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Abstract

In this work, we propose a new bounded arithmetic theory, denoted APX1, designed to formalize a
broad class of probabilistic arguments commonly used in theoretical computer science. Under plausible
assumptions, APX1 is strictly weaker than previously proposed frameworks, such as the theory APC1

introduced in the seminal work of Jeřábek (2007). From a computational standpoint, APX1 is closely
tied to approximate counting and to the central question in derandomization, the prBPP versus prP
problem, whereas APC1 is linked to the dual weak pigeonhole principle and to the existence of Boolean
functions with exponential circuit complexity.

A key motivation for introducing APX1 is that its weaker axioms expose finer proof-theoretic structure,
making it a natural setting for several lines of research, including unprovability of complexity conjectures
and reverse mathematics of randomized lower bounds. In particular, the framework we develop for APX1

enables the formulation of precise questions concerning the provability of prBPP = prP in deterministic
feasible mathematics. Since the (un)provability of P versus NP in bounded arithmetic has long served as
a central theme in the field, we expect this line of investigation to be of particular interest.

Our technical contributions include developing a comprehensive foundation for probabilistic reasoning
from weaker axioms, formalizing non-trivial results from theoretical computer science in APX1, and
establishing a tailored witnessing theorem for its provably total TFNP problems. As a byproduct of our
analysis of the minimal proof-theoretic strength required to formalize statements arising in theoretical
computer science, we resolve an open problem regarding the provability of AC0 lower bounds in PV1,
which was considered in earlier works by Razborov (1995), Kraj́ıček (1995), and Müller and Pich (2020).
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1 Introduction

1.1 Overview

Bounded arithmetic extends traditional complexity theory by capturing not only the computational
resources (e.g., running time or circuit size) required by algorithms, but also the complexity of proving
their correctness. By integrating computational and proof complexity within a unified framework, it opens
new angles on foundational questions in theoretical computer science. The area has a long history (see
[HP93, Kra95, CN10, Kra19] and references therein) and has seen renewed momentum through new formal-
izations [BKKK20, Gay24, Kha24, AAdRK25]; unprovability results [PS21, LO23, ABM23, CLO25, CRT25,
Tha25]; connections to TFNP [LLR24], complex analysis [Jeř23], reverse mathematics [CLO24, AT25], com-
plexity lower bounds [GC25, CKK+25], and propositional proof complexity [Kra25]; and applications in
cryptography [JJ22, JKLV24, JKLM25, JJMP25], among other developments. We refer to [Bus97, Oli25]
for background and for connections to algorithms and complexity theory.

Two central and extensively studied theories are Cook’s PV1 [Coo75, KPT91] (see also [Kra19, Li25]) and
Jeřábek’s APC1 [Jeř04, Jeř05, Jeř07a]. The theory PV1 formalizes polynomial-time reasoning and captures
many classical results in algorithms and complexity. Since it is unclear whether randomized algorithms can,
in general, be derandomized, PV1 is not well-suited for reasoning about probabilities or analyzing randomized
algorithms. The theory APC1 extends PV1 by adding the dual weak pigeonhole principle dWPHP(PV), yield-
ing a convenient framework for reasoning about probabilities and randomized constructions. In particular,
APC1 (and its mild extensions) is sufficient to formalize several nontrivial results, including the correctness
of randomized algorithms for graph problems [LC11], polynomial identity testing [AT25], and circuit lower
bounds [MP20]. However, the axioms of APC1 may be stronger than necessary: many results of interest
could plausibly be provable in a weaker theory closer to PV1.

There are concrete reasons to expect APC1 to exceed the minimal strength required for probabilistic
polynomial-time reasoning. On the one hand, APC1 is tied to dWPHP(PV) and to the existence of functions of
exponential circuit complexity; from a computational perspective, the explicit construction of such functions
(i.e., circuit lower bounds) is a widely used derandomization assumption that may be stronger than the
derandomization of prBPP (see, e.g., [For01, Gol11, CT23]). On the other hand, even if prBPP = prP with a
“feasible” proof, APC1 need not collapse to PV1; indeed, under plausible cryptographic assumptions, APC1

is strictly stronger than PV1 [ILW23].
The search for a weaker theory that still supports the broad class of probabilistic arguments used across

theoretical computer science is motivated by several considerations:

• Unprovability of complexity-theoretic conjectures. A central objective in this area is to identify frame-
works that both formalize existing tools in complexity theory and remain amenable to unprovability
results. APC1 is likely strictly stronger than PV1 by [ILW23], and its witnessing functions cannot in
general be made deterministic even if prBPP = prP, which complicate unprovability arguments and
pose significant challenges (see, e.g., [LO23, CKKO21]). In particular, the introduction of the strong
principle dWPHP(PV) is the main obstacle to extending unprovability of complexity lower bounds in
PV1 [PS21] to APC1 [LO23].

• Bounded reverse mathematics with probabilistic reasoning. Following recent developments such as
[CLO24, AT25] (see also [CN10] for related background), one can hope to pursue a systematic reverse
mathematics of algorithms and complexity theory that classifies “probabilistic proofs” by the axioms
they use. Similarly, it suggests the possibility of classifying randomized algorithms by the complexity
of their correctness proofs, supplementing the standard classification via space (see, e.g., [Nis92]) or
circuit complexity (see, e.g., [AW89]). This perspective is potentially insightful for derandomization,
namely, derandomization based on the proof complexity of correctness proofs. Because dWPHP(PV)
is itself strong, APC1 is an overly powerful base theory for fine-grained correspondences weaker than
dWPHP(PV).

• Correctness proofs in cryptography. Jain and Jin [JJ22] and subsequent papers [JKLV24, JKLM25,
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JJMP25, MDS25] explore PV1 and its connection to propositional proofs to help construct iO and other
cryptographic primitives, highlighting that the logical complexity of proving certain statements can play
an important role in cryptographic systems and their efficiency. In particular, [JJMP25, JKLM25] rely
heavily on cryptographic primitives with PV1 proofs of correctness. However, existing work typically
considers “perfect correctness” because PV1 cannot natively talk about approximate counting and
randomness, whereas APC1 seems both too strong and inconvenient for this purpose.

• Feasible provability of probabilistic statements. It is natural to formulate precise, feasible notions of
the provability of prBPP = prP and related questions. Yet even formulating prBPP = prP feasibly is
nontrivial, as it seems to require defining probabilistic computation within the theory in the first place.
Given that the (un)provability of P = NP in PV1 has long been central to bounded arithmetic (see,
e.g., [CK07, Oli25]), this direction holds significant potential for advancing the study of the interplay
between randomized computations and mathematical proofs.

These considerations point to a common objective: designing a minimal theory for reasoning about
probabilities and randomized constructions in feasible mathematics.

Summary of contributions. We propose a theory corresponding to “probabilistic polynomial-time rea-
soning” in a strong sense. Our main conceptual and technical contributions are:

1. Theory APX1 and its relative strength. We introduce APX1, establish its basic properties, and
develop core probabilistic tools. The theory extends PV1 and is contained in APC1, in the sense that
all of its consequences in the language of APC1 are also provable in APC1. Moreover, under plausible
assumptions, APX1 is strictly weaker than APC1.

2. Advanced formalizations. We formalize in APX1 several nontrivial results from algorithms and
complexity, including the Blum-Luby-Rubinfeld linearity testing, Schwartz-Zippel lemma1, and an
average-case AC0 lower bound for Parity. Additionally, as a byproduct of our refined analysis of AC0

circuits in bounded arithmetic, we describe a matching worst-case lower bound in PV1. The latter
formalization addresses a problem considered by Razborov [Raz95], Kraj́ıček [Kra95, Section 15.2],
and Müller-Pich [MP20], which was only known for stronger theories.

3. Tailored witnessing theorem. We show that the provably total NP relations of APX1 determinis-
tically reduce to a natural TFZPP problem2 we introduce, Refuter(Yao). Moreover, if prBPP = prP,
then APX1 admits deterministic polynomial-time witnessing.

4. Feasible derandomization. Using the new framework, we put forward a natural formalization of
the fundamental question: Is prP = prBPP feasibly provable? In other words, is there a deterministic
feasible proof of general derandomization?

5. Reverse mathematics of randomness. Finally, we show that APX1 serves as a suitable base theory
for developing the reverse mathematics of average-case and randomized lower bounds, illustrated here
through the study of randomized communication protocols and their communication complexity.

Before presenting our results in more detail, we provide additional context and background.

Dual use of dWPHP(PV) in APC1. Why does APC1, until now the weakest known theory capable of
formalizing probabilities and randomized algorithms, appear stronger than necessary? By looking into the
construction of APC1 [Jeř04, Jeř05, Jeř07a], we observe two different reasons for introducing dWPHP(PV).

1It is worth noting that the standard proof of Schwartz-Zippel lemma (see, e.g., [AB09, Lemma A.36]) is not known to be
formalizable even in APC1. In this work, we formalize an alternative proof due to Atserias and Tzameret [AT25] in APX1.

2A TFNP problem R(x, y) is said to be in TFZPP if, for every input x, at least an inverse-polynomial fraction of strings y
are valid solutions, i.e., R(x, y) = 1. It is clear that TFZPP problems admit simple zero-error randomized algorithms running
in polynomial time.
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• First, it is used to implement approximate counting. Jeřábek [Jeř04] shows that dWPHP(PV) proves
the existence of an exponentially hard Boolean function, and by formalizing a form of correctness of
the Nisan-Wigderson PRG [NW94] in the theory PV1, we can approximately compute the acceptance
probability of circuits by instantiating the PRG with the hard Boolean function.

• Second, it also serves as a counting principle to derive tools in combinatorics and probability theory,
including the inclusion-exclusion principle, union bound, and Chernoff bound [Jeř07a, Section 2].

The first role appears essential, as approximate counting is the foundation for the formalization of proba-
bilistic polynomial-time algorithms. However, dWPHP(PV), as a counting principle, appears to be overly
powerful and not necessary for many applications.

Remark 1.1 (Computational Aspects of dWPHP). To add more context, dWPHP(PV) asserts that for any func-
tion f implemented by circuits whose co-domain is much larger than its domain, say f : {0, 1}n → {0, 1}n+1,
there exists a string in the co-domain that does not have a pre-image. The computational aspect of the prin-
ciple, namely the search problem of finding such a string given a function f , has recently drawn attention in
computational complexity (see [Kor25] for a survey). This problem, which is now called the Range Avoidance
Problem [KKMP21, Kor21, RSW22], is known to be hard even for nondeterministic search algorithms under
plausible assumptions [ILW23, CL24].

Axiomatizing approximate counting in APX1. Since dWPHP(PV) fulfills two essential functions in
APC1, devising a weaker theory is nontrivial — one must find a way to relax the counting principle without
sacrificing the capacity to formalize approximate counting.

Our approach, which in hindsight appears quite natural, is to put approximate counting at the foundation,
elevating it to a central primitive rather than deriving it from stronger principles such as dWPHP(PV)
[Jeř04, Jeř05, Jeř07a]. Starting from PV1 as the base theory, we directly introduce an oracle that is intended
to perform approximate counting, and govern it with appropriate axioms. Through this approach, we
decouple the concept of approximate counting from counting principles.

The main technical challenge is to select an appropriate set of axioms. These axioms should be sufficiently
strong to carry out our advanced formalizations, reverse mathematics results, and potentially more results
in theoretical computer science. At the same time, the set of axioms should be minimal. The contradictory
objectives make it hard to select appropriate axioms; indeed, it is not even a priori clear whether a suitable
finite set of axioms exists without resorting to variants of dWPHP(PV).

Perhaps surprisingly, we distill four simple and intuitive axioms that suffice to implement all our results,
among which the only nontrivial axiom captures the “local” behavior of the approximate counting oracles.
Arguably, this makes APX1 a plausible candidate for the minimal theory of probabilistic polynomial-time
reasoning.

Remark 1.2 (Minimal Assumption for Derandomization). The conjectured inclusion prBPP ⊆ prP is a central
question in derandomization. The celebrated results of Impagliazzo, Nisan, and Wigderson [NW94, IW97]
give a positive answer under E ⊈ i.o.-SIZE[2Ω(n)], a plausible worst-case circuit lower bound. Conversely,

derandomization results are also known to imply weaker circuit lower bounds such as NTIME(nω(1)) ⊈ P/poly

(see, e.g., [IKW02, Wil14, Tel19]). Yet it has been a longstanding open problem whether the strong circuit lower
bounds used in [NW94, IW97] are necessary for proving prBPP = prP. Indeed, there has been significant progress
indicating that derandomization may not require strong circuit lower bounds, see, e.g., [For01, Gol11, CT21].
Moreover, several characterizations of prBPP = prP have been recently discovered [LP22, Kor22, CT23, CTW23,
LPT24], motivated by the question of understanding the minimal assumption required for derandomization.

In a sense, our results attempt to address a similar question in the context of proof complexity. We aim
to propose a minimal theory that is strong enough to carry out meaningful feasible proofs on probabilistic
polynomial-time algorithms. In particular, we provide evidence that dWPHP(PV) and the existence of hard
Boolean functions, which are at the foundation of Jeřábek’s theory APC1 [Jeř04, Jeř05, Jeř07a], might not be
necessary in a minimal theory for probabilistic polynomial-time reasoning.
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1.2 Main Contributions

We now describe our contributions and their implications in detail.

1.2.1 Theory APX1

As alluded to above, rather than deriving probabilities from stronger combinatorial principles (as in APC1

via dWPHP(PV)), we axiomatize approximate counting directly. Our aim is a weaker theory in which the
probability of any feasibly definable event3 can be named and reasoned about with additive slack, while
keeping proof-theoretic strength low.

To achieve this, we introduce a first-order bounded arithmetic theory, APX1, whose central primitive is
an approximate counting function P. Intuitively, given a Boolean circuit C on n input bits and a precision
parameter ∆, the term P(C,∆) returns a rational number in [0, 1] that approximates the acceptance prob-
ability of C within additive error 1/|∆|, where |∆| denotes the bitlength of the input parameter ∆. For
convenience, we often write Pδ(C) instead of P(C,∆), where δ = 1/|∆|.

The equational core of APX1, called APX, is obtained by extending Cook’s equational theory PV with
the oracle symbol P (the new language is denoted PV(P)) and its governing axioms. APX1 is then the usual
first–order closure of APX, i.e., universal closures of APX-equations together with the standard PV-style
induction on notation.

Remark 1.3 (PV and PV1). PV [Coo75] is an equational theory whose intended model is N with the usual
interpretation of basic symbols such as 0, +, and×. Its language contains a function symbol for every polynomial-
time algorithm f : Nk → N (for any fixed k); these symbols and their defining axioms are given via Cobham’s
characterization of the polynomial-time functions. The theory includes an induction scheme formalizing binary
search and, in particular, proves induction for quantifier-free formulas (i.e., polynomial-time predicates). A
standard first-order strengthening is PV1 [KPT91]. While the formal definition of PV1 is fairly technical,
the theory is robust: distinct presentations yield the same theorems. For example, PV1 has an equivalent
axiomatization that avoids Cobham’s theorem [Jeř06]; alternatively, it can be presented as the set of all ∀Σb

1-
sentences provable in Buss’s theory S1

2 [Bus86]. We refer to [Oli25] for a brief overview and to [Li25] for a
detailed introduction.

A key aspect of the definition of APX1 is to employ “local” constraints governing the behavior of Pδ,
which together enforce the “global” desired behavior, i.e., that Pδ approximates the acceptance probability
of any input circuit up to an additive error term δ. The entire probabilistic machinery of APX1 (random
variables, expectation, tail bounds, etc.) is built on top of the axioms below.

APX1 axioms governing P. All axioms are universal PV(P)-equations; below β−1 ∈ Log is a freely
available “slack” parameter used to absorb routine finite-precision effects.4 We sketch the statements at an
informal level; the formal version appears in Section 2.

• Basic Axiom. For every Boolean circuit C and ∆, the value P(C,∆) is a rational in [0, 1] (encoded in
PV) and all PV(P)-provable equations hold. Together with an output-length bound for P(C,∆), this
forces feasibility of approximate counting at any requested precision.

• Boundary Axiom. If C is syntactically constant (reads no inputs), then Pδ(C) ∈ {0, 1} agrees with
the output bit of C. Thus P is exact on trivial cases.

• Precision Consistency. For any two precisions δ1, δ2 and circuit C,∣∣Pδ1(C)− Pδ2(C)
∣∣ ≤ δ1 + δ2 + β.

3In other words, an event E ⊆ {0, 1}m for which there is a polynomial-size Boolean circuit C such that C(x) = 1 if and only
if x ∈ E.

4The expression β−1 ∈ Log is standard notation in bounded arithmetic used to denote that β = 1/|y| for some variable y,
where |y| is the bitlength of y.
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Hence asking for finer precision can only move the reported probability by the sum of the specified
error parameters (up to β).

• Local Consistency. If C has at least one input bit, and Fixb(C) denotes the circuit obtained by fixing
the rightmost input bit to b ∈ {0, 1}, then∣∣∣Pδ(C) − 1

2

(
Pδ(Fix0(C)) + Pδ(Fix1(C))

) ∣∣∣ ≤ 2δ + β.

Thus the reported acceptance probability of C is (up to additive slack of β) the average of the reported
probabilities after fixing a fresh random bit. This aims to capture the intended semantics of counting
over the uniform hypercube.5

In practice, one can think of APX1 as the theory extending PV1 with the symbol P and its governing
axioms, together with induction over quantifier-free formulas in the language PV(P). Everything else – such
as random variables, expectation, union bound, etc. – will be introduced and derived from the language and
axioms inside APX1.

Soundness of approximate counting in APX1. We say that a PV-standard model (i.e., N) where
the function symbol P is interpreted by any correct approximate counting function (returning a rational
within ±1/|∆| and exact on syntactically constant circuits) is a standard model of APX1. A simple but
central result shows that these are exactly the models satisfying the axioms (“admissible models”), yielding
semantic soundness for the intended interpretation and a correct axiomatization of approximate counting
when the underlying model is N (see Section 2.3).

Minimality of APX1. We believe that APX1 is a good candidate of the minimal theory for probabilistic
polynomial-time reasoning. This is not a formal assertion from a mathematical perspective. However, the
axioms above appear close to the weakest workable base theory that can consistently define and operate on
approximate probabilities of feasibly described events. Specifically:

• Any theory that reasons about probabilistic polynomial time algorithms should be able to define the
acceptance probability of the algorithms. This requires the capability of approximate counting with
an additive error, i.e., the symbol P.

• Because the Basic Axiom and the Boundary Axiom are rather syntactic promises of the oracle P, we
expect them to be available. Arguably, the Precision Consistency Axiom, which asserts the consistency
of P on different precision parameters, should also be available. Note that these three axioms are not
sufficient, as one can easily specify a trivial and incorrect polynomial-time function such that these
axioms are provable in PV1.

• Therefore, we use the Local Consistency Axiom to capture the correctness of P — it shows that the
approximate counting oracle withstands a simple statistical test with three queries made throughout
the proof. It seems unlikely that one can make nontrivial use of an oracle for the purpose of approximate
counting that may fail this test; subsequently, the axiom also seems necessary.

Another evidence of the minimality of APX1 is that, computationally, the function symbol P aligns with
the Circuit Acceptance Probability Problem (CAPP), which is complete for prBPP (see, e.g., [Vad12]). In
contrast, the Range Avoidance Problem, which corresponds to dWPHP(PV) and is relevant for APC1, is
likely hard even against nondeterministic algorithms [ILW23, CL24].

5In other words, for every (feasibly definable) set X ⊆ {0, 1}n, as X is the disjoint union of X0 and X1, where Xb = {x ∈
X | xn = b}, we expect |X| ≈ |X0|+ |X1|.
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1.2.2 Probabilistic Reasoning in APX1

We develop a self-contained “probabilistic calculus” inside APX1 using the approximate counting function
Pδ. As a preliminary step, we show that Pδ behaves in the expected way on feasibly described events.
Concretely, APX1 establishes the following properties (each up to an arbitrarily small additive slack β−1 ∈
Log):

• Semantic invariance. Pδ respects semantic equivalence, i.e., if APX1 proves that circuits C and D
compute the same function, then

∣∣Pδ(C)− Pδ(D)
∣∣ ≤ 2 · δ + β (Lemma 3.2).

• Permutation invariance. Permuting input bits does not noticeably change the value of Pδ. In other
words, for any circuit C and permutation π of input bits,

∣∣Pδ(C ◦π)−Pδ(C)
∣∣ ≤ 2 · δ+β (Lemma 3.5).

• Existence via the probabilistic method. Suppose that strings accepted by a circuit C are consid-
ered good. Then if good strings are abundant, i.e., more than (δ+β)-fraction with respect to precision
parameter δ, there must exist a good string (Lemma 3.6). A bit more formally,

APX1 ⊢ ∀n, δ−1, β−1 ∈ Log ∀C (β > 0 ∧ Pδ(C) > δ + β → ∃x ∈ {0, 1}n C(x) = 1).

• Consistency on concrete circuits. Pδ agrees with simple tests. For instance, for a naturally defined
threshold circuit C<t(x) on n-bit inputs that accepts if and only if x (viewed as an integer) is less than
t, Pδ(C<t) ≈ t/2n (see Section 3.1.4).

These meta-properties ensure that the definitions and inequalities developed in APX1 inherit the intended
probabilistic behavior with only small, explicitly controlled additive losses.

With these guarantees in place, we now introduce feasible random variables. A random variable X is
specified by an explicit support V ⊆ Q, a seed length n, and a multi-output sampler circuit C : {0, 1}n → V .
Its approximate expectation is defined by querying Pδ on the indicator Boolean circuits {Cv}v∈V , where
Cv(z) accepts z if and only if C(z) = v. In other words:

Eδ[X] ≜
∑
v∈V

v · Pδ(Cv).

We observe that there exists a PV(P) function E(V, n, C,∆) that computes E|∆|−1 [X] for the random variable
X defined by (V, n, C). Specifically, E enumerates all v ∈ V , constructs the corresponding circuit Cv, queries
the oracle to obtain pv ← P(Cv,∆), and outputs the sum

∑
v∈V v · pv.

We introduce a central technical tool that provides a general version of the averaging argument for
expectation (Section 3.2.3): Given random variables X1, . . . , Xm on the same seed and coefficients λ1, . . . , λm,
APX1 can search for a suffix z of the seed such that a lower bound on the value

∑
i λi ·Eδ[Xi] is approximately

preserved after fixing that suffix. This is used repeatedly to move between global and pointwise statements
and underlies the proof of several results. We explain this technique in more detail in Section 1.3.

Using the tool described above, together with some additional ideas, APX1 derives approximate formu-
lations of several standard probability inequalities. In particular, it establishes the linearity of expectation
for linear combinations of feasible random variables, the union bound for polynomially many events, and
Markov’s inequality for non-negative variables with the usual 1/k decay.6

Remark 1.4 (Example: Union Bound in APX1; see Theorem 3.20). APX1 proves the following statement. Let
n,m, δ−1, β−1 ∈ Log, C1, . . . , Cm be single-output circuits, and V = {0, 1}. Suppose that ∀x ∈ {0, 1}n and
i ∈ [m], Ci(x) ∈ V , and let Y,X1, . . . , Xm be random variables defined as follows.

• For each i ∈ [m], Xi is defined by (V, n, Ci).

• Y is defined by (V, n, S), where S(x) ∈ {0, 1} is a circuit such that S(x) ≤ C1(x) ∨ · · · ∨ Cm(x).

6We note that some results suffer an approximation loss that depends on ∥V ∥ ≜
∑

v∈V |v| and on the magnitude of the
involved coefficients, where here | · | denotes absolute value. In applications where these quantities are polynomially bounded,
this can be mitigated by taking sufficiently small parameters δ and β in the application of Eδ[X].
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Then we have Eδ[Y ] ≤ Eδ[X1] + · · ·+ Eδ[Xm] + (2δ + β) ·m.

Additionally, APX1 defines an approximate variance Varδ[X] ≜ Eδ

[
(X − µ)2

]
, with µ ≜ Eδ[X], and

shows an identity of the form Varδ[X] ≈ Eδ[X2] − µ2, which leads to a natural formulation of Chebyshev’s
inequality. APX1 also formalizes (almost) pairwise independence via approximate covariance, and proves that
the variance of a sum is (approximately) the sum of variances for (almost) pairwise independent variables.

Finally, we address independence and concentration. We work in APX1 with explicit independence:
variables are sampled by disjoint parts of the seed. Under this notion, the theory proves a multiplication
principle

Eδ[XY ] ≈ Eδ[X] · Eδ[Y ],

and, for Bernoulli variables, a convenient product bound∣∣∣Eδ

[∏m
i=1Xi

]
−
∏m

i=1 Eδ[Xi]
∣∣∣ ≤ 8δ ·m.

These yield one-sided error reduction. Moreover, APX1 proves a Chernoff bound for sums of m = O(log n)
i.i.d. Bernoulli random variables; the bound has the standard exponential tail with controlled additive slack.

Remark 1.5 (Example: One-Sided Error Reduction in APX1; see Theorem 3.33). For a Boolean circuit C :
{0, 1}n → {0, 1}, let C∨k : {0, 1}nk → {0, 1} be the circuit defined as C∨k(x1, . . . , xk) ≜

∨
i∈[k] C(xi). The

following statement is provable in APX1. For any n, k, δ−1, β−1 ∈ Log and C : {0, 1}n → {0, 1}, if Pδ(¬C) ≤ ε
then Pδ(¬C∨k) ≤ (δ + β + ε)k + δ + β.

We refer to Section 3 for a detailed description of how these different notions and results are implemented
in APX1.

1.2.3 Theoretical Computer Science in APX1

As explained above, approximate counting – as axiomatized in APX1 – suffices to build the typical
probabilistic toolkit (such as existence arguments, linearity of expectation, averaging argument, union bound,
Markov, Chebyshev, limited independence, error reduction, and a version of Chernoff for logarithmically
many samples). This lightweight yet robust framework can be exploited to formalize several nontrivial
results. We illustrate this point through a set of detailed formalizations of influential results from different
areas of theoretical computer science:

• Yao’s distinguisher-to-predictor transformation via the hybrid argument, a central tool in computa-
tional pseudorandomness (see Theorem 4.1);

• the Schwartz-Zippel Lemma (as stated in [AT25]), an algebraic result for polynomial identity testing
with broad applications in randomness and complexity (see Theorem 4.4);

• the classical lower bound for the parity function against bounded-depth polynomial-size circuits in
circuit complexity (see Section 4.4);

• the correctness of the Blum-Luby-Rubinfeld linearity test from sublinear time algorithms and property
testing (see Section 4.5).

For concreteness and in order to contrast our results with previous work, we focus here on the formal-
ization of circuit lower bounds for the n-bit parity function, denoted ⊕n. In fact, we show that a stronger
average-case lower bound against depth-d Boolean circuits (AC0

d) can be proved in APX1.

Theorem 1.6 (Average-Case AC0 Lower Bound for ⊕n in APX1). For all constants k, d ≥ 1, there exists
a constant n0 ≥ 1 such that APX1 proves the following statement. Let n, δ−1, β−1 ∈ Log, n > n0, and
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C : {0, 1}n → {0, 1} be an AC0
d circuit of size at most nk. Let TC : {0, 1}n → {0, 1} be the circuit that, given

x ∈ {0, 1}n, outputs 1 if and only if C(x) = ⊕n(x). Then

Pδ(TC) ≤ 1

2
+

1

nk
+ δ + β. (1.1)

The main technical challenge is to avoid “encoding-based counting arguments” (pigeonhole-principle
variants) unavailable in APX1, such as those used in Razborov’s proof of the switching lemma [Raz95].
Instead, our proof builds on a technique of Furst, Saxe, and Sipser [FSS84]. The approach was refined by
[AAI+01] (see also [Agr01]), who gave a deterministic polynomial-time algorithm that outputs an appropriate
restriction supplied by the switching lemma. One of our contributions is to show that the correctness of the
algorithm in [AAI+01] can be established within APX1. Combined with the probabilistic tools above and
other ideas, this yields the average-case lower bound in APX1.

As a consequence of our refined proof-theoretic framework, and with some additional effort, we can
extract from the above formalization a worst-case lower bound within the weaker theory PV1.

Theorem 1.7 (Worst-Case AC0 Lower Bound for ⊕n in PV1). For all constants k, d ≥ 1, there exists a
constant n0 ≥ 1 such that PV1 proves the following statement. For every n ∈ Log, n > n0, and AC0

d circuit
C : {0, 1}n → {0, 1} of size at most nk, there exists a string x ∈ {0, 1}n such that C(x) ̸= ⊕n(x).

Earlier formalizations of the worst-case parity lower bound for bounded-depth circuits required stronger
theories. In particular, [MP20] and [Kra95] formalize different proofs in APC1 = PV1 + dWPHP(PV), while
[Raz95] works in PV1 but in the LogLog regime – i.e., with n of doubly logarithmic order – so the proof can
manipulate exponentially large objects (see [MP20] for details).

These formalizations reinforce the intuition that a substantial portion of results in algorithms and com-
plexity theory are already captured within PV1 or its mild extensions, and that establishing unprovability
results would therefore be of considerable significance (see [Oli25] for related discussions).

In Section 1.3 below, we elaborate on the proofs of Theorem 1.6 and Theorem 1.7. For further details
about these and other formalizations, see Section 4.

1.2.4 Witnessing, Relative Strength of APX1, and Provability of prBPP = prP

We now discuss relations between theories PV1, APX1, and APC1, and connections to the prBPP versus
prP problem. We also introduce a new computational problem called Refuter(Yao), and provide a tailored
witnessing theorem for the ∀Σb

1(PV)-consequences of APX1 (i.e. provably total TFNP problems in APX1).

APX1 versus APC1. By construction, every sentence provable in PV1 is also a theorem of APX1. It is
also possible to show that if φ is a sentence in the language of PV1 (i.e., without the approximate counting
symbol P) provable in APX1, then it is provable in APC1 (see Corollary 5.10). This means that, modulo the
difference in languages (i.e. APC1 does not have the symbol P), APX1 is a sub-theory of APC1.7

On the other hand, under plausible computational assumptions, there are sentences provable in APC1

that are not provable in APX1 (see Corollary 5.14).8 This is obtained by adapting a technique from [ILW23].
In other words, PV1 is contained in APX1, while APX1 is likely strictly weaker than APC1.

Subsequently, a fundamental research direction is to determine whether APX1 is stronger than PV1, a
question closely connected to the prBPP versus prP problem and to understanding the role of randomness in
feasible proofs.

7Indeed, there is a conservative extension of APC1 known as HARDA [Jeř07a] that contains APX1 in a stronger sense — the
symbol P can be simulated by a term in HARDA such that all axioms governing P are provable (see Theorem 5.9).

8More formally, there is a ∀Σb
2(PV)-sentence provable in APC1 that is not provable in APX1, under the existence of indis-

tinguishability obfuscation and coNP not contained infinitely often in NP/poly (see Corollary 5.14).
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PV1 versus APX1 and feasible derandomization. From a meta-mathematical standpoint, it is natural
to ask whether prBPP = prP is (un)provable in a weak arithmetic theory such as PV1. A key obstacle
is formalization: the language of PV1 is tailored to deterministic polynomial-time functions, whereas the
statement prBPP = prP quantifies over acceptance probabilities of circuits on an exponentially large space.
We propose the following question.

Open Problem 1. Is there a PV function symbol P̃(C,∆) for which the basic, boundary, precision consis-
tency, and local consistency axioms (Section 1.2.1) are provable in PV1?

An unconditional positive answer seems out of reach at present, as it would immediately imply prBPP =
prP by the soundness of the approximate counting axioms and the polynomial running time of P̃ (see
Theorem 2.5). Intuitively, this would amount to a deterministic polynomial-time proof of the collapse. At
the moment, it is unclear whether a positive or a negative answer is more plausible.

A weaker possibility is that, even if no such PV function symbol P̃(C,∆) exists with the axioms prov-
able in PV1, adding the approximate counting oracle P might nonetheless be conservative for deterministic
statements in the base language. Formally:

Open Problem 2. Is APX1 conservative over PV1? Equivalently, does every first-order sentence in the
language of PV that is provable in APX1 already have a proof in PV1?

A positive answer to Open Problem 1 would imply a positive answer here. The relationship between
Open Problem 2 and prBPP = prP appears incomparable. If prBPP = prP holds but only via a non-feasible
proof, APX1 need not be conservative over PV1. Conversely, even if APX1 is conservative over PV1, it is
not clear to us whether prBPP = prP follows. At a high level, we are interested in the relationship between
derandomization of computations and derandomization of proofs. While we are currently unable to provide
definite answers, we believe these questions are fundamental and merit further study. We refer to [Kra25]
and references therein for related questions in the context of APC1 versus PV1.

A Witnessing Theorem for APX1: Reductions to Refuter(Yao). A key characteristic of bounded
theories is to have a suitable witnessing theorem corresponding to certain computational problems (see, e.g.,
[Bus86, KPT91]). We isolate a certain (total) search problem as a key computational task for producing
witnesses for the ∀Σb

1(PV)-consequences of APX1.

Refuter(Yao): An instance fixes the following parameters: input length n, multiset size m, predictor circuit
description size s, and advantage δ > 0. The input is a predictor generator, i.e., a circuit

G : {0, 1}nm → [n]× {0, 1}s

which, on a flat distribution D ∈ ({0, 1}n)m (i.e., an m-tuple of n-bit strings), returns an index i ∈ [n] and
the description of a predictor circuit P : {0, 1}i−1 → {0, 1} of size s. A solution is any flat distribution D
such that, writing (i, P ) = G(D),

Pr
x←D

[
P (x<i) = xi

]
< 1

2 + δ.

Thus a solution D refutes that G can produce predictors for any distribution with advantage δ. When
parameters satisfy (δ2/10) · m ≥ s + ⌈log n⌉ + 1, Refuter(Yao) lies in TFZPP; in other words, uniformly
random distribution is likely a solution. The problem is called Refuter(Yao), as G is intended to output a
predictor like the standard “distinguisher→predictor” transformation of Yao [Yao82].

Remark 1.8 (Refuter(Yao) and Derandomization). Note that Refuter(Yao) requires generating a distribution D
that is unpredictable with respect to a given predictor generator G – a deterministic procedure that attempts
to produce a predictor P for D. The distribution D need not be pseudorandom (or equivalently, unpredictable)
against all small circuits; it only needs to fool the specific generator G. This can be viewed as a special case of
constructing targeted pseudorandom generators, a task known to be prBPP-complete (see [Gol11, CT21, LPT24]).
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We establish the following result for the provably total TFNP problems of APX1.

Theorem 1.9 (Witnessing for APX1). Let φ(x, y) be a quantifier-free formula in the language of PV1. If
APX1 ⊢ ∀x ∃y φ(x, y), there exists a deterministic polynomial-time Turing reduction from the search problem
defined by φ to Refuter(Yao) with parameters satisfying (δ2/10) ·m ≥ s+ ⌈log n⌉+ 1.

In Section 1.3 below, we provide an overview of the proof of Theorem 1.9.

Relation to LossyCode and APC1. Recall the definition of the search problem LossyCode [Kor22]: given
a compressor circuit C : {0, 1}n → {0, 1}n−1 and a decompressor circuit D : {0, 1}n−1 → {0, 1}n, output x
with D(C(x)) ̸= x. Similarly to Refuter(Yao), this problem is total and in TFZPP.

We observe the existence of a deterministic polynomial-time mapping reduction from Refuter(Yao) to
LossyCode whenever the input instances of Refuter(Yao) satisfy

(δ2/10) ·m ≥ s+ ⌈log n⌉+ 1.

Therefore, in the stated regime, derandomizing LossyCode subsumes derandomizing Refuter(Yao). Since
every APX1-provably total TFNP problem reduces to Refuter(Yao), under the above parameter condition it
further reduces to LossyCode.

Recall that Wilkie (unpublished) and Thapen [Tha02] (see [Jeř04, Proposition 1.14] and [LPT24, Theorem
D.1]) proved that LossyCode captures the ∀Σb

1-fragment of APC1. Consequently, these results organize the
TFNP landscapes of the two theories: LossyCode witnesses the ∀Σb

1-consequences of APC1, while Refuter(Yao)
witnesses those of APX1.

We return to these topics in Section 5, providing detailed proofs of all results mentioned above and further
discussions.

1.2.5 Reverse Mathematics of Randomized and Average-Case Lower Bounds

The retraction weak pigeonhole principle (rWPHP(PV)) [Jeř07b, LLR24, CLO24] is one of the most
important combinatorial principles known to be provable in APC1, but whose provability in APX1 remains
unclear. Recall that rWPHP(PV) asserts that for every n,m ∈ Log with m < n and for all (deterministic)
circuits C : {0, 1}n → {0, 1}m (“compressor”) and D : {0, 1}m → {0, 1}n (“decompressor”), there is x ∈
{0, 1}n such that D(C(x)) ̸= x.

In other words, rWPHP(PV) captures the combinatorial principle underlying the total search problem
LossyCode discussed above. Its provability in APX1 would mean that APX1 and APC1 prove the same ∀Σb

1(PV)
sentences, and by the witnessing theorem (see Theorem 1.9), this would further imply that LossyCode and
Refuter(Yao) are equivalent with respect to deterministic polynomial-time Turing reductions.

We study counting variants of the retraction weak pigeonhole principle and characterize their equivalence
class with respect to provability in APX1. We show that this class encompasses certain communication
complexity lower bounds against randomized protocols, establishing that these results are all equivalent (over
the base theory APX1) to suitable variants of the retraction pigeonhole principle.

Counting Variants of rWPHP(PV). We consider the following statements:

• Approximate Counting rWPHP: #rWPHP[m, ε].

For any deterministic compressor-decompressor pair with encoding length m < n, an ε-fraction of
inputs cannot be correctly decompressed.

• Randomized Compression rWPHP: rrWPHP[m, ε].

For a randomized compressor and a deterministic decompressor with encoding length m < n, there is
some input on which the pair has error probability at least ε.

These principles are formalized in a natural way using the probabilistic framework provided by APX1.
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One-Way Communication Complexity. We prove an equivalence result involving communication com-
plexity (CC) lower bounds against randomized one-way protocols with either public randomness or private
randomness. Recall that the Set Disjointness function SetDisj(x, y) outputs 1 if and only if for every index
i ∈ [n], either xi = 0 or yi = 0, i.e., x and y have no common 1-index. The following statements, presented
informally for clarity, are relevant to our result:

• Public Randomized CC Lower Bound for Set Disjointness: pub-rLB−→
SetDisj[m, ε].

Every public-coin one-way protocol computing SetDisj with communication complexity m must have
error probability at least ε on some input pair (x, y).

• Private Randomized CC Lower Bound for Set Disjointness: priv-rLB−→
SetDisj[m, ε].

Every private-coin one-way protocol computing SetDisj with communication complexity m must have
error probability at least ε on some input pair (x, y).

• Public Randomized CC Lower Bound for Some Function: pub-rLB−→
some[m, ε].

For every n ∈ Log, there exists f : {0, 1}n × {0, 1}n → {0, 1} such that pub-rLB−→
f [m, ε] holds.

• Private Randomized CC Lower Bound for Some Function: priv-rLB−→
some[m, ε].

For every n ∈ Log, there exists f : {0, 1}n × {0, 1}n → {0, 1} such that priv-rLB−→
f [m, ε] holds.

We leave the details about the formalization of the corresponding lower bound sentences to Section 6. We
note that APX1 is able to show that some concrete functions admit low-cost communication protocols. For
instance, using linear hashing, it proves that Equality admits public-randomness one-way communication
protocols of cost O(log n).

We can state an informal version of our equivalence result as follows.9

Theorem 1.10 (Main Equivalence Result (Informal); see Theorem 6.7). The following statements are
equivalent over APX1, for suitable relations between the constants k ≥ 1 and 0 < ε < 1, quantified outside
the theory:

(1) #rWPHP[n− 1, n−k]

(2) #rWPHP[nε, n−k]

(3) rrWPHP[n− 1, n−k]

(4) rrWPHP[nε, n−k]

(5) pub-rLB−→
SetDisj[n− 1, n−k]

(6) pub-rLB−→
SetDisj[nε, n−k]

(7) priv-rLB−→
SetDisj[n− 1, n−k]

(8) priv-rLB−→
SetDisj[nε, n−k]

(9) pub-rLB−→
some[n− 1, n−k]

(10) pub-rLB−→
some[nε, n−k]

(11) priv-rLB−→
some[n− 1, n−k]

(12) priv-rLB−→
some[nε, n−k]

As a consequence, one of these statements is provable in APX1 if and only if every statement in Theo-
rem 1.10 is provable in APX1. This result provides evidence that APX1 can serve as a suitable base theory
for developing the reverse mathematics of average-case and randomized lower bounds.

For more details and additional discussion, we refer to Section 6.

1.3 Techniques

We next outline some of the main techniques used in our proofs, starting with a recurring argument that
establishes basic probabilistic inequalities in APX1.

9In particular, the simplified formulation given here omits considerations about the number of random bits employed in the
randomized protocols, which plays a role in the parameters of some statements.
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1.3.1 Probabilistic Reasoning in APX1: The “Pointwise to Global” Technique (Section 1.2.2)

At the core of our probabilistic reasoning is a simple but powerful seed-fixing lemma that lets us pass from
global inequalities to pointwise statements about suitably chosen restrictions of the randomness. Recall that
a feasible random variable X is specified by an explicit support V ⊆ Q, a seed length n, and a multi-output
circuit C : {0, 1}n → V . Its approximate expectation is

Eδ[X] ≜
∑
v∈V

v · Pδ(Cv),

where Cv is the indicator circuit for the event C(x) = v. This is a PV(P)-computable quantity.

A general averaging argument for expectation (Theorem 3.17). The following holds in APX1. Let
X1, . . . , Xm be random variables over the same seed with support V , and fix coefficients λ1, . . . , λm ∈ Q.
Write

µ ≜
m∑
i=1

λi Eδ[Xi], µ↾ z ≜
m∑
i=1

λi Eδ[Xi | z],

where Xi | z denotes Xi after fixing a suffix of the seed to z. Then, for every desired suffix length k, there
exists z ∈ {0, 1}k such that

µ↾ z ≥ µ − (2δ + β) · ∥λ∥1 · ∥V ∥1. (3.7)

Thus a lower bound on µ can be witnessed (up to controlled additive slack) by conditioning on a partial
assignment of the seed.

The proof iteratively fixes one seed bit at a time. By a form of Local Consistency for expectation, the
average of µ↾ (0◦z) and µ↾ (1◦z) is close to µ↾ z; hence it is possible to prove that one of the two extensions
preserves the current value up to an additive loss O(η · ∥λ∥1 · ∥V ∥1), where η is an auxiliary parameter in the
proof. Greedily repeating this for k steps yields a k-bit suffix with total loss O(k ·η · ∥λ∥1∥V ∥1). A precision-
smoothing argument (switching from η to δ via precision consistency) then gives the stated (2δ + β)-type
bound, independent of k. The greedy construction is formally captured by a PV(P)-procedure AvgSampler.
Conceptually, AvgSampler searches for a good suffix using calls to the approximate counting oracle P, and
its correctness is established using (polynomial) induction on k over a quantifier-free PV(P)-formula, which
is available in APX1.

Remark 1.11 (Example: Consistency of Complementation (Corollary 3.18).). Let E1, E2 : {0, 1}n → {0, 1} be
complementary predicates, i.e., E1 = ¬E2 as Boolean circuits. Let X1, X2 be their indicator variables. We
argue in APX1. Given an arbitrary β−1 ∈ Log, we set η ≜ β/C, for a large enough constant C. Pointwise, for
every full assignment ρ to the seed, using the relation between E1 and E2 we have

Eη[X1 | ρ] + Eη[X2 | ρ]− 1 = 0.

Set λ ≜ (1, 1,−1) and consider µ ≜ Eη[X1]+Eη[X2]−1. Applying Theorem 3.17 with k = n, we obtain a ρ such
that µ ≤ µ↾ ρ+O(η). But µ↾ ρ is exactly 0 by the pointwise identity above, yielding Eη[X1]+Eη[X2]−1 = O(η).
Similarly, one can show that −Eη[X1]− Eη[X2] + 1 = O(η). Translating expectations back to probabilities via
the indicator correspondence, and applying a standard precision-smoothing argument, one can conclude that Pδ

is consistent with complementation, i.e.,∣∣Pδ(E1) + Pδ(E2)− 1
∣∣ ≤ 2δ + β.

To summarize, Theorem 3.17 provides a way to fix randomness while preserving lower bounds on linear
combinations of expectations. It turns equalities or inequalities that hold for each seed into quantitative
global bounds in APX1 with explicit additive slack depending only on δ, β and the natural ℓ1 norms of the
supports and coefficients. This mechanism is the engine that drives many of our probability inequalities and
applications in Section 3.
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Remark 1.12. The bit-by-bit fixing trick is a standard technique in computational complexity theory. For
instance, it is used in the search-to-decision reduction for SAT [AB09, Section 2.5] and to derive circuit lower
bounds from derandomization [AvM11], among other results. In particular, our approach is inspired by a new
proof of BPP ⊆ MA ⊆ Σp

2 via a bit-by-bit “dueling argument” [LPT24, Lemma A.10].

1.3.2 Provability of Circuit Lower Bounds (Theorem 1.6 and 1.7)

Theorem 1.6 gives an average-case lower bound for the parity function against depth-d AC0 circuits,
formalized in APX1, while Theorem 1.7 gives a corresponding worst-case lower bound, formalized in the
weaker theory PV1. As alluded to above, the challenge is to avoid encoding-based arguments that rely on
pigeonhole principles (or frameworks that build on them), since they are unavailable in these theories. The
first result showcases how APX1 approximate-probability calculus supports average-case arguments in a more
sophisticated setting, while the second shows that, with additional derandomization work, we can carry a
corresponding worst-case lower bound argument entirely within PV1.

