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Abstract

A major open problem at the interface of quantum computing and communication complexity is
whether quantum protocols can be exponentially more efficient than classical protocols for computing
total Boolean functions; the prevailing conjecture is that they are not. In a seminal work, Razborov
(2002) resolved this question for AND-functions of the form

F(z,y) = f(x1 A Y1, s Tn A Yn),

when the outer function f is symmetric, by proving that their bounded-error quantum and classical
communication complexities are polynomially related. Since then, extending this result to all AND-
functions has remained open and has been posed by several authors.

In this work, we settle this problem. We show that for every Boolean function f, the bounded-
error quantum and classical communication complexities of the AND-function f o AND2 are polyno-
mially related, up to polylogarithmic factors in n. Moreover, modulo such polylogarithmic factors,
we prove that the bounded-error quantum communication complexity of f o ANDs is polynomially
equivalent to its deterministic communication complexity, and that both are characterized—up to
polynomial loss—by the logarithm of the De Morgan sparsity of f.

Our results build on the recent work of Chattopadhyay, Dahiya, and Lovett [CDL25] on structural
characterizations of non-sparse Boolean functions, which we extend to resolve the conjecture for
general AND-functions.

1 Introduction

Communication complexity, introduced by Yao [Yao79], studies the amount of communication required to
compute a function whose input is distributed among multiple parties. Since its inception, communication
complexity has become a central tool in theoretical computer science, with applications ranging from
streaming algorithms and time-space tradeoffs to data structure lower bounds and circuit complexity.
See the textbooks [KN97,RY20] for excellent introductions to the area and its applications.

In the most standard setting—the two-party model—two players, Alice and Bob, wish to compute a
Boolean function F': X xY — {0, 1}, where Alice receives z € X and Bob receives y € Y. They exchange
messages according to a pre-agreed protocol in order to compute F(x,y), with the goal of minimizing
the total number of bits communicated in the worst case.

Several variants of communication complexity arise depending on the type of interaction allowed and
whether the protocol is permitted to err with small probability. In this work, we focus on three such
models: two classical models and one quantum model.

In the classical deterministic model, the deterministic communication complexity of F, denoted
D®¢(F), is the minimum number of bits that must be exchanged by a protocol that computes F(z,y)
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correctly on all inputs. In the public-coin randomized model, Alice and Bob have access to shared public
randomness and are required to compute F(z,y) with error probability at most 1/3 on every input; the
corresponding complexity measure is the randomized communication complexity, denoted R°(F).

The quantum variant of communication complexity, also introduced by Yao [Ya093], allows the mes-
sages exchanged between the parties to be quantum states (qubits). At the end of the protocol, one
of the parties performs a measurement on its quantum state to produce the output. In addition, the
parties may share an arbitrary entangled state prior to the start of the protocol, at no communication
cost [CB97]. The minimum number of qubits exchanged by such a protocol that computes F'(z,y) with
error probability at most 1/3 is called the bounded-error quantum communication complexity of F, and
is denoted Q°°(F).

A central question in quantum computation is to understand when quantum models enable efficient
solutions to problems that are believed to be hard for classical models. In the context of communication
complexity, this question asks when quantum protocols can be super-polynomially more efficient than
classical (randomized) protocols, and has been a major driving force behind research in the area.

Exponential quantum advantages are known for structured problems arising from partial functions
and sampling problems [Raz99, BCWdWO01,ASTS*03, GKRAW06]. However, no such separation is known
for total Boolean functions. The largest gap currently known between bounded-error quantum and
randomized communication complexity for a total function is only polynomial: a cubic separation (up to
polylogarithmic factors), obtained by lifting cubic separations between quantum and randomized query
complexity [BS21,SSW21].

These results have led to the prevailing belief that, in the absence of special structure—most notably
for total Boolean functions—quantum and randomized communication complexities are always poly-
nomially related. This belief was explicitly formulated by Shi and Zhu [SZ09] as the Log-Equivalence
Conjecture (LEC).

Conjecture 1.1 (Log-Equivalence Conjecture [SZ09]). For every total Boolean function, the bounded-
error quantum and randomized communication complexities are polynomially related in the two-party
communication model.

Despite intensive research efforts, this question remains wide open. In light of the lack of progress on
general total functions, several authors [BAWO01, Raz03, Kla07, SZ09] have proposed studying composed
communication problems of the form F' = f o g, where g : {0,1}" x {0,1}* — {0, 1} is a small, preferably
constant-size, gadget. Among such restricted classes, AND-functions of the form

F(z,y) = f@1 Ay, @0 A yn)

have received particular attention. This is partly motivated by the fact that some of the most studied
problems in communication complexity, such as Set Disjointness and Inner Product, are AND-functions.

To the best of our knowledge, AND-functions, especially in the context of quantum communication
complexity, were first systematically studied by Buhrman and de Wolf [BAWO01]. They showed that for
this class, deterministic communication complexity and zero-error quantum communication complexity
are polynomially related when the outer function f is symmetric or monotone. However, the relation-
ship between bounded-error quantum and randomized communication complexity for AND-functions re-
mained poorly understood at the time. Indeed, very few lower bounds were known against bounded-error
quantum protocols, essentially limited to those—such as Inner Product—obtained via the discrepancy
method [Kre95]. In particular, no polynomial lower bound on the quantum communication complexity
of Set Disjointness was known.

In a major breakthrough, Razborov [Raz03] established the optimal ©(4/n) lower bound for the
bounded-error quantum communication complexity of Set Disjointness over a universe of size n. More
generally, his method yielded that for AND-functions f o ANDy with symmetric outer function f, the
bounded-error quantum communication complexity is polynomially equivalent even to the deterministic
communication complexity. Extending this result to all AND-functions remained open since then and
this has been investigated by several authors [BAWO01,Raz03,K1a07,She08,5SZ09,Shel0]. Our main result
resolves this problem.

Theorem 1.2. Let f: {0,1}" — {0,1} be any Boolean function. Then:
1. D(f o ANDy) = O(Q°°(f o AND2)® - (logn)?) .



2. (o Axbz) = O((f o Anbi) - g ).

Ignoring polylogarithmic factors in n, this shows that for all AND-functions, deterministic commu-
nication complexity is polynomially equivalent to bounded-error quantum communication complexity.
Notably, prior to our work it was not even known whether randomized communication complexity is
polynomially equivalent to deterministic complexity for this class of functions. Before describing our
results, we briefly review prior developments related to this question.

While not stated explicitly in Razborov’s work, his quantum lower bound for Set Disjointness can
be used to obtain lower bounds for a broader class of composed functions. In particular, consider any
constant-size gadget g : {0,1}® x {0,1}* — {0, 1} whose communication matrix contains both ANDy and
OR4 as submatrices. For such gadgets, the bounded-error quantum communication complexity of f o g
is Q(4/bs(f)), where bs(f) denotes the block sensitivity of f. This follows from the fact that a promised
Set Disjointness instance of size bs(f) can be embedded into f o g.

