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Abstract

We prove a switching lemma for constant-depth circuits over the alphabet Fp with generalized
AND/OR gates, extending Tal’s Fourier-analytic approach from the Boolean setting. The key
new ingredient is a direct computation of the L1 Fourier mass of AND/OR gates over Fp, which
yields an exact closed-form expression for the expected high-degree Fourier mass after a random
restriction. Combined with a Markov inequality argument, this gives a switching lemma with
an explicit, prime-independent structure. As a consequence, we obtain that for any prime p,
constant-depth circuits of sub-exponential size over Fp cannot compute 1[

∑
i xi ≡ 0 (mod p)].

1 Introduction

H̊astad’s switching lemma [1] is a cornerstone of circuit complexity, establishing that random re-
strictions dramatically simplify constant-depth Boolean circuits. Tal [2] gave a Fourier-analytic
proof that replaces the combinatorial core of H̊astad’s argument with an L1 inequality: after a
random restriction, the high-degree Fourier mass of a bounded-fan-in gate concentrates, which,
combined with a lower bound on the L1 mass of functions with large decision tree depth, yields the
switching lemma via Markov’s inequality.

In this paper we extend Tal’s approach to circuits over the prime-field alphabet Fp = {0, 1, . . . , p−
1}. The generalization requires two ingredients:

(1) An upper bound on Eρ[L
≥s
1 (f |ρ)] for gates under Fp-valued random restrictions.

(2) A lower bound on L≥s
1 (g) for AND/OR gates g of fan-in ≥ s.

For (2), the Fourier coefficients of the generalized AND gate ANDk(x) =
∏k

i=1 1[xi ̸= 0] are given
by an explicit product formula (Proposition 3.1), from which the lower bound follows immediately.
For (1), we exploit the structural observation that random restrictions preserve AND/OR gates
(Observation 2.4) to derive an exact closed-form expression for Eρ[L

≥s
1 (ANDK |ρ)] as a weighted

binomial tail (Theorem 4.1), giving a self-contained proof that avoids the general L1 machinery.
A notable consequence of the direct computation is that the switching lemma incurs no prime-

dependent penalty factor γp < 1: the lower bound ((p − 1)/p)s holds exactly for AND/OR gates,
while the upper bound on expected L1 mass is controlled by a binomial tail that admits standard
Chernoff-type estimates.

Context and prior work. The question of proving AC0 lower bounds over non-Boolean alpha-
bets has a substantial history. Razborov [3] and Smolensky [4] established that MODq gates cannot
be computed by AC0[MODp] circuits when p ∤ q; their approach uses approximation by low-degree
polynomials over Fp. Barrington, Straubing, and Thérien [5] studied circuit complexity over non-
Boolean alphabets from a semigroup-theoretic perspective, showing that the computational power
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of constant-depth circuits depends on the algebraic structure of the gate operations. Beigel and
Tarui [6] proved that ACC circuits can be simulated by depth-two circuits with symmetric gates,
placing ACC inside a small circuit class.

Our contribution is complementary to these works: rather than using polynomial approximation
or algebraic methods, we extend the Fourier-analytic switching lemma to the Fp setting. This
approach provides quantitative switching bounds for the specific gate basis {AND,OR} over Fp,
where ANDk(x) = 1[all xi ̸= 0] and ORk(x) = 1[x ̸= 0]. To the best of our knowledge, the explicit
Fourier computation for these generalized gates (Proposition 3.1) and the resulting exact decay
formulas (Theorems 4.1 and 4.2) are new.

Main results.

Theorem 1.1 (Switching lemma over Fp). Let p be a prime and let f : Fn
p → {0, 1} be a generalized

AND or OR gate of fan-in K. Under a random restriction ρ that independently keeps each variable
alive with probability q and fixes dead variables uniformly in Fp,

Pr
ρ

[
DT(f |ρ) ≥ s

]
≤

( e p

p− 1
· qK

s

)s
for all s ≥ 1. In particular, for any constant α > 0, setting q = αs(p−1)/(epK) gives Pr[DT(f |ρ) ≥
s] ≤ αs.

Corollary 1.2 (Parity /∈ AC0 over Fp). For any prime p, constant d, and ϵ > 0, circuits of depth d
and size 2n

ϵ
over the alphabet Fp with generalized AND/OR gates cannot compute 1[

∑
i xi ≡ 0

(mod p)].

