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Abstract

We show that for any unsatisfiable CNF formula ¢ that requires resolution refutation width at
least w, and for any 1-stifling gadget g (for example, g = MAJ3), (1) every resolution-over-parities
(Res(@)) refutation of the lifted formula ¢ o g of size at most S has depth at least Q(w?/log S);
(2) every Res(@) refutation of the lifted formula ¢ o g has size Q(w?).

The first result substantially extends and simplifies all previously known lifting theorems
for bounded-depth Res(®). The lifting result of Itsykson and Knop [22] requires gadgets of
logarithmic size and applies only to refutations of depth at most O(nlogn), whereas our result
applies to nearly quadratic depth. The liftings of Bhattacharya and Chattopadhyay [9] and of
Byramji and Imagliazzo [I3] apply to nearly quadratic depth as well, but rely on a much stronger
assumption of (Q(n), 2(n))-DT-hardness, which is far less standard than large resolution width.

Our proof combines the random-walk-with-restarts method of Alekseev and Itsykson [4] with
a new idea: the random walk is defined relative to the structure of the refutation graph, rather
than by a distribution on inputs induced by the formula.

Using this technique, we substantially strengthen the supercritical size-depth tradeoff of
Itsykson and Knop [22], both by improving the depth lower bound and by reducing the size of the
separating formulas to polynomial in the number of variables, with the latter resolving an open
question. In particular, we construct a family of polynomial-size formulas that admit polynomial-
size resolution refutations, while any Res(®) refutation of depth o(n?/log* n) necessarily has
superpolynomial size.

Our second result yields a pure quadratic lower bound on the size of Res(é) refutations,
improving upon the previously known near-quadratic lower bound of [I3].

1 Introduction

Propositional proof complexity studies propositional proof systems used to certify the unsatisfiability
of CNF formulas. One of the central research directions in proof complexity, known as Cook’s
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program, seeks to establish superpolynomial lower bounds on the proof size required by specific
proof systems. The ultimate goal of this program is to prove NP # coNP, which is equivalent to
proving superpolynomial lower bounds for every propositional proof system.

In this paper, we consider two proof systems. The first is resolution, the most extensively studied
propositional proof system. Resolution proves the unsatisfiability of a formula by deriving new
clauses using a single inference rule, which allows one to derive a clause AV B from the clauses
AV z and BV —x. A refutation of a CNF formula ¢ is a derivation of the empty clause from the
clauses of . Important complexity measures are the width of a resolution refutation, defined as the
maximum number of literals in any clause of the refutation, and the depth, defined as the length of
the longest path from an initial clause of the formula to the empty clause.

While many exponential-size lower bounds are known for weak proof systems such as resolution,
we lack superpolynomial lower bounds for Frege systems, which include standard propositional proof
systems from logic textbooks. A Frege derivation is a sequence of Boolean formulas; each of them is
either an axiom or is obtained from the previous by a set of sound and implicationally complete
inference rules. Proving Frege lower bounds is often compared to proving Boolean formula/circuit
lower bounds for explicit Boolean functions, and both seem intractable. However, progress has been
made in restricted settings. An exponential lower bound for constant-depth circuits computing
parity was proven in the 1980s [I8] [1]. Ajtai later used a similar approach to prove a superpolynomial
lower bound for bounded-depth Frege systems [2]. Razborov and Smolenski proved lower bounds
for constant-depth circuits with -, v, A, and MOD,, gates in 1987 [30, 29]. The analogous problem
of proving a lower bound for constant-depth Frege systems using —, V, A and MOD,, gates (denoted
ACO[p]-Frege) is open for all p > 1.

The second proof system considered in this paper is resolution over parities (Res(®)), an
extension of resolution that permits reasoning modulo 2. In contrast to standard resolution, Res()
operates with linear clauses, which are disjunctions of linear equations over Fy. Its resolution rule
allows one to infer C'V D from the premises C' V (f =0) and D V (f = 1), where f is a linear form.
In addition, Res(é) includes a weakening rule, which allows one to derive a linear clause D from a
clause C' whenever C' semantically implies D. The depth of a Res(®) refutation is the maximum
number of resolution steps along a path from an initial clause to the empty clause.

Res(®) is the weakest known subsystem of ACY[2]-Frege for which superpolynomial lower bounds
are still open. This makes the study of lower bounds for Res(®) a particularly important direction.

1.1 Superpolynomial Lower Bounds for Subsystems of Res(®)

The first lower bounds for tree-like Res(&) were proved by Itsykson and Sokolov [24] 25]. Since
then, a number of works have established exponential lower bounds for tree-like Res(®) on classical
combinatorial formulas [20], 21 23] 27, 13].

Chattopadhyay, Mande, Sanyal, and Sherif [14], and independently Beame and Kroth [6],
introduced a lifting approach for proving lower bounds in tree-like Res(®).

Given a CNF formula ¢(y1,¥2,...,%,) and a Boolean function g : {0,1}* — {0,1}, called a
gadget, the lifted formula o o g is defined as the CNF encoding of

So(g(xl,la e ,l’lj),. .. ag(xn,la e 7xn7€))7

where each variable y; in ¢ is replaced by g(z;1,...,2;¢) over fresh variables x;1,...,zi,.
Chattopadhyay, Mande, Sanyal, and Sherif [14] also introduced the notion of k-stifling gadgets.
A Boolean function g : {0,1}¢ — {0,1} is called a k-stifling gadget if, for every a € {0,1} and every



choice of £ — k input variables, there exists an assignment to these £ — k variables such that the
value of g is fixed to a, regardless of the values of the remaining k£ variables.

They [14] showed that if every resolution refutation of a formula ¢ has depth at least h, and g is
a k-stifling gadget, then any tree-like Res(®) refutation of the lifted formula ¢ o g must have size at
least 20"

Efremenko, Garlik, and Itsykson [I5] made the first progress beyond tree-like Res(®) by proving
an exponential lower bound for (bottom-)regular Res(®). Building on this result, Alekseev and
Itsykson [4] established an exponential lower bound for a stronger model—namely, Res(&) refutations
of depth at most nloglogn, where n is the number of variables. Their proof introduced a technique
based on random walks with restarts, which has since become standard in this area. Subsequently,
Efremenko and Itsykson [16] presented an alternative analysis of the same approach, improving the
depth lower bound to nlogn. In all these results, the hard instance is a Tseitin formula over an
O(logn)-degree expander, lifted by an arbitrary 2-stifling gadget.

Itsykson and Knop [22] proved the following lifting theorem.

Theorem 1.1 ([22]). Suppose that every resolution refutation of ¢ has either width at least w or
depth at least h. Let s be an integer such that A > s?w. Then any Res(®) refutation of po@®,0MAJj5
has either size at least 2% or depth Q(s?w).

Theorem implies that any CNF formula with resolution width Q(n) can be lifted by an
O(log n)-size gadget to a formula for which every Res(®) refutation has either exponential size or
depth Q(nlogn).

Another consequence of Theorem is that, when combined with the supercritical width—depth
tradeoff for resolution due to Buss and Thapen [10], it yields a supercritical tradeoff between depth

and Res(®) size. Specifically, there exists a family of formulas v, on n variables, of size nOlog? n),

that admit resolution refutations of size nC(°&*n)

, yet for which any Res(®) refutation of size at
most 27/1°8" 7 must have depth Q(nlogn). This depth bound exceeds the trivial worst-case upper
bound of n, which is why such a tradeoff is termed supercritical. Moreover, applying Theorem
with larger values of s shows that Depth-n*/3—¢ Res(®) does not polynomially simulate resolution
for any € > 0.

All of the aforementioned papers [4] [16], 22] apply the random-walk-with-restarts method under
the uniform distribution on inputs. This choice leads to an exponentially small success probability,
which in turn forces the random walk to terminate after only a small number of rounds, thereby
limiting the achievable depth lower bounds.