Combining this lower bound with Nisan’s classical result [Nis91], which upper bounds the determinis-
tic query complexity of f by a polynomial in bs(f), yields a quantum—classical equivalence for composed
functions f o g whenever g embeds both ANDy and ORs. We refer to this class as AND-OR-functions.

Subsequently, using different techniques, Sherstov [She08] gave an independent proof of quantum-—classical
equivalence for AND-OR-functions via his pattern matrix method. In related and independent work, Shi
and Zhu [SZ09] proved quantum-—classical equivalence for composed functions with gadgets satisfying
certain pseudorandomness properties, although their gadgets were required to have size Q(logn).

Another important line of work concerns XOR-functions, i.e., functions composed with the XORs
gadget. Shi and Zhang [ZS09] showed that, up to polylogarithmic factors, the Log-Equivalence Con-
jecture holds for XOR-functions when the outer function f is symmetric. Subsequently, Montanaro
and Osborne [MOO09] proved a polynomial equivalence between deterministic and zero-error quantum
communication complexity for XOR-functions with monotone outer functions. With the AND-function
case resolved in this work, extending the Log-Equivalence Conjecture to XOR-functions in full generality
emerges as a natural next milestone toward a complete understanding of the conjecture.

More recently, Chattopadhyay, Dahiya, and Lovett [CDL25] revisited the Log-Equivalence Conjec-
ture. In all previously known classes of functions satisfying the conjecture, an even stronger statement
holds: deterministic communication complexity is polynomially related to bounded-error quantum com-
munication complexity. In [CDL25], the authors studied composed functions of the form foEQ,, where
EQ, denotes equality on four bits. Since ANDo EQ, (which is just the equality function) belongs to this
class, deterministic communication complexity is exponentially separated from randomized communica-
tion complexity; nevertheless, they showed that the Log-Equivalence Conjecture continues to hold (up
to polylogarithmic factors). Our work builds on and extends the ideas developed in [CDL25], which we
elaborate on in subsequent sections.

1.1 Owur Results

For any Boolean function f : {0,1}" — {0,1}, our main result shows that the bounded-error quantum
and deterministic communication complexities of the AND-function f o ANDy are polynomially related,
up to polylogarithmic factors in n. That is,

D(f o ANDg) = Q°(f o AND2)?™M . (logn)°M).

To establish such a relationship, it is helpful to characterize D°(f o ANDs) in terms of structural prop-
erties of the outer function f. This was achieved by Knop, Lovett, McGuire, and Yuan [KLMY21], who
showed that the deterministic communication complexity of fo ANDs is characterized—up to polynomial
loss and ignoring poly-log(n) factors—by the logarithm of the De Morgan sparsity of f.

Recall that every Boolean function f admits a unique multilinear polynomial representation over the

reals,
f(z) = Z aSszw

Sc[n] €S

The (De Morgan) sparsity of f, denoted spar(f), is the number of nonzero coefficients ag.
Knop et al. [KLMY21] showed that the deterministic communication complexity of an AND-function
satisfies
D(f o ANDy) = O((logspar(f))® -logn) .



This characterization has an immediate and important consequence. Since the sparsity of f coincides
with the rank of the communication matrix of f o ANDs, this bound yields a resolution of the log-rank
conjecture for AND-functions, up to a logn factor.

Given this characterization of D°(f o AND3), our task reduces to showing that large sparsity of f
forces large bounded-error quantum communication complexity. Concretely, we show that

Q°“(f o ANDy) = (logspar(f))*™,

ignoring polylogarithmic factors in n. In fact, we prove a stronger statement: large sparsity of f implies
a large approximate 2 norm of the communication matrix M FoAND, - This is a strengthening of a direct
lower bound on quantum communication complexity, since the approximate vy norm is a known lower
bound on bounded-error quantum communication complexity.

The approximate vy, norm of a two-party Boolean function F' : X x Y — {0,1}, denoted 73(F), is
defined as the minimum total weight of a rectangle decomposition that approximates the communication
matrix Mp within constant error:

Fa(F) = min{ )3 o

)

M =Y iR, <13},

where each R;(x,y) = gi(z)h;(y) is a combinatorial rectangle.
Any bounded-error quantum protocol for F using ¢ qubits of communication induces a pointwise
approximation of Mg of the form
Mp ~ Z a;R;,
K3

with total weight ), ;| < 20(¢). While such decompositions are immediate for deterministic and
randomized protocols, they also hold in the quantum setting by unpacking the definition of quantum
communication protocols (see, e.g., [LS0T7]).

Our main technical contribution is to show that large sparsity of f lifts to a lower bound on the
approximate 2 norm of f o ANDs.

Theorem 1.3. For every total Boolean function f : {0,1}" — {0,1},

log Y2(f o ANDQ) _ Q((logwadf))U‘j |

logn

We now record several immediate consequences of Theorem 1.3. Recall that for a communication
problem F : X xY — {0, 1}, the rank of F is the rank (over the reals) of its communication matrix Mp,
and the approzimate rank, denoted ;aTlT{(F ), is the minimum rank of a real matrix that approximates
M entrywise within a small error 1/3.

The approximate v, norm can be viewed as a convex relaxation of the approximate rank and is known
to be essentially equivalent to it. It is shown in [L.S09a] that, on the logarithmic scale, the two measures
coincide up to an additive O(loglog | X||Y|) term: for every communication problem F : X xY — {0,1},

Qlog 72(F)) < log rank(F) < O(log 32(F) + loglog | X||Y]).
Combining this observation with our result and the result of Knop et al. [KLMY21], we obtain
R(f o AND;) < D°(f o ANDs) = O((logspar(f))® - logn) = O((logﬁ{(f o AND3))?? - (log n)6) .

While the exponents above are not optimized and can be improved (see Section 4.2), this implies that
the log-approximate-rank conjecture holds for AND-functions, up to poly-log(n) factors.

The Log-Approximate-Rank Conjecture (LARC), a term first coined by Lee and Shraibman [LS09b],
is a natural approximate analogue of the classical Log-Rank conjecture. It asserts that, just as the loga-
rithm of the rank of the communication matrix is believed to characterize deterministic communication
complexity up to polynomial loss, the logarithm of the approximate rank should similarly characterize
randomized communication complexity up to polynomial loss.



Somewhat surprisingly, the LARC was recently shown to be false by Chattopadhyay, Mande, and
Sherif [CMS20], by exhibiting an XOR-function as a counterexample. In contrast, our results show that
LARC does hold for AND-functions, up to polylogarithmic factors in n.