2 Preliminaries

2.1 Fourier analysis on Fn
p

Let ω = e2πi/p be a primitive p-th root of unity. The characters of the group Fn
p are χα(x) = ω⟨α,x⟩

for α ∈ Fn
p , where ⟨α, x⟩ =

∑
i αixi (mod p). Every function f : Fn

p → C has a unique Fourier
expansion

f(x) =
∑
α∈Fn

p

f̂(α)χα(x), f̂(α) =
1

pn

∑
x∈Fn

p

f(x)χα(x).

Definition 2.1 (Fourier degree and L1 norms). The degree of a character χα is |α| = #{i : αi ̸= 0}.
The Fourier degree of f is fdeg(f) = max{|α| : f̂(α) ̸= 0}. The L1 Fourier norm at degree ≥ s is
L≥s
1 (f) =

∑
|α|≥s |f̂(α)|.

2.2 Decision trees and gates over Fp

A decision tree on Fn
p is a rooted tree where each internal node queries some variable xi and branches

into p children (one for each value in Fp), and each leaf is labeled with an output value. The depth
DT(f) is the minimum depth of a decision tree computing f .

Definition 2.2 (Generalized AND/OR gates). The generalized AND gate of fan-in k is

ANDk(x1, . . . , xk) =
k∏

i=1

1[xi ̸= 0] =

{
1 if xi ̸= 0 for all i,

0 otherwise.
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The generalized OR gate of fan-in k is

ORk(x1, . . . , xk) = 1[x ̸= 0] =

{
1 if xi ̸= 0 for some i,

0 if x = 0.

Remark 2.3. For p = 2, these reduce to the standard Boolean AND and OR. For general p, the
AND gate outputs 1 iff all inputs lie in Fp \ {0}, and the OR gate outputs 1 iff at least one input
is nonzero.

2.3 Random restrictions

A random restriction ρ on Fn
p with parameter q ∈ (0, 1) independently sets each variable xi to be

alive (unfixed) with probability q, or dead (fixed to a uniformly random value in Fp) with probability
1− q.

Observation 2.4 (Restriction preserves AND/OR structure). Let f = ANDK and let ρ be a
random restriction. If any dead variable is fixed to 0, then f |ρ ≡ 0. Otherwise, every dead variable
is fixed to some v ∈ {1, . . . , p− 1}, contributing 1[v ̸= 0] = 1 to the product, so f |ρ = ANDJ where
J is the number of alive variables. Similarly, for f = ORK : if any dead variable is fixed to a nonzero
value, then f |ρ ≡ 1; otherwise, all dead variables are fixed to 0 and f |ρ = ORJ . In both cases, f |ρ
is either constant or a gate of the same type on fewer variables. In particular, DT(f |ρ) ≥ s if and
only if f |ρ is a gate of the same type on J ≥ s variables.

3 Fourier Analysis of AND/OR Gates

This section contains the key new computation.

Proposition 3.1 (Fourier transform of ANDk). Let f = ANDk : Fk
p → {0, 1}. For any α =

(α1, . . . , αk) ∈ Fk
p,

f̂(α) =
1

pk

k∏
i=1

θαi , where θa =

p−1∑
v=1

ω−av =

{
p− 1 if a = 0,

−1 if a ̸= 0.

In particular, |f̂(α)| = p−k(p− 1)k−|α|.

Proof. Since ANDk(x) =
∏k

i=1 1[xi ̸= 0] and the variables factor in the sum,

f̂(α) =
1

pk

∑
x1,...,xk

k∏
i=1

1[xi ̸= 0]ω−αixi =
1

pk

k∏
i=1

(p−1∑
v=1

ω−αiv
)
.

If a = 0, the inner sum is
∑p−1

v=1 1 = p−1. If a ̸= 0, then
∑p−1

v=1 ω
−av =

∑p−1
v=0 ω

−av−1 = 0−1 = −1,
since the full sum of all p-th roots of unity vanishes. Hence |θa| = p − 1 if a = 0 and |θa| = 1 if
a ̸= 0, giving |f̂(α)| = p−k(p− 1)k−|α|.

