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Abstract

Pseudorandom generators (PRGs) for low-degree polynomials are a central object in
pseudorandomness, with applications to circuit lower bounds and derandomization. Viola’s
celebrated construction [Vio09] gives a PRG over the binary field, but with seed length ex-
ponential in the degree d. This exponential dependence can be avoided over sufficiently
large fields. In particular, Dwivedi, Guo, and Volk [DGV24] constructed PRGs with op-
timal seed length over fields of size exponential in d. The latter builds on the framework
of Derksen and Viola [DV22], who obtained optimal-seed constructions over fields of size
polynomial in d, although growing with the number of variables n.

In this work, we construct the first PRG with optimal seed length for degree-d poly-
nomials over fields of polynomial size, specifically q ≈ d4, assuming, as in [DGV24], suf-
ficiently large characteristic. Our construction follows the framework of [DV22, DGV24]
and reduces the required field size by replacing the hitting-set generator used in prior work
with a new pseudorandom object.

We also observe a threshold phenomenon in the field-size dependence. Specifically, we
prove that constructing PRGs over fields of sublinear size, for example q = d0.99 where q is
a power of two, would already yield PRGs for the binary field with comparable seed length
via our reduction, provided that the construction imposes no restriction on the character-
istic. While a breakdown of existing techniques has been noted before, we prove that this
phenomenon is inherent to the problem itself, irrespective of the technique used.
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1 Introduction

A pseudorandom generator (PRG) fooling a class of functions C ⊆Σn →Σ is a map G : {0,1}s →
Σn that stretches a uniform seed of s ≪ n bits into strings in Σn, such that the distribution of G
fools any function f ∈ C , in the sense that f (G(Us)) is close, in total-variation distance, to
f (UΣn).1 Constructing explicit PRGs with short seed for various function classes C is central
to theoretical computer science, with various applications in complexity theory (prominently
derandomization and circuit lower bounds), cryptography, and algorithm design.

A fundamental and well-studied class of functions is that of low degree polynomials.

Definition 1.1. We say that G : {0,1}s → Fn
q is a PRG for n-variate polynomials of total degree

at most d over a finite field Fq with error ε if for every such polynomial f , the distributions
f (G(Us)) and f (UFn

q
) are ε-close in total variation distance. That is,

1
2 ∑

a∈Fq

∣∣∣∣∣ Pr
x∈Fn

q
[ f (x) = a]− Pr

t∈{0,1}s
[ f (G(t)) = a]

∣∣∣∣∣≤ ε.

The seed length of G is s, and we say that G is explicit if for any t ∈ {0,1}s, G(t) can be
computed in time poly(n,d, logq, log1/ε).

PRGs for low-degree polynomials have been extensively studied for more than three decades,
with the natural goal of minimizing the seed length. Moreover, over the years it has become
apparent that constructing PRGs over small fields—of constant size, independent of the de-
gree d—is more challenging than in the regime where the field size is allowed to be polynomial
in d, which permits the use of deep results such as the Weil bound.

Already the case d = 1, which corresponds to small-biased generators, is extremely inter-
esting and has found numerous applications in pseudorandomness and derandomization. In this
setting, we have constructions with seed length that is optimal up to constant factors (see, e.g.,
[NN93, ABN+92, AGHP92, AMN98, BT13, Ta-17, CC25]), typically over any field size (al-
though the F2 case is the most widely studied). For arbitrary d, one can show a lower bound
of s = Ω

(
d log(n/d)+ log(1/ε)+ logq

)
(see, e.g., [ABEK08]), and the probabilistic method

guarantees the existence of a construction achieving these parameters. From now on, we refer
to this as an optimal seed (ignoring constant factors). Obtaining explicit constructions is more
challenging, and prior work has developed along two main strands.

PRGs over an arbitrary field. Over any finite field, and in particular over (what turned out to
be) the most challenging case of F2, a sequence of works [LVW93, Vio07, BV10, Lov09, Vio09]

1Here and throughout, for an integer s, Us denoted the uniform distribution over {0,1}s, and for a set A, UA

denotes the uniform distribution over A.
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culminated in Viola’s celebrated explicit PRG with seed length O(d logn + d · 2d log(q/ε))

[Vio09]. The generators of [BV10, Lov09, Vio09] are obtained via the Bogdanov–Viola [BV10]
framework: In order to fool degree-d polynomials, sum ℓ= ℓ(d) independent copies of a small-
bias generator. Viola [Vio09] proved that ℓ(d) = d suffices, however the error of the small-bias
PRG needs to be very small, namely ε2d

for a designated error ε , leading to the 2d factor in
the seed length. Note that when d = Ω(logn), the seed length becomes trivial, and indeed,
achieving any nontrivial PRGs over F2 for degrees greater than logn would yield breakthroughs
in circuit complexity, via the Razborov–Smolensky connection between constant-depth circuits
and low-degree polynomials [Raz87, Smo93].

PRGs over large fields. When q ≫ d, better results are known, and we can handle much
larger degrees with a relatively short seed length. Bogdanov [Bog05] introduced a technique for
constructing PRGs from the weaker object of hitting set generators (HSGs; see Definition 1.5
for the formal definition). This approach is based on reducing the number of variables of the
polynomial, while preserving the factorization structure of it (i.e., preserving irreducibility of its
factors). Combined with subsequent improvements in HSG constructions following due to Lu
[Lu12], Cohen and Ta-Shma [CT13], and Guruswami and Xing [GX14], Bogdanov’s technique
yields a PRG with seed length O(d4 logn+ logq), provided that q ≥ d6/ε2.

More recently, Derksen and Viola [DV22] introduced a powerful new approach based on
techniques from algebraic geometry and invariant theory. For sufficiently large q≥ (d4n0.001)/ε2,
they achieve optimal seed length O(d log(dn)+ logq). For q ≥ (d logn)4/ε2, they obtain a sub-
optimal seed length of O(d logn · log(d logn)+ logq). We will discuss their approach, based on
the preservation of indecomposability instead of irreducibility, in Section 1.2.

Recently, Dwivedi, Guo, and Volk [DGV24] were able to remove the dependence on n
in the field-size requirement needed to obtain an optimal-seed PRG, albeit with an exponen-
tial dependence on d. Specifically, they achieve seed length O(d logn+ logq) whenever q ≥
d2d/ε + d4/ε2 and the field characteristic is Ω(d2).2 We also discuss their technique, which
combines ideas from [DV22] with a derandomization approach inspired by [Bog05], in Sec-
tion 1.2.

1.1 Our Result

In our work, we construct an explicit PRG with optimal seed length for field sizes q that are
only polynomial in d – an exponential improvement over field size requirement in [DGV24].

2Interestingly, if one only cares about fooling primes degrees, [DGV24] show that q = Ω(d4/ε2) suffices.
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Theorem 1.2 (see also Theorem 5.2). For every n,d ∈N, a prime power q, and ε > 0, satisfying
q = Ω((d logd)4/ε2) and char(Fq) = Ω(d2), there exists an explicit PRG G : {0,1}s → Fn

q for
n-variate polynomials of degree at most d over Fq with error ε and seed length s = O(d logn+
logq).

Compared to [DV22] and [DGV24], our construction improves upon both works simulta-
neously: we achieve optimal seed length already for q ≥ poly(d) (rather than q ≥ exp(d) as in
[DGV24]), and we avoid the dependence of q on n present in [DV22].