Bhattacharya and Chattopadhyay [9] were the first to apply the random-walk-with-restarts
technique under a non-uniform input distribution. This innovation yields a 2" lower bound for
the size of Res(®) refutations of nearly quadratic depth n?~¢. Their hard instance is obtained by
lifting a formula with the IP gadget of size O(logn). The base formula is required to satisfy an
(2(n),2(n))-DT hardness property; although this property is somewhat technical, it is known to
hold for Tseitin formulas over constant-degree expanders.

In recent work, Byramji and Impagliazzo [13], building on ideas from lifting theorems for parity
decision trees [14 [0, 28| [12], obtained several additional results. Among them a 2"° lower bound on
the size of Res(®) refutations of the binary pigeonhole principle BPHP™ ™ of depth n?~¢. Their main
lifting contribution is an improvement in the gadget size: it suffices to lift an (2(n), Q(n))-DT-hard
formula using an arbitrary 1-stifling gadget. When applied to Tseitin formulas, this yields lower



bounds for formulas of size O(n), meaning that the refutation depth is almost quadratic in the
formula size, rather than in the number of variables as in previous works.

In a recent paper, Alekseev and Gaevoi [3] introduced a new family of formulas, the Constrained
Bit Pigeonhole Principle, and proved a lower bound of 2" for Res(®) refutations of depth at
most n?~¢. Using these formulas, the authors were able to apply the random-walk-with-restarts
framework with the uniform distribution over inputs.

Recently, Efremenko and Itsykson [I7] established that for every € > 0, a lower bound of o
holds for Depth-n Res(®) refutations, where n denotes the number of variables in the refuted
formula. Consequently, this lower bound is essentially as strong as what is predicted by the Strong
Exponential Time Hypothesis (SETH). Their proof relies on a refinement of the random-walk-with-
restarts method, combined with a lifting argument from formulas of extremely large resolution
width.

1—e¢)

1.2 Polynomial Lower Bounds for Unrestricted Res(®)

Khaniki [26] proved an almost quadratic lower bound Q(l ) for a dag-like version of Res(&)

n
o loglogn n
with syntactic weakening rules. It remains unclear Whither this lower bound persists for the
semantic weakening rules that have since become standard. Although these variants of Res(®) are
polynomially related [25], this relationship does not yield polynomial lower bounds.

Prior to our work, the only known superlinear lower bound for the standard version of Res(®)

(i.e., with semantic weakening) followed from the results of Byramji and Impagliazzo [13]. Specifically,
2
IOngn
formulas over constant-degree expanders lifted by the MAJ3 gadget.

their size-depth tradeoff implies an Q< > lower bound on the size of Res(®) refutations of Tseitin

1.3 Our Goals

The main goal of this paper is to identify a standard complexity measure of CNF formulas that
enables lifting to size lower bounds for Res(®) refutations of depth up to n?~¢. Existing lifting
results by Bhattacharya and Chattopadhyay [9] and by Byramji and Impagliazzo [13] rely on a
rather strong and nonstandard assumption of (€2(n), (n))-DT hardness. Our objective is to replace
this assumption with a more natural and well-studied measure.

Motivated by the lifting result of Itsykson and Knop [22], which applies to smaller depths, and
by the result of Alekseev and Itsykson [4], which lifts resolution width to width in Res(&), we aim to
show that resolution width-—defined as the minimum possible width of a resolution refutation—can
serve as an appropriate source of hardness.

Resolution width is a standard and extensively studied measure in proof complexity. Since the
seminal work of Ben-Sasson and Wigderson [§], which showed that resolution width lower bounds of
nl/2te imply exponential lower bounds on resolution size, proving width lower bounds has become
the standard approach for establishing size lower bounds in resolution. Atserias and Dalmau [5]
provided a game characterization of resolution width that offers a general framework for proving
such lower bounds and, moreover, implies that clause space in resolution is also lower bounded by
resolution width. This characterization readily implies that any (Q(n), Q(n))-DT hard formula has
resolution width at least Q(n).

Beck and Impagliazzo [7] demonstrated that resolution width can be lifted via the parity gadget
P9 to resolution size: if a formula ¢ requires resolution width w, then the composed formula ¢ o @9



requires resolution size 22(®).

Finally, Garg, G66s, Kamath, and Sokolov [19] showed that resolution width lifts via an indexing
gadget to size lower bounds in cutting planes and in DAG-like communication protocols. The latter
result, in particular, implies lower bounds for a wide range of proof systems as well as for the size of
monotone Boolean circuits.

Another goal of the paper is to address the near-quadratic lower bound for Res(&) established
via the size—depth tradeoff of [I3]. We aim to obtain a direct proof of such a lower bound, or possibly
of a stronger one.

1.4 Our Contributions
We prove the following lifting theorem.

Theorem 1.2 (Theorem [6.1)). Assume that every resolution refutation of an unsatisfiable CNF
formula ¢ has either width at least w, or depth at least h. Let g : {0,1}* — {0,1} be a 1-stifling

gadget, where ¢ is a constant. Then any Res(®) refutation of ¢ o g of size at most S has depth at
least Q (min{h, w?/logS}).

A special case of Theorem [I.2] yields a lifting theorem from resolution width.

Corollary 1.3. Assume that every resolution refutation of an unsatisfiable CNF formula ¢ has
width at least w. Let g : {0,1}* — {0,1} be a 1-stifling gadget, where ¢ is a constant. Then any
Res(®) refutation of ¢ o g of size at most S has depth at least 2 (w2/ log S).

Corollary implies that, starting from formulas requiring resolution width ©(n), one obtains
2" lower bounds for Depth-n?~¢ Res(®) refutations, as in [9} [13]. Moreover, if the starting formula
is an O(1)-CNF and has O(n) clauses, then, as in [13], one can obtain formulas for which the
size—depth tradeoff yields nearly quadratic depth in terms of the formula size, rather than the
number of variables. The advantage of our result compared to [9, [I3] is that it relies on a standard
complexity measure and applies to a wide range of formulas, thanks to the numerous known lower
bounds on resolution width.

Let us compare Theoremwith the main result of [22], namely Theorem First, Theorem (1.2
relies on a significantly simpler gadget: any 1-stifling function, as opposed to a composition of parity
with a 2-stifling gadget (namely MAJs). Second, Theorem yields larger depth lower bounds
without a substantial increase in the size of the formula.

Combining Theorem [I.2] with the supercritical width—depth tradeoff for resolution due to Buss
and Thapen [II], we obtain the following theorem.

Theorem 1.4 (Theorem |6.4). There is a family of formulas v, from n variables of size poly(n)
such that 1), has polynomial size resolution refutation for any S > 0, any Res(®) refutation of size
S has depth at least Q(n?/(log® nlog S)).

Theorem improves the result of [22] in two respects. First, the formulas v, have polynomial
size and admit polynomial-size resolution refutations, whereas in [22] the corresponding formulas
were only of quasipolynomial size. This resolves an open question posed in [22]. Second, the
theorem applies to a wider range of depths, which can be used to obtain stronger separation between
resolution and bounded depth Res(&).

Corollary 1.5 (Corollary . If d(n) = o(n?/log* n), then Depth-d(n) Res(®) does not polyno-
mially simulates resolution.



Size lower bound. Applying Corollary to an O(1)-CNF formula ¢ with n variables and O(n)
clauses that requires resolution width (n), and choosing S = n? and g = MAJ3, we obtain that
every Res(®) refutation of ¢ o MAJ3 (which has size O(n)) with size at most n? must have depth at

least €2 (1%2)' The same lower bound can also be derived from the results of [13]. We strengthen
this conclusion by obtaining a pure quadratic lower bound. This improvement holds for the same

class of formulas as above and is established by the following theorem.