At a high level, the formalizations implement a simplification and derandomization [AAI+01] of the
Furst–Saxe–Sipser [FSS84] random restriction approach to AC0 lower bounds. Recall that the argument
proceeds in stages, where at each stage we fix a suitable partial restriction ρ : [n] → {0, 1, ∗} that sets all
input variables in T ≜ ρ−1({0, 1}) ⊆ [n]. The crucial point is that a depth-d circuit C simplifies when
restricted by ρ, leading to a not much larger circuit C ↾ ρ of depth d − 1, while the parity function retains
its hardness.

Two central lemmas employed in the specification of ρ drive the proofs of Theorem 1.6 and Theorem 1.7.

Subset Selection Lemma (Lemma 4.8). The first step is to algorithmically choose the set T ⊆ [n]
of variables with a “narrow-or-wide” guarantee: for every bounded-width CNF/DNF F at the bottom of
the circuit C, after fixing the variables in T , F either already depends on few literals (narrow) or contains
many disjoint subclauses supported on T (wide). Crucially, this subset selection is constructed and proved
correct in PV1 using a delicate potential-function argument that simulates the method of derandomization
via conditional expectations. This makes the selection of the subset T ⊆ [n] feasible in our theories, not
merely existential.

Restriction Selection Lemmas (Lemma 4.9 and 4.10). Given the narrow-or-wide structure exposed
by the subset selection step, we then choose values for variables in T so that all relevant gates in the circuit
C simultaneously simplify after applying the resulting restriction ρ. There are two versions, matching our
two theorems:

• In the APX1 setting of Theorem 1.6, we consider a random assignment of bits (Lemma 4.9) and then
fix a good selection of the values via APX1’s “pointwise-to-global” averaging argument for expectation
explained above. This lets us form a partial restriction ρ and obtain a corresponding circuit C ↾ ρ that
approximately retains the relative advantage of C when computing parity.

• In the more constrained PV1 setting of Theorem 1.7, we derandomize the same choice (Lemma 4.10).
Again, this is implemented by a potential argument that feasibly simulates the method of conditional
expectations within PV1. A crucial aspect of the proof that facilitates the formalization is that the rel-
evant expectations depend on at most O(log n) input coordinates and thus can be efficiently computed
by PV1 terms.

In both settings, the circuit lower bound is obtained by an inductive application of the restriction tech-
nique, as in the standard proof of the result. The details appear in Section 4.4.

The novelty is not in the combinatorics of AC0 versus Parity but in the underlying proof-theoretic frame-
work. APX1 supplies a minimal yet sufficient probabilistic infrastructure that lets us carry out the average-
case lower bound argument internally. In our proofs, this lets us define and reason about the agreement tester
TC in the statement of Theorem 1.6, define and analyze appropriate events, quantify advantage and pass
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from randomized restrictions to concrete choices, and keep track of the small additive losses accumulated
across iterations — all within APX1.

Moreover, this streamlined setup and the perspective it provides clarify the boundary with the weaker
theory PV1. The APX1 framework and our formalization isolate exactly where probabilistic reasoning is
used and where the argument is purely combinatorial. This separation indicates which components can be
replaced by deterministic potential-based arguments available in PV1, thereby guiding the adaptation that
yields our worst-case formalization in PV1.

1.3.3 The Witnessing Theorem (Theorem 1.9)

Theorem 1.9 states that every ∀Σb
1(PV)-sentence provable in APX1 admits a deterministic polynomial-

time Turing reduction to the total search problem Refuter(Yao), with parameters obeying (δ2/10) · m ≥
s + ⌈log n⌉ + 1. Recall that an instance of Refuter(Yao) gives a predictor generator G and asks for a flat
distribution D such that the predictor (i, P ) = G(D) fails to predict the i-th bit of D with advantage δ. (For
the stated parameter range, Refuter(Yao) is in TFZPP and map-reduces to LossyCode.)

Suppose that APX1 ⊢ ∀x∃y φ(x, y), where φ is a quantifier-free PV-formula. Given x of length n, we
describe a predictor generator Gx such that a solution D to Refuter(Yao) over Gx allows us to compute y
such that φ(x, y) holds.

Starting from an APX1-proof of ∀x∃y φ(x, y), we first apply Herbrand’s theorem over the universal
axiomatization of APX1 to obtain finitely many PV(P)-terms t1, . . . , tc such that

∨
i φ(x, ti(x)) holds, and

encode this disjunction by a single term tφ with the equational core APX proving tφ(x, t1(x), . . . , tc(x)) = 1.
In standard models (Section 1.2.1), these terms are polynomial-time oracle algorithms for the approximate-
counting oracle P.

Next, we describe the construction of Gx. Given a candidate flat distribution D (say, over n′-bit strings
and of support size m′, where n′,m′ = poly(n) are large enough), we simulate each oracle call P(C,∆) inside
any ti by empirical counting on D:

P(C,∆) ≜ Pr
u←D

[
C(u≤ℓ)

]
,

where C : {0, 1}ℓ → {0, 1} and ℓ ≤ n′. Let tDi (x) and tDφ (x, ·) denote the resulting outputs. Note that these
can be computed in deterministic polynomial time, since D is explicitly given as a collection of poly(n)
strings of length poly(n), and tφ, t1, . . ., tc run in polynomial time.

Predictor Extraction Lemma (Lemma 5.6). The key technical step says: if under this simulation the
APX-provable equation fails, i.e., tDφ (x, ·) ̸= 1, then we can algorithmically extract a small predictor P of
size s′ that achieves advantage at least δ′ for an explicitly computed bit position of D, where (δ′2/10) ·m′ ≥
s′ + ⌈log n′⌉+ 1.

Conceptually, an APX proof asserts: for every interpretation of P, either the equation holds or one of
the approximate-counting axioms (Basic, Boundary, Precision Consistency, Local Consistency) is violated.
Under our empirical interpretation, the first three axioms continue to hold, so any failure must exhibit a
Local Consistency violation of the form∣∣∣ Pr

u←D
[C(u≤ℓ)]− 1

2

(
Pr

u←D
[C(u<ℓ0)] + Pr

u←D
[C(u<ℓ1)]

) ∣∣∣ > 2
|∆| + 1

|B| ,

for a circuit C and strings ∆, B produced in the APX proof.
Similarly to the analysis of Yao’s distinguisher-to-predictor lemma, such a gap yields a predictor for the

next bit via a deterministic transformation of C; here the “signal” comes not from distinguishing D from
uniform, but from detecting a local inconsistency of empirical counts across bit-fixings. Thus predictors
arise not only from distinguishers, but also from the ability to spot local inconsistencies when D is used as
a random source for approximate counting – a viewpoint that might be of independent interest.10

10In particular, Yao’s distinguisher to predictor transformation requires randomness (unless we have prBPP = prP) [LPT24].
The construction of predictors from local inconsistency, however, is deterministic.
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Formally, the lemma is established by a proof-theoretic analysis, proceeding by induction on the steps of
the APX proof and tracking the parameters (n′,m′, s′, δ′) through the final rule used.

Wrapping up the argument, for an input x, the reduction outputs the predictor generator Gx obtained
from Lemma 5.6. Note that any solution D to the resulting Refuter(Yao) instance cannot trigger a successful
predictor extraction, since by definition Gx fails to produce a predictor on D. Hence given a solution D to
this instance of Refuter(Yao), it must make the simulated identity true, i.e.,

tφ(x, tD1 (x), . . . , tDc (x)) = 1.

In other words, some tDi (x) is a valid witness y for φ(x, y). Finally, as observed above, because D is explicit,
all simulated calls and tDi (x) are computable in deterministic polynomial time.

This completes the sketch of the proof of Theorem 1.9. For the details, see Section 5.

1.4 Related Work

Below we provide a representative, though not exhaustive, list of related developments and references.

Probabilistic arguments in bounded arithmetic. Paris, Wilkie, and Woods [PWW88] (see also Pudlák
[Pud90]) observed that many probabilistic arguments can be formalized using variants of the weak pigeonhole
principle rather than exact counting. An early explicit link between the weak pigeonhole principle and ran-
domized algorithms is due to Wilkie (cf. [Kra95]), who showed that randomized polynomial-time algorithms
witness all ∀Σb

1-consequences of S12 + dWPHP(PV).
Ojakian [Oja04] undertakes a general study of how probabilistic methods from combinatorics can be

formalized in bounded arithmetic. While such proofs can often be recast as purely counting-based arguments,
the naive translation still leaves exponentially many objects to count. The central idea, again, is to use the
weak pigeonhole principle to simulate the probabilistic counting argument and thereby avoid this blow-up.
The formalizations are carried out in S12 augmented with suitable variants of the pigeonhole principle.

Jeřábek [Jeř04] showed that within PV1 one can compare the sizes of two bounded P/poly-definable sets
by constructing a surjection from one onto the other; he used this to formalize descriptions of algorithms in
ZPP and RP. He further showed [Jeř04, Jeř05] that APC1 = PV1+dWPHP(PV) is strong enough to formalize
sophisticated derandomization results. In [Jeř07a], Jeřábek developed a more systematic framework, showing
in particular that for any bounded P/poly-definable set, APC1 proves that a suitable pair of surjective
counting functions exists that approximates its cardinality up to a polynomially small error. (The notation
APC1 follows the terminology of [BKT14].)

Built on Jeřábek’s framework, Lê [Lê14] formalizes more results in APC1 and its extensions, including
randomized matching algorithms, the Lovász Local Lemma, and the Goldreich-Levin theorem. Throughout
these formalizations, Lê provides formulations of concepts in APC1 such as expectation, Markov inequalities,
and pairwise-independence, which we also consider in this project. The formalization of random variables
and expectation in [Lê14] heavily relies on the machinery of APC1 and is thus inadequate for our purposes.

Remark 1.13. A concrete open problem is to state and prove a stronger form of the Chernoff bound in APX1.
In this work, we show that the Chernoff bound with O(logn) variables (i.e., strings of length n are considered
feasible) can be formalized in APX1. It is unclear whether we could state a clean and meaningful Chernoff bound
with O(n) variables: the error probability will be exponentially small, which could be much smaller than the
approximate counting error of the function P. Moreover, even if a meaningful formalization exists, it is unclear
whether existing proofs of the Chernoff bound can be formalized in APX1. Note that a strong form of Chernoff
bound with O(n) variables can be formalized in Jeřábek’s theory APC1 (see [Jeř07a, Proposition 2.18]).

The proof complexity of dWPHP(PV). There is evidence that the pigeonhole-based axioms used through-
out these frameworks exceed what can be proved in purely polynomial-time theories: while dWPHP(PV) is
available in T2

2, relativized variants are unprovable already in S22 [Rii93]. As noted above, under crypto-
graphic assumptions, PV1 does not prove dWPHP(PV) [ILW23]. This supports the common stance that PV1
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is too weak to derive the WPHP-style principles exploited in the above formalizations. For a comprehensive
investigation of dWPHP(PV) and its provability in bounded arithmetic, see [Kra25].

Jeřábek’s approximate-counting toolbox includes general principles such as inclusion-exclusion and strong
Chernoff-type estimates, all formalized inside APC1. By contrast, the development of APX1 deliberately starts
from weaker primitives: while we recover Markov/Chebyshev-style reasoning, error reduction, and other basic
probabilistic tools, we do not reprove all of Jeřábek’s strongest concentration bounds here. It remains an
interesting direction to test the limits of APX1: which stronger probabilistic inequalities (e.g., full-strength
Chernoff) are intrinsically beyond its axioms?

Beyond approximate counting with additive error. Certain combinatorial proofs—e.g., of Ramsey’s
theorem—typically require counting sparse sets, which is unavailable both in our framework and in Jeřábek’s
theory APC1. In our setting, for X ⊆ {0, 1}n we can estimate |X| only to within an additive error that is
a polynomial fraction of 2n, whereas these arguments require accuracy within a polynomial fraction of |X|.
Such counting becomes possible in theories stronger than APC1, as developed in [Jeř09].

In a concurrent work, Thapen [Tha24] introduces a framework to formulate stronger complexity classes
(such as ⊕P and #P) in the theory of TFNP in a way that is similar in spirit to our axiomatization of
approximate counting. For instance, given an oracle that is intended to compute ⊕P, Thapen considered
the relativized TFNP problem that searches for a “local inconsistency” of the oracle. Note that the TFNP
framework in [Tha24] considers only query complexity, while we additionally consider proofs in bounded
arithmetic. Nevertheless, it is conceivable that results in these two directions may have analogues in each
framework given the similarity in the setup.

Theories with explicit counting. In [Jeř05, Chapter 6], Jeřábek studies bounded theories with explicit
counting, revisiting the Impagliazzo-Kapron [IK06] second-order logic for formalizing cryptographic reason-
ing. The logic is multi-sorted: first-order variables range over strings, while second-order variables of sort
k > 0 range over k-ary (intended polynomial-time) functions. In particular, functions are second-order ob-
jects rather than function symbols in the language. The theory includes recursive counting constructs for
expressing the sizes of definable bounded sets.

The same chapter also introduces a feasible theory of approximate counting using a 3-valued seman-
tics based on Kleene’s logic, equipped with an LPF-style implication to support induction-like reasoning.
Counting is approximate: the semantics distinguishes between having many versus few solutions (while
using 3-valued logic to allow an explicit indeterminate region). The resulting “Σc

1-consequences” admit
probabilistic polynomial-time witnessing (see [Jeř05, Theorem 6.2.20]).

The counting framework in these theories is considerably different from ours, relying on exact counting
terms or approximate counting quantifiers in different logical settings. We refer to these references for details.

Bounded reverse mathematics. Cook and Nguyen [CN10] provide a thorough exposition of the bounded
reverse mathematics program, systematically developing theories of bounded arithmetic and presenting for-
malizations of key combinatorial and algorithmic results, with the goal of identifying the weakest axioms
sufficient to prove them.

Finally, we refer to [Lê14, Pic14, MP20, AT25] and references therein for numerous examples of results
from theoretical computer science that can be formalized in bounded arithmetic. It would be interesting to
further investigate which of these formalizations can be carried out in APX1.

Acknowledgements. We would like to thank Jan Kraj́ıček for discussions related to the ∀Σb
1-conservativity

of APC1 over PV1 and for bringing some references to our attention. We also thank Dimitrios Tsintsilidas
for comments on an earlier version of the paper. We would also like to thank Surya Mathialagan, Shuo
Pang, and Hanlin Ren for helpful discussions. Finally, we thank the anonymous STOC reviewers for useful
comments about the presentation.
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2 Formal Definition of the Theory

In this section, we formally define the equational theory APX and its first-order counterpart APX1. We
assume basic familiarity with Cook’s Theory PV [Coo75]. The necessary background can be found in [Kra95,
Chapter 12], [Kra19, Chapter 12], and [Li25].

2.1 Notation

Base Theory. Let PV(P) be the theory PV relative to a fresh function symbol P with the axiom

ITR(P(C,∆), C # ∆ # ∆) = ε

that bounds the output length of the function symbol P. Intuitively, the axiom means that the output length
of P(C,∆) given strings C and ∆ as its input is at most |C| · |∆|2. This axiom ensures that PV(P)-terms are
feasible functions in the standard model. Interested readers are referred to [Jeř04, Jeř07a, Jeř07b] for more
examples of relativized PV.

Slightly different from Cook’s original notation, we will define PV(P) with constant symbol ε (rather than
0) and replace the initial functions s1(x) and s2(x) by s1(x) and s0(x), respectively. Other functions TR,

ITR, ◦, and # are defined as in Cook’s original definition. Let P̂ be a function over Boolean strings. The
standard model of PV(P) with respect to P̂, denoted by M(P̂), is defined as follows:

• The universe consists of all Boolean strings of finite length.

• The constant symbol ε is interpreted as the empty string.

• sb(x) (for b ∈ {0, 1}) is interpreted as the function that appends b to the right of the string x.

• TR(x) is interpreted as the function that trims the rightmost bit of x; ITR(x, y) is interpreted as the
function that trims x for |y| times.

• ◦ is interpreted as string concatenation, while #(x, y) is interpreted as the function that concatenates
|y| copies of x.

• The function symbol P is interpreted as P̂.

A function introduced by one of the rules in PV (i.e. introduction by terms or introduction by limited
recursion on notation) is interpreted as the unique function over the universe that satisfies its introduction
rule.

Circuits. We define a few PV functions that manipulate Boolean circuits. Let IsCkt(C, z) be the PV
function that outputs 1 if C is a circuit with input length |z|, and outputs 0 otherwise; IsConst(C) be the PV
function that outputs 1 if C is a circuit that does not read its input (i.e., there is no path from the output
gate to an input variable); Bool(C) outputs 1 if IsConst(C) and C outputs 1 and outputs 0 if IsConst(C) and
C outputs 0 (otherwise, outputs, e.g., ε); Fixb(C) be the function that, given a circuit C, output the circuit
obtained from C by fixing the rightmost input bit to be b ∈ {0, 1}; Eval(C, x) be the function that evaluate
the circuit C on the input x. One may think of any straightforward implementations of these functions in
PV as PV is a robust theory.

For simplicity, we use the following abbreviations:

• For n ∈ Log, C ∈ Bn denotes IsCkt(C, 1n), i.e., C is a circuit with n input bits. Moreover, ∀C ∈ Bn φ(C)
denotes ∀C (IsCkt(C, 1n)→ φ(C)) and ∃C ∈ Bn φ(C) denotes ∃C (IsCkt(C, 1n) ∧ φ(C)).

• For a circuit C, C(x) denotes Eval(C, x).

• We use Nulln to denote the circuit with n input bits that does not read its input bits and outputs 0,
and Truen to denote the circuit with n input bits that does not read its input bits and outputs 1.

PV-Terms and Functions. We say that a PV(P)-term is a PV-term if its construction indicates that it
does not call the P-oracle. Formally, the set of PV-terms is the minimum set that contains all base functions
and is close under composition and the function formulation rules in PV, that is:
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• Base functions si(x), TR(x), ITR(x), ◦(x, y) are PV-terms.

• If t is a PV-term, the function ft introduced with the defining axiom ft = t is also a PV term.

• A term formulated from PV-terms by composition is a PV term.

• If g, h0, h1, k0, k1 are PV-terms, the function fΠ constructed by limited recursion on notation from
Π = (g, h0, h1, k0, k1) is a PV term.

We say that a function symbol f is a PV-function if it is a PV-term.
By the Cook-Levin theorem (see [Pic15b] for a formalization in PV), PV terms can be converted into

polynomial-size Boolean circuits on any given input length n ∈ Log, and the correctness can be proved in
PV. Similarly, PV(P) terms can be converted into polynomial-size P-oracle circuits on any given input length
n ∈ Log with PV(P)-provable correctness.

Encoding Conventions and Arithmetic Operations. For functions and multi-output circuits, we will
treat ε as false and any other value as true when we define the acceptance probability of the circuit. Let
Bool(x) be the PV function that outputs 0 if x is ε and outputs 1 otherwise.

We assume that natural numbers are encoded in binary in a straightforward way. For instance, one
can encode a natural number in dyadic notation as in [Coo75] so that basic arithmetic operations such as
addition, multiplication, and comparison can be defined naturally. We assume that the encoding can be
verified efficiently, i.e., there is a PV function symbol IsNumber(x) that outputs 1 if x is the encoding of a
natural number, and outputs 0 otherwise, and use [x ∈ N] as the shorthand of IsNumber(x). We use [x]N
to denote the natural number encoded by x when we want to be explicit about the interpretation of x as a
natural number.

Elementary arithmetic operations, such as addition, multiplication, and comparison, can be defined
naturally. Moreover, basic properties of the PV function symbols representing these operations can be
established in PV (whenever the operations involve a feasible number of elements).

We specify a standard encoding of rational numbers in PV: We use the pair (x, y) to denote the rational
number

|x|∑
i=1

xi2
i−1 +

|y|∑
j=1

yj2
−j .

Similarly to the encoding of natural numbers, we assume a PV function symbol IsRational(x) that tests
whether x encodes a rational number, and we use [x ∈ Q] as shorthand for IsRational(x). We write [x]Q to
denote the rational number encoded by x. We might directly treat x as a rational number if this is clear
from the context.

Data Structures and Explicit Sets. We assume a straightforward encoding of explicit sets (and multi-
sets), i.e., sets of feasible size, that supports operations such as selection, union, intersection, and membership
query. An explicit set S may be encoded as a list containing all the elements in it. Note that this is different
from the feasibly definable sets in [Jeř04], which may be of infeasible size. When discussing explicit sets, we
use |S| to denote the size of S, i.e., the number of elements contained in S. When S = {q1, . . . , qℓ} is a set

of rational numbers, we use ||S|| =
∑ℓ

i=1 |qi| to denote its ℓ1-norm, i.e., the sum of the absolute values of
the elements in S.11

Moreover, for an explicit set S and a quantifier-free formula φ(x) in the language of PV1, we can define
the universal quantification over S, denoted by ∀x ∈ S : φ(x), as a quantifier-free formula in PV1 that is true
if and only if every element x ∈ S satisfies φ(x) (in the standard model). This is possible as S is explicitly
encoded, and thus there is a straightforward feasible algorithm that given the encoding of S, enumerates
S and checks whether there is an x ∈ S such that φ(x) is false. Similarly, we can define the existential
quantification over S, denoted by ∃x ∈ S : φ(x). All relevant deduction rules about quantification over sets

11While we abuse notation and employ | · | to denote both length and absolute value, the meaning will be clear in each context.
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should be admissible in PV assuming standard encoding, e.g.,

(∃i) :
Γ ⊢ φ[y/t] Γ ⊢ t ∈ S

Γ ⊢ ∃y ∈ S : φ
(2.1)

(∃e) :
Γ ⊢ ∃y ∈ S : φ Γ, z ∈ S, φ[y/z] ⊢ ψ

Γ ⊢ ψ
(2.2)

where in (∃i) t is an arbitrary term, and in (∃e) z must be a fresh variable that has no occurrence in Γ, φ, ψ, y.
This ensures that most natural mathematical proofs regarding explicit sets can be easily formalized in PV;
see [Li25, Chapter 4] for more discussions. In the rest of the paper, we will only informally describe the
proof and pinpoint the key idea to formalize it in PV if it is unclear.

2.2 Theory APX

Intuitively, we will define the theory as PV(P) together with additional axioms intended to formalize that
P approximately computes the acceptance probability of a given circuit up to a specified precision. In other
words, for every deterministic circuit C and any ∆, P(C,∆) outputs the encoding of a rational number in
[0, 1] guaranteed to lie within the interval [p−1/|∆|, p+1/|∆|], where p denotes the acceptance probability of
C. For simplicity, we will also denote P(C,∆) by Pδ(C), where δ−1 ≜ |∆| ∈ Log is the precision of counting.

Language of APX. APX is an equational theory whose language extends that of PV by including the new
function symbol P and every additional function symbol that can be introduced through the usual function
symbol introduction rules of PV (including composition and limited recursion on notation).

Although PV is an equational theory operating over strings, propositional connectives, arithmetic opera-
tions, and arithmetic relations (e.g., comparison between rational numbers) can be encoded by appropriate
equations with desired properties (see, e.g., [Li25]). This allows us to formulate the following axioms.

Axioms of APX. The axioms involve only universally quantified variables and can therefore be expressed
as PV(P) equations:

• (Basic Axiom). Any provable equation in PV(P) is an axiom of APX. Moreover, [P(C,∆) ∈ Q] = 1,
P(C,∆) ≤ 1, 0 ≤ P(C,∆) are axioms of APX, where “x ≤ y” is formalized by an appropriate PV
equation that is valid if and only if [x]Q ≤ [y]Q.

• (Boundary Axiom). For any C ∈ Bn, IsConst(C) → Pδ(C) = Bool(C). This axiom indicates that the
acceptance probability of a syntactically constant circuit12 that always outputs b ∈ {0, 1} is equal to b.

• (Precision Consistency Axiom). For every n, δ−11 , δ−12 , β−1 ∈ Log and every C ∈ Bn,

|Pδ1(C)− Pδ2(C)| ≤ δ1 + δ2 + β. (2.3)

Intuitively, this axiom states that the approximate counting function P should be consistent with
different precision parameters.

• (Local Consistency Axiom). For every n, δ−1, β−1 ∈ Log and every C ∈ Bn,∣∣∣∣Pδ(C)− Pδ(Fix0(C)) + Pδ(Fix1(C))

2

∣∣∣∣ ≤ 2 · δ + β. (2.4)

Intuitively, this axiom states that the approximate counting function P should be self-consistent in the
sense that the acceptance probability of a circuit C is close to the average acceptance probability of
the circuit obtained by randomly fixing the rightmost input bit of C.

12In other words, there is no path from the output gate to an input variable, i.e., the relevant part of the circuit consists of
Boolean operations applied to constant input bits.
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Rules of APX. Finally, the theory contains the following derivation rules:

• (Logical Rules). We include the logical rules of PV:

1. t1 = t2 ⊢ t2 = t1
2. t1 = t2, t2 = t3 ⊢ t1 = t3
3. t1 = t2 ⊢ t1(x/t) = t2(x/t)

4. u = v ⊢ t(x/u) = t(x/v)

• (Structural Induction Rule). Let f1(x, y⃗) and f2(x, y⃗) be PV(P) functions. For PV(P) functions g(y⃗),
h0(x, y⃗, z), and h1(x, y⃗, z), if the following equations are provable for j ∈ {1, 2} and i ∈ {0, 1}

fj(ε, y⃗) = g(y⃗) (2.5)

fj(si(x), y⃗) = hi(x, y⃗, fj(x, y⃗)) (2.6)

then we can deduce the equation f1(x, y⃗) = f2(x, y⃗). This rule is analogous to the original induction
rule in PV. Intuitively, it means that if f1 and f2 are both identical to the function recursively defined
from g, h0, h1, they are the same function.

Remark 2.1 (Nested Probability Symbols). We stress that the function symbol P does not take P-oracle circuits
as input, and therefore sentences involving nested probability symbols such as

Pr
x
[ Pr

y
[φ(x, y)] > ε ] > δ

cannot be formalized directly in APX. Nevertheless, for predicates φ(x, p) and ψ(y) that do not share inputs,
the nested probability

Pr
x

[
ψ

(
x,Pr

y
[φ(y)]

)]
can be expressed in APX, as we can define a P-oracle algorithm that first calculates p = Pry[φ(y)] by calling the
P-oracle, and then calculates Prx[ψ(x, p)] by calling the P-oracle again.

Remark 2.2 (Elementary Functions and Precision Issues). In our formalizations, we sometimes employ elemen-
tary functions over the reals, such as

√
x, ln(x), or exp(x) (typically involving constants or for an x of the

form a/b with a, b ∈ Log). As the output of these functions may be an irrational number, to implement them
in PV, we need to define each function by taking an additional parameter that determines the number of dig-
its of precision. When the functions are defined appropriately, appropriate formulations of basic inequalities
(e.g., exp(x) ≥ 1+x) can be proved in PV by directly formalizing a standard mathematical proof. In this paper,
in the context of the use of such values and inequalities, we always have a margin to tolerate any potential
precision issue (e.g., the error term β ∈ Log−1 in axioms). For this reason, and following standard practice, we
will not elaborate on the actual implementation of such functions and their basic properties.

2.3 Models of APX

Let M be the standard model of PV, i.e., the universe is {0, 1}∗, ε is interpreted as the empty string,
and s0(x), s1(x) are interpreted as the functions that append 0 and 1 to x, respectively. For every function

P̂ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, M(P̂) is the model of PV(P) where the function symbol P is interpreted as

the function P̂.

Definition 2.3 (Standard Models). Let P̂ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be any correct approximate counting
function, i.e.,

1. P̂(C,∆) outputs (the encoding of) a rational number q ∈ [0, 1] within the interval [p−1/|∆|, p+ 1/|∆|]
for every circuit C : {0, 1}∗ → {0, 1} and ∆ ∈ {0, 1}∗, where p is the acceptance probability of C and
q is of length at most |C| · |∆|2; and
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2. P̂(C,∆) outputs the correct value in {0, 1} whenever the input circuit C satisfies IsConst(C).

We say that M(P̂) is a standard model of APX.

Definition 2.4 (Admissible Models). Let P̂ : {0, 1}∗ × {0, 1}∗ → {0, 1} be a function. We say that M(P̂) is
an admissible model of APX if it satisfies all axioms and rules of APX.

The crucial observation is that a model is standard if and only if it is admissible. The proof of the
theorem is highly constructive; indeed, similar induction arguments occur multiple times in the development
of basic probability theory in APX1 (see Section 3).

Theorem 2.5. Let P̂ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be any function. Then M(P̂) is a standard model if and
only if it is an admissible model.

Proof. We will only prove the (⇐) direction, as the converse is straightforward. Suppose, towards a con-

tradiction, that M(P̂) is admissible but is not standard. Then there is a circuit C : {0, 1}n → {0, 1} and
∆ ∈ {0, 1}∗ such that

P̂(C,∆) /∈ p(C)± 1

|∆|
, (2.7)

where p(C) ≜ Prx∈{0,1}n [C(x) = 1] is the acceptance probability of C. Note that C and ∆ are encoded by
finite strings (in the standard model M of PV), and n ∈ N.

As M(P̂) is admissible, it must satisfy the Boundary Axiom. Subsequently, Equation (2.7) does not
hold when n = 0. It suffices to consider the case that n > 0. Suppose for contradiction we have∣∣∣P̂(C,∆)− p(C)

∣∣∣ > 1

|∆|
+ ε, (2.8)

where ε > 0. Let Ξ ≜ 110(n+1)/ε. As P̂ satisfies the Precision Consistency Axiom, we have∣∣∣P̂(C,Ξ)− p(C)
∣∣∣ ≥ ∣∣∣P̂(C,∆)− p(C)

∣∣∣− ( 1

|∆|
+

2

|Ξ|

)
> ε− 2

|Ξ|
. (2.9)

Let C0, C1 be the circuits obtained by fixing the rightmost input bit of C to be 0 and 1, respectively. As
P̂ must satisfy the Local Consistency Axiom, we have∣∣∣∣∣P̂(C,Ξ)− P̂(C0,Ξ) + P̂(C1,Ξ)

2

∣∣∣∣∣ ≤ 3

|Ξ|
, (2.10)

Also, p(C) = (p(C0) + p(C1))/2 by its definition. Subsequently, there exists σ ∈ {0, 1} such that∣∣∣P̂(Cσ,Ξ)− p(Cσ)
∣∣∣ ≥ ∣∣∣P̂(C,Ξ)− p(C)

∣∣∣− 3

|Ξ|
. (2.11)

Recall that n ∈ N is a standard integer. Let C(0) ≜ C, and C(1) ≜ Cσ. By the procedure defined above,
for every 1 ≤ i ≤ n, we can define C(i) as the circuit obtained from C(i−1) by fixing the rightmost input bit
such that ∣∣∣P̂(C(i),Ξ)− p(C(i))

∣∣∣ ≥ ∣∣∣P̂(C(i−1),Ξ)− p(C(i−1))
∣∣∣− 3

|Ξ|
,

and therefore by Equation (2.9) we eventually have∣∣∣P̂(C(n),Ξ)− p(C(n))
∣∣∣ ≥ ε− 6 · (n+ 1)

|Ξ|
> 0.

Note that the circuit C(n) has input length 0 and as a consequence computes a constant function. The value
p(C(n)) ∈ {0, 1} is its acceptance probability. Since M(P̂) is admissible, it satisfies the Boundary Axiom,

and consequently P̂(C(n),Ξ) = p(C(n)). This contradicts the above inequality.
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Definition 2.6. Among the standard models of APX, the one that interprets P by the exact counting
function is called the exact standard model of APX, denoted by M∗.

Proposition 2.7 (Soundness of APX). Provable equations in APX are true in any standard model of APX.

Proof. This can be verified by induction on the proof.

2.4 First-Order Theory APX1

In analogy with the first-order theory PV1, we will introduce a first-order theory APX1 that includes all
APX provable equations as well as convenient deduction rules.

Language of APX1. The language of the first-order theory APX1 includes all PV(P) symbols.

Axioms of APX1. The theory is axiomatized by the standard first-order logic with equality together with
the following non-logical axiom schemes:

• For any provable equation s(x⃗) = t(x⃗) of APX, ∀x⃗ s(x⃗) = t(x⃗) is an axiom of APX1.

• ∀x ∀y (x = y ↔ si(x) = si(y)), i ∈ {0, 1}, is an axiom of APX1.

• ∀x ε ̸= si(x) is an axiom of APX1.

• ∀x s0(x) ̸= s1(x) is an axiom of APX1.

• (n-induction). Let φ be a quantifier-free formula and x1, . . . , xn, y⃗ be variables. Suppose that φ does
not contain free variables other than x1, . . . , xn and y⃗. Then

∀y⃗

 ∧
j∈[n]

φ(xj/ε) ∧ ∀x⃗

 ∧
σ⃗∈{0,1}n

(φ→ φσ⃗)

→ ∀x⃗ φ
 ,

where φσ⃗ denotes the formula φ with all free occurrences of xi substituted by sσi
(xi) for each i ∈ [n],

is an axiom of APX1.

We observe that APX1 satisfies the following properties.

Proposition 2.8. APX1 admits a universal axiomatization.

Proof Sketch. This is essentially the same as the proof that PV admits a universal axiomatization (see
[Coo75, Kra95]). Note that all axioms of APX1 are universal sentences except for the n-induction axiom
scheme, which is a ∀∃-sentence. In more detail, the n-induction axiom scheme is logically equivalent to the
following sentence: For every y⃗ and x⃗ = (x1, . . . , xn) satisfying that

• φ(xj/ε) for every j ∈ [n], and

• ¬φ,

there exists an x⃗′ = (x′1, . . . , x
′
n) and σ⃗ = (σ1, . . . , σn) ∈ {0, 1}n such that φ(x⃗/x⃗′) is true but φ(x⃗/x⃗′σ) is

false, where x⃗′σ ≜ (sσ1
(x′1), . . . , sσn

(x′n)). Nevertheless, there is a straightforward polynomial-time algorithm
that outputs such x⃗′ given x⃗ and y⃗ by considering prefixes of x⃗, and the correctness of the algorithm can be
proved in PV(P). This can be used to show that the n-induction axiom scheme can be derived from other
axiom schemes and APX1 admits a universal axiomatization.

Proposition 2.9. APX1 is conservative over APX.

Proof Sketch. The proof is essentially the same as the proof that PV1 is conservative over PV. We refer
interested readers to [Coo75, Bus86, Kra95] for more details.
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Similar to PV1 (see [KPT91]), we can show that a form of induction principle on quantifier-free formulas
is provable in APX1. In order to state this result, we need to make some remarks about notation.

Recall that we assume a straightforward encoding of natural numbers, such as the dyadic encoding in
[Coo75], and use [x]N to denote the natural number encoded by x. Let LessN(x, y) be the PV function that
outputs 1 if (in the standard model) [x]N < [y]N and outputs 0 otherwise. We use [x < y] as a shorthand
for LessN(x, y). We use ∀x < y φ(x) as a shorthand for ∀x ([x < y] = 1 → φ(x)), and ∃x < y φ(x) as a
shorthand for ∃x ([x < y] = 1 ∧ φ(x)).

Theorem 2.10. Let φ(x, y⃗) be a quantifier-free formula. Then APX1 proves

∀y⃗ ∀b (φ(0, y⃗) ∧ ∀x < b (φ(x, y⃗)→ φ(x+ 1, y⃗))→ φ(b, y⃗)) ,

where 0 is the PV-term encoding 0 ∈ N and + is the PV-function for addition of natural numbers.

Proof Sketch. The proof is essentially the same as the admissibility proof of such induction scheme in PV1,
following a binary search argument. We refer interested readers to [Coo75, Bus86, KPT91, Kra95] for more
details.

Models of APX1. Any model M(P) of APX induces a model of APX1 with the same universe and inter-
pretation for PV(P) terms. In particular, a model of APX1 is said to be a standard model if it is derived from
any standard model of APX. A first-order sentence φ in the language of APX1 is said to be a true sentence
if it is true in any standard model. We provide two examples:

• Let Cn,m ≡ 0 be a constant circuit that takes (x, y) ∈ {0, 1}n × {0, 1}m. The sentence

∀n ∈ Log ∀m ∈ Log ∀x ∈ {0, 1}n ∀δ−1 ∈ Log Pδ(C(x, ·)) ≤ 2δ

in suitable formalization, is a true sentence as it holds when Pδ(·) is interpreted as any valid approximate
counting oracle with additive error δ.

• For the same circuit Cn,m, the sentence

∀n ∈ Log ∀m ∈ Log ∀x ∈ {0, 1}n ∀δ−1 ∈ Log Pδ(C(x, ·)) = 0

is true in the exact standard model, but is not true in the standard model where Pδ(C(x, ·)) ≜ δ and
Pδ(D) ≜ 0 when D ̸= C(x, ·). Therefore it is not a true sentence.

Proposition 2.11 (Soundness of APX1). Any provable sentence φ in APX1 is a true sentence.

Proof. This can be verified by induction on the proof.

3 Probabilistic Reasoning in APX1

In this section, we prove meta-theorems that exhibit the robustness of the approximate counting function
in APX1 and develop basic concepts such as (approximate) expectation and variance for feasibly defined
random variables.

3.1 Consistency of Approximate Counting

We now state a couple of meta-theorems indicating that the approximate counting functionality provided
in APX is consistent in a strong sense.
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3.1.1 Global Consistency of Approximate Counting

Monotonicity. Suppose that there are two circuits C1, C2 : {0, 1}n → {0, 1} satisfying that C1(x) ≤ C2(x)
for every x ∈ {0, 1}n. Then the acceptance probability of C1(x) is at most that of C2(x). Therefore, if P is a
function for approximate counting, the acceptance probability of C1 reported by P should be no larger than
the reported acceptance probability of C2 plus twice the precision of counting. Formally:

Lemma 3.1. APX1 proves that

∀n ∈ Log ∀C1, C2 ∈ Bn ∀δ−1 ∈ Log ∀β−1 ∈ Log(
(∀x ∈ {0, 1}n C1(x) ≤ C2(x)→ Pδ(C1) ≤ Pδ(C2) + 2 · δ + β

)
.

Proof. We argue in APX1. Fix y⃗ and n, δ−1, β−1 ∈ Log and circuits C1, C2 ∈ Bn. Suppose that ∀x C1(x) ≤
C2(x). We will prove that

Pδ(C1) ≤ Pδ(C2) + 2 · δ + β.

Let η−1 ∈ Log be a parameter to be determined later, and Ck,x
1 , Ck,x

2 : {0, 1}n−k → {0, 1} be the circuits
obtained by fixing the rightmost k bits of C1, C2 by x ∈ {0, 1}k, respectively.

We will prove that Pη(C1) ≤ Pη(C2) + 6 · n · η. This suffices as we can pick η = 1/(100 · n · β) and apply
the Precision Consistency Axiom.

Towards a contradiction, assume that Pη(C1) > Pη(C2) + 6 · n · η. We will design a P-oracle algorithm
that, for any such C1, C2 and k ≤ n, outputs a string x of length k that satisfies the invariant

Pη(Ck,x
1 ) > Pη(Ck,x

2 ) + 6 · (n− k) · η.

Moreover, the correctness of the algorithm can be proved in APX1. The algorithm is an iterative algorithm
that considers k = 0, 1, . . . , n:

• For k = 0, the algorithm outputs ε. This is correct as C0,ε
1 = C1, C2 = C0,ε

2 , and as a consequence the
required statement follows from the assumption that Pη(C1) > Pη(C2) + 6 · n · η.

• Now suppose the algorithm could output a string x ∈ {0, 1}k such that

Pη(Ck,x
1 ) > Pη(Ck,x

2 ) + 6 · (n− k) · η.

Our goal is to output a string x′ ∈ {0, 1}k+1 such that

Pη(Ck+1,x′

1 ) > Pη(Ck+1,x′

2 ) + 6 · (n− k − 1) · η.

Note that by the Local Consistency Axiom13, we know that

Pη(Ck,x
1 ) ≥ (1/2) · (Pη(Fix(Ck,x

1 , 0)) + Pη(Fix(Ck,x
1 , 1)))− 3 · η;

Pη(Ck,x
2 ) ≤ (1/2) · (Pη(Fix(Ck,x

2 , 0)) + Pη(Fix(Ck,x
2 , 1))) + 3 · η.

Subsequently, there must be σ ∈ {0, 1} such that Pη(Fix(Ck,x
1 , σ)) > Pη(Fix(Ck,x

2 , σ))+6 · (n−k−1) ·η.

The algorithm queries the P-oracle, finds such σ ∈ {0, 1}, and outputs x′ ≜ σ ◦ x. This satisfies the

invariant, as Fix(Ck,x
1 , σ) = Ck,σ◦x

1 and Fix(Ck,x
2 , σ) = Ck,σ◦x

2 .

It is clear that the correctness of the algorithm can be proved in APX1 using induction for open formulas.14

It follows that as we fix k = n, the algorithm provably outputs x⋆ ∈ {0, 1}n such that Pη(Cn,x⋆

1 ) > Pη(Cn,x⋆

2 ),
under the assumption that Pη(C1) > Pη(C2) + 6 · n · η. Note that Cn,x

1 and Cn,x
2 are circuits that do not

read their inputs and output C1(x⋆) and C2(x⋆), respectively. This violates the Boundary Axiom, since
C1(x) ≤ C2(x) for every x ∈ {0, 1}n.

13Here, the parameter β in the Local Consistency Axiom is set to η.
14Formally, we use n-induction for n = 1, and rely on the fact that open formulas are expressive enough, i.e., the language of

APX1 includes the function symbol P and oracle polynomial-time functions with access to P.
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Global Consistency. A corollary of monotonicity is that if two circuits are provably identical, their
acceptance probabilities given by the oracle P should not differ significantly. Formally:

Lemma 3.2. APX1 proves that

∀n ∈ Log ∀C1, C2 ∈ Bn ∀δ−1, β−1 ∈ Log(
(∀x ∈ {0, 1}n C1(x) = C2(x))→ |Pδ(C1)− Pδ(C2)| ≤ 2 · δ + β

)
.

Proof. We can prove by Lemma 3.1 that if C1(x) = C2(x) for any x ∈ {0, 1}n, it follows that Pδ(C1) −
Pδ(C2) ≤ 2 · δ+ β and Pδ(C2)−Pδ(C1) ≤ 2 · δ+ β. Subsequently, we will have |Pδ(C1)−Pδ(C2)| ≤ 2 · δ+ β
as long as the absolute value function is properly defined.

Remark 3.3. The standard way to formalize approximate counting for a polynomial-time decidable property in
APX1 is to first translate it to a circuit C then query Pδ(C). The global consistency property shows that the
approximate counting oracle P is robust with respect to the translation of PV functions into circuits, provided
that we can prove in APX1 that the translation is functionally correct. The latter can be done already in PV1

(see, e.g., [Pic14, Section 2.4]).

3.1.2 Permutational Symmetry of Approximate Counting

Next we show that the approximate counting oracle P is permutational symmetric, in the sense that a
permutation of input variables does not change the acceptance probability given by P significantly.

Local Symmetry. As a first step, we show that swapping two adjacent input bits of a circuit does not
change the acceptance probability significantly. Concretely:

Lemma 3.4. APX1 proves that

∀n ∈ Log ∀i ∈ [n− 1] ∀C ∈ Bn ∀δ−1, β−1 ∈ Log |Pδ(C)− Pδ(Swap(C, i))| ≤ 2 · δ + β,

where Swap(C, i) is a PV-function that outputs a circuit C ′ obtained by swapping the i-th and the (i+ 1)-th
input bits (from the rightmost bit) of C.

Proof. We argue in APX1. Fix n ∈ Log, i ∈ [n− 1], C ∈ Bn, δ−1 ∈ Log, and β−1 ∈ Log. Let η−1 ∈ Log be a
parameter to be determined later.

For C ∈ Bn and |x| < n, we define Fix(C, x) as the PV function that outputs a circuit obtained by fixing
the last |x| input bits of C to x, i.e., it outputs Cx ∈ Bn−|x| such that Cx(u) = C(u ◦ x). Note that for
properly defined PV functions Swap and Fix, we can prove in PV that if |x| = i − 1, σ = (σ1, σ2) ∈ {0, 1}2,
C12

x,σ ≜ Fix(C, σ1 ◦ σ2 ◦ x) is functionally equivalent to C21
x,σ ≜ Fix(Swap(C, i), σ2 ◦ σ1 ◦ x). Moreover, we

may assume that it is provable in PV that for any circuit C ∈ Bn, x ∈ {0, 1}k, and z ∈ {0, 1}n−k−1,
Eval(Fix(C, x), si(z)) = Eval(Fix(C, si(x)), z), and that Fix(C, ε) = C.

Therefore, by the Global Consistency of approximate counting, we have that

∀x ∈ {0, 1}i−1 ∀σ ∈ {0, 1}2 |Pη(C12
x,σ)− Pη(C21

x,σ)| ≤ 3 · η. (3.1)

That is, for x ∈ {0, 1}i−1, if we arbitrarily fix the rightmost two bits of Fix(C, x) and Fix(Swap(C, i), x), their
acceptance probabilities are close. By applying Local Consistency Axiom twice and subsequently the
Global Consistency of approximate counting, we can prove that

∀x ∈ {0, 1}i−1
∣∣∣∣∣∣Pη(Fix(C, x))− (1/4)

∑
σ∈{0,1}2

Pη(C12
x,σ)

∣∣∣∣∣∣ ≤ 10 · η;

∀x ∈ {0, 1}i−1
∣∣∣∣∣∣Pη(Fix(Swap(C, i), x))− (1/4)

∑
σ∈{0,1}2

Pη(C21
x,σ)

∣∣∣∣∣∣ ≤ 10 · η̂.
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Subsequently, we know from Equation (3.1) that

∀x ∈ {0, 1}i−1 |Pη(Fix(C, x))− Pη(Fix(Swap(C, i), x))| ≤ 20 · η. (3.2)

This shows that the acceptance probabilities of C and Swap(C, i) are close when the rightmost i− 1 bits of
them are both fixed by x ∈ {0, 1}i−1.

