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Abstract

We prove a switching lemma for constant-depth circuits over the alphabet I, with generalized
AND/OR gates, extending Tal’s Fourier-analytic approach from the Boolean setting. The key
new ingredient is a direct computation of the L; Fourier mass of AND/OR gates over F,,, which
yields an exact closed-form expression for the expected high-degree Fourier mass after a random
restriction. Combined with a Markov inequality argument, this gives a switching lemma with
an explicit, prime-independent structure. As a consequence, we obtain that for any prime p,
constant-depth circuits of sub-exponential size over F,, cannot compute 1[) ", z; =0 (mod p)].

1 Introduction

Hastad’s switching lemma [I] is a cornerstone of circuit complexity, establishing that random re-
strictions dramatically simplify constant-depth Boolean circuits. Tal [2] gave a Fourier-analytic
proof that replaces the combinatorial core of Hastad’s argument with an L; inequality: after a
random restriction, the high-degree Fourier mass of a bounded-fan-in gate concentrates, which,
combined with a lower bound on the L1 mass of functions with large decision tree depth, yields the
switching lemma via Markov’s inequality.

In this paper we extend Tal’s approach to circuits over the prime-field alphabet F, = {0,1,...,p—
1}. The generalization requires two ingredients:

(1) An upper bound on E,[L7*(f],)] for gates under F,-valued random restrictions.
(2) A lower bound on L*(g) for AND/OR gates g of fan-in > s.

For (2), the Fourier coefficients of the generalized AND gate ANDy(z) = Hle 1[x; # 0] are given
by an explicit product formula (Proposition , from which the lower bound follows immediately.
For (1), we exploit the structural observation that random restrictions preserve AND/OR gates
(Observation to derive an ezact closed-form expression for E,[L7°(ANDg|,)] as a weighted
binomial tail (Theorem [4.1)), giving a self-contained proof that avoids the general L; machinery.

A notable consequence of the direct computation is that the switching lemma incurs no prime-
dependent penalty factor v, < 1: the lower bound ((p — 1)/p)® holds exactly for AND/OR gates,
while the upper bound on expected L; mass is controlled by a binomial tail that admits standard
Chernoff-type estimates.

Context and prior work. The question of proving AC? lower bounds over non-Boolean alpha-
bets has a substantial history. Razborov [3] and Smolensky [4] established that MOD,, gates cannot
be computed by ACO[MODp] circuits when p { ¢; their approach uses approximation by low-degree
polynomials over F,. Barrington, Straubing, and Thérien [5] studied circuit complexity over non-
Boolean alphabets from a semigroup-theoretic perspective, showing that the computational power
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of constant-depth circuits depends on the algebraic structure of the gate operations. Beigel and
Tarui [6] proved that ACC circuits can be simulated by depth-two circuits with symmetric gates,
placing ACC inside a small circuit class.

Our contribution is complementary to these works: rather than using polynomial approximation
or algebraic methods, we extend the Fourier-analytic switching lemma to the IF, setting. This
approach provides quantitative switching bounds for the specific gate basis {AND, OR} over [,
where ANDg(z) = 1[all z; # 0] and ORy(z) = 1]z # 0]. To the best of our knowledge, the explicit
Fourier computation for these generalized gates (Proposition and the resulting exact decay
formulas (Theorems and are new.

Main results.

Theorem 1.1 (Switching lemma over IF)). Let p be a prime and let f: Fj — {0,1} be a generalized
AND or OR gate of fan-in K. Under a random restriction p that independently keeps each variable
alive with probability q and fizes dead variables uniformly in IF,,

v aKy

BTS2 5] < (7

forall s > 1. In particular, for any constant o > 0, setting ¢ = as(p—1)/(epK) gives Pr[DT(f|,) >
s] < of.

Corollary 1.2 (Parity ¢ AC° over F,). For any prime p, constant d, and € > 0, circuits of depth d
and size 2™ over the alphabet F, with generalized AND/OR gates cannot compute 1[) , x; = 0

(mod p)].