In fact, our results give the following chain of inequalities:

Qlog 2(f o AND2)) < Q°°(f o AND2) < R(f o ANDy) < D(f o ANDy),
D(f o ANDy) < (logspar(f))°™ (logn)°M < logF2(f o ANDy)?W (logn)OM).

As a result, for an AND-function F' := f o ANDs, up to polylogarithmic factors in n, the quantities
De(F), R(F), Q°(F), logY2(F), log;a\rlTi(F), log rank(F’), and logspar(f)

are all polynomially equivalent. In other words, for AND-functions, diverse notions of complex-
ity—from communication-theoretic to algebraic—coincide. Interestingly, this striking equivalence of
various measures was already suspected in the early work of Buhrman and de Wolf [BAW01] on AND-
functions more than two decades ago. Our results confirm their intuition and, in a sense, complete the
story they set in motion.

1.2 Proof overview

As discussed above, our main technical contribution is Theorem 1.3, which lifts the sparsity of a Boolean
function f to a lower bound on the approximate ~o-norm of the lifted function f o ANDy. We now give
a high-level overview of the proof.

We begin with a concrete example that will later help illustrate the general argument. The canonical
Boolean function with large sparsity is the n-bit OR,, function, whose sparsity equals 2" — 1. When
composed with the ANDy gadget, the function OR,, o ANDy corresponds to the Set Intersection problem,
the negation of the well-known Set Disjointness function.

Lower bound for Set Intersection. We illustrate our approach using the Set Intersection function
(ORn © ANDQ)(IL',y) = ORn(Il ANYlseo s T A yn)7

where we write z; 1= x; A y;.

The key structural property of OR,, is that it remains an OR under every restriction p, € {0, *}":
the restricted function retains full degree on the free variables. This hardness under {0, *}-restrictions is
precisely what gives OR,, its large sparsity. More importantly, as we show later, the existence of many
such maz-degree restrictions is a general consequence of large sparsity, allowing the argument to extend
beyond Set Intersection to arbitrary AND-functions.

To lift this hardness to the communication setting, we map restrictions on the z-variables to restric-
tions on the input pairs (z;,y;). Given p, € {0, *}"™, we define a lifted restriction p by

(A,0), if p.(z;) =0,
(%,1), if p.(2;) = =,

(p(2i), p(yi)) = {

so that (x; A y;)|, = p-(2i). Here A denotes a free but masked variable: although syntactically free, the
restricted function does not depend on it.

These lifted restrictions have three crucial properties: (i) all y-variables are fixed, (ii) the restricted
function (OR,, o ANDs)|, computes an OR on exactly the =-variables, and (iii) it is independent of the
masked variables. As a result, if p, has exactly d stars, then

deg(Ez]\/[(p) [(ORy, 0 AND2)|p]) =d,

where M (p) denotes the masked variables and E,,,, [-] denotes expectation over independent uniform
assignments to them.

This motivates the following restriction-and-averaging procedure. We sample an unlifted restriction
p. € {0,*}™ uniformly at random subject to having d = ©(y/n) stars (we will explain shortly why this
specific parameter is chosen), lift it to obtain p, and then take expectation over the masked variables.



Under this restriction-and-averaging procedure, OR,, © ANDy retains its hardness—in terms of de-
gree—with degree ©(y/n). On the other hand, we show that the same procedure simplifies any small-
weight rectangle decomposition arising from a small approximate 2 norm. Concretely, it converts such a
decomposition into a low-degree polynomial (more precisely, one whose total Fourier mass on high-degree
monomials is small).

This leads to a contradiction. From a small approximate v, norm of size 20(n') for OR,, 0 AND», we
would obtain a low-degree polynomial of degree O(n'/4) that approximates E,,, (» [(OR,, 0 AND3)|, ], even
though the latter has degree ©(y/n). This contradicts the known quadratic relationship between degree
and approximate degree, forcing the approximate 5 norm of OR, o ANDs to be 20(n*h), Extracting
low-degree approximating polynomials from a decomposition exhibiting low approximate o norm of a
matrix, in the context of communication complexity, was initiated in the work of Razborov [Raz03],
followed by other works, including that of [BVdWO07,Shel6]. Our particular method is inspired by the
work of [CDL25] and the work of Krause and Pudldk [KP95] who used it in the context of proving lower
bounds on the Fourier sparsity of lifted functions.

We now briefly explain why our restriction-and-averaging procedure simplifies a small-weight rectangle
decomposition into a low-degree polynomial. Let

H(z,y) = Zbigi(x) hi(y)

be an approximator for Set Intersection with small total weight » .. [b;|. Under any lifted restriction, all
y-variables are fixed, so each rectangle collapses to a function of the z-variables alone. Moreover, for any
Boolean function g : {0,1}" — {0, 1} on z-variables, we show that the expected Fourier mass of g above
level k after restriction and averaging decays as 2~9(¥) (this is where our choice of d = ©(y/n) plays a
part). Intuitively, this happens because any Fourier character involving a masked variable vanishes upon
averaging. An averaging argument then yields a restriction p such that the Fourier mass of E,,,  [1|,]
above level k = O(n'/%) is negligible, provided Y, |b;| < 20", Discarding higher-degree monomials
produces a low-degree O(n'/*) approximator for Eg s [(OR,0AND2) ], contradicting its degree ©(y/n).

This shows a 22" lower bound on the approximate 2 norm of Set Intersection. Moreover, if you
observe closely, the same argument also yields a 220" Jower bound for the approximate o norm of
Inner Product function XOR,, o ANDs, another central problem in communication complexity.

Generalization to arbitrary functions with large sparsity. In the discussion above for Set Inter-
section and Inner Product, we relied crucially on a structural property of the outer functions OR,, and
XOR,,: under every restriction in {0, *}", the restricted function retains full degree on the surviving free
variables. As hinted earlier, the existence of many such maz-degree restrictions is not specific to these
functions. Rather, it is a general consequence of large sparsity—and this is the key insight of our work
that allows us to extend the argument to arbitrary AND-functions.

More concretely, we show that any Boolean function f : {0,1}" — {0,1} of large sparsity admits a
fixed set of variables V' < [n], which we call the core variables, with the following property. For every
assignment o € {0, }V, the remaining variables in [n]\V can be fixed—possibly depending on a—so that
the resulting restriction of f has full degree on the free variables. We refer to the resulting collection of
restrictions as a semi-adaptive maz-degree restriction tree. For OR,, and XOR,, the core set is simply
V = [n], but in general this need not be the case. For a function of sparsity s, we show that one can
always find V of size Q(log s/logn), which we call the depth of the restriction tree.