We will now prove that
|Pη(C)− Pη(Swap(C, i))| ≤ 20 · (n+ 1) · η. (3.3)

This suffices as we can pick η ≜ β/(100 · (n+ 1)) and apply the Precision Consistency Axiom.
Suppose, towards a contradiction, that Equation (3.3) does not hold. We design an iterative algorithm

that given C, i, and k ≤ i− 1, outputs a string x of length k such that

|Pη(Fix(C, x))− Pη(Fix(Swap(C, i), x))| > 20 · (n+ 1− k) · η.

The algorithm is essentially the same as the algorithm in the proof of Lemma 3.1, i.e., it extends the string
by one bit in each iteration by querying the approximate counting oracle. In particular, the base case
k = 0 is satisfied, as Equation (3.3) does not hold. Therefore, for k = i− 1, the algorithm outputs a string
x ∈ {0, 1}i−1 such that

|Pη(Fix(C, x))− Pη(Fix(Swap(C, i), x))| > 20 · (n+ 1− i) · η ≥ 20 · η.

This violates Equation (3.2) and thus completes the proof.

Permutational Symmetry. We can then state and prove the permutational symmetry of approximate
counting by decomposing a permutation into a sequence of transformations C 7→ Swap(C, i).

We assume a straightforward encoding of permutations of [n] for n ∈ Log, and write π ∈ Sn as an
abbreviation of “π is a permutation of [n]” encoded by a straightforward PV function. Let C ∈ Bn and
π ∈ Sn be a permutation of [n]. We define Permute(C, π) be the PV function that outputs a circuit C◦π ∈ Bn

defined as (C ◦ π)(x) = C(xπn
◦ · · · ◦ xπ1

). Then we have that:

Lemma 3.5. APX1 ⊢ ∀n ∈ Log ∀π ∈ Sn ∀C ∈ Bn ∀δ−1, β−1 ∈ Log |Pδ(C)− Pδ(C ◦ π)| ≤ 2 · δ + β.

Proof Sketch. Under a straightforward encoding of permutations of [n], we can prove in PV that there is a
list ℓ = (i1, . . . , ik) for some k ∈ Log such that C ◦ π is functionally equivalent to Ck defined as

C0 ≜ C, Cj ≜ Swap(Cj−1, ij) (j ∈ [k]).

By induction on j, we can prove by applying Lemma 3.4 that for any η ∈ Log, |Pη(C)− Pη(Cj)| ≤ 3 · j · η.
This, together with the Global Consistency of approximate counting, implies that

|Pη(C)− Pη(C ◦ π)| ≤ 3 · (k + 1) · η.

We then prove the lemma by taking η ≜ β/(10 · (k + 1)) and applying the Precision Consistency
Axiom.

3.1.3 Existence Lemma for Approximate Counting

An important counting principle is that if a mathematical object can be sampled with non-zero proba-
bility, then it must exist. This simple result is the bedrock of the celebrated probabilistic method in com-
binatorics (see, e.g., [AS16]). The following lemma formalizes the principle in the context of approximate
counting:

Lemma 3.6. APX1 ⊢ ∀n, δ−1, β−1 ∈ Log ∀C ∈ Bn (β > 0 ∧ Pδ(C) > δ + β → ∃x ∈ {0, 1}n C(x) = 1.
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Proof. We argue in APX1. Fix any n, δ−1, β−1 ∈ Log and n-input circuit C ∈ Bn. Suppose that β > 0 and
Pδ(C) > δ + β, and let η−1 ∈ Log be determined later.

By the Precision Consistency Axiom, we can see that Pη(C) ≥ β−η. Suppose, towards a contradic-
tion, that for every x ∈ {0, 1}n, C(x) = 0. In such case, C(x⃗) is equivalent to the circuit Nulln that always
outputs 0. By the Global Consistency of approximate counting, we have that

Pη(Nulln) ≥ Pη(C)− 3η ≥ β − 4η.

Let η = β/10. We have that Pη(Nulln) > 3η, which leads to a contradiction with the Boundary Axiom.

We note that a more general version of the principle will be proved in Section 3.2.3 following a similar
but more complicated argument, which will be later used to prove the linearity of approximate expectation.

3.1.4 Approximate Counting for Concrete Circuits

In this subsection, we consider the behavior of the approximate counting oracle on concrete circuits: the
“less-than-t” circuit that parses its input as a number and outputs 1 if it is less than a fixed threshold, and
circuits with a small number of inputs.

“Less-than-t” Circuits. Let t ∈ {0, 1, . . . , 2n}, C<t : {0, 1}n → {0, 1} be the circuit that parses its input
as the binary encoding of a number x ∈ {0, 1, . . . , 2n − 1} and accepts if and only if x < t. The following
lemma shows in APX1 that the acceptance probability of C<t is approximately t/2n, as expected.

Lemma 3.7 (Less-than-t Circuits). APX1 ⊢ ∀n, δ−1, β−1 ∈ Log ∀t ∈ {0, 1, . . . , 2n} |Pδ(C<t)− t/2n| ≤ δ+β.

Proof. We argue in APX1. Fix n, δ−1, β−1, t ∈ {0, 1, . . . , 2n}. Let η−1 ∈ Log be a parameter to be determined
later. Note that when t = 2n, C<t is functionally equivalent to Truen, and thus the lemma immediately
follows from the Global Consistency and Boundary Axiom.15 In the rest of the proof, we assume t < 2n.

Suppose, towards a contradiction, that |Pδ(C≤t)− t/2n| > δ + β. By the Precision Consistency
Axiom, we have that |Pη(C<t)− Pδ(C<t)| ≤ δ + 2η, and subsequently

|Pη(C<t)− t/2n| > β − 2η.

We may assume that the rightmost bit of t is the most significant bit; this is without loss of generality by
the Permutational Symmetry of approximate counting.

We will design an P-oracle iterative algorithm that, in the i-th iteration, outputs ti ∈ {0, 1, . . . , 2n−i− 1}
satisfying the following condition:

• Let Ci : {0, 1}n−i → {0, 1} be the circuit that parses its input as a number x ∈ {0, 1, . . . , 2n−i−1} and
outputs 1 if x < ti. Then

∣∣Pη(Ci)− ti/2n−i
∣∣ > β − 20η · (i+ 1).

The algorithm starts with t0 ≜ t (and thus C0 ≜ C<t). In the i-th iteration, the algorithm considers the
rightmost bit (i.e. the most significant bit) of ti. Recall that Fix(C, b) outputs the circuit obtained from C
by fixing the rightmost input bit to be b.

If the rightmost bit of ti is 0, the algorithm outputs ti+1 ≜ ti. It is clear that Fix(Ci, 1) is functionally
equivalent to the Nulln−i−1, and thus by the Global Consistency and Boundary Axiom, Pη(Fix(Ci, 1)) ≤ 3η.
Let Ci+1 be the circuit that parses its input as a number x ∈ {0, 1, . . . , 2n − 1} and outputs 1 if x < ti+1. It
follows that Fix(Ci, 0) is functionally equivalent to Ci+1, and thus by the Global Consistency of approximate

15For this step to hold, we need for C<t to be provably equivalent to Truen. This will hold in PV1 for a natural implementation
of the circuits C<t.
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counting, |Pη(Fix(Ci, 0))− Pη(Ci+1)| ≤ 3η. Subsequently:∣∣Pη(Ci+1)− ti+1/2
n−i−1∣∣

≥
∣∣Pη(Fix(Ci, 0))− ti+1/2

n−i−1∣∣− 3η

≥
∣∣Pη(Fix(Ci, 0)) + Pη(Fix(Ci, 1))− ti+1/2

n−i−1∣∣− 6η

= 2 ·
∣∣∣∣Pη(Fix(Ci, 0)) + Pη(Fix(Ci, 1))

2
− ti+1

2n−i

∣∣∣∣− 6η

≥ 2 ·
∣∣Pη(Ci)− ti/2n−i

∣∣− 12η (Local Consistency Axiom)

> β − 20η · (i+ 1)− 12η ≥ β − 20η · (i+ 2).

If the rightmost bit of ti is 1, the algorithm outputs ti+1 = ti−2n−i−1. It is clear that Fix(Ci, 0) is function-
ally equivalent to Truen−i+1, and thus by the Global Consistency and Boundary Axiom, |Pη(Fix(Ci, 0))−
1| ≤ 3η. Let Ci+1 be the circuit that parses its input as a number x ∈ {0, 1, . . . , 2n − 1} and outputs 1 if
x < ti+1. It follows that Fix(Ci, 1) is functionally equivalent to Ci+1, and thus by the Global Consistency of
approximate counting, |Pη(Fix(Ci, 1))− Pη(Ci+1)| ≤ 3η. Subsequently:∣∣Pη(Ci+1)− ti+1/2

n−i−1∣∣
≥
∣∣Pη(Fix(Ci, 1))− ti+1/2

n−i−1∣∣− 3η

≥
∣∣Pη(Fix(Ci, 0))− 1 + Pη(Fix(Ci, 1))− ti+1/2

n−i−1∣∣− 6η

= 2 ·
∣∣∣∣Pη(Fix(Ci, 0)) + Pη(Fix(Ci, 1))

2
− ti+1 + 2n−i−1

2n−i

∣∣∣∣− 6η

= 2 ·
∣∣∣∣Pη(Fix(Ci, 0)) + Pη(Fix(Ci, 1))

2
− ti

2n−i

∣∣∣∣− 6η

≥ 2 ·
∣∣Pη(Ci)− ti/2n−i

∣∣− 12η (Local Consistency Axiom)

> β − 20η · (i+ 1)− 12η ≥ β − 20η · (i+ 2).

It is clear that the correctness of the algorithm follows from the induction principle for polynomial-
time verifiable properties allowed by the n-Induction Axiom of APX1. Therefore, after n iterations, the
algorithm will output tn = 0 such that the acceptance probability of the circuit Cn ≡ Null0 is at least
β − 20η · (n + 1). By setting η ≜ β/(40n + 40), we can conclude a contradiction using the Boundary
Axiom.

Circuits with Short Inputs. For circuits C : {0, 1}n → {0, 1} such that n ∈ LogLog it is feasible
to enumerate all inputs of C. The following lemma shows that Pδ(C) is consistent with its acceptance
probability computed via the brute-force algorithm.

Lemma 3.8 (Brute Force Counting Lemma). APX1 proves the following statement. For every n ∈ LogLog,
circuit C ∈ Bn, and δ

−1, β−1 ∈ Log, let t be the number of accepting inputs of C. Then |Pδ(C)−t/2n| ≤ δ+β.
In particular, if δ ≤ 2−n−1, t is the nearest integer to Pδ(C) · 2n.

The proof of the lemma employs the Local Consistency Axiom and the Precision Consistency
Axiom. We will formalize the argument using the following general tool: If there is a sequence of circuits
serving as an approximating counting algorithm for a circuit C, in the sense that it satisfies the boundary
condition and is locally consistent, then the acceptance probability estimated by the algorithm is necessarily
close to Pδ(C). Formally:

Lemma 3.9 (Dueling Lemma). APX1 proves the following statement. Let n ∈ Log, C ∈ Bn be a circuit, and
P0, P1, . . . , Pn be circuits that output rational numbers such that Pi is of input length i. Let δ−1, η−1 ∈ Log.
Suppose that for every i < n and every x ∈ {0, 1}i,∣∣∣∣Pi(x)− Pi+1(x ◦ 0) + Pi+1(x ◦ 1)

2

∣∣∣∣ ≤ η;
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and that for every x ∈ {0, 1}n, Pn(x) = C(x). Then |Pδ(C)− P0| ≤ δ + 4η · (n+ 1).

Proof. We argue in APX1. Fix n ∈ Log, C ∈ Bn, the circuits P0, P1, . . . , Pn, and δ−1, η−1 ∈ Log. Suppose
that it satisfies the two conditions in the lemma. Assume for contradiction that |Pδ(C)−P0| > δ+3η ·(n+1).
By the Precision Consistency Axiom, we have that |Pη(C)− P0| > 4η · n+ 3η.

Let Cx be the circuit obtained by fixing the rightmost |x| bits of C to be x. Consider the following
algorithm that, in the i-th iteration, outputs xi ∈ {0, 1}i such that |Pη(Cxi) − Pi(xi)| > 4η · (n − i) + 3η.

The algorithm starts with x0 ≜ ε. In the i-th iteration, we know by the Local Consistency Axiom that

|Pη(Cxi)− Pi(xi)| ≤
∣∣∣∣Pη(C0◦xi) + Pη(C1◦xi)

2
− Pi(xi)

∣∣∣∣+ 3η

≤
∣∣∣∣Pη(C0◦xi) + Pη(C1◦xi)

2
− Pi+1(0 ◦ xi) + Pi+1(1 ◦ xi)

2

∣∣∣∣+ 4η

≤ 1

2

(
|Pη(C0◦xi)− Pi+1(0 ◦ xi)|+ |Pη(C1◦xi)− Pi+1(1 ◦ xi)|

)
+ 4η.

This means that for some σ ∈ {0, 1}, |Pη(Cσ◦xi)− Pi+1(σ ◦ xi)| > 4η · (n− i− 1) + 3η. The algorithm then
proceeds by setting xi+1 = σ ◦ xi.

It is clear that the correctness of the algorithm can be proved by induction on a quantifier-free formula,
which is available in APX1. Therefore, in the n-th iteration, the algorithm outputs a string xn ∈ {0, 1}n
such that |Pη(Cxn)− Pn(xn)| > 3η. However, this violates the Boundary Axiom as Pn(xn) = C(xn), and
the circuit Cxn is a constant circuit that outputs C(xn).

Proof of Lemma 3.8. We argue in APX1. Fix n ∈ LogLog and C ∈ Bn, δ−1, β−1 ∈ Log, and let t be the
number of accepting inputs of C. Let P0, . . . , Pn be the circuits such that Pi(x) takes an i-bit input x and
outputs the acceptance probability of Cx : {0, 1}n−i → {0, 1} defined as Cx(z) = C(z ◦ x). In particular,
P0 = t/2n. Let η−1 ∈ Log be determined later.

Since n ∈ LogLog, it is provable in PV1 that P0, . . . , Pn satisfy the conditions in the Dueling Lemma.
Then |Pδ(C)− P0| = |Pδ(C)− t/2n| ≤ δ + 4η · (n+ 1). The lemma follows by setting η ≜ β/(4n+ 4).

3.2 Approximate Expectation and its Basic Theory

We now develop a theory of feasible random variables and their approximate expectation.

3.2.1 Definition of Random Variables and Approximate Expectation

We first define the approximate expectation of a discrete random variable taking values in Q. Recall that
explicit sets are sets encoded by an explicit list and, in particular, the size of explicit sets are always feasible.
To have the expectation being feasibly computable (approximately), we restrict to the setting where the
support of random variables are given as an explicit set.

Let n ∈ Log, V be an explicit set of rational numbers, and C be a multi-output circuit such that APX1

proves that
∀x ∈ {0, 1}n C(x) ∈ V.

We say that (V, n, C) defines a random variable X ≜ C(Un), and define the expectation of X as∑
v∈V

v · Pr
x

[C(x) = v],

where the probability can be implemented by the approximate counting quantifier P in APX. This leads to
the following formal definition of random variables and expectation.

Definition 3.10 (Random Variable). Let V be an explicit set of rational numbers, n ∈ Log, and C be a
multi-output circuit. We say that (V, n, C) defines a random variable X over V if ∀x ∈ {0, 1}n C(x) ∈ V .
The set V is called the support of X, C is called the sampler of X, and n is called the seed length of X.
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Definition 3.11 (Approximate Expectation). Let (V, n, C) be a tuple defining a random variable X over
V , and δ−1 ∈ Log. We define the approximate expectation of X, denoted by Eδ[X], as∑

v∈V
v · Pδ(Cv),

where Cv is the n-input circuit that given x ∈ {0, 1}n, output 1 (resp. 0) if C(x) = v (resp. C(x) ̸= v), “·”
denotes the multiplication of rational numbers, and

∑
denotes the summation of rational numbers.

We note that there is a PV(P) function E(V, n, C,∆) computing E|∆|−1 [X] for the random variable X
defined from (V, n, C); it enumerates over v ∈ V , constructs the circuit Cv, calls the oracle pv ← P(Cv,∆),
and sums over v · pv for all v ∈ V . To see that this algorithm is feasible, notice that V is an explicit set of
feasible size, and under the encoding specified in Section 2.1, the total length of all rational numbers in V is
PV-provably feasible.

For simplicity, we will use the notation C : {0, 1}n → Q to denote that C is a multi-output circuit whose
output is parsed as a rational number.

Moreover, one may think of the acceptance probability of a circuit C : {0, 1}n → {0, 1} as the expectation
of the indicating random variable IC ≜ ({0, 1}, n, C) up to a small additive error, as shown by the following
proposition. Therefore, the properties of expectation we will prove next also translate to properties of
approximate counting.

Proposition 3.12. APX1 proves the following statement. Let n, δ−1 ∈ Log and C : {0, 1}n → {0, 1} be
a Boolean circuit. Let IC ≜ ({0, 1}, n, C) be the indicator random variable for C(x) = 1. Then for any
β−1 ∈ Log, |Pδ(C)− Eδ[IC ]| ≤ 2δ + β.

Proof. We argue in APX1. Fix n, δ−1, β−1 ∈ Log and a circuit C : {0, 1}n → {0, 1}. By the definition of
approximate expectation, we know that Eδ[IC ] = 1 · Pδ[C1], where C1(x), C(x) are functionally equivalent
circuits. By the Global Consistency of approximate counting, we have that

|Pδ(C)− Eδ[IC ]| = |Pδ(C)− Pδ[C1]| ≤ 2δ + β.

3.2.2 Basic Properties of Approximate Expectation

Precision Consistency. Similar to the Precision Consistency Axiom for approximate counting, the
definition of approximate expectation is consistent with respect to different precisions as shown in the
proposition below.

Proposition 3.13. APX1 proves the following statement. Let n, δ−11 , δ−12 ∈ Log, C : {0, 1}n → Q, V ⊆ Q
be an explicit set such that ∀x ∈ {0, 1}n C(x) ∈ V . Let X be the random variable defined by (V, n, C). Then
for every β−1 ∈ Log,

|Eδ1 [X]− Eδ2 [X]| ≤ (δ1 + δ2 + β) · ∥V ∥,
where ∥V ∥ ≜

∑
v∈V |v| is the ℓ1-norm of V and |v| denotes the absolute value of the rational v.

Proof. We argue in APX1. Recall that Cv is the circuit that outputs 1 if C(x) = v, and outputs 0 otherwise.
By the definition of approximate counting, we can see that

|Eδ1 [X]− Eδ2 [X]| =

∣∣∣∣∣∑
v∈V

v · Pδ1(Cv)−
∑
v∈V

v · Pδ2(Cv)

∣∣∣∣∣
≤

∣∣∣∣∣∑
v∈V

v · (Pδ1(Cv)− Pδ2(Cv)

∣∣∣∣∣
≤

∣∣∣∣∣∑
v∈V

v · (δ1 + δ2 + β)

∣∣∣∣∣ ≤ (δ1 + δ2 + β) · ∥V ∥,

where the second last inequality follows from the Precision Consistency Axiom.
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Local Consistency. Similarly, we can prove that approximate expectation is locally consistent by fixing
the rightmost bit of the random seed to be 0 or 1 randomly. Formally:

Proposition 3.14. APX1 proves the following statement. Let n, δ−1 ∈ Log, C : {0, 1}n → Q, V ⊆ Q be an
explicit set such that ∀x ∈ {0, 1}n C(x) ∈ V . Let X be the random variable defined by (V, n, C). Then for
every β−1 ∈ Log, ∣∣∣∣Eδ[X]− Eδ[X|0] + Eδ[X|1]

2

∣∣∣∣ ≤ (2δ + β) · ∥V ∥,

where ∥V ∥ ≜
∑

v∈V |v| is the ℓ1 norm of V , and for b ∈ {0, 1}, X|b denotes the random variable defined by
(V, n− 1,Fixb(C)).

Proof. We argue in APX1. Let η−1 ∈ Log be determined later. Recall that Fixb(C) outputs the circuit
obtained by fixing the rightmost input bit of C to be b, where b ∈ {0, 1}. By the Local Consistency
Axiom, we know that for every v ∈ V ,∣∣∣∣Pη(Cv)− Pη(Fix(Cv, 0)) + Pη(Fix(Cv, 1))

2

∣∣∣∣ ≤ 3η.

By the definition of approximate counting, we can calculate that∣∣∣∣Eη[X]− Eη[X|0] + Eη[X|1]

2

∣∣∣∣
=

∣∣∣∣∣∑
v∈V

v · Pη(Cv)− 1

2

(∑
v∈V

v · Pη((Fix0(C))v) +
∑
v∈V

v · Pη((Fix1(C))v)

)∣∣∣∣∣
≤

∣∣∣∣∣∑
v∈V

v · Pη(Cv)− 1

2

(∑
v∈V

v · Pη(Fix0(Cv)) +
∑
v∈V

v · Pη(Fix1(Cv))

)∣∣∣∣∣+ 3η · ∥V ∥ (Global Consistency)

=
∑
v∈V
|v| ·

∣∣∣∣Pη(Cv)− Pη(Fix(Cv, 0)) + Pη(Fix(Cv, 1))

2

∣∣∣∣+ 3η · ∥V ∥

≤ 6η · ∥V ∥.

The result follows from the Precision Consistency of Expectation by taking η ≜ β/10.

Consistency in Support Extension. Suppose that X is a random variable defined by the tuple (V, n, C).
Consider an explicit set V ′ such that V ⊆ V ′. We can define another random variable X ′ that is essentially
the same as X by considering the tuple (V ′, n, C). The following proposition shows that the expectation of
X ′ and X are nearly the same, i.e., a support extension does not affect the expectation of a random variable
significantly.

Proposition 3.15. APX1 proves the following statement. Let n, δ−1, β−1 ∈ Log, C : {0, 1}n → Q, V, V ′ ⊆ Q
be explicit sets such that ∀x ∈ {0, 1}n C(x) ∈ V ⊆ V ′. Let X be the random variable defined by (V, n, C),
and X ′ be the random variable defined by (V ′, n, C). Then:

|Eδ[X]− Eδ[X ′]| ≤ (2δ + β) · ∥V ′ \ V ∥ ≤ (2δ + β) · ∥V ′∥.

where ∥V ′ \ V ∥ =
∑

v∈V ′\V |v| is the ℓ1-norm of V ′ \ V .

Proof. We argue in APX1. By the definition of approximate expectation, we know that

|Eδ[X]− Eδ[X ′]| =

∣∣∣∣∣∣
∑

v∈V ′\V

v · Pδ(Cv)

∣∣∣∣∣∣ ≤
∑

v∈V ′\V

|v| · Pδ(Cv), (3.4)
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where Cv(x) outputs 1 if C(x) = v, and 0 otherwise. Therefore it suffices to prove that Pδ(Cv) ≤ 2δ + β
for v ∈ V ′ \ V . Fix any v ∈ V ′ \ V . Note that since C(x) ∈ V for x ∈ {0, 1}n, we know that C(x) ̸= v
and thus Cv is (provably) functionally equivalent to Nulln. The desired bound then follows from the Global
Consistency of approximate counting using that Pδ(Nulln) = 0 by the Boundary Axiom.

Permutational Symmetry. Suppose that X,X ′ are random variables defined by the tuples (V, n, C) and
(V, n, C ◦π), where π ∈ Sn denotes a permutation of the input bits. Similar to the Permutational Symmetry
of approximate counting, we will show that E[X] ≈ E[X ′].

Proposition 3.16. APX1 proves the following statement. Let n, δ−1, β−1 ∈ Log, C : {0, 1}n → Q, V ⊆ Q
be an explicit set such that ∀x ∈ {0, 1}n C(x) ∈ V . Let π ∈ Sn be a permutation of the input bits. Let X,X ′

be the random variables defined by (V, n, C) and (V, n, C ◦ π), respectively. Then:

|Eδ[X]− Eδ[X ′]| ≤ (2δ + β) · ∥V ∥,

where ∥V ∥ is the ℓ1-norm of V .

Proof. We argue in APX1. Let η−1 ∈ Log be determined later. We can calculate that

|Eη[X]− Eη[X ′]| ≤
∑
v∈V
|v| · |Pη(Cv)− Pη((C ◦ π)v)|

≤
∑
v∈V
|v| · |Pη(Cv)− Pη(Cv ◦ π)|+ 3η · ∥V ∥

≤ 6η · ∥V ∥.

Here, the second line follows from Global Consistency of approximate counting, and the third line follows
from the Permutational Symmetry of approximate counting. Subsequently, the proposition follows from the
Precision Consistency of Expectation by taking η ≜ β/10.

3.2.3 Averaging Argument for Expectation

We will prove a general version of the averaging argument that allows us to search for a suffix of the seed
such that the given linear combination of expectations of random variables X1, . . . , Xm is approximately
preserved after fixing part of the seed.

Suppose thatX1, . . . , Xm are random variables supported on V defined by a sequence of circuits C1, . . . , Cm,
each with seed length n, i.e., for each i ∈ [m] and every x ∈ {0, 1}n, Ci(x) ∈ V . Let δ−1 ∈ Log. Let
λ1, . . . , λm ∈ Q be coefficients, and consider the quantity

µn,m,δ,λ⃗ ≜ λ1 · Eδ[X1] + λ2 · Eδ[X2] + · · ·+ λm · Eδ[Xm]. (3.5)

Let z ∈ {0, 1}k for k ∈ [n]. We can define the random variable Xi|z for each i ∈ [m] from (V, n−k,Fix(Ci, z)),
where Fix(Ci, z) outputs the circuit obtained from Ci by fixing the rightmost k bits to z. That is, Xi|z is
the random variable obtained by fixing the last k input bits of Ci to be z.16 Let µn,m,δ,λ⃗|z be the quantity

µn,m,δ,λ⃗|z ≜ λ1 · Eδ[X1|z] + λ2 · Eδ[X2|z] + · · ·+ λm · Eδ[Xm|z]. (3.6)

Theorem 3.17 (Averaging Argument for Expectation). APX1 proves the following statement. Let n,m, δ−1 ∈
Log, C1, . . . , Cm : {0, 1}n → Q be circuits, V ⊆ Q be an explicit set such that ∀x ∈ {0, 1}n ∀i ∈ [m] Ci(x) ∈
V , and λ⃗ = (λ1, . . . , λm) be a list of length m such that λi ∈ Q for i ∈ [m].

Then for every k ∈ [n] and β−1 ∈ Log, there is a z ∈ {0, 1}k such that

µn,m,δ,λ⃗|z ≥ µn,m,δ,λ⃗ − (2δ + β) · ∥V ∥ · ∥λ⃗∥, (3.7)

where ∥V ∥ ≜
∑

v∈V |v| and ∥λ⃗∥ ≜
∑

i∈[m] |λi| are the ℓ1-norm of V and λ, respectively, and µn,m,δ,λ⃗ and

µn,m,δ,λ⃗|z are defined by Equation (3.5) and Equation (3.6), respectively.
16This is without loss of generality by the Permutational Symmetry of Expectation.
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Proof. We argue in APX1. Fix n,m, δ−1 ∈ Log, C1, . . . , Cm : {0, 1}n → Q, let V ⊆ Q be an explicit set,

λ⃗ = (λ1, . . . , λm) ∈ Q, k ∈ [n], β−1 ∈ Log. Recall that by definition, we have that for each b ∈ {0, 1},

µn,m,η,λ⃗|z = λ1 · Eδ[X1|z] + · · ·+ λm · Eδ[Xm|z]; (3.8)

µn,m,η,λ⃗|z◦b = λ1 · Eδ[X1|z◦b] + · · ·+ λm · Eδ[Xm|z◦b]. (3.9)

We will design a P-oracle polynomial-time algorithm AvgSampler(π) that takes

π ≜ (1n, 1m, 1δ
−1

, C1, . . . , Cm, V, λ⃗, 1
k, 1β

−1

)

as its input and outputs z ∈ {0, 1}k such that Equation (3.7) holds. Theorem 3.17 then follows if the
correctness of AvgSampler(π) can be proved in APX1.

AvgSampler(π) is an iterative algorithm on k (i.e. the length of z). We will prove the invariant that for
any k ∈ {0, 1, . . . , n}, the algorithm AvgSampler(π) outputs a string z ∈ {0, 1}k such that

µn,m,η,λ⃗|z ≥ µn,m,η,λ⃗ − 3k · η · ∥V ∥ · ∥λ⃗∥ (3.10)

where η−1 ∈ Log. We note that if this is possible, we can set η ≜ β/(3n+ 3) so that Equation (3.7) follows
from the Precision Consistency of Expectation. Specifically, we can see that∣∣∣µn,m,η,λ⃗|z − µn,m,δ,λ⃗|z

∣∣∣
= |λ1 · (Eη[X1|z]− Eδ[X1|z]) + · · ·+ λm · (Eη[Xm|z]− Eδ[Xm|z])|

≤ |λ1 · (δ + 2η) · ∥V ∥+ · · ·+ λm · (δ + 2η) · ∥V ∥| ≤ (δ + 2η) · ∥λ⃗∥ · ∥V ∥

and similarly ∣∣∣µn,m,η,λ⃗ − µn,m,δ,λ⃗

∣∣∣ ≤ (δ + 2η) · ∥λ⃗∥ · ∥V ∥.

Equation (3.7) then follows from the triangle inequality.
For k = 0, AvgSampler(π) outputs ε, and Equation (3.10) holds as µn,m,y⃗,η,λ⃗|z = µn,m,y⃗,η,λ⃗ by definition.

Suppose that it has already obtained a string z ∈ {0, 1}k such that Equation (3.10) holds. Our goal is to
choose a bit b ∈ {0, 1} such that

µn,m,η,λ⃗|b◦z ≥ µn,m,η,λ⃗ − 3(k + 1) · η · ∥V ∥ · ∥λ⃗∥.

For each i ∈ [m], we know by the Local Consistency of Expectation that∣∣∣∣Eη[Xi|z]− Eη[Xi|0◦z] + Eη[Xi|1◦z]

2

∣∣∣∣ ≤ 3η · ∥V ∥

It then follows that ∣∣∣∣∣µn,m,η,λ⃗|z −
µn,m,η,λ⃗|0◦z + µn,m,η,λ⃗|1◦z

2

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈[m]

λi ·
(
Eη[Xi|z]− Eη[Xi|0◦z] + Eη[Xi|1◦z]

2

)∣∣∣∣∣∣ ≤ 3η · ∥λ⃗∥ · ∥V ∥.

Therefore, for some b ∈ {0, 1}, we will have that µn,m,η,λ⃗|b◦z ≥ µn,m,η,λ⃗|z−3η · ∥λ⃗∥ ·∥V ∥, which subsequently
implies that

µn,m,η,λ⃗|b◦z ≥ µn,m,η,λ⃗|z − 3η · ∥λ⃗∥ · ∥V ∥ ≥ µn,m,η,λ⃗ − 3(k + 1) · η · ∥λ⃗∥ · ∥V ∥.

The algorithm AvgSampler can use the P-oracle to determine b and output b◦z. This completes the proof.
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3.2.4 Complementation

An easy corollary of the Averaging Argument for Expectation is complementary counting. That is, if X
is a random variable over {0, 1} and X ≜ 1−X, then E[X] = 1− E[X]. Formally:

Corollary 3.18 (Complementary Counting). APX1 proves the following statement. Let n, δ−1, β−1 ∈ Log,
C1, C2 ∈ Bn such that for every x ∈ {0, 1}n, C1(x) ̸= C2(x). Then |Pδ(C1)+Pδ(C2)−1| ≤ 2δ+β. Moreover,
let X1, X2 be the indicator random variables of C1, C2 over {0, 1}, respectively. Then |Eδ[X1]+Eδ[X2]−1| ≤
2δ + β.

Proof. We argue in APX1. Fix n, δ−1, β−1 ∈ Log, C1, C2 ∈ Bn. Let η−1 ∈ Log be determined later, and
X1, X2 be the indicator random variables of C1 and C2, respectively. It is clear that for any total assignment
ρ to the seed, Eη[X1|ρ] + Eη[X2|ρ]− 1 = 0. Therefore, by Averaging Argument for Expectation with k = n,
Eη[X1] + Eη[X2]− 1 ≤ 6η. Similarly, we can show that −Eη[X1]− Eη[X2] + 1 ≤ 6η. This implies that

|Eη[X1] + Eη[X2]− 1| ≤ 6η. (3.11)

By Proposition 3.12, we have
|Pη(C1) + Pη(C2)− 1| ≤ 12η.

Subsequently, by the Precision Consistency Axiom, we have |Pδ(C1) + Pδ(C2) − 1| ≤ 2δ + 16η. The
desired bound then follows by setting η ≜ β/30. The “Moreover” part follows from Equation (3.11) by the
Precision Consistency of Expectation.

3.2.5 Linearity of Expectation

We are now ready to prove the (approximate) linearity of expectation, one of the most useful results in
probability theory. Let X1, . . . , Xm, Y be random variables over an explicit set V . For a random seed z
of the random variables, we use Xi|z and Y |z to denote the value that Xi and Y evaluate to, respectively.
Suppose that for each random seed z, we have that

Y |z = γ + λ1 ·X1|z + λ2 ·X2|z + · · ·+ λm ·Xm|z,

for some λ1, . . . , λm ∈ Q. Then we should be able to obtain that E[Y ] is close to

γ + λ1 · E[X1] + λ2 · E[X2] + · · ·+ λm · E[Xm].

Formally, we have that:

Theorem 3.19 (Linearity of Expectation). APX1 proves the following: Let n,m, δ
−1, β−1 ∈ Log, C1, . . . , Cm :

{0, 1}n → Q be a list of circuits, λ⃗ = (λ1, . . . , λm) be a list of length m such that λi ∈ Q for i ∈ [m], γ ∈ Q,
and V ⊆ Q be an explicit set such that:

• For any x ∈ {0, 1}n and i ∈ [m], Ci(x) ∈ V .

• For any x ∈ {0, 1}n, γ + λ1 · C1(x) + λ2 · C2(x) + · · ·+ λm · Cm(x) ∈ V .

Let Xi be the random variable defined by (V, n, Ci) for i ∈ [m], and Y be the random variable defined by
(V, n, S), where S : {0, 1}n → Q is a circuit such that

S(x) = γ + λ1 · C1(x) + λ2 · C2(x) + · · ·+ λm · Cm(x).

Then:
|Eδ[Y ]− (γ + λ1 · Eδ[X1] + · · ·+ λm · Eδ[Xm])| ≤ (2δ + β) · ∥V ∥ · ∥λ⃗∥, (3.12)

where ∥V ∥ and ∥λ⃗∥ are the ℓ1-norm of V and λ, respectively.
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Proof. We argue in APX1. We first prove that Eδ[Y ]−(γ+λ1 ·Eδ[X1]+· · ·+λm ·Eδ[Xm]) ≤ (2δ+β)·∥V ∥·∥λ⃗∥.
Fix n,m, δ−1, β−1 ∈ Log, C1, . . . , Cm : {0, 1}n → Q, λ⃗, γ, and V . Let

µ ≜ 1 · Eδ[Y ] + (−λ1) · Eδ[X1] + · · ·+ (−λm) · Eδ[Xm],

and for each z ∈ {0, 1}n, we define Y |z and Xi|z to be random variable with seed length 0 as

Y |z ≜ S(z), Xi|z ≜ Ci(z), (i ∈ [m]), (3.13)

and µ|z as
µ|z ≜ 1 · Eδ[Y |z] + (−λ1) · Eδ[X1|z] + · · ·+ (−λm) · Eδ[Xm|z]. (3.14)

By the Averaging Argument for Expectation, there is a string z ∈ {0, 1}n such that µ|z ≥ µ−(2δ+β)·∥V ∥·∥λ⃗∥,
which implies that µ ≤ µ|z + (2δ + β) · ∥V ∥ · ∥λ⃗∥.

Notice that Eδ[Y |z] is defined as

Eδ[Y |z] =
∑
v∈V

v · Pδ(Sv) =
∑
v∈V

v · Bool(Sv) = S(z),

where Sv is the circuit with no input that outputs 1 if and only if S(z) = 1. The second equality follows
from the Boundary Axiom. Similarly, we can prove that for each i ∈ [m], Eδ[Xi|z] = Ci(z). Subsequently,

µ|z = S(z)− (λ1 ·C1(z) + · · ·+ λm ·Cm(z)) = γ, which further implies that µ ≤ γ + (2δ+ β) · ∥V ∥ · ∥λ⃗∥, i.e.,

Eδ[Y ]− (γ + λ1 · Eδ[X1] + · · ·+ λm · Eδ[Xm]) ≤ (2δ + β) · ∥V ∥ · ∥λ⃗∥.

Finally, we can apply the same argument to µ′ and µ′|z defined by

µ′ ≜ (−1) · Eδ[Y ] + λ1 · Eδ[X1] + · · ·+ λm · Eδ[Xm]

µ′|z ≜ (−1) · E[Y |z] + λ1 · E[X1|z] + · · ·+ λm · E[Xm|z]

to conclude that µ = −µ′ ≥ γ − (2δ + β) · ∥V ∥ · ∥λ⃗∥. This completes the proof.

3.3 Probability Inequalities

We now develop several standard inequalities related to (approximate) probability and expectation,
including the union bound, Markov’s inequality, and Chebyshev’s inequality.

3.3.1 Union Bound

Another application of the averaging argument for approximate expectation (see Theorem 3.17) is the
union bound. Recall that the acceptance probability of a circuit C can be formalized as the expectation of
its indicating random variable IC ∈ {0, 1}. Therefore the union bound can be derived from the following
principle: Let X1, . . . , Xm, Y be Boolean-valued random variables such that for any random seed z, Y |z =
X1|z ∨X2|z ∨ · · ·∨Xm|z. Then E[Y ] should not be much larger than E[X1] +E[X2] + · · ·+E[Xm]. Formally:

Theorem 3.20 (Union Bound). APX1 proves the following statement. Let n,m, δ−1, β−1 ∈ Log, C1, . . . , Cm ∈
Bn be single-output circuits, V = {0, 1}. Suppose that ∀x ∈ {0, 1}n and i ∈ [m], Ci(x) ∈ V , and let
Y,X1, . . . , Xm be random variables defined as follows.

• For each i ∈ [m], Xi is defined by (V, n, Ci).

• Y is defined by (V, n, S), where S(x) ∈ {0, 1} is a circuit such that S(x) ≤ C1(x) ∨ · · · ∨ Cm(x).

Then we have Eδ[Y ] ≤ Eδ[X1] + · · ·+ Eδ[Xm] + (2δ + β) ·m.

35



Proof. We argue in APX1. Fix n,m, δ−1, β−1 ∈ Log, C1, . . . , Cm ∈ Bn, and V = {0, 1}. For each z ∈ {0, 1}n,
we define Y |z as the random variable with seed length 0 that outputs S(z), and Xi as the random variable
with seed length 0 that outputs Ci(z) for i ∈ [m]. Let µ and µ|z be defined as

µ ≜ 1 · Eδ[Y ] + (−1) · Eδ[X1] + · · ·+ (−1) · Eδ[Xm], (3.15)

µ|z ≜ 1 · Eδ[Y |z] + (−1) · Eδ[X1|z] + · · ·+ (−1) · Eδ[Xm|z]. (3.16)

By the Averaging Argument for Expectation, we can conclude that µ ≤ µ|z + (2δ + β) ·m for some string z.
It then suffices to show that µ|z ≤ 0. Similarly to the proof of Theorem 3.19, we can prove by the

Boundary Axiom that Eδ[Y |z] = S(z) and Eδ[Xi|z] = Ci(z) for i ∈ [m]. Subsequently, we know by the
definition of µ|z and the assumption on S that

µ|z = S(z)− (C1(z) + · · ·+ Cm(z)) ≤ 0,

is provable in APX1. This completes the proof.

3.3.2 Markov’s Inequality

Next, we consider Markov’s inequality. For a random variable X over an explicit set V , we should be
able to prove that the probability that X ≥ k ·E[X] cannot be much larger than 1/k. This can be naturally
formalized as follows:

Theorem 3.21 (Markov’s Inequality). The following statement is provable in APX1. Let X be a random
variable defined by (V, n, C), where V is an explicit set of non-negative rational numbers, n ∈ Log, and
C : {0, 1}n → Q is a circuit. Let δ−1, β−1 ∈ Log, µ ∈ Q with µ ≥ Eδ[X] and µ > 0, k ∈ Q with k > 0, and
T (x) be the circuit that outputs 1 if C(x) ≥ k · µ, and outputs 0 otherwise. Then

Pδ(T ) ≤ δ + k−1 · (1 + δ · µ−1 · ∥V ∥) + β · (µ−1 · ∥V ∥+ 1),

where ∥V ∥ is the ℓ1-norm of V .

Proof. We argue in APX1. Fix n, δ−1, β−1 ∈ Log, C : {0, 1}n → Q, µ, k ∈ Q, and V . Let T (x) be the circuit
as defined above, and m = |V |. We define the following random variables:

• Y is the indicator variable of T (x), i.e., it is defined by ({0, 1}, n, T ).

• For each v ∈ V , Xv is the indicator variable of EQ(C(x), v). Formally, let Cv(x) be the circuit that
outputs 1 if and only if C(x) = v, and outputs 0 otherwise, Xv is the random variable defined by
({0, 1}, n, Cv).

Let η−1 ∈ Log be a precision parameter to be determined later, and for b ∈ {0, 1}, let C
(b)
v (x) ∈ {0, 1}

be the circuit that outputs 1 if C(x) = b. By the definition of approximate expectation, we have∑
v∈V

v · Eη[Xv] =
∑
v∈V

∑
b∈{0,1}

v · b · Pη(C(b)
v ) =

∑
v∈V

v · Pη(C(1)
v )

By the definition of Cv(x) and C
(1)
v (x), we know that C

(1)
v (x) = Cv(x), and therefore by the Global

Consistency of approximate counting, we have that

|Pη(C(1)
v )− Pη(Cv)| ≤ 3 · η.
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Subsequently, we can see from the Precision Consistency of Expectation that

µ ≥ Eδ[X] ≥ Eη[X]− (δ + 2η) · ∥V ∥ (3.17)

=
∑
v∈V

v · Pη(Cv)− (δ + 2η) · ∥V ∥ (3.18)

≥
∑
v∈V

v · Eη[Xv]− (δ + 5η) · ∥V ∥ (3.19)

≥ kµ
∑

v∈V,v≥kµ

Eη[Xv]− (δ + 5η) · ∥V ∥, (3.20)

where the last inequality uses that k, µ, and V are all nonnegative. This implies that∑
v∈V,v≥k·µ

Eη[Xv] ≤ k−1 · (1 + (δ + 5η) · µ−1 · ∥V ∥). (3.21)

Below we also rely on the following inequality, which follows from Proposition 3.12:

|Eη[Y ]− Pη(T )| ≤ 3 · η. (3.22)

It is clear from the definition of T (x) and Cv(x) that

T (x) =
∨

v∈V,v≥k·µ

Cv(x).

Therefore, by the Union Bound, we can conclude that

Pη(T ) ≤ Eη[Y ] + 3 · η (Equation (3.22))

≤
∑

v∈V,v≥k·µ

Eη[Xv] + 3 · η · (m+ 1) (Union Bound)

≤ k−1 · (1 + (δ + 5η) · µ−1 · ∥V ∥) + 3 · η · (|V |+ 1), (Equation (3.21))

Finally, we take η = min{β/(50(|V |+1)), βk/(50(|V |+1))} and apply the Precision Consistency Axiom,
so

Pδ(T ) ≤ δ + Pη(T ) + 2η ≤ δ + k−1 · (1 + δ · µ−1 · ∥V ∥) + β · (µ−1∥V ∥+ 1).

This completes the proof.

3.3.3 Variance and Chebyshev’s Inequality

Next, we develop the basic theory of (approximate) variance and prove a form of Chebyshev’s Inequality.

Definition and Basic Properties. Let X be a random variable defined by the tuple (V, n, C), where
n ∈ Log, V is an explicit set, and C : {0, 1}n → Q. We can define a random variable X2 by the tuple
(V 2, n, C2), where V 2 ≜ {v2 | v ∈ V } and C2(x) ≜ (C(x))2. Similarly, we can define a random variable
X − µ for any µ ∈ Q by the tuple (V − µ, n,C−µ), where V − µ ≜ {v − µ | v ∈ V } and C−µ(x) ≜ C(x)− µ.
We can then define:

Definition 3.22 (Approximate Variance). Let X be a random variable defined by the tuple (V, n, C),
δ−1 ∈ Log. The approximate variance of X with precision parameter δ, denoted by Varδ[X], is defined as

Varδ[X] ≜ Eδ[(X − µ)2]

where µ ≜ Eδ[X] ∈ Q.
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As an example, we prove an analogy of the equality Var[X] = E[X2] − E[X]2 for approximate variance
by directly formalizing the standard proof in APX1.