2 Preliminaries

2.1 Fourier analysis on F)

Let w = e2™/P be a primitive p-th root of unity. The characters of the group [}, are Xol(z) = wla)

for a € Fy, where (a,7) = }_; a;z; (mod p). Every function f: Fj — C has a unique Fourier
expansion

. N 1 _
f@) = f@xal@),  fl@)=-33 f@)xa@):

aGIFg xe]F;}

Definition 2.1 (Fourier degree and Ly norms). The degree of a character xq is || = #{i : o; # 0}.
The Fourier degree of f is fdeg(f) = max{|a| : f(a) # 0}. The L; Fourier norm at degree > s is

LT(f) = Xjapss (@)1

2.2 Decision trees and gates over [,

A decision tree on [} is a rooted tree where each internal node queries some variable z; and branches
into p children (one for each value in F)), and each leaf is labeled with an output value. The depth
DT(f) is the minimum depth of a decision tree computing f.

Definition 2.2 (Generalized AND/OR gates). The generalized AND gate of fan-in k is

ANDy(z1,..., ) = [ [ 1li # 0] =

=1

k 1 if x; # 0 for all 4,
0 otherwise.



The generalized OR gate of fan-in £ is

1 if z; # 0 for some ¢,

ORg(z1,...,2) =1z #0] = {0 ifz=0

Remark 2.3. For p = 2, these reduce to the standard Boolean AND and OR. For general p, the
AND gate outputs 1 iff all inputs lie in I, \ {0}, and the OR gate outputs 1 iff at least one input
is nonzero.

2.3 Random restrictions

A random restriction p on F)) with parameter ¢q € (0,1) independently sets each variable x; to be
alive (unfixed) with probability ¢, or dead (fixed to a uniformly random value in F,,) with probability
1—gq.

Observation 2.4 (Restriction preserves AND/OR structure). Let f = ANDg and let p be a
random restriction. If any dead variable is fixed to 0, then f|, = 0. Otherwise, every dead variable
is fixed to some v € {1,...,p— 1}, contributing 1[v # 0] = 1 to the product, so f|, = AND; where
J is the number of alive variables. Similarly, for f = OR: if any dead variable is fixed to a nonzero
value, then f|, = 1; otherwise, all dead variables are fixed to 0 and f|, = OR;. In both cases, f|,
is either constant or a gate of the same type on fewer variables. In particular, DT(f|,) > s if and
only if f|, is a gate of the same type on J > s variables.

3 Fourier Analysis of AND/OR Gates

This section contains the key new computation.

Proposition 3.1 (Fourier transform of ANDy). Let f = ANDy: FE — {0,1}. For any o =
(Oq, R ,Oék) S FI;,
k p—1 .
. 1 _ p—1 ifa=0,
fla)=—11ba, where 0, = w W= '
() Pk Zl_Il “ ¢ 1; -1 if a # 0.

In particular, | f(a)| = — 1)k lel,

p*(p
Proof. Since ANDy(x) = Hle 1[x; # 0] and the variables factor in the sum,

for = 5 [Tt oo = LTI ().

L1005 Th =1 i=1 v=1

If a = 0, the inner sum is >7_] 1 =p—1. Ifa # 0, then P w @ =3Pl 0w @ 1=0-1= -1,
since the full sum of all p-th roots of unity vanishes. Hence |0, = p—1if a = 0 and [0,] = 1 if
a # 0, giving |f(a)| = p~*(p — 1. O

Corollary 3.2 (Lower bound for AND gates). For f = ANDy with k > s,
Nk O [k
- S (5 1)
laf>s j=s

In particular, when k = s: L{*(ANDy) = (1%1)8.



Proof. There are (’;) (p — 1)7 characters of degree exactly j. Each has |f(oz)] =pF(p— 1) by
Proposition The total Ly at degree j is (I;) (p—1)Y - pF(p—1)k7 = (';) (p— 1)k /p*. Summing
over j > s gives the result. O

Remark 3.3 (The OR gate). For ORy(z) = 1[x # 0], we have ORy(z) = 1—1[z = 0], so the Fourier
coefficients are f(0) =1 —p~* and f(a) = —p~* for all a # 0. Hence

J
L7*(ORy) = iJ > <‘]]> (p— 1)) = P[Bin(J, 23) > s].

Since Bin(/J, p%) has mean J(p —1)/p > s(p — 1)/p > s/2, the lower bound L%S(ORJ) > (%)S
holds for all J > s: at J = s the only term is j = s giving exactly ((p —1)/p)°, and the probability
P[Bin(J, (p — 1)/p) > s] is non-decreasing in J.

