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Optimal PRGs for Low-Degree Polynomials
over Polynomial-Size Fields
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Abstract

Pseudorandom generators (PRGs) for low-degree polynomials are a central object in
pseudorandomness, with applications to circuit lower bounds and derandomization. Viola’s
celebrated construction [Vio09] gives a PRG over the binary field, but with seed length ex-
ponential in the degree d. This exponential dependence can be avoided over sufficiently
large fields. In particular, Dwivedi, Guo, and Volk [DGV24] constructed PRGs with op-
timal seed length over fields of size exponential in d. The latter builds on the framework
of Derksen and Viola [DV22], who obtained optimal-seed constructions over fields of size
polynomial in d, although growing with the number of variables .

In this work, we construct the first PRG with optimal seed length for degree-d poly-
nomials over fields of polynomial size, specifically g ~ d*, assuming, as in [DGV24], suf-
ficiently large characteristic. Our construction follows the framework of [DV22, DGV24]
and reduces the required field size by replacing the hitting-set generator used in prior work
with a new pseudorandom object.

We also observe a threshold phenomenon in the field-size dependence. Specifically, we
prove that constructing PRGs over fields of sublinear size, for example g = d*%° where ¢ is
a power of two, would already yield PRGs for the binary field with comparable seed length
via our reduction, provided that the construction imposes no restriction on the character-
istic. While a breakdown of existing techniques has been noted before, we prove that this

phenomenon is inherent to the problem itself, irrespective of the technique used.
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1 Introduction

A pseudorandom generator (PRG) fooling a class of functions ¥ CX" — YXisamap G: {0,1}° —
Y that stretches a uniform seed of s < n bits into strings in X", such that the distribution of G
fools any function f € €, in the sense that f(G(Uy)) is close, in total-variation distance, to
f(Usx).! Constructing explicit PRGs with short seed for various function classes % is central
to theoretical computer science, with various applications in complexity theory (prominently

derandomization and circuit lower bounds), cryptography, and algorithm design.

A fundamental and well-studied class of functions is that of low degree polynomials.

Definition 1.1. We say that G: {0,1}* — I7 is a PRG for n-variate polynomials of total degree
at most d over a finite field F, with error € if for every such polynomial f, the distributions
f(G(Uy)) and f(Ugn) are e-close in total variation distance. That is,

1
= Pr [f(x) =a|— Pr G(t))=al|| <e.
2 L [Pl == B [7G() =] <
The seed length of G is s, and we say that G is explicit if for any t € {0,1}*, G(t) can be
computed in time poly(n,d,logq,log1/¢).

PRGs for low-degree polynomials have been extensively studied for more than three decades,
with the natural goal of minimizing the seed length. Moreover, over the years it has become
apparent that constructing PRGs over small fields—of constant size, independent of the de-
gree d—is more challenging than in the regime where the field size is allowed to be polynomial
in d, which permits the use of deep results such as the Weil bound.

Already the case d = 1, which corresponds to small-biased generators, is extremely inter-
esting and has found numerous applications in pseudorandomness and derandomization. In this
setting, we have constructions with seed length that is optimal up to constant factors (see, e.g.,
[NN93, ABNT92, AGHP92, AMNO98, BT13, Ta-17, CC25]), typically over any field size (al-
though the [F, case is the most widely studied). For arbitrary d, one can show a lower bound
of s = Q(dlog(n/d) +1log(1/€) +1logq) (see, e.g., [ABEKO8]), and the probabilistic method
guarantees the existence of a construction achieving these parameters. From now on, we refer
to this as an optimal seed (ignoring constant factors). Obtaining explicit constructions is more

challenging, and prior work has developed along two main strands.

PRGs over an arbitrary field. Over any finite field, and in particular over (what turned out to
be) the most challenging case of [F, a sequence of works [LVW93, Vio07, BV 10, Lov09, Vio09]

"Here and throughout, for an integer s, Uy denoted the uniform distribution over {0,1}*, and for a set A, Uy
denotes the uniform distribution over A.



culminated in Viola’s celebrated explicit PRG with seed length O(dlogn +d - 2?log(g/¢))
[Vio09]. The generators of [BV 10, Lov09, Vio(09] are obtained via the Bogdanov—Viola [BV10]
framework: In order to fool degree-d polynomials, sum ¢ = ¢(d) independent copies of a small-
bias generator. Viola [Vio09] proved that /(d) = d suffices, however the error of the small-bias
PRG needs to be very small, namely %' for a designated error &, leading to the 2¢ factor in
the seed length. Note that when d = Q(logn), the seed length becomes trivial, and indeed,
achieving any nontrivial PRGs over [, for degrees greater than logn would yield breakthroughs
in circuit complexity, via the Razborov—Smolensky connection between constant-depth circuits
and low-degree polynomials [Raz87, Smo93].

PRGs over large fields. When g > d, better results are known, and we can handle much
larger degrees with a relatively short seed length. Bogdanov [Bog05] introduced a technique for
constructing PRGs from the weaker object of hitting set generators (HSGs; see Definition 1.5
for the formal definition). This approach is based on reducing the number of variables of the
polynomial, while preserving the factorization structure of it (i.e., preserving irreducibility of its
factors). Combined with subsequent improvements in HSG constructions following due to Lu
[Lul2], Cohen and Ta-Shma [CT13], and Guruswami and Xing [GX14], Bogdanov’s technique
yields a PRG with seed length O(d*logn 4 loggq), provided that ¢ > d® /.

More recently, Derksen and Viola [DV22] introduced a powerful new approach based on
techniques from algebraic geometry and invariant theory. For sufficiently large g > (d*n®%1) /&2,
they achieve optimal seed length O(dlog(dn) +loggq). For g > (dlogn)*/€?, they obtain a sub-
optimal seed length of O(dlogn -log(dlogn)+logq). We will discuss their approach, based on
the preservation of indecomposability instead of irreducibility, in Section 1.2.

Recently, Dwivedi, Guo, and Volk [DGV24] were able to remove the dependence on n
in the field-size requirement needed to obtain an optimal-seed PRG, albeit with an exponen-
tial dependence on d. Specifically, they achieve seed length O(dlogn + logg) whenever g >
d2?/e +d*/€? and the field characteristic is Q(d?).> We also discuss their technique, which
combines ideas from [DV?22] with a derandomization approach inspired by [Bog05], in Sec-
tion 1.2.

1.1 Our Result

In our work, we construct an explicit PRG with optimal seed length for field sizes g that are

only polynomial in d — an exponential improvement over field size requirement in [DGV24].

’Interestingly, if one only cares about fooling primes degrees, [DGV24] show that ¢ = Q(d*/€?) suffices.