Theorem 1.6 (Theorem [7.4). Let ¢ be an unsatisfiable CNF formula such that every resolution
refutation of ¢ has width at least w. Let g : {0,1}* — {0,1} be a 1-stifling gadget. Then any

Res() refutation of ¢ o g has size at least %

1.5 Our Techniques

We always use the top-down definition of Res(®) as a parity decision DAG [15]. A parity decision
DAG refuting an unsatisfiable CNF formula ¢ is a directed acyclic graph with a single source and
several sinks, satisfying the following properties:

— FEach node v of the DAG is labeled with an Fa-linear system &, over the variables of ¢.

— The source is labeled with the empty system (i.e., identically true).

— For every sink v, there exists a clause C' of ¢ such that @, is inconsistent with C.

— Every non-sink node v is additionally labeled with a linear form f, and has two children vg
and v;. The edge (v, vg) is labeled by the equation f, = 0, and the edge (v, v1) is labeled by
fv = 1. Moreover, for each a € {0,1}, the system ®, A (f, = ) semantically implies ®,,, .

Quadratic size lower bound. Let us start with presenting the proof idea of Theorem

Let ¢(y1,...,ym) be an unsatisfiable CNF formula whose resolution width is at least w, and let
g:{0,1}* — {0,1} be a 1-stifling gadget. Recall that the lifted formula ¢ o g is over the variable set
{z;j | i€ [m], j€[f]}. Suppose that G is a parity decision DAG refuting ¢ o g. Our goal is to show
that the size of G is at least %

We prove this by induction on w. For the induction step, it suffices to construct a restriction p

such that:

— the restricted DAG G|, refutes ¢’ o g, where ¢’ is an unsatisfiable formula of resolution width
at least w — 1; and

— the restriction p falsifies at least w linear systems labeling nodes of GG. Consequently, the size
of G|, is smaller than the size of G by at least w.

Once such a restriction is obtained, the induction follows immediately.

Fix an index 4 € [m] and choose a € {0, 1} such that the restricted formula ¢|,,—, has resolution
width at least w — 1. Since g is 1-stifling, there exists a partial assignment o that assigns Boolean
values to all variables {z;; | j € [¢]} except for a single variable z; j,, in such a way that the value
of g(xi1,...,xiy) is fixed to a, independently of the value of z; j,.

Observe that G|, is a parity decision DAG refuting ¢l,,—, © g. Hence, we may assume that
the variable z; j, does not appear in the clauses falsifying at the sinks of G|,. Therefore, we may
substitute an arbitrary affine form h for x; j,—that is, define

p =0 U{zij = h},



and the resulting DAG G/, still refutes ¢[y,—q 0 g.

Hence, it suffices to find an affine equation that is semantically implied by at least w linear
systems labeling nodes of G. Once such an equation is identified, we choose the variable z; j,
appearing in it and substitute for it an affine form that falsifies the equation, thereby eliminating
all these nodes.

By the result of Alekseev and Itsykson [4], any parity decision DAG refuting ¢ o g contains a
node v whose associated linear system &, has rank at least w. Using standard properties of parity
decision DAGs, one can show that along the path from the source to v there exists an affine equation
that is implied by at least w of the linear systems labeling nodes on this path. This completes the
induction step.

Lower bound for bounded-depth Res(®). Next, we describe our proof strategy for our main
lifting result. For simplicity, we concentrate on the proof of Corollary

Again, consider a parity decision DAG G of size S refuting ¢ o g.

The proof goes by induction on the resolution width w of the CNF (. The key step of the proof
is to find a node v in G on depth at least w/6 and to substitute some of the variables of ¢ o g by
affine functions of the remaining variables in such a way that the subgraph of G with the root in v
refutes ¢’ o g and the resolution width of ¢ is at least w — O(log S). Once we show how to find
such a v, the result follows easily.

To find the vertex v, similarly to the previous papers, we adopt the random-walk-with-restart
technique. We follow a random path in G starting from the root for O(w) steps. We show that if
the rank of the linear system ®,, in the final vertex of the path is d, then this vertex can be reached
by the random path only with probability 2~ (@) (here, for simplicity we assume that the size ¢ of
the gadget g is constant). Thus, if all final vertices have linear systems of rank larger than O(log S),
then there are more than S of them, which contradicts the restriction on the size of G. As a result,
there is a vertex v that has a system of rank at most O(log S). We show that in this case, we can
fix O(log S) input variables of ¢ to obtain a refutation of ¢’ o g with the desired bound on the
resolution width of ¢’.

To achieve that, as in the previous case (that is, the quadratic size lower bound), we fix in each
block of variables of ¢ o g all but one variable to 0/1 constants. These values are chosen—again
as in the previous case—so as to reduce the width of ¢ by at most one per block. The remaining
unfixed variables are then substituted by affine functions chosen to satisfy the linear system ®,,.
A sufficient condition ensuring that such a restriction satisfies the linear system is formulated in
terms of closure (see Lemma for details). By the properties of closure, it suffices to verify this
condition for the linear system written along the edges of the path. This is the standard use of
closure, dating back to its introduction in [15].

The key novelty of our argument is the way we pick a random path. Previous papers picked a
random input and followed the path corresponding to this input. Instead, we gradually fix the input
during the random walk: on each step of the walk, we fix some bits in order to be able to move to
the next vertex. For this, in each intermediate vertex v of the path, we consider the linear form f,
queried in v. We pick some 7 such that {z;; | j € [{]} contains a variable x;; of f. We consider the
variable y; of ¢ and pick the value a € {0,1} for it such that, informally speaking, fixing y; = a
decreases the resolution width of ¢ by at most 1. Then we flip a coin and do one of the following
with probabilities 1/2:

(1) Assign the values to variables in {x; ; | j € [¢]} uniformly at random among g~ '(a).



(2) Assign all variables of {x; ; | j € [¢]} except x;; in such a way that g evaluates to a regardless
of the value of x;; (this is possible since g is 1-stifling). Then we fix z;; to be the linear
combination of other variables of f in such a way that f evaluates to 0 and 1 with probabilities
1/2.

Next, we repeat the procedure, in the second case in the next vertex of (G, and in the first case
potentially in the same vertex of G.

The combination of these two actions allows us to show that the probability that the path
reaches any given vertex labeled by a linear system with large rank is small. Here we use properties
of 1-stifling gadget again (see Lemma . Additionally, the second action ensures that the random
path makes many steps in G.

Organization. The rest of the paper is organized as follows. In Section [2| we give the necessary
definitions and prove the basic properties of 1-stifled gadgets. In Section [3] we study proof-
complexity properties of CNF formulas via families of games and winning strategies, which are
typically represented as sets of partial assignments. In Section 4] we analyze the application of
affine restrictions to parity decision DAGs computing lifted formulas, and we present a sufficient
condition under which a linear system can be satisfied by an affine restriction of small size. In
Section [5] we discuss the construction of the random paths and their properties. In Section [, we
combine everything together to obtain our lifting result and its corollaries. Finally, in Section [7], we
prove a quadratic size lower bound.

2 Preliminaries

Throughout this paper, all scalars are from the field Fo. Let X be a set of variables taking values
in Fo. A linear form in variables from X is a homogeneous linear polynomial over Fy in variables
from X or, in other words, a polynomial Zf x;a;, where x; € X is a variable and a; € Fy for all
i € [n]. An affine form is an arbitrary linear polynomial over Fy, i.e. Y. z;a; + ag, where z; € X is
a variable and a; € Fq for all i € {0,1,...,n}. A linear equation is an equality f = a, where f is a
linear form and a € Fs.

2.1 CNF Formulas

A literal is either a propositional variable or its negation. For a propositional variable x, we write
20 := -z and 2! := x.

A clause is a disjunction of literals. The empty clause is identified with the constant false. A
CNF formula is a conjunction of clauses, and the empty conjunction is identified with the constant
true.