Remark 3.4 (All Fourier coefficients are nonzero). A notable feature of Proposition is that
| ()] > 0 for every a € IF’;. In particular, ANDj, has Fourier degree exactly k. This is not true for
general {0, 1}-valued functions on F’;: as we discuss in Section |7 there exist functions with decision
tree depth s but Fourier degree < s.

Remark 3.5 (Boolean comparison). For p = 2, Corollary gives LIZS(ANDS) = (1/2)%, matching
the standard Boolean computation. The lower bound ((p — 1)/p)® holds for all primes with the
same structural form.

4 Exact Formulas for Expected Fourier Decay

The following theorems provide exact closed-form expressions for the expected high-degree L, mass
of AND and OR gates after a random restriction.

Theorem 4.1 (Exact formula for AND). Let f = ANDg: FY — {0,1} and let p be a random
restriction with parameter q. Then

B, [13°(1] = ()" > () 1)

j=s 7

Theorem 4.2 (Exact formula for OR). Let f = ORg: FX — {0,1} and let p be a random
restriction with parameter q. Then

K .
E,[L2(f],)] = — Z(K) ((p— 1)g)’. @)

PR =\

Remark 4.3. For p = 2, the two formulas coincide: (1/2)% Z]K:S (I;)qj For p > 3, they differ
because the AND gate’s survival condition (all dead variables nonzero) and the OR gate’s survival

condition (all dead variables zero) have different probabilities.

Proof of Theorem[].1. By Observation the restricted function f|, is either identically zero (if
any dead variable is fixed to 0) or AND; on the J alive variables (if all dead variables are nonzero).
In the former case, L7*(f,) = 0.

Each variable independently falls into one of three categories: alive (probability ¢), dead and
fixed to 0 (probability (1—¢q)/p), or dead and fixed to a nonzero value (probability (1—gq)(p—1)/p).
The gate survives (is not killed to 0) precisely when no dead variable is fixed to 0.



For a specific alive set A C [K| with |A| = J, the probability that exactly these variables are
alive and all K — J dead variables are nonzero is ¢” - ((1—q)(p —1)/p)®~7. The resulting function
is AND, so by Corollary L]_ZS(ANDJ) = ((p—1)/p)”’ Zj:s (3’) Summing over all choices of
alive set:

K J
K (1—gp—1)\K=J p—1\J J
E,[LT* = / : : 3
J[L7°(41,)] JZS<J>q( SR () 3
We exchange the order of summation: for fixed j (the “degree” index), J ranges from j to K. Using

([j) (j) = (Ij) (Ij__;) and substituting m = J — j:

_ ;: <IJ<) (q(pp— 1))]’? (KT; j> <Q(pp— 1))’"((1 - Q);p - 1)>K—j—m. @)

=0

The inner sum is a binomial expansion: Zg;é (KT;j)(q(p - 1)/p)™((1 - q)(p — 1)/p)K*J*m -
((p —1)/p)X~J. Substituting:

E,[LT*(f1,)] = i <K> (Q(pp— 1))1'(17; 1)K,j _ (Z);I)K]é <i(> . .

j=s 7

Proof of Theorem[{.3 By Observation flp is either identically 1 (if any dead variable is
nonzero) or OR; on J alive variables (if all dead variables are zero). The constant case contributes
>s
L7°(1) =0 for s > 1.
For a specific alive set A with |A| = J, the probability that exactly these variables are alive
and all K — J dead variables are zero is ¢’ - (1 — ¢)/p)® ~/. The resulting function is OR s, so by

Remark LZ5(ORy) = p~/ Z;-]:S (j‘]) (p —1)7. Summing:

5 0] = 2 ()59 > (T

J=s j=s
. . . . . K\ /T K\ (K—i . . .
Exchanging summation using the same identity (J) (]) = (j ) (ijj.) and substituting m = J — j:
K i K= N m I
j=s J p] m=0 m pm p
The inner sum equals (¢/p + (1 — ¢)/p)¥ 7 = p~E=9). Hence
K ; K
> K\ ((p—1)g)’ 1 1 K '
E, [Ll_s(f|p)} = Z < . J TRk T K Z . ((p - l)q)J' [
—\J p p PR =\

Remark 4.4 (Exactness). Both formulas are exact, not merely upper bounds. For instance, when
K = s and ¢ = 1 (no restriction), Theorem gives ((p — 1)/p)*®, matching Corollary



5 The Switching Lemma
Proof of Theorem [I.1. The argument combines the exact formulas with the Fourier lower bound
via Markov’s inequality.