A Threshold Phenomenon for PRGs for Low-Degree Polynomials

As discussed, the study of PRGs for low-degree polynomials has split into two branches: PRGs
for constant field size, most notably the binary field, and PRGs for fields whose size is suffi-
ciently large as a function of the degree d (and, for some constructions, also of the number of
variables n). These two branches rely on fundamentally different techniques. Our result falls
into the second line of work: we construct an optimal-seed PRG that works whenever q is at
least roughly d4.

It was observed in [DV22] that techniques developed for large fields, such as those relying
on the Weil bound, break down in the small-field regime. Perhaps surprisingly, our second
contribution shows that there is, in fact, an inherent threshold phenomenon. When q is a power
of two, we prove that improving the quartic dependence of q on d to a sublinear one—namely,
q = d1−τ for some fixed constant τ > 0—would immediately yield a PRG construction over the
binary field with seed length comparable to that of the PRG we started with. For our reduction
to apply, the PRG must not impose any restriction on the characteristic of the field, as is the
case, for example, in the Derksen–Viola construction [DV22].

This implies that there cannot be incremental progress toward constructing PRGs over the
binary field: once the current quartic dependence is improved to a sublinear one, and provided
there are no restrictions on the characteristic, one immediately obtains a comparable PRG over
the binary field. Our reduction holds in greater generality and, in particular, applies to fields of
any odd characteristic.

Theorem 1.3 (see also Proposition 6.1). Assume that for any n,d,q such that q ≥ d1−η for
some constant η ∈ (0,1) there exists an explicit PRG for n-variate polynomials of total degree
at most d over Fq, with error 0.1 and seed length O(dO(1) logn+ logq). Then, there also exists
an explicit PRG for n-variate polynomials of total degree at most d over F2, with error 0.1, and
seed length O(dO(1) logn).

Constructing G2, the desired PRG over F2, is simple: Set q = dc to be a power of 2, where
c= c(η), and let Gq be our hypothesized PRG over Fq. Then, each element of G2 is obtained by
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taking the absolute trace of each coordinate of an element of Gq. That is, G2(z)i = Tr(Gq(z)i).
We defer the (easy) proof to Section 6, and proceed to giving an overview of Theorem 1.2.

1.2 Proof Overview

We begin with describing the framework introduced by Derksen and Viola [DV22]. Let x =

(x1, . . . ,xn). A polynomial f ∈ Fq[x] is called indecomposable if it cannot be written as f =

g◦h, where h ∈ Fq[x] and g ∈ Fq[t] is a univariate polynomial with deg(g) ≥ 2. The notion of
indecomposability is interesting partially because we understand the distribution of its image.
This is formalized by the following lemma.

Lemma 1.4 ([DV22], Lemma 12). There exists an absolute constant c > 0 such that the fol-
lowing holds: Suppose f ∈ Fq[x] is indecomposable over Fq. Then, f (UFn

q
) is ε-close to UFq ,

where ε = c ·d2/
√

q.

The general approach in our work, following the works [Bog05, GX14, DV22, DGV24], is
to restrict f to a carefully chosen subset of Fn

q while preserving some algebraic property, closely
related to its output distribution. Specifically, let f ∈ Fq[x] be an indecomposable polynomial
of degree at most d. Suppose we can find polynomials p1, . . . , pn ∈ Fq[w1, . . . ,wℓ], with ℓ ≪
n, such that for every such f , the composed polynomial f ◦ (p1, . . . , pn) ∈ Fq[w1, . . . ,wℓ] is
indecomposable. Let w = (w1, . . . ,wℓ), let p = (p1, . . . , pn) be the restriction map, and let
degp = maxi{deg pi}. Now, Lemma 1.4 applies both to f and to its restriction via f ◦ p. In
particular, the distribution of f (UFn

q
) is O(d2/

√
q)-close to uniform over Fq, and similarly the

distribution of f (p(UFℓq)) is O((d · degp)2/
√

q)-close to UFq . This means that the function

G : Fℓ
q → Fn

q defined by
G(w) = p(w)

is a PRG for indecomposable polynomials of degree at most d with seed length ℓ logq, and error

ε = O((d ·degp)2/
√

q). (1.1)

For an arbitrary n-variate polynomial f of degree at most d, we can always write f = g◦h,
where h ∈ Fq[x] is indecomposable and g ∈ Fq[t] is univariate. h is an n-variate indecomposable
polynomial of degree at most d, therefore the distributions h(UFn

q
) and h(G(UFℓq)) are both close

to UFq . Hence, the distributions f (UFn
q
) = g(h(UFn

q
)) and f (G(UFℓq)) = g(h(G(UFℓq))) are both

close to g(UFq). This shows that G is actually a PRG for all n-variate polynomials of degree at
most d.

The challenge is, of course, to find low-degree p1, . . . , pn that preserve indecomposability
for all indecomposable n-variate polynomials f of degree at most d.
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1.2.1 The Derksen-Viola restriction map

A main contribution of [DV22] is the explicit construction of such restriction polynomials
p1, . . . , pn, which proceeds as follows. Let M1, . . . ,Mn be distinct monomials in m variables.
Consider ℓ independent copies of these variables, and denote by M[ j]

i the monomial Mi evalu-
ated on the variables from the j-th copy. Then define

pi = M[1]
i + · · ·+M[ℓ]

i .

Using tools from invariant theory, [DV22] show that for a suitable choice of parameters and
monomials, the resulting substitution p = (p1, . . . , pn) preserves indecomposability. This al-
lows them to construct a PRG with optimal seed length O(d log(dn) + logq), assuming q =

Ω(d4n0.001/ε2), or alternatively a PRG with seed length O(d logn · log(d logn)+ logq), assum-
ing q = Ω((d logn)4/ε2).

1.2.2 Constructing the restriction map via hitting set generators

In contrast to [DV22], approach, Bogdanov [Bog05] and Dwivedi, Guo, and Volk [DGV24]
adopt a derandomization approach. Rather than constructing a single restriction map p that pre-
serves indecomposability for all polynomials of degree at most d, they use a carefully designed
distribution over restriction maps p. This distribution has the property that for every indecom-
posable polynomial f of degree at most d, the composition f ◦p remains indecomposable with
high probability. In both works, the restriction polynomials are linear, and the distribution is
designed using a pseudorandom object called a hitting set generator (HSG).

Definition 1.5. A function H : T → Fn
q is a hitting set generator (HSG) with density δ for n-

variate polynomials of degree at most d over Fq if for every such f ̸= 0,

Pr
t∈T

[ f (H(t)) ̸= 0]≥ 1−δ .

The seed length of the HSG is log2 |T |, and we say that H is explicit if for any t ∈ T , H(t) can
be computed in time poly(n,d, logq, log1/δ ).

Since our construction builds primarily on [DGV24], we proceed by describing their con-
struction in more detail.

Let

pi(x,y) =

βix+αiy 1 ≤ i ≤ n−1

y i = n
,

where the vectors α,β ∈ Fn
q are sampled from a HSG for (n−1)-variate polynomials of degree

at most O(d) (where the implicit constant is absolute). This transformation can also be written
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as follows: Let sα be the ring automorphism of Fq[x] such that

sα( f (x)) = f (x1 +α1xn, . . . ,xn−1 +αn−1xn,xn).