Having obtained such a collection of restrictions D for f, we lift them to restrictions for the two-party
function f o AND,, extending the construction used for Set Intersection. Given a restriction p, € D, we
define a lifted restriction p on the variables (z;,y;) by

(A,0), ifpy(z)=0andieV,

) (%1), ifp.(zi) =xandieV,
Pl P = (1 1) it (o) = 1 and i ¢V,
(1,0), if pu(z) = 0 and i ¢ V,

ensuring that (z; A y;)|, = p.(z;). As in the Set Intersection case, this construction guarantees that
(foAND3)|, coincides with f|,, (up to renaming of variables) and is independent of the masked variables



M (p). As a result, for every max-degree restriction p,,

deg(EfL’M(p) [(f © AND2)|P]> = deg(f‘ﬂz) = |pz_1(*)| = |P_1(*)|-

Thus, the lifted function f o ANDy retains its hardness under the same restriction-and-averaging
procedure used for Set Intersection. Moreover, the lifting has an additional convenient feature: all non-
core x-variables are fixed to 1. This allows the same Fourier-analytic argument to go through, showing
that the restriction-and-averaging procedure simplifies any small-weight rectangle decomposition into a
low-degree polynomial.

The only quantitative change from the Set Intersection analysis is that the effective parameter n is
replaced by the number of core variables |V| = Q(log s/logn). Carrying out the argument yields

log s\ /4
log%(foAND2)=Q<< & ) )
logn

which is exactly the bound stated in Theorem 1.3.

Finally, we place our work in the context of the results of Chattopadhyay, Dahiya, and Lovett [CDL25].
Among other results, that work studies the sparsity of Boolean functions and provides a structural
characterization in terms of maz-degree restriction trees. Their restriction trees are fully adaptive: the
choice of which variable to restrict next depends on the outcomes of previous restrictions, and there is
no fixed set of core variables, as in our setting. Moreover, their framework applies to a broader class of
complexity measures, which they call one-sided and two-sided nice measures.

While this adaptive viewpoint is powerful, we do not know how to use such fully adaptive restriction
trees to control analytic quantities such as the approximate s norm. In contrast, our work construct a
more structured, semi-adaptive form of max-degree restriction trees directly from sparsity, with a fixed
core set of variables on which all {0, x}-restrictions occur. This additional structure is crucial for our
analysis and enables us to lift sparsity to lower bounds on the approximate s norm.

Organization. In Section 2, we introduce the necessary preliminaries and notation. In Section 3, we
formally define semi-adaptive max-degree restriction trees and show how to construct them for Boolean
functions with large sparsity. Finally, in Section 4, we prove our main technical contribution: a lifting
theorem that lifts the sparsity of a Boolean function f into a lower bound on the approximate 5 norm
of its lifted function f o ANDy, and we discuss the resulting consequences for AND-functions.

2 Preliminaries

All functions considered are defined on the Boolean hypercube {0,1}" and unless stated otherwise, all
polynomials are real and multilinear.

Multilinear representations. Over the Boolean domain, Boolean functions admit a canonical poly-
nomial representation.

Definition 2.1 (Multilinear polynomial representation). A polynomial Q € R[x1, ..., z,] is multilinear
if each variable appears with degree at most one in every monomial. Every function f:{0,1}" —> R ad-

mits a unique multilinear polynomial representation; that is, there exists a unique multilinear polynomial
Q € Rlzy,...,2z,] such that Q(z) = f(x) for all z € {0,1}™.

We freely identify Boolean functions with their unique multilinear polynomial representations, and
use the two interchangeably.

Polynomial complexity measures. Let Q € R[z1,...,z,]| be a multilinear polynomial written as
Qx) = Z as H ;.
Scn] €S

The degree of Q is deg(Q) := max{|S| : ag # 0}, and the sparsity of @, denoted spar(Q), is the number
of nonzero coefficients ag.



For a function f : {0,1}" — R, let P(f) denote its unique multilinear polynomial representation. We
define

deg(f) :=deg(P(f)),  spar(f) := spar(P(f)).
Approximate degree. Let f:{0,1}" —> R and € > 0. The e-approzimate degree of f is defined as
deg.(f) := min{deg(Q) : |Q(z) — f(z)| < & for all z € {0,1}"}.

When e = 1/3, we write a\eé(f) = (/i\eél/g(f).

Theorem 2.2 ( [BT22, Theorem 10, Section 3.4]). Let f : {0,1}" — {0,1} be a Boolean function. For
any 0 <e < 1/2,

deg.(f) = O(deg(f) -log(1/2)).
Theorem 2.3 ( [ABDK ™21, Theorem 4]). For every Boolean function f :{0,1}" — {0, 1},

deg(f) = O(deg(f)?).

Fourier basis. Another fundamental representation of Boolean functions is given by the Fourier basis,
where each monomial xg(z) = (—1)Zies ¥ represents the +1-valued parity function on the subset S < [n]
of variables.

Definition 2.4 (Fourier complexity measures). Let f : {0,1}" — R have the Fourier expansion
f@)="3 F(S)xs(a).
5c(n]

~

The Fourier degree of f is the mazimum size of a set S < [n] with f(S) # 0. Since xs(x) = [ [;,cg(1—22;),
the Fourier degree coincides with the ordinary degree.

The Fourier sparsity of f, denoted Hﬂ

Fourier ¢1-norm of f is

~

, is the number of nonzero Fourier coefficients f(S). The
0

7= X 15
Scn]

Fort = 0, the Fourier /1-mass above level t is

HfAH1 . ng[:n] F(S)1-

|S|=t

Communication complexity. We assume familiarity with the standard model of communication
complexity and refer the reader to [KN97] for background. In this model, two parties—Alice and
Bob—aim to compute a Boolean function F : X x Y — {0, 1}, where Alice receives x € X and Bob
receives y € Y. The deterministic communication complexity of F, denoted D°(F'), is the minimum
number of bits exchanged by any deterministic protocol that always outputs F'(z,y). In the public-coin
randomized model, Alice and Bob have access to shared randomness and must compute F'(z,y) with
error at most 1/3; the corresponding measure is the randomized communication complexity R(F).

We also assume familiarity with quantum communication complexity [dW02]. We use Q°“(F) to
denote the bounded-error (error at most 1/3) quantum communication complexity of F' in the model
with unlimited shared entanglement.

The v, and approximate ~; norms.

Definition 2.5 (y2 and approximate vy, norms). Let F : X x Y — {0,1} be a Boolean function, and let
Mp € {0,1}X*Y denote its communication matriz, defined by Mp(x,y) = F(x,y).
The ~y9 norm of F' is

vo(F) = min{z || : Mp = ZaiRi},



where each R; is a combinatorial rectangle, i.e., R;(x,y) = g;(z)h;(y) for Boolean functions g; : X —
{0,1} and h; : Y — {0,1}.
For 0 <e < 1/2, the e-approximate 2 norm is

15(F) = min{12(4) : A€ R, 4~ Mply, <}

We write 43(F) := 7%/3(17).

