theorem 4.6 ( [KS92,Raz90,Raz03,She09]). Rcc
pUDISJkq “ Ωpkq and Qcc

pUDISJkq “ Ωp
?
kq.

Claim 4.7. If f : t0, 1un Ñ t0, 1u satisfies MBSpfq “ k, then

Rcc
pf ˝ And2q “ Ωpkq and Qcc

pf ˝ And2q “ Ωp
?
kq.

Proof. This follows immediately from Claim 4.5 and Theorem 4.6.

Combining Claim 4.7 with Claim 4.4, we obtain the following relationships between deterministic,
randomized, and quantum communication complexity for And-functions.

Theorem 1.2 (Restated). Let f : t0, 1un Ñ t0, 1u be any Boolean function. Then:

1. Dcc
pf ˝ And2q “ O

`

Qcc
pf ˝ And2q8 ¨ plog nq2

˘

.

2. Dcc
pf ˝ And2q “ O

`

Rcc
pf ˝ And2q6 ¨ plog nq2

˘

.

Proof. Combine Theorem 1.3, Theorem 2.7, Claim 4.4 and Claim 4.7.
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