Let rβ : Fq[x]→Fq[x,y] be the homomorphism such that rβ ( f (x))= f (β1x, . . . ,βn−1x,y). Then,
for all f ∈ Fq[x] we have

f ◦p = rβ ◦ sα ◦ f .

It is shown in [DGV24] that for every degree-d f ∈ Fq[x], there exists a polynomial B ∈
Fq[x1, . . . ,xn−1] of degree at most d with the following property. For any α satisfying B(α) ̸= 0,
the polynomial

sα( f )− t ∈ Fq(t)[x]

satisfies Hypothesis (H) (up to multiplication by an element of F×
q ). Hypothesis (H) is a condi-

tion required for applying Lecerf’s technique; see Definition 3.1 for details. Thus, by picking
α using a HSG, it is promised that the polynomial sα( f )− t satisfies Hypothesis (H) with high
probability.

They proceed by showing, building on results of Lecerf [Lec06, Lec07], that if g ∈ Fq[x] is
indecomposable and g− t satisfies Hypothesis (H), then the restriction rβ (g) remains indecom-
posable with high probability.

The proof proceeds roughly as follows: Let K = Fq(t) be the algebraic closure of Fq(t).
Let g ∈ K[x] be a polynomial satisfying Hypothesis (H). For such a polynomial g, assuming
that char Fq = charK > d(d − 1), Lecerf constructed a linear system of equations Dg in d
variables, with the coefficients being (n−1)-variate polynomials in K[z1, . . . ,zn−1] of degree at
most 2d −1, with the following properties:

1. The number of irreducible factors of g equals the dimension of the space of solutions of
Dg.

2. For β ∈ Kn−1, let Dβ
g be the system of equations Dg after evaluating (z1, . . . ,zn−1) = β .

The number of irreducible factors of rβ (g) equals the dimension of the space of solutions

of Dβ
g .

3. There are sets S1 ⊆ S2 ⊆ {0,1}d such that the space of solutions of Dg is spanned by S1,
and the space of solutions of Dβ

g is spanned by S2.

The condition that a polynomial f ∈ Fq[x] is indecomposable is equivalent to g = f − t ∈K[x]
being irreducible (see Lemma 2.9). Hence, preserving indecomposability of f is equivalent to
preserving the space of solutions of Dg in the reduction to Dβ

g .

Let f ∈Fq[x] be an indecomposable polynomial satisfying Hypothesis (H). Then g= f −t ∈
K[x] is irreducible, and by Items 1 and 3 the solution space of Dg is spanned by a single vector
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v ∈ {0,1}d . For every v ̸= w ∈ {0,1}d , there is an equation in Dg such that w does not satisfy,
i.e., there are polynomials Pw

1 , . . . ,P
w
d ∈K[z1, . . . ,zn−1] of degree at most 2d −1 such that

Qw :=
d

∑
i=1

wi ·Pw
i ̸= 0.

Notice that Qw ∈K[z1, . . . ,zn−1] is a polynomial of degree at most 2d−1 as well. By Item 2, if
Qw(β ) ̸= 0 for all v ̸= w ∈ {0,1}d , then the polynomial rβ (g) remains irreducible, which means
that the polynomial rβ ( f ) is indecomposable.

This implies that for every indecomposable polynomial that satisfies Hypothesis (H), there
are 2d −1 polynomials in K[z1, . . . ,zn−1] of degree at most 2d−1 such that if each one of them
does not vanish at β , then rβ ( f ) remains indecomposable. Hence, by picking β using an HSG
for n−1-variate polynomials of degree at most 2d−1 with small enough density, the probability
that rβ ( f ) remains indecomposable is high. Thus, using the union bound, the probability that
that the substitution f ◦p preserves indecomposability is at least 1− (2d −1)δ .

Any HSG for polynomials of degree at most 2d −1 over Fq has density at most 1−δ with
δ = Θ(d/q), as the density of zeroes of a degree-d polynomial can be Ω(d/q). Consequently,
the analysis yields a meaningful guarantee only when q = Ω(d 2d), which is where the expo-
nential dependence in d shows up in the field size.

1.2.3 Our construction via polynomial hitting set generators

In this work, we further refine this approach to achieve optimal seed-length PRGs for much
smaller field sizes. Our key idea is to choose β not as a vector over Fq, but as a vector of
polynomials of bounded degree in a small number of variables. Let A denote the size of the
set from which each polynomial coordinate is chosen. By the Schwartz–Zippel lemma, any
nonzero degree-d polynomial vanishes on at most a d/A fraction of this distribution. This
suggests that one can derandomize this construction – analogously to standard HSGs over Fq –
to obtain significantly higher-density hitting sets. To achieve this, we introduce the notion of a
polynomial hitting set generator (PHSG).

Definition 1.6. Let F be a finite field. A polynomial hitting set generator (PHSG) with density
1−δ for n-variate polynomials of degree at most d over F with ℓ-variate polynomial evaluation
points of degree at most h is a map

H : T → (F≤h[w1, . . . ,wℓ])
n

from a finite set T ̸= /0 such that for every such nonzero polynomial f ∈ F[x1, . . . ,xn] of degree
at most d,

Pr
y∈T

[ f (T (y)) = 0]≤ δ .
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The quantity log |T | is called the seed length of H.

In Section 4, we show that any HSG for polynomials over a field extension Fqk can be simply
turned into a PHSG over Fq. Consequently, existing constructions of HSGs immediately yield
PHSGs.3 So indeed, in our construction we choose each pi to be of the form

pi(x,y,w1, . . . ,wℓ) = bi(w1, . . . ,wℓ) · x+αi · y,

where α ∈Fn
q is sampled from an HSG H1 : T →Fn

q with density 1−δ1, and b∈F≤h
q [w1, . . . ,wℓ]

n

is sampled from a PHSG H2 : T2 → (F≤h[w1, . . . ,wℓ])
n with density 1−δ2.

Adapting the analysis of [DGV24], assuming charFq > d(d−1) we show that the probabil-
ity that p preserves indecomposability is at least

1−δ1 − (2d−1 −1)δ2.

The analysis extends naturally to the setting where the evaluation points are themselves polyno-
mials rather than field elements, i.e., are taken from a field extension. In this case, one can show
that the polynomial rb( f )− t is irreducible as an element of Fq(t,w1, . . . ,wℓ)[x,y]. We then
use the structure of the polynomial and apply Gauss’s lemma to deduce that this polynomial
is in fact irreducible over Fq(t)[w1, . . . ,wℓ,x,y]. This implies that the composed polynomial
f ◦p ∈ Fq[w1, . . . ,wℓ,x,y] is indecomposable.

In Section 4, we construct PHSGs with ℓ = h =: logk, seed length d logn + k logq and
density 1− δ , where δ ≥ d/qk. Choosing δ2 = O(d/qk) with k = d/ logq, and δ1 = O(d/q)
gives

Pr[ f ◦p is indecomposable] = 1−O(d/q).

This way we eliminate the requirement q ≥ Ω
(
d2d). This comes at the cost of increasing the

number of variables in p from 2 to ℓ, and using a PHSG in addition to the HSG. Those increase
the seed length only by a constant factor: the PHSG instantiated with our parameters requires
seed length of O(d logn + ℓ logq), and the uniform distribution over Fℓ

q requires additional
ℓ logq random bits. As ℓ logq=O(d+ logq), the resulting PRG seed length is O(d logn+ logq).