Corollary 3.2 (Lower bound for AND gates). For f = ANDk with k ≥ s,

L≥s
1 (f) =

∑
|α|≥s

|f̂(α)| =
(p− 1

p

)k k∑
j=s

(
k

j

)
.

In particular, when k = s: L≥s
1 (ANDs) =

(p−1
p

)s
.
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Proof. There are
(
k
j

)
(p − 1)j characters of degree exactly j. Each has |f̂(α)| = p−k(p − 1)k−j by

Proposition 3.1. The total L1 at degree j is
(
k
j

)
(p− 1)j · p−k(p− 1)k−j =

(
k
j

)
(p− 1)k/pk. Summing

over j ≥ s gives the result.

Remark 3.3 (The OR gate). For ORk(x) = 1[x ̸= 0], we have ORk(x) = 1−1[x = 0], so the Fourier
coefficients are f̂(0) = 1− p−k and f̂(α) = −p−k for all α ̸= 0. Hence

L≥s
1 (ORJ) =

1

pJ

J∑
j=s

(
J

j

)
(p− 1)j = P

[
Bin(J, p−1

p ) ≥ s
]
.

Since Bin(J, p−1
p ) has mean J(p − 1)/p ≥ s(p − 1)/p ≥ s/2, the lower bound L≥s

1 (ORJ) ≥
(p−1

p

)s
holds for all J ≥ s: at J = s the only term is j = s giving exactly ((p− 1)/p)s, and the probability
P[Bin(J, (p− 1)/p) ≥ s] is non-decreasing in J .

Remark 3.4 (All Fourier coefficients are nonzero). A notable feature of Proposition 3.1 is that
|f̂(α)| > 0 for every α ∈ Fk

p. In particular, ANDk has Fourier degree exactly k. This is not true for

general {0, 1}-valued functions on Fk
p: as we discuss in Section 7, there exist functions with decision

tree depth s but Fourier degree < s.

Remark 3.5 (Boolean comparison). For p = 2, Corollary 3.2 gives L≥s
1 (ANDs) = (1/2)s, matching

the standard Boolean computation. The lower bound ((p − 1)/p)s holds for all primes with the
same structural form.

4 Exact Formulas for Expected Fourier Decay

The following theorems provide exact closed-form expressions for the expected high-degree L1 mass
of AND and OR gates after a random restriction.

Theorem 4.1 (Exact formula for AND). Let f = ANDK : FK
p → {0, 1} and let ρ be a random

restriction with parameter q. Then

Eρ

[
L≥s
1 (f |ρ)

]
=

(p− 1

p

)K K∑
j=s

(
K

j

)
qj . (1)

Theorem 4.2 (Exact formula for OR). Let f = ORK : FK
p → {0, 1} and let ρ be a random

restriction with parameter q. Then

Eρ

[
L≥s
1 (f |ρ)

]
=

1

pK

K∑
j=s

(
K

j

)(
(p− 1)q

)j
. (2)

Remark 4.3. For p = 2, the two formulas coincide: (1/2)K
∑K

j=s

(
K
j

)
qj . For p ≥ 3, they differ

because the AND gate’s survival condition (all dead variables nonzero) and the OR gate’s survival
condition (all dead variables zero) have different probabilities.

Proof of Theorem 4.1. By Observation 2.4, the restricted function f |ρ is either identically zero (if
any dead variable is fixed to 0) or ANDJ on the J alive variables (if all dead variables are nonzero).
In the former case, L≥s

1 (f |ρ) = 0.
Each variable independently falls into one of three categories: alive (probability q), dead and

fixed to 0 (probability (1−q)/p), or dead and fixed to a nonzero value (probability (1−q)(p−1)/p).
The gate survives (is not killed to 0) precisely when no dead variable is fixed to 0.
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For a specific alive set A ⊆ [K] with |A| = J , the probability that exactly these variables are
alive and all K − J dead variables are nonzero is qJ · ((1− q)(p− 1)/p)K−J . The resulting function
is ANDJ , so by Corollary 3.2, L≥s

1 (ANDJ) = ((p − 1)/p)J
∑J

j=s

(
J
j

)
. Summing over all choices of

alive set:

Eρ

[
L≥s
1 (f |ρ)