Proposition 3.23. APX1 proves the following statement. Let X be a random variable defined by the tuple
(V, n, C), where V ⊆ Q is an explicit set, n ∈ Log, and C : {0, 1}n → Q satisfies ∀x ∈ {0, 1}n C(x) ∈ V . Let
µ ≜ Eδ[X] ∈ Q. Then for any δ−1, β−1 ∈ Log,

|Varδ[X]− (Eδ[X2]− µ2)| ≤ (2δ + β) · (1 + |µ|) · ∥V̂ ∥,

where V̂ = V ∪ (V − µ)2 ∪ V 2 ∪ {1}.

Proof. We argue in APX1. Fix V ⊆ Q, n, δ−1, β−1 ∈ Log, and C : {0, 1}n → Q. Let V̂ = V ∪(V−µ)2∪V 2∪{1}
be an explicit set, and µ ≜ Eδ[X]. We define random variables Ŷ , X̂, X̂2 over V̂ as follows:

• Ŷ is the random variable that outputs (X − µ)2. Formally, let Y (x) ≜ (C(x) − µ)2 be a circuit. We
can prove that Y (x) ∈ V̂ from the assumption C(x) ∈ V for any x ∈ {0, 1}n. We then define Ŷ by the
tuple (V̂ , n, Y ).

• X̂ be the random variable that outputs X. Formally, it is defined by the tuple (V̂ , n, C).

• X̂2 be the random variable that outputs X2. Formally, let C2(x) ≜ (C(x))2 be a circuit. We can prove
that C2(x) ∈ V̂ from the assumption C(x) ∈ V for any x ∈ {0, 1}n. We then define X̂2 by the tuple
(V̂ , n, C2).

Let η−1 ∈ Log be determined later. By the definition of the circuits Y , C, C2, it is clear that

Y (x) = µ2 + 1 · C2(x) + (−2µ) · C(x).

By the Linearity of Expectation, we can see that∣∣∣Eη[Ŷ ]− (µ2 + Eη[X̂2]− 2µ · Eη[X̂])
∣∣∣ ≤ 6η · ∥V̂ ∥ · (|µ|+ 1). (3.23)

By the Consistency in Support Extension, we can also conclude that∣∣∣Eη[Ŷ ]− Eη[(X − µ)2]
∣∣∣ , ∣∣∣Eη[X̂2]− Eη[X2]

∣∣∣ , ∣∣∣Eη[X̂]− Eη[X]
∣∣∣ ≤ 3η · ∥V̂ ∥. (3.24)

By the triangle inequality and the Precision Consistency of Expectation, we have

|Varδ[X]− (Eδ[X2]− µ2)|
= |Eδ[(X − µ)2]− (Eδ[X2]− µ2)|
≤ |Eη[(X − µ)2]− (Eη[X2]− µ2)|+ 2 · (δ + 2η) · ∥V̂ ∥ (Proposition 3.13)

≤ |Eη[Ŷ ]− Eη[X̂2] + µ2|+ (2δ + 10η) · ∥V̂ ∥ (Equation (3.24))

≤ |µ2 − (2µ · Eη[X̂]− µ2)|+ (2δ + 10η) · ∥V̂ ∥+ 6η · ∥V̂ ∥ · (|µ|+ 1) (Equation (3.23))

≤ |µ2 − (2µ · Eη[X]− µ2)|+ (2δ + 10η) · ∥V̂ ∥+ 6η · ∥V̂ ∥ · (|µ|+ 1) + 6η · |µ| · ∥V̂ ∥ (Equation (3.24))

≤ |µ2 − (2µ · Eδ[X]− µ2)|+ (2δ + 10η) · ∥V̂ ∥+ 6η · ∥V̂ ∥ · (|µ|+ 1)

+ 6η · |µ| · ∥V̂ ∥+ 2|µ| · (δ + 2η) · ∥V̂ ∥ (Proposition 3.13)

≤ (2δ + 10η) · ∥V̂ ∥+ 6η · ∥V̂ ∥ · (|µ|+ 1) + 6η · |µ| · ∥V̂ ∥+ 2|µ| · (δ + 2η) · ∥V̂ ∥. (µ ≜ Eδ[X])

The theorem then follows by taking η = β/40.

Chebyshev’s Inequality. We now prove a form of Chebyshev’s inequality that provides a tail bound for
random variables with known (approximate) variance. Formally:
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Theorem 3.24 (Chebyshev’s Inequality). APX1 proves the following statement. Let X be a random variable
defined by the tuple (V, n, C), δ−1 ∈ Log, where V ⊆ Q is an explicit set, n ∈ Log, and C : {0, 1}n → Q is
a circuit such that ∀x ∈ {0, 1}n C(x) ∈ V . Let µ ≜ Eδ[X] ∈ Q, σ2 ≜ Varδ[X], and T (x) be the circuit that
outputs 1 if (C(x)− µ)2 ≥ k · σ2, and outputs 0 otherwise.

Then for any β−1 ∈ Log and k ∈ Q, where k > 0, we have that

Pδ(T ) ≤ δ + k−1 · (1 + δ · σ−2 · ∥V̂ ∥) + β · (σ−2 · ∥V̂ ∥+ 1),

where V̂ = (V − µ)2 = {(v − µ)2 | v ∈ V }.

Proof. We argue in APX1. Fix V, n, δ−1, β−1, C : {0, 1}n → Q, µ ≜ Eδ[X], σ2 ≜ Varδ[X], β−1, k. Let Y be the
random variable defined by the tuple (V̂ , n, S), where S(x) ≜ (C(x)−µ)2. By the definition of approximate
variance, we know that

σ2 = Varδ[X] = Eδ[(X − µ)2] = Eδ[Y ].

By applying Markov’s Inequality to the random variable Y , we can see that

Pδ(T ) ≤ δ + k−1 · (1 + δ · σ−2 · ∥V̂ ∥) + β · (σ−2 · ∥V̂ ∥+ 1).

This completes the proof.

3.3.4 Pairwise Independence and Variance

Now we develop the notion of (almost) pairwise independence, and prove a form of the equality Var[X1 +
· · ·+Xm] = Var[X1] + · · ·+Var[Xm] for pairwise independent random variables X1, . . . , Xm. This combined
with Chebyshev’s inequality serve as a standard technique to reduce the error probability of randomized
algorithms.

Definition of (Almost) Independence. We start with the definition of (almost) independence of random
variables. Let X1, X2 be random variables over V1, V2, respectively. Recall that the covariance of X and Y ,
denoted by Cov(X,Y ), is defined as the quantity E[X · Y ] − E[X] · E[Y ], where X · Y is a random variable
over V1V2 ≜ {v1 · v2 | v1 ∈ V1, v2 ∈ V2}. Formally:

Definition 3.25 (Covariance). Let X1 and X2 be the random variables defined by the tuples (V1, n, C1) and
(V2, n, C2), respectively, where V1, V2 ⊆ Q are explicit sets, n ∈ Log, and C1, C2 : {0, 1}n → Q are circuits.
Let δ−1 ∈ Log, V1V2 ≜ {v1 ·v2 | v1 ∈ V1, v2 ∈ V2}, Y (x) be the circuit computing C1(x) ·C2(x), and Y be the
random variable defined by the tuple (V1V2, n, Y ). The δ-approximate covariance of X1 and X2, denoted by
Covδ(X1, X2), is defined as

Covδ(X1, X2) ≜ |Eδ[Y ]− Eδ[X1] · Eδ[X2]|.

Definition 3.26 (Almost Independence). Let δ−1 ∈ Log, ε ∈ Q. Random variables X1 and X2 are said to
be ε-almost δ-approximately independent if Covδ(X1, X2) ≤ ε.

We can then define the pairwise independence of a sequence of random variables.

Definition 3.27 (Pairwise Independence). Let n,m ∈ Log, C1, . . . , Cm : {0, 1}n → Q be circuits, and V ⊆ Q
be an explicit set such that ∀i ∈ [m] ∀x ∈ {0, 1}n Ci(x) ∈ V . Let X1, . . . , Xm be random variables, where for
each i ∈ [m], Xi is defined by the tuple (V, n, Ci), and let δ−1 ∈ Log and ε ∈ Q. The sequence X1, . . . , Xm

of random variables is said to be ε-almost δ-approximately pairwise independent if for every pair (i, j) with
i, j ∈ [m] and i ̸= j, Xi and Xj are ε-almost δ-approximately independent.

We may drop the parameter ε and simply say δ-approximately independent if ε = 0. Note that since the
approximate expectation of random variables may incur an error, random variables X1 and X2 may not be
perfectly independent even if ε = 0.
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Sum of Pairwise Independent Variables. Now we are ready to prove the following result: Suppose
that X1, . . . , Xm are almost pairwise independent, and Y = X1 + · · ·+Xm. Then the variance of Y is close
to the sum of the variances of X1, X2, . . . , Xm. Formally:

Theorem 3.28. The following statement is provable in APX1. Let n,m ∈ Log, C1, . . . , Cm : {0, 1}n → Q
be circuits, and V ⊆ Q be an explicit set such that the following holds:

• ∀i ∈ [m] ∀x ∈ {0, 1}n Ci(x) ∈ V ;

• ∀x ∈ {0, 1}n C1(x) + C2(x) + · · ·+ Cm(x) ∈ V .

Let X1, . . . , Xm be random variables, where for each i ∈ [m], Xi is defined by the tuple (V, n, Ci). Let Y
be the random variable defined by the tuple (V, n, S), where S(x) is the circuit computing C1(x) + C2(x) +
· · ·+Cm(x). Let δ−1, β−1 ∈ Log and ε ∈ Q. Suppose that X1, . . . , Xm are ε-almost δ-approximately pairwise
independent. Then

|Varδ[Y ]− (Varδ[X1] + · · ·+ Varδ[Xm])| ≤ (ε+ 3δ · ∥V ∥2) ·m2 + β · (∥V ∥+ 1)3,

where ∥V ∥ =
∑

v∈V |v| is the ℓ1-norm of V .

Proof. We argue in APX1. Fix n,m, circuits C1, . . . , Cm ∈ {0, 1}n → Q, V, δ−1, ε−1, β−1. Let η−1 ∈ Log be
a precision parameter to be determined later, µ ≜ Eη[Y ], and µi ≜ Eη[Xi] for i ∈ [m].

Overview of the proof. Recall that by Proposition 3.23, we have that∣∣Varη[Y ]− (Eη[Y 2]− µ2)
∣∣ ≤ 3η · (1 + |µ|) · ∥V̂Y ∥, (3.25)

where V̂Y = V ∪ (V − µ)2 ∪ V 2 ∪ {1}. Similarly, for each i ∈ [m], we have that∣∣Varη[Xi]− (Eη[X2
i ]− µ2

i )
∣∣ ≤ 3η · (1 + |µi|) · ∥V̂i∥, (3.26)

where V̂i = V ∪ (V − µi)
2 ∪ V 2 ∪ {1}. Therefore, it suffices to bound

∆ ≜ |Eη[Y 2]− (Eη[X2
1 ] + · · ·+ Eη[X2

m])− µ2 + (µ2
1 + . . . µ2

m)| (3.27)

and combine it with Equation (3.25) and (3.26). At a high level, our plan is to apply the Linearity of
Expectation to prove that Eη[Y 2] is close to

m∑
i=1

Eη[X2
i ] +

∑
i,j∈[m],i̸=j

Eη[XiXj ], (3.28)

which is subsequently close to
m∑
i=1

Eη[X2
i ] +

∑
i,j∈[m],i̸=j

µiµj

by the almost pairwise independence of X1, . . . , Xm. Finally, we can apply the Linearity of Expectation to
show that

µ2
1 + · · ·+ µ2

m +
∑

i,j∈[m],i̸=j

µiµj =

(
m∑
i=1

µi

)2

≈ µ2.

Putting the estimates together provides the upper bound for ∆.
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Step 1: Approximation of Eη[Y 2]. We first show that Eη[Y 2] is close to Equation (3.28). Recall that
Y 2, X2, and XiXj are the random variables over V 2 defined as follows:

• Y 2 is defined by the tuple (V 2, n, S2), where S2(x) ≜ (S(x))2.

• For i ∈ [m], X2
i is defined by the tuple (V 2, n, C2

i ), where C2
i (x) ≜ (Ci(x))2.

• For i, j ∈ [m] such that i ̸= j, XiXj is defined by the tuple (V 2, n, Cij), where Cij(x) ≜ Ci(x) · Cj(x).

It is clear from the definition of the terms that for any z ∈ {0, 1}n, we have

S2(z) =

m∑
i=1

C2
i (z) +

∑
i,j∈[m],i̸=j

Cij(z).

Thus by the Linearity of Expectation, we have∣∣∣∣∣∣Eη[Y 2]−

 m∑
i=1

Eη[X2
i ] +

∑
i,j∈[m],i̸=j

Eη[XiXj ]

∣∣∣∣∣∣ ≤ 3η · ∥V 2∥ · (m2 +m+ 1) ≤ 9η ·m2 · ∥V 2∥. (3.29)

Step 2: Applying pairwise independence. In this step we show that Eη[XiXj ] is close to µiµj for any

i, j ∈ [m]. Recall that µi ≜ Eη[Xi]. By the Precision Consistency of Expectation, we have

|Eη[XiXj ]− Eδ[XiXj ]| ≤ (δ + 2η) · ∥V 2∥

for any i, j ∈ [m], i ̸= j. Moreover, since X1, . . . , Xm are ε-almost δ-approximately pairwise independent,
we know that

|Eδ[XiXj ]− Eδ[Xi] · Eδ[Xj ]| ≤ ε.
For each i ∈ [m], we have that |Eδ[Xi]− Eη[Xi]| ≤ (δ + 2η) · ∥V ∥, which implies that

|Eδ[Xi] · Eδ[Xj ]− Eη[Xi] · Eη[Xj ]|
≤ |Eδ[Xi] · Eδ[Xj ]− Eη[Xi] · Eδ[Xj ]|+ |Eη[Xi] · Eδ[Xj ]− Eη[Xi] · Eη[Xj ]|
≤(δ + 2η) · ∥V ∥ · (|Eη[Xi]|+ |Eδ[Xj ]|) ≤ 2(δ + 2η) · ∥V ∥2.

Combining the equations above, we have that

|Eη[XiXj ]− µiµj | ≤ ε+ (δ + 2η) · ∥V 2∥+ 2(δ + 2η) · ∥V ∥2 ≤ ε+ 3(δ + 2η)∥V ∥2. (3.30)

Step 3: Applying linearity of expectation. The last step is to prove that µ ≈ µ1 + · · · + µm. Recall
that µ ≜ Eη[Y ] and µi ≜ Eη[Xi], where Y is defined by the tuple (V, n, S) and Xi is defined by the tuple
(V, n, Ci). It is clear from the definition of S and Ci that for any z ∈ {0, 1}n,

S(z) = C1(z) + C2(z) + · · ·+ Cm(z).

Therefore, by the Linearity of Expectation, we have that

|µ− (µ1 + · · ·+ µm)| = |Eη[Y ]− (Eη[X1] + · · ·+ Eη[Xm])| ≤ 3η · ∥V ∥ · (m+ 1). (3.31)

Subsequently, we can see that∣∣µ2 − (µ1 + · · ·+ µm)2
∣∣ = |µ+ (µ1 + · · ·+ µm)| · |µ− (µ1 + · · ·+ µm)|
≤ (2|µ|+ 3η · ∥V ∥ · (m+ 1)) · 3η · ∥V ∥ · (m+ 1)

≤ 6|µ| · η · 2m · ∥V ∥+ 9η2 · (2m)2 · ∥V ∥2

≤ 4 · (9η2 + 6η) ·m2 · ∥V ∥2 (since |u| ≤ ∥V ∥)
≤ 60 · η · (m∥V ∥)2, (3.32)

where the last inequality holds as we will take η ≤ 1.
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Wrapping things up. Combining Equation (3.29), (3.30) and (3.32), we can see that

∆ = |Eη[Y 2]− (Eη[X2
1 ] + · · ·+ Eη[X2

m])− µ2 + (µ2
1 + . . . µ2

m)|

≤

∣∣∣∣∣∣
∑

i,j∈[m],i̸=j

Eη[XiXj ]− µ2 +

m∑
i=1

µ2
i

∣∣∣∣∣∣+ 9η ·m2 · ∥V ∥2 (Equation (3.29))

≤

∣∣∣∣∣∣
∑

i,j∈[m],i̸=j

µiµj − µ2 +

m∑
i=1

µ2
i

∣∣∣∣∣∣+ 9η ·m2 · ∥V ∥2 +m2(ε+ 3(δ + 2η) · ∥V ∥2) (Equation (3.30))

≤

∣∣∣∣∣∣−µ2 +

(
m∑
i=1

µi

)2
∣∣∣∣∣∣+ (ε+ 3δ · ∥V ∥2) ·m2 + 20 · η · (m∥V ∥)2

≤ 60 · η · (m∥V ∥)2 + (ε+ 3δ · ∥V ∥2) ·m2 + 20 · η · (m∥V ∥)2 (Equation (3.32))

≤ (ε+ 3δ · ∥V ∥2) ·m2 + 80 · η · (m∥V ∥)2.

Finally, we combine this with Equation (3.25) and (3.26), which gives

|Varδ[Y ]− (Varδ[X1] + · · ·+ Varδ[Xm])| ≤ ∆ + 3η · (1 + |µ|) · ∥V̂Y ∥+ 3η ·
m∑
i=1

(1 + |µi|) · ∥V̂i∥. (3.33)

Note that

|µ| ≤ ∥V̂Y ∥ ≤ ∥V ∥+ ∥(V − µ)2∥+ ∥V 2∥+ 1

≤ ∥V ∥+ ∥V ∥2 + 1 +
∑
v∈V

(v − µ)2

≤ ∥V ∥+ ∥V ∥2 + 1 + ∥V ∥2 + |V | · µ2 + 2µ · ∥V ∥2

≤ 2 · ∥V ∥3 + (|V |+ 2) · ∥V ∥2 + ∥V ∥+ 1 = 8 · |V | · (∥V ∥+ 1)3.

Similarly, we have that |µi| ≤ ∥V̂i∥ ≤ 8 · |V | · (∥V ∥+ 1)3.
Let η ≜ min{β/(2000 ·m2 · |V |), 1/10} ≤ 1. By combining Equation (3.33) and the upper bound above,

we have that

|Varδ[Y ]− (Varδ[X1] + · · ·+ Varδ[Xm])|
≤ (ε+ 3δ · ∥V ∥2) ·m2 + 80 · η · (m∥V ∥)2 + 1000 ·m · η · |V | · (∥V ∥+ 1)3

≤ (ε+ 3δ · ∥V ∥2) ·m2 + β · (∥V ∥+ 1)3.

This completes the proof.

3.4 Independence, Error Reduction, and Concentration Bounds

We now consider the provability in APX1 of concentration bounds for independent and identically dis-
tributed (i.i.d.) random variables, which are important tools in combinatorics, probability, and the analysis
of randomized algorithms.

3.4.1 Explicit Independence

Before stating and proving the concentration bounds, we formally define the way we formulate inde-
pendent and identically distributed random variables, and prove a form of the multiplication principle for
approximate counting.
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Formalization of i.i.d. RVs. We will only consider random variables that are “explicitly” i.i.d., in the
sense that they are defined by the same sampling algorithm using disjoint parts of the random seed. This
suffices for our applications and greatly simplifies the calculation of parameters for approximate counting.
We first formally define explicit independence of random variables as follows:

Definition 3.29 (Explicit Independence). Let X and X ′ be random variables defined by (V, n, C) and
(V, n, C ′), respectively. We say that X and X ′ are explicitly independent if C and C ′ read disjoint bits of
the n-bit seed; that is, there is a partition π1 ∪π2 of [n] such that for any seed x ∈ {0, 1}n, C only reads xπ1

and C ′ only reads xπ2
, where xπ denotes the bits of x with indices in π.

Similarly, we define explicitly i.i.d. random variables as follows:

Definition 3.30 (Explicitly i.i.d. RVs). Let n,m ∈ Log, C : {0, 1}n → Q be a circuit, V ⊆ Q be an explicit
set such that ∀x ∈ {0, 1}n C(x) ∈ V . The explicitly i.i.d. random variables X1, . . . , Xm defined by the tuple
(V, n, C) are obtained as follows.

Let Ci(·) : {0, 1}nm → V be the circuit such that for any x = x1◦x2◦· · ·◦xm ∈ {0, 1}n, where xi ∈ {0, 1}n
for each i ∈ [m], Ci(x) ≜ C(xi). For each i ∈ [m], the random variable Xi is defined by the tuple (V, nm,Ci).

3.4.2 Multiplication Principle

We will need a form of multiplication principle: For any explicitly independent random variables X and
Y , we have E[XY ] ≈ E[X] ·E[Y ], or equivalently, Cov(X,Y ) is small. In other words, explicitly independent
random variables are approximately independent. Formally:

Theorem 3.31 (Multiplication Principle). APX1 proves the following statement. Let n, δ−1 ∈ Log, V1, V2
be explicit sets, C1, C2 ∈ {0, 1}n → Q be circuits. Suppose that the random variables X1 and X2, defined by
the tuples (V1, n, C1) and (V2, n, C2), respectively, are explicitly independent. Then for any β−1 ∈ Log,

Covδ(X,Y ) = |Eδ[X1X2]− Eδ[X1] · Eδ[X2]| ≤ (2δ + β) · ∥V̂ ∥+ (4δ + β) · ∥V̂ ∥2,

where V̂ ≜ V1 ∪ V2 ∪ V1V2, and V1V2 ≜ {v1v2 | v1 ∈ V1, v2 ∈ V2}.

Proof. We argue in APX1. Fix n, δ−1 ∈ Log, V1, V2, C1, C2, and β−1 ∈ Log. Let η−1 ∈ Log be determined
later and V̂ ≜ V1 ∪ V2 ∪ V1V2 be an explicit set.

Overview of the proof. At a high level, the proof goes as follows. Let π1∪π2 be a partition of [n] such that
for any seed x ∈ {0, 1}n, X1 only reads xπ1

and X2 only reads xπ2
. Suppose, towards a contradiction, that

|E[X1X2]− E[X1] · E[X2]| is large. By the Averaging Argument for Expectation, we may find an assignment
ρ1 to the part xπ1 of the seed such that

|E[X1X2|ρ1 ]− E[X1|ρ1 ] · E[X2]|

is large. More formally, we are applying Averaging Argument for Expectation by treating X1X2 and X1 as
random variables with coefficients 1 and −E[X2], respectively. Note that since X2 does not read the part
xπ1 of the seed, we know that E[X2] is close to E[X2|ρ1 ], and subsequently

|E[X1X2|ρ1 ]− E[X1|ρ1 ] · E[X2|ρ1 ]|

is also large.
Next, we apply the Averaging Argument for Expectation again by treating X1X2|ρ1 and X2|ρ1 as random

variables with coefficients 1 and −E[X1|ρ1 ], respectively, using the seed xπ2 . This gives an assignment ρ2 to
xπ2

such that
|E[X1X2|ρ1

|ρ2
]− E[X1|ρ1

] · E[X2|ρ1
|ρ2

]| .
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is large. Note that, again, since X1 does not read the part xπ2 of the seed, we know that E[X1|ρ1 ] is close to
E[X1|ρ1 |ρ2 ], and subsequently

|E[X1X2|ρ1 |ρ2 ]− E[X1|ρ1 |ρ2 ] · E[X2|ρ1 |ρ2 ]| .

is also large. However, this is impossible as X1X2|ρ1 |ρ2 , X1|ρ1 |ρ2 , and X2|ρ1 |ρ2 are random variables with
seed length 0 and are supposed to satisfy X1X2|ρ1

|ρ2
= X1|ρ1

|ρ2
·X2|ρ1

|ρ2
by definition.

We now prove the theorem in detail. Note that we will implement the proof idea above in backward
direction for simplicity of calculation.

Step 1: Averaging argument after fixing ρ1. Let Ŷ , X̂1, X̂2 be the random variables over V̂ ≜ V1 ∪
V2 ∪ V1V2 obtained from X1X2, X1, X2 via support extension. Let π1 ∪ π2 be a partition of [n] such that
for any seed x ∈ {0, 1}n, C1 only reads xπ1

and C2 only reads xπ2
. Let η−1 ∈ Log be a parameter to be

determined later. It is clear that for any fixed assignments ρ1, ρ2 to xπ1 , xπ2 , respectively,

Eη[Ŷ |ρ1 |ρ2 ] = Eη[X̂1|ρ1 |ρ2 ] · Eη[X̂2|ρ1 |ρ2 ] (3.34)

by the definition of the random variables.
Note that X̂1|ρ1 is a random variable that does not read the its seed xρ2 . Therefore, for any fixed ρ2, ρ

′
2,

|Eη[X̂1|ρ1
|ρ′

2
]− Eη[X̂1|ρ1

|ρ2
]| = 0. By the Averaging Argument for Expectation, we have that for any ρ2,

|Eη[X̂1|ρ1
]− Eη[X̂1|ρ1

|ρ2
]| ≤ 3η · ∥V̂ ∥, (3.35)

and subsequently by Equation (3.34),

|Eη[Ŷ |ρ1
|ρ2

]− Eη[X̂1|ρ1
] · Eη[X̂2|ρ1

|ρ2
]| ≤ 3η · ∥V̂ ∥ · Eη[X̂2|ρ1

|ρ2
] ≤ 3η · ∥V̂ ∥2. (3.36)

Therefore, by the Averaging Argument for Expectation, we have that for any fixed assignment ρ1 to xπ1
,

|Eη[Ŷ |ρ1
]− Eη[X̂1|ρ1

] · Eη[X̂2|ρ1
]| ≤ 3η · ∥V̂ ∥ · (1 + |Eη[X̂1|ρ1

]|) ≤ 3η · ∥V̂ ∥ · (1 + ∥V̂ ∥). (3.37)

Note that here we treat Ŷ |ρ1
, X̂2|ρ1

as random variables, and Eη[X̂1|ρ1
] as a coefficient.

Step 2: Averaging argument again. Similarly to Equation (3.35), we will first show that Eη[X̂2|ρ1
] is

close to Eη[X̂2] for any ρ1. We can see that for any assignments ρ1, ρ
′
1 to xπ1

and ρ2 to xπ2
, Eη[X̂2|ρ1

|ρ2
] =

Eη[X̂2|ρ′
1
|ρ2

] as X̂2 does not read xπ1
. Therefore, by the Averaging Argument for Expectation, for every

ρ1, ρ
′
1,

|Eη[X̂2|ρ1 ]− Eη[X̂2|ρ′
1
]| ≤ 6η · ∥V̂ ∥·

Again, by the Averaging Argument for Expectation applied to X̂2, we get ρ′1 such that

|Eη[X̂2|ρ1
]− Eη[X̂2]| ≤ 3η · ∥V̂ ∥+ |Eη[X̂2|ρ1

]− Eη[X̂2|ρ′
1
]| ≤ 9η · ∥V ∥.

Combining this with Equation (3.37), we have

|Eη[Ŷ |ρ1
]− Eη[X̂1|ρ1

] · Eη[X̂2]| ≤ |Eη[Ŷ |ρ1
]− Eη[X̂1|ρ1

] · Eη[X̂2|ρ1
]|+ 9η · ∥V̂ ∥2

≤ 12η · ∥V̂ ∥2 + 3η · ∥V̂ ∥. (3.38)

By applying the Averaging Argument for Expectation on Equation (3.38) with random variables Ŷ and X̂1,
we have that

|Eη[Ŷ ]− Eη[X̂1] · Eη[X̂2]| ≤ |Eη[Ŷ |ρ1
]− Eη[X̂1|ρ1

] · Eη[X̂2]|+ 3η · ∥V ∥ · (1 + ∥V ∥)
≤ 15η · ∥V̂ ∥2 + 6η · ∥V̂ ∥. (3.39)
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Wrapping things up. Note that by the Consistency in Support Extension, we have that

|Eη[Ŷ ]− Eη[X1X2]|, |Eη[X̂1]− Eη[X1]|, |Eη[X̂2]− Eη[X2]| ≤ 3η · ∥V̂ ∥.

By the Precision Consistency of Expectation, we have

|Eδ[X1X2]− Eη[X1X2]|, |Eδ[X1]− Eη[X1]|, |Eδ[X2]− Eη[X2]| ≤ (2δ + η) · ∥V̂ ∥.

We can therefore deduce from Equation (3.39) that

|Eδ[X1X2]− Eδ[X1] · Eδ[X2]|
≤ |Eη[X1X2]− Eη[X1] · Eη[X2]|+ (2δ + η) · ∥V̂ ∥+ (4δ + 2η) · ∥V ∥2

≤ |Eη[Ŷ ]− Eη[X̂1] · Eη[X̂2]|+ (2δ + η) · ∥V̂ ∥+ (4δ + 2η) · ∥V ∥2 + 3η · ∥V̂ ∥+ 6η · ∥V̂ ∥2

≤ |Eη[Ŷ ]− Eη[X̂1] · Eη[X̂2]|+ (2δ + 4η) · ∥V̂ ∥+ (4δ + 8η) · ∥V̂ 2∥
≤ (2δ + 10η) · ∥V̂ ∥+ (4δ + 23η) · ∥V̂ ∥2.

This completes the proof by setting η = β/100.

Subsequently, we can obtain the following more convenient form of the multiplication principle for ex-
plicitly independent Bernoulli random variables:

Corollary 3.32 (Multiplication Principle for Bernoulli RVs). APX1 proves the following statement. Let
n,m, δ−1 ∈ Log and X1, . . . , Xm be explicitly independent random variables over {0, 1} with seed length n.
Then ∣∣∣∣∣∣Eδ[X1X2 . . . Xm]−

∏
j∈[i]

Eδ[Xi]

∣∣∣∣∣∣ ≤ 8δ ·m,

where the random variable X1X2 . . . Xm is defined in the natural way.

Proof. We argue in APX1. Fix n,m, δ−1 ∈ Log. We prove by induction on i such that for every i ∈ [m], we
have ∣∣∣∣∣∣Eδ[X1X2 . . . Xi]−

∏
j∈[i]

Eδ[Xi]

∣∣∣∣∣∣ ≤ 8δ · i. (3.40)

Note that this employs induction on a quantifier-free formula, which is available in APX1. The base case
i = 1 is straightforward. Suppose that Equation (3.40) holds. By the Multiplication Principle,

|Eδ[X1X2 . . . XiXi+1]− Eδ[X1X2 . . . Xi] · Eδ[Xi+1]|
≤ 3δ · ∥V ∥+ 5δ · ∥V ∥2 ≤ 8δ, (3.41)

and subsequently ∣∣∣∣∣∣Eδ[X1X2 . . . XiXi+1]−
∏

j∈[i+1]

Eδ[Xi]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Eδ[X1X2 . . . Xi] · Eδ[Xi+1]−
∏

j∈[i+1]

Eδ[Xi]

∣∣∣∣∣∣+ 8δ (Equation (3.41))

≤

∣∣∣∣∣∣Eδ[X1X2 . . . Xi]−
∏
j∈[i]

Eδ[Xi]

∣∣∣∣∣∣ · |Eδ[Xi+1]|+ 8δ

≤ 8δ · i · ∥V ∥+ 8δ ≤ 8δ · (i+ 1). (Induction Hypothesis)

This completes the proof.
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3.4.3 Error Reduction for One-Sided Error Statements

The multiplication principle allows us to prove the correctness of error reduction via repetition for one-
sided error algorithms. Specifically, for any circuit C that accepts a (1− ε)-fraction of its inputs, the circuit
C∨k(x1, . . . , xk) =

∨
i∈[k] C(xi) accepts all but an εk-fraction its inputs.

This is formalized as the following theorem:

Theorem 3.33 (One-sided error reduction lemma). Let C∨k : {0, 1}nk → {0, 1} be the circuit defined as
C∨k(x1, . . . , xk) ≜

∨
i∈[k] C(xi) for any circuit C : {0, 1}n → {0, 1}. The following statement is provable

in APX1. For any n, k, δ−1, γ−1, β−1 ∈ Log and circuit C : {0, 1}n → {0, 1}, if Pδ(¬C) ≤ ε and γ ≥
(δ + β + ε)k + δ + β, then Pδ(¬C∨k) ≤ γ.
Proof. We argue in APX1. Fix n, δ−1, γ−1, β−1 ∈ Log and a circuit C : {0, 1}n → {0, 1}. Let V ≜ {0, 1}, and
let η−1 ∈ Log be a parameter to be determined later. Let Xi be the random variable that takes an nk-bit seed
(x1, . . . , xk) ∈ ({0, 1}n)k and outputs ¬C(xi) for i ∈ [k]. It is clear that X1, . . . , Xm are explicit independent
random variables. Let Y be the random variable that takes an nk-bit seed (x1, . . . , xk) ∈ ({0, 1}n)k and
outputs ¬C∨k(x1, . . . , xk).

RVs and approximate counting. It is clear that Y is the indicator random variable for the circuit ¬C∨k,
and thus by Proposition 3.12, |Eη[Y ]− Pη(¬C∨k)| ≤ 3η.

We will prove that for every i ∈ [k], |Eη[Xi]−Pη(¬C)| ≤ 6η. Fix any i ∈ [k] and let πi ∪πi = [nk], where
πi denotes the set of indices corresponding to the i-th n-bit block that Xi reads, and πi denotes the other
(k − 1)n indices. For every assignment ρ to πi, we can see that Xi|ρ is the indicator random variable for C,
and thus by Proposition 3.12,

|Eη[Xi|ρ]− Pη(¬C)| ≤ 3η.

Subsequently, we can apply the Averaging Argument for Expectation to prove that

|Eη[Xi]− Pη(¬C)| ≤ 6η. (3.42)

Note that by the assumption, we have that Pδ(¬C) ≤ ε. By the Precision Consistency Axiom for
approximate counting, we have Pη(C) ≤ δ + 2η + ε, and thus

Eη[Xi] ≤ Pη(C) + 6η ≤ δ + 8η + ε (3.43)

for every i ∈ [k].

Wrapping things up. We first prove that |Eη[Y ]−Eη[X1X2 . . . Xk]| ≤ 6η. Note that Y and X1X2 . . . Xk

are both random variables taking nk-bit seeds, and for every assignment ρ to the seeds, we have Eη[Y |ρ] =
Eη[X1X2 . . . Xk|ρ]. By the Averaging Argument for Expectation, we have

|Eη[Y ]− Eη[X1X2 . . . Xk]| ≤ 3η · ∥V ∥ · 2 ≤ 6η. (3.44)

Additionally, by the Precision Consistency Axiom of approximate counting, we have

Pδ(¬C∨k) ≤ Pη(¬C∨k) + δ + 2η.

Let η ≜ β/(20k). Recall that it suffices to prove Eη[Y ] ≤ γ. It follows that

Pδ(¬C∨k) ≤ Pη(¬C∨k) + δ + 2η (Precision Consistency Axiom)

≤ Eη[Y ] + δ + 5η

≤ Eη[X1X2 . . . Xk] + δ + 12η (Equation (3.44))

≤
∏
i∈[k]

Eη[Xi] + δ + 8ηk + 12η (Multiplication Principle for Bernoulli RVs)

≤
∏
i∈[k]

(δ + 8η + ε) + δ + 8ηk + 12η (Equation (3.43))

≤ (δ + β + ε)k + δ + β ≤ γ,
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which completes the proof.

3.4.4 Chernoff Bound for O(log n) Random Variables

We consider a form of the Chernoff bound where the number of random variables m ∈ LogLog. In a
nutshell, we formalize a combinatorial proof using Binomial coefficients due to Chvátal (see, e.g., [Mul18,
Section 3.2]).

Definition 3.34 (Binomial coefficient, in PV1). Let n,m ∈ Log and m ≤ n. The binomial coefficient
(
n
m

)
is

defined recursively as: (
n

0

)
≜ 1,

(
n

m

)
≜

(
n− 1

m− 1

)
+

(
n− 1

m

)
. (3.45)

For m > n, we let
(
n
m

)
≜ 0. Note that the function computing (1n, 1m) 7→

(
n
m

)
can be defined by a PV

function that runs in poly(n) time, such that Equation (3.45) is provable in PV1.

Lemma 3.35 (Binomial theorem). The following statement is provable in PV1. For every n ∈ Log and
x, y ∈ Q \ {0},

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i.

Proof Sketch. Fix n ∈ Log and x, y ∈ Q. We prove by induction on n ∈ Log. In the base case, the equation
trivially holds for n = 0 as both sides are 1. The induction step follows from Equation (3.45).

Now we are ready to prove the Chernoff bound when n ∈ LogLog.

Theorem 3.36 (Chernoff bound I, LogLog form). The following sentence is provable in APX1. Let V =
{0, 1}, n, δ−1, β−1 ∈ Log, and m ∈ LogLog. Let X1, . . . , Xm be a sequence of explicit i.i.d. random variables
over V defined by a tuple (V, n, C) and taking an nm-bit seed (z1, . . . , zm) ∈ ({0, 1}n)m. Let p ≜ Eδ[Xi] ∈ Q
for any i ∈ [m], and Y≥k be the indicator variable of X1 + · · ·+Xm ≥ k that takes an nm-bit seed. Then for
t ∈ Q, 0 ≤ t ≤ 1, and k ≥ (1 + t)pm,

Eδ[Y≥k] ≤
(
e−t

2p/4 + (4δ + β) · 2−pt(1+t)
)m

+ δ + β.

Proof. We argue in APX1. Fix V = {0, 1}, n, δ−1, β−1 ∈ Log, m ∈ LogLog, and X1, . . . , Xm. Let p ≜ Eδ[Xi],
t, k, and Y≥k be defined as above. Let η−1 ∈ Log be a parameter to be determined later. By the Precision
Consistency of Expectation,

|Eη[Xi]− p| = |Eδ[Xi]− Eη[Xi]| ≤ δ + 2η. (3.46)

Probability of each subset. Let α ⊆ [m] encode a subset of variables. We define the random variable
Yα over {0, 1} as follows: Given any seed (z1, . . . , zm) ∈ ({0, 1}n)m, Yα = 1 if and only if for every i ∈ α,
Xi = 1. In the first step, we show that

Eη[Yα] ≤ (p+ δ +O(ηm))|α| (3.47)

for each α ⊆ [m]. Note that as m ∈ LogLog, we can define all random variables Yα for α ⊆ [m] by an explicit
list of circuits. This will be useful later in the proof.

Fix any α = {i1, . . . , it} ⊆ [m]. As X1, . . . , Xm are explicitly independent random variables, by the
Multiplication Principle for Bernoulli RVs, we have that∣∣∣∣∣∣Eη

∏
j∈[t]

Xij

− ∏
j∈[t]

Eη[Xij ]

∣∣∣∣∣∣ ≤ 8ηm.
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Subsequently, we have

Eη

∏
j∈[t]

Xij

 ≤ 8ηm+ (p+ δ + 2η)|α|.

Note that for every assignment ρ to the random seed, Eη[Yα|ρ] = Eη[
∏

j∈[t]Xij |ρ]. By the Averaging
Argument for Expectation, we have

Eη[Yα] ≤ Eη

∏
j∈[t]

Xij

+ 6η ≤ 14ηm+ (p+ δ + 2η)|α|. (3.48)

Let Y α be the random variable defined over {0, 1} as follows: Given any seed (z1, . . . , zm) ∈ ({0, 1}n)m,
Yα = 1 if and only if for every i ∈ [m] \ α, Xi = 0. Similar to the proof above, we have that

Eη

[
Y α

]
≤ (1− p+ δ + 10ηm)m−|α| + 20ηm. (3.49)

Combining all subsets. Let Ŷ≥k be the following random variable over {0, 1}:

Ŷ≥k ≜
∑

α⊆[m],|α|≥k

YαY α.

By applying the Multiplication Principle and Linearity of Expectation, we have

Eη[Ŷ≥k]

≤ 3η · 2m +
∑

α⊆[m],|α|≥k

Eη[YαY α] (Union Bound)

≤ 3η · 2m + 8η · 2m +
∑

α⊆[m],|α|≥k

Eη[Yα] · E[Y α] (Multiplication Principle)

≤ 11η · 2m +
∑

α⊆[m],|α|≥k

(
(p+ δ + 2ηm)|α| + 14ηm

)(
(1− p+ δ + 10ηm)m−|α| + 20ηm

)
(Equations (3.48) and (3.49))

≤ 90ηm · 2m +
∑
j≥k

(
m

j

)
(p+ δ + 2ηm)j(1− p+ δ + 10ηm)m−j .

Note that the binomial number in the last line is efficiently computable (even using a brute-force counting
algorithm) as m, j ∈ LogLog.

Recall that Y≥k is the random variable indicating that X1+ · · ·+Xm ≥ k. Note that for every assignment

ρ to the random seed, we have that Eη[Y≥k|ρ] ≤ Eη[Ŷ≥k|ρ]. Therefore, by the Averaging Argument for
Expectation, we have

Eη[Y≥k] ≤ Eη[Ŷ≥k] + 6η ≤
∑
j≥k

(
m

j

)
(p+ δ + 2ηm)j(1− p+ δ + 10ηm)m−j + 100ηm · 2m. (3.50)

Binomial coefficient inequalities. It remains to prove an upper bound for Equation (3.50). Note that
as m ∈ LogLog, we can easy formalize the standard proof in [Mul18, Section 3.2], where all equalities about
binomial coefficients can be proved in PV.
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Let τ = eλ ≥ 1 be a parameter to be determined later. In more detail, we can perform the following
calculation for any ε−1 ∈ Log:∑

j≥k

(
m

j

)
(p+ ε)j(1− p+ ε)m−j

≤
∑
j≥k

(
m

j

)
(p+ ε)j(1− p+ ε)m−jτ j−k +

∑
0≤j<k

(p+ ε)j(1− p+ ε)m−jτ j−k

=τ−k
m∑
j=0

(
m

j

)
((p+ ε)τ)

j
(1− p+ ε)m−j

=τ−k
(
1 + p(τ − 1) + ε(τ + 1)

)m
(Binomial Theorem)

≤
(

1 + p(eλ − 1) + ε(eλ + 1)

eλp(1+t)

)m

.

Note that for λ ∈ (0, 1), we have 1 + λ ≤ eλ ≤ 1 + λ+ 3λ2/4, and this is provable in PV. Then

ln
(
1 + p(eλ − 1)

)
≤ p(eλ − 1) ≤ pλ+ 3pλ2/4.

This implies that 1 + p(eλ − 1) ≤ exp(pλ+ 3pλ2/4). We set ε ≜ δ+ 30ηm, η ≤ β/(120m), then ε ≤ δ+ β/4,
and λ ≜ t. Then we have(

1 + p(eλ − 1) + ε(eλ + 1)

eλp(1+t)

)m

≤
(
e−t

2p/4 + 4(δ + β/4) · e−pt(1+t)
)m

.

Finally, we can obtain that

Eδ[Y≥k] ≤ Eη[Y≥k] + δ + 2η (Precision Consistency of Expectation)

≤
(
e−t

2p/4 + 4(δ + β/4) · e−pt(1+t)
)m

+ 200ηm · 2m + δ + 2η

≤
(
e−t

2p/4 + (4δ + β) · e−pt(1+t)
)m

+ δ + β,

where the last inequality follows if we set η ≜ β/(1000m · 2m).

Using essentially the same proof with τ = e−λ < 1, we can obtain a Chernoff bound for the other side of
the tail probability:

Theorem 3.37 (Chernoff bound II, LogLog form). The following sentence is provable in APX1. Let V =
{0, 1}, n, δ−1, β−1 ∈ Log, and m ∈ LogLog. Let X1, . . . , Xm be a sequence of explicit i.i.d. random variables
over V that takes an nm-bit seed (z1, . . . , zm) ∈ ({0, 1}n)m. Let p ≜ Eδ[Xi] ∈ Q, and Y≤k be the indicator
variable of X1 + · · ·+Xm ≤ k that takes an nm-bit seed. Then for t ∈ Q, 0 ≤ t ≤ 1, and k ≤ (1− t)pm,

Eδ[Y≤k] ≤
(
e−t

2p/4 + (4δ + β) · 2−pt(1−t)
)m

+ δ + β.

4 Theoretical Computer Science in APX1

In this section, we formalize in APX1 several fundamental results from algorithms, complexity theory,
and related areas.
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4.1 Yao’s Distinguisher-to-Predictor Transformation

Theorem 4.1 (Yao’s transformation). APX1 proves the following statement. Let n,m, δ−1, β−1 ∈ Log,
G : {0, 1}m → {0, 1}n be a multi-output circuit, and C ∈ Bn be a circuit such that

|Pδ(C ◦G)− Pδ(C)| ≥ 2δ + ε (4.1)

for some ε ∈ (0, 1) ∩Q, where C ◦G is the m-input circuit defined as (C ◦G)(u) ≜ C(G(u)).
Then there is an index i ∈ [n] and a circuit P : {0, 1}i−1 → {0, 1} such that the following holds: Let

T (u) ∈ Bm be the circuit such that T (u) = 1 if P (G(u)<i) = G(u)i (i.e., P successfully predicts the i-th bit
of G(u)), then ∣∣∣∣Pδ(T )− 1

2

∣∣∣∣ ≥ ε

4n
− (δ + β).

Proof. We formalize the standard proof of Yao’s lemma in APX1 (see, e.g., [AB09, Chapter 9]). Fix
n,m, δ−1, β−1 ∈ Log, G : {0, 1}m → {0, 1}n, and circuit C ∈ Bn. For every index i ∈ {0, 1, . . . , n}, we
define the circuit Ci : {0, 1}m × {0, 1}n → {0, 1} as follows:

• Ci parses its input as (u, x) ∈ {0, 1}m × {0, 1}n.

• Let z ≜ G(u)≤i ◦ x>i, i.e., the string where the first i bits agree with the first i bits of G(u), and the
remaining bits agree with the last n− i bits of x. The circuit Ci(u, x) then outputs C(z).