The requirement q ≥ (d logd)4/ε2 follows from Equation (1.1), since

degp ≤ h = ℓ= O(logd).

3An obstacle in that approach is that explicitly constructing an HSG over a field extension requires an explicit
representation of Fqk , which in turn necessitates the construction of irreducible polynomials over Fq, for which the
best-known deterministic algorithm would be too costly. To overcome this issue, we pick the required irreducible
polynomials at random, and use a sampler to amplify the success probability, incurring only a small additional
randomness cost. Fortunately, this incurs only a constant-factor increase in the overall seed length.
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As explained earlier, the requirement char(Fq) > d(d − 1) follows from the use of Lecerf’s
technique.

To sum up, our pseudorandom generator G : T1 ×T2 ×Fq ×Fq ×Fℓ
q → Fn

q is defined by

G(r,s,u,v, t) = (H1(r)1(t) · v+H2(s)1 ·u, . . . ,H1(r)n(t) · v+H2(s)n ·u,u), (1.2)

where t = (t1, . . . , tℓ), and u,v ∈ Fq.

2 Preliminaries

We denote by N the set of nonnegative integers, including 0. Throughout the paper, boldface
letters denote vectors; for example, x = (x1, . . . ,xn). For a multi-index i = (i1, . . . , in) ∈ Nn, we
use the standard notation xi := xi1

1 · · ·xin
n .

Resultants. Let R be a commutative ring and let f (x) = ∑
d1
i=0 aixi and g(x) = ∑

d2
i=0 bixi be

polynomials in R[x], with ad1 ̸= 0 and bd2 ̸= 0. Suppose that d1 +d2 ≥ 1.

Definition 2.1 (Sylvester matrix). The Sylvester matrix Syl( f ,g) of f and g is the following
(d1 +d2)× (d1 +d2) matrix defined over R:

a0 b0

a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .
... . . . a0

... . . . b0
... a1 bd2

... b1

ad1 bd2

ad1

...
...

. . . . . .

ad1 bd2


.

Definition 2.2 (resultant). The resultant of f and g, denoted Res( f ,g), is defined as

Res( f ,g) := det
(
Syl( f ,g)

)
∈ R.

The resultant satisfies the following property.

Lemma 2.3. Let R be an integral domain with field of fractions L. Then Res( f ,g) = 0 if and
only if f and g have a common root in L.
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Definition 2.4 (formal power series). Let F be a field and let x = (x1, . . . ,xn) be indeterminates.
The ring of formal power series F[[x]] consists of all infinite sums

∑
i∈Nn

aixi (ai ∈ F),

with addition and multiplication defined formally.

2.1 Prior Results

We will use the optimal HSG (over large fields) of Guruswami and Xing.

Theorem 2.5 ([GX14], Theorem 5.1). There exists an absolute constant c such that for any
n,d,q,δ , for which q ≥ c · d/δ , there exists an efficiently computable HSG for n-variate poly-
nomials of degree at most d over Fq with density 1−δ and seed length O(d logn+ log(1/δ )).

We will also make use of the following lemma.

Lemma 2.6 ([DGV24], Fact 2.4). Let H be an HSG with density 1−δ for polynomials of degree
at most d over a field F, and let K be an extension of F. Then H is also an HSG with density
1−δ for polynomials of degree at most d over K.

2.2 Indecomposable Polynomials

The analysis of our construction use the notion of indecomposable polynomials and some of
their properties.

Definition 2.7. A non-constant polynomial f ∈ F[x] is said to be decomposable over F if there
exist h ∈ F[x] and a univariate polynomial g ∈ F[z] such that deg(g)≥ 2 and f = g◦h. Other-
wise, f is said to be indecomposable.

We will use the following equivalences.

Lemma 2.8 ([BDN09], Theorem 4.2). A polynomial f ∈ Fq[x] is indecomposable over F if and
only if it is indecomposable over F.

Lemma 2.9 ([CN10], Lemma 7). Let f ∈ F[x] be a non-constant polynomial over a field F.
Then f is indecomposable over F iff f − t is irreducible over F(t), where t is a new formal
variable.

Using the Weil bound, Derksen and Viola have showed in [DV22] that indecomposable
polynomials are approximately equidistributed over large enough fields.

Lemma 2.10 ([DV22], Lemma 12). There exists an absolute constant c > 0 such that the fol-
lowing holds: Suppose f ∈ Fq[x] is indecomposable over Fq. Then f (UFn

q
) is ε-close to UFq ,

where ε = c ·d2/
√

q.

10



2.3 Gauss’s Lemma

Gauss’s lemma provides a fundamental link between irreducibility over an integral domain and
irreducibility over its field of fractions.

Definition 2.11. Let R be a unique factorization domain (UFD). Let f (x) = ∑
d
i=0 cixi ∈ R[x].

The content of f , denoted by c( f ), is the greatest common divisor of c0, . . . ,cn; the content is
well defined up to invertible elements in R. f is called primitive if c( f ) = 1.

Lemma 2.12 (Gauss). Let R be a UFD, and let L be its field of fractions. A non-constant
polynomial f ∈R[x] is irreducible in R[x] if and only if it is both irreducible in L[x] and primitive
in R[x].

The following corollary follows by Lemma 2.12, together with the fact that the polynomial
ring F[x1, . . . ,xn] is a UFD for every n and field F.

Corollary 2.13. Let F be a field and let R = F[x1, . . . ,xn], L = F(x1, . . . ,xn). Then, a multi-
variate polynomial f ∈ F[x,y] such that f ̸∈ F[x] is irreducible in F[x,y] if and only if it is
irreducible in F(x)[y] and c( f ) = 1.

3 Evaluations that Preserve Irreducibility

In this section, we follow the main outline of [DV22] and [DGV24], and show that their ap-
proach extends to the setting where the evaluation points are taken from a larger field.

3.1 Hypothesis (H)

In order to invoke Lecerf’s technique [Lec07], we need to assume that our polynomial meets two
standard conditions. Lecerf called these conditions Hypothesis (H). For an arbitrary polynomial,
[DGV24] showed that one can apply a suitable linear transformation to obtain a polynomial that
satisfy Hypothesis (H), provided a certain algebraic condition holds.

Definition 3.1 (Hypothesis (H), [Lec06, Lec07]). Let f ∈ F[x1, . . . ,xn,y] = F[x,y] be a non-
constant polynomial. We say f satisfies Hypothesis (H) if

1. f is monic in y and degy( f ) = deg( f ),

2. Res
(

f (0,y), ∂ f
∂y (0,y)

)
̸= 0.

Definition 3.2 ([DGV24]). For a = (a1, . . . ,an) ∈ Fn, let sa be the F-linear automorphism of
F[x,y] that fixes y and sends xi to xi +aiy.

11



The following lemma provides an algebraic condition on a under which sa( f )− t yields a
polynomial that satisfies Hypothesis (H).

Lemma 3.3 ([DGV24], Corollary 3.5). Assume that f ∈ F[x,y] is a polynomial of degree d ≥ 1
and that char(F) is either zero or greater than d. Then there exists a nonzero polynomial
B ∈ F[x] of degree at most d such that for every a ∈ Fn satisfying B(a) ̸= 0, sa( f )− t = c · g
where c ∈ F× and g ∈ F(t)[x,y] is a degree-d polynomial satisfying Hypothesis (H).