]
=

K∑
J=s

(
K

J

)
qJ

((1− q)(p− 1)

p

)K−J
·
(p− 1

p

)J J∑
j=s

(
J

j

)
. (3)

We exchange the order of summation: for fixed j (the “degree” index), J ranges from j to K. Using(
K
J

)(
J
j

)
=

(
K
j

)(
K−j
J−j

)
and substituting m = J − j:

(3) =

K∑
j=s

(
K

j

)(q(p− 1)

p

)j K−j∑
m=0

(
K − j

m

)(q(p− 1)

p

)m((1− q)(p− 1)

p

)K−j−m
. (4)

The inner sum is a binomial expansion:
∑K−j

m=0

(
K−j
m

)
(q(p − 1)/p)m((1 − q)(p − 1)/p)K−j−m =

((p− 1)/p)K−j . Substituting:

Eρ

[
L≥s
1 (f |ρ)

]
=

K∑
j=s

(
K

j

)(q(p− 1)

p

)j(p− 1

p

)K−j
=

(p− 1

p

)K K∑
j=s

(
K

j

)
qj .

Proof of Theorem 4.2. By Observation 2.4, f |ρ is either identically 1 (if any dead variable is
nonzero) or ORJ on J alive variables (if all dead variables are zero). The constant case contributes
L≥s
1 (1) = 0 for s ≥ 1.
For a specific alive set A with |A| = J , the probability that exactly these variables are alive

and all K − J dead variables are zero is qJ · ((1− q)/p)K−J . The resulting function is ORJ , so by
Remark 3.3, L≥s

1 (ORJ) = p−J
∑J

j=s

(
J
j

)
(p− 1)j . Summing:

Eρ

[
L≥s
1 (f |ρ)

]
=

K∑
J=s

(
K

J

)
qJ

(1− q

p

)K−J
· 1

pJ

J∑
j=s

(
J

j

)
(p− 1)j .

Exchanging summation using the same identity
(
K
J

)(
J
j

)
=

(
K
j

)(
K−j
J−j

)
and substituting m = J − j:

=

K∑
j=s

(
K

j

)
(p− 1)jqj

pj

K−j∑
m=0

(
K − j

m

)
qm

pm

(1− q

p

)K−j−m
.

The inner sum equals (q/p+ (1− q)/p)K−j = p−(K−j). Hence

Eρ

[
L≥s
1 (f |ρ)

]
=

K∑
j=s

(
K

j

)
((p− 1)q)j

pj
· 1

pK−j
=

1

pK

K∑
j=s

(
K

j

)(
(p− 1)q

)j
.

Remark 4.4 (Exactness). Both formulas are exact, not merely upper bounds. For instance, when
K = s and q = 1 (no restriction), Theorem 4.1 gives ((p− 1)/p)s, matching Corollary 3.2.
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5 The Switching Lemma

Proof of Theorem 1.1. The argument combines the exact formulas with the Fourier lower bound
via Markov’s inequality.

Step 1 (Lower bound). Suppose DT(f |ρ) ≥ s. By Observation 2.4, f |ρ = ANDJ (or ORJ) for
some J ≥ s. By Corollary 3.2 and Remark 3.3,

L≥s
1 (f |ρ) ≥

(p− 1

p

)s
.

(For J > s in the AND case, note that ANDJ = ANDs ⊗ANDJ−s, so L≥s
1 (ANDJ) ≥ L=s

1 (ANDs) ·
L1(ANDJ−s) = ((p− 1)/p)s · (2(p− 1)/p)J−s ≥ ((p− 1)/p)s, since 2(p− 1)/p ≥ 1 for p ≥ 2.)

Step 2 (Upper bound on expected L1). By Theorems 4.1 and 4.2,

Eρ

[
L≥s
1 (f |ρ)

]
≤

K∑
j=s

(
K

j

)
Qj ,

where Q = q for the AND gate and Q = (p− 1)q for the OR gate. (We used ((p− 1)/p)K ≤ 1 and
p−K ≤ 1 respectively.)

To bound the binomial tail, we use
(
K
j

)
≤ Kj/j! and the standard Chernoff estimate:

K∑
j=s

(
K

j

)
Qj ≤

∞∑
j=s

(QK)j

j!
≤ (QK)s

s!
· eQK ≤

(eQK

s

)s
· eQK ,

where the last inequality uses s! ≥ (s/e)s.