Let X0, X1, . . . , Xn be the random variables over {0, 1} with seed length m + n, where Xi is the indicator
variable of Ci(j, x) = 1. That is, Xi is defined by the tuple ({0, 1},m+ n,Ci).

Step 1: Gap between Eη[X0] and Eη[Xn]. We first argue that |Eη[X0]−Eη[Xn]| is large. Note that by
Equation (4.1) and the Precision Consistency Axiom, we have

|Pη(C ◦G)− Pη(C)| ≥ ε− 4η. (4.2)

Note that X0 is the random variable over {0, 1} with seed length m + n that, on the seed (u, x) ∈
{0, 1}m×{0, 1}n, ignores the first part of the seed and outputs C(x). For any assignment u ∈ {0, 1}m to the
first part of the seed, it can be verified that |Eη[X0|u]− Pη(C)| ≤ 3η, and thus by the Averaging Argument
for Expectation, we know that

|Eη[X0]− Pη(C)| ≤ 6η.

Similarly, we can prove that
|Eη[Xn]− Pη(C ◦G)| ≤ 6η. (4.3)

This is because Xn is the random variable that, on the seed (u, x) ∈ {0, 1}m × {0, 1}n, ignores the second
part of the seed and outputs C ◦G(u).

By combining Equation (4.2) and Equation (4.3), we have

|Eη[X0]− Eη[Xn]| ≥ ε− 16η (4.4)

Step 2: Gap between Eη[Xi] and Eη[Xi+1]. As |Eη[X0]−Eη[Xn]| ≥ β−16η+ε, we know that for some
1 ≤ i ≤ n,

|Eη[Xi−1]− Eη[Xi]| ≥
ε

n
− 16η

n
. (4.5)

In more detail, suppose towards a contradiction that this is not true. We can prove by induction on j that
if j ≤ n, |Eη[X0]− Eη[Xj ]| < (j/n) · (ε− 16η).

We will produce a predictor P for this index i. Recall that both Xi−1 and Xi are random variables that
parse their seeds as (u, x) ∈ {0, 1}m × {0, 1}n, and

• Xi−1 outputs C(G(u)<i ◦ xi ◦ x>i);
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• Xi outputs C(G(u)<i ◦G(u)i ◦ x>i).

Let Xi be the random variable that parses its input as (u, x) ∈ {0, 1}m × {0, 1}n and outputs C(G(u)<i ◦
G(u)i ◦ x>i). We will prove ∣∣Eη[Xi]− Eη[Xi]

∣∣ > ε

2n
− 100η (4.6)

by rewriting both Eη[Xi−1] and Eη[Xi] in Equation (4.5).
Let X0

i−1, X
1
i−1 be the random variables over {0, 1} that parse their seeds as (u, x) ∈ {0, 1}m × {0, 1}n

satisfying that:

• X0
i−1 outputs 1 if and only if C(G(u)<i ◦ xi ◦ x>i) = 1 and G(u)i = xi.

• X1
i−1 outputs 1 if and only if C(G(u)<i ◦G(u)i ◦ x>i) = 1 and G(u)i ̸= xi.

One can observe that for any assignment ρ to their seeds, Xi−1|ρ = X0
i−1|ρ + X1

i−1|ρ, and thus by the
Linearity of Expectation, ∣∣Eη[Xi−1]−

(
Eη[X0

i−1] + Eη[X1
i−1]

)∣∣ ≤ 6η. (4.7)

Similarly, let X0
i , X

1
i be the random variables over {0, 1} that parse their seeds as (u, x) ∈ {0, 1}m×{0, 1}n

satisfying that:

• X0
i outputs 1 if and only if C(G(u)<i ◦ xi ◦ x>i) = 1 and G(u)i = xi.

• X1
i outputs 1 if and only if C(G(u)<i ◦G(u)i ◦ x>i) = 1 and G(u)i ̸= xi.

For any assignment ρ to their seeds, Xi|ρ = X0
i |ρ+X1

i |ρ, and thus by the Averaging Argument for Expectation,∣∣Eη[Xi]−
(
Eη[X0

i ] + Eη[X1
i ]
)∣∣ ≤ 6η. (4.8)

One can observe that X0
i and X0

i−1 are exactly the same random variable. Moreover, we argue that∣∣Eη[Xi]− 2 · Eη[X1
i ]
∣∣ ≤ 20η. (4.9)

(As a sanity check, E[Xi] = 2 · E[X1
i ] in exact expectation.) Assume for contradiction that this does not

hold. By the Averaging Argument for Expectation, there is an assignment ρ to all but xi such that∣∣Eη[Xi|ρ]− 2 · Eη[X1
i |ρ]
∣∣ > 10η.

Note that both Xi|ρ and X1
i |ρ have seed length 1, and we know that E[Xi|ρ] = 2 · E[X1

i |ρ]. This leads to a
contradiction by the Brute Force Counting Lemma. Similarly, we can prove that∣∣Eη[Xi−1]− 2 · Eη[X1

i−1]
∣∣ ≤ 10η. (4.10)

By Equations (4.5) and (4.7) to (4.10), we have∣∣Eη[Xi]− Eη[Xi]
∣∣ ≥ ∣∣(Eη[X0

i−1] + Eη[X1
i−1]

)
−
(
Eη[X0

i ] + Eη[X1
i ]
)∣∣− 12η (Equations (4.7) and (4.8))

≥
∣∣Eη[X1

i−1]− Eη[X1
i ]
∣∣− 12η

≥ |Eη[Xi−1]− Eη[Xi]|
2

− 60η (Equations (4.9) and (4.10))

>
ε

2n
− 100η. (Equation (4.5))

Step 3: Producing the Predictor. We now prove that Equation (4.6) suffices to produce the predictor.
Let P : {0, 1}i−1 × {0, 1}n → {0, 1} and T : {0, 1}m × {0, 1}n → {0, 1} be the following circuits: P (v, x) ≜
C(v ◦ xi ◦ x>i)⊕ xi, and T (u, x) outputs 1 if and only if P (G(u)<i, x) = G(u)i.

We also define two circuits T0, T1 : {0, 1}m × {0, 1}n → {0, 1} such that

• T0(u, x) outputs 1 if C(G(u)<i ◦G(u)i ◦ x>i) = 0 and xi = G(u)i.

• T1(u, x) outputs 1 if C(G(u)<i ◦G(u)i ◦ x>i) = 1 and xi ̸= G(u)i.
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One can prove (in PV1) that T0(u, x) = 1 if and only if T (u, x) = 1 and xi = G(u)i, while T1(u, x) = 1
if and only if T (u, x) = 1 and xi ̸= G(u)i. Therefore for every (u, x) ∈ {0, 1}m × {0, 1}n, T (u, x) =
T0(u, x) + T1(u, x). By considering their indicator variables and applying the Linearity of Expectation, one
can prove that

|Pη(T )− (Pη(T0) + Pη(T1))| ≤ 50η. (4.11)

Next, we argue that
|Eη[Xi]− (1− 2 · Pη(T0))| ≤ 20η. (4.12)

Suppose, towards a contradiction, that Equation (4.12) does not hold. Let IT0 be the indicator random
variable of T0, and we have |Eη[IT0 ] − Pη(T0)| ≤ 3η (see Proposition 3.12). Both Xi and IT0 have seed
(u, x) ∈ {0, 1}m × {0, 1}n. By the Averaging Argument for Expectation, there is an assignment ρ to all
variables but xi (i.e. the i-th bit of x) such that

|Eη[Xi|ρ]− (1− 2 · Eη[IT0
|ρ])| > 10η.

Note that both Xi|ρ and IT0 |ρ have seed length 1, and we know by the definition that17

|E[Xi|ρ]− (1− 2 · E[IT0
|ρ])| = 0.

By the Brute Force Counting Lemma, we conclude a contradiction that thus proves Equation (4.12). Simi-
larly, we can prove that ∣∣Eη[Xi]− 2 · Pη(T1)

∣∣ ≤ 20η. (4.13)

By combining Equations (4.6) and (4.11) to (4.13), we have that∣∣∣∣Pη(T )− 1

2

∣∣∣∣ ≥ ∣∣∣∣Pη(T0) + Pη(T1)− 1

2

∣∣∣∣− 50η (Equation (4.11))

≥
∣∣∣∣1− Eη[Xi]

2
+

Eη[Xi]

2
− 1

2

∣∣∣∣− 80η (Equations (4.12) and (4.13))

≥ 1

2
·
∣∣Eη[Xi]− Eη[Xi]

∣∣− 80η

≥ ε

4n
− 180η. (Equation (4.6))

Recall that T takes an input (u, x) ∈ {0, 1}m × {0, 1}n. Let Tx be the circuit obtained by fixing the second
part of its input to be x ∈ {0, 1}n. By considering its indicator variable (see Proposition 3.12) and applying
the Averaging Argument for Expectation, there exists a string x ∈ {0, 1}n such that∣∣∣∣Pη[Tx]− 1

2

∣∣∣∣ ≥ ε

4n
− 200η.

By the definition, one can see that Tx evaluating to 1 means the predictor Px(v) ≜ C(v◦x◦x>i)⊕xi correctly
predicts the i-th bit of G(u). This concludes the proof by applying the Global Consistency of approximate
counting, the Precision Consistency Axiom, and setting η ≜ β/400.

4.2 Schwartz-Zippel Lemma

Before stating the Schwartz-Zippel lemma, we need to clarify the formalization of finite fields and poly-
nomials. A finite field F is said to be feasible if |F| ∈ Log, e.g., F = Fp for some prime number p ∈ Log. It is
verified in [Jeř05, Section 4.3.3] that for any feasible field, the field elements can be encoded such that (1)

17Indeed, since after fixing ρ the only randomness is xi andXi ↾ρ is independent of xi, we have IT0
↾ρ= 1{xi = G(u)i}1{Xi ↾ρ=

0} = 1{xi = G(u)i}
(
1 − Xi ↾ρ

)
. Consequently, E

[
IT0 ↾ρ

]
= 1

2
·
(
1 − Xi ↾ρ

)
= 1

2
·
(
1 − E

[
Xi ↾ρ

])
, which implies that

E
[
Xi ↾ρ

]
= 1− 2 · E

[
IT0

↾ρ
]
.

52



the field operations can be implemented by PV function symbols, and (2) field axioms can be proved in PV.
For simplicity, we identify an element in F and its encoding as a string.

Fix a feasible field F. A degree-d univariate polynomial p ∈ F[x] can be defined by a list of coefficients
c0, c1, . . . , cd ∈ F such that p(x) ≜ c0 + c1x + · · · + cdx

d. A polynomial is said to be nonzero if any of
c0, c1, . . . , cd is nonzero.

Proposition 4.2 (Implicit in [Jeř05, Lemma 4.3.6]). It is provable in PV that any nonzero degree-d polyno-
mial p ∈ F[x] has at most d roots.

Proposition 4.3 (Implicit in [Jeř05]). It is provable in PV that for any d < |F|, any distinct x1, . . . , xd ∈ F,
and y1, . . . , yd ∈ F, there is a degree-d polynomial p ∈ F[x] such that p(xi) = yi for every i ∈ [d].

Let m, d ∈ Log. We say that a circuit C computes an m-variate function in F, denoted by C : Fm → F,
if for every x1, . . . , xm ∈ F, C(x1, . . . , xm) ∈ F. Depending on the encoding of field elements, some circuit
may not compute an m-variate function in F as it outputs a string that does not encode any field element.
We say that C : Fm → F has individual degree at most d if for every i ∈ [m] and any assignment ρ to all but
the i-th variable, there is a polynomial pi,ρ ∈ F[x] of degree at most d such that pi,ρ(x) = C|ρ(x) for x ∈ F.

Theorem 4.4 (Schwartz-Zippel Lemma). APX1 proves the following statement. Let F be a feasible field
such that each field element is encoded by a string of length b ∈ LogLog. Let m, d ∈ Log, d < |F|, and
C : Fm → F be a circuit of individual degree at most d. Let TC : ({0, 1}b)m → {0, 1} be the circuit that given
(x1, . . . , xm) ∈ {0, 1}b, it accepts if xi ∈ F for each i ∈ [m], and C(x1, . . . , xm) = 0.

Suppose that for some z⃗ ∈ Fm, C(z⃗) ̸= 0. Then for every δ−1, β−1 ∈ Log, Pδ(TC) ≤ md/|F|+ δ + β.

Proof. The key idea is to formalize the proof of Atserias and Tzameret [AT25] in APX1. We argue in APX1.
Fix any feasible field F, b ∈ LogLog, m, d ∈ Log, C : Fm → F, z⃗ = (z1, . . . , zm) ∈ Fm, and δ−1, β−1 ∈ Log, as
in the statement.

Let η−1 ∈ Log be a parameter to be determined later. For every i ∈ {0, 1, . . . ,m}, we define T i
C :

({0, 1}b)m → {0, 1} as follows: Given (x1, . . . , xm) ∈ {0, 1}b, it accepts if xi ∈ F for each i ∈ [m] and
C(x1, . . . , xi, zi+1, . . . , zm) = 0. It is clear that T 0

C ≡ Null, and Tm
C ≡ TC .

Let X0, X1, . . . , Xm be the indicator random variables for T 0
C , T

1
C , . . . , T

m
C . We will prove that for every

i ≥ 1,
Eη[Xi]− Eη[Xi−1] ≤ d/|F|+ 10η. (4.14)

Assume for contradiction that it is not the case. By Averaging Argument for Expectation, there is an
assignment ρ to all but the i-th part xi of the seed such that

Eη[Xi|ρ]− Eη[Xi−1|ρ] > d/|F|+ 10η − 6η > 0. (4.15)

Note that Xi−1|ρ is the indicator random variable of T i−1
C |ρ, and by the definition, T i−1

C |ρ is a constant
circuit that does not read the seed. Therefore it falls into one of the two cases:

• Suppose that T i−1
C |ρ ≡ True. We also know that the circuit EQ(T i−1

C |ρ, 1) that given x ∈ {0, 1}b,
outputs 1 if and only if T i−1

C (x) = 1 is also functionally equivalent to True. One can prove by the
definition that

Eη[Xi−1|ρ] = Pη(EQ(T i−1
C |ρ, 1)) = 1,

where the second inequality follows from the Boundary Axiom. This leads to a contradiction to
Equation (4.15).

• Otherwise, T i−1
C |ρ ≡ Null. Let ρ = (y1, . . . , yi−1, ∗, yi+1, . . . , ym). Recall that as the individual degree

of C is at most d, there is a polynomial p ∈ F[x] such that p ≡ C(y1, . . . , yi−1, ·, zi+1, . . . , zm). It
follows from T i−1

C |ρ ≡ Null and Equation (4.15) that

p(zi) = C(y1, . . . , yi−1, zi, zi+1, . . . , zm) ̸= 0,

53



and thus p is a nonzero polynomial. By Proposition 4.2, it has at most d roots. Moreover, as the input
length of T i−1

C |ρ is b ∈ LogLog, we can prove by Proposition 3.12 and Brute Force Counting Lemma
that

Eη[Xi|ρ] ≤ Pη(T i
C) + 2η ≤ d/|F|+ 4η.

This leads to a contradiction to Equation (4.15).

Finally, as T 0
C ≡ Null, we know that Eη[X0] ≤ 10η. By induction on i (using the n-Induction Axiom)

and Equation (4.14), we can prove that

Eη[Xm] ≤ md/|F|+ 10η · (m+ 1). (4.16)

Subsequently, we have

Pδ(TC) ≤ Pη(TC) + δ + 2η (Precision Consistency Axiom)

≤ Pη(Tm
C ) + δ + 5η (Global Consistency)

≤ Eη(Xm) + δ + 8η (Proposition 3.12)

≤ md/|F|+ δ + 10η · (m+ 1) + 8η

≤ md/|F|+ δ + β,

where the last inequality follows by taking η ≜ β/(10m+ 20).

4.3 Linear Hashing

The linear hash function x 7→ Ax mod 2 is one of the simplest constructions of hash functions. The
following theorem formalizes that linear hashing is an (almost) universal hash function.

Theorem 4.5 (Universality of linear hashing). APX1 proves the following statement. Let n,m, δ−1, β−1 ∈
Log. For every x, y ∈ {0, 1}n, let Tx,y : {0, 1}nm → {0, 1} be the circuit that parses its input as a Boolean
matrix A ∈ {0, 1}m×n and outputs 1 if and only if Ax ≡ Ay (mod 2). Then for all distinct x, y ∈ {0, 1}n,
Pδ(Tx,y) ≤ δ + β + (1/2 + β)m.

Proof. We argue in APX1. Fix n,m, δ−1, β−1 ∈ Log, x, y ∈ {0, 1}n, and let Tx,y be the circuit defined above.
Suppose that x ̸= y. We will prove that Pδ(Tx,y) ≤ δ + β + (1/2 + β)m.

We first upper bound the probability when m = 1. Let η−1 ∈ Log be a parameter to be determined later,
and C : {0, 1}n → {0, 1} be the circuit that given c ∈ {0, 1}n, it outputs ⟨c, x− y⟩ mod 2. We will prove that
Pη(¬C) ≤ 1/2 + 6η.

Suppose, towards a contradiction, that Pη(¬C) > 1/2 + 6η. As x ̸= y, there is an index i ∈ [n] such
that xi ̸= yi. Fix the index i. Let X be the indicator random variable of ¬C; by Proposition 3.12, we know
that Eη[X] > 1/2 + 6η − 3η = 1/2 + 3η. Subsequently, by Averaging Argument for Expectation, there is an
assignment ρ to all but the i-th bit of the random seed such that Eη[X|ρ] > 1/2. However, as the seed length
of X|ρ is 1 and the probability is 1/2, this violates the Brute Force Counting Lemma.

Let C∨m : {0, 1}nm → {0, 1} denote the circuit C∨m(x1, . . . , xm) ≜
∨

i∈[m] C(xi). By One-sided Error
Reduction Lemma, we have

Pη(¬C∨m) ≤ (1/2 + 8η)m + 2η.

It can be observed that ¬C∨m is functionally equivalent to Tx,y, and thus by the Global Consistency of
approximate counting,

Pη(Tx,y) ≤ Pη(¬C∨m) + 3η ≤ (1/2 + 8η)m + 5η.

By the Precision Consistency Axiom, we have

Pδ(Tx,y) ≤ Pη(Tx,y) + δ + 2η ≤ (1/2 + 8η)m + δ + 7η.

This completes the proof when we take η ≜ β/20.
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4.4 Lower Bounds for Parity Against AC0 Circuits

The first result of this section is a formalization in APX1 of an average-case lower bound for the Parity
function ⊕n against AC0. Our proof is based on a technique due to Furst, Saxe, and Sipser [FSS84].
Previous formalizations of the lower bound18 due to Müller and Pich [MP20] (following [FSS84]) and Kraj́ıček
[Kra95, Theorem 15.2.3] (following Razborov’s proof of the switching lemma [Raz95]) require the theory
APC1 = PV1 + dWPHP(PV).19

Theorem 1.6 (Average-Case AC0 Lower Bound for ⊕n in APX1). For all constants k, d ≥ 1, there exists
a constant n0 ≥ 1 such that APX1 proves the following statement. Let n, δ−1, β−1 ∈ Log, n > n0, and
C : {0, 1}n → {0, 1} be an AC0

d circuit of size at most nk. Let TC : {0, 1}n → {0, 1} be the circuit that, given
x ∈ {0, 1}n, outputs 1 if and only if C(x) = ⊕n(x). Then

Pδ(TC) ≤ 1

2
+

1

nk
+ δ + β. (1.1)

The main technical challenge is to avoid “encoding-based counting argument” that rely on dWPHP(PV),
which is not available in APX1. The encoding-based counting argument is used in both [MP20] and
Razborov’s [Raz95] proof of the switching lemma. This was partially addressed by Agrawal et al. [AAI+01]
(see also [Agr01])20, which presented a deterministic polynomial-time algorithm that outputs a suitable re-
striction given by the switching lemma. As one of our contributions, we show that the correctness of the
algorithm in Agrawal et al. [AAI+01] can be established in PV1. This, together with tools developed in
Section 3), allow us to formalize the average-case lower bound in APX1.

Interestingly, using the same technique, we further show that the worst-case lower bound ⊕n /∈ AC0 can
be formalized in PV1. This resolves an open problem from [MP20].

Theorem 1.7 (Worst-Case AC0 Lower Bound for ⊕n in PV1). For all constants k, d ≥ 1, there exists a
constant n0 ≥ 1 such that PV1 proves the following statement. For every n ∈ Log, n > n0, and AC0

d circuit
C : {0, 1}n → {0, 1} of size at most nk, there exists a string x ∈ {0, 1}n such that C(x) ̸= ⊕n(x).

Notation. We let n denote the number of input variables. A k-CNF is a propositional formula of the form
C1∧C2∧· · ·∧Cm, where each clause Ci is a disjunction of at most k literals, i.e., variables or their negations.
Similarly, a k-DNF is a disjunction of terms, where each term is a conjunction of at most k literals. We say
that a formula is a k-NF if it is either a k-CNF or a k-DNF. A clause21 C of a k-NF can be described by its
type (i.e. ∧ or ∨) and two subsets S+

C , S
−
C ⊆ [n] of size |S+

C |+ |S
−
C | ≤ k, where S+

C denotes the ID of variables

in the clause, and S−C denotes the ID of negations of variables in the clause. Let SC ≜ S+
C ∪ S

−
C .

Note that we may assume without loss of generality that S+
C ∩ S

−
C = ∅, as otherwise the clause will be

either always 0 or always 1.
For simplicity, we assume without loss of generality that AC0 circuits satisfy the following properties:

• The circuit is layered, i.e., gates in each layer are fed by gates only in previous layer.

• All negation gates are pushed to be directly above input variables. Equivalently, there is no negation
gate inside the circuit, i.e., gates in the first layer can be fed by literals, i.e., input variables or their
negations.

An AC0 circuit satisfying these properties is called a well-formed circuit. Note that an arbitrary AC0 circuit
can be transformed into a well-formed circuit with only a polynomial size overhead, and the correctness of
the transformation can be proved in PV1. We start directly from well-formed circuits to simplify calculations.

18Both results consider only worst-case lower bounds, but it can be verified that an average-case lower bound follows from a
similar argument when formalized appropriately (in the style of Jeřábek [Jeř05, Jeř07a]).

19Note that both results automatically give a formalization of the worst-case lower bound in PV1 + rWPHP(PV), as APC1 is
∀Σb

1-conservative over PV1 + rWPHP(PV) [Jeř04, Jeř07a] and the worst-case lower bound can be formalized as a ∀Σb
1-sentence

(see, e.g., [MP20, Theorem 1.1]).
20As mentioned in [AAI+01], the result was known to Ajtai and Wigderson (unpublished).
21In the context of k-NFs, we use “clause” to refer to a subformula, regardless of the connective.
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4.4.1 Deterministic Selection of Subset for Restriction

We start by stating two lemmas that formalize the core combinatorial property used in the proof of Furst,
Saxe, and Sipser [FSS84]. Similar functions are used implicitly in [AAI+01]. Here we use potential functions
in order to implement a derandomization via the method of conditional expectations. The approach provides
both a feasible algorithm and a feasible proof.

Lemma 4.6 (Potential Function for Small Sets). The following sentence is provable in PV1 for every constant
c ≥ 1. Let n, t ∈ Log with t ≤ n, s,m ∈ LogLog, s ≤ m, p ≜ t/n ∈ Q, and S1, . . . , Sm ⊆ [n] be disjoint sets
of size at most c such that pc < 1. There is a circuit Φs : {∗, ◦}≤n → Q∩ [0, 1] such that the following holds.

• (Initial Condition). Φs(ε) ≤ ms(pc)m−s.

• (Recursion Condition). For every x ∈ {∗, ◦}i, i < n, we have

Φs(x) = p · Φs(x∗) + (1− p) · Φs(x◦).

• (Termination Condition). For every x ∈ {∗, ◦}n, Φs(x) ∈ {0, 1}. Moreover, let Tx ≜ {i ∈ [n] | xi = ◦}.
Then Φs(x) = 0 if and only if there are at least s subsets S ∈ {S1, . . . , Sm} such that S ⊆ Tx.

Proof Sketch. We argue in PV1. Let n, t, s ∈ Log, m ∈ LogLog, p ≜ t/n, and S1, . . . , Sm ⊆ [n]. The circuit
Φs is defined as follows: Given x ∈ {∗, ◦}i for some 0 ≤ i ≤ n, let Tx ≜ {j ≤ i | xj = ◦}. It outputs

Φs(x) ≜
∑

α⊆[m],|α|<s

ϕ(x, α),

where

ϕ(x, α) ≜


0 ∃j ∈ α ∃k ∈ [i] (k ∈ Sj ∧ xk = ∗)∏
j∈[α]

(1− p)|Sj\Tx|
∏

j′∈[m]\α

ψ(x, j′) otherwise ,

ψ(x, j′) ≜

{
1 ∃k ∈ [i] (k ∈ Sj′ ∧ xk = ∗)
1− (1− p)|Sj′\Tx| otherwise

.

For instructive purposes, we mention the combinatorial interpretation of the functions (which is not a
part of the PV1 proof): Given any x ∈ {∗, ◦}i, we randomly assign xi+1, . . . , xn independently to ∗ with
probability p and to ◦ with probability 1− p. Let T ′x ≜ {i ∈ [n] | xi = ◦}. Then

• ψ(x, j′) is the probability that Sj′ ⊈ T ′x.

• ϕ(x, α) is the probability that Sj ⊆ T ′x if and only if j ∈ α.

• Φs(x) is the probability that at most s− 1 subsets S ∈ {S1, . . . , Sm} satisfy S ⊆ Tx.

We come back to the PV1 proof. The recursion condition and termination condition can be verified by a
tedious but straightforward calculation, which we omit here. To prove the initial condition, notice that

ψ(ε, j′) = 1− (1− p)|S
′
j | ≤ 1− (1− p)c ≤ pc

ϕ(ε, α) ≤
∏

j′∈[m]\α

ψ(ε, j′) ≤ (pc)m−|α|

Φs(ε) ≤
∑

0≤j<s

(
m

j

)
(pc)m−j ≤ ms(pc)m−s

The argument can be implemented in PV1 using that s,m ∈ LogLog and c is constant. This completes the
proof.
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Lemma 4.7 (Potential for General Set Systems). For every choice of constants k, c ≥ 1, there are constants
b, n0 ≥ 1 such that the following sentence is provable in PV1. Let n, t,m ∈ Log, n > n0, p ≜ t/n ∈ Q, and
S1, S2, . . . , Sm ⊆ [n] be nonempty subsets of size at most c. Then there is a circuit Φ : {∗, ◦}≤n → Q ∩ [0, 1]
such that the following holds.

• (Initial Condition). If t ≤
√
n, then Φ(ε) ≤ n−k.

• (Recursion Condition). For every x ∈ {∗, ◦}i, i < n, we have

Φ(x) = p · Φ(x∗) + (1− p) · Φ(x◦).

• (Termination Condition). For every x ∈ {∗, ◦}n, Φ(x) ∈ {0, 1}. Moreover, for Tx ≜ {i ∈ [n] | xi = ◦},
if Φ(x) = 0, then one of the following conditions holds:

1. |S1 ∪ S2 ∪ · · · ∪ Sm \ Tx| ≤ b.
2. There are disjoint nonempty sets V1, . . . , Vℓ ⊆ [n] that are subsets of ℓ distinct sets among

S1, . . . , Sm, such that Vi ⊆ Tx for every i ∈ [ℓ], where ℓ ≥ k lnn.

Moreover, the disjoint sets V1, . . . , Vℓ can be obtained by a PV function given S1, . . . , Sm and x ∈ {∗, ◦}n.

Proof. Fix any constants k, c ≥ 1 and let b, n0 ≥ 1 be constants to be determined later. We argue in PV1.
Fix n, t,m ∈ Log, p ≜ t/n, and S1, . . . , Sm ⊆ [n].

Disjoint Set Decomposition. Consider the iterative algorithm: Let U0 ← {S1, . . . , Sm}. In the i-th
step, where i ≥ 1, we choose a maximal set Vi ⊆ Ui−1 such that the sets in Vi are disjoint, and compute Ui
as follows:

• Let Ui ← ∅. For every S ∈ Ui−1, we include S \ (
⋃

S∈Vi S) in Ui if this set is nonempty.

Note that each set remaining in Ui must be a subset of some S1, . . . , Sm. Moreover, it must be of size at most
c − i, as the maximal set Vi intersects with each set in Ui−1 (otherwise it is not maximal). The algorithm
terminates if no set is added to Ui during an iteration.

Let d ≤ c and V1, . . . ,Vd be the sets obtained by the algorithm. One can prove that the union of the sets
in V1, . . . ,Vd covers S1 ∪ · · · ∪ Sm. Furthermore, it can be verified that for each i ∈ [d] and V1, . . . , Vℓ ∈ Vi,
there are distinct i1, . . . , iℓ ∈ [m] such that V1 ⊆ Si1 , . . . , Vℓ ⊆ Siℓ .

Wide Case. We first consider the case that for some i ∈ [d], Vi contains at least ℓ ≜ 2k lnn sets. Fix i to
be the smallest number satisfying this. Let V1, . . . , Vℓ be the first ℓ sets in Vi. Let Φs(x) be the potential
function in Lemma 4.6 for V1, . . . , Vℓ and s ≜ ℓ/2 (note that ℓ ∈ LogLog). We define Φ(x) ≜ Φs(x).

It then suffices to verify that the three required properties hold.

• (Initial Condition). By Lemma 4.6, we know that

Φ(ε) ≤ ℓℓ/2 · (pc)ℓ/2 ≤
(
bkc lnn√

n

)ℓ/2

≤ n−k,

where we assume a choice of b ≥ 2 and a sufficiently large n, which can be ensured by setting n0 as a
large constant.

• (Recursion Condition). It follows from the recursion condition in Lemma 4.6.

• (Termination Condition). For x ∈ {∗, ◦}n,Φ(x) ∈ {0, 1} by Lemma 4.6. Let Tx ≜ {i ∈ [n] | xi = ◦}.
Suppose that Φ(x) = 0. We know that there are at least ℓ/2 ≥ k lnn sets V among V1, . . . , Vℓ such that
V ⊆ Tx. This satisfies the second termination condition. Moreover, the k lnn sets can be obtained by
a PV function given S1, . . . , Sm and x ∈ {∗, ◦}n, using the algorithm that constructs V1, . . . ,Vd.
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Narrow Case. Now we consider the case that Vi ≤ 2k lnn sets for every i ∈ [d]. Note that the union of
the sets in V1, . . . ,Vd covers S1 ∪ · · · ∪ Sm. We know that

|S1 ∪ · · · ∪ Sm| =

∣∣∣∣∣∣
⋃
i∈[d]

⋃
V ∈Vi

V

∣∣∣∣∣∣ ≤ d · (2k lnn) · c ≤ 2kc2 lnn.

Recall that b ≥ 1 is a constant to be determined. Let S ≜ S1∪ · · ·∪Sm. We define the potential function
Φ(x) as follows. Given x ∈ {∗, ◦}i for i < n, let q∗ ≜ |{j ∈ [i] ∩ S | xj = ∗}|, q◦ ≜ |{j ∈ [i] ∩ S | xj = ◦}|,
and q⋄ ≜ |S| − q∗ − q◦. Then

Φ(x) ≜
|S|−q◦∑

j=max{b+1,q∗}

(
q⋄

j − q∗

)
pj−q

∗
(1− p)q

⋄−j+q∗ . (4.17)

For instructive purposes, we mention that the combinatorial interpretation of the function is as follows. We
randomly assign xi+1, . . . , xn independently to ∗ with probability p and to ◦ with probability 1 − p. Then
Φ(x) is the probability that the number of indices j ∈ [n] ∩ S such that xj = ∗ is at least b + 1. The
combinatorial interpretation is not a part of the PV1 proof.

Note that Φ(x) ≥ 0 as each term is non-negative, and Φ(x) ≤ 1 by the Binomial Theorem. It suffices to
verify the three required properties.

• (Initial Condition). Note that

Φ(ε) ≤
|S|∑

j=b+1

(
|S|
j

)
pj ≤

|S|∑
j=b+1

|S|jpj ≤
|S|∑

j=b+1

(
2kc2 lnn√

n

)j

≤ n−k,

where the last inequality holds if we set b ≥ 10k and n0 to be sufficiently large.

• (Recursion Condition). Fix any x ∈ {∗, ◦}i for i < n, we consider whether i + 1 ∈ S. If not, we have
that Φ(x) = Φ(x∗) = Φ(x◦) and the equation holds. Otherwise, let q∗ ≜ |{j ∈ [i] ∩ S | xj = ∗},
q◦ ≜ {j ∈ [i] ∩ S | xj = ◦}, and q⋄ ≜ |S| − q∗ − q◦. We can see that

Φ(x∗) ≜
|S|−q◦∑

j=max{b+1,q∗+1}

(
q⋄ − 1

j − q∗ − 1

)
pj−q

∗−1(1− p)q
⋄−j+q∗ ;

Φ(x◦) ≜
|S|−q◦−1∑

j=max{b+1,q∗}

(
q⋄ − 1

j − q∗

)
pj−q

∗
(1− p)q

⋄−1−j+q∗ .

It follows from Equation (3.45) that Φ(x) = p · Φ(x∗) + (1− p) · Φ(x◦).
• (Termination Condition). For x ∈ {∗, ◦}n, let q∗, q◦, q⋄ be defined as above. We have q⋄ = 0 and
q∗ + q◦ = |S|. In that case, one can observe that if q∗ > b, then Φ(x) = 1, and otherwise Φ(x) = 0.
Moreover, we know by the definition of q∗ that if Φ(x) = 0, for Tx ≜ {i ∈ [n] | xi = ◦}, we have
|S \ Tx| = q∗ ≤ b. This satisfies the first termination condition.

This completes the proof.

We are now ready to state the Subset Selection Lemma.

Lemma 4.8 (Subset Selection Lemma). For every k, c ≥ 1, there are constants b, n0 ≥ 1 such that the
following sentence is provable in PV1. Let n, t, ℓ ∈ Log, n > n0, ℓ ≤ nk, and F1, F2, . . . , Fℓ be c-NFs over n
input variables. If t ≤

√
n, there exists a subset T ⊆ [n] of size at most n− t such that for every i ∈ [ℓ], at

least one of the following conditions hold.

• If we fix the j-th variable for every j ∈ T , Fi is fed by at most b literals.
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• There are m′ ≥ k lnn disjoint non-empty clauses C ′1, . . . , C
′
m′ such that (1) each C ′j is a sub-clause of

a different clause in Fi; (2) SC′
j
⊆ T .

Moreover, the subset T and the clauses C ′1, . . . , C
′
m for each i are computed by a PV function given F1, . . . , Fℓ

and 1n, 1t, 1ℓ.

Proof. Fix any k, c ≥ 1 and let b, n0 ≥ 1 be determined later. We argue in PV1. Fix n, t ∈ Log, ℓ ≤ nk,
p ≜ t/n, and c-NFs F1, . . . , Fℓ over n variables.

Fix any i ∈ [ℓ]. Suppose that Fi has mi clauses, and let Cij be the j-th clause of Fi. Let Sij ≜ SCij be
the subset of variables which or whose negation feeds Cij . For each i ∈ [ℓ], consider the sets Si1, . . . , Simi

; by
Lemma 4.7 (using 3k instead of k), there are constants b′, n′0 and a potential function Φi : {∗, ◦}≤n → Q∩[0, 1]
such that the following conditions hold.

• (Initial Condition). Φi(ε) ≤ n−3k;

• (Recursion Condition). Φi(x) = p · Φi(x∗) + (1− p) · Φi(x◦).
• (Termination Condition). For x ∈ {∗, ◦}n, Φi(x) ∈ {0, 1}. Moreover, let Tx ≜ {i ∈ [n] | xi = ◦}. If

Φi(x) = 0, then one of the following two conditions holds:

1. |Si1 ∪ · · · ∪Simi \Tx| ≤ b. This effectively means that if we fix j-th variable for every j ∈ Tx, then
Fi is fed by at most b literals.

2. There are disjoint nonempty sets V1, . . . , Vℓi ⊆ [n] that are subsets of ℓi distinct sets among
Si1, . . . , Simi , such that Vi ⊆ Tx for every i ∈ [ℓ], where ℓi ≥ 3k lnn ≥ k lnn. This means that
there are m′ = ℓi ≥ k lnn disjoint clauses C ′1, . . . , C

′
m′ , each of which is a sub-clause of a clause

in Fi, such that SC′
j
⊆ T .

Therefore, if Φi(x) = 0, then the clause satisfies the required property if we choose T ≜ Tx.

Consider the potential function Φ(x) as follows. Given any x ∈ {∗, ◦}i, i ≤ n, let q◦ be the number of
◦’s in x. We define

Φ(x) ≜ q◦ + (1− p)(n− i) + n ·
∑
i∈[ℓ]

Φi(x).

We can show that Φ(x) satisfies the following conditions:

• (Initial Condition). Φ(ε) ≤ (1− p)n+ n · ℓ · n−3k < (1− p)n+ 1.

• (Recursion Condition). Φ(x) = p · Φ(x∗) + (1− p) · Φ(x◦).
• (Termination Condition). For x ∈ {∗, ◦}n, Φ(x) is an integer. Moreover, Φ(x) is at most the sum of

(1) the number of ∗’s in x and (2) n times the number of c-NFs Fi that violates the required properties
if we choose T = Tx = {i ∈ [n] | xi = ◦}. In particular, if Φ(x) ≤ (1− p)n, T = Tx is a desired subset.

It remains to construct x ∈ {∗, ◦}n such that Φ(x) ≤ (1− p)n. Indeed, it can be obtained by the greedy
algorithm that, starting from x ← ε, appends either ∗ or ◦ to x to minimize Φ(x). By induction on i, we
can prove that the string x ∈ {∗, ◦}≤i after the i-th round of the algorithm satisfies that Φ(x) ≤ Φ(ε) <
(1− p)n+ 1. This is available in PV1 as the property can be verified by a straightforward polynomial-time
algorithm. Finally, the string x ∈ {∗, ◦}n obtained after n rounds satisfies that Φ(x) ≤ (1− p)n, as it must
be an integer smaller than (1− p)n+ 1. This completes the proof.

4.4.2 Average-Case Lower Bound in APX1

We say that a partial assignment ρ trivializes an NF F if F is a constant function after applying ρ. Note
that for every NF F that contains a non-constant clause C, there is an assignment to variables in C that
trivializes F .

Lemma 4.9 (Random Restriction Lemma). For every k, c, b ∈ N, there exists an n0 ≥ 1 such that the
following is provable in APX1. Let n, t, ℓ ∈ Log, n > n0. Let F1, . . . , Fℓ be c-NFs over n input variables, and
T ⊆ [n] be a subset of size n− t such that for every i ∈ [ℓ], at least one of the following conditions hold.
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• (Narrow). If we simultaneously fix all variables whose indices are in T , the c-NF Fi will be fed by at
most b literals.

• (Wide). There are m′i ≥ k lnn (explicitly given) non-empty disjoint clauses C ′i,1, . . . , C
′
i,m′

i
such that

(1) each C ′i,j is a sub-clause of a different clause in Fi; (2) SC′
i,j
⊆ T for every j ∈ [m′i].

Let Y be the random variable over {0, 1} that takes a seed x of length n, parses it as an assignment ρ
to variables in T (i.e. it fixes the i-th variable to xi for every i ∈ T ), and outputs 1 if and only if at least
one of F1, . . . , Fℓ is neither trivialized nor depends on at most b literals after applying ρ. Then for every
δ−1, β−1 ∈ Log

Eδ[Y ] ≤ ℓ · (1− 2−c + β)k lnn + δ + β.

Proof. We argue in APX1. Fix k, c, b ∈ N and let n0 ≥ 1 be a constant to be determined. Fix n, t, ℓ ∈ Log,
F1, . . . , Fℓ, and T ⊆ [n]. Let η−1 ∈ Log be a parameter to be determined later.

For simplicity, we assume that F1, . . . , Fℓ′ are the gates that satisfy the second condition, and let m′i ≥
k · lnn be the number of disjoint clauses C ′i,1, . . . , C

′
i,m′

i
. We will define random variables over {0, 1} with n

bit seeds as follows.

• For every i ∈ [ℓ′] and j ∈ [m′i], Xij is defined as the following random variable: Let x ∈ {0, 1}n be the
seed. Then Xij = 1 if and only if fixing the r-th variable to xr for every r ∈ T does not trivialize C ′i,j .

• For every i ∈ [ℓ′], let Xi =
∏m′

i
j=1Xij .

• Notice that Y ≤
∨

i∈[ℓ′]Xi.

Note that each Xij reads at most c ∈ N bits of its seed. Thus by the Brute Force Counting Lemma, we know
that Eη[Xij ] ≤ 1− 2−c + 2η. By the Multiplication Principle, we have

Eη[Xi1Xi2 . . . Xim′
i
] ≤ (1−2−c +2η)m

′
i +8η ·m′i ≤ (1−2−c +2η)k·lnn +8η · |Fi| ≤ (1−2−c +β)k lnn +8η · |Fi|,

where the last inequality holds when η ≤ β/2. By the Union Bound,

Eη[Y ] ≤
ℓ′∑
i=1

Eη[Xi] + 3η · ℓ′ ≤ ℓ · (1− 2−c + β)k lnn + 8η · ℓ · (2cnc) + 3η · ℓ.

The lemma then follows from the Precision Consistency of Expectation by setting η ≜ β/(20 · ℓ · 2cnc).

Now we are ready to prove the average-case lower bound for ⊕n against AC0.

Theorem 1.6 (Average-Case AC0 Lower Bound for ⊕n in APX1). For all constants k, d ≥ 1, there exists
a constant n0 ≥ 1 such that APX1 proves the following statement. Let n, δ−1, β−1 ∈ Log, n > n0, and
C : {0, 1}n → {0, 1} be an AC0

d circuit of size at most nk. Let TC : {0, 1}n → {0, 1} be the circuit that, given
x ∈ {0, 1}n, outputs 1 if and only if C(x) = ⊕n(x). Then

Pδ(TC) ≤ 1

2
+

1

nk
+ δ + β. (1.1)

Proof. We prove by induction on d in the meta-theory that the statement holds for every k. The constant
nk,d0 ≥ 1 will be determined later in the proof. In both the base case and induction case, we argue in APX1.
Fix n, δ−1, β−1 ∈ Log and the circuit C : {0, 1}n → {0, 1}. Let η−1 ∈ Log be a parameter to be determined
later.

Base Case. Suppose that d = 1. Towards a contradiction, assume that Equation (1.1) does not hold.
Then by the Precision Consistency Axiom, we have

Pη(TC) >
1

2
+

1

nk
+ (β − 2η). (4.18)
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Note that Fixb(TC) is the circuit TFixb(C)⊕b.
We first show that for D : {0, 1}n → {0, 1}, if D depends on at most n − 1 of its input bits, then

Pη(TD) ≤ 1/2 + O(η). Suppose that D does not depend on the i-th input bit. Let XD be the indicator
random variable of TD and ρ be any assignment to all but the i-th input bit ofD. By the Brute Force Counting
Lemma, we have that Eη[XD|ρ] ≤ 1/2 + 2η. Subsequently, by the Averaging Argument for Expectation, we
can conclude that

Eη[XD] ≤ 1

2
+ 2η + 3η ≤ 1

2
+ 5η. (4.19)

This implies that Pη(TD) ≤ 1/2 + 8η by Proposition 3.12.
Now we assume that C depends on all of its input bits and is of depth at most d = 1. Consider the

following iterative P-oracle algorithm. Let C0 ≜ C and s0 ≜ 0. The algorithm maintains the invariant that
after the i-th round, Ci depends on all of its input bits. Given that the invariant holds after the (i − 1)-th
round, there exists bi ∈ {0, 1} such that

• Fixbi(Ci−1) is a constant circuit;

• Fix1−bi(Ci−1) depends on all of its input bits.

Fix that bi ∈ {0, 1}. The algorithm then defines Ci ≜ Fix1−bi(Ci−1)⊕ (1− bi) and si ≜ si−1⊕ (1− bi) in the
i-th round, and the invariant is maintained.

We will prove by induction on i ≤ n that

Pη(TCi⊕si) >
1

2
+

2i

nk
+ (β − 8(i+ 1) · η).

(Note that n ∈ Log and i ≤ n, so the induction hypothesis can be expressed by an open formula in APX1.)
The base case follows from Equation (4.18). Suppose that the inequality holds for i < n. Notice that

Pη(TCi⊕si) ≤
Pη(Fixbi(TCi

)⊕ si) + Pη(Fix1−bi(TCi
)⊕ si)

2
(Precision Consistency Axiom)

=
Pη(TFixbi (Ci)⊕si⊕bi) + Pη(TFix1−bi

(Ci)⊕si⊕(1−bi))

2

=
Pη(TFixbi (Ci)⊕si⊕bi) + Pη(TCi+1⊕si+1

)

2

≤ 1

2

(
1

2
+ 8η + Pη(TCi+1⊕si+1)

)
.

(The last inequality follows as Fixbi(Ci) is a constant circuit and thus does not depend on all of its input
bits.) It then follows by the induction hypothesis that

Pη(TCi+1⊕si+1
) >

1

2
+

2i+1

nk
+ (β − 8(i+ 2) · η).