3.2 Lecerf’s Technique

This subsection closely follows [DGV24, Section 4], with minor adaptations to the case of
evaluating f ∈ K[x] at points drawn from a larger field L/K. As discussed in Section 1.2.2
and Section 1.2.3, our goal is to formulate an algebraic condition under which an irreducible
polynomial in Fq(t)[x] remains irreducible after evaluation at elements from a field extension.
We refer to such evaluation points as Bertinian points.

Definition 3.4. Let f ∈K[x,y] be a non-constant polynomial satisfying Hypothesis (H), and let
L/K be a field extension. We say a = (a1, . . . ,an) ∈ Ln is a Bertinian good point for f if for
every irreducible factor f̃ of f over L, the bivariate polynomial f̃a(x,y) = f̃ (a1x, . . . ,anx,y) is
also irreducible over L. Otherwise, a is called a Bertinian bad point.

We now begin to describe Lecerf’s condition for a point to be Bertinian.

Lemma 3.5 ([DGV24], Lemma 2.9, Hensel’s Lifting). Let f ∈ F[x1, . . . ,xn,y] = K[x,y] be a
nonzero polynomial. Suppose λ̄ ∈K is a simple root of f (0,y) ∈ F[y]. Then there exists unique
λ ∈ F[[x]] such that

1. f (x,λ ) = 0, i.e., λ is a root of f as a univariate polynomial in y over K[x], and

2. λ (0) = λ̄ .

Let L/K be an extension of algebraically closed fields. Let f ∈ K[x,y] be a polynomial
of degree d ≥ 1 satisfying Hypothesis (H). Define f̄ := f (0,y) ∈ K[y]. As K is algebraically
closed and Res

(
f (0,y), ∂ f

∂y (0,y)
)
̸= 0, the univariate polynomial f̄ factorizes into distinct linear

factors

f̄ (y) =
d

∏
i=1

(y− λ̄i)

where λ̄i ∈ K for all i ∈ [d]. By Lemma 3.5, the above factorization of f̄ over K lifts to a
factorization of f into distinct linear factors

f (x,y) =
d

∏
i=1

(y−λi(x)),

12



where λi ∈K[[x]] and λi(0) = λ̄i for all i ∈ [d].

We now introduce new variables z = (z1, . . . ,zn) and x, and define g := f (z1x, . . . ,znx,y) ∈
K[z,x,y]. Then, g factorizes into linear factors

g(z,x,y) =
d

∏
i=1

(y−λi(z1x, . . . ,znx))

where each
λi(z1x, . . . ,znx) ∈K[[z]][[x]].

For i ∈ [d], let gi be the factor y−λi(z1x, . . . ,znx) of g, and let ĝi be its cofactor ∏ j∈[d]\{i} g j. So

gi, ĝi ∈K[[z]][[x]][y].

For h ∈ A[[x]][y] over a commutative ring A and ( j,k) ∈ N2, denote by coeff
(
h,x jyk) ∈ A the

coefficient of x jyk in h. We are now ready to define the linear system Dz,σ used in Lecerf’s
papers.

Definition 3.6 (The linear system Dz,σ ). Let σ ∈ N. Define Dz,σ to be the following linear
system over K(z) in the unknowns ℓ1, . . . , ℓd:

Dz,σ

∑
d
i=1 coeff

(
ĝi

∂gi
∂y ,x

jyk
)
· ℓi = 0, k ≤ d −1, d ≤ j+ k ≤ σ −1,

∑
d
i=1 coeff

(
ĝi

∂gi
∂x ,x

jyk
)
· ℓi = 0, k ≤ d −1, j ≤ σ −2, d ≤ j+ k ≤ σ −1.

We have the following lemma.

Lemma 3.7 ([DGV24], Lemma 4.2). For ( j,k) ∈ N2,

coeff
(

ĝi
∂gi

∂x
,x jyk

)
,coeff

(
ĝi

∂gi

∂y
,x jyk

)
∈K[z]

are polynomials of degree at most j+1 and j respectively.

Observe that the construction of DZ,σ carries over when we view f ∈ L[x,y] (as opposed to
K[x,y]). Indeed, the elements λ̄i ∈K remain unchanged. By the uniqueness of λ in Lemma 3.5,
the lifting to

λi ∈K[x]⊆ L[x]

is therefore unchanged, and consequently Dz,σ remains the same. Thus, the entire construction
can be regarded as in the case of f ∈ L[x,y]. Moreover, the coefficients of Dz,σ lie in K[z].
Applying [DGV24, Lemma 4.6] to f viewed in L[x,y], and noting that the polynomials Qi are
sums of entries of Dz,σ , we obtain the following theorem.
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Lemma 3.8. Let K be an algebraically closed field with charK = 0 or greater than d(d − 1),
and let L/K be some extension which is algebraically closed. Let f ∈K[x,y] be an irreducible
polynomial of degree d ≥ 1 satisfying Hypothesis (H). Let m = 2d−1 − 1. Then, there exist
nonzero polynomials Q1, . . . ,Qm ∈ K[z] = K[z1, . . . ,zn] of degree at most 2d − 1 such that for
every Bertinian bad point a ∈ Ln for f over L, at least one polynomial Qi vanishes at a.

4 HSG with Polynomial Evaluation Points

In this section we construct our polynomial hitting set generators, and specifically, show that
any hitting set generator for polynomials over a field extension Fqk can be simply turned into
a polynomial hitting set generator (PHSG) over Fq. Then we use samplers to construct a field
extension of Fq efficiently using only a small amount of random bits.

The main advantage of PHSGs over HSGs is their ability to achieve much higher density,
namely 1−Θ(d/qk) rather than 1−Θ(d/q).

We first recall the definition of a PHSG.

Definition 4.1. Let F be a finite field. A polynomial hitting set generator (PHSG) with density
1−δ for n-variate polynomials of degree at most d over F with ℓ-variate polynomial evaluation
points of degree at most h is a map

H : T → (F≤h[w1, . . . ,wℓ])
n

from a finite set T ̸= /0 such that for every such nonzero polynomial f ∈ F[x1, . . . ,xn] of degree
at most d,

Pr
y∈T

[ f (T (y)) = 0]≤ δ .

The quantity log |T | is called the seed length of H.

Our approach for constructing PHSGs is using a HSG for a field extension

E= F[w1, . . . ,wℓ]/P,

where P◁F[w1, . . . ,wℓ] is a maximal ideal. Assume that in every equivalence class g+P ∈ E
there exists an element g′ ∈ F[w1, . . . ,wℓ] of total degree at most h. Let {g1+P, . . . ,gk +P} ⊆ E
be a basis of E/F, and for all 1 ≤ i ≤ k let g′i ∈ F[w1, . . . ,wℓ] be an element in the equivalence
class gi +P of total degree at most h. Let

ϕ : E−→ F≤h[w1, . . . ,wℓ]

14



be the F-linear map defined uniquely by ϕ(gi+P) = g′i for all 1 ≤ i ≤ k. Let π : F[w1, . . . ,wℓ]→
E be the ring homomorphism a 7→ a mod P. For all a ∈ E we have

π(ϕ(a)) = a.

With this notation in place, we show that an HSG over E can be regarded as a PHSG. Whenever
we apply ϕ or π to a vector, we apply the map coordinate-wise.

Claim 4.2. Let Ĥ : S → En be a HSG with density 1− δ for n-variate polynomials over E of
degree at most d. Then,

H = ϕ ◦ Ĥ : S → (F≤h[w1, . . . ,wℓ])
n

is a PHSG with density 1−δ .