Observe that a conjunction of CNF formulas is again a CNF formula. Let ¢1, ¢9,..., ¢ be CNF

formulas, and assume that for each i € [k],

¢; = /\ Cij,

JEK;

where each Cj ; is a clause. We define the standard CNF representation of the disjunction \/f:1 d;



to be the CNF formula
N (Crjy VCojy VeV Cijy) (1)

(J15e-rJk)ERKL X X K,

2.2 Partial Assignments and Affine Restrictions

Affine restrictions. By an affine restriction we mean a set of assignments of the form

p={z1:= f1,22:= fo,..., 2k = fi},

where 1, ...,z are distinct variables, each f1,..., fi is an Fe-affine form, and none of the variables
Z1,...,T) occurs in any of the forms f1,..., fx. The set {z1,...,xx} is called the support of p.

Partial assignments. An affine restriction p is called plain, or a partial assignment, if all affine
forms f; from the right hand sides are 0/1-constants.

We say that a partial assignment p satisfies a literal x® if © := a € p, and falsifies x® if
rz:=1—-ac€p.

Let C be a clause and let p be a partial assignment. The restricted clause C|, is defined as
follows. If p satisfies at least one literal of C, then C, is the constant 1, and we say that p satisfies
C. Otherwise, C|, is obtained from C by deleting all literals falsified by p. We say that p falsifies
C if C|, is the empty clause.

For a CNF formula ¢ and a partial assignment p, we define the restricted CNF formula ¢|, as
follows. The formula ¢|, is the constant 0 if p falsifies any clause of ¢; otherwise,

(b‘ﬂ = /\ C’p~

Cé€¢: p does not satisfy C

2.3 Resolution

Let ¢ be an unsatisfiable CNF formula. A resolution refutation of ¢ is a sequence of clauses
C1,Co,...,C5 such that Cs is the empty clause (i.e., identically false) and for every i € [s] the
clause Cj is either a clause of ¢ or is obtained from previous clauses by the resolution rule that
allows us to derive a clause C'V D from clauses C'V x and D V —zx.

The size of a resolution refutation is the number of clauses in it. The depth of a resolution
refutation is the length of the longest path between the empty clause and the clause of the original
formula. The width of a resolution refutation is the maximal size of a clause from the refutation,
where the size of a clause is the number of literals it contains. The resolution width of an unsatisfiable
CNF formula ¢ is the minimal possible width over all resolution refutations of ¢.

2.4 Resolution Over Parities

A linear clause is a disjunction of Fo-linear equations: \/'_,(f; = a;). Note that over Fy a linear
clause \/'_, (f; = a;) may be represented as the negation of a linear system: — A'_, (fi = a; + 1).

Now we define the proof system resolution over parities (Res(®)) [25].

Let ¢ be an unsatisfiable CNF formula. A Res(®) refutation of ¢ is a sequence of linear clauses
Cy, Cy, ..., Cs such that Cj is the empty clause (i.e., identically false) and for every i € [s] the
clause Cj is either a clause of ¢ or is obtained from previous clauses by one of the following inference
rules:



— Resolution rule allows us to derive a linear clause C'V D from linear clauses C'V (f = a) and
DV (f=a+1).

— Weakening rule allows us to derive from a linear clause C' any linear clause D in the variables
of ¢ that semantically follows from C (i.e., any assignment satisfying C' also satisfies D).

The size of a Res(@) refutation is the number of linear clauses in it. The depth of a Res(&)
refutation is the maximal number of resolution rules applied on a path between a clause of the
initial formula and the empty clause. Note that weakening rules are not counted in the definition of
the depth. The width of a Res(®) refutation is the maximal rank of the negation of a linear clause
from the refutation.

Remark 2.1. A resolution refutation of a formula ¢ is a special case of a Res(®) refutation, where
all linear clauses are plain (i.e., disjunctions of literals).

For any function f(n), we denote by Depth-f(n) Res(®) the subsystem of Res(®) consisting
of refutations with depth at most f(n), where n is the number of variables in the formula being
refuted.

For a linear clause C we denote by L(C) the set of linear forms that appear in C; i.e.
L (\/le(fz = ai)) = {f1, fo,..., ft}. The same notation we use for linear systems: if ¥ is a
Fy-linear system, L(¥) denotes the set of all linear forms from .

2.5 Parity Decision DAG

We say that an Fo-linear system ®1 semantically implies an Fo-linear system ®o if every assignment
satisfying @ also satisfies ®3. We denote semantic implication by ®; = ®s.

A parity decision DAG (also known as an affine DAG) is a directed acyclic graph with a single
source and several sinks, satisfying the following properties:

— Each node v of the DAG is labeled with an Fo-linear system &,,.

— Every non-sink node v is additionally labeled with a linear form f, and has two children vg
and v1. The edge (v, vg) is labeled by the equation f, = 0, and the edge (v, v1) is labeled by
fv = 1. Moreover, for each o € {0,1}, the system ®, A (f, = «) semantically implies D, .

We say that a parity decision DAG refutes an unsatisfiable CNF formula ¢ if all linear systems
and linear forms used as labels are over Vars(y) and

— The source is labeled with the empty system (i.e., identically true).
— For every sink v, there exists a clause C' of ¢ such that &, is inconsistent with C.

The size of a parity decision DAG is the number of nodes, the depth is the length of the longest
source-to-sink path, and the width is the maximal rank of the linear systems labeling nodes of the
DAG.

Similarly to the case of resolution, it is known [I5] that every Res(®) refutation of ¢ can be
efficiently transformed into a parity decision DAG refuting ¢ without increasing its size, width, and
depth.

Lemma 2.2 ([15]). Let G be a parity decision DAG, and let v and v be two nodes such that there
exists a path p from u to v. Let ¥, denote the linear system consisting of the conjunction of all
equations labeling the edges along p. Then ®, A ¥, = @,
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2.6 Lifting Settings

We assume that Y = {y1,92,...,ym} is the set of variables of an unlifted formula ¢.

Let g : {0,1}* — {0,1} be a Boolean function that we refer to as a gadget. We now define
a lifted version of the formula ¢ by a gadget g. The set of variables X of the lifted formula is
partitioned into m blocks, where each block corresponds to a variable from Y. The variables in X
are indexed by two indices, where the first index indicates the block: X = {z;; | i € [m] j € [{]}.

We define the lifted formula ¢ o g as follows. For every i € [m], we substitute the variable y;
by g(xiq, xiz2, ..., xi7g). We then convert the resulting formula into CNF in a clause-wise manner.
That is, for each clause C of ¢, we perform the substitution to obtain a formula C o g, convert it to
CNF, and finally take the conjunction of all resulting clauses over all C.

We now explain how to convert C o g into CNF. Let C' = \/2;:1 y;‘: be a clause. Then C'o g =
Vi g% (i1, %2, -+, i, 0). Assume that for every a € {0,1}, we fix a CNF representation of
the Boolean function ¢g*. Under this assumption, C o g is represented in CNF using the standard
encoding of a disjunction of CNF formulas, as specified in .

An affine restriction p over lifted variables is called block-respecting if, for every block i € [m], p
is either undefined on all variables of block i or defined on all variables of block .

The block-size of p is the number of blocks on which p is defined; we denote it by bsize(p).

Let g : {0,1}* — {0,1} be a gadget. For every block-respecting partial assignment 7 to the
lifted variables X, we define the induced assignment inducedy(7) as a partial assignment o to the
unlifted variables in the same set of blocks where 7 is defined, such that for each i € [m] and j € [/],

o(yij) = g(r(@in), 7(xi2) ... T(2i0))).-

2.7 Stifling and Subspace-Resilient Gadgets

In this section, we introduce and discuss the properties of gadgets that are needed for the lifting
construction.