We set n0 ∈ N to be sufficiently large such that 2n−10/nk ≥ 1 for every n > n0. Therefore, we have that
Pη(TCn−10

) > 3/2+(β−8(n+1) ·η), where Cn−10 has input length exactly 10 and is an AC0 circuit of depth

1. This is provably impossible if we set η ≜ β/(20n) by the Brute Force Counting Lemma.

Induction Case. Suppose that the theorem holds for d ∈ N. Our goal is to prove the theorem for d+ 1.
Let nk,d0 be the constant n0 ≥ 1 corresponding to the theorem for d and k. Fix any k ≥ 1 and let nk,d+1

0 be
a constant to be determined. Towards a contradiction, assume that Equation (1.1) does not hold. Then by
the Precision Consistency Axiom, we have

Pη(TC) >
1

2
+

1

nk
+ (β − 2η). (4.20)

At a high level, we will apply random restrictions twice to convert C to an AC0
d circuit that computes

the parity function w.h.p. on a smaller input length; after that, we can apply the induction hypothesis to
conclude the proof.
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Restriction 1. Let G1, G2, . . . , Gℓ be the gates in the first layer, i.e., directly fed by literals. We may
view them as 1-NFs, as each literal can be viewed as a clause with one literal. Let t ≜

√
n. By the Subset

Selection Lemma, there exists a subset T1 ⊆ [n] of size at most n− t such that for every gate Gi, one of the
conditions hold.

• If we fix all variables in T1, Gi will be fed by at most b1 variables, where b1 ∈ N is a constant.

• At least 100k · lnn literals of Gi are using variables in T1.

Fix the subset T1 ⊆ [n]. We assume that |T1| = n− t; if not, we add n− t− |T1| arbitrary elements to it.
We define random variables over {0, 1} with n bit seeds as follows.

• Let Y be the random variable in the Random Restriction Lemma. That is, given x ∈ {0, 1}n, it parses
x as a partial assignment ρ to variables in T1, and outputs 1 if and only if at least one of the gates is
neither trivialized nor depends on at most b literals after applying ρ.

• Let YT be the indicator random variable of TC .

By the Random Restriction Lemma and using c = 1, we have that

Eη[Y ] ≤ ℓ · (1/2 + η)100k lnn + 2η ≤ n−8k,

where the last inequality holds when η is sufficiently small and n is sufficiently large (by setting nk,d+1
0 ∈ N).

By the Averaging Argument for Expectation, there exists an assignment ρ1 to variables in T1 such that

Eη[YT |ρ1
]− Eη[Y |ρ1

] ≥ 1

2
+

1

nk
+ (β − 30η)− 1

n8k
> 5η, (4.21)

where the last inequality holds if η is sufficiently small.
Fix the assignment ρ1. Note that Y |ρ1

∈ {0, 1} as Y only reads its input variables in T1. Therefore, we
must have Y |ρ1

= 0. In this case, all gates are either trivialized or fed by at most b1 variables after applying
ρ1, and thus can be replaced by a gate of fan-in at most b1.

Let σ1 ≜ ⊕n−t(ρ1), n1 ≜ t, and C1 : {0, 1}n1 → {0, 1} be the circuit obtained from C by applying the
assignment ρ1, replacing each gate in the first layer with an equivalent gate of fan-in at most b1, and XORing
the output of the circuit with the bit σ1. Note that C|ρ1(x) = C1(x)⊕ σ1 for every x ∈ {0, 1}n1 . Moreover,
C1 is of size at most nk ≤ n2k1 .

Let TC1
: {0, 1}n1 → {0, 1} be the circuit that, given x, it outputs 1 if and only if C1(x) = ⊕n1

(x). It turns
out that YT |ρ1

is the indicator random variable of TC1
; to see this, notice that for every assignment x to all

variables but T1, C(x∪ρ1) = ⊕n(x∪ρ1) if and only if C|ρ1(x) = (⊕n1(x))⊕σ1, where C|ρ1(x)⊕σ1 = C1(x).
Therefore, by Proposition 3.12, we have that

Pη(TC1) ≥ Eη[YT |ρ]− 3η ≥ 1

2
+

1

nk
+ (β − 33η)− 1

n8k
≥ 1

2
+

1

n4k1
+ (β − 33η),

where the last inequality holds if n is sufficiently large (by setting nk,d+1
0 ∈ N).

Restriction 2. As mentioned above, each gate in the first layer of C1 has fan-in at most b1, and thus
the gates in the second layer of C1 computes b1-NFs. Let F1, F2, . . . , Fℓ1 be the b1-NFs in the second layer
of C1. Let t1 ≜

√
n1. By the Subset Selection Lemma with appropriate choice of parameters, there exists a

subset T2 ⊆ [n] of size at most n1 − t1 such that for every i ∈ [ℓ1], one of the conditions hold.

• If we fix all variables in T2, Fi will depend on at most b2 variables, where b2 ∈ N is a constant.

• There are m′1 ≥ 100k · 4b1 · lnn disjoint sub-clauses of Fi that only use literals from variables in T2.

Let n2 ≜ t1 and fix the set T2 ⊆ [n]. We assume that |T2| = n1 − t1; if not, we add n1 − t1 − |T2| arbitrary
elements to it. We define random variables over {0, 1} with n bit seeds as follows.

• Let Y ′ be the random variable in the Random Restriction Lemma. That is, given x ∈ {0, 1}n, it parses
x as a partial assignment ρ to variables in T2, and outputs 1 if and only if each of the b-NFs is either
trivialized or depends on at most b2 literals after applying ρ.
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• Let Y ′T be the indicator random variable of TC1 .

By the Random Restriction Lemma, we have that

Eη[Y ′] ≤ ℓ1 · (1− 2−b1 + η)100k·4
b1 ·lnn + 2η ≤ n−8k1 ,

where the last inequality holds when η is sufficiently small and n is sufficiently large (by setting nk,d+1
0 ∈ N).

By the Averaging Argument for Expectation, there exists an assignment ρ2 to variables in T2 such that

Eη[Y ′T |ρ2
]− Eη[Y ′|ρ2

] ≥ 1

2
+

1

n4k1
+ (β − 36η)− 1

n8k1
> 5η, (4.22)

where the last inequality holds if η is sufficiently small.
Fix the assignment ρ2. Note that Y ′|ρ2

∈ {0, 1} as it only reads its input variables in T2. Therefore, we
must have Y ′ρ2

= 0. In such case, all b1-NFs (i.e. gates in the second layer of C1) are either trivialized or fed
by at most b2 variables. In such case, we can transform C1 into an equivalent circuit of depth at most d as
follows. Suppose that d ≥ 2 (the case for d = 1 is left as an exercise). For each gate G in the second layer,
if it is not trivialized, we remove G and consider each gate G′ in the third layer originally fed by G:

• If G′ is an AND gate, we rewrite G as an equivalent CNF of size at most b2 ·2b2 and connect all clauses
of it to G′.

• If G′ is an OR gate, we rewrite G as an equivalent DNF of size at most b2 · 2b2 and connect all clauses
of it to G′.

In either case, the circuit remains functionally equivalent.
Let σ2 ≜ ⊕n1−t1(ρ2) and C2 : {0, 1}n2 → {0, 1} be the depth-d circuit that computes C1|ρ2

(x) ⊕ σ2.
The size of C2 blows up by a linear factor, which is at most O(nk) ≤ n6k2 , when n is sufficiently large (by

setting nk,d+1
0 ∈ N). Let TC2 : {0, 1}n2 → {0, 1} be the circuit that, given x, it outputs 1 if and only if

C2(x) = ⊕n2
(x2). As before, Y ′T |ρ is the indicator random variable of TC2

. Therefore, we have

Pη(TC2) ≥ Eη[Y ′T |ρ]− 3η (Proposition 3.12)

≥ 1

2
+

1

n4k1
+ (β − 39η)− 1

n8k1
(Equation (4.22))

≥ 1

2
+

1

n6k2
+ (β − 39η)

>
1

2
+

1

n6k2
+ 2η, (4.23)

where the last two lines hold when n is sufficiently large (by setting nk,d+1
0 ∈ N) and η is sufficiently small.

Now we arrive at a contradiction: C2 : {0, 1}n2 → {0, 1} is a depth-d circuit of size at most n6k2 , and it
computes parity with advantage 1/n6k2 . This violates Equation (1.1). The theorem then follows from the

induction hypothesis for depth d and size n6k2 if we set η−1 ∈ Log and nk,d+1
0 ∈ N appropriately based on

b1, b2, n
6k,d
0 and the requirements of inequalities used in the proofs.

4.4.3 Worst-Case Lower Bound in PV1

First, we derandomize the Random Restriction Lemma via an explicit implementation of the method of
conditional expectations in PV1.

Lemma 4.10 (Derandomized Restriction Lemma). For every k, c, b ∈ N, there exists an n0 ≥ 1 such that
the following is provable in PV1. Let n, t, ℓ ∈ Log, n > n0. Let F1, . . . , Fℓ be c-NFs over n input variables,
and T ⊆ [n] be a subset of size n− t such that for every i ∈ [ℓ], at least one of the following conditions hold.

• (Narrow). If we fix the j-th variable for every j ∈ T , Fi is fed by at most b literals.
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• (Wide). There are m′i ≥ k lnn (explicitly given) disjoint clauses C ′i,1, . . . , C
′
i,m′

i
such that (1) each C ′i,j

is a sub-clause of a different clause in Fi; (2) SC′
i,j
⊆ T for every j ∈ [m′i].

Suppose that ℓ · (1 − 2−c)k lnn < 1. Then there exists an assignment ρ to the variables in T such that
each of F1, . . . , Fℓ is either trivialized or depends on at most b literals after applying ρ.

Proof. We argue in PV1. Let k, c, b ∈ N and n0 ≥ 1 be a constant to be determined later. Fix n, t, ℓ ∈ Log,
c-NFs F1, . . . , Fℓ, and T ⊆ [n]. We say that a c-NF is good after applying a restriction ρ to the variables in
T if it is either trivialized or depends on at most b literals. As the c-NFs satisfying the first bullet are good
regardless of the assignment ρ, we assume without loss of generality that all c-NFs satisfy the second bullet.
We will construct an assignment ρ such that all such c-NFs are trivialized.

For simplicity of presentation, we assume that T = {1, 2, . . . , n−t}. Fix any i ∈ [ℓ], and let C ′i,1, . . . , C
′
i,m′

i

be the disjoint sub-clauses such that SC′
i,j
⊆ T . For a partial assignment x ∈ {0, 1}≤n−t to the first |x|

variables, we say that:

• C ′i,j is positively determined if it is an AND gate and all literals of it are fixed to 1, or it is an OR gate
and all literals of it are fixed to 0.

• C ′i,j is negatively determined if it is an AND gate and one of its literals is fixed to 0, or it is an OR
gate and one of its literals is fixed to 1.

• C ′i,j is d-far from positively determined if it is not negatively determined, and there are exactly d of
its literals that remain unfixed.

We define ϕij ,Φi,Φ : {0, 1}≤n−t → {0, 1} as follows. Given any x ∈ {0, 1}≤n−t parsed as a partial assignment
to the first |x| literals,

Φ(x) ≜
ℓ∑

i=1

Φi(x), Φi(x) ≜
m′

i∏
j=1

(1− ϕij(x)) (4.24)

ϕij(x) ≜

{
0 C ′ij is negatively determined

2−d C ′ij is d-far from positively determined
(4.25)

For instructive purposes, we mention that the combinatorial interpretation of Φ(x) is the expected number
of c-NFs that are not trivialized if we extend x to an assignment to variables in T by fixing each unfixed bit
uniformly at random. Note that this is not a part of the PV1 proof. Instead, we prove that:

• (Initial Condition). Note that ϕij(ε) ≥ 2−c and thus

Φi(ε) ≤ (1− 2−c)m
′
i ≤ (1− 2−c)k lnn <

1

ℓ
, Φ(ε) < 1.

• (Recursion Condition). For every x ∈ {0, 1}<n−t, we can prove that Φi(x) = (Φi(x0) + Φi(x1))/2. To
see this, notice that:

– When the (|x|+ 1)-th variable does not appear in Ci,1, . . . , Ci,m′
i
, Φi(x) = Φ(x0) = Φ(x1).

– Otherwise, it appears in exactly one of Ci,1, . . . , Ci,m′
i

as the clauses are disjoint. Assume for
simplicity that it appears in Ci,1 and it is an OR gate. Then

Φi(x) = (1− ϕi1(x)) ·
m′

i∏
j=2

(1− ϕij(x)),

Φi(x0) = (1− 2 · ϕi1(x))

m′
i∏

j=2

(1− ϕij(x)), Φi(x1) =

m′
i∏

j=2

(1− ϕij(x)).

Thus Φi(x) = (Φi(x0) + Φi(x1))/2. Subsequently, Φ(x) = (Φ(x0) + Φ(x1))/2.
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• (Termination Condition). Φi(x) ∈ {0, 1} for x ∈ {0, 1}n−t. Moreover, if Φ(x) = 0, the partial
assignment x will trivialize all c-NFs.

The lemma then follows from a greedy algorithm as in the Subset Selection Lemma.

Theorem 1.7 (Worst-Case AC0 Lower Bound for ⊕n in PV1). For all constants k, d ≥ 1, there exists a
constant n0 ≥ 1 such that PV1 proves the following statement. For every n ∈ Log, n > n0, and AC0

d circuit
C : {0, 1}n → {0, 1} of size at most nk, there exists a string x ∈ {0, 1}n such that C(x) ̸= ⊕n(x).

Proof Sketch. The proof closely follows the proof of Average-Case AC0 Lower Bound for ⊕n, so we will only
sketch the argument. We prove it by induction on d in the meta-theory, and the constant n0 = nk,d0 depends
on both k and d. The case when d = 1 is easy and left as an exercise.

For d ≥ 2, we assume towards a contradiction that C computes ⊕n. We first apply the Subset Selection
Lemma to find a subset T of size n−

√
n by viewing the gates in the first layer as 1-NFs, and then apply the

Derandomized Restriction Lemma to find an assignment ρ to variables in T such that the gates in the first
layer are either trivialized or of fan-in at most b = O(1) after applying ρ. Let n1 =

√
n. We can construct

(from C and ρ) a circuit C1 that computes ⊕n1
on the unfixed bits such that all gates in the first layer are

of fan-in b.
We then apply the Subset Selection Lemma again to find a subset T1 of size n1−

√
n1 by viewing the gates

in the second layer as b-NFs, and then apply the Derandomized Restriction Lemma to find an assignment ρ1
to variables in T1 such that the gates in the second layer are either trivialized or of fan-in at most b1 = O(1)
after applying ρ1. Let n2 =

√
n1. We can then construct (from C1 and ρ1) a circuit C2 of depth at most

d− 1 that computes ⊕n2
on the unfixed bits. The size of the circuit is at most nk+1 ≤ n6k2 . This leads to a

contradiction to the induction hypothesis by setting nk,d0 to be sufficiently large based on n6k,d−10 .

4.5 Blum-Luby-Rubinfeld Linearity Testing

We now formalize the linearity testing algorithm due to Blum, Luby, and Rubinfeld [BLR93]. Recall that
a function g : {0, 1}n → {0, 1} is said to be linear if g(x⊕ y) = g(x)⊕ g(y), where ⊕ denotes bit-wise XOR;
equivalently, g(x) = ⟨x, z⟩ mod 2 for some z ∈ {0, 1}n. Let g : {0, 1}n → {0, 1} be a function. Blum, Luby,
and Rubinfeld [BLR93] proved that for any sufficiently small constant ε > 0:

• (Linearity Testing): If g is ε-far from any linear function, then the BLR linearity testing algorithm
fails with probability at least Ω(ε). Conversely, if g is ε-close to a linear function, the BLR linearity
testing algorithm fails with probability at most O(ε).

• (Self Correction): The key idea behind linearity testing is a random self correctness algorithm: If g is
ε-close to a linear function ĝ, then the function f(x, r) ≜ g(x ⊕ r) ⊕ g(r) is a randomized algorithm
that computes ĝ with error O(ε), where x is the input and r is the random seed.

Linearity testing is the key component of the exponential length PCP theorem NP ⊆ PCP[poly, 1], which
is further used to reduce the number of queries in the proof of the PCP theorem NP = PCP[log n, 1] (see,
e.g., [Har04]).

We first state the main theorems, namely the completeness and soundness of the BLR linearity testing.
The completeness states that a function that is close to a linear function is likely to be accepted. Formally:

Theorem 4.11 (Completeness of BLR linearity testing). APX1 proves the following. Let n, δ−1, β−1 ∈ Log,
C : {0, 1}n → {0, 1} be a circuit, and z ∈ {0, 1}n be a string. Let ε ∈ Q such that ε < 1/2. Define the
following circuits:

• Let TC(x) be the circuit that outputs 1 if and only if C(x) ̸= ⟨x, z⟩ mod 2.

• Let TC,BLR(x, y) : {0, 1}n×{0, 1}n → {0, 1} be the circuit that outputs 1 when C(x)⊕C(y) ̸= C(x⊕y).

Suppose that Pδ(TC) ≤ ε. Then Pδ(TC,BLR) ≤ 3ε+ 4δ + β.

The soundness states that if a function is likely to be accepted by the BLR linearity testing algorithm,
then it is close to a linear function.

65



Theorem 4.12 (Soundness of BLR linearity testing). APX1 proves the following statement. Let n, δ−1, β−1 ∈
Log and C : {0, 1}n → {0, 1} be a circuit. Let ε ∈ Q. Assume that ε, δ, β < 0.01. We define the following
circuits:

• For every z ∈ {0, 1}n, let TC,z(x) be the circuit that outputs 1 if and only if C(x) ̸= ⟨x, z⟩ mod 2.

• Let TC,BLR(x, y) be the circuit that outputs 1 if and only if C(x)⊕ C(y) ̸= C(x⊕ y).

Suppose that Pδ(TC,BLR) ≤ ε. Then there exists a string z ∈ {0, 1}n such that Pδ(TC,z) ≤ 5ε+ 6δ + β.

We formalize the combinatorial proof [BLR93] via majority correction (see [BCH+96] for an alternate
proof). Note that the same proof is also formalized by Pich [Pic15a] in APC1 to prove the exponential PCP
theorem NP ⊆ PCP[poly, 1], and our main contribution is to show that it can be formalized in the (possibly
weaker) theory APX1.22

4.5.1 Two Useful Lemmas

Before formalizing the BLR linearity testing algorithm, we prove two useful lemmas. The first lemma
shows that the acceptance probability of a circuit does not change significantly if the input is XORed with
a fixed string. Formally:

Lemma 4.13 (Re-randomization). APX1 proves the following statement. For every n, δ−1, β−1 ∈ Log,
circuit T : {0, 1}n → {0, 1}, and x ∈ {0, 1}n, let T⊕x : {0, 1}n → {0, 1} be the circuit defined as T⊕x (r) ≜
T (x⊕ r). Then |Pδ(T )− Pδ(T⊕x )| ≤ 2δ + β.

Proof. We argue in APX1. Fix n, δ−1, β−1 ∈ Log, x ∈ {0, 1}n, the circuit T and T⊕x . Let η−1 ∈ Log be a
parameter to be determined later. Suppose, towards a contradiction, that |Pδ(T )−Pδ(T⊕x )| > 2δ+ β. Then
by the Precision Consistency Axiom, we have that

|Pη(T )− Pη(T⊕x )| > β − 4η.

Recall that for a circuit C, Ck,z denotes the circuit obtained by fixing the last k input bits of C to be
z. We will design an n-round iterative PV(P) algorithm that, in the i-th round, outputs a string zi ∈ {0, 1}i
such that

|Pη(T i,zi)− Pη(T
⊕,i,z′

i
x )| > β − 10 · (i+ 1) · η. (4.26)

where z′i ≜ zi ⊕ x>n−i. The algorithm initializes by setting z0 ≜ ε. In the i-th round, it works as follows:

• Recall that by the invariant that Equation (4.26) holds in the (i− 1)-th round, we have

|Pη(T i−1,zi−1)− Pη(T
⊕,i−1,z′

i−1
x )| > β − 10 · i · η.

• By the Local Consistency Axiom, we know that

|Pη(T i−1,zi−1)− Pη(T
⊕,i−1,z′

i−1
x )|

≤ 1

2

∑
b∈{0,1}

∣∣∣Pη(Fixb(T
i−1,zi−1))− Pη(Fixb⊕xn−i+1(T

⊕,i−1,z′
i−1

x ))
∣∣∣+ 3η.

Subsequently, there is a constant b ∈ {0, 1} such that∣∣∣Pη(Fixb(T
i−1,zi−1))− Pη(Fixb⊕xn−i+1

(T
⊕,i−1,z′

i−1
x ))

∣∣∣ > β − 10 · i · η − 3η. (4.27)

The algorithm finds such b ∈ {0, 1} by querying the P-oracle, and outputs zi ≜ b ◦ zi−1.

22Our formalization is slightly different: We formalize linear functions x 7→ ⟨x, z⟩ mod 2 by explicitly giving z, while Pich
[Pic14] formalizes linear functions f using the sentence that for every x, y, f(x⊕ y) = f(x)⊕ f(y); nevertheless, the difference
in formalization does not matter in most cases.
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To see that the algorithm is correct, notice that the circuit Fixb(T
i−1,zi−1) is functionally equivalent to

T i,zi , and Fixb⊕xn−i+1(T
⊕i−1,z′

i−1
x ) is functionally equivalent to T⊕,i,zix . Therefore, by Equation (4.27) and

the Global Consistency, we have

|Pη(T i,zi)− Pη(T
⊕,i,z′

i
x )| ≥

∣∣∣Pη(Fixb(T
i−1,zi−1))− Pη(Fixb⊕xn−i+1

(T
⊕,i−1,z′

i−1
x ))

∣∣∣− 6η ≥ β − 10 · (i+ 1) · η.

The correctness of the algorithm can thus be proved by induction on a PV(P) term, which is available by
Theorem 2.10.

Finally, in the n-th round, the algorithm outputs a string zn ∈ {0, 1}n such that

|Pη(Tn,zn)− Pη(T
⊕,n,z′

n
x )| > β − 10 · (n+ 1) · η,

where z′n ≜ zn ⊕ x. Note that both circuits above have input length 0 and, by the definition, must output
the same value. This violates the Boundary Axiom by setting η ≜ β/(100(n+ 1)).

The second lemma is as follows. Let X1 and X2 be two explicitly i.i.d. RVs over {0, 1}. If Pr[X1 = X2]
is larger than 1/2, then E[Xi] must be biased. Formally:

Lemma 4.14. APX1 proves the following statement. Let n, δ−1, β−1 ∈ Log, V = {0, 1}, and X1, X2 be
explicitly i.i.d. RVs over V defined by the circuit C : {0, 1}n → {0, 1}. Let Yc be the indicator random
variable of X1 = X2, where X1 and X2 takes disjoint random seeds. Then for i ∈ {1, 2},∣∣∣∣Eδ[Xi]−

1

2

∣∣∣∣ ≥
√

Eδ(Yc)

2
− 1

4
− 5δ − β.

Proof. We argue in APX1. Fix n, δ−1, β−1 ∈ Log, circuits C, T , and random variables X1, X2, Yc. Let η−1 ∈
Log be a parameter to be determined later. Note that as X1 and X2 are both the indicator random variable
of C, we can prove by Proposition 3.12 that |Eη[X1]− Pη(C)| , |Eη[X2]− Pη(C)| ≤ 3η, and subsequently

|Eη[X1]− Eη[X2]| ≤ 6η. (4.28)

Let Y0, Y1 be random variables over {0, 1} such that Yi takes (x1, x2) ∈ {0, 1}n × {0, 1}n and output 1
if and only if C(x1) = C(x2) = i. It is easy to see that for every assignment ρ = (x1, x2) ∈ {0, 1}2n to the
seed, Yc|ρ = Y0|ρ + Y1|ρ. Therefore, by the Averaging Argument for Expectation,

|Eη[Yc]− Eη[Y0]− Eη[Y1]| ≤ 6η. (4.29)

Let X1, X2 be the random variables defined by 1−X1 and 1−X2, respectively. Using Complementary
Counting, ∣∣Eη[Xi] + Eη[Xi]− 1

∣∣ ≤ 6η (4.30)

for i ∈ {1, 2}. We can further observe that for every assignment ρ to the random seed, Y0|ρ = X1X2|ρ and
Y1|ρ = X1X2|ρ, and subsequently by the Averaging Argument for Expectation,∣∣Eη[Y0]− Eη[X1X2]

∣∣ ≤ 6η, |Eη[Y1]− Eη[X1X2]| ≤ 6η.

Subsequently, by the Multiplication Principle,∣∣Eη[Y0]− Eη[X1] · Eη[X2]
∣∣ ≤ 14η, |Eη[Y1]− Eη[X1] · Eη[X2]| ≤ 14η. (4.31)
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Fix any i ∈ {1, 2} and let p ≜ Eδ[Xi], q ≜ Eδ[YC ]. For simplicity, we assume that 0 < Eη[X1] < 1 and
0 < Eη[X2] < 1. We can perform the following calculation:

Eδ[YC ] ≤ Eη[YC ] + (δ + 2η) (Precision Consistency of Expectation)

≤ Eη[Y0] + Eη[Y1] + (δ + 8η) (Equation (4.29))

≤ Eη[X1] · Eη[X2] + Eη[X1] · Eη[X2] + (δ + 36η) (Equation (4.31))

≤ (1− Eη[X1] + 6η)(1− Eη[X2] + 6η) + Eη[X1] · Eη[X2] + (δ + 36η) (Equation (4.30))

≤ (1− Eη[Xi] + 6η)(1 + Eη[Xi] + 12η) + Eη[Xi] · (Eη[Xi]− 6η) + (δ + 36η) (Equation (4.28))

≤ (1− p+ δ + 14η)2 + (p+ δ + 14η)2 + (δ + 36η) (Precision Consistency of Expectation)

≤ (1− p)2 + (δ + 14η)2 + 2(1− p)(δ + 14η) + p2 + (δ + 14η)2 + 2p(δ + 14η) + (δ + 36η)

≤ (1− p)2 + p2 + 5δ + 78η

≤ 1− 2(p− p2) + 5δ + β,

where the last inequality holds if we set η ≜ β/100. Thus we have p−p2 ≤ (1−q)/2+5δ+β, and subsequently∣∣∣∣12 − p
∣∣∣∣ =

√(
1

2
− p
)2

=

√
1

4
− (p− p2) ≥

√
1

4
−
(

1− q
2

+ 5δ + β

)
≥
√
q

2
− 1

4
− 5δ − β.

This completes the proof.

4.5.2 Completeness of BLR Linearity Testing

We first formalize the completeness of the linearity testing algorithm. That is, if a circuit C : {0, 1}n →
{0, 1} computes a function that is indeed close to a linear function x 7→ ⟨z, x⟩ mod 2, then the self-correction
algorithm works. Formally:

Lemma 4.15 (Completeness of BLR self-correction). APX1 proves the following statement. Let n, δ−1, β−1 ∈
Log, C : {0, 1}n → {0, 1} be a circuit, and z ∈ {0, 1}n be a string. Let ε ∈ Q such that ε < 1/2. Define the
following circuits:

• Let TC(x) be the circuit that outputs 1 if and only if C(x) ̸= ⟨x, z⟩ mod 2.

• Let D(x, r) : {0, 1}n × {0, 1}n → {0, 1} be the circuit that outputs C(x⊕ r)⊕ C(r).

• For x ∈ {0, 1}n, let TD,x(r) be the circuit that outputs 1 if and only if D(x, r) ̸= ⟨x, z⟩ mod 2.

Suppose that Pδ(TC) ≤ ε. Then for every x ∈ {0, 1}n, Pδ(TD,x) ≤ 2(δ + ε) + β.

Proof. We argue in APX1. Fix n, δ−1, β−1 ∈ Log, the circuit C, z ∈ {0, 1}n, and ε ∈ Q. Let TC , D, TD,x be
the circuit as defined above, and η−1 ∈ Log be a parameter to be determined later. Suppose that Pδ(TC) ≤ ε,
we know by the Precision Consistency Axiom that

Pη(TC) ≤ ε+ δ + 2η. (4.32)

Fix any x ∈ {0, 1}n. Let X1, X2 be random variables over {0, 1} that takes a seed r ∈ {0, 1}n, where
X1 = 1 if C(r) ̸= ⟨r, z⟩ mod 2, and X2 = 1 if C(x ⊕ r) ̸= ⟨x ⊕ r, z⟩ mod 2. It is clear that X1 is the
indicator random variable of TC , and thus by Equation (4.32) and Proposition 3.12, Eη[X1] ≤ ε + δ + 5η.
By Proposition 3.12 and the Re-randomization Lemma, we can further show that

Eη[X2] ≤ Pη(TC) + 6η ≤ ε+ δ + 8η.

Let T∨(r) be the circuit that outputs 1 if and only if C(r) ̸= ⟨r, z⟩ mod 2 or C(x⊕ r) ̸= ⟨x⊕ r, z⟩ mod 2,
and Y be the indicator random variable of T∨. By Proposition 3.12 and the Union Bound, we have

Pη(T∨) ≤ Eη[Y ] + 3η ≤ Eη[X1] + Eη[X2] + 6η ≤ 2ε+ 2δ + 19η. (4.33)
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Finally, we observe that if TD,x(r) = 1, then T∨(r) = 1. To see this, assume that T∨(r) = 0, we have

D(x, r) = C(x⊕ r)⊕ C(r) = ⟨x⊕ r, z⟩+ ⟨r, z⟩ mod 2 = ⟨x, z⟩ mod 2,

which implies that TD,x(r) = 0. Therefore, we have that

Pδ(TD,x) ≤ Pη(TD,x) + δ + 2η (Precision Consistency Axiom)

≤ Pη(T∨) + δ + 5η (Monotonicity of Approximate Counting)

≤ 2ε+ 2δ + 24η. (Equation (4.33))

This completes the proof by setting η ≜ β/30.

It can be observed that this immediately gives the completeness of the BLR identity testing algorithm.
Namely, if C is close to a linear function, then it passes the linearity testing with high probability.

Theorem 4.11 (Completeness of BLR linearity testing). APX1 proves the following. Let n, δ−1, β−1 ∈ Log,
C : {0, 1}n → {0, 1} be a circuit, and z ∈ {0, 1}n be a string. Let ε ∈ Q such that ε < 1/2. Define the
following circuits:

• Let TC(x) be the circuit that outputs 1 if and only if C(x) ̸= ⟨x, z⟩ mod 2.

• Let TC,BLR(x, y) : {0, 1}n×{0, 1}n → {0, 1} be the circuit that outputs 1 when C(x)⊕C(y) ̸= C(x⊕y).

Suppose that Pδ(TC) ≤ ε. Then Pδ(TC,BLR) ≤ 3ε+ 4δ + β.

Proof. We argue in APX. Fix n, δ−1, β−1 ∈ Log, C : {0, 1}n → {0, 1}, z ∈ {0, 1}n, ε ∈ Q, and TC , TC,BLR

be the circuits as described above. Let T ′C,BLR : {0, 1}n × {0, 1}n → {0, 1} be the circuit that given (x, y),
outputs 1 when C(x⊕ y)⊕C(y) ̸= ⟨x, z⟩ mod 2. Let IC , IC,BLR, I

′
C,BLR be the indicator random variables of

TC , TC,BLR, T
′
C,BLR, respectively.

Let η−1 ∈ Log be a parameter to be determined later. Note that by the Completeness of BLR Self
Correction and Proposition 3.12, we can prove that for any assignment ρ to be first part of the seed of
T ′C,BLR, we have Eη[IC,BLR|ρ] ≤ 2(δ + ε) + 4η. Subsequently, by the Averaging Argument for Expectation, we
have

Eη[IC,BLR] ≤ 2(δ + ε) + 4η + 6η ≤ 2(δ + ε) + 10η. (4.34)

By Proposition 3.12 and Precision Consistency Axiom, we also have Eη[IC ] ≤ ε+ δ + 5η.
It can be observed that if TC,BLR(x, y) = 1, then either TC(x, y) = 1 or T ′C,BLR(x, y) = 1. Therefore, by

the Union Bound, we can prove that

Eη[IC,BLR] ≤ Eη[IC ] + Eη[I ′C,BLR] + 6η ≤ 3(δ + ε) + 15η.

Subsequently, by Proposition 3.12, Pη(TC,BLR) ≤ 3(δ + ε) + δ + 18η. The result then follows from the

Precision Consistency Axiom by setting η ≜ β/30.

4.5.3 Correctness of Majority Correction

We move on to prove the soundness of the BLR linearity testing. As a first step, we prove that if C
passes the linearity testing, then the BLR self correction algorithm is single-valued. Formally:

Lemma 4.16 (Single-valuedness of BLR correction). APX1 proves the following statement. Let n, δ−1, β−1 ∈
Log and C : {0, 1}n → {0, 1} be a circuit. Let ε ∈ Q. Assume that ε, δ, β ≤ 0.01. Define the following circuits:

• Let TC,BLR(x, y) be the circuit that outputs 1 if and only if C(x)⊕ C(y) ̸= C(x⊕ y).

• Let Dx,b(r) : {0, 1}n → {0, 1} be the circuit that outputs 1 if and only if C(x⊕ r)⊕ C(r) = b.

Suppose that Pδ(TC,BLR) ≤ ε. For every x ∈ {0, 1}n, Pδ(Dx,b) ≥ 1− 4ε− (4δ + β) for some b ∈ {0, 1}.
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Proof. We argue in APX1. Fix n, δ−1, β−1 ∈ Log, the circuit C, and ε ∈ Q. Let TC,BLR and Dx,b be the
circuits as defined above, and η−1 ∈ Log be a parameter to be determined later. Suppose that Pδ(TC,BLR) ≤ ε,
we know by the Precision Consistency Axiom that

Pη(TC,BLR) ≤ ε+ δ + 2η. (4.35)

Fix any x ∈ {0, 1}n. Let D′x : {0, 1}2n → {0, 1} be circuit that takes (r1, r2) ∈ {0, 1}n are the input,
and outputs 1 if C(x ⊕ r1) ⊕ C(r1) = C(x ⊕ r2) ⊕ C(r2). Let Y be the indicator random variable of D′x,
and Y be the indicator random variable of 1−D′x. It follows from Averaging Argument for Expectation that
Eη[Y ] ≥ 1− Eη[Y ]− 6η.

Consider the following two circuits T, T ′ : {0, 1}2n → {0, 1}:
• T (r1, r2) ≜ 1 if and only if C(r1)⊕ C(r2) ̸= C(r1 ⊕ r2).

• T ′(r1, r2) ≜ 1 if and only if C(x⊕ r1)⊕ C(x⊕ r2) ̸= C((x⊕ r1)⊕ (x⊕ r2)).

Let X,X ′ be the indicator random variable of T and T ′, respectively. It is clear that T is exactly TC,BLR,
and thus by Equation (4.35), Pη(T ) ≤ ε + δ + 2η. Similarly, as T ′i is obtained TC,BLR by taking bitwise-
XOR to the input string with the fixed string (x, x), by Equation (4.35) and the Re-randomization Lemma,
Pη(T ′) ≤ η + δ + 5η.

Moreover, one can observe that D′x(x, y) = 0 implies that either T (x, y) or T ′(x, y) outputs 1: This is
because if T (x, y) = T ′(x, y) = 0, we can conclude that

C(x⊕ r1)⊕ C(x⊕ r2)⊕ C(r1)⊕ C(r2) = C(r1 ⊕ r2)⊕ C((x⊕ r1)⊕ (x⊕ r2)) = 0,

which implies that D′x(x, y) = 1. Subsequently, by the Union Bound, we have

Eη[Y ] ≤ Eη[Xi] + Eη[X ′i] + 3η ≤ 2(ε+ δ) + 10η.

and thus Eη[Y ] ≥ 1− Eη[Y ]− 6η ≥ 1− 2(ε+ δ)− 16η.

Let Ix, I
′
x be explicitly i.i.d. RVs over {0, 1} defined by the circuit Dx(r) ≜ C(x ⊕ r) ⊕ C(r), and Yc is

the indicator random variable of Ix = I ′x. By definitions, we can see that Yc|ρ = Y |ρ for any assignment ρ,
and thus by the Averaging Argument for Expectation,

Eη[Yc] ≥ Eη[Y ]− 6η ≥ 1− 2(ε+ δ)− 22η.

Subsequently, by Lemma 4.14, we have∣∣∣∣Eη[Ix]− 1

2

∣∣∣∣ ≥
√

1− 2(ε+ δ)− 22η

2
− 1

4
− 6η ≥

√
1

4
− (ε+ δ + 17η) ≥ 1

2
− 4(ε+ δ + 17η). (4.36)

Recall that Ix is the random variable that takes (r1, r2) ∈ {0, 1}2n as random seed and outputs C(x ⊕
r1)⊕C(r1). Suppose that Eη[Ix] ≥ 1− 4(ε+ δ + 17η). By Averaging Argument for Expectation, there is an
assignment ρ of the second part r2 of the seed (which was for I ′x) such that

Eη[Ix|ρ] ≥ Eη[Ix]− 6η ≥ 1− 4η − (4δ + 74η).

As Ix|ρ is the indicator random variable of Dx,1, it follows from Proposition 3.12 that Pη(Dx,1) ≥ Eη[Ix]−
3η ≥ 1 − 4ε − (4δ + 74η). It suffices if we set η ≤ β/100. The other case Eη[Ix] ≤ 4(ε + δ + 17η) can be

resolved by considering Ix ≜ 1− Ix.

Lemma 4.16 shows that the BLR self correction algorithm is single-valued assuming that the circuit C
passes the linearity testing. Second, we show that the “corrected” function g(·) satisfies that g(x)⊕ g(y) =
g(x⊕ y) for every x, y ∈ {0, 1}n. Formally:
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Lemma 4.17 (Linearity of BLR correction). APX1 proves the following statement. Let n, δ−1, β−1 ∈ Log
and C : {0, 1}n → {0, 1} be a circuit. Let ε ∈ Q. Assume that ε, δ, β ≤ 0.01. Let Dx,b be the circuit in
Lemma 4.16, and g(x) be the P-oracle circuit that works as follows: Given x ∈ {0, 1}n, it outputs b ∈ {0, 1}
if Pδ(Dx,b) ≥ 1− 4ε− (4δ + β), and ⊥ otherwise.

Let TC,BLR(x, y) be the circuit that outputs 1 if and only if C(x) ⊕ C(y) ̸= C(x ⊕ y). Suppose that
Pδ(TC,BLR) ≤ ε. Then for every x1, x2 ∈ {0, 1}n, g(x1)⊕ g(x2) = g(x1 ⊕ x2).

Proof. We argue in APX1. Fix n, δ−1, β−1 ∈ Log, the circuit C, and ε ∈ Q. Assume that Pδ(TC,BLR) ≤ ε.
Note that by Lemma 4.16 and ε, δ, β < 0.01, g(x) ∈ {0, 1} for every x ∈ {0, 1}n. Fix x1, x2 ∈ {0, 1}n and let
bj ≜ g(xj) for j ∈ {1, 2}, and b⊕ ≜ g(x1 ⊕ x2).

Let η−1 ∈ Log be a parameter to be determined later, and X1, X2, X⊕ be the random variables over
{0, 1} with seed r ∈ {0, 1}n defined as follows:

• X1 outputs 1 if and only if b1 = C(x1 ⊕ r)⊕ C(r).

• X2 outputs 1 if and only if b2 = C(x2 ⊕ r)⊕ C(r).

• X⊕ outputs 1 if and only if b⊕ = C(x1 ⊕ x2 ⊕ (x2 ⊕ r))⊕ C(x2 ⊕ r).
Note that as bj ≜ g(xj), we know by the definition of g that Pδ(Dxj ,bj ) ≥ 1 − 4ε − (4δ + β). It can be
observed that X1, X2 are the indicator random variables of Dx1,b1 , Dx2,b2 , thus by Proposition 3.12 and the
Precision Consistency of Expectation,

Eη[X1],Eη[X2] ≥ 1− 4ε− (5δ + β − 2η).

Moreover, X⊕ is the indicator variable of the circuit that outputs 1 if b⊕ = C(x1⊕x2⊕ (x2⊕r))⊕C(x2⊕r),
and the circuit is obtained from Dx1⊕x2,b⊕ by taking XOR to the input with a fixed string x2. Therefore,
by Proposition 3.12 and the Re-randomization Lemma, we have E0.01[X⊕] ≥ 1− 4ε− (5δ + β − 2η).

Let X1 ≜ 1−X1, X2 ≜ 1−X2, and X⊕ ≜ 1−X⊕. Let Y ≜ X1 ∨X2 ∨X⊕ and Y ≜ 1− Y . Then using
Complementary Counting and Union Bound, we have

Eη[Y ] ≤ Eη[X1] + Eη[X2] + Eη[X⊕] + 9η (Union Bound)

≤ (1− Eη[X1]) + (1− Eη[X2]) + (1− Eη[X⊕]) + 18η (Complementary Counting)

≤ 12ε+ 15δ + β + 24η.

Again, using Complementary Counting, we have Eη[Y ] ≥ 1− (12ε+ 15δ + β + 24η). By setting η ≜ β/100,
we have Eη[Y ] > 3η.

By Averaging Argument for Expectation, there exists an assignment ρ such that E0.01[Y |ρ] ≥ 0.05, or in
other words, Y |ρ = 1 as its seed length is 0 after applying the restriction ρ. By the definition of the random
variables, this indicates that

b1 = C(x1 ⊕ r)⊕ C(r),

b2 = C(x2 ⊕ r)⊕ C(r),

b⊕ = C(x1 ⊕ x2 ⊕ (x2 ⊕ r))⊕ C(x2 ⊕ r) = C(x1 ⊕ r)⊕ C(x2 ⊕ r).

It immediately follows that b⊕ = b1 ⊕ b2.

4.5.4 Soundness of BLR Linearity Testing

Now we are ready to prove the soundness of the BLR linearity testing. At a high level, we will recover
the string z ∈ {0, 1}n that defines the linear function using the oracle circuit g(·). It is worth noting that
the correctness proof of the string z is quite non-trivial: It crucially builds on the tools for random variables
developed in Section 3, especially Averaging Argument for Expectation.

Theorem 4.12 (Soundness of BLR linearity testing). APX1 proves the following statement. Let n, δ−1, β−1 ∈
Log and C : {0, 1}n → {0, 1} be a circuit. Let ε ∈ Q. Assume that ε, δ, β < 0.01. We define the following
circuits:
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• For every z ∈ {0, 1}n, let TC,z(x) be the circuit that outputs 1 if and only if C(x) ̸= ⟨x, z⟩ mod 2.

• Let TC,BLR(x, y) be the circuit that outputs 1 if and only if C(x)⊕ C(y) ̸= C(x⊕ y).

Suppose that Pδ(TC,BLR) ≤ ε. Then there exists a string z ∈ {0, 1}n such that Pδ(TC,z) ≤ 5ε+ 6δ + β.

Proof. We argue in APX1. Fix n, δ−1, β−1 ∈ Log, the circuit C, and ε ∈ Q. Let TC,z and TC,BLR be the
circuits as defined above, and η−1 ∈ Log be a parameter to be determined later. Suppose that Pδ(TC,BLR) ≤ ε,
we know by the Precision Consistency Axiom that

Pη(TC,BLR) ≤ ε+ δ + 2η. (4.37)

Let Dx,b(r) ≜ C(x⊕ r)⊕ C(r)⊕ (1− b) be the circuit in Lemma 4.16, and g(x) be the oracle circuit in
Lemma 4.17. By Lemma 4.16, we have that for every x ∈ {0, 1}n, there is a b ∈ {0, 1} such that

Pη(Dx,b) ≥ 1− 4(ε+ δ + 2η)− 5η ≥ 1− 4(ε+ δ)− 13η. (4.38)

Note that we will choose η such that 13η < 0.01. Therefore, by Lemma 4.17 that for every x ∈ {0, 1}n,
the bit b satisfying Equation (4.38) is given by g(x). Moreover, for every x1, x2 ∈ {0, 1}n, we have that
g(x1)⊕ g(x2) = g(x1 ⊕ x2).

Let ei be the string that is 0 on all but the i-th bit, and z ≜ g(e1) ◦ g(e2) ◦ · · · ◦ g(en). That is, zi = g(ei)
for every i ∈ [n]. Let X and Y be random variables over {0, 1} that take a seed (x, r) ∈ {0, 1}n × {0, 1}n of
length 2n and are defined as follows.

• X outputs 1 if C(x ⊕ r) ⊕ C(x) ̸= C(r). That is, X is the indicator random variable of TC,BLR. By
Proposition 3.12,

Eη[X] ≤ Pη(TC,BLR) + 3η ≤ ε+ δ + 5η. (4.39)

• Y outputs 1 if C(x) ̸= ⟨x, z⟩ mod 2. Note that for every assignment r to the second part of its seed,
Y |r is the indicator random variable of TC,z.

Next, we will prove that for every x ∈ {0, 1}n,

|Eη[X|x]− Eη[Y |x]| ≤ 4(ε+ δ) + 13η. (4.40)

Recall that by the definition of X and Dx,b, we have that for every assignment x to the first part of their

seeds, X|x is the indicator random variable of Dx,1, and for X ≜ 1−X, X|x is the indicator random variable
of Dx,0. Therefore, by Lemma 4.16,

max{Eη[X|x], 1− Eη[X|x]} ≥ 1− 4(ε+ δ + 2η)− 5η ≥ 1− 4(ε+ δ)− 13η.

We consider the case that Eη[X|x] ≥ 1 − 4(ε + δ) − 13η, and the other case is similar. By the definition of
g, we know that g(x) = 1, and subsequently

⟨x, z⟩ mod 2 =
∑

i∈[n],xi=1

g(ei) mod 2 = g(x),

where the last equality follows from Lemma 4.17 and the 1-Induction Axiom (note that the induction
axiom suffices as n ∈ Log). For any assignment r to the second part of the seed, we have Eη[Y |x|y] = 1,
which subsequently implies that Eη[Y |x] = 1. Therefore, for any assignment x ∈ {0, 1}n to the first part of
the seed,

|Eη[X|x]− Eη[Y |x]| ≤ 4(ε+ δ) + 13η.