Remark 2.6. The 5 norm is often defined via a factorization-based formulation. For a real matriz M,
one may equivalently define
M) = min r(X)rY
B0 = minr(X)r(Y),
where r(X) denotes the mazimum Ly-norm of a row of X. This formulation, sometimes called the p-
norm, is equivalent to the rectangle-based definition up to constant factors; see, e.g., Chapter 2 of [LS09b].
We use the rectangle-based definition throughout.

Theorem 2.7 ( [LS07, Theorem 1]). For every Boolean function F : X xY — {0, 1},

R(F) = Q(log72(F))  and  Q°(F) = Qlog 72(F)).

3 Semi-Adaptive Max-Degree Restriction Trees from Sparsity

Definition 3.1 (Restrictions). A restriction p on a set of variables V < {x1,...,x,} is a partial assign-
ment p:V — {0, 1, =}, where for x; € V, p(x;) € {0,1} indicates that x; is fized, and p(x;) = = means x;
is left free. For a polynomial Q € R[z1,...,z,], we write Q|, for the polynomial obtained by substituting
x; = p(a;) for all fized variables z;.

A central tool in our work is to extract structural consequences of a function having large polynomial
sparsity. In particular, we seek restrictions under which a function remains maximally hard, in the sense
of retaining full degree.

At a high level, large sparsity guarantees the existence of many restrictions under which the function
retains full degree. More concretely, if a multilinear polynomial has sparsity s, then there exists a set of
variables V' of size Q(log s/logn) such that, for every assignment of the variables in V' to values in {0, #},
one can fix the remaining variables so that the restricted polynomial has full degree in the variables left
free.

We capture this collection of restrictions using what we call semi-adaptive max-degree restriction
trees. The term semi-adaptive reflects the following structure. There is a fixed set of variables V' such
that every assignment in {0, #}" appears as a restriction, rather than variables being chosen adaptively
based on previous assignments, as in fully adaptive restriction trees (e.g., in the work of [CDL25]).
However, the restrictions are not fully non-adaptive: although the set V is fixed, for each assignment
p € {0,%}V, the fixing of the remaining variables in [n]\V that ensures full degree may depend on p.
This intermediate structure motivates the term semi-adaptive.

The qualifier maz-degree indicates that under every restriction in the tree, the polynomial retains full
degree on the variables that remain free. This notion compactly encodes the key structural consequence
of large sparsity that we exploit later.

We now formalize this notion.

Definition 3.2 (Max-degree restriction). Let Q € R[z1,...,2,] be a nonzero multilinear polynomial
and let p : {x1,...,z,} — {0,1,%} be a restriction. We say that p is a max-degree restriction of @ if
deg(Q|,) = |p~ (%), that is, the restricted polynomial has full degree in its free variables.

Definition 3.3 (Semi-adaptive restriction tree). A semi-adaptive restriction tree of depth d on n vari-
ables is a collection D of 2¢ restrictions p : {x1,...,2,} — {0,1,%} for which there exists a fived set of
variables V S {x1,...,x,} with |V| = d, called the core variables, such that:

e For every pe D and every x; ¢ V, p(x;) € {0,1}.



e For every assignment o € {0,%}V, there exists a unique p € D such that p(x;) = afx;) for all
xT; € V.

Equivalently, D consists of all restrictions obtained by assigning each variable in V either 0 or =, while
fixing all variables outside V' as a function of this assignment.

Definition 3.4 (Semi-adaptive max-degree restriction tree). Let Q € R[x1,...,2,] be a multilinear
polynomial and let D be a semi-adaptive restriction tree. We say that D is a max-degree restriction tree
for Q if every p € D is a maz-degree restriction of Q, i.e., deg(Q|,) = [p~' ().

Examples. To illustrate the definitions, we give two informative examples.

Example 3.5. OR,. The function ORy,(21,...,2Z,) has sparsity 2" — 1. It admits a semi-adaptive
max-degree restriction tree of depth n with core variables V. = {x1,...,xp}. Let D ={p:{x1,...,20} —
{0,%}}. For any p € D, the restricted function ORy|, is an OR over the free variables p~'(x), and hence
deg(ORy|,) = [p71(x)|. Thus D is a semi-adaptive maz-degree restriction tree for OR,,.

Example 3.6. AND,, c ORy. Consider
(AND,, 0 OR2)(Z1,y -« -y Ty Y1y -« - Yn) = ANDy(ORa(21,¥1), - -, OR2(Zn, Yn)),

which has sparsity 3". We construct a semi-adaptive max-degree restriction tree of depth m with core
variables V= {x1,...,x,}. For a restriction p, € {0, }{&1%n} " define a restriction ppr on {y1, ..., Yn}

by
i = {1 o

*,
1, if pa(x;) =0.

Set D = {pm U phe | pa € {0, s}z n} } For any p € D, each gate ORa(x;,y;) evaluates to a free
variable when p(x;) = *, and to the constant 1 when p(z;) = 0. As a result, (AND,, o ORg)|, computes
an AND over ezactly the free core variables p~*(x), and therefore deg((AND, 0 ORz)|,) = [p~'(x)|. Thus,
D is a semi-adaptive maz-degree restriction tree of depth n for AND,, o ORg.

2

0 *
X 1(0,0,0) || (0,0, ) 0, 7O) (0,5, %) | | (%,0,0) | | (%,0,%) || (%,%,0) || (%)
(1,1,1)]|(1,1,0) ( ) ,1) (1,0,0) (071»1) (0,1,0) || (0,0,1) || (0,0,0)
Figure 1: A semi-adaptive max-degree restriction tree for AND3 o ORy with core variables V =

{x1,22,23}. Leaves correspond to the 2IVI restrictions in the tree. For each leaf restriction, the re-
stricted function (AND3 0 ORg)|, computes an AND over exactly the variables left free.

The following lemma shows that large sparsity guarantees the existence of deep semi-adaptive max-
degree restriction trees.

Lemma 3.7. Let Q : {0,1}™ — R be a nonzero multilinear polynomial of sparsity s. Then Q admits a
semi-adaptive maz-degree restriction tree of depth Q(logs/logn).

Proof. Let Mg < 2{z1.2n} denote the family of supports of monomials appearing in Q. Let V <
{z1,..., 2z} be a largest set shattered by Mg. Recall that V' being shattered by Mg means that for
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every S € V, there exists T' € Mg such that T'n'V = S. The Sauer—Shelah—Perles lemma [Sau72, She72]
states that that for a set system F containing subsets of [n], if d is the maximum size of a set shattered
by F, then |F| < O(n?). Using this lemma, we obtain |V| = Q(log s/logn); write |V| = d.