Definition 2.3 (1-stifling function [I4]). A function g : {0,1}* — {0,1} is called 1-stifling if for
every index i € [¢] and every output value a € {0, 1}, there exists an input = € {0,1}¢ such that for
all inputs y € {0, 1}¢ that agree with = on all coordinates in [¢] \ {i}, we have g(y) = a.

Our main example of 1-stifling gadget is the 3-bit majority function MAJs : {0,1}3 — {0,1}. Tt
is straightforward to verify that this function is 1-stifling.

We also require a property ensuring that the preimages of g are not fully correlated with any
affine subspace of codimension 1.

Definition 2.4 (1-subspace-resilient function). A function g : {0,1}* — {0, 1} is called 1-subspace-
resilient if for every affine subspace W C {0, 1}* of codimension 1 and every y € {0,1}, the preimage
g~ 1(y) is not contained in W.

Next we observe a simple quantitative version of subspace resilience.

Lemma 2.5. Let g: {0,1}* — {0,1} be a I-subspace-resilient function, y € {0,1} and W C {0, 1}¢
be an affine subspace of codimension 1. Pick element = of g~!(y) uniformly at random. Then

Pr[z ¢ W] > 27",
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Proof. Since g is 1-subspace-resilient, we have g~*(y) € W, and hence |g~(y) "W| < |g7(y)| — 1.

Therefore,

g7 (y) N W 1 ¢
Prlgew] =9 W 14 _ <1-927"
e W= ") W)

where the last inequality follows from the trivial bound [g~!(y)| < 2¢. O

The following lemma establishes that 1-stifling functions are necessarily 1-subspace-resilient:
Lemma 2.6. Let g: {0,1}* — {0,1} be a 1-stifling function. Then g is 1-subspace-resilient.
Proof. Any affine subspace W C {0, 1}¢ of codimension 1 can be described by a linear equation

ayxy+ -+ ary=5b (mod 2),

where not all coefficients a; are zero. Suppose, towards a contradiction, that there exists y € {0, 1}
such that the entire preimage g~'(y) is contained in W. Let i € [¢] be an index with a; = 1. By
1-stiflingness, there exists an input = € {0,1}¢ such that g(z) = y for all inputs z agreeing with =
on all coordinates except possibly i. In particular, both x and % belong to ¢~!(y), where 2®
denotes 2 with the i-th bit flipped. However, exactly one of z and 2®* satisfies the defining equation
of W, since flipping the i-th bit toggles the left-hand side. This contradicts the assumption that
g Y(y) € W. Hence, g is 1-subspace-resilient. O

Corollary 2.7. MAJ3 is 1-subspace-resilient function.

2.8 Safe Sets and Closure

In our proofs, we use the notion of closure, introduced in [15], which we review and formalize in this
section.

Let X = {x;; | i € [m], j € [(]} be the set of lifted variables.

Let F be a finite set of Fa-linear forms over a set of variables X. By (F') we denote the linear
span of the set F'. We say that F' is safe if there exists a basis fi, fa,..., fr of (F) and variables
Tiy jis Tigjor - -+ Tigj, Such that ii,49,. .., are pairwise distinct elements of [m] and, for every
t € [k], the variable x;, ;, appears in f; with a nonzero coefficient and does not appear in fs for
s #t.

For a set of blocks S C [m] and a linear form f, let f[\S] denote the linear form obtained from
f by setting to zero (equivalently, removing) all variables whose blocks belong to S. For a set of
linear forms F', define

FN\S]={fI\ST| f € F}.

A closure of a set of linear forms F' is an inclusion-minimal set S C [m] such that F'[\S] is safe.
Lemma 2.8 ([I5]). For any F, its closure is unique.

Since the closure of F' is unique, we denote it by CI(F).
We also need the following properties of closure.

Lemma 2.9 ([15]). Closure satisfies the following properties:

(1) (Monotonicity) If ¥ C G, then CI(F') C CI(G);
(2) (Span invariant) If (F') = (G), then CI(F) = Cl(G);
(3) (Size bound) | CI(F)| 4+ dim(F[\ CI(F)]) < dim(F).
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3 Sets of Good Assignments

In this section, we define certain sets of partial assignments for unlifted formulas that capture
their essential properties. We first give a general, abstract definition; in Subsection [3.1] we give a
specialization that characterizes the width-depth tradeoff in resolution.

Let ¢ be an unsatisfiable CNF formula over the set of variables Y = {y; | i € [m]}.

Definition 3.1 (Set of w-good assignments). For a natural number w, a set H is called a set of
w-good assignments for ¢ if H consists of partial assignments of size at most w and satisfies the
following conditions:

— The empty assignment € belongs to H.

— For every p € H, the assignment p does not falsify any clause of .

— If p € H and |p| < w, then for every variable y; on which p is undefined, there exists p’ € H
such that p C p/, p’ is defined on the variable y; and |p/| = |p| + 1.

Atserias and Dalmau [5] showed that an unsatisfiable CNF formula ¢ admits a set of w-good
assignments that is additionally closed under taking subassignments if and only if every resolution
refutation of ¢ has width greater than w. For our purposes, we require a slightly more refined
characterization capturing the absence of resolution refutations that are simultaneously of small
width and small depth.

3.1 Characterization of Depth-Width Tradeoff

Consider a game between two players, Alice and Bob, defined with respect to an unsatisfiable CNF
formula ¢ and two integer parameters w and h. Throughout the game, the players maintain a
partial assignment to the variables of ¢. Initially, the assignment is empty, and at all times its size
is required to be at most w.

On each turn, Alice has two possible moves:

— If the size of the current assignment is less than w, Alice may ask Bob for the value of some
variable x of ¢. Bob then chooses and assigns a value to z.
— Alice may erase one variable from the domain of the current assignment.

Alice wins if the current assignment falsifies (contradicts) at least one clause of ¢. Bob wins if
he can answer at least h of Alice’s questions without allowing Alice to win.

Now we define a winning strategy for Bob in this game.

Let B be a set of pairs (p,7) of a partial assignment p and an integer number i. We say that B
is a (w, h)-winning strategy for ¢ if the following conditions hold:

— (&,0) € B, where ¢ is an empty assignment.

— If (p,i) € B, then |p| < w, i < h and p doesn’t falsify any clause of .

— If (p,i) € Band p' C p, then (p/,i) € B.

— If (p,i) € B, |p| < w, i < h, and = € Vars(y) \ Dom(p), then there exists a € {0,1} such that
(pU{z:=a},i+1)€B.

It is easy to see that if there exists a (w, h)-winning strategy B for ¢, then Bob wins the game.
Indeed, for every i € {0,1,...,h}, Bob can guarantee that after his i-th response the current partial
assignment p satisfies (p,i) € B. Consequently, p does not falsify any clause of ¢, and Alice cannot
win within h rounds.
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Lemma 3.2 ([22]). Let w > 0 and h > 0 be some integers; and let ¢ be an unsatisfiable CNF
formula such that ¢ doesn’t have a resolution refutation of width at most w and simultaneously
with depth at most h. Then there exists a (w, h)-winning strategy for .

Lemma 3.3. Let B be a (w, h)-winning strategy for ¢, and define
H:={r|(,|7]) € B}.
Then H is a min{w, h}-good set of assignments for .

Proof. Since (e,0) € B, it follows that ¢ € H.

For any p € H, we have (p, |p|) € B, and hence p does not falsify any clause of .

Now let p € H satisfy |p| < min{w, h}, and let y; be a variable of ¢ on which p is not defined.
Since (p, |p|) € B and |p| < min{w, h}, by the definition of a (w, h)-winning strategy there exists a
value a € {0, 1} such that

(pU{yi :==a},[p|+1) € B.
Consequently, p U {y; := a} € H. O

4 Applying Affine Restrictions to Parity Decision DAGs

In this section, we study applications of affine restrictions to parity decision DAGs and introduce
the formal definition of applying an affine restriction. In the next subsection, we consider structured
affine restrictions that can be applied to parity decision DAGs refuting lifted formulas ¢ o g. We
show that, after such an application, the resulting graph is again a parity decision DAG refuting
a lifted formula ¢’ o g, where ¢’ is obtained from ¢ by applying a partial assignment. Finally, in
Subsection we present a sufficient condition under which a linear system can be satisfied by a
structured affine restriction of small size.