Theorem 1.2 (see also Theorem 5.2). For every n,d € N, a prime power g, and € > 0, satisfying
q = Q((dlogd)*/€*) and char(F,) = Q(d?), there exists an explicit PRG G: {0,1}* — Iy for
n-variate polynomials of degree at most d over F, with error € and seed length s = O(dlogn +

logq).

Compared to [DV22] and [DGV24], our construction improves upon both works simulta-
neously: we achieve optimal seed length already for ¢ > poly(d) (rather than ¢ > exp(d) as in
[DGV24]), and we avoid the dependence of g on n present in [DV22].

A Threshold Phenomenon for PRGs for Low-Degree Polynomials

As discussed, the study of PRGs for low-degree polynomials has split into two branches: PRGs
for constant field size, most notably the binary field, and PRGs for fields whose size is suffi-
ciently large as a function of the degree d (and, for some constructions, also of the number of
variables n). These two branches rely on fundamentally different techniques. Our result falls
into the second line of work: we construct an optimal-seed PRG that works whenever ¢ is at
least roughly d*.

It was observed in [DV?22] that techniques developed for large fields, such as those relying
on the Weil bound, break down in the small-field regime. Perhaps surprisingly, our second
contribution shows that there is, in fact, an inherent threshold phenomenon. When ¢ is a power
of two, we prove that improving the quartic dependence of ¢ on d to a sublinear one—namely,
g = d'~7 for some fixed constant T > O0—would immediately yield a PRG construction over the
binary field with seed length comparable to that of the PRG we started with. For our reduction
to apply, the PRG must not impose any restriction on the characteristic of the field, as is the
case, for example, in the Derksen—Viola construction [DV22].

This implies that there cannot be incremental progress toward constructing PRGs over the
binary field: once the current quartic dependence is improved to a sublinear one, and provided
there are no restrictions on the characteristic, one immediately obtains a comparable PRG over
the binary field. Our reduction holds in greater generality and, in particular, applies to fields of
any odd characteristic.

Theorem 1.3 (see also Proposition 6.1). Assume that for any n,d,q such that ¢ > d'=" for
some constant 1 € (0, 1) there exists an explicit PRG for n-variate polynomials of total degree
at most d over ¥y, with error 0.1 and seed length O(a’o(l) logn+1logq). Then, there also exists
an explicit PRG for n-variate polynomials of total degree at most d over IFy, with error 0.1, and
seed length O(d°Vlogn).

Constructing G, the desired PRG over [y, is simple: Set ¢ = d° to be a power of 2, where
¢ =c(n), and let G, be our hypothesized PRG over I,,. Then, each element of G, is obtained by
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taking the absolute trace of each coordinate of an element of G,. That is, G2(z); = Tr(G4(2);).
We defer the (easy) proof to Section 6, and proceed to giving an overview of Theorem 1.2.

1.2 Proof Overview

We begin with describing the framework introduced by Derksen and Viola [DV22]. Let x =
(X1,...,%,). A polynomial f € IF,[x] is called indecomposable if it cannot be written as f =
goh, where h € Fy[x] and g € F,[r] is a univariate polynomial with deg(g) > 2. The notion of
indecomposability is interesting partially because we understand the distribution of its image.

This is formalized by the following lemma.

Lemma 1.4 ([DV22], Lemma 12). There exists an absolute constant ¢ > 0 such that the fol-

lowing holds: Suppose f € [Fy[X] is indecomposable over F,. Then, f (UFZ) is €-close to Up,,
where € = c-d*/./g.

The general approach in our work, following the works [Bog05, GX14, DV22, DGV24], is
to restrict f to a carefully chosen subset of Fj while preserving some algebraic property, closely
related to its output distribution. Specifically, let f € F,[x] be an indecomposable polynomial
of degree at most d. Suppose we can find polynomials py,...,p, € Fylwy,...,w/], with £ <
n, such that for every such f, the composed polynomial f o (pi,...,pn) € Fylwy,...,wy] is
indecomposable. Let w = (wy,...,wy), let p = (p1,...,pn) be the restriction map, and let
degp = max;{degp;}. Now, Lemma 1.4 applies both to f and to its restriction via fop. In
particular, the distribution of f(Ug) is O(d?//q)-close to uniform over F, and similarly the
distribution of f (p(Ung ) is O((d - degp)?/./q)-close to Up,. This means that the function
G : F, — F defined by

G(w) =p(w)

is a PRG for indecomposable polynomials of degree at most d with seed length ¢/log g, and error
e = 0((d-degp)?/\/q). (1.1)

For an arbitrary n-variate polynomial f of degree at most d, we can always write f = goh,
where 1 € F,[x] is indecomposable and g € I, [¢] is univariate. / is an n-variate indecomposable
polynomial of degree at most d, therefore the distributions 2(Ug» ) and h(G(UFg )) are both close
to Up,. Hence, the distributions f(Ugz) = g(h(Upz)) and f(G(UI%)) = g(h(G(U]Fg))) are both
close to g(UFq). This shows that G is actually a PRG for all n-variate polynomials of degree at
most d.

The challenge is, of course, to find low-degree py,..., p, that preserve indecomposability

for all indecomposable n-variate polynomials f of degree at most d.



1.2.1 The Derksen-Viola restriction map

A main contribution of [DV22] is the explicit construction of such restriction polynomials
P1,---,Pn, Which proceeds as follows. Let My,..., M, be distinct monomials in m variables.
Consider ¢ independent copies of these variables, and denote by Mi[j | the monomial M; evalu-
ated on the variables from the j-th copy. Then define

pi =M+ M

Using tools from invariant theory, [DV22] show that for a suitable choice of parameters and
monomials, the resulting substitution p = (py,...,p,) preserves indecomposability. This al-
lows them to construct a PRG with optimal seed length O(dlog(dn) +logg), assuming g =
Q(d*n%%1 /¢2), or alternatively a PRG with seed length O(dlogn -log(dlogn) +logg), assum-
ing g = Q((dlogn)*/e?).

1.2.2 Constructing the restriction map via hitting set generators

In contrast to [DV22], approach, Bogdanov [Bog05] and Dwivedi, Guo, and Volk [DGV24]
adopt a derandomization approach. Rather than constructing a single restriction map p that pre-
serves indecomposability for all polynomials of degree at most d, they use a carefully designed
distribution over restriction maps p. This distribution has the property that for every indecom-
posable polynomial f of degree at most d, the composition f o p remains indecomposable with
high probability. In both works, the restriction polynomials are linear, and the distribution is

designed using a pseudorandom object called a hitting set generator (HSG).

Definition 1.5. A function H: T — ¥y is a hitting set generator (HSG) with density 0 for n-
variate polynomials of degree at most d over ¥ if for every such f # 0,

Prlf(H (1) #0] > 1- 5.

teT

The seed length of the HSG is log, |T
be computed in time poly(n,d,logq,log1/9).