For each subset S € V', we construct a restriction ps. The resulting family {pg : S € V} will form a
semi-adaptive max-degree restriction tree for Q.

Fix an arbitrary S € V. Define the free restriction ,of’fee : V- {0, %} by setting pfree( ) = = for all
r € S and pee(x) = 0 for all z € V\S. Under this restriction, every monomial of @ containing a variable

pliee = dires (HmeT 5”) -Rr,

from V\S vanishes. As aresult, the restricted polynomial can be written as @

where each Rr is a multilinear polynomial over the variables {x; : z; ¢ V}.

Since V is shattered by Mg, there exists a monomial of ) whose support intersects V' exactly in S.
Equivalently, the coefficient polynomial Rg is nonzero. We now fix the remaining variables to witness
this nonzeroness. Choose a fizing restriction pi* : {z1,...,2,}\V — {0, 1} such that Rs| o= # 0.

free

Let ps := pee U pf*. Then Q|,, has degree exactly |S|, and its set of free variables is pg'(x) = S.
Hence, pg is a max—degree restriction of Q.

Therefore, the family {ps : S € V} forms a semi-adaptive max-degree restriction tree of depth
[V| = Q(log s/ logn). O

4 Lifting with the AND, Gadget

In this section, we present our main technical contribution: a lifting theorem that lifts the sparsity of
a Boolean function f : {0,1}" — {0,1} into a lower bound on the approximate v norm of the lifted
function F' := f o ANDy. We begin with a high-level overview of the proof.

Proof overview. Let f: {0,1}" — {0,1} be a Boolean function of sparsity s. Our goal is to lower
bound the approximate o norm of the lifted function f o ANDsy in terms of logs. Suppose, toward a
contradiction, that f o ANDs admits a small approximate v, norm. Then there exists an approximator

z,y) = Z bi gi(x)hi
=1

with . |b;| small. Our goal is to show that such an approximator cannot exist. The proof proceeds via
a carefully designed random restriction argument that preserves the hardness of f o ANDso, in terms of
degree, while simplifying any such approximator.

Step 1: Structure from sparsity. A key consequence of large sparsity is that f admits a semi-
adaptive maz-degree restriction tree D of depth d = Q(log s/logn). Equivalently, there exists a fixed set
of core variables V < {z1,...,2,}, with |[V/| = d, such that for every assignment in {0, *}", the remaining
variables can be fixed so that the restricted function has full degree in the surviving free variables. This
provides a large family of restrictions under which f remains maximally hard in terms of degree.

Step 2: Lifting restrictions through the AND; gadget. We lift the restriction tree D for f to a
collection of restrictions D o ANDs for the lifted function

(f © ANDZ)(xla sy Ty Yty e 7yn) = f(ANDZ(xlayl)a . '»ANDZ(xnayn))'

Each restriction py € D is mapped to a restriction p on the variables (x;,y;) so that ANDa(z;,ys)|,
py(z;) for every i. Concretely, the lifted restriction is given by

(A,0), if pp(z;)) =0and 2z €V,

W) (=1, i pp(z) =% and 2, €V,
(pleD): P =9 1 1), it pr(z) =1and z ¢ V,
(1,0), if pp(zi) =0and z ¢ V.

Here both * and A denote free variables. Algorithm 1 formalizes this construction.

The lifted restrictions satisfy two immediate properties. First, all y-variables are fixed under every
lifted restriction. Second, the lifting introduces a special type of free variable, called a masked variable:
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these are free x;-variables assigned A, whose corresponding y; is fixed to 0; consequently, the restricted
function is independent of them.

As a result, for every lifted restriction p, averaging over the masked variables yields a function that
coincides (up to renaming variables) with f|,,. For a restriction p, we denote the set of masked variables
by

M(p) i= s | plas) = A},

and write E,, -] for expectation over independent, uniform assignments to the variables in M(p). We
will use this notation throughout.
Since D is a max-degree restriction tree, it follows that

deg(EﬂlM(p) [(f OAND2)|P]) = ‘p_l(*)"

Step 3: Random restrictions and Fourier decay. We place a uniform distribution over lifted
restrictions p € D o ANDy having exactly @(\/8) many #-variables. And analyze the effect of sampling
such a restriction and then taking expectation over the masked variables on the following:

1. The target function f o ANDs. This operation preserves hardness: by construction, the resulting
function has degree ©(+/d).

2. An arbitrary Boolean function g on the x-variables. We show that the same operation causes the
Fourier /1-mass above level k to decay exponentially in k.

Step 4: Deriving a contradiction. Applying this random restriction-and-averaging procedure to the
approximator II, each function h;(y) collapses to a constant, while the Fourier tails of the correspond-
ing g;(z) terms decay rapidly. Since ), |b;| is small, we conclude that the expected Fourier mass of
Eq ., [I,] above level k = ©(d"/*) is negligible.

Discarding this high-degree mass yields a polynomial of degree O(d'/*) that still approximates
Eq s, [(f 0 AND2),]. However, by the construction above, this target function has degree O(V/d), contra-
dicting the general fact that the exact degree of a Boolean function is at most quadratic in its approximate
degree. Choosing parameters appropriately, this contradiction implies

log s 1/4
log%(foAND2)=Q<< & ) )
logn

completing the proof.

4.1 Lifting De Morgan Sparsity to the Approximate ~,-Norm via the AND,
Gadget

We now formalize the proof strategy outlined in the proof overview. The first step is to lift a max-degree
restrictions for f to a collection of restrictions for the lifted function f o ANDy. Algorithm 1 describes
this lifting procedure.

12



Algorithm 1 LIFTEDRESTRICTION
1: Input: A semi-adaptive max-degree restriction tree D for f : {0,1}" — {0,1}
2: Output: A collection of lifted restrictions D o ANDg, where each p : {z;,y;}7; — {0,1,%, A} is a
restriction for f o ANDg

3: Let V be the set of core variables of the semi-adaptive restriction tree D.
4: for each restriction py € D do
5: Define the lifted restriction p = Liftp(ps) as follows:
6: for each i € [n] do
(A,0), if py(z;) =0and 2z €V,
o Set (p(wn), plyn)) = { ) T prl) = wand zeV,
(1,1), ifpg(z;) =1and 2 ¢V,
(1,0), if pp(z;) =0and z ¢ V.
8: end for
9: end for

10: return D o ANDy := {Lift(ps) : py € D}

A lifted restriction assigns each variable a value in {0, 1, , A}. When applying such a restriction to
f o ANDy, both symbols * and A are treated as free variables. Variables marked by A are called masked
variables; although syntactically free, the restricted function does not depend on them. Tracking masked
variables explicitly will be convenient for the subsequent analysis.