Proof. Let f ∈E[x1, . . . ,xn]. Let s ∈ S such that f (Ĥ(s)) ̸= 0. Since π is a ring homomorphism,
we obtain

0 ̸= f (Ĥ(s)) = f (π(H(s))) = π( f (H(s))),

and in particular f (H(s)) ̸= 0.

Remark 4.3. We note that E can equivalently be represented using a single irreducible poly-
nomial p ∈ F[w] of degree k, by setting E = F[w]/(p(w)). Alternatively, we will use several
irreducible polynomials of degree 2 in order to optimize the requirement on the field size q. As
we will see in Section 5, the field-size requirement depends on the degrees of the polynomial
representations of elements of E. Constructing E via a single degree-k irreducible polynomial
would lead to a requirement of q ≥ d8/ε2, whereas our construction yields the improved bound
q ≥ (d logd)4/ε2.

4.1 Sampling Irreducible Polynomials

Toward constructing PHSGs, we require an efficient method for building the extension field E;
in particular, we must construct irreducible polynomials over Fq. At present, no unconditional
deterministic algorithm is known for constructing an irreducible polynomial of degree d over
a field of size q in time poly(logq,d). Relevant progress includes the work of Shoup [Sho90],
who gave an algorithm running in time O((

√
p+ log2 q)d4), where p = char(Fq), and the work

of Adleman and Lenstra [AL86], who provided a deterministic poly(logq,d)-time algorithm
assuming the Extended Riemann Hypothesis. We overcome this difficulty by using randomness,
which we can consider as part of the construction’s seed.

Consider sampling a random degree-a monic polynomial, which requires O(a logq) random
bits. It is well known that with probability Θ(1/a), it will be irreducible. We wish to amplify this
probability to 1−δ for an arbitrary δ > 0. To do it randomness-efficiently, we use randomness
samplers.

15



Definition 4.4 (sampler). Let n,m, t be some positive integers, and let ε,δ > 0. A function
S : {0,1}n → ({0,1}m)t is a (δ ,ε) averaging sampler with t samples using n random bits if for
every function f : {0,1}m → [0,1] we have

Pr
(Z1,...,Zt)∼S(Un)

[∣∣∣∣∣1t ∑
i

f (Zi)−E[ f ]

∣∣∣∣∣≤ ε

]
≥ 1−δ .

We use the recent nearly-optimal sampler of [XZ25] (although some earlier constructions,
such as [Zuc97] and [RVW00], would work just as well for our use up to constant factors).

Theorem 4.5 ([XZ25]). For every constant β > 0, and for every 0 < δ ≤ ε < 1 there exists
an averaging sampler for the domain {0,1}m that uses r = m+O(log(1/δ )) random bits and

t = O
(

1
ε2 log 1

δ

)1+β

random samples. This sampler can be constructed in time poly(t,r) =
poly(m, log(1/δ ),1/ε).

After the sampling step, we will have to test if the sampled polynomials are irreducible. For
this, we will use the following well known algorithm.

Algorithm 4.6. Let Fq be a finite field. There exists a deterministic algorithm that on input a
polynomial f ∈ Fq[w] of degree a, decides whether f is irreducible in time poly(logq,a).

Proof (sketch). The algorithm is based on the classical characterization of irreducible polyno-
mials over finite fields. For each integer i = 1, . . . ,a−1, compute

gcd
(

f (x),xqi
− x
)
.

Since every irreducible polynomial of degree i over Fq divides xqi − x, the polynomial f is
irreducible over Fq if and only if all these greatest common divisors are equal to 1.

Each computation of xqi
mod f and the corresponding gcd can be carried out in time poly-

nomial in logq and a ([vzGG13]), and since the number of iterations is a−1, the overall running
time is poly(logq,a).

We are ready to construct E efficiently.

Theorem 4.7. Let F = Fq, let k = 2ℓ be some positive power of 2 and let δ > 0. There ex-
ists a probabilistic algorithm that uses O(k logq + log(1/δ )) random bits and runs in time
poly(k logq, log(1/δ )), such that with probability at least 1− δ outputs ℓ polynomials pi ∈
F[w1, . . . ,wℓ], such that P = (p1, . . . , pℓ)◁F[w1, . . . ,wℓ] is maximal and E= F[w1, . . . ,wℓ]/P is
a field extension of degree k over F. Moreover, for all 1 ≤ i ≤ ℓ we have pi = w2

i − hi, where
hi ∈ F≤i−1

q [w1, . . . ,wi−1]. Otherwise, the algorithm declares failure.

Proof. We begin by setting the following notation.
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• Ri = { f ∈ Fq[w1, . . . ,wi] : degw j
f ≤ 1 for all 1 ≤ j ≤ i}. Notice that |Ri| ≤ q2i

.

• D = ∏1≤i≤ℓ(Ri \{0}).

• m = log |D|= O(k logq).

• ε = 1
2k .

For a = (α1, . . . ,αℓ) ∈ D, let p(a) = (p1, . . . , pℓ) = (w2
1 −α1, . . . ,w2

ℓ −αℓ). Let F0 = F. For
0 ≤ i < ℓ, let

Fi+1 = Fi[wi+1]/pi+1(wi+1).

Let E = Fℓ, and let P = (p1, . . . , pℓ)◁F[w1, . . . ,wℓ]. Notice that Fℓ is a field if and only if
P◁Fq[w1, . . . ,wℓ] is maximal, which happens if and only if pi ∈ Fi−1[wi] is irreducible for all
1 ≤ i ≤ ℓ.

We will use a sampler to find a ∈ D such that E is a field. Let S : {0,1}r → Dt be the (δ ,ε)

sampler given by Theorem 4.5 with β = 1, r = m+O(log 1
δ
) and t = O

(
1
ε2 log(1/δ )

)2
. Let

f : D →{0,1} be the indicator function such that f (a) = 1 if and only if p(a) is maximal. It is
well knownt that for every finite field of characteristic different than 2, the probability that an
invertible element is a square equals 1/2 4. Hence, if (α1, . . . ,αℓ) ∈ D is chosen uniformly, the
probability that all polynomials pi ∈ Fi−1[wi] are irreducible is 1/2ℓ = 1/k. Hence, E[ f ] = 1/k.

Using the sampler S we pick t = O(k2 log(1/δ ))2 values (a1, . . . ,at) ∈ Dt using r = m+

O(log(1/δ )) random bits in time poly(k log(q), log(1/δ )), such that

Pr
(Z1,...,Zt)∼S(Ur)

[∣∣∣∣∣1t ∑
i

f (Zi)−E[ f ]

∣∣∣∣∣≤ ε

]
≥ 1−δ .

Since E[ f ] = 1
k and ε = 1

2k , this implies in particular that with probability at least 1− δ over
(Z1, . . . ,Zt)∼ S(Ur), f (Zi) = 1 for at least one i ∈ [t].

On input a sampler seed z ∈ {0,1}r, we compute S(z) = (z1, . . . ,zt), and for each zi =

(α1, . . . ,αℓ) ∈ D, we test if f (zi) = 1, as follows:

• For all i from 1 to ℓ, do:

– Run Algorithm 4.6 to check if p(wi) ∈ Fi−1[wi] is irreducible. If not, return false.