, and we say that H is explicit if for anyt € T, H(t) can

Since our construction builds primarily on [DGV?24], we proceed by describing their con-
struction in more detail.
Let
Bix+oiy 1<i<n—1
pi<x7y) = . )
y i=n
where the vectors o, 8 € [7 are sampled from a HSG for (n— 1)-variate polynomials of degree

at most O(d) (where the implicit constant is absolute). This transformation can also be written
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as follows: Let s¢ be the ring automorphism of I, [x] such that

S(X(f(x)) = f(-xl + 0 Xpy - Xp—1 T+ an—lxnv-xn)-

Letrg: Fy[x] — Fy[x,y] be the homomorphism such that rg (f(x)) = f(B1x,. .., B—1x,y). Then,
for all f € F,[x] we have

fop=rgosqof.
It is shown in [DGV24] that for every degree-d f € [F,[x], there exists a polynomial B €

Fy[x1,...,Xx,—1] of degree at most d with the following property. For any o satisfying B(ct) # 0,
the polynomial

sa(f) =t € Fy(t)[x]

satisfies Hypothesis (H) (up to multiplication by an element of ;). Hypothesis (H) is a condi-
tion required for applying Lecerf’s technique; see Definition 3.1 for details. Thus, by picking
o using a HSG, it is promised that the polynomial s (f) — ¢ satisfies Hypothesis (H) with high
probability.

They proceed by showing, building on results of Lecerf [Lec06, Lec07], that if g € F[x] is
indecomposable and g — ¢ satisfies Hypothesis (H), then the restriction rg(g) remains indecom-
posable with high probability.

The proof proceeds roughly as follows: Let K = m be the algebraic closure of Fy(z).
Let g € K[x] be a polynomial satisfying Hypothesis (H). For such a polynomial g, assuming
that char F, = charK > d(d — 1), Lecerf constructed a linear system of equations D, in d
variables, with the coefficients being (n — 1)-variate polynomials in K[zy,...,z,_]| of degree at

most 2d — 1, with the following properties:

1. The number of irreducible factors of g equals the dimension of the space of solutions of
D,.

2. For B € KM 1, let Dg be the system of equations D, after evaluating (z1,...,2,—1) = B.
The number of irreducible factors of rg(g) equals the dimension of the space of solutions
B
of Dg.

3. There are sets S| C S, C {0, l}d such that the space of solutions of Dy is spanned by S,
and the space of solutions of Dg is spanned by 5.

The condition that a polynomial f € F,[x] is indecomposable is equivalent to g = f —t € K[x|
being irreducible (see Lemma 2.9). Hence, preserving indecomposability of f is equivalent to
preserving the space of solutions of Dy in the reduction to Dg.

Let f € F,[x] be an indecomposable polynomial satisfying Hypothesis (H). Then g = f —1 €
K[x] is irreducible, and by Items 1 and 3 the solution space of D, is spanned by a single vector
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v e {0,1}¢. For every v # w € {0, 1}¢, there is an equation in Dy such that w does not satisty,
i.e., there are polynomials P",..., Py € K[z1,...,z,-1] of degree at most 2d — 1 such that

d
Q=) wi-P"#0.
i=1

Notice that Q,, € K|zy,...,z,—1] is a polynomial of degree at most 2d — 1 as well. By Item 2, if
Q. (B) # 0 forall v # w € {0,1}¢, then the polynomial rg(g) remains irreducible, which means
that the polynomial rg(f) is indecomposable.

This implies that for every indecomposable polynomial that satisfies Hypothesis (H), there
are 2¢ — 1 polynomials in K[z,...,7,_1] of degree at most 2d — 1 such that if each one of them
does not vanish at 3, then rg(f ) remains indecomposable. Hence, by picking 8 using an HSG
for n — 1-variate polynomials of degree at most 2d — 1 with small enough density, the probability
that rg(f) remains indecomposable is high. Thus, using the union bound, the probability that
that the substitution f o p preserves indecomposability is at least 1 — (2¢ —1)8.

Any HSG for polynomials of degree at most 2d — 1 over [, has density at most 1 — & with
0 = 0(d/q), as the density of zeroes of a degree-d polynomial can be Q(d/q). Consequently,
the analysis yields a meaningful guarantee only when g = Q(d2%), which is where the expo-

nential dependence in d shows up in the field size.

1.2.3 Our construction via polynomial hitting set generators

In this work, we further refine this approach to achieve optimal seed-length PRGs for much
smaller field sizes. Our key idea is to choose 8 not as a vector over [y, but as a vector of
polynomials of bounded degree in a small number of variables. Let A denote the size of the
set from which each polynomial coordinate is chosen. By the Schwartz—Zippel lemma, any
nonzero degree-d polynomial vanishes on at most a d/A fraction of this distribution. This
suggests that one can derandomize this construction — analogously to standard HSGs over [, —
to obtain significantly higher-density hitting sets. To achieve this, we introduce the notion of a
polynomial hitting set generator (PHSG).

Definition 1.6. Let [ be a finite field. A polynomial hitting set generator (PHSG) with density
1 — O for n-variate polynomials of degree at most d over F with {-variate polynomial evaluation

points of degree at most h is a map
H:T — (F"wy,...ow])"

from a finite set T # O such that for every such nonzero polynomial f € Fxy,...,x,] of degree
at most d,

Pr[f(T(y)) = 0] < 5.
yeT



The quantity log|T| is called the seed length of H.

In Section 4, we show that any HSG for polynomials over a field extension ]Fqk can be simply
turned into a PHSG over F,. Consequently, existing constructions of HSGs immediately yield

PHSGs.? So indeed, in our construction we choose each p; to be of the form
pi(xavala s 7WZ) - bi(W17' . 7W€) "X+ O Y,

where o € Fy is sampled from an HSG H; : T — Fy with density 1 — &), and b € F?h[wl, cwt
is sampled from a PHSG Hs: T — (F<"[wy,...,wy])" with density 1 — &,.
Adapting the analysis of [DGV24], assuming charF, > d(d — 1) we show that the probabil-

ity that p preserves indecomposability is at least
1-86— 271 —1)s,.

The analysis extends naturally to the setting where the evaluation points are themselves polyno-

mials rather than field elements, i.e., are taken from a field extension. In this case, one can show

that the polynomial r,(f) —¢ is irreducible as an element of F,(t,w1,...,w/)[x,y]. We then
use the structure of the polynomial and apply Gauss’s lemma to deduce that this polynomial
is in fact irreducible over M[wl, ...,wg,x,y]. This implies that the composed polynomial
fop eFy[wi,...,we,x,y] is indecomposable.