Let G be a parity decision DAG and p be an affine restriction. We define a parity decision DAG
G|, as follows. First, we apply p to all linear systems labeling the nodes of G' and to all linear
equations labeling its edges. We then remove all edges whose labels become unsatisfiable under this
substitution. Next, we delete all nodes whose associated linear systems become unsatisfiable, and
subsequently remove all nodes that are no longer reachable from the source.

After these steps, some nodes may have an out-degree one. In this case, we merge such a node
with its unique child and label the resulting node with the linear system of the child.

4.1 Affine Restrictions for Parity Decision DAGs Refuting Lifted Formulas

Proposition 4.1. Suppose a parity decision DAG G refutes a formula ¢, and let p be an affine
restriction that decomposes as a disjoint union p = p; U pa, where p; is a partial assignment (i.e.,
an assignment that sets certain variables to 0 or 1). Assume that every clause of ¢|,, contains some
clause of v, and that ¢ does not involve any variables in the support of ps. Then the restricted
DAG G, refutes 1.

Proof. 1t is straightforward that G|, refutes ¢|,,. Since every clause of ¢|,, contains some clause
of 1, it follows that G|,, also refutes 1. Finally, we have G|, = (G|,,)|,,, which refutes 1|,,. But
|p, = 1, since ¥ does not involve any variables from the support of ps. O
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Proposition 4.2. Consider the lifted formula ¢ o g and i € [m]. Assume that a partial assignment
p is supported on the subset of the ith block of lifted variables and assigns values to variables in
such a way that, regardless of the values of the remaining unassigned lifted variables, p induces a
partial assignment p’ on the variable y;. Then the formula (¢ o g)|, is semantically equivalent to the
formula ¢,y o g and, moreover, every clause of the former formula contains a clause of the latter
formula.

Proof. Since lifting is defined clause-wise, it suffices to prove the statement for an arbitrary clause
C of . If the clause C' does not contain y;, then neither p affects C o g nor p’ affects C.
So, we can assume that C' =y vV D.
Then C o g is the standard CNF representation of the disjunction g*(zi 1, 2,...,zi¢) V (Do g).
We consider two cases.

Case 1: p’ satisfies y?. Then, the Boolean function g*(z; 1, %i2, ..., %iz)|, is identically true, and
hence every clause of the CNF formula ¢%(z;1,2;2,...,%;¢) is satisfied by p. Therefore, C o g is
satisfied by p. In this case, both formulas (C'o g)|, and C|, o g are identically true and thus contain
no clauses in their CNF representations.

Case 2: p/ falsifies y¢. Hence, the formula g%(z;1, %2, ..., r)|, is unsatisfiable.
Observe that (C o g)|, is the standard CNF representation of the disjunction
9 (xi1, Ti2, -, xig)|p V (D o g)|,. Since p assigns variables only from the ith block, we have

(Dog)l,=Dog. So, (Cog)|, coincides with g*(x;1,xi2,...,%i¢)|p, V (D o g) and on the other
hand, C|, o g coincides with D o g.

As g%(xi1, 242, .., %), is unsatisfiable, it follows that (C o g)|, and C|, o g are semantically
equivalent. Moreover, every clause of the former formula contains a clause of the latter formula. [

Definition 4.3 (H-good affine restriction). Let H be a set of w-good assignments for an unsatisfiable
CNF formula ¢. An affine restriction ¢ on variables of ¢ o g is called H-good if it satisfies the
following properties:

— o is block-respecting and has block-size at most w.

— For every block, o either fixes all variables to constants, or fixes all but one variable. In the
latter case, the assignment to the fixed variables induces an assignment to the unlifted variable
corresponding to that block, independent of the value of the remaining variable. The last
variable in the block is restricted by ¢ to an affine function of the lifted variables from the
blocks not touched by o.

— The assignment induced by ¢ on the unlifted variables belongs to H.

Propositions [4.2] and [4.1] imply the following lemma.

Lemma 4.4. Let ‘H be a set of w-good assignments for an unsatisfiable CNF ¢. Let o be an
‘H-good affine restriction that induces a partial assignment p € H on the unlifted variables. Let G
be a parity decision DAG refuting ¢ o g, and let v be a node of G labeled with a linear system &,
such that o satisfies ®,. Denote by G, the subgraph of G consisting of all nodes reachable from v.
Then the restricted DAG G|, refutes ¢, o g.

Proof. By definition, G, is a parity decision DAG. Before applying o, we cannot claim that G,
refutes ¢ o g, because the linear system at its source may be non-empty. However, after applying o,
the source of G|, contains an empty (constant-true) linear system.
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Let 0 = 01 Uog be a partition of o, where o denotes the constant assignment (mapping variables
to {0,1}) and o2 denotes the affine restriction defined on the rest of the domain. By the conditions
of the lemma, o7 induces a partial assignment p on unlifted variables, independent of the values of
the remaining variables in these blocks.

By applying Proposition to all blocks on which o is defined, we obtain that the formula
(¢ ©9)|o, is semantically equivalent to ¢|, o g and every clause of the former formula contains a
clause of the latter formula. Then by Proposition the restricted DAG G|, refutes ¢|,0g9. O

4.2 Satisfying a Linear System by an H-Good restriction

Since we consider only 1-stifling gadgets, for each lifted block it is possible to fix all but one of
the lifted variables, thereby uniquely determining corresponding value of the unlifted variable. We
exploit this property in the following lemma.

Lemma 4.5. Let g be a 1-stifling gadget and H be a set of w-good assignments for an unsatisfiable
CNF . Suppose that a linear system ® over lifted variables has a solution p such that the induced
assignment induced,(p), when restricted to the variables with indices in CI(L(®)), belongs to H.
Assume further that dim(L(®)) < w. Then ® can be satisfied by an H-good restriction of block-size
at most dim(L(®P)).

Proof. Let o1 be the restriction of p to the lifted variables from the blocks in CI(L(®)). By
assumption, o; induces an assignment 7 € H on the corresponding unlifted variables.
The restricted system ®|,, has a safe set of linear forms and is satisfiable. Hence, ®|,, can be
equivalently rewritten in the form
”
/\ Tig,js — s,
s=1

where the indices i1, 4o, . . . , 4, are pairwise distinct, each ay is an affine function that does not depend
on the variables ;, j,, iy jo, - - - » %i, ., and r is the rank of the system ®|,,.
Observe that
r = dim(L(®)[\ CI(L(®))]).

By Lemma [2.9]
dim(L(®)) = [ CHL(®))| + dim(L(®)[\ CI(L(®))]),
and therefore r + | C1(L(®))| < w.

We now construct an H-good restriction o satisfying ®. Extend o7 as follows. For each s € [r],
assign x;, j, = as. Next, extend the induced assignment 7 to the unlifted variable y;, so that
T remains in H, and assign values to all remaining lifted variables in block is so as to force the
corresponding unlifted block variables to agree with this extension of 7. Such an assignment is
possible because g is 1-stifling.

The resulting restriction o satisfies ®, and its block-size is

| CI(L(@))] + dim(L(®) [\ CL(L(®))]),

which is at most dim(L(®)). O
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5 Distribution on Paths

In this section, we present our main technical contribution: the construction of a random path.
Throughout this section, let ¢ be an unsatisfiable CNF formula over variables Y = {y; | i € [m]},
and let g : {0,1}* — {0,1} be a gadget. We write X = {z;; | i € [m],,j € [¢]} for the set of lifted
variables, that is, the variables of the lifted formula ¢ o g.
Let G be a parity decision DAG refuting ¢ o g. Consider the set of paths P(G) in G that start
at the source. For a path p € P(G), denote by V¥, the linear system consisting of linear equations
written on the edges of p.