Step 1 (Lower bound). Suppose DT(f|,) > s. By Observation flp = AND; (or ORy) for
some J > s. By Corollary [3.2] and Remark

i) = ()

(For J > s in the AND case, note that AND; = AND, ® AND;_g, so L%S(ANDJ) > LT°(AND;) -
Li(AND, ) = ((p = 1)/p)* - (2(p — 1)/p)’"~* > ((p — 1)/p)*, since 2(p — 1)/p > 1 for p > 2.)
Step 2 (Upper bound on expected L;). By Theorems and

E,[LT*(f1,)] < i (f) Q'

j=s

where @ = ¢ for the AND gate and Q = (p — 1)q for the OR gate. (We used ((p —1)/p)¥ <1 and
p~ & < 1 respectively.)
To bound the binomial tail, we use (I]( ) < K7/j! and the standard Chernoff estimate:

(KN = (QK)Y _ (QE)* cQK s
jz;<j)%jzs s () e
where the last inequality uses s! > (s/e)®.
Step 3 (Markov’s inequality).
E[L7"(f],)] L (eQEY ok
BIDTU1) 1< (6,5 e < ey (s ) ¢
_ <€pQK )S.eQK
(p—1s '

Since @ < (p — 1)q in both cases, this gives

In the switching lemma application, we set ¢ = as/(epK) for a small constant o < 1, so ¢K =
as/(ep) and the bound becomes

<@ : %) LepDas/(en) — o5 o D/(en)s < o5 . gosle — (o c0l€)s,
s ep B

For a < 1/2, we have ae®® < 1, giving the desired exponential decay. More generally, setting

Cp, =ep/(p — 1), the bound takes the form

CpgK s (p—1)gK
PrDT(f|,) 2 8] < (2= ) - ek, 0



Remark 5.1 (Comparison with the Boolean switching lemma). Hastad’s switching lemma gives
Pr[DT(f|,) > s] < (CqK)® without the 1/s° factor. This stronger form requires either a com-
binatorial argument (as in Hastad’s original proof) or Tal’s more sophisticated Fourier-analytic
technique involving a truncated character-by-character bound with a min(1,-) factor. The bound
in Theorem u while weaker by a (s/e)~* factor, is sufficient for all applications to AC? lower
bounds (where s = O(logn)) and has the advantage of admitting a short, self-contained proof from
the exact formula.

Remark 5.2 (No v, penalty). In earlier versions of this work, the switching lemma was conditional
on a conjecture that c,(s) > D, -, for all {0, 1}-valued functions of decision tree depth > s, where
vp < 1. The AND/OR gate computation eliminates this entirely: the lower bound ((p —1)/p)* is
exact and applies to the specific functions appearing as circuit gates. There is no need to lower-
bound the Ly mass of arbitrary {0, 1}-valued functions, which as we show in Section [7] would indeed
require a weaker bound.

6 Application: Parity ¢ AC’ over F,

Proof of Corollary[1.9 Let C be a depth-d circuit of size M over F, computing Parity,(z) =
1>, 2; =0 (mod p)].

Step 1 (Iterative switching). We apply d — 1 successive rounds of random restriction with
survival probability ¢ (to be chosen). At each round, Theorem is applied to every gate at the
current bottom level. After simplification, each bottom gate has DT < s; it is then replaced by its
decision tree representation (depending on < s variables). By “flattening” (substituting into the
parent gate), the circuit depth decreases by 1.

If the bottom level consists of AND gates and the next level consists of OR gates, then each
simplified AND gate is a disjunction of at most p® “minterms” (root-to-leaf paths in its decision
tree), each depending on < s variables. The parent OR gate absorbs these minterms, remaining an
OR gate with increased fan-in (at most M - p®). The analogous flattening applies when the levels
are reversed.

Step 2 (Union bound). After all rounds, the total number of gates is at most My < M - p(d=1s
By Theorem with ¢ = as/(CpKmax) for a suitable a < 1/2, the probability of failure for each
gate is at most (ave®/¢)®. Setting s = clogn for large enough ¢:

My - (oe®/®)s < on° . pld=l)clogn . p—clos(1/(ae®/<)) _,

Step 3 (Contradiction). With positive probability, all rounds succeed and the circuit is reduced
to depth 1 with DT < s. The number of surviving variables satisfies |A| = n®*(!) (since each round
preserves a ¢ = Q(s/Kmax) fraction). But Parity,, restricted to the surviving set depends on all |A|
variables: changing any single x; by 1 changes ) x; modulo p. Hence DT(Parity,|4) = [A| > s,
contradicting the simplified circuit.