• Return true.
4In characteristic 2, one may replace the sampling of polynomials of the form w2

i −αi by sampling arbitrary
monic quadratic polynomials w2

i +αiwi +βi. By the prime polynomial theorem, such a polynomial is irreducible
with probability at least 1/2−1/q, and an analogous analysis applies. We omit this case, as our results are already
taking place only for large characteristic.
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If we have found that indeed f (zi) = 1 for some i ∈ [t], return (p1, . . . , pℓ). Otherwise, the
algorithm declares failure.

Recall that the runtime of each irreducibility test is at most poly(log |Fi−1|) = poly(k logq).
Thus, the overall runtime of our algorithm is poly(k, logq, log(1/δ )) Finally, recall that if
f (a) = 1 then each pi ∈ Fi−1[wi] is an irreducible polynomial of degree 2, and hence [Fi :
Fi−1] = 2. Therefore,

[E : F] = ∏
1≤i≤ℓ

[Fi : Fi−1] = 2ℓ = k.

This completes the proof.

4.2 The PHSG Construction

In this subsection we prove the following theorem.

Theorem 4.8. Let F = Fq be a finite field, d a positive integer and δ > 0. Let k = 2ℓ be a
power of 2. Then, there exists an absolute constant c such that if δ ≥ c · d

qk , there exists a PHSG

H : T → (F≤ℓ[w1, . . . ,wℓ])
n with density 1−δ for polynomials of degree at most d over F, which

can be constructed in time poly(d,n,k, logq), and has seed length O(d logn+ k logq).

Proof. We start by picking p1, . . . , pℓ ∈ F[w1, . . . ,wℓ] using the algorithm from Theorem 4.7
with δ ′ = δ/2. This algorithm uses O(k logq+ log(1/δ )) = O(k logq) random bits; i.e. there
exists an efficiently computable map

A : T1 → (F≤ℓ
q [w1, . . . ,wℓ])

ℓ

such that with probability at least 1−δ ′ over t ∈ T1 we have that

A(t) = (p1, . . . , pℓ) ∈ F[w1, . . . ,wℓ]

satisfies that P = (p1, . . . , pℓ)◁F[w1 . . . ,wℓ] is a maximal ideal, and pi = w2
i − hi where hi ∈

F≤1
q [w1, . . . ,wi−1], and E=F[w1 . . . ,wℓ]/P is a finite field with qk elements. Moreover, log |T1|=

O(k logq).

If the algorithm from Theorem 4.7 did not declare failure, we can construct the field

E= F[w1, . . . ,wℓ]/(p1, . . . , pℓ).

Let Ĥ : T2 → En be the [GX14] HSG given by Theorem 2.5 for n-variate polynomials of degree
at most d over E, set with δ ′ = δ/2. Recall that Ĥ has seed length O(d logn+ log(1/δ )) =

O(d logn+ k logq). Let
ϕ : E→ F≤ℓ[w1, . . . ,wℓ]
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be the F-linear map such that deg(ϕ(α))wi ≤ 1 for all i ∈ [ℓ]. By Claim 4.2,

H ′ = ϕ ◦ Ĥ : T2 → (F≤ℓ
q [w1, . . . ,wℓ])

n

is a PHSG for n-variate polynomials of degree at most d with density 1−δ ′.

Let
H : T1 ×T2 → (Fq[w1, . . . ,wℓ])

n

be the map such that for (t1, t2) ∈ T1 ×T2, if A(t1) succeeds then H(t1, ·) = H ′, and otherwise,
for concreteness, we set H(t1, ·) = 0. Now, fix some nonzero f ∈ F[x1, . . . ,xn] of degree at most
d. With probability at least 1− δ ′ over t1 ∈ T1, A(t1) succeeds, and conditioned on that, with
probability at least 1−δ ′ over t2 ∈ T2,

f (H(t1, t2)) = f (H ′(t2)) ̸= 0.

Therefore,
Pr

(t1,t2)∈T1×T2
[ f (H(t1, t2)) ̸= 0]≥ 1−2δ

′ = 1−δ ,

which completes the proof.

5 Our PRG Construction

Let n,d be positive integers, let q = pu be a prime power with p ≥ d(d − 1) + 1 and q ≥
C((d logd)4/ε2), for some universal constant C to be determined later on, and let ε > 0. We
now present the construction of our ε-error PRG

G : S −→ Fn+1
q

for polynomials f ∈ Fq[x,y] = Fq[x1 . . . ,xn,y] of degree at most d. Let c be an absolute constant,
larger than the constants appear in Theorem 2.5, Theorem 4.8 and Lemma 2.10. We will need
one PHSG and one HSG for the construction.

1. Let k = 2ℓ be a power of 2 such that
⌈

d
logq

⌉
+1 < k ≤ 2

⌈
d

logq

⌉
+2. Let

H1 : T1 −→ (F≤ℓ
q [w1, . . . ,wℓ])

n

be the PHSG given by Theorem 4.8 for n-variate polynomials over Fq of degree at most
2d −1, with δ1 = c ·d/qk ≤ c · d

2dq , and seed length O(d logn+ logq).

2. Let
H2 : T2 −→ Fn

q

be the HSG given by Theorem 2.5 for n-variate polynomials over Fq of degree at most d,
with δ2 = c ·d/q and seed length O(d logn+ logq).
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We are now ready to define G. Let S = T1 ×T2 ×Fℓ
q ×Fq ×Fq. Define G : S → Fn+1

q by

G(r,s, t,u,v) = (H1(r)1(t) · v+H2(s)1 ·u, . . . ,H1(r)n(t) · v+H2(s)n ·u,u), (5.1)

where t = (t1, . . . , tℓ).

Note that the running time of G on input s ∈ S is poly(n,d, logq). Indeed, by Theorems 2.5
and 4.8, the HSG and PHSG can be computed within this time bound, and the additional
step of evaluating ℓ = O(logd) variables in n polynomials of degree at most ℓ requires only
poly(n, logd, logq) time.

We proceed by showing that if f is indecomposable, then the random restricted polynomial
F = f ◦p remains indecomposable with high probability.

Proposition 5.1. Let f ∈ Fq[x,y] be an indecomposable (n+ 1)-variate polynomial of degree
at most d over Fq. Let (r,s) be a random element of T1 ×T2. Let H2(s) = (a1, . . . ,an) = a, let
H1(r) = (b1(w), . . . ,bn(w)) = b(w) for w = (w1, . . . ,wℓ), and finally, denote

F = f (b1(w)x+a1y, . . . ,bn(w)x+any,y) ∈ Fq[x,y,w].

Then,
Pr[F is indecomposable over Fq]≥ 1−δ2 − (2d−1 −1)δ1.

Proof. Recall that sa is the Fq-linear automorphism of Fq[x,y] that fixes y and sends xi to xi +

aiy. As f is indecomposable over Fq, so is sa( f ). By Lemma 2.8, sa( f ) is also indecomposable
over Fq. By Lemma 2.9, we further have that sa( f )− t is irreducible over Fq(t).

By Lemma 3.3, there exists a nonzero polynomial B ∈ Fq[x] of degree at most d such that if
B(a) ̸= 0, then

sa( f )− t = c ·g (5.2)

where c ∈ F×
q and

g ∈ Fq(t)[x,y]⊆ Fq(t)[x,y]

is a degree-d polynomial satisfying Hypothesis (H). Since H2 is a HSG, the event B(a) ̸= 0
happens with probability at least 1− δ2. Condition on this event, so Equation (5.2) holds. As
sa( f )− t is irreducible over Fq(t), so is g.