Theorem 5.1. Assume that g : {0,1}¢ — {0,1} is a 1-stifling gadget. Let H be a set of w-good
partial assignments for ¢, where w is a positive integer.

Consider a parity decision DAG G refuting ¢ o g. There exists a distribution D supported on
the paths, P(G), from the source of G with the following properties:

(1) With probability at least 1/4, the length of a path p ~ D is at least (w — 1)/6.

(2) For every p from the support of D, a linear system W, has a solution 7 and a set J C [m)] such
that the restriction of induced,(7) to variables from blocks J belongs to H and CI(L (\I’ )) C

(3) For every linear system ® over variables X, Pr,.p[¥, = ®] < exp (—22%1( - dim(L(®)).

The rest of this section is devoted to the proof of Theorem

5.1 Construction of the Distribution D

We define the distribution D by specifying a randomized process that generates a path p ~ D. The
path p is constructed iteratively, where each step extends the path built so far. Initially, p has
length 0 and consists of a single node—the source of G.

Along with the path, we maintain an H-good affine restriction p, which is initially empty.
Throughout the process, I denotes the set of blocks on which p is defined, and o denotes the partial
assignment to the unlifted variables induced by p. Since p is H-good, we have o € H.

We will also view affine restrictions as systems of linear equations. Specifically, an affine
restriction {1 := hy,x9 := ha, ...,z := hy} corresponds to the linear system /\le(:zi + h; =0).

Invariants. We maintain the following invariants throughout the construction:

— p is an H-good affine restriction defined on the set of blocks I, and p induces the partial
assignment o to the unlifted variables. Recall that this means:

— p is defined on the lifted variables belonging to the blocks in I;

— for every i € I, p either assigns 0/1-constants to all lifted variables of the ith block, or
assigns constants to all but one lifted variable. In the latter case, regardless of the value
of the remaining variable, the value of the unlifted variable is already determined by the
gadget g;

— p induces ¢ on the unlifted variables from the blocks in I, and o € H.

— The length of p is at most w/2, and |I| < w/2;
— p, viewed as a linear system, semantically implies W,
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Variables in the domain of p that are not assigned constants by p are called principal variables.
Since p is H-good, each block in I contains at most one principal variable.

It is immediate that these invariants hold initially. In Claim below, we will establish that as
long as the invariants are preserved, the endpoint of the path p cannot be a sink of G.

Sampling algorithm. While |p| < |w/2] and |I| < |w/2], we attempt to extend the path p.
Once either |p| or |I| reaches |w/2], the process terminates and outputs the path p.

Path prolongation. Let f be the linear form queried at the endpoint of the current path p, and
consider the restriction f|,.

— While f], is not a constant and |I| < |w/2]|, perform the following steps:

(1) Choose a variable z; ; appearing in f|,.
(2) Let a € {0,1} be such that o U {y; :=a} € H.
(3) Toss a fair coin ¢ € {0,1}.
(4) Branch A: sample the ith block. If ¢ = 1:
(1) Sample § uniformly at random from g~!(a); recall that g~*(a) C {0, 1}*.
(2) Extend p on block i as follows:
— Let 7 denote the partial assignment {x;1 := B1,..., 20 := Br};
— update p := pl|;, which substitutes the values of 7 into the right-hand sides of
the assignments in p;
— set p:=puUm.
(5) Branch B: assign a principal variable. If ¢ = 0:

(1) Consider a partial assignment 7 that sets all lifted variables of the ith block except
x; j so that the value of the gadget g on block i equals o, regardless of the value of
x; j. Such an assignment exists since g is 1-stifling.
(2) Toss a fair coin b € {0,1}.
(3) Extend p on block i as follows:
— update p := p|r, substituting the values of 7 into the right-hand sides of the
assignments in p;
— update p := P’xi,j::flpuﬂ+xi,j+b7 substituting the new value of z; ; into the right-
hand sides of the assignments in p;
— set p:=pUrU{z;; = flour + zij + b}
— If f|, is a constant, extend the path p along the edge labeled by the equation f = f|,.
— If |I| = |w/2] or |p| = |w/2], terminate the process and return p.

Invariant verification. Observe that in both branches A and B, the restriction p remains H-good.
It is also immediate that p < w/2 and |I| < w/2 is preserved throughout the process.

Whenever the path p is extended by an edge labeled with an equation f = a, this equation is
semantically implied by the current restriction p. Since each update to p only strengthens the linear
system—so that the updated system semantically implies the previous one, it follows that at every
stage the current restriction p semantically implies ¥,,. Hence, all invariants are preserved.
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Algorithm correctness.

Claim 5.2. Let 7 be a block-respecting partial assignment defined on the lifted variables of the
blocks in [m] \ I. Then the linear system p A 7 is satisfiable.

Proof. Without loss of generality, assume that 7 is defined on all lifted variables from the blocks in
[m] \ I. The system p A 7 is satisfiable because it suffices to assign values to the principal variables
consistently with the values of the linear forms to which they are equated by p, as determined by
. O

Claim 5.3. If the invariants are satisfied, then the endpoint of the path p cannot be a sink of G.

Proof. It suffices to show that for every clause of pog, the system ¥,, admits a solution that satisfies
this clause. For this it is enough to prove that for any clause C' of ¢, there exists a solution to the
linear system p that satisfies C o g.

Since o € H, the partial assignment o does not falsify C'. Therefore, there exists a full assignment
o’ to the unlifted variables that satisfies C. Now consider a block-respecting partial assignment 7
defined on the lifted variables of the blocks in [m] \ I such that, on the unlifted variables, 7 induces
the values prescribed by ¢’ on the corresponding blocks.

By Claim the linear system p A 7 is satisfiable. By construction of the lifting, any solution
to p A satisfies C o g. This concludes the proof. O

Proof of Condition (1) in Theorem
Claim 5.4. With probability at least 1/4, the returned path has length at least (w — 1)/6.

Proof. The process terminates once either |p| = [w/2] or |I| = |w/2].

In the first case, we immediately have |p| > |w/2| > (w — 1)/6, and there is nothing to prove.
We therefore focus on the second case, where |I| = |w/2]| at termination.

Observe that every time Branch B is executed (that is, when the coin ¢ lands on 0), the restriction
f|p becomes a constant, and hence the path p is extended by one edge. Consequently, the length of
p is at least the number of times the coin ¢ takes the value 0.

Each iteration of the loop increases |I| by one, so the total number of coin tosses is exactly
|w/2]. Since ¢ is uniformly distributed in {0, 1}, the expected number of times ¢ = 1 is £ |w/2].

By Markov’s inequality, the probability that the number of ones is at least % . %Lw /2] = %Lw /2]
is at most 3/4. Therefore, with probability at least 1/4, the number of ones is less than 2|w/2],
which implies that the number of zeros is greater than % |w/2].

Hence, with probability at least 1/4, we have |p| > £ w/2| > (w — 1)/6 as claimed. O

Proof of Condition (2) in Theorem

Claim 5.5. If the invariants are satisfied, then ¥, admits a solution 7 and there exists a set
J C [m] such that the restriction of inducedy(7) to the variables from blocks in J belongs to H and
CI(L(¥,)) C J.

Proof. Since p semantically implies ¥, it suffices to exhibit a solution of the linear system p with
the stated properties.

Note that |I U CI(L(V,))| < |I]| + |p| < w. Therefore, the partial assignment ¢ € H can be
extended to an assignment o’ € H that is defined on the unlifted variables from the blocks in
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I'UCI(L(¥,)). Let 7 be a block-respecting partial assignment defined on the lifted variables of the
blocks in CI(L(¥,)) \ I such that inducedy(m) agrees with ¢’ on the unlifted variables from these
blocks. Such an assignment 7 exists because g is 1-stifling.