In Section 4, we construct PHSGs with ¢ = h =: logk, seed length dlogn + klogq and
density 1 — &, where § > d/q*. Choosing 8 = O(d/q*) with k = d/logq, and &; = O(d/q)
gives

Pr[f op is indecomposable] = 1 — O(d/q).

This way we eliminate the requirement g > (d2d ) This comes at the cost of increasing the
number of variables in p from 2 to ¢, and using a PHSG in addition to the HSG. Those increase
the seed length only by a constant factor: the PHSG instantiated with our parameters requires
seed length of O(dlogn+ flogq), and the uniform distribution over Ff} requires additional
¢log g random bits. As flogq = O(d+1ogq), the resulting PRG seed length is O(dlogn+1logg).

The requirement g > (dlogd)*/&? follows from Equation (1.1), since

degp < h=/¢=O(logd).

3 An obstacle in that approach is that explicitly constructing an HSG over a field extension requires an explicit
representation of [F 4+ Which in turn necessitates the construction of irreducible polynomials over IF,, for which the
best-known deterministic algorithm would be too costly. To overcome this issue, we pick the required irreducible
polynomials at random, and use a sampler to amplify the success probability, incurring only a small additional
randomness cost. Fortunately, this incurs only a constant-factor increase in the overall seed length.



As explained earlier, the requirement char(F,) > d(d — 1) follows from the use of Lecerf’s

technique.

To sum up, our pseudorandom generator G : Ty x Tr x Fy x [y x Ff] — Iy, is defined by
G(rys,u,v,t) = (Hy (r)1(t) - v+Hy(s) - tey... Hi (r)u(t) - v+ Hy(s), - u,u), (1.2)

where t = (1,...,t,), and u,v € IF,.

2 Preliminaries

We denote by N the set of nonnegative integers, including 0. Throughout the paper, boldface
letters denote vectors; for example, x = (x,...,x,). For a multi-index i = (iy,...,i,) € N", we
use the standard notation x! := x' - - xir.
Resultants. Let R be a commutative ring and let f(x) = Y% ax’ and g(x) = Y2, bix’ be
polynomials in R[x], with a4, # 0 and b,, # 0. Suppose that dj +d» > 1.

Definition 2.1 (Sylvester matrix). The Sylvester matrix Syl(f,g) of f and g is the following
(dy 4+ da) x (dy +d») matrix defined over R:

ao bo

ap ao by bo

a a; - by by
ap b()
aj bd2 bl

ad, bdz

adl

adl bd2

Definition 2.2 (resultant). The resultant of f and g, denoted Res (f,g), is defined as

Res (f,g) := det(Syl(f,g)) €R.

The resultant satisfies the following property.

Lemma 2.3. Let R be an integral domain with field of fractions L. Then Res(f,g) =0 if and

only if f and g have a common root in L.



Definition 2.4 (formal power series). Let F be a field and let x = (x1, . .., x,) be indeterminates.
The ring of formal power series F[[x]] consists of all infinite sums

Z aix! (q; € F),

ieNn

with addition and multiplication defined formally.

2.1 Prior Results

We will use the optimal HSG (over large fields) of Guruswami and Xing.

Theorem 2.5 ([GX14], Theorem 5.1). There exists an absolute constant ¢ such that for any
n,d,q, 8, for which ¢ > c-d /9, there exists an efficiently computable HSG for n-variate poly-
nomials of degree at most d over F, with density 1 — 0 and seed length O(dlogn +1log(1/9)).

We will also make use of the following lemma.

Lemma 2.6 ((DGV24], Fact 2.4). Let H be an HSG with density 1 — 8 for polynomials of degree
at most d over a field ¥, and let K be an extension of F. Then H is also an HSG with density
1 — & for polynomials of degree at most d over K.

2.2 Indecomposable Polynomials

The analysis of our construction use the notion of indecomposable polynomials and some of
their properties.

Definition 2.7. A non-constant polynomial f € F[x| is said to be decomposable over [ if there
exist h € F[x| and a univariate polynomial g € F[z] such that deg(g) > 2 and f = goh. Other-

wise, f is said to be indecomposable.

We will use the following equivalences.

Lemma 2.8 ([BDNO09], Theorem 4.2). A polynomial f € F4[X] is indecomposable over I if and

only if it is indecomposable over T.

Lemma 2.9 ([CN10], Lemma 7). Let f € F[x]| be a non-constant polynomial over a field F.
Then f is indecomposable over F iff f —t is irreducible over F(t), where t is a new formal

variable.

Using the Weil bound, Derksen and Viola have showed in [DV?22] that indecomposable
polynomials are approximately equidistributed over large enough fields.

Lemma 2.10 ([DV22], Lemma 12). There exists an absolute constant ¢ > 0 such that the fol-

lowing holds: Suppose f € F,[X] is indecomposable over F,. Then f (Ury) is &-close to Ug,,
where € = c-d*/./q.
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2.3 Gauss’s Lemma

Gauss’s lemma provides a fundamental link between irreducibility over an integral domain and

irreducibility over its field of fractions.

Definition 2.11. Let R be a unique factorization domain (UFD). Let f(x) = Y& qcix' € R[x].
The content of f, denoted by c(f), is the greatest common divisor of cy,...,cy; the content is

well defined up to invertible elements in R. f is called primitive if c(f) = 1.

Lemma 2.12 (Gauss). Let R be a UFD, and let 1L be its field of fractions. A non-constant
polynomial f € R[x] is irreducible in R|x] if and only if it is both irreducible in 1L[x| and primitive
in Rx].

The following corollary follows by Lemma 2.12, together with the fact that the polynomial
ring Flxy,...,x,| is a UFD for every n and field F.

Corollary 2.13. Let IF be a field and let R = Flxy,...,x,], L =F(x,...,x,). Then, a multi-
variate polynomial f € F[x,y| such that f ¢ F[X] is irreducible in F|x,y] if and only if it is
irreducible in F(x)[y] and c(f) = 1.

3 Evaluations that Preserve Irreducibility

In this section, we follow the main outline of [DV22] and [DGV?24], and show that their ap-

proach extends to the setting where the evaluation points are taken from a larger field.

3.1 Hypothesis (H)

In order to invoke Lecerf’s technique [Lec07], we need to assume that our polynomial meets two
standard conditions. Lecerf called these conditions Hypothesis (H). For an arbitrary polynomial,
[DGV24] showed that one can apply a suitable linear transformation to obtain a polynomial that
satisfy Hypothesis (H), provided a certain algebraic condition holds.