Basic structure of lifted restrictions. Let V' < {z,...,2,} denote the set of core variables of the
semi-adaptive restriction tree D, and let V, := {z; : z; € V} be the corresponding set of z-variables,
which we refer to as the core x-variables. We will use this notation throughout.

By construction, every lifted restriction p € D o AND, fixes all y-variables and fixes all z-variables
outside V, to 1. Moreover, the assignment on V, uniquely determines the entire restriction: for every
a € {A,*}V=, there exists a unique p € D o ANDy such that p(z;) = a(x;) for all x; € V,. This follows
directly from the defining property of D, which guarantees that for every 8 € {0,*}V there is a unique
ps € D satisfying py(z;) = B(z;) for all z; € V. As a result, the family D o AND, is parametrized by
assignments to the core x-variables.

The construction of the lifted restrictions, together with the fact that D is a max-degree restriction
tree, implies the following structural properties. In particular, these properties show that f o ANDy
retains its hardness (in terms of degree) under the lifted restrictions.

Claim 4.1. Let DoANDs be the collection of lifted restrictions for fo ANDs obtained from a semi-adaptive
maz-degree restriction tree D for f wvia Algorithm 1. Then the following properties hold:

1. For every p € DoANDs, the restricted function (foANDsy)|, does not depend on the masked variables
M(p).

2. For every p € D o ANDy, deg(E i [(f © AND2)| o]) = deg((f o AND2)|,) = |p~*(#)|.

Proof. For (1), if x; is masked in p, then by construction p(y;) = 0. Hence ANDa(x;,y;)|, = 0 regardless
of the value of x;, and therefore (f o ANDy)|, is independent of all masked variables.

For (2), fix p € D o ANDy, and let py € D be the restriction used to generate p, i.e., p = Lift(py).
By construction, for every ¢ € [n] we have AND2(z;,9:)|, = ps(2:). Thus, (f o AND;)|, depends on the
variables {z;, y;} only through the tuple (ps(21),...,pf(zn)). After ignoring the masked variables (which
(f o ANDy)|, does not depend on by part (1)), the resulting function coincides with f[,,. Since py is a
max-degree restriction of f, we obtain deg((f o AND3)|,) = deg(f|,,) = |p}1(*)| = |p~1(x)].

Finally, since (fo ANDg)|, does not depend on the variables in M (p), the function E; , , [(foAND2)|,]
is obtained by simply viewing (f o ANDy)|, as a function on the remaining free variables. In particular,
taking expectation over the masked variables leaves the function unchanged as a polynomial in the
remaining free variables. Hence, deg(E,,, , [(f © AND2)|,]) = deg((f o AND2)],). O

Next, we introduce a probability distribution on the restrictions in D o AND, for use in a random
restriction argument. Fix a parameter p € (0, 1), and recall that every restriction p € D o AND, satisfies
lp~1(*)| + [p~1(A)| = d, where d is the depth of the semi-adaptive restriction tree D.

13



We consider the uniform distribution over all restrictions in D o ANDy that leave exactly pd variables
marked by *. Formally, let U := {p € Do ANDy | |p~1(x)| = pd}. By construction, |U| = (pcfi). We

sample a restriction uniformly at random from U, i.e., Pr[p] = 1/ (pdd) for all p € U. We denote this
distribution by U,(D o AND).

Next, we analyze the effect of sampling a restriction p ~ U, (D o ANDy), applying it to f o ANDo, and
then taking expectation over the masked variables M (p). By Claim 4.1, the resulting function retains
degree pd. On the other hand, we show that applying the same process—sampling p ~ U,(D o AND3)
and taking expectation over M (p)—to an arbitrary Boolean function g over the z-variables causes its
Fourier tail to decay exponentially when p « 1/4/d. Combining these two observations yields our main
result: a lower bound on the approximate 2 norm of f o ANDy in terms of the sparsity of f.

Claim 4.2. Let D o ANDy be the collection of lifted restrictions for f o ANDy obtained from a semi-
adaptive maz-degree restriction tree D of depth d via Algorithm 1. Let g : {0,1}™ — {0, 1} be an arbitrary
Boolean function on the x-variables {x1,...,z,}. Suppose p = c/\d for a constant 0 < ¢ < 1. Then for
every integer k = 0,

ck

— >k
]Ep~up(DoAND2) [H Earreo) [9|p]H1 ] < 1_¢
Proof. By construction, every restriction p € D o AND fixes all z-variables outside the set V,, to 1. Let
h: {0,1}IV=l — {0,1} be the Boolean function obtained from g by fixing all variables outside V, to 1.
Then for every p € D o ANDy, we have g|, = h. Without loss of generality, assume V, = {z1,...,z4}.
Taking expectation over any variable kills all Fourier monomials containing it. Therefore,

H ] Z |h Pr [S<pi(x)]

Scld]
1S|>k

>k
E i, (0o AND,) [H B [9|P]H ] = Ep~up(DoAND2)[H Eoyri,y [

Under the uniform distribution over restrictions with exactly pd variables marked by =, the probability
Pr,[S < p~1(%)] is zero when |S| > pd, and for |S| < pd we have

-1 _ (pddjgl) S|
l;r[Sgp (*)]_ (d) = )
pd

Therefore,

pd N
> ) PrS 7] < 3 3 AS)Ip*
t=Fk |S|=t

Scld]
k<|S|<pd

Applying the Cauchy—Schwarz inequality, together with Parseval’s identity (which implies ) ¢ ?L(S )2 <
1 for the Boolean function h), we obtain };¢_, |E(S)| < 4/ (f) Hence,

pd N pd d 0 k
> X sl < 2/()s < R0V = v Sova' < 1=,

t=k |S|=t t=k t=k >0

where we used ¢ = pv/d < 1. This completes the proof. O

Theorem 1.3 (Restated). For every total Boolean function f : {0,1}" — {0,1},

1/4
log 2 (f o ANDy) = Q((W’M) ) .

logn

Proof. Let f have sparsity s. By Lemma 3.7, there exists a semi-adaptive max-degree restriction tree D
for f of depth d = ¢ log s/logn for a suitable constant ¢; > 0.
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1.

Suppose, for the sake of contradiction, that the theorem fails. Let k = - jl—/i for suitable absolute

263
constants cg,c3 > 0 to be fixed later. Assume that there exists a decomposition of the communication

matrix MfoAND2 of the form
T,y) = Z bi gi(x)hs
i=1

where each g;, h; is Boolean, such that [II — M, Axp,[e < 1/3 and Yty bl < 552%. We derive a
contradiction, thereby proving the theorem.