By the Averaging Argument for Expectation, we have |Eη[X]− Eη[Y ]| ≤ 4(ε+ δ) + 19η, and thus

Eη[Y ] ≤ Eη[X] + 4(ε+ δ) + 19η ≤ e.

Again, by the Averaging Argument for Expectation, there is an assignment r ∈ {0, 1}n to the second part
of its seed such that

Eη[Y |r] ≤ Eη[Y ] + 3η ≤ 5(ε+ δ) + 27η. (4.41)
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Fix the assignment r. As mentioned above, Eη[Y |r] is the indicator random variable of TC,z, and thus by
Proposition 3.12 and Precision Consistency Axiom,

Pδ(TC,z) ≤ Pη(TC,z) + δ + 2η ≤ Eη[Y |r] + δ + 5η ≤ 5ε+ 6δ + 32η.

It completes the proof by taking η ≜ β/50.

5 Witnessing Theorems and Relative Strength of APX1

In this section, we prove a witnessing theorem for APX1 and consider its relation to other theories of
bounded arithmetic, including PV1 and APC1.

5.1 Provably Total TFNP Problems in APX1

In this subsection, we will introduce a witnessing theorem for the ∀Σb
1-consequences of APX1 (i.e. provably

total TFNP problems in APX1).

5.1.1 A TFZPP Problem: Refuter(Yao)

We will first introduce a TFZPP problem23 called Refutation of Yao-Predictor Generators; we denote it
by Refuter(Yao). Recall that Yao’s distinguisher-to-predictor transformation [Yao82] (see Section 4.1) shows
that if a distribution D over {0, 1}n is not ε-pseudorandom, i.e., there is a circuit C : {0, 1}n → {0, 1} (called
distinguisher) such that ∣∣∣Pr[C(D)]− Pr[C(Un)]

∣∣∣ > ε,

then there exists i ∈ [n] and a predictor Pi : {0, 1}i−1 → {0, 1} such that

Pr
x←D

[P (x<i) = xi] ≥
1

2
+

ε

4n
,

i.e., P predicts the i-th bit of D with advantage at least ε/4n. This transformation serves as a key step
in the construction and analysis of pseudorandom generators (see, e.g., [NW94, IW97]): it shows that an
unpredictable distribution is necessarily pseudorandom.

In the statement below, we say that a discrete probability distribution D is flat if it is uniform over
its support, i.e., over the set of elements with non-zero probability over D. The size of the distribution is
the size of its support. We will represent flat distributions explicitly as a list of strings. In the subsequent
discussions, we might tacitly assume that the relevant distribution is flat and explicitly represented.

Definition 5.1. The search problem Refuter(Yao) is defined as follows.

• (Parameters). Length of strings n, distribution size m, predictor size s, and advantage δ ∈ [0, 1].

• (Input). A circuit G : {0, 1}nm → [n]× {0, 1}s (called predictor generator).

• (Solution). Any explicit flat distribution D ∈ ({0, 1}n)m of size m such that the following holds:

Let (i, P ) ≜ G(D), where P : {0, 1}i−1 → {0, 1} is parsed as a circuit of description length ≤ s. Then

Pr
x←D

[P (x<i) = xi] <
1

2
+ δ.

In other words, P is not a predictor of the i-th bit of D with advantage δ.

23A search problem is said to be in TFZPP if it is a TFNP problem solvable by randomized polynomial-time algorithms.
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For concreteness, one may think of the parameter regime m = n10, s = n2, and δ = 0.1. In this case, a
random distribution of m strings of length n is likely o(1)-pseudorandom against any circuit of size s, and
thus must be a solution of Refuter(Yao) no matter the input circuit G.

At a high level, Refuter(Yao) asks to generate a distribution D that is unpredictable against a given
predictor generator G — a deterministic algorithm that aims to output a predictor P for D. The distribution
D is not necessarily an unpredictable (or equivalently, pseudorandom) distribution against small circuits; it
suffices to fool the given deterministic predictor generator G. This makes it a special case of constructing
targeted PRGs, which is known to be prBPP-complete (see, e.g., [Gol11, CT21, LPT24]).

5.1.2 Connection to LossyCode

A closely related TFZPP relation is the Lossy Code Problem; we denote it by LossyCode. Inspired by the
literature in bounded arithmetic (see [Jeř07a, Section 3.1] and the discussion below), the problem is defined
in [Kor22] as a more feasible variant of the Range Avoidance Problem; see [Kor25] and references therein
for an introduction to this line of work.

Definition 5.2. The search problem LossyCode is defined as follows.

• (Input). Circuits C : {0, 1}n → {0, 1}n−1 and D : {0, 1}n−1 → {0, 1}n. These two circuits are called
compressor and decompressor, respectively.

• (Output). A string x ∈ {0, 1}n such that D(C(x)) ̸= x.

It is clear that LossyCode ∈ TFZPP. Indeed, Wilkie (unpublished) and Thapen [Tha02] proved that the
problem captures the ∀Σb

1-fragment of the theory APC1.

Theorem 5.3 ([Jeř04, Proposition 1.14], also see [LPT24, Theorem D.1]). Let ϕ(x, y) be a quantifier-free
formula in the language of APC1 that only has x and y as open variables. If APC1 ⊢ ∀x ∃y ϕ(x, y), then
there is a deterministic polynomial-time reduction from the following problem to LossyCode: Given n ∈ N,
output m ∈ N such that ϕ(n,m) is true in the standard model.

Moreover, it has been recently discovered that some natural TFZPP-search problems admit deterministic
reductions to LossyCode or its variants: constructing large prime numbers with factoring oracles [Kor22] and
the simulation of catalytic logspace machines [CLMP25]. Variants of LossyCode are relevant to both full and
partial derandomizations of prBPP; see [LPT24] for a comprehensive introduction.

Note that assuming prBPP = prP, both LossyCode and Refuter(Yao) are in FP. Nevertheless, it is
interesting to discover the relative hardness of their derandomization. By adapting an idea from [Kor22], we
show that Refuter(Yao) admits a deterministic polynomial-time reduction to LossyCode. Therefore, showing
that Refuter(Yao) ∈ FP is necessary before proving that LossyCode ∈ FP.

Theorem 5.4 (Implicit in the proof of [Kor22, Corollary 41]). There is a deterministic polynomial-time
mapping reduction from Refuter(Yao) with parameters (δ2/10) ·m ≥ s+ ⌈log n⌉+ 1 to LossyCode.

Proof. Note that we can encode m-bit strings with Hamming weight at most k by log2

(
m
k

)
+O(log k) bits,

where the encoding and decoding algorithms run in polynomial time (see, e.g., [CLO24, Lemma 5.4]). In
particular, when k ≜ (1/2− δ) ·m and m is sufficiently large, the encoding length is

log2

(
m

(1/2− δ) ·m

)
+O(log(1/2− δ) + logm)

≤ m+ log2(e−(2δ)
2m/4) +O(log(1/2− δ) + logm)

≤ m− (δ2/10) ·m,

where the first inequality follows from the Chernoff bound.
Now we describe the reduction. Given any predictor generator G : {0, 1}nm → [n]×{0, 1}s, consider the

following compressor C : {0, 1}nm → {0, 1}nm−1 and decompressor D : {0, 1}nm−1 → {0, 1}nm:
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• (Compressor). Given any D ∈ {0, 1}nm, the compressor parses it as a distribution over n-bit strings
of size m. It computes (i, P ) ≜ G(D). If P fails to predict the i-th bit of D with advantage δ, it fails
and aborts. Otherwise,

Pr
x←D

[P (x<i) = xi] ≥
1

2
+ δ.

Let y be the m-bit string defined as yj ≜ P (x
(j)
<i )⊕ x

(j)
i , where x(j) is the j-th string in D. Then y is a

string of Hamming weight at most (1/2−δ)·m, and thus can be efficiently encoded using m−(δ2/10)·m
bits.

Let ŷ be its encoding, and D−i ∈ {0, 1}m(n−1) be the distribution D after removing the i-th bit from
all strings. The compressor outputs the tuple (i, P, ŷ,D−i), which is of length at most

⌈log n⌉+ s+ (m− (δ2/10) ·m) + (nm−m) < nm

due to the assumption on parameters.

• (Decompressor). When the compressor does not fail, the decompressor can recover D from (i, P, ŷ,D−i)
by first recovering y then computing the missing bits

x
(j)
i ≜ P (x

(j)
<i )⊕ yj .

Given a predictor generator G and parameters as above, the mapping reduction from Refuter(Yao) to
LossyCode outputs (C,D) as an instance of LossyCode.

It suffices to prove that the reduction is correct. Given any string D such that D(C(D)) ̸= D, we know by
the discussion above that the compressor must fail. In other words, G(D) fails to produce a predictor with
advantage δ. This means that D is a solution to the Refuter(Yao) instance and thus concludes the proof.

5.1.3 The Witnessing Theorem

We are now ready to show the following witnessing theorem for APX1: any provably total TFNP problem
in APX1 is deterministically reducible to Refuter(Yao).

Theorem 1.9 (Witnessing for APX1). Let φ(x, y) be a quantifier-free formula in the language of PV1. If
APX1 ⊢ ∀x ∃y φ(x, y), there exists a deterministic polynomial-time Turing reduction from the search problem
defined by φ to Refuter(Yao) with parameters satisfying (δ2/10) ·m ≥ s+ ⌈log n⌉+ 1.

Note that the inequality (δ2/10) ·m ≥ s + ⌈log n⌉ + 1 implies that the Refuter(Yao) instance reduces to
LossyCode and, in particular, it is a total search problem. A more refined analysis of our proof may lead to
an improved trade-off between the parameters, which we leave for future work.

To prove this witnessing theorem, we will need the standard Herbrand’s theorem for universal first-order
theories and a lemma that extracts a predictor from an APX proof. The latter requires a proof-theoretic
analysis and is deferred to the end of the section (see Section 5.4).

Theorem 5.5 (Herbrand’s Theorem; see, e.g., [Bus94]). Let T be a universal first-order theory and φ(x, y)
be a quantifier-free formula with only x and y as open variables. If T ⊢ ∀x ∃y φ(x, y), there exists a constant
c ∈ N and terms t1, t2, . . . , tc such that

T ⊢ ∀x
c∨

i=1

φ(x, ti(y)) .

Lemma 5.6 (Predictor Extraction Lemma). Let t1(x⃗) = t2(x⃗) be an equation provable in APX. Then there
are polynomials k(n), m(n), and a deterministic polynomial-time algorithm E that satisfies the following
conditions when n is sufficiently large:
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• (Input). A string x⃗ ∈ {0, 1}n and a flat distribution D ∈ ({0, 1}k)m of size m over k-bit strings.

• (Simulation of Terms). Recall that t1, t2 are interpreted as polynomial-time P-oracle algorithms in
standard models. We will simulate the algorithms on input x⃗ as follows: For every oracle query
P(C,∆), where C : {0, 1}t → {0, 1}, we will ensure that t ≤ k(n) and answer the query by

P(C,∆) ≜ Pr
u←D

[C(u≤t)]. (5.1)

We denote the output of t1 in the simulation as tD1 (x⃗), and the output of t2 as tD2 (x⃗).

• (Output). Suppose that tD1 (x⃗) ̸= tD2 (x⃗). Then E(x⃗,D) outputs i ∈ [k(n)] and a circuit P : {0, 1}i−1 →
{0, 1} of size at most s such that P predicts the i-th bit of D with advantage δ such that

(δ2/10) ·m(n) ≥ s+ ⌈log k(n)⌉+ 1.

Proof of Theorem 1.9. Recall that APX1 admits a universal axiomatization (see Proposition 2.8). Suppose
that APX1 ⊢ ∀x ∃y φ(x, y). By Herbrand’s theorem, there are terms t1, . . . , tc in the language of APX1 such
that

APX1 ⊢ ∀x
c∨

i=1

φ(x, ti(y)) ,

for some c ∈ N.
Note that the language of APX1 is the language of PV extended by the approximate counting oracle P;

therefore, t1, . . . , tc are polynomial time P-oracle algorithms in the standard model. Let tφ be a term in APX
such that

APX1 ⊢
c∨

i=1

φ(x, ti(x))↔ tφ(x, t1(x), . . . , tc(x)) = 1.

This can be done as φ is a quantifier-free formula; see, e.g., [Li25, Chapter 3]. Then we know that APX1

proves that ∀x tφ(x, t1(x), . . . , tc(x)) = 1. As APX1 is conservative over APX (see Proposition 2.9), we know
that APX ⊢ tφ(x, t1(x), . . . , tc(x)) = 1.

By Lemma 5.6 (instantiated with t1 ≜ tφ(x, t1(x), . . . , tc(x)) and t2 ≜ 1), there are k = k(n), m = m(n),
s = s(n), δ = δ(n) and a polynomial time E such that the following holds. Given x ∈ {0, 1}n and a
distribution D ∈ ({0, 1}k)m of size m,

• either tDφ (x, tD1 (x), . . . , tDk (x)) = 1; or

• E(x,D) outputs i ∈ [k(n)] and P that predicts the i-th bit of D with advantage δ, where (δ(n)2/10) ·
m(n) ≥ s(n) + ⌈log k(n)⌉+ 1.

The reduction produces the circuit E(x, ·) as an instance of Refuter(Yao), where the size-m(n) distribution
is supported over k(n)-bit strings, the predictor size is s(n), and the advantage is δ(n). Given x of length
n, for any solution D to the resulting instance E(x, ·) of Refuter(Yao), we know by definition that E(x,D)
cannot output a predictor with advantage δ. As a result, the first bullet above must hold:

tDφ (x, tD1 (x), . . . , tDk (x)) = 1.

Subsequently, given any solution D to the instance of Refuter(Yao), one of tD1 (x), tD2 (x), . . . , tDk (x) must
output y such that φ(x, y) holds. This gives a correct reduction, as simulations of tD1 (x), tD2 (x), . . . , tDk (x)
can be implemented in deterministic polynomial time given x and the explicit description of D.

5.2 Relationship to PV1: Is prBPP = prP Feasibly Provable?

In this subsection, we introduce a few questions regarding the relative strength of APX1 and PV1. We will
discuss their importance and connection to the program of proving prBPP = prP. No meaningful progress
is reported in the paper; we believe the resolution of the questions, even conditionally, would advance our
understanding of feasible mathematics and derandomization.
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Feasible proof of prBPP = prP. One major open problem in complexity theory is whether derandom-
ization is possible in general with polynomial runtime overhead. The seminal work of Nisan, Wigderson,
and Impagliazzo [NW94, IW97] shows that prBPP = prP follows from exponential circuit lower bounds for
E = DTIME[2n]; hence many researchers expect a positive answer. However, despite enormous efforts, both
prBPP = prP and the circuit lower bounds for E remain open.

From the perspective of meta-mathematics, an interesting question is to study whether prBPP = prP is
(un)provable in a weak arithmetic theory such as PV1. A technical challenge is that, as the language of PV1

is designed to capture deterministic polynomial time computable functions, it is a priori not obvious how to
formalize the statement prBPP = prP, which involves the acceptance probability of circuits over inputs from
a set of exponential size.

We propose the investigation of the following related question.

Open Problem 3. Is there a PV function symbol P(C,∆) such that the Basic Axiom, Boundary Axiom,
Precision Consistency Axiom, and Local Consistency Axiom are provable in PV1?

We note that an unconditional positive answer is unlikely to be obtained in the near future, as it imme-
diately implies prBPP = prP by the soundness of PV1 and Theorem 2.5. Indeed, a positive answer shows,
intuitively, that prBPP = prP admits a deterministic polynomial-time proof. To our knowledge, it is unclear
whether a positive or negative answer is more plausible.

Feasibly provable derandomization for deterministic statements. On the other hand, we may also
consider a weaker collapse: it is in principle possible that, despite that there may not be a PV function
symbol P such that the relevant axioms of APX1 are provable in PV1, the introduction of the oracle P does
not help in proving any sentence that does not involve the oracle P. Formally:

Open Problem 4. Is APX1 conservative over PV1? In other words, is it the case that every first-order
sentence in the language of PV that is provable in APX1 is also provable in PV1?

It is clear that a positive answer to Open Problem 3 implies a positive answer to Open Problem 4.
Moreover, a positive answer of this open problem would immediately imply a witnessing theorem that
improves Theorem 1.9: any APX1 provably total TFNP relation (expressed by a quantifier-free formula in
the language of PV1) is in FP. This is because PV1 provably total TFNP problems are in FP (see, e.g., [Oli25,
Section 3.1]).

An interesting characteristic of Open Problem 4 is that it appears to be incomparable with prBPP = prP.
If prBPP = prP but the proof is not feasible, APX1 may not be conservative over PV1. More interestingly,
if the answer to Open Problem 4 is positive, it is still unclear to us whether prBPP = prP or any other
nontrivial derandomization follows. Formally:

Open Problem 5. Suppose that APX1 is conservative over PV1. Does it follow that prBPP = prP, prBPP =
prZPP, or any other unknown general derandomization result hold?

At a high level, this is to ask whether it is necessary to derandomize computations in general if we
want to derandomize proofs in general. We contend that these problems are fundamental and merit deeper
investigation.

5.3 Relationship to APC1

We now study the relative strength of APX1 and APC1. We will show that, in a formal sense, APC1

can be viewed as an extension of APX1. We will then show that APC1 is likely a strict extension of APX1.
Finally, we introduce a few open problems related to the relative strength of APC1 and APX1.
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5.3.1 An Upper Bound: APC1 Extends APX1

We first prove an upper bound for APX1 that is implicit in Jeřábek’s results on approximate counting
[Jeř07a]. In particular, this shows that a provable first-order sentence in the language of PV1 is also provable
in APC1.

We start by defining a sentence HardAε (α) in the language of the relativized theory PV1(α). This sentence
formalizes that α(12

n

) outputs a truth table of length 2n that is 2−εn-hard on average. Formally:

Definition 5.7 ([Jeř07a, Definition 2.1]). HardAε (α) is the following sentence in the language of PV1(α): For
every n ∈ LogLog and x such that ||x|| = n, α(x) ∈ {0, 1}2n is a truth-table of a Boolean function f in n
variables such that for every circuit C : {0, 1}n → {0, 1} of size at most 2εn,

Pr
x←{0,1}n

[C(x) = f(x)] ≤ 1

2
+

1

2εn
.

Note that this probability is defined by a brute-force exact counting algorithm as n ∈ LogLog.

Definition 5.8 ([Jeř07a, Definition 2.13]). The theory HARDA is defined as PV1(α) + dWPHP(PV(α)) +
HardA1/4(α), where dWPHP(PV(α)) denotes the dual Weak Pigeonhole Principle for PV(α) functions.

The following theorem can be proved using tools from [Jeř07a], where NW(·, ·) is an instantiation of the
Nisan-Wigderson PRG [NW94] with the hard truth table provided by α(·). The proof is straightforward but
requires familiarity with the theory APC1; for completeness, we provide a proof of the theorem in Section 5.5.

Theorem 5.9 (Simulating P(C,∆) with NW(C,∆)). For every ε < 1/3, there is a term NW(C,∆) in
the language of PV1(α) such that Basic Axiom, Boundary Axiom, Local Consistency Axiom, and
Precision Consistency Axiom are provable in HARDA when the oracle P(C,∆) is replaced by NW(C,∆).

We note that by [Jeř07a, Theorem 2.13], the theory HARDA is a conservative extension of APC1. It then
immediately follows that:

Corollary 5.10. Any first-order sentence in the language of PV1 provable in APX1 is also provable in APC1.

5.3.2 A Conditional Separation: APC1 is Likely Stronger Than APX1

As APX1 is an alternative theory for polynomial-time approximate counting and probabilistic reasoning,
an interesting question is whether it is strictly weaker than APC1. We provide a positive answer under
plausible assumptions, by adapting a technique from [ILW23].

A main technical tool is a KPT witnessing theorem (see [KPT91, Oli25]) for the theory APX1, where the
“student” is implemented by polynomial-size circuits. Formally:

Definition 5.11 (KPT Witnessing with Circuits). Let T be an extension of PV1. We say that T satisfies
the KPT witnessing property with circuits if the following holds. Let φ(x⃗, y, z) be any quantifier-free formula
in the language of PV1 such that T ⊢ ∀x⃗ ∃y ∀z φ(x⃗, y, z). Then there is a constant k ∈ N and functions
f1, f2, . . . , fk (in the standard model) such that the following holds.

For every vector x⃗ of strings and every z1, z2, . . . , zk ∈ {0, 1}∗, it holds in the standard model that:

• either φ(x⃗, f1(x⃗), z1) is true;

• or φ(x⃗, f2(x⃗, z1), z2) is true;

• or φ(x⃗, f3(x⃗, z1, z2), z3) is true;

• . . . ;

• or φ(x⃗, fk(x⃗, z1, . . . , zk−1), zk) is true.

Moreover, over any fixed input length for x⃗, f1, . . . , fk are computable by polynomial-size deterministic
circuits.

Theorem 5.12 (KPT Witnessing for APX1). APX1 admits the KPT witnessing property with circuits.
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The theorem can be proved using the standard KPT witnessing theorem (see, e.g., [Oli25, Theorem 3.2])
and the fact that the circuit acceptance probability problem is solvable by (non-uniform) polynomial-size
circuits.24 Put another way, Theorem 5.12 holds as we can hard-wire a sequence of explicit pseudorandom
distributions to implement the approximate counting oracle P. Since the argument is standard, we defer the
proof of the theorem to Section 5.6.

We will use the following result that is implicit in the proof of [ILW23, Theorem 24]; we refer readers to
[ILW23] for precise statements of the assumptions.

Theorem 5.13 (Implicit in [ILW23, Theorem 24]). Assume the existence of JLS-secure iO and that coNP is
not contained infinitely often in NP/poly. For any theory T extending PV1 that satisfies the KPT witnessing

property with circuits, there is a ∀Σb
2 sentence in the language of PV1 that is provable in APC1, but is

unprovable in T .

Proof Sketch. [ILW23, Theorem 24] only proves the theorem for a theory called UAPC1. Nevertheless, by
a closer inspection, the only property of the theory used in the proof is that UAPC1 satisfies the KPT
witnessing property with circuits (see [ILW23, Theorem 25]).

By combining Theorem 5.12 and 5.13, it immediately follows that:

Corollary 5.14. Assume the existence of JLS-secure iO and that coNP is not contained infinitely often in
NP/poly. There is a ∀Σb

2 sentence in the language of PV1 that is provable in APC1, but is unprovable in APX1.

5.3.3 An Open Problem: Further Separations?

Corollary 5.14 shows that APC1 is likely strictly stronger than APX1. In other words, under computational
assumptions, there are ∀Σb

2(PV) sentences provable in APC1 that are not provable in APX1. An intriguing
open problem is whether APC1 is strictly stronger than APX1 with respect to ∀Σb

1(PV) sentences:

Open Problem 6. Is there a ∀Σb
1 sentence in the language of PV1 that is provable in APC1, but unprovable

in APX1? In other words, is there an APC1 provably total TFNP problem (in the language of PV) that is
not provably total in APX1?

As LossyCode captures the ∀Σb
1-fragment of APC1 (see Theorem 5.3), and Refuter(Yao) captures the

∀Σb
1-fragment of APX1 (see Theorem 1.9), a related question in the theory of pseudorandomness is whether

derandomizing LossyCode is harder than derandomizing Refuter(Yao). Formally:

Open Problem 7. Is there a deterministic polynomial-time reduction from LossyCode to Refuter(Yao)? In
other words, is there a converse to Theorem 5.4?

We note that these two open problems are technically incomparable. For instance, a positive answer to
Open Problem 7 may not give a negative answer to Open Problem 6 if it does not have a feasible correctness
proof. Nevertheless, it is conceivable that techniques developed for one of them are likely useful for the other.

5.4 Predictor Extraction Lemma: Proof of Lemma 5.6

Lemma 5.6 (Predictor Extraction Lemma). Let t1(x⃗) = t2(x⃗) be an equation provable in APX. Then there
are polynomials k(n), m(n), and a deterministic polynomial-time algorithm E that satisfies the following
conditions when n is sufficiently large:

• (Input). A string x⃗ ∈ {0, 1}n and a flat distribution D ∈ ({0, 1}k)m of size m over k-bit strings.

24A similar KPT witnessing theorem is proved in [PS21, Theorem 4] (see also [ILW23, Theorem 25]) for the theory PV1+
“uniform dWPHP(PV)”, which might be incomparable with APX1.
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• (Simulation of Terms). Recall that t1, t2 are interpreted as polynomial-time P-oracle algorithms in
standard models. We will simulate the algorithms on input x⃗ as follows: For every oracle query
P(C,∆), where C : {0, 1}t → {0, 1}, we will ensure that t ≤ k(n) and answer the query by

P(C,∆) ≜ Pr
u←D

[C(u≤t)]. (5.1)

We denote the output of t1 in the simulation as tD1 (x⃗), and the output of t2 as tD2 (x⃗).

• (Output). Suppose that tD1 (x⃗) ̸= tD2 (x⃗). Then E(x⃗,D) outputs i ∈ [k(n)] and a circuit P : {0, 1}i−1 →
{0, 1} of size at most s such that P predicts the i-th bit of D with advantage δ such that

(δ2/10) ·m(n) ≥ s+ ⌈log k(n)⌉+ 1.

Before proving this lemma, we briefly explain the intuition. Recall that APX is defined as the extension
of PV(P) by additional axioms: Basic Axiom, Boundary Axiom, Local Consistency Axiom, and
Precision Consistency Axiom. An APX proof of the equation t1(x) = t2(x) is, at a high level, a proof of
the following statement: For every interpretation of the oracle P, either t1(x) = t2(x), or the oracle P does
not satisfy one of the axioms.

For our specific implementation of the oracle P in Lemma 5.6, Basic Axiom, Boundary Axiom and
Precision Consistency Axiom are always satisfied, therefore only Local Consistency Axiom can be
violated. In such cases, for a circuit C : {0, 1}t → {0, 1} and strings ∆, B (constructed in the APX proof)
such that ∣∣∣∣ Pr

u←D
[C(u≤t)]−

1

2

(
Pr

u←D
[C(u<t0)] + Pr

u←D
[C(u<t1)]

)∣∣∣∣ > 2 · 1

|∆|
+

1

|B|
,

following a similar argument as in the proof of Yao’s lemma (see, e.g., [AB09, Chapter 9] or Section 4.1), we
can construct a predictor from C via a deterministic polynomial-time algorithm.

From a conceptual point of view, the argument crucially explores that a predictor can be constructed
not only from the ability to distinguish a distribution from a random string, as in the standard formulation
of Yao’s lemma, but also from the ability to detect a local inconsistency when using the distribution as a
random source for approximate counting. This is a perspective that might be of independent interest.

In order to implement this intuition, we prove the lemma using a careful proof-theoretic analysis. For-
mally, we will prove Lemma 5.6 by induction on the APX proof π of the equation t1(x) = t2(x). The functions
ℓ, k,m, s, δ and the algorithm E will be determined based on the last rule or axiom of π and the functions
and algorithms obtained from the induction hypothesis.

Proof of Lemma 5.6. We will prove a stronger statement: For any provable equation e(x) : t1(x⃗) = t2(x⃗),
there are non-decreasing polynomials k0(n),m0(n) such that the lemma holds for every polynomials k(n) ≥
k0(n) and m(n) ≥ m0(n), when the function m(n) is non-decreasing. We prove this by induction on the
length of the proof.

Consider the axiom or rule used in the last line of the proof that concludes e(x).

Basic Axiom. Suppose that e is a provable equation in PV(P) and it is introduced via the Basic Axiom.25

Then, for any interpretation of P and any string x, e(x) must be true. We set k0(n) to be sufficiently large
such that t ≤ k0(n) for every C : {0, 1}t → {0, 1} queried in simulations tD1 (x⃗), tD2 (x⃗) on x ∈ {0, 1}n; this
is possible as t1, t2 are polynomial-time oracle algorithms. We set other functions and E arbitrarily as
tD1 (x⃗) = tD2 (x) always holds.

Suppose that e is one of the equations encoding P(C,∆) ∈ Q, P(C,∆) ≤ 1, or P(C,∆) ≥ 0, where C,∆
are open variables. Let k0(n) ≜ n and m0(n) = 1. Similar to the previous case, one can see that for any
k(n) ≥ k0(n) and m(n) ≥ m0(n), e(x⃗) must be true if we interpret P following Equation (5.1). We can set
other functions and E arbitrarily as tD1 (x⃗) = tD2 (x⃗) always holds.

25Note that our proof does not look into the PV(P) proof of e; it works provided that e is a PV(P) provable equation.
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Boundary Axiom. Suppose that e(x⃗) is an equation encoding that for any circuit C ∈ Bn, IsConst(C)→
P(C,∆) = Bool(C). Note that C and ∆ are the only open variables of the equation. We can set k0(n) = n
and m0(n) = 1. For every k(n) ≥ k0(n) and m(n) ≥ m0(n), we can set E arbitrarily.

This is correct as for every (C,∆) ∈ {0, 1}n and every distribution D of size m(n) over k(n) ≥ n bits, when
we interpret P following Equation (5.1), if C : {0, 1}t → {0, 1} is a constant circuit, we have t ≤ n ≤ k(n)
and

P(C,∆) = Pr
u←D

[C(u≤t)] = Bool(C).

In other words, tD1 (C,∆) = tD2 (C,∆) is always true.

Precision Consistency Axiom. This is similar to the case for the Boundary Axiom. Indeed, when
the oracle P is interpreted as Equation (5.1), P(C,∆1) = P(C,∆2) for any ∆1,∆2.

Local Consistency Axiom. In this case, e(x⃗) is an equation encoding the following sentence: For every
circuit C : {0, 1}t → {0, 1} and strings ∆, B, we have∣∣∣∣P(C,∆)− P(Fix0(C),∆) + P(Fix1(C),∆)

2

∣∣∣∣ ≤ 2

|∆|
+

1

|B|
,

where Fixσ(C) is a PV-term that outputs the circuit obtained from C by fixing the rightmost input bit to
σ ∈ {0, 1}. In this equation, C,∆, B are the only open variables. Let k0(n) and m0(n) be polynomials to be
determined later.

Let k(n) ≥ k0(n) and m(n) ≥ m0(n). Let x⃗ = (C,∆, B) ∈ {0, 1}n and D ∈ ({0, 1}k(n))m(n). Suppose
that tD1 (x⃗) ̸= tD2 (x⃗). Since the oracle P is interpreted following Equation (5.1), we have∣∣∣∣ Pr

u←D
[C(u≤t)]−

Pru←D[C(u<t0)] + Pru←D[C(u<t1)]

2

∣∣∣∣ > 2

|∆|
+

1

|B|
≥ 1

n
.

This implies that

1

2

∣∣∣ Pr
u←D

[C(u<tut)]− Pr
u←D

[C(u<tut)]
∣∣∣

=

∣∣∣∣ Pr
u←D

[C(u≤t)]−
Pru←D[C(u<tut)] + Pru←D[C(u<tut)]

2

∣∣∣∣
=

∣∣∣∣ Pr
u←D

[C(u≤t)]−
Pru←D[C(u<t0)] + Pru←D[C(u<t1)]

2

∣∣∣∣ ≥ 1

n
, (5.2)

where in the second equality we used linearity of expectation and that for every fixed u, C(u<tut) +
C(u<tut) = C(u<t0) + C(u<t1).

For simplicity, we only consider the case that

Pr
u←D

[C(u<tut)]− Pr
u←D

[C(u<tut)] ≥
2

n
, (5.3)

and the other case can be resolved accordingly. We can rewrite the equation above as follows:(
Pr

u←D
[C(u<t0)⊕ 1 = ut ∧ ut = 0]− Pr

u←D
[C(u<t0)⊕ 1 ̸= ut ∧ ut = 1]

)
+
(

Pr
u←D

[C(u<t1)⊕ 1 ̸= ut ∧ ut = 1]− Pr
u←D

[C(u<t1)⊕ 1 = ut ∧ ut = 0]
)
≥ 2

n
.

Therefore, one of the terms in the LHS must be at least 1/n. Again, we will only consider the case that the
first term is at least 1/n, and the other term can be resolved accordingly.
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Notice that

Pr
u←D

[C(u<t0)⊕ 1 = ut ∧ ut = 0]− Pr
u←D

[C(u<t0)⊕ 1 ̸= ut ∧ ut = 1]

= Pr
u←D

[C(u<t0)⊕ 1 = ut ∧ ut = 0] + Pr
u←D

[C(u<t0)⊕ 1 = ut ∧ ut = 1]− Pr
u←D

[ut = 1]

= Pr
u←D

[C(u<t0)⊕ 1 = ut]− Pr
u←D

[ut = 1] ≥ 1

n
.

Subsequently, either Pru←D[ut = 1] ≤ 1/2− 1/(2n) or Pru←D[C(u<t0)⊕ 1 = ut] ≥ 1/2 + 1/(2n). In either
case – and we can efficiently determine which case holds since D is explicitly given – we can construct a
circuit of size at most |C| ≤ s ≜ n that predicts the t-th bit of D from the first (t− 1) bits with advantage
at least δ ≜ 1/(2n). By setting m0(n) ≜ n4 and k0(n) ≜ n, we can ensure that

(δ2/10) ·m(n) ≥ s+ ⌈log k(n)⌉+ 1

when n is sufficiently large.

Logical Rules. We will only consider the substitution rule t1 = t2 ⊢ t1(x/t) = t2(x/t); other logical rules
can be resolved accordingly. In this case, e(x⃗) is of form t1(x/t) = t2(x/t), where t is a term and x is one of
the open variables of t1 and t2, and there is a shorter proof of the premise t1 = t2. Without loss of generality,
we assume that the variable x does not occur in the term t.

Let y⃗ be the open variables in t but not in t1, t2, z⃗ be the open variables in t1, t2 (excluding x) but not
in t, and w⃗ be the open variables in both t and t1, t2 (excluding x). By the induction hypothesis, there are
polynomials k′0(n),m′0(n) such that for every polynomials k′(n) ≥ k′0(n),m′(n) ≥ m′0(n), there are δ′(n),
s′(n), and an algorithm E′(x⃗,D) that satisfies the lemma for the equation

t1(x, z⃗, w⃗) = t2(x, z⃗, w⃗). (5.4)

Let ℓ(n) be an upper bound on the output length of t when the input length is at most n (this is called
the bounding value of the term, see [Coo75]). We define k0(n) ≜ k′0(n+ ℓ(n)) and m0(n) ≜ m′0(n+ ℓ(n)).

To show that this is correct, fix any k(n) ≥ k0(n) and m(n) ≥ m0(n), and let s(n), δ(n) be determined
later. The algorithm E works as follows. Given any (y⃗, z⃗, w⃗) ∈ {0, 1}n and D ∈ ({0, 1}k(n))m(n) such that

tD1 (t(y⃗, w⃗), z⃗, w⃗) ̸= tD2 (t(y⃗, w⃗), z⃗, w⃗), (5.5)

our goal is to output a predictor of a bit of D with size s(n) and advantage δ(n).
The algorithm first computes xD ≜ tD(y⃗, w⃗), which is a string of length at most ℓ(n). By Equation (5.5)

and the definition of the simulation,

tD1 (xD, z⃗, w⃗) ̸= tD2 (xD, z⃗, w⃗).

Subsequently, by the induction hypothesis (with functions k′(n + ℓ(n)) ≥ k(n) and m′(n + ℓ(n)) ≥ m(n)),
E′((xD, z⃗, w⃗),D) outputs (i, P ) such that P is a circuit of size s that predicts the i-th bit of D with advantage
δ such that

((δ2/10) ·m′(n+ ℓ(n)) ≥ s+ ⌈log k′(n+ ℓ(n))⌉+ 1.

It suffices to define E((y⃗, z⃗, w⃗),D) ≜ E′((xD, z⃗, w⃗),D).

Induction Rule. In this case, e is of form f1(x, y⃗) = f2(x, y⃗) for PV(P) functions f1, f2, and there are
PV(P) functions g, h0, h1 such that there are shorter proofs of equations

fj(ε, y⃗) = g(y⃗) (5.6)

fj(si(x), y⃗) = hi(x, y⃗, fj(x, y⃗)) (5.7)
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for j ∈ {1, 2} and i ∈ {0, 1}. By the induction hypothesis, the lemma holds for each of the 6 equations above.
Let k0(n) and m0(n) are polynomials to be determined. For any polynomials k(n) ≥ k0(n) and m(n) ≥

m0(n), we will design an algorithm E that, given (x, y⃗) ∈ {0, 1}n and D ∈ ({0, 1}k(n))m(n) satisfying

fD1 (x, y⃗) ̸= fD2 (x, y⃗),

it outputs (i, P ) such that P is a circuit of size s that predicts the i-th bit of D with advantage δ such that
(δ2/10) ·m(n) ≥ s+ ⌈log k(n)⌉+ 1.

Case 1. Suppose that fD1 (ε, y⃗) ̸= fD2 (ε, y⃗). Then there exists j ∈ {1, 2} such that fDj (ε, y⃗) ̸= gD(y⃗).
Note that y⃗ is of length at most n. As Equation (5.6) admits a shorter proof, by the induction hypothesis,

there are polynomials k
(j)
0 (n′),m

(j)
0 (n′) such that when

k(n′) ≥ k(j)0 (n′), m(n′) ≥ m(j)
0 (n′), (5.8)

then Ej(y⃗,D) outputs a size-s predictor with advantage δ such that (δ2/10) ·m(n′) ≥ s + ⌈log k(n′)⌉ + 1,
where n′ denotes the input length of y⃗. It then suffices to define

E((x, y⃗),D) ≜ Ej(y⃗,D)

k0(n) ≜ k
(j)
0 (n) ∈ poly(n), m0(n) ≜ m

(j)
0 (n) ≥ m(j)

0 (n′).

Case 2. Let t ≜ |x|. The algorithm E first finds the first index i ≤ t such that fD1 (x≤i, y⃗) = fD2 (x⃗≤i, y⃗)
but fD1 (x≤i+1, y⃗) ̸= fD2 (x⃗≤i+1, y⃗); such an index must exist as fD1 (ε, y⃗) = fD2 (ε, y⃗) and fD1 (x, y⃗) ̸= fD2 (x, y⃗).

Let σ ≜ xi+1. Then there exists j ∈ {1, 2} such that

fDj (sσ(x≤i), y⃗) ̸= hDσ (x≤j , y⃗, f
D
j (x≤i, y⃗)).

That is, the string (x≤j , y⃗) of length at most n violates Equation (5.7) when the approximate counting oracle
P is implemented using D following Equation (5.1). By the induction hypothesis applied to Equation (5.7),
there are polynomials k′0(n) and m′0(n) such that when

k(n) ≥ k′0(n), m(n) ≥ m′0(n), (5.9)

there is an algorithm E′ such that E′((x≤i, y⃗),D) outputs a size-s predictor with advantage δ such that
(δ2/10) ·m(n) ≥ s+ ⌈log k(n)⌉+ 1. It then suffices to define E((x, y⃗),D) ≜ E′((x≤i, y⃗),D).

Wrapping up. Finally, we set k0(n) and m0(n) to be sufficiently large polynomials such that when
k(n) ≥ k0(n) and m(n) ≥ m0(n), both Equation (5.8) and (5.9) hold. Therefore, in either case, the algorithm
E satisfies the requirement of the lemma.

Remark 5.15. By looking into the proof, we note that the polynomials k0(n),m0(n) (which define the minimum
size of the distribution D) and the running time of E depend on the APX proof; in particular, they may far
exceed the running time of the terms t1, t2 in the equation e.

For instance, k0(n) is defined as k′0(n + ℓ(n)) in the case for logical rules, where ℓ(n) is the output length
(i.e. bounding value) of a term t in the proof, and the term t does not necessarily appear in the final equation.
At a high level, this is because we need to set the distribution D to be large enough to accommodate all oracle
queries in the APX proof; we can then look through the proof and find a violation of the Local Consistency
Axiom, which produces a predictor.
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5.5 Simulating P(C,∆) with NW(C,∆): Proof of Theorem 5.9

We follow the notation in [Jeř07a]. A set X is said to be a bounded set defined by a circuit C if
X = {x < a | C(x) = 1}. We use x ∈ X to denote the formula x < a ∧ C(x) = 1, and X ⊆ b to denote
the formula ∀x ∈ X x < b. Note that bounded definable sets are not objects in the theory APC1, but an
abbreviation in the meta-theory. For two bounded definable sets X ⊆ a and Y ⊆ b, we define

X × Y ≜ {bx+ a | x ∈ X, y ∈ Y } ⊆ ab,
X ∪· Y ≜ X ∪ {y + a | y ∈ Y } ⊆ a+ b.

We say C : X → Y if C is a circuit from X to Y , i.e., for every x ∈ X, C(x) ∈ Y . We say C : X ↪→ Y
if the circuit C : X → Y is injective, i.e., for x1, x2 ∈ X, x1 ̸= x2, C(x1) ̸= C(x2). We use C : X ↠ Y to
denote that C is onto, i.e., for all y ∈ Y , there exists an x ∈ X such that C(x) = y.

Definition 5.16 (in PV1). Let X,Y ⊆ 2n be definable sets, and ε ≤ 1. We say that X is ε-approximately
smaller than Y , denoted by X ≲ε Y , if there exists a circuit G and v ̸= 0 such that

G : v × (Y ∪· ε2n) ↠ v ×X.

Definition 5.17 (in PV1). We say that X and Y are ε-approximately of equal size, denoted by X ≈ε Y , if
X ≲ε Y and Y ≲ε X. In particular, we say that X is ε-approximately of size s if X ≈ε s.

Lemma 5.18 ([Jeř07a, Lemma 2.10]). Let X,Y,X ′, Y ′, Z ⊆ 2n and W,W ′ ⊆ 2n be bounded definable sets,
and ε, δ ≤ 1. The following statements are provable in PV1.

(1) If X ≲ε Y, ε ≤ δ, then X ≲δ Y .

(2) If X ≲0 Y , then X ≲ε Y .

(3) If X ≲ε Y , Y ≲δ Z, then X ≲δ+ε Z.

(4) If X ≲ε X
′, Y ≲δ Y

′, and X ′, Y ′ are separable by the set W (i.e., X ′ ⊆ W and Y ′ ⊆ 2n \W ), then
X ∪ Y ≲ε+δ X

′ ∪ Y ′.
(5) If X ≲ε X

′,W ≲δ W
′, then X ×W ≲ε+δ+εδ X

′ ×W ′.

Lemma 5.19 ([Jeř07a, Lemma 2.11]). Let X,Y ⊆ 2n be bounded definable sets, s, t, u ≤ 2n, ε, δ, η, ξ ≤ 1,
and ξ−1 ∈ Log. The following statements are provable in APC1.

(1) There exists s ≤ 2n such that X ≈ξ s.

(2) s ≲ε X ≲δ t implies s ≤ t+ (ε+ δ + ξ) · 2n.
(3) X ≲ξ Y or Y ≲ξ X.

(4) X ≲ε Y implies 2n \ Y ≲ε+ξ 2n \X.

(5) X ≈ε s, Y ≈δ t, X ∩ Y ≈η u imply X ∪ Y ≈ε+δ+η+ξ s+ t− u.

Lemma 5.20 (Implicit in [Jeř07a, Lemma 2.14]). Let ε < 1/3. There is a PV(α) function Size(·, ·) such that
the following sentence is provable in HARDA: For every n, δ−1 ∈ Log and set X ⊆ 2n defined by a circuit
C : {0, 1}n → {0, 1}, the following holds:

• 0 ≤ Size(C, 1δ
−1

) ≤ 2n;

• X ≈δ Size(C, 1δ
−1

);

• If C is a constant circuit that always outputs 0 (resp. 1), then Size(C,∆) = 0 (resp. Size(C,∆) = 2n).

Proof Sketch. We assume some familiarity with [Jeř07a]. The first two bullets of the lemma hold for a PV(α)
function symbol as the only non-uniformity in [Jeř07a, Theorem 2.7] is the choice of the hard function, which
is given by α. The last bullet holds as Size(C,∆) is obtained by computing the acceptance probability of
C on a pseudorandom distribution produced via the Nisan-Wigderson PRG, and for a circuit that always
accepts (resp. rejects), its acceptance probability on any distribution is always 1 (resp. 0).

We refer interested readers to [ILW23, Appendix D] for a self-contained presentation of the proof of
[Jeř07a, Theorem 2.7].
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Theorem 5.9 (Simulating P(C,∆) with NW(C,∆)). For every ε < 1/3, there is a term NW(C,∆) in
the language of PV1(α) such that Basic Axiom, Boundary Axiom, Local Consistency Axiom, and
Precision Consistency Axiom are provable in HARDA when the oracle P(C,∆) is replaced by NW(C,∆).

Proof. Let Size(·, ·) be the function in Lemma 5.20. We define NW(C,∆) ≜ Size(C, 1|∆|)/2n, where C :
{0, 1}n → {0, 1} is a circuit. Note that we can encode the rational number Size(C, 1|∆|)/2n precisely using
n binary digits so that there is no rounding issue; recall that in the definition of APX, the output length of
P could be as large as |C| · |∆|2 > n (see Section 2.1).

It suffices to verify that the axioms are provable in HARDA. In the rest of the proof, we argue in HARDA.

• (Basic Axiom). It follows immediately from the first bullet of Lemma 5.20.

• (Boundary Axiom). It follows immediately from the third bullet of Lemma 5.20.