Definition 3.1 (Hypothesis (H), [Lec06, LecO7]). Let f € Flxy,...,x,,y] = F[X,y] be a non-
constant polynomial. We say f satisfies Hypothesis (H) if

1. fis monic in'y and deg,(f) = deg(f),

2. Res ( f(o,y),g—f(o,y)) £0.

Definition 3.2 ([DGV24]). For a = (ay,...,a,) € F", let sy be the F-linear automorphism of
F[x,y] that fixes y and sends x; to x; + a;y.

11



The following lemma provides an algebraic condition on a under which s,(f) — ¢ yields a

polynomial that satisfies Hypothesis (H).

Lemma 3.3 ([DGV24], Corollary 3.5). Assume that f € F[x,y] is a polynomial of degree d > 1
and that char(F) is either zero or greater than d. Then there exists a nonzero polynomial
B € x| of degree at most d such that for every a € F" satisfying B(a) # 0, sa(f) —t=c-g
where ¢ € F* and g € F(t)[x,y] is a degree-d polynomial satisfying Hypothesis (H).

3.2 Lecerf’s Technique

This subsection closely follows [DGV24, Section 4], with minor adaptations to the case of
evaluating f € K[x] at points drawn from a larger field L /K. As discussed in Section 1.2.2
and Section 1.2.3, our goal is to formulate an algebraic condition under which an irreducible

polynomial in [, (#)[x] remains irreducible after evaluation at elements from a field extension.

We refer to such evaluation points as Bertinian points.

Definition 3.4. Ler f € K[x,y| be a non-constant polynomial satisfying Hypothesis (H), and let
L/K be a field extension. We say a = (ay,...,a,) € L" is a Bertinian good point for f if for
every irreducible factor f of f over L, the bivariate polynomial fa(x,y) = f(aix,...,anx,y) is

also irreducible over L. Otherwise, a is called a Bertinian bad point.

We now begin to describe Lecerf’s condition for a point to be Bertinian.

Lemma 3.5 ([DGV24], Lemma 2.9, Hensel’s Lifting). Let f € Flxy,...,x,,y] = K[x,y] be a
nonzero polynomial. Suppose A € K is a simple root of £(0,y) € F[y|. Then there exists unique
A € F[[x]] such that

1. f(x,A) =0, i.e., A isarootof f as a univariate polynomial in y over K[x|, and

2. A(0)=A.

Let /K be an extension of algebraically closed fields. Let f € K[x,y] be a polynomial
of degree d > 1 satisfying Hypothesis (H). Define f := £(0,y) € K[y]. As K is algebraically
closed and Res ( 71(0,y), ‘3—’; (0, y)) # 0, the univariate polynomial f factorizes into distinct linear
factors .,

FO) =T]0—4)
i=1
where A; € K for all i € [d]. By Lemma 3.5, the above factorization of f over K lifts to a

factorization of f into distinct linear factors

1

d
f(x,y) = _l(y—li(X)),

12



where A; € K[[x]] and 2;(0) = A, for all i € [d].
We now introduce new variables z = (z1,...,2,) and x, and define g := f(z1x,...,2,X,y) €
K[z, x,y]. Then, g factorizes into linear factors

(y—Ai(z1x,...,z20X))

::]&

g(z,x,y) =
i=1

where each
Ai(z1x,. ., znx) € K[[2]][[]].

Fori € [d], let g; be the factor y — Ai(z1%, . .., z,x) of g, and let §; be its cofactor [ je(q)\ {11 8- SO

gi,8i € K[[2]][[x]][y].

For h € A[[x]][y] over a commutative ring A and (j,k) € N2, denote by coeff (h,x/y*) € A the
coefficient of x/y* in h. We are now ready to define the linear system D, & used in Lecerf’s

papers.

Definition 3.6 (The linear system D, s). Let 6 € N. Define D, s to be the following linear

system over K(z) in the unknowns (1, ... l,:

¢ 1coeff<g,a ,xfy)-fi:O, k<d—1,d<j+k<oc—1,

D
by 1coeff<g,a ,xfy)-fi:O, k<d—1, j<6—-2d<j+k<o—1.

,O

We have the following lemma.

Lemma 3.7 ([DGV24], Lemma 4.2). For (j,k) € N?,
d dgi
coeff g,ﬁ x/yK ) | coeff giﬁ,xj ) e Kz
ox’ dy
are polynomials of degree at most j+ 1 and j respectively.

Observe that the construction of Dy, s carries over when we view f € L[x,y] (as opposed to
K[x,y]). Indeed, the elements ; € K remain unchanged. By the uniqueness of A in Lemma 3.5,
the lifting to

Ai € K[x] C L[x]

is therefore unchanged, and consequently D, s remains the same. Thus, the entire construction
can be regarded as in the case of f € L[x,y]. Moreover, the coefficients of D, s lie in K]z].
Applying [DGV24, Lemma 4.6] to f viewed in LL[x, y], and noting that the polynomials Q; are
sums of entries of D, 5, we obtain the following theorem.

13



Lemma 3.8. Let K be an algebraically closed field with char K = 0 or greater than d(d — 1),
and let L/K be some extension which is algebraically closed. Let f € K[X,y| be an irreducible
polynomial of degree d > 1 satisfying Hypothesis (H). Let m = 2%~1 — 1. Then, there exist
nonzero polynomials Q1,...,Qn € Klz] = K|zy,...,2,] of degree at most 2d — 1 such that for

every Bertinian bad point a € " for f over L, at least one polynomial Q; vanishes at a.

4 HSG with Polynomial Evaluation Points

In this section we construct our polynomial hitting set generators, and specifically, show that
any hitting set generator for polynomials over a field extension I x can be simply turned into
a polynomial hitting set generator (PHSG) over [F,. Then we use samplers to construct a field
extension of [, efficiently using only a small amount of random bits.

The main advantage of PHSGs over HSGs is their ability to achieve much higher density,
namely 1 — @(d/q") rather than 1 — @®(d/q).

We first recall the definition of a PHSG.

Definition 4.1. Let [ be a finite field. A polynomial hitting set generator (PHSG) with density
1 — O for n-variate polynomials of degree at most d over F with {-variate polynomial evaluation

points of degree at most h is a map
H: T — (F"[wy,...,w)"

from a finite set T # O such that for every such nonzero polynomial f € Fxy,...,x,| of degree
at most d,

Pr[f(T(y)) =0] < 8.
yeT
The quantity log |T | is called the seed length of H.
Our approach for constructing PHSGs is using a HSG for a field extension

E = Flwi,...,w]/P,

where P < F[wy,...,w/| is a maximal ideal. Assume that in every equivalence class g+ P € E
there exists an element g’ € F[wy,...,wy] of total degree at most h. Let {g1 +P,...,gx+P} CE
be a basis of E/F, and for all 1 <i <k let g € F[wy,...,w/] be an element in the equivalence
class g; + P of total degree at most 4. Let

0:E—F="[wi,...,w]

14



be the F-linear map defined uniquely by ¢(g;+P) =g\ forall 1 <i<k.Letmw: Flwy,...,w¢] —
[E be the ring homomorphism a — a mod P. For all a € E we have

7(¢(a) =a.