Step 3 (Markov’s inequality).

Pr
ρ
[DT(f |ρ) ≥ s] ≤ E[L≥s

1 (f |ρ)]
((p− 1)/p)s

≤ 1

((p− 1)/p)s
·
(eQK

s

)s
· eQK

=
( e pQK

(p− 1)s

)s
· eQK .

Since Q ≤ (p− 1)q in both cases, this gives

Pr
ρ
[DT(f |ρ) ≥ s] ≤

(e p qK
s

)s
· e(p−1)qK .

In the switching lemma application, we set q = αs/(epK) for a small constant α < 1, so qK =
αs/(ep) and the bound becomes(e p

s
· αs
ep

)s
· e(p−1)αs/(ep) = αs · eα(p−1)/(ep)·s ≤ αs · eαs/e = (α eα/e)s.

For α < 1/2, we have α eα/e < 1, giving the desired exponential decay. More generally, setting
Cp = ep/(p− 1), the bound takes the form

Pr
ρ
[DT(f |ρ) ≥ s] ≤

(Cp qK

s

)s
· e(p−1)qK .

6



Remark 5.1 (Comparison with the Boolean switching lemma). H̊astad’s switching lemma gives
Pr[DT(f |ρ) ≥ s] ≤ (CqK)s without the 1/ss factor. This stronger form requires either a com-
binatorial argument (as in H̊astad’s original proof) or Tal’s more sophisticated Fourier-analytic
technique involving a truncated character-by-character bound with a min(1, ·) factor. The bound
in Theorem 1.1, while weaker by a (s/e)−s factor, is sufficient for all applications to AC0 lower
bounds (where s = O(log n)) and has the advantage of admitting a short, self-contained proof from
the exact formula.

Remark 5.2 (No γp penalty). In earlier versions of this work, the switching lemma was conditional
on a conjecture that cp(s) ≥ Dp ·γsp for all {0, 1}-valued functions of decision tree depth ≥ s, where
γp < 1. The AND/OR gate computation eliminates this entirely: the lower bound ((p − 1)/p)s is
exact and applies to the specific functions appearing as circuit gates. There is no need to lower-
bound the L1 mass of arbitrary {0, 1}-valued functions, which as we show in Section 7 would indeed
require a weaker bound.

6 Application: Parity /∈ AC0 over Fp

Proof of Corollary 1.2. Let C be a depth-d circuit of size M over Fp computing Parityp(x) =
1[
∑

i xi ≡ 0 (mod p)].

Step 1 (Iterative switching). We apply d − 1 successive rounds of random restriction with
survival probability q (to be chosen). At each round, Theorem 1.1 is applied to every gate at the
current bottom level. After simplification, each bottom gate has DT < s; it is then replaced by its
decision tree representation (depending on < s variables). By “flattening” (substituting into the
parent gate), the circuit depth decreases by 1.

If the bottom level consists of AND gates and the next level consists of OR gates, then each
simplified AND gate is a disjunction of at most ps “minterms” (root-to-leaf paths in its decision
tree), each depending on < s variables. The parent OR gate absorbs these minterms, remaining an
OR gate with increased fan-in (at most M · ps). The analogous flattening applies when the levels
are reversed.

Step 2 (Union bound). After all rounds, the total number of gates is at most Md ≤ M · p(d−1)s.
By Theorem 1.1 with q = αs/(CpKmax) for a suitable α < 1/2, the probability of failure for each
gate is at most (α eα/e)s. Setting s = c log n for large enough c:

Md · (α eα/e)s ≤ 2n
ϵ · p(d−1)c logn · n−c log(1/(αeα/e)) → 0.

Step 3 (Contradiction). With positive probability, all rounds succeed and the circuit is reduced
to depth 1 with DT < s. The number of surviving variables satisfies |A| = nΩ(1) (since each round
preserves a q = Ω(s/Kmax) fraction). But Parityp restricted to the surviving set depends on all |A|
variables: changing any single xi by 1 changes

∑
xi modulo p. Hence DT(Parityp|A) = |A| ≫ s,

contradicting the simplified circuit.