Quantitative bound. Setting ¢ = as/(CpKmax) with Kpax < M < 2" and s = clogn, the
number of surviving variables after d — 1 rounds is at least

1 d—1
Az neg =ns (52

C, -2

For |A| > s = clogn to hold, we need n'~(4=1) > logn, which holds for € < 1/(d —1). This yields
the exponential lower bound M > 2™ for ¢ > 0 depending on d and p. O



7 The Decision Tree — Fourier Degree Gap

We record an observation that arose during our investigation and is of independent interest.
Proposition 7.1. For any f: F; — {0,1},

fdeg(f) < DT(f) < rel(f) < s,
where rel(f) denotes the number of relevant variables.

Proof. A decision tree of depth d writes f as a sum of products of at most d single-variable indicators
1[z; = v]. Over F), each indicator 1[z; = v] = %Zg;é w®®i =) hag Fourier degree < 1. A product
of d such terms involves characters with at most d nonzero coordinates, so fdeg(f) < d = DT(f).
The bound DT(f) < rel(f) holds because querying all relevant variables determines f. O

Observation 7.2 (Both inequalities can be strict). Both fdeg < DT and DT < rel can occur, even
for p = 2.

Over Fy: the function f(z1, 29, 73) = 1[|x| € {1,2}] on F3 satisfies DT(f) = 3 but fdeg(f) = 2,
since f({1,2,3}) = 0 while the degree-2 coefficients are nonzero.

Over F3: there exist subsets S C F§ with |S| = 6 such that 1g depends on all 4 variables and
requires depth 4 to compute, yet has Fourier degree 3.

This gap is why a generic lower bound of the form “DT(f) > s implies LE*(f) > 07 fails over F,
for arbitrary {0, 1}-valued functions. The switching lemma avoids this obstacle because it applies
to AND/OR gates specifically, which have fdeg = DT = rel (Remark [3.4).

Remark 7.3 (Size of the gap). In all cases we have examined computationally (exhaustive for F3,
F3, F3; sampling for F§ with s < 6), the gap DT(f) — fdeg(f) is at most 1. Whether DT — fdeg
can grow with the ambient dimension remains an open question.

8 Discussion and Open Problems

8.1 Comparison with the Boolean case

The Fourier-analytic switching lemma over ), has the same qualitative form as in the Boolean case,
with exponential decay in s. The constant C, = ep/(p — 1) depends mildly on p, with Cy = 2e
and C, — e as p — oo. The bound ((CpqK)/s)® includes a factor of 1/s° absent from Hastad’s
combinatorial bound (CqK)?®; as noted in Remark removing this factor would require extending
Tal’s full character-by-character analysis to IF,,, which we leave as an open problem.

8.2 The extremal L, problem

Although not needed for the switching lemma, the following question remains mathematically
interesting: given f: F; — {0,1} with fdeg(f) > s, what is the minimum value of LT*(f)/((p —
1)/p)*? Computational evidence for p = 3, s < 4 reveals a rich structure: the extremal sets include
lines, affine quadrics, and affine subspace cosets, with the AND gate achieving ratio exactly 1.

8.3 Open problems

1. Optimal switching bound. Can the 1/s° factor in Theorem be removed, yielding a
bound of the form Pr[DT(f|,) > s] < (CpqK)*? This would require extending Tal’s full
Fourier-analytic machinery to IF).



2. DT-Fourier degree gap. Is DT(f) — fdeg(f) bounded by an absolute constant for all
{0, 1}-valued functions on F;? Our data shows a maximum gap of 1, but this is only verified
for small s.

3. Multi-prime circuits. Can the switching lemma be extended to circuits that mix gates
modulo different primes? The L; approach seems promising since the Fourier structure is
well-understood for each prime individually.

4. Tight AC° bounds. Determine the optimal exponent in the exponential size lower bound
for Parity over F,. In the Boolean case, Hastad obtained the tight bound exp(Q(n!/(4=1)));
does the same hold over F,?
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