With this notation in place, we show that an HSG over E can be regarded as a PHSG. Whenever

we apply ¢ or 7 to a vector, we apply the map coordinate-wise.

Claim 4.2. Let H: S — E" be a HSG with density 1 — & for n-variate polynomials over E of
degree at most d. Then,
H=@oH:S— (Fwy,...,w])"

is a PHSG with density 1 — 8.

Proof. Let f € E[xy,...,x,]. Lets € S such that f(H(s)) # 0. Since 7 is a ring homomorphism,
we obtain

0% f(H(s) = f(r(H(s))) = T(f(H(5))),
and in particular f(H(s)) # 0. O

Remark 4.3. We note that E can equivalently be represented using a single irreducible poly-
nomial p € F[w| of degree k, by setting E = F[w|/(p(w)). Alternatively, we will use several
irreducible polynomials of degree 2 in order to optimize the requirement on the field size q. As
we will see in Section 5, the field-size requirement depends on the degrees of the polynomial
representations of elements of E. Constructing E via a single degree-k irreducible polynomial

would lead to a requirement of ¢ > d® /€2, whereas our construction yields the improved bound
q > (dlogd)*/€?.

4.1 Sampling Irreducible Polynomials

Toward constructing PHSGs, we require an efficient method for building the extension field [E;
in particular, we must construct irreducible polynomials over IF,. At present, no unconditional
deterministic algorithm is known for constructing an irreducible polynomial of degree d over
a field of size ¢ in time poly(logg,d). Relevant progress includes the work of Shoup [Sho90],
who gave an algorithm running in time O((,/p +log? g) d*), where p = char(F,), and the work
of Adleman and Lenstra [AL86], who provided a deterministic poly(logg,d)-time algorithm
assuming the Extended Riemann Hypothesis. We overcome this difficulty by using randomness,
which we can consider as part of the construction’s seed.

Consider sampling a random degree-a monic polynomial, which requires O(alogg) random
bits. It is well known that with probability @(1/a), it will be irreducible. We wish to amplify this
probability to 1 — 6 for an arbitrary 6 > 0. To do it randomness-efficiently, we use randomness

samplers.
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Definition 4.4 (sampler). Let n,m,t be some positive integers, and let €,0 > 0. A function
S:{0,1}" — ({0,1}") is a (8, €) averaging sampler with t samples using n random bits if for
every function f: {0,1}" — [0, 1] we have

Pr

1
(Z10esZy)~S(Uy) [ t Zf(Z,-) —E[f]

ge] >1-96.

We use the recent nearly-optimal sampler of [XZ25] (although some earlier constructions,
such as [Zuc97] and [RVWO00], would work just as well for our use up to constant factors).

Theorem 4.5 ([XZ25]). For every constant B > 0, and for every 0 < & < € < 1 there exists
an averaging sampler for the domain {0, 1} that uses r = m+ O (log(1/0)) random bits and

1+
t=0 (S%log%) random samples. This sampler can be constructed in time poly(t,r) =
poly(m,log(1/6),1/¢).

After the sampling step, we will have to test if the sampled polynomials are irreducible. For

this, we will use the following well known algorithm.

Algorithm 4.6. Let ¥ be a finite field. There exists a deterministic algorithm that on input a
polynomial f € Fy[w| of degree a, decides whether f is irreducible in time poly(logq,a).

Proof (sketch). The algorithm is based on the classical characterization of irreducible polyno-

mials over finite fields. For each integeri = 1,...,a — 1, compute

ged(f(x), x4 — x).

Since every irreducible polynomial of degree i over F, divides x? — x, the polynomial f is
irreducible over I, if and only if all these greatest common divisors are equal to 1.

Each computation of x mod f and the corresponding gcd can be carried out in time poly-
nomial in logg and a ([vzGG13]), and since the number of iterations is a — 1, the overall running

time is poly(logg,a). O
We are ready to construct [E efficiently.

Theorem 4.7. Let F =¥y, let k = 2! be some positive power of 2 and let § > 0. There ex-
ists a probabilistic algorithm that uses O(klogq+log(1/8)) random bits and runs in time
poly(klogg,log(1/d)), such that with probability at least 1 — & outputs { polynomials p; €
Flwi,...,wy), such that P = (py,...,p¢) <F[wy,...,wy] is maximal and E = F|wy,...,wy] /P is
a field extension of degree k over F. Moreover, for all 1 <i < { we have p; = wi2 — hj, where

h; € Fqgifl Wi,...,wi_1]. Otherwise, the algorithm declares failure.

Proof. We begin by setting the following notation.
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Ri={f €Fq[wi,...,wi : deg,, f < 1forall 1 <j<i} Notice that|R;| < 4.

D =Tli<i<e(Ri\ {0}).

m = log|D| = O(klogq).

EZT{.

Fora= (ou,...,04) € D, let p(a) = (p1,...,pe) = (W3 — ay,...,ws — &). Let Fo =F. For
0<i<¥, let

Fip1 =Filwit1]/pivi(wis1)-
Let E =Fy, and let P = (py,...,p¢) <F[wy,...,we]. Notice that Fy is a field if and only if
P <Fywi,...,w] is maximal, which happens if and only if p; € F;_[w;] is irreducible for all
1<i</t.

We will use a sampler to find a € D such that E is a field. Let S: {0,1}" — D' be the (8, ¢€)
sampler given by Theorem 4.5 with B =1, r=m+ O(log%) and t = O (81—210g(1/6)>2. Let
f: D — {0,1} be the indicator function such that f(a) = 1 if and only if p(a) is maximal. It is
well knownt that for every finite field of characteristic different than 2, the probability that an
invertible element is a square equals 1/2 *. Hence, if (c,...,ay) € D is chosen uniformly, the
probability that all polynomials p; € F;_{[w;] are irreducible is 1/2¢ = 1/k. Hence, E[f] = 1/k.

Using the sampler S we pick t = O(k*1og(1/8))? values (ay,...,a,) € D' using r = m +
O(log(1/6)) random bits in time poly(klog(g),log(1/d)), such that

Pr
(Z1,...Z0)~S(Uy) [

Y r7) Bl

ge] >1-9.

Since E[f] = % and € = %{ this implies in particular that with probability at least 1 — § over
(Z1,...,Z) ~S(U,), f(Z;) =1 for at least one i € [t].

On input a sampler seed z € {0,1}", we compute S(z) = (z1,...,%), and for each z; =
(ai,...,oy) € D, we testif f(z;) = 1, as follows:

e For all i from 1 to ¢, do:
— Run Algorithm 4.6 to check if p(w;) € F;_;[w;] is irreducible. If not, return false.