Let K=Fq(t) and let L=Fq(t,w) be such that w1, . . . ,wℓ are new variables. Let m= 2d−1−
1. As g ∈ K[x,y], by Lemma 3.8, there exist nonzero polynomials Q1, . . . ,Qm ∈ K[z1, . . . ,zn]

of degree at most 2d − 1 such that the union of the zero loci of these polynomials contains
all b∗ = (b∗1, . . . ,b

∗
n) ∈ Ln for which g(b∗1x, . . . ,b∗nx,y) is reducible over L. H1 is a PHSG with

density 1−δ1 for polynomials of degree at most 2d−1 over Fq(t). Therefore, for each i ∈ [m],
the probability that Qi(b(w)) = 0 is at most δ1.
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Condition on the event that Qi(b(w)) ̸= 0 for all i ∈ [m]. Then, g(b1(w)x, . . . ,bn(w)x,y) is
irreducible over L. On the other hand, note that

c ·g(b1(w)x, . . . ,bn(w)x,y)
(5.2)
= (sa( f ))(b1(w)x, . . . ,bn(w)x,y)− t

= f (b1(w)x+a1y, . . . ,bn(w)x+any,y)− t = F − t,

where the second step uses the definition sa( f ) = f (x1 +a1y, . . . ,xn +any,y) ∈ Fq[x,y].
Thus, F−t is irreducible over L, and hence as an element in Fq(t)(w)[x,y]. By Lemma 2.12,

it is then irreducible as an element in Fq(t)(w,x)[y]. Note that the coefficient of yd in F − t is

and element in Fq. Thus, as an element in
(
Fq(t)[w,x]

)
[y], the content of F − t is c(F) = 1.

Hence, by Corollary 2.13, F − t is irreducible as an element in

Fq(t)[w,x][y] = Fq(t)[x,y,w].

By Lemma 2.9, F is indecomposable over Fq. So it is indecomposable over Fq.

Overall, note that the indecomposability of F over Fq relies on the conditions B(a) ̸= 0 and
Q1(b(w)) ̸= 0, . . . ,Qm(b(w)) ̸= 0. By the union bound, these conditions are simultaneously
satisfied with probability at least 1− δ2 −mδ1 = 1− δ2 − (2d−1 − 1)δ1, which completes the
proof.

Theorem 5.2. There exists an absolute constant C > 0 such that for all ε > 0 and q ≥C (d logd)4

ε2

with char(Fq) ≥ d(d − 1) + 1, G as defined in Equation (5.1) is a PRG for (n + 1)-variate
polynomials of degree at most d over Fq with error ε and seed length O(d logn+ logq).

Proof. Let C = 4 · 162 · c2 for the absolute constant c defined earlier. Let f ∈ Fq[x,y] be a
polynomial of degree at most d. We want to prove that f (G(US)) and f (UFn+1

q
) are ε-close in

statistical distance. We may assume that f is non constant, since the claim is trivial otherwise.

Our first step is the same as in [DV22] and [DGV24]: f can always be written in the form
f = g ◦ h, where g ∈ Fq[z] is a univariate polynomial and h ∈ Fq[x,y] is indecomposable over
Fq. Let D = h(G(US)) and D′ = h(UFn+1

q
). Then f (G(US)) = g(D) and f (UFn+1

q
) = g(D′). If D

and D′ are ε-close, then g(D) and g(D′) are also ε-close. Thus, by replacing f with h, we may
assume that f is indecomposable over Fq.

Let r,s,a,b and F be as in Proposition 5.1. Then, by Proposition 5.1, the probability that F
is decomposable over Fq over a random choice of r and s is at most 2d−1δ1+δ2 ≤ 2c ·d/q. Fix
r and s such that F is indecomposable over Fq and note that by definition,

f (G(r,s, t,u,v)) = F(v,u, t).

Applying Lemma 2.10 to F shows that, for such fixed r and s, the distribution of F(t,u,v), i.e.,
f (G(r,s, t,u,v)), over random ti,u,v ∈ Fq is ε ′-close to UFq , where ε ′ ≤ c ·(degF)2/

√
q. Notice
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that
degF ≤ d · ℓ≤ d ·4logd.

This implies that the statistical distance between f (G(US)) and UFq is at most

2c · d
q
+16c · (d logd)2

√
q

≤ ε/2.

On the other hand, as f is also indecomposable over Fq, applying Lemma 2.10 to f shows
that f (UFn+1

q
) is ε ′-close to UFq , where ε ′ = c ·d2/

√
q ≤ ε/2. Therefore, the statistical distance

between f (G(US)) and f (UFn+1
q

) is at most ε .

The seed length of G is

log |T1|+ log |T2|+ ℓ logq+2logq = O(d logn+ logq),

which completes the proof.

6 An Approach Towards Smaller Fields

For q = pa, p prime, denote by Trq→p : Fq → Fp the absolute field trace. Assume that we are
given a PRG G : S → Fn

q for n-variate polynomials of total degree at most d over Fq with error
ε . Importantly, assume that q must be such that

q ≥ τ(d,ε)

for some threshold function τ . (In our construction, τ = C(d logd)4

ε2 for some universal constant
C.) Also, assume that we have no lower bound on the characteristic p (which is not the case for
our construction). A natural attempt to construct a PRG for polynomials over smaller fields is
to take traces, namely, G′ : S → Fn

p, where

G′(s) = (Trq→p ◦G)(s) =
(
Trq→p(G(s)1), . . . ,Trq→p(G(s)n)

)
.

It turns out that this simple approach works, as long as τ mild enough! For concreteness, we fix
ε > 0 to some constant, and concentrate on the dependence on d. Moreover, we assume that our
“base” PRG G has a seed of length O(dO(1) logn+ logq), but the proof can easily be adapted to
handle other seed lengths.

Proposition 6.1. Fix some constant ε0 ∈ (0,1). Assume that for any n,d,q such that q ≥
τ(d,ε0) = τ0(d) = d1−η for some η ∈ (0,1), there exists an explicit PRG for n-variate polyno-
mials of total degree at most d over Fq, with error ε0, and seed length O(dc logn), where c is
some absolute constant.

Then, for any n,d, p where p ≤ d is prime, there exists an explicit PRG for n-variate poly-
nomials of total degree at most d over Fp, with error ε0, and seed length O((d/p)O(1/η) logn).
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Proof. Let f ∈F≤d
p [x1, . . . ,xn]. Let q be a power of p soon to be determined. Since deg(Trq→p)=

q/p, we have that h = f ◦Trq→p : Fn
q → Fp, where we apply traces to each field element indi-

vidually, has degree at most d′ = (dq)/p as a polynomial over Fq. Notice that

f (G′(s)) = h(G(s)),

so G′ fools f with error ε0 whenever q ≥ τ0((dq)/p). This amounts to

q ≥
(

d
p

) 1−η

η

.

Invoking G with a suitable q,5 and degree d′, the seed length becomes

O(d′ logn+ logq) = O

((
d
p

)O(1/η)

· logn

)
,

as desired.

In particular, if such a PRG G exists with any constant η , then we would get a PRG for
F2-polynomials with seed length dO(1) · logn, beating Viola’s PRG [Vio09] in the regime where
d = Ω(log logn).
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