Let D o ANDy be the collection of lifted restrictions for f o ANDy obtained from D via Algorithm 1.
Sample a restriction p ~ U, (D o ANDy) with p = 1/(2v/d). We study the effect of applying p and then
taking expectation over the masked variables M (p). For notational convenience, define

FP = El’M(p) [(f © AND2)|P]’ GivP = IEl’M(p) [gi‘ﬁ]'
Both are functions of the starred z-variables under p.

1. Hardness of the restricted function. By Claim 4.1, deg(F,) = |p~*(*)|. Since every restriction
in the support of U, (D o AND,) satisfies [p~!(x)| = pd, we have deg(F,) = $v/d.

2. Simplification of the approximator II. For every restriction p € D o ANDs, all y-variables are
fixed. As a result, for each term in the decomposition II(z,y) = >\, b; gi(z)hi(y), the restricted
function h;|, becomes a constant, which we denote by a,; € {0,1}. Thus, I|, = >.I" | b; a,.i gil,,
which is a function only of the core x-variables, since all non-core z-variables are fixed to 1 in every
p € Do ANDs.

Fix a restriction p. The ¢;-mass of the Fourier spectrum of E [11],] above level k can be

bounded as follows:

TM(p)

k m -
)IEIM(,,)[H‘ ]H> S ‘;biawGi,p(S)‘
o
< 3 S nlGs)
SC n]’L 1
|S|=k
=2 il 3 1Gil(S)
i=1 Sc[n]
|S|=k
W”l

Taking expectation over p and applying Claim 4.2, we obtain

>k m 1
k+1
Ep~u,,(DoAND2)[HEwM<p> \p] Hl ] < E |bi |E,,~u (DOANDQ)[HG H ] |b |-2777 < 10’

where the final inequality follows from the assumed bound on }, |b;|.

Thus, there exists a restriction p ~ U,(D o AND») such that the ¢1-mass of the Fourier spectrum
of IT|,, above level k, after averaging over the masked variables M (p), is at most 0.1.

Combining the two items, there exists a restriction p such that deg(F),) = %\/ﬁ, while the /1-mass of
the Fourier spectrum of E,,, , [II|,] above level k is at most 0.1.

Let II be the polynomial obtained from E, wep []p] by deleting all Fourier monomials of degree at
least k. Since the discarded Fourier mass is at most 0.1 and II is a 1/3-approximator of f o ANDs, the
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polynomial II has degree < k and 0.44-approximates F,. By standard error reduction (Theorem 2.2), I
can be converted into a 1/3-approximator of degree at most cok. As a result,

d1/4
A/ 263 ’

On the other hand, deg(F,) = $+/d, which contradicts the general inequality deg(g) < c3 - (deg(g))?
for Boolean functions g (Theorem 2.3). This contradiction completes the proof. O

deg(F,) < cok =

4.2 Consequences

Knop et al. [KLMY21] showed that log spar(f) characterizes the deterministic communication complexity
of AND-functions (f o AND2), up to polynomial loss and polylogarithmic factors in n. In particular, they
proved that for every Boolean function f,

D(f o ANDy) = O((logspar(f))® -logn) .

Combining this bound with Theorem 1.3, together with the fact that the logarithm of the approximate
v norm lower bounds bounded-error quantum communication complexity, we immediately obtain that
for every Boolean function f,

D(f o ANDy) = O(Q°(f o AND2)* - (logn)°) .

A tighter relationship can be obtained using a more refined structural result of Knop et al., which
relates deterministic AND-query complexity to sparsity and a combinatorial measure known as monotone
block sensitivity.

Definition 4.3 (Monotone Block Sensitivity). The monotone block sensitivity of a Boolean function
f :4{0,1}™ — {0,1}, denoted MBS(f), is a variant of block sensitivity that only considers flipping 0’s
to 1’s. A subset B < [n] is called a sensitive 0-block of f at input x if ; = 0 for all i € B, and
f(z) # f(x®1p), where x ® 1p denotes the input obtained by flipping all bits in B from 0 to 1. For an
input x € {0, 1}", let MBS(f,x) denote the maximum number of pairwise disjoint sensitive 0-blocks of f
at x. Then, MBS(f) = max,eqo,1y» MBS(f, ).

Knop et al. [KLMY21] showed that deterministic communication complexity can be bounded in terms
of both sparsity and monotone block sensitivity.

Claim 4.4 ( [KLMY21, Lemma 3.2, Claim 4.4, Lemma 4.6, Theorem 1.2]). For every Boolean function
f:{0,1}" —> {0,1},
D(f o ANDy) = O(MBS(f)* - log spar(f) -logn) .

Intuitively, a large value of MBS(f) indicates that a large-arity PROMISE-OR function can be embed-
ded into f via suitable restrictions and identifications of variables. When such a function f is lifted via
composition with ANDs, this structure gives rise to an embedded instance of the unique set disjointness
problem.

The unique set disjointness function UDISJy is a partial Boolean function on inputs z,y € {0, 1},
defined as

0, if |z A y| =0,
UDISJg(z,y) = 4 1, if |z Ayl =1,

undefined, otherwise,

where 2 A y denotes the bitwise AND and |-| the Hamming weight. That is, under the promise that that
the inputs are either bitwise disjoint or intersect in exactly one coordinate, the function distinguishes
between these two cases.

The following result of Knop et al. shows that large monotone block sensitivity forces large embedded
instances of unique set disjointness.

Claim 4.5 ( [KLMY21, Claim 4.7]). Let f : {0,1}" — {0,1} be a Boolean function with MBS(f) = k.
Then the communication matriz of f o ANDy contains, as a submatriz (up to flipping output bits), the
communication matriz of UDISJ.
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Using known lower bounds for unique set disjointness, we obtain the following.

Theorem 4.6 ( [KS92, Raz90, Raz03,She09]). R“(UDISJ,) = Q(k) and Q°“(UDISJ}) = Q(Vk).
Claim 4.7. If f : {0,1}" — {0,1} satisfies MBS(f) = k, then

R(foANDy) = Q(k)  and  Q(f o ANDy) = Q(Vk).

Proof. This follows immediately from Claim 4.5 and Theorem 4.6. O

Combining Claim 4.7 with Claim 4.4, we obtain the following relationships between deterministic,
randomized, and quantum communication complexity for AND-functions.

Theorem 1.2 (Restated). Let f: {0,1}" — {0,1} be any Boolean function. Then:
1. D°°(f o ANDy) = O(Q°(f o AND3)® - (logn)?).

2. D(f o ANDg) = O(R*(f o AND2)% - (logn)?).

Proof. Combine Theorem 1.3, Theorem 2.7, Claim 4.4 and Claim 4.7. O
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