• (Local Consistency Axiom). Let C : {0, 1}n → {0, 1} be a circuit, ∆, B be strings with δ = 1/|∆|,
β = 1/|B|, C0 ≜ Fix0(C), C1 ≜ Fix1(C). We need to prove that∣∣∣∣NW(C,∆)− NW(C0,∆) + NW(C1,∆)

2

∣∣∣∣ ≤ δ + β. (5.10)

Let X,X0, X1 ⊆ {0, 1}n be the bounded sets defined by C,C0, C1, respectively. Let s ≜ Size(C, 1|∆|),
s0 = Size(C0, 1

|∆|), s1 ≜ Size(C1, 1
|∆|). By the second bullet of Lemma 5.20, we know that

X ≈δ s, X0 ≈δ s0, X1 ≈δ s2.

Note that as X0 ∩X1 = ∅, we have that X0 ∩X1 ≈0 0. By Lemma 5.19 (5), X0 ∪X1 ≈2δ s0 + s1.
Let f : v1(s+δ ·2n) ↠ v1×X be the witness of X ≲δ s, and g : v2×((X0∪X1)∪· 2δ ·2n−1) ↠ v2(s0+s1)
be the witness of s0 + s1 ≲2δ X0 ∪X1. We define a function h

h : v1v2(s+ 2δ · 2n) ↠ v1v2(s0 + s1)

as follows:

(i) Let i1 < v1, i2 < v2, j < s + δ · 2n, the tuple (i1, i2, j) ∈ v1v2(s + 2δ · 2n). We compute (i′1, x) ≜
f(i1, j) ∈ v1×X, where x≤n−1 ∈ X0∪X1. The algorithm then computes (i′2, j

′) ≜ g(i2, x≤n−1) ∈
v2(s0 + s1), and outputs h(i1, i2, j) ≜ (i′1, i

′
2, j
′).

(ii) Let i1 < v1, i2 < v2, s+ δ · 2n ≤ j < s+ 2δ · 2n, the tuple (i1, i2, j) ∈ v1v2(s+ 2δ · 2n). Note that
j − (s+ δ · 2n) ∈ δ · 2n = 2δ · 2n−1. The algorithm then computes (i′2, j

′) ≜ g(i2, j − (s+ δ · 2n)) ∈
v2(s0 + s1), and outputs h(i1, i2, j) ≜ (i1, i

′
2, j
′).

It can be verified that the function is indeed onto, and thus by definition, s0 + s1 ≲2δ s. Similarly, we
can prove that s ≲2δ s0 + s1. Then we have

s ≲0 s ≲2δ s0 + s1 and s0 + s1 ≲0 s0 + s1 ≲2δ s,

by Lemma 5.19 (2), we have that s ∈ (s0 +s1)±(2δ+β) ·2n. This immediately implies Equation (5.10)
as NW(C,∆) ≜ Size(C, 1|∆|)/2n.

• (Precision Consistency Axiom). Let C : {0, 1}n → {0, 1} be a circuit, ∆1,∆2, B be strings and
δ1 ≜ 1/|∆1|, δ2 ≜ 1/|∆2|, β ≜ 1/|B|. We need to prove that

|NW(C,∆1)− NW(C,∆2)| ≤ δ1 + δ2 + β. (5.11)

Let X ⊆ {0, 1}n be the bounded set defined by C, and let si ≜ Size(C, 1|∆i|), i ∈ {1, 2}. By the second
bullet of Lemma 5.20,

X ≈δ1 s1, X ≈δ2 s2.

Therefore, we have s1 ≲δ1 X ≲δ2 s2, and by Lemma 5.19 (2), s1 ≤ s2 + (δ1 + δ2 +β) · 2n. Similarly, we
can prove that s2 ≤ s1 + (δ1 + δ2 + β) · 2n. This immediately implies Equation (5.10) as NW(C,∆) ≜
Size(C, 1|∆|)/2n.

This completes the proof.
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5.6 A KPT Witnessing Theorem for APX1: Proof of Theorem 5.12

Recall the definition of the KPT witnessing property with circuits:

Definition 5.11 (KPT Witnessing with Circuits). Let T be an extension of PV1. We say that T satisfies
the KPT witnessing property with circuits if the following holds. Let φ(x⃗, y, z) be any quantifier-free formula
in the language of PV1 such that T ⊢ ∀x⃗ ∃y ∀z φ(x⃗, y, z). Then there is a constant k ∈ N and functions
f1, f2, . . . , fk (in the standard model) such that the following holds.

For every vector x⃗ of strings and every z1, z2, . . . , zk ∈ {0, 1}∗, it holds in the standard model that:

• either φ(x⃗, f1(x⃗), z1) is true;

• or φ(x⃗, f2(x⃗, z1), z2) is true;

• or φ(x⃗, f3(x⃗, z1, z2), z3) is true;

• . . . ;

• or φ(x⃗, fk(x⃗, z1, . . . , zk−1), zk) is true.

Moreover, over any fixed input length for x⃗, f1, . . . , fk are computable by polynomial-size deterministic
circuits.

Theorem 5.12 (KPT Witnessing for APX1). APX1 admits the KPT witnessing property with circuits.

To prove Theorem 5.12, we will need the standard KPT witnessing theorem for universal first-order
theories [KPT91]; interested readers are referred to [Oli25, Theorem 3.2] for detailed discussions.

Theorem 5.21 (KPT witnessing theorem). Let T be a universal theory. Let φ(x⃗, y, z) be a quantifier-free
formula in the language of T such that T ⊢ ∀x⃗ ∃y ∀z φ(x⃗, y, z). Then there is a constant k ∈ N and terms
t1, t2, . . . , tk (in the language of T ) such that the following statement is provable in T :

For every x⃗ and every z1, z2, . . . , zk, either φ(x⃗, t1(x⃗), z1), or φ(x⃗, t2(x⃗, z1), z2), or φ(x⃗, t3(x⃗, z1, z2), z3),
. . . , or φ(x⃗, tk(x⃗, z1, . . . , zk−1), zk).

Proof of Theorem 5.12. Recall that APX1 admits a universal axiomatization (see Proposition 2.8). By The-
orem 5.21 with T ≜ APX1, if APX1 ⊢ ∀x⃗ ∃y ∀z φ(x⃗, y, z), there is a constant k ∈ N and terms t1, . . . , tk such
that APX1 proves the following sentence:

(Φ): For every x⃗ and z1, z2, . . . , zk, either φ(x⃗, t1(x⃗), z1), or φ(x⃗, t2(x⃗, z1), z2), or φ(x⃗, t3(x⃗, z1, z2), z3),
. . . , or φ(x⃗, tk(x⃗, z1, . . . , zk−1), zk).

Note that t1, . . . , tk are PV(P) terms, which can be interpreted as polynomial time P-oracle algorithms.
Similarly to the proof of Theorem 1.9, we can rewrite the universal sentence (Φ) as an equation eΦ in

APX, such that it is provable in APX. Therefore, we know by the soundness of APX (see Proposition 2.7)

that eΦ is true in any standard model M(P̂).
Let CAPP be the search problem that, given any circuit C and a string ∆, outputs a number p ∈

Pr[C(x)] ± 1/|∆|. It is well-known that the problem is in prBPP (see, e.g., [Gol11]), and thus can be
computable by a family of deterministic polynomial-size circuits. Fix any family of circuits F (C,∆) that
solves CAPP. By definition, M(F ) is a standard model of APX. Subsequently, eΦ is true in the model M(F ).

The theorem follows by setting f1, f2, . . . , fk as t
M(F )
1 , t

M(F )
2 , . . . , t

M(F )
k . Since for each fixed input length,

there is a polynomial upper bound on the size of C and on the length of ∆ in the oracle calls to F (C,∆)
during the computation of t1, . . ., tk, this allows us to fix a family of polynomial-size circuits for f1, . . .,
fk.

6 Reverse Mathematics of Randomized and Average-Case Lower
Bounds

The retraction weak pigeonhole principle for polynomial-time functions is one of the most important
combinatorial principles that is known to be provable in APC1, but unknown to be provable in APX1. In this
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section, we explore counting variants of the retraction pigeonhole principle and characterize their equivalence
class (with respect to provability in APX1). We show that this class encompasses certain average-case and
randomized communication complexity lower bounds, establishing that these results are all equivalent to
appropriate variants of the retraction pigeonhole principle.

6.1 Variants of the Retraction Pigeonhole Principle

We start with the definition of the Retraction Weak Pigeonhole Principle rWPHP(PV). For simplicity,
we introduce the following notation. We use m : Log → Log to denote a PV function symbol m(n) whose
input and output are encoded in unary. We use ε : Log→ Log−1 to denote a PV function symbol e(n) whose
input and output are encoded in unary, and ε(n) is an abbreviation of the rational number 1/e(n).

Definition 6.1 (retraction weak pigeonhole principle). Let m : Log→ Log. The retraction weak pigeonhole
principle rWPHP[m](PV) with stretch m denotes the following statement in the language of APX1:

For every n ∈ Log and circuits C : {0, 1}n → {0, 1}m(n), D : {0, 1}m(n) → {0, 1}n, if m(n) < n, then
there exists a string x ∈ {0, 1}n such that D(C(x)) ̸= x.

We will define two variants of rWPHP(PV): an approximate counting version #rWPHP(PV), and a ran-
domized compression version rrWPHP(PV).

Definition 6.2 (approximate counting rWPHP). Let m : Log → Log, ε : Log → Log−1. The approximate
counting retraction weak pigeonhole principle #rWPHP[m, ε](PV) with stretch m and error ε denotes the
following statement in the language of APX1:

For every n ∈ Log and circuits C : {0, 1}n → {0, 1}m(n), D : {0, 1}m(n) → {0, 1}n, let T be the circuit
such that T (x) = 1 if D(C(x)) ̸= x. Then, if m(n) < n and ε(n) < 1− 2n−m(n), there exists δ−1, β−1 ∈ Log
such that Pδ(T ) > ε(n) + δ + β.

Definition 6.3 (randomized compression rWPHP). Let m : Log → Log, ε : Log × Log → Log−1. The
randomized compression retraction weak pigeonhole principle rrWPHP[m, ε](PV) with stretch m and error ε
denotes the following statement in the language of APX1:

For every n, r ∈ Log and circuits C : {0, 1}n×{0, 1}r → {0, 1}m(n), D : {0, 1}m(n) → {0, 1}n, if m(n) < n
and ε(n + r) < 1 − 2n−m(n), then there exists an x ∈ {0, 1}n and δ−1, β−1 ∈ Log such that the following
holds: Let Tx : {0, 1}r → {0, 1} be the circuit such that Tx(sd) = 1 if and only if D(C(x, sd)) ̸= x. Then
Pδ(Tx) > ε(n, r) + δ + β.

It follows immediately from the definition that both variants of rWPHP are true statements in any
standard model of APX1, which is left as an exercise.

Proposition 6.4. For every m : Log → Log, ε : Log → Log−1, #rWPHP[m, ε](PV) and rrWPHP[m, ε](PV)

are true statements in any standard model M(P̂) of APX1.

These principles can be viewed as the worst-case and (weak) average-case hardness of compression-
decompression algorithms. Specifically:

• rWPHP[m](PV) says that for any deterministic compression-decompression pair (C,D) with compres-
sion rate m, there is an incompressible string;

• #rWPHP[m, ε](PV) says that for any deterministic compression-decompression pair (C,D) with com-
pression rate m, there is an ε-fraction of incompressible strings;

• rrWPHPm(PV) says that for any (C,D) where C is a randomized compression algorithm and D is a
deterministic decompression algorithm, there must be an input string over which the compression-
decompression pair has error probability ε.

A classical result in bounded arithmetic is that the retraction weak pigeonhole principle admits a stretch
reduction in PV. Concretely:

Theorem 6.5 ([Tha02, Jeř05]). For any constant ε ∈ (0, 1), PV + rWPHP[nε](PV) ⊢ rWPHP[n− 1](PV).
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6.2 One-Way Communication Lower Bounds

We prove an equivalence result involving #rWPHP(PV) and communication complexity lower bounds for
Set Disjointness against one-way protocols with either public randomness or private randomness.

Formalization of One-Way Communication Protocols. We start with the formalization of a com-
munication protocol. Let n,m, r ∈ Log. A pair of circuits gA : {0, 1}n × {0, 1}r → {0, 1}m and dB :
{0, 1}n × {0, 1}m × {0, 1}r → {0, 1} defines a one-way randomized communication protocol as follows:

• (Public Coin Model). On any pair of inputs (x, y) ∈ {0, 1}n×{0, 1}n and a uniformly generated public
random seed sd ∈ {0, 1}r, Alice sends the message msg ≜ gA(x, sd) to Bob, and Bob decides to accept
if and only if dB(y,msg, sd) = 1.

• (Private Coin Model). On any pair of inputs (x, y) ∈ {0, 1}n×{0, 1}n and uniformly generated private
random seeds sd ∈ {0, 1}r, Alice sends the message msg ≜ gA(x, sd) to Bob, and Bob decides to accept
if and only if dB(y,msg, 0r) = 1.

Let f : {0, 1}n × {0, 1}n → {0, 1} be a function specified by a circuit. For every x, y ∈ {0, 1}n, let

T pub
f,x,y : {0, 1}r → {0, 1} be the circuit such that T pub

f,x,y(sd) = 1 if and only if the public-coin protocol outputs
1− f(x, y) on the input (x, y) with seed sd, i.e.,

T pub
f,x,y(sd) ≜ I[dB(y, gA(x, sd), sd) ̸= f(x, y)] ∈ {0, 1}. (6.1)

Let ε ∈ Q. We say that a public-coin protocol (gA, dB) computes the function f with error ε if for x, y ∈
{0, 1}n, δ−1, β−1 ∈ Log,

Pδ(T pub
f,x,y) ≤ ε+ δ + β. (6.2)

Note that here we consider the two-sided error setting, while one can also naturally define the correctness
in terms of one-sided error.

Accordingly, one may define T priv
f,x,y : {0, 1}r → {0, 1} to be the circuit such that T pub

f,x,y(sd) = 1 if and only
if the private-coin protocol outputs 1− f(x, y) on the input (x, y) with seed sd, i.e.,

T priv
f,x,y(sd) ≜ I[dB(y, gA(x, sd), 0r) ̸= f(x, y)] ∈ {0, 1}. (6.3)

We say that a private-coin protocol (gA, dB) computes the function f with error ε if for every x, y ∈ {0, 1}n,
δ−1, β−1 ∈ Log,

Pδ(T priv
f,x,y) ≤ ε+ δ + β. (6.4)

Communication Complexity Lower Bounds. Fix any function f : {0, 1}n×{0, 1}n → {0, 1}, n,m, r ∈
Log, and ε ∈ Q. We define the sentence pub-rLB−→

f [n,m, r, ε] as follows: For every public-coin protocol (gA, dB)

as defined above, (gA, dB) fails to compute f with error ε. In other words, there are x, y ∈ {0, 1}n and

δ−1, β−1 ∈ Log such that Pδ(T pub
f,x,y) > ε+ δ + β.

Accordingly, we define the sentence priv-rLB−→
f [n,m, r, ε] as follows: For every private-coin protocol (gA, dB)

as defined above, (gA, dB) fails to compute f with error ε.
Recall that the Set Disjointness function SetDisj(x, y) outputs 1 if and only if for every index i ∈ [n],

either xi = 0 or yi = 0, i.e., x and y have no common 1-index. Let m : Log → Log, ε : Log × Log → Log−1

be functions. We define pub-rLB−→
SetDisj[m, ε] as the following sentence:

For n, r ∈ Log, pub-rLB−→
SetDisj[n,m(n), r, ε(n, r)].

In other words, every public-coin one-way protocol computing SetDisj with communication complexity m(n)
must have error probability at least ε(n). As we will prove in Section 6.3, the lower bound is correct even
for m(n) = n− nΩ(1). Accordingly, we define priv-rLB−→

SetDisj[m, ε] as the following sentence:
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For n, r ∈ Log, priv-rLB−→
SetDisj[n,m(n), r, ε(n, r)].

We also consider a weaker statement that, instead of formalizing the lower bound for a specific function,
formalizes the existence of a function for which the lower bound holds. Let m : Log→ Log, ε : Log × Log→
Log−1. We define pub-rLBsome[m, ε] as the following sentence:

For n, r ∈ Log, there exists a circuit f : {0, 1}n×{0, 1}n → {0, 1} such that pub-rLB−→
f [n,m(n), r, ε(n, r)]

holds.

In other words, there exists a function f such that every public-coin one-way protocol computing f with com-
munication complexitym(n) must have a non-negligible error probability. This is implied by pub-rLB−→

SetDisj[m, ε]

by fixing f to be SetDisj. Accordingly, we can define priv-rLB−→
some[m, ε] as the following sentence:

For n, r ∈ Log, there exists a circuit f : {0, 1}n×{0, 1}n → {0, 1} such that priv-rLB−→
f [n,m(n), r, ε(n, r)]

holds.

Upper bound for Equality. As a sanity check, we note that as there is a communication complexity
upper bound for Equality with public randomness using linear hashing (see Theorem 4.5), the corresponding
lower bound is unprovable in APX1.

Theorem 6.6 (Upper Bound for Equality). There are PV functions m : Log → Log, ε : Log → Log−1

satisfying that m(n) = Θ(log n), ε(n) = 1− 1/nΘ(1) such that

APX1 ⊢ ∀n ¬pub-rLB−→
EQ[n,m(n), n ·m(n), ε(n)]. (6.5)

In particular, APX1 ⊢ ¬pub-rLB[m, ε].

Proof Sketch. We argue in APX1 that Equation (6.5) holds, where m, r, ε will be determined later. As the
cases when n is small can be proved in brute-force, it suffices to consider n > n0, where n0 ∈ N is a constant
to be determined later.

Fix any n > n0. The one-way communication works as follows. Let x ∈ {0, 1}n be the input for Alice
and y ∈ {0, 1}n be that for Bob. They parse the public randomness as a matrix A ∈ {0, 1}m(n)×n. Alice
sends Ax ∈ {0, 1}m(n) as the message, and Bob accepts if and only if Ax = Ay. It remains to prove that the
protocol works with error at most ε(n).

Fix any input x, y ∈ {0, 1}n. If x = y, the protocol always accepts. In other words, the circuit T pub
EQ,x,y

in Equation (6.1) is a constant circuit that always rejects. The correctness, i.e. Equation (6.2), follows

immediately from the Boundary Axiom. For the case that x ̸= y, the circuit T pub
EQ,x,y is functionally

equivalent to the negation of the circuit Tx,y in Theorem 4.5. Therefore, by Complementary Counting, the
theorem holds as long as we set m(n) = nO(1), ε(n) > 1 − 0.51m(n), and n0 ∈ N be sufficiently large. This
completes the proof.

6.3 The Main Equivalence Result for Communication Complexity

We establish an equivalence between several statements with respect to their provability in APX1.

Theorem 6.7. The following statements are equivalent over APX1:

(1) #rWPHP[n− 1, n−k](PV), where k ∈ N is some constant;

(2) #rWPHP[nε, n−k](PV), where ε ∈ (0, 1) and k ∈ N are some constants;

(3) rrWPHP[n− 1, (n+ r)−k](PV), where k ∈ N is some constant;

(4) rrWPHP[nε, (n+ r)−k](PV), where ε ∈ (0, 1) and k ∈ N are some constants;

(5) pub-rLB−→
SetDisj[n− 1, (n+ r)−k], where k ∈ N is some constant;

(6) pub-rLB−→
SetDisj[nε, (n+ r)−k], where ε ∈ (0, 1) and k ∈ N are some constants;
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(7) priv-rLB−→
SetDisj[n− 1, (n+ r)−k], where k ∈ N is some constant;

(8) priv-rLB−→
SetDisj[nε, (n+ r)−k], where ε ∈ (0, 1) and k ∈ N are some constants;

(9) pub-rLB−→
some[n− 1, (n+ r)−k], where k ∈ N is some constant;

(10) pub-rLB−→
some[nε, (n+ r)−k], where ε ∈ (0, 1) and k ∈ N are some constants;

(11) priv-rLB−→
some[n− 1, (n+ r)−k], where k ∈ N is some constant;

(12) priv-rLB−→
some[nε, (n+ r)−k], where ε ∈ (0, 1) and k ∈ N are some constants.

Remark 6.8. In the statements above, the quantification over k ∈ N and ε ∈ (0, 1) takes place outside the theory.
For instance, (1) ⇒ (2) means that for every k1 ∈ N, there exists a k2 ∈ N and ε2 ∈ (0, 1) such that the sentence

#rWPHP[n− 1, n−k1 ](PV) → #rWPHP[nε2 , n−k2 ](PV).

is provable in APX1.

Trivial directions. Both (1)⇒ (2) and (3)⇒ (4) are straightforward. Indeed, a compression-decompression
pair with small stretch can be converted into one with larger stretch by padding dummy bits. It is also easy
to observe that statements (5) to (12) form a lattice isomorphic to a three-dimensional Boolean cube with
respect to implication over APX1, where (5) is the maximal element (i.e., the strongest lower bound) and
(12) is the minimal element (i.e., the weakest lower bound). This is because lower bounds against public-coin
protocols imply lower bounds against private-coin protocols; n− 1 communication lower bounds imply nΩ(1)

communication lower bounds; and lower bounds for SetDisj imply lower bounds for some function f (by
fixing f to be SetDisj).

Non-trivial directions. Observe that, in order to complete the proof of Theorem 6.7, it suffices to
establish the following implications: (12) ⇒ (4), (1) ⇒ (5), (2) ⇒ (3), and (4) ⇒ (1). The proof of these
implications is provided in the subsequent sections.

6.3.1 Compression Implies Communication Upper Bound: (12) ⇒ (4)

Lemma 6.9. For every ε12 ∈ (0, 1) and k12 ∈ N, there are ε4 ∈ (0, 1) and k4 ∈ N such that

APX1 + priv-rLB−→
some[nε12 , (n+ r)−k12 ] ⊢ rrWPHP[nε4 , (n+ r)−k4 ](PV).

Proof. Fix any constant ε6 ∈ (0, 1), k12 ∈ N, let ε2 ≜ ε6 and k4 ≜ k12. Let m4(n) ≜ nε4 and m12(n) ≜ nε12 .
We will prove in APX1 that ¬rrWPHP[nε4 , n−k4 ](PV) implies ¬priv-rLB−→

some[nε12 , n−k12 ].

Suppose that rrWPHP[m4, n
−k4 ](PV) does not hold. Then there are n, r ∈ Log and circuits C : {0, 1}n ×

{0, 1}r → {0, 1}m2(n), D : {0, 1}m2(n) → {0, 1}n such that the following holds. Let Tx be the circuit that
Tx(sd) = 1 if D(C(x, sd)) ̸= x. Then for every δ−1, β−1 ∈ Log and x ∈ {0, 1}n,

Pδ(Tx) ≤ (n+ r)−k4 + δ + β. (6.6)

Fix n, r, C,D as described above.
We will now prove that ¬priv-rLB−→

some[nε12 , n−k12 ]. In particular, we will prove that for every f : {0, 1}n×
{0, 1}n → {0, 1}, priv-rLB−→

f [nε12 , n−k12 ] does not hold. Fix any circuit f : {0, 1}n×{0, 1}n → {0, 1}. Our goal
is to construct a private-coin communication protocol with communication complexity nε12 that computes
f with error n−k12 . The protocol works as follows:

• Given x ∈ {0, 1}n and uniformly random seed sd, Alice sends the message gA(x, sd) ≜ C(x, sd).

• Given y ∈ {0, 1}n and the message msg, Bob accepts if and only if dB(y,msg, sd) ≜ f(D(msg), y) = 1.
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To prove that the protocol computes f with error n−k12 , fix any δ−1, β−1 ∈ Log. Let η−1 ∈ Log be a
parameter to be determined later, and T priv

f,x,y(sd) be the circuit as defined in Equation (6.3). It can be verified

that for every x, y ∈ {0, 1}n and sd ∈ {0, 1}r, if T priv
f,x,y(sd) = 1, then Tx(sd) = 1. By the Monotonicity of

Approximate Counting,
Pη(T priv

f,x,y) ≤ Pη(Tx) + 3η ≤ (n+ r)−k4 + 5η,

where the last inequality follows from Equation (6.6). It then follows from the Precision Consistency
Axiom that

Pδ(T priv
f,x,y) ≤ δ + Pη(T priv

f,x,y) ≤ (n+ r)−k4 + δ + 5η ≤ (n+ r)−k4 + δ + β

by setting η ≜ β/5. This completes the proof.

6.3.2 Compression from Communication Upper Bound: (1) ⇒ (5)

Lemma 6.10. For every constant k1 ∈ N, there exists a k5 ∈ N such that APX1+#rWPHP[n−1, n−k1 ](PV) ⊢
pub-rLB−→

SetDisj[n− 1, (n+ r)−k5 ].

Proof. Fix any k1 ∈ N and let k5 ∈ N be determined later. We argue in APX1 that ¬pub-rLB−→
SetDisj[n−1, n−k5 ]

implies ¬#rWPHP[n− 1, n−k1 ](PV).
Suppose that pub-rLB−→

SetDisj[n− 1, n−k5 ] does not hold. Then there are n, r ∈ Log and a one-way public-

coin protocol gA : {0, 1}n × {0, 1}r → {0, 1}n−1, dB : {0, 1}n × {0, 1}n−1 × {0, 1}r → {0, 1} such that the

following holds: For every x, y ∈ {0, 1}n and δ−1, β−1 ∈ Log, let T pub
SetDisj,x,y(sd) be the circuit defined as

Equation (6.1), then

Pδ(T pub
SetDisj,x,y) ≤ (n+ r)−k5 + δ + β. (6.7)

Our goal is to construct a compression-decompression scheme that violates #rWPHP[n− 1, n−k1 ](PV).

Construction of the compression scheme. We construct a pair of circuits C : {0, 1}n+r → {0, 1}n+r−1, D :
{0, 1}n+r−1 → {0, 1}n+r as follows.

• (Compression): The circuit C parses the input as (x, sd) ∈ {0, 1}n × {0, 1}r and computes σ ∈ {0, 1}n
defined as

σi ≜ dB(ei, gA(x, sd), sd)⊕ xi ⊕ 1, (6.8)

where ei denotes the string with the i-th bit being its only 1-index. If e ̸= 0n, the compression fails
and it outputs 0n. Otherwise, it outputs the concatenation of msg ≜ gA(x, sd) and sd.

• (Decompression): The circuit D parses the input as the concatenation of msg and sd as mentioned
above, computes y ∈ {0, 1}n as

yi ≜ dB(ei,msg, sd)⊕ 1,

and outputs the concatenation of y and sd.

It is clear that when σ = 0n, the compression-decompression scheme is correct.

Analysis of the error probability. We will prove that (C,D) is a compression-decompression scheme
that violates #rWPHP[n− 1, n−k1 ](PV). Fix any δ−1, β−1 ∈ Log and let T : {0, 1}n+r → {0, 1} be the circuit
that T (z) outputs 1 if D(C(z)) ̸= z. Our goal is to prove that Pδ(T ) ≤ n−k1 + δ + β.

Let η−1 ∈ Log be a parameter to be determined later, and T ′ : {0, 1}n+r → {0, 1} be the following
circuit: Given (x, sd) ∈ {0, 1}n × {0, 1}r, it computes σ via Equation (6.8), and outputs 1 if and only if
σ ̸= 0n. As mentioned above, for every x and sd, T (x ◦ sd) = 1 implies that T ′(x ◦ sd) = 1. Therefore, by
the Monotonicity of Approximate Counting, we have

Pη(T ) ≤ Pη(T ′) + 3η. (6.9)
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Let V ≜ {0, 1} and X1, X2, . . . , Xn be the random variables supported over {0, 1}n+r such that Xi = 1
if and only if ei ̸= 0. Let Fi(x, sd) be the circuit that defines Xi for every i ∈ [n]. It is clear that T ′(x, sd) is
the circuit that outputs 1 if and only if Xi = 1 for some i ∈ [n]. Let Y be the random variable defined by
(V, n+ r, T ′). By the Union Bound, we have

Pη(T ′) ≤ Eη[Y ] + 3η ≤ Eη[X1] + · · ·+ Eη[Xn] + 3η · (n+ 1), (6.10)

where the first inequality follows from Proposition 3.12.
In addition, for every i ∈ [n] and every x ∈ {0, 1}n, we can see that Fi(x, ·) is functionally equivalent to

T pub
SetDisj,x,ei

(·). Let Xi|x be the random variable obtained by fixing the first part of the seed to be x. Then
for x ∈ {0, 1}n,

Eη[Xi|x] ≤ Pη(Fi(x, ·)) + 3η ≤ Pη(T pub
SetDisj,x,ei

) + 6η ≤ (n+ r)−k5 + 8η,

where the last inequality follows from Equation (6.7). By Averaging Argument for Expectation, we have

Eη[Xi] ≤ (n+ r)−k5 + 8η + 3η ≤ n−k5 + 11η. (6.11)

Combining the results above, we have:

Pδ(T ) ≤ Pη(T ) + δ + 2η (Precision Consistency Axiom)

≤ Pη(T ′) + δ + 5η (Equation (6.9))

≤ Eη[X1] + · · ·+ Eη[Xn] + δ + 3η · (n+ 1) + 5η (Equation (6.10))

≤ δ + ((n+ r)−k5 + 11η) · n+ 3η · (n+ 1) + 5η (Equation (6.11))

≤ (n+ r)−k1 + δ + β,

where the last inequality follows by setting k5 ≜ k1 + 1 and η ≜ β/(50n). This violates #rWPHP[n −
1, n−k1 ](PV) and thus completes the proof.

6.3.3 Stretch Reduction for Compression: (2) ⇒ (3)

Lemma 6.11. For any ε2 ∈ (0, 1) and k2 ∈ N, there exists k3 ∈ N such that APX1+#rWPHP[nε2 , n−k2 ](PV) ⊢
rrWPHP[n− 1, (n+ r)−k3 ](PV).

Proof. Fix any constant ε2 ∈ (0, 1) and k2 ∈ N, and let k3 ∈ N be determined later. We argue in APX1 that
if rrWPHP[n− 1, (n+ r)−k3 ](PV) does not hold, then #rWPHP[nε2 , n−k2 ](PV) does not hold.

Suppose that rrWPHP[n−1, n−k3 ](PV) does not hold. Then there are n, r ∈ Log and circuits C : {0, 1}n×
{0, 1}r → {0, 1}n−1, D : {0, 1}n−1 → {0, 1}n such that for every x ∈ {0, 1}n and every δ−1, β−1 ∈ Log, let
Tx : {0, 1}r → {0, 1} be the circuit such that Tx(sd) = 1 if and only if D(C(x, sd)) ̸= x, then

Pδ(Tx) ≤ (n+ r)−k3 + δ + β. (6.12)

In other words, there is a one-bit randomized compression scheme that is worst-case correct with error n−k3 .
Our goal is to construct a deterministic and average-case compression-decompression algorithm that violates
#rWPHP[nε2 , n−k2 ](PV).

Compression and decompression circuits. Let ℓ ∈ Log and d ∈ LogLog be parameters to be determined
later. The compression circuit takes an (ℓ+dr)-bit string as input, parses it as z ∈ {0, 1}ℓ and (sd1, . . . , sdd) ∈
{0, 1}r, and runs a d-round iterative compression algorithm.

Initialize z0 ← z. In the i-th round, the iterative algorithm works as follows:

1. Parse zi−1 as x1 ◦ x2 ◦ · · · ◦ xk ◦ yi, where k ≜ ⌊|zi−1|/n⌋ and x1, . . . , xk ∈ {0, 1}n.

2. For every j ∈ [k], compute x′j ≜ C(xj , sdi).
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3. Set zi ← x′1 ◦ x′2 ◦ · · · ◦ x′k.

Finally, the compression circuit outputs the encoding of the tuple (zd, y1, . . . , yd, sd1, . . . , sdd).
The decompression circuit takes (zd, y1, . . . , yd, sd1, . . . , sdd) and works reversely via a d-round iterative

algorithm. In the i-th iteration, the algorithm works as follows:

1. Parse zd+1−i as x′1 ◦ x′2 ◦ · · · ◦ x′k, where k ≜ ⌊|zd+1−i|/(n− 1)⌋ and x′1, . . . , x
′
k ∈ {0, 1}n−1.

2. For every j ∈ [k], compute xj ≜ D(x′j).

3. Set zd−i ← x1 ◦ x2 ◦ · · · ◦ xk ◦ yd+1−i.

We now set the parameters ℓ and d such that the compression scheme above has stretch at least (ℓ+dr)ε2 .
Let z0, z1, . . . , zd, y1, . . . , yd be the strings obtained by the compression algorithm, it is clear that

|zi| ≤ |zi−1| ·
(

1− 1

n

)
, |yi| ≤ n,

and thus the output length of the compression circuit is at most

ℓ ·
(

1− 1

n

)d

+ d · (n+ r).

We can set ℓ = (n + r)10/ε2 and d = 10 · n log ℓ such that the output length is at most O(n(n + r) log ℓ) ≪
ℓε2 ≤ (ℓ + dr)ε2 . Therefore, the compression stretch is (ℓ + dr)ε2 for sufficiently large n and r; the cases
when n, r are small can be proved by a brute-force case study.

Analysis of the error probability. Fix ℓ ∈ Log and d ∈ LogLog as above. Let C ′ : {0, 1}ℓ+dr →
{0, 1}(ℓ+dr)ε2 , D′ : {0, 1}(ℓ+dr)ε2 → {0, 1}ℓ+dr be the compression and decompression algorithms mentioned
above. Let T : {0, 1}ℓ+dr be the circuit that T (z) = 1 if and only if D′(C ′(z)) ̸= z, i.e., the compression
scheme fails. Our goal is to prove that for every δ−1, β−1 ∈ Log, Pδ(T ) ≤ (ℓ+ dr)−k2 + δ + β.

Fix any δ−1, β−1 ∈ Log and let η−1 ∈ Log be a parameter to be determined later. Let V ≜ {0, 1}. For
every i ∈ [d] and j ≤ ⌊ℓ/n⌋, we define Fij(z, sd1, . . . , sdd) be the circuit that outputs 1 if and only if the
following holds:

• In the i-th round of the compression algorithm, let k ≜ ⌊|zi−1|/n⌋, then j ≤ k and D(C(xj , sdi)) ̸= xj .

Let Xij be the random variable defined by (V, ℓ+ dr, Fij). Let F (z, sd1, . . . , sdd) be the circuit that outputs
1 if and only if Fij(z, sd1, . . . , sdd) = 1 for some i ∈ [d] and j ≤ ⌊ℓ/n⌋, and Y be the random variable defined
by (V, ℓ+ dr, Fij). By the Union Bound, we have

Pη(F ) ≤ Eη[Y ] + 3η ≤
∑
ij

Eη[Xij ] + 3η · (dℓ+ 1), (6.13)

where the first inequality follows from Proposition 3.12.
It is clear that PV proves that for every z ∈ {0, 1}ℓ, sd1, . . . , sdd ∈ {0, 1}r, if T (z, sd1, . . . , sdd) = 1, then

F (z, sd1, . . . , sdd) = 1. To see this, notice that if F (z, sd1, . . . , sdd) = 0, we can prove by induction on i
that if we run the iterative compression algorithm on the input z ◦ sd1 ◦ · · · ◦ sdd for i rounds, and run the
iterative decompression algorithm starting from the d− i round, it will be correctly decompressed. This can
be implemented by induction on a PV term, which is available in PV. Subsequently, by the Monotonicity of
Approximate Counting,

Pη(T ) ≤ Pη(F ) + 3η. (6.14)

Next, we prove an upper bound on Eη[Xij ]. Fix any i ∈ [d] and j ≤ ⌊ℓ/n⌋. Let

ρ = (z, sd1, . . . , sdi−1, sdi+1, . . . , sdd)

be an arbitrary assignment to all but the interval sdi in the seed of Xij . Let xj be the string in the i-th
round of the compression algorithm on the input z and using sd1, . . . , sdi−1 in the first i − 1 rounds. Note
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that xj can be computed by a PV term given ρ. Recall that Txj (sd) is the circuit that outputs 1 if and only
if D(C(xj , sd)) ̸= xj . It can be proved that Txj (sdi) = 1 if and only if Fij(ρ ∪ sdi) = 1, i.e., Xij |ρ is the
indicator variable of Txj

(sd) = 1. Subsequently,

Eη[Xij |ρ] ≤ Pη(Txj ) + 6η ≤ (n+ r)−k3 + 8η, (6.15)

where the first inequality follows from Proposition 3.12 and Global Consistency, and the second inequality
follows from Equation (6.12).

Note that Equation (6.15) holds for any assignment ρ. By Averaging Argument for Expectation, we can
further deduce that

Eη[Xij ] ≤ n−k3 + 8η + 3η ≤ n−k3 + 11η. (6.16)

Combining the results above, we can now calculate

Pδ(T ) ≤ Pη(T ) + δ + 2η (Precision Consistency Axiom)

≤ Pη(F ) + δ + 5η (Equation (6.14))

≤
∑
ij

Eη[Xij ] + 3η · (dℓ+ 1) + δ + 5η (Equation (6.13))

≤ ((n+ r)−k3 + 11η) · d · ℓ+ 3η · (dℓ+ 1) + δ + 5η (Equation (6.16))

≤ (ℓ+ dr)−k2 + δ + β,

where the last inequality follows by setting η ≜ β/(100(dℓ+ 1)) and k3 ≜ 100k2/ε2 + 10k2 + 10. This shows
that the pair of circuits C ′, D′ violates #rWPHP[nε2 , n−k2 ](PV) and thus completes the proof.

6.3.4 Worst-Case to Average-Case Reduction: (4) ⇒ (1)

Lemma 6.12. For any ε4 ∈ (0, 1) and k4 ∈ N, there exists k1 ∈ N such that APX1 + rrWPHP[nε4 , (n +
r)−k4 ](PV) ⊢ #rWPHP[n− 1, n−k1 ](PV).

We will use the iterative compression algorithm in Lemma 6.11 to boost the stretch to m2, while a
new trick is required to construct worst-case compression from average-case compression algorithm. At
a high level, we observe that the compression-decompression problem with large stretch admits random
self-reducibility that is provably correct via the Re-randomization Lemma.

Proof of Lemma 6.12. Fix any constant ε4 ∈ (0, 1), k4 ∈ N, and let k1 ∈ N be determined later. We argue
in APX1 that assuming #rWPHP[n− 1, n−k4 ](PV) does not hold, rrWPHP[nε4 , (n+ r)−k4 ](PV) also does not
hold. In other words, we will construct a polynomial-stretch randomized worst-case compression scheme
from a one-bit deterministic average-case compression scheme.

Assume for contradiction that #rWPHP[n − 1, n−k1 ](PV) does not hold. Then there is an n ∈ Log and
circuits C : {0, 1}n → {0, 1}n−1, D : {0, 1}n−1 → {0, 1}n such that the following holds. Let T be the
circuit that T (x) = 1 if D(C(x)) ̸= x. Then for every δ−1, β−1 ∈ Log, Pδ(T ) ≤ n−k1 + δ + β. By the
Re-randomization Lemma, we know that for every x ∈ {0, 1}n, let T⊕x be the circuit T⊕x (sd) ≜ T (x ⊕ sd),
then

Pδ(T⊕x ) ≤ Pδ(T ) + 2δ + β ≤ n−k1 + 3δ + 2β. (6.17)

Note that we can assume without loss of generality that n is larger than any fixed standard integer n0 ∈ N,
as the cases when n ≤ n0 can be resolved in brute force.

Compression and decompression circuits. Let ℓ ∈ Log and d ∈ LogLog be parameters to be determined
later. The compression circuit takes an ℓ-bit string as input z, an nd-bit random seed (sd1, . . . , sdd) ∈ {0, 1}r,
and performs the following d-round iterative algorithm. It initializes z0 ← z. In the i-th round, the algorithm
works as follows:
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1. Parse zi−1 as x1 ◦ x2 ◦ · · · ◦ xk ◦ yi, where k ≜ ⌊|zi−1|/n⌋ and x1, . . . , xk ∈ {0, 1}n;

2. For every j ∈ [k], compute x′j ≜ C(xj ⊕ sdi).

3. Set zi ← x′1 ⊕ x′2 ⊕ · · · ⊕ x′k.

Finally, the compression circuit outputs the encoding of the tuple (zd, y1, . . . , yd, sd1, . . . , sdd).
The decompression circuit takes (zd, y1, . . . , yd, sd1, . . . , sdd) and works reversely via a d-round iterative

algorithm. In the i-th iteration, the algorithm works as follows:

1. Parse zd+1−i as x′1 ◦ x′2 ◦ · · · ◦ x′k, where k ≜ ⌊|zd+1−i|/(n− 1)⌋ and x′1, . . . , x
′
k ∈ {0, 1}n−1.

2. For every j ∈ [k], compute xj ≜ D(x′j)⊕ sdi.

3. Set zd−i ← x1 ◦ x2 ◦ · · · ◦ xk ◦ yd+1−i.

Similar to the proof of Lemma 6.11, we can set the parameters ℓ ≜ n10/ε4 and d ≜ 10 ·n log ℓ such that the
compression scheme above has stretch at least ℓε4 . The length of random string of the compression scheme
is r ≜ dn.

Analysis of the error probability. Fix ℓ ∈ Log and d ∈ LogLog as above. Let C ′ : {0, 1}ℓ × {0, 1}dn →
{0, 1}ℓε4 , D′ : {0, 1}ℓε4 → {0, 1}ℓ be the compression and decompression algorithms mentioned above. Let
Tz : {0, 1}dn → {0, 1} be the circuit that parses the input as sd ≜ (sd1, . . . , sdd) ∈ {0, 1}dn and outputs 1 if
and only if D′(C ′(z, sd)) ̸= z, i.e., the compression scheme fails on the input z. Our goal is to prove that for
every δ−1, β−1 ∈ Log and z ∈ {0, 1}ℓ, Pδ(Tz) ≤ (ℓ+ dn)−k4 + δ + β.

Fix any δ−1, β−1 ∈ Log, z ∈ {0, 1}ℓ and let η−1 ∈ Log be a parameter to be determined later. Let
V ≜ {0, 1}. For every i ∈ [d] and j ≤ ⌊ℓ/n⌋, we define Fij(sd1, . . . , sdd) be the circuit that outputs 1 if and
only if the following holds:

• In the i-th round of the compression algorithm, let k ≜ ⌊|zi−1|/n⌋, then j ≤ k and D(C(xj ⊕ sdi)) ̸=
xj ⊕ sdi.

Let Xij be the random variable defined by (V, dn, Fij). Let F (sd1, . . . , sdd) be the circuit that outputs 1 if
and only if Fij(sd1, . . . , sdd) = 1 for some i ∈ [d] and j ≤ ⌊ℓ/n⌋, and Y be the random variable defined by
(V, dn, Fij). By the Union Bound, we have

Pη(F ) ≤ Eη[Y ] + 3η ≤
∑
ij

Eη[Xij ] + 3η · (dℓ+ 1), (6.18)

where the first inequality follows from Proposition 3.12.
It is clear that PV proves that for every sd1, . . . , sdd ∈ {0, 1}r, if Tz(sd1, . . . , sdd) = 1, it follows that

F (sd1, . . . , sdd) = 1. To see this, notice that if F (sd1, . . . , sdd) = 0, we can prove by induction on i that if
we run the iterative compression algorithm on the input z for i rounds, and run the iterative decompression
algorithm starting from the d − i round, it will be correctly decompressed. This can be implemented by
induction on a PV term, which is available in PV. Subsequently, by the Monotonicity of Approximate
Counting,

Pη(Tz) ≤ Pη(F ) + 3η. (6.19)

Next, we prove an upper bound on Eη[Xij ]. Fix any i ∈ [d] and j ≤ ⌊ℓ/n⌋. Let

ρ = (sd1, . . . , sdi−1, sdi+1, . . . , sdd)

be an arbitrary assignment to all but the interval sdi in the seed of Xij . Let xj be the string in the i-th
round of the compression algorithm on the input z and using sd1, . . . , sdi−1 in the first i − 1 rounds. Note
that xj can be computed by a PV term given ρ. Recall that T⊕x (sd) is the circuit that outputs 1 if and only
if D(C(x⊕ sd)) ̸= x⊕ sd. It can be proved that T⊕xj

(sdi) = 1 if and only if Fij(ρ ∪ sdi) = 1, i.e., Xij |ρ is the

indicator variable of T⊕xj
(sd) = 1. Subsequently,

Eη[Xij |ρ] ≤ Pη(T⊕xj
) + 6η ≤ n−k1 + 11η, (6.20)
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where the first inequality follows from Proposition 3.12 and Global Consistency, and the second inequality
follows from Equation (6.17).

Note that Equation (6.20) holds for any assignment ρ. By Averaging Argument for Expectation, we can
further deduce that

Eη[Xij ] ≤ n−k1 + 11η + 3η ≤ n−k1 + 14η. (6.21)

Combining the results above, we can now calculate

Pδ(T ) ≤ Pη(T ) + δ + 2η (Precision Consistency Axiom)

≤ Pη(F ) + δ + 5η (Equation (6.19))

≤
∑
ij

Eη[Xij ] + 3η · (dℓ+ 1) + δ + 5η (Equation (6.18))

≤
(
n−k1 + 14η

)
· d · ℓ+ 3η · (dℓ+ 1) + δ + 5η (Equation (6.21))

≤ n−k1 · dℓ+ δ + β,

where the last inequality follows by setting η ≜ β/(100(dℓ+ 1)). Recall that ℓ = n10/ε4 and d = 10 · n log ℓ,
we have

n−k1 · dℓ = n−k1 · n10/ε4 · 100n

ε4
· log n ≤ n−k4 ≤ (ℓ+ dn)−k4 .

by setting k1 ≜ 100/ε4+10k4+10 when n is sufficiently large. This shows that C ′, D′ violates rrWPHPm2(PV)
and thus completes the proof.
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