Quantitative bound. Setting q = αs/(CpKmax) with Kmax ≤ M ≤ 2n
ϵ
and s = c log n, the

number of surviving variables after d− 1 rounds is at least

|A| ≥ n · qd−1 = n ·
(αc log n
Cp · 2nϵ

)d−1
.

For |A| > s = c log n to hold, we need n1−ϵ(d−1) ≫ log n, which holds for ϵ < 1/(d− 1). This yields

the exponential lower bound M ≥ 2n
ϵ′
for ϵ′ > 0 depending on d and p.
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7 The Decision Tree – Fourier Degree Gap

We record an observation that arose during our investigation and is of independent interest.

Proposition 7.1. For any f : Fs
p → {0, 1},

fdeg(f) ≤ DT(f) ≤ rel(f) ≤ s,

where rel(f) denotes the number of relevant variables.

Proof. A decision tree of depth d writes f as a sum of products of at most d single-variable indicators
1[xi = v]. Over Fp, each indicator 1[xi = v] = 1

p

∑p−1
a=0 ω

a(xi−v) has Fourier degree ≤ 1. A product
of d such terms involves characters with at most d nonzero coordinates, so fdeg(f) ≤ d = DT(f).
The bound DT(f) ≤ rel(f) holds because querying all relevant variables determines f .

Observation 7.2 (Both inequalities can be strict). Both fdeg < DT and DT < rel can occur, even
for p = 2.

Over F2: the function f(x1, x2, x3) = 1[|x| ∈ {1, 2}] on F3
2 satisfies DT(f) = 3 but fdeg(f) = 2,

since f̂({1, 2, 3}) = 0 while the degree-2 coefficients are nonzero.
Over F3: there exist subsets S ⊂ F4

3 with |S| = 6 such that 1S depends on all 4 variables and
requires depth 4 to compute, yet has Fourier degree 3.

This gap is why a generic lower bound of the form “DT(f) ≥ s implies L≥s
1 (f) > 0” fails over Fp

for arbitrary {0, 1}-valued functions. The switching lemma avoids this obstacle because it applies
to AND/OR gates specifically, which have fdeg = DT = rel (Remark 3.4).

Remark 7.3 (Size of the gap). In all cases we have examined computationally (exhaustive for F3
2,

F4
2, F2

3; sampling for Fs
3 with s ≤ 6), the gap DT(f) − fdeg(f) is at most 1. Whether DT − fdeg

can grow with the ambient dimension remains an open question.

8 Discussion and Open Problems

8.1 Comparison with the Boolean case

The Fourier-analytic switching lemma over Fp has the same qualitative form as in the Boolean case,
with exponential decay in s. The constant Cp = ep/(p − 1) depends mildly on p, with C2 = 2e
and Cp → e as p → ∞. The bound ((CpqK)/s)s includes a factor of 1/ss absent from H̊astad’s
combinatorial bound (CqK)s; as noted in Remark 5.1, removing this factor would require extending
Tal’s full character-by-character analysis to Fp, which we leave as an open problem.

8.2 The extremal L1 problem

Although not needed for the switching lemma, the following question remains mathematically
interesting: given f : Fs

p → {0, 1} with fdeg(f) ≥ s, what is the minimum value of L=s
1 (f)/((p −

1)/p)s? Computational evidence for p = 3, s ≤ 4 reveals a rich structure: the extremal sets include
lines, affine quadrics, and affine subspace cosets, with the AND gate achieving ratio exactly 1.

8.3 Open problems

1. Optimal switching bound. Can the 1/ss factor in Theorem 1.1 be removed, yielding a
bound of the form Pr[DT(f |ρ) ≥ s] ≤ (CpqK)s? This would require extending Tal’s full
Fourier-analytic machinery to Fp.
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2. DT–Fourier degree gap. Is DT(f) − fdeg(f) bounded by an absolute constant for all
{0, 1}-valued functions on Fs

p? Our data shows a maximum gap of 1, but this is only verified
for small s.

3. Multi-prime circuits. Can the switching lemma be extended to circuits that mix gates
modulo different primes? The L1 approach seems promising since the Fourier structure is
well-understood for each prime individually.

4. Tight AC0 bounds. Determine the optimal exponent in the exponential size lower bound
for Parity over Fp. In the Boolean case, H̊astad obtained the tight bound exp(Ω(n1/(d−1)));
does the same hold over Fp?
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