¢ Return true.

“In characteristic 2, one may replace the sampling of polynomials of the form wi2 — @; by sampling arbitrary
monic quadratic polynomials w? + o;w; + ;. By the prime polynomial theorem, such a polynomial is irreducible
with probability at least 1/2 — 1 /g, and an analogous analysis applies. We omit this case, as our results are already
taking place only for large characteristic.
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If we have found that indeed f(z;) = 1 for some i € [t], return (py,...,ps). Otherwise, the
algorithm declares failure.

Recall that the runtime of each irreducibility test is at most poly (log|F;_;|) = poly(k logg).
Thus, the overall runtime of our algorithm is poly(k,logg,log(1/8)) Finally, recall that if
f(a) =1 then each p; € F;_i[w;] is an irreducible polynomial of degree 2, and hence [F; :
F;_1] = 2. Therefore,

E:F]= ] [Fi:Fiq]=2" =k

1<i<t

This completes the proof. []

4.2 The PHSG Construction

In this subsection we prove the following theorem.

Theorem 4.8. Let F =¥, be a finite field, d a positive integer and 6 > 0. Let k = 2¢ be a
power of 2. Then, there exists an absolute constant ¢ such that if § > c¢- %, there exists a PHSG
H: T — (F<wy,...,wg)" with density 1 — 8 for polynomials of degree at most d over F, which
can be constructed in time poly(d,n,k,logq), and has seed length O(dlogn + klogq).

Proof. We start by picking pi,...,ps € F[wy,...,w/| using the algorithm from Theorem 4.7
with 6’ = §/2. This algorithm uses O(klogg +1og(1/8)) = O(kloggq) random bits; i.e. there

exists an efficiently computable map

A: Ty — (F;g[wl,...,wd)g

such that with probability at least 1 — &’ over ¢t € T} we have that

A(t) = (p1,---,pe) EF[wi, ..., w]

satisfies that P = (p1,...,p¢) <F[wy...,wy| is a maximal ideal, and p; = wi2 — h; where h; €
IE‘qSI Wi,...,wi—1],and E=F[wy...,w/|/Pis afinite field with ¢~ elements. Moreover, log|T;| =
O(kloggq).

If the algorithm from Theorem 4.7 did not declare failure, we can construct the field

E:F[Wl,...,Wg]/(pl,...,pg).

Let H: T, — E" be the [GX14] HSG given by Theorem 2.5 for n-variate polynomials of degree
at most d over E, set with 8’ = §/2. Recall that H has seed length O(dlogn +log(1/8)) =
O(dlogn+kloggq). Let

@:E—TF[wi,...,w/]
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be the F-linear map such that deg(¢(c)),, < 1foralli € [¢]. By Claim 4.2,
H = ¢Oﬁ2 T — (F?g[wh.. . ,Wg])n

is a PHSG for n-variate polynomials of degree at most d with density 1 — &'.
Let
H:T1 xT, — (IFq[wl,...,Wg])"

be the map such that for (¢,7,) € T} x T», if A(#;) succeeds then H(t,-) = H', and otherwise,
for concreteness, we set H(t1,-) = 0. Now, fix some nonzero f € Fxy,...,x,] of degree at most
d. With probability at least 1 — &’ over t; € Ty, A(t;) succeeds, and conditioned on that, with
probability at least 1 — &’ over 1, € 1>,

f(H(t1,12)) = f(H'(12)) # 0.

Therefore,
Pr [f(H(n,1)) #0]>1-28"=1-36,

(tl ,tz)GTl x Ty

which completes the proof. ]

5 Our PRG Construction

Let n,d be positive integers, let ¢ = p* be a prime power with p > d(d —1)+ 1 and g >
C((dlogd)*/€?), for some universal constant C to be determined later on, and let € > 0. We

now present the construction of our &-error PRG
G: S — !

for polynomials f € F[x,y] =Fy[x; ..., x,,y] of degree at most d. Let c be an absolute constant,
larger than the constants appear in Theorem 2.5, Theorem 4.8 and Lemma 2.10. We will need
one PHSG and one HSG for the construction.

1. Let k = 2¢ be a power of 2 such that Lo‘éq—‘ +1<k<2 LO‘;CI-‘ +2. Let

Hy: Ty — (Bt wi, ..., wi])"

be the PHSG given by Theorem 4.8 for n-variate polynomials over I, of degree at most
2d —1,with & =c-d/q" < c- %, and seed length O(dlogn+logq).
2. Let
Hy: T, — IFZ

be the HSG given by Theorem 2.5 for n-variate polynomials over [, of degree at most d,
with 8, = c¢-d/q and seed length O(dlogn +loggq).
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We are now ready to define G. Let S =11 x 1> X Iﬁ‘é x Fy, x Fy. Define G: § — IE"q‘“ by
G(r,s,t,u,v) = (Hy(r)1(t) - v+Hy(s);-u,... . Hi(r),(t) - v+ Hy(s), - u,u), (5.1)

where t = (t1,...,17).

Note that the running time of G on input s € S is poly(n,d,logg). Indeed, by Theorems 2.5
and 4.8, the HSG and PHSG can be computed within this time bound, and the additional
step of evaluating £ = O(logd) variables in n polynomials of degree at most ¢ requires only
poly(n,logd,logq) time.

We proceed by showing that if f is indecomposable, then the random restricted polynomial

F = f op remains indecomposable with high probability.

Proposition 5.1. Ler f € F,[x,y] be an indecomposable (n+ 1)-variate polynomial of degree
at most d over F,. Let (r,s) be a random element of T\ x T». Let H(s) = (ay,...,a,) = a, let
Hi(r) = (b1(W),...,by(W)) =b(W) for w = (wy,...,wy), and finally, denote

F = f(bi(w)x+ary,...,b,(W)x+ayy,y) € Fylx,y,w].

Then,
Pr[F is indecomposable over | > 1—& — (2971 —1)4;.

Proof. Recall that s, is the [F,-linear automorphism of F,[x,y] that fixes y and sends x; to x; +
a;y. As f is indecomposable over I, so is sa(f). By Lemma 2.8, sa(f) is also indecomposable
over Fq. By Lemma 2.9, we further have that s, (f) —¢ is irreducible over IFq—(t)
By Lemma 3.3, there exists a nonzero polynomial B € [F,[x] of degree at most d such that if
B(a) # 0, then
sa(f)—t=c-g (5.2)

where c € F ; and

8 € Fy(1)x,y] C Fy(t)[x,y]

is a degree-d polynomial satisfying Hypothesis (H). Since H, is a HSG, the event B(a) # 0
happens with probability at least 1 — 8. Condition on this event, so Equation (5.2) holds. As
sa(f) —t is irreducible over m, SO is g.

LetK= W andletlL = W be such that wy, ..., wy are new variables. Let m =2¢"1 —
1. As g € K[x,y], by Lemma 3.8, there exist nonzero polynomials Qy,...,Q, € K[zy,...,z,]
of degree at most 2d — 1 such that the union of the zero loci of these polynomials contains
all b* = (b7,...,b;) € L" for which g(bjx,...,byx,y) is reducible over L. H; is a PHSG with

density 1 — &; for polynomials of degree at most 2d — 1 over (). Therefore, for each i € [m],
the probability that Q;(b(w)) = 0 is at most J;.
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Condition on the event that Q;(b(w)) # 0 for all i € [m]. Then, g(b;(W)x,...,by(W)x,y) is
irreducible over L. On the other hand, note that

¢ (b1 (W)x, ... ba(W)x,y) = (5a(£)) (B1(W)x, . .., by(W)x,y) —1

:f(bl(w)x+a1y>"~7bi’l(w)x+any7y)_t:F_ta

where the second step uses the definition s,(f) = f(x1 +a1y,..., X, +any,y) € Fy[x,y].
Thus, F —t is irreducible over L, and hence as an element in F, () (w)[x,y]. By Lemma 2.12,
it is then irreducible as an element in F,(¢)(w,x)[y]. Note that the coefficient of y¢ in F —1 is

and element in F,. Thus, as an element in (I%(t)[w,x]) [v], the content of F —¢ is ¢(F) = 1.
Hence, by Corollary 2.13, F —t is irreducible as an element in

Fy(r)[w,x] [y] = Fy (1) [x, y, w].
By Lemma 2.9, F' is indecomposable over Fq. So it is indecomposable over [F,,.

Overall, note that the indecomposability of F over IF,, relies on the conditions B(a) # 0 and
O1(b(w)) #0,...,0,(b(w)) # 0. By the union bound, these conditions are simultaneously
satisfied with probability at least 1 — & —m&; = 1 — & — (241 — 1)§;, which completes the
proof. []

Theorem 5.2. There exists an absolute constant C > 0 such that for all € > 0 and g > C (dk;—%d)A

with char(F,) > d(d — 1) +1, G as defined in Equation (5.1) is a PRG for (n+ 1)-variate
polynomials of degree at most d over F, with error € and seed length O(dlogn+1loggq).

Proof. Let C = 4-16% - ¢? for the absolute constant ¢ defined earlier. Let f € F,[x,y] be a
polynomial of degree at most d. We want to prove that f(G(Us)) and f (U]FZ+I) are €-close in
statistical distance. We may assume that f is non constant, since the claim is trivial otherwise.

Our first step is the same as in [DV22] and [DGV?24]: f can always be written in the form
f =goh, where g € F,[z] is a univariate polynomial and & € [F,[x,y] is indecomposable over
F,. Let D = h(G(Uy)) and D' = h(UIF;“)' Then f(G(Us)) = g(D) and f(U]F;}“) =g(D).IfD
and D’ are e-close, then g(D) and g(D’) are also e-close. Thus, by replacing f with i, we may
assume that f is indecomposable over IF,.

Let r,s,a,b and F be as in Proposition 5.1. Then, by Proposition 5.1, the probability that '
is decomposable over [F, over a random choice of r and s is at most 247184+ 68, <2c¢-d /q. Fix

r and s such that F is indecomposable over FF, and note that by definition,
f(G(r,s,t,u,v)) = F(v,u,t).

Applying Lemma 2.10 to F shows that, for such fixed r and s, the distribution of F(t,u,v), i.e.,
f(G(r,s,t,u,v)), over random #;,u,v € F, is &'-close to Ug,, where &’ < - (degF)*/,/q. Notice
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that
degF <d-l¢<d-4logd.

This implies that the statistical distance between f(G(Us)) and U, is at most

d dlogd)?
2c._+16c.ﬂ
q

<eg/2.

On the other hand, as f is also indecomposable over I, applying Lemma 2.10 to f shows
that f (UFZH) is &'-close to U, , where &' = c- d?/\/q < €/2. Therefore, the statistical distance
between f(G(Us)) and f(UFZ+1) is at most €.

The seed length of G is
log |T1| +log|T3| + ¢logg+2logg = O(dlogn+loggq),

which completes the proof. O]

6 An Approach Towards Smaller Fields

For ¢ = p“, p prime, denote by Tr,,,: I, — [, the absolute field trace. Assume that we are
given a PRG G: § — I}, for n-variate polynomials of total degree at most d over I, with error

€. Importantly, assume that g must be such that
q=7(d,e)

for some threshold function 7. (In our construction, T = for some universal constant

C(dlogd)*
g2
C.) Also, assume that we have no lower bound on the characteristic p (which is not the case for
our construction). A natural attempt to construct a PRG for polynomials over smaller fields is

to take traces, namely, G': S — IFZ, where

G'(s) = (Trg—poG)(s) = (Trg—p(G(s)1), -, Trgmp(G(s)n)) -

It turns out that this simple approach works, as long as T mild enough! For concreteness, we fix
€ > ( to some constant, and concentrate on the dependence on d. Moreover, we assume that our
“base” PRG G has a seed of length O(d o(1) logn +1logg), but the proof can easily be adapted to
handle other seed lengths.

Proposition 6.1. Fix some constant & € (0,1). Assume that for any n,d,q such that q >
7(d, &) = t0(d) = d' " for some n € (0,1), there exists an explicit PRG for n-variate polyno-
mials of total degree at most d over F, with error &, and seed length O(dlogn), where c is
some absolute constant.

Then, for any n,d,p where p < d is prime, there exists an explicit PRG for n-variate poly-
nomials of total degree at most d over F,, with error €y, and seed length O((d/p)°"/M logn).
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Proof. Let f € IF;d [X1,...,Xs]. Let g be a power of p soon to be determined. Since deg(Tr,—,) =
q/p, we have that h = foTr,,p: [z — Fp, where we apply traces to each field element indi-
vidually, has degree at most d’ = (dg)/p as a polynomial over F,,. Notice that

£(G'(s)) = h(G(5)),

so G’ fools f with error & whenever ¢ > 7((dq)/p). This amounts to

11
d\ n

¢> (—) |
P

Invoking G with a suitable ¢,°> and degree d’, the seed length becomes

N
O(d'logn+1logg) = O <—) -logn |,
p

as desired. L]

In particular, if such a PRG G exists with any constant 7, then we would get a PRG for
[F,-polynomials with seed length d°(1) - logn, beating Viola’s PRG [Vio09] in the regime where
d = Q(loglogn).
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