By Claim the linear system p A 7 is satisfiable. Any solution 7 of this system satisfies ¥,
and has the required property for the set J := I U CI(L(,)). O

In the next subsection, we establish Condition (3) in Theorem

5.2 Estimating the Probability of Semantic Implication
In this subsection, we prove the following lemma.
Lemma 5.6. For any linear system ® over variables X, it holds that

dim(L(P)) /¢
Prlp | @] < (1-27%D) e

where p is the final value of p and the probability is taken over random bits used in the algorithm
generating the distribution D.

i

Since by the invariants, p = ¥, during the execution of the algorithm generating D, this is
also true for their final values. Hence, Lemma implies that Prp.p[¥, = @] < Pr[p = @] <
(1 — 2~ (D)) dim(L(®)/¢ < exp (—ﬁ -dim(L(®)), thus, establishing Condition (3) in Theorem

To prove Lemma [5.6] we carefully analyze what happens during the generation algorithm. Let
us denote by V), the linear space generated by linear forms L(p). Denote by U the linear space
generated by linear forms L(®). If p = @, then any equation of ® is a linear combination of several
equations of p, hence U C V,. We look at how V, N U is changing during the execution of the
generation algorithms. Initially p is an empty system, thus V,NU = @.

Notice that p updates in the manner such that the updated p semantically implies the previous
values. Thus, once we receive p that is not consistence with @, it will be inconsistent with ® up to
the end and p = ®.

There are two different ways in which p can be modified. In Branch A, we substitute constants to
all variables from the ith block, so L(p) is increased by {z; | £ € [¢]}. In Branch B, we substitute
constants to all variables from the ith block but z; ; and L(p) is increased by {z; x | k € [(]\{j}}U{f}.

Lemma 5.7. Consider Step (2) of the algorithm (i.e., we have not yet tossed coin ¢). Assume that
either dim((V, U{z;x | k € [(]}) NU) or dim((V, U{x;x | k€ [{]\ {j}} U{f}) NU) is greater than
dim(V, N U). Then, with probability at least 2~(*1) after execution of the current iteration of the
cycle p will be inconsistent with ®.

Proof. Case 1. Adding linear forms x;;, for k € [{] to V, increases its intersection with U:

Since the intersection (V, U {x; 1 | k € [{]}) NU is strictly greater than V, N U, there is a subset
S C [f] and v € V, such that v+ z; 5 € U\ V, where z; g denotes Zjes x;j. Since v+x; 5 €U, @
semantically implies some fixed value v € {0, 1} for linear form v+ z; ¢ € U. Since v € V, p implies
some fixed value ¢ € {0, 1} for linear form v.

With probability %, we toss ¢ = 1, and the algorithm will go to Branch A. And to the lifted
variables from the block i we substitute the random value from g~!(a). Since g is 1-stifling, by
Lemma with probability at least 2~¢ the value of the linear form z; 5 will be different from
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~v + §. Hence, after the Branch A, p and ¢ will be inconsistent since they imply different values to
the linear form v + x; 5. And this happens with probability at least % i G

Case 2. Assume the condition of case 1 does not hold but adding linear forms {z;; | k €
[\ {j}} U{f}} to V, increases its intersection with U.

Then there is a subset S C [¢] \ {j} and v € V, such that v + f +2;5 € U\ V. Since
v+ f+x;5 € U, ® semantically implies some fixed value v € {0,1} for linear form v+ f+z; 5 € U.
Since v € V, p implies some fixed value ¢ € {0, 1} for linear form wv.

With probability %, we toss ¢ = 0, and the algorithm will go to Branch B. Then p will fix z; g
by some way and fix f uniformly at random. Hence, the probability %, p and ® implies different
values of the linear form v + f + x; 5. Thus, totally with probability at least i > 2=+ Hand @
will be inconsistent. O

Now we are ready to prove Lemma

Proof of Lemma[5.6. Observe that after each iteration of the main loop (that is, after executing
either Branch A or Branch B), the quantity dim(V, NU) increases by at most ¢. If the final value
of ¥, semantically implies ®, then so does the final value of p. In particular, this means that
dim(V, NU) = dim(L(P)).

Consequently, there must be at least dim(L(®))/¢ iterations of the main loop during which the
intersection V, N U increases.

By Lemma in each such iteration, with probability at least 2~ (1) the restriction p becomes
inconsistent with ®. Therefore, the probability that the final restriction p semantically implies ® is

at most Qi (LB /¢

6 The Main Lifting Theorem

In this section, we prove our main lifting theorem and its corollaries.

Theorem 6.1. Assume that every resolution refutation of an unsatisfiable CNF formula ¢ has
either width at least w, or depth at least k. Let g : {0,1}¢ — {0, 1} be a 1-stifling gadget, where £ is
a constant. Then any Res(®) refutation of ¢ o g of size S has depth at least  (min{h, w?/log S}).

As outlined in the introduction, Theorem is proved by induction on the width w. We begin
with the lemma that forms the core of the induction step.

Let ‘H be a set of w-good assignments for . We say that H has one-time rollback property if for
every block-respecting 7 that is subassignment of some assignment from H, there is a set of w-good
assignments H, for ¢ such that 7 € H.

For example, if H is closed under restrictions, then H has one time rollback property and
H =H.

Lemma 6.2. Let ¢ be an unsatisfiable CNF formula, and let g : {0,1}* — {0,1} be a 1-stifling
gadget, where £ is a constant. Let H be a set of w-good partial assignments for . Suppose that G
is a parity decision DAG refuting ¢ o g of size S. Then there exists an absolute constant ¢ > 0 and
a node v of G such that:
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— there is a path from the source of G to v of length at least (w — 1)/6;
— if H has the one-time rollback property and w > clog.S, then there exists an affine restriction
p such that G|, is a parity decision DAG refuting ¢|, o g, where:

— G, denotes the subgraph of GG consisting of all nodes reachable from v;
— 0o is a partial assignment to the unlifted variables of size at most clog .S, and o € H, for
some subassignment 7 of an assignment from H.

Proof. By Theorem there exists a distribution D supported on paths from the source of G such
that:

(1) With probability at least 1/4, a path p ~ D has length at least (w — 1)/6.

(2) For every p from the support of D, a linear system ¥, has a solution 7 and a set J C [m] such
that the restriction of inducedy() to variables from blocks J belongs to H and CI(L(¥,)) C J.

(3) For every linear system ® over variables X, Pr,_p[¥, = ®] < 2~ (dim(L(®)),

For a path p starting at the source of G, let v, denote its endpoint and let ®,, be the linear
system labeling v,. Let E be the set of all systems ®,,, corresponding to paths p in the support of
D whose length is at least (w — 1)/6. By construction, Pr,.p[®,, € E] > 1.

On the other hand, for every ® € FE,

Pr [0, =] < Pr [V, 9] < 2~ 2(dim(L(2)))

p~D p~D
where the first inequality follows from Lemma Since |E| < S, there exists a path py of length
at least (w —1)/6 such that dim(®,, ) < O(log(4S)) = O(log S). Let ¢ > 0 be an absolute constant
such that dim(®,, ) < clogs$.

By Lemma we have Up, = @, . Since Uy, is satisfiable, it follows that L(®, ) C (L(Vp,)),
and by the properties of the closure (Lemma ,

CU(L(®y,, ) € CUL(Ty,)-

Upg

Let 7 be a solution to ¥, witnessing the second statement of Theorem Then 7 also satisfies
®,,,- Let 7 denote the restriction of inducedy(7) to the variables from blocks in CI(L(®y, )). Then
T is a subassignment of some assignment in H. Since H has the one-time rollback property, there
exists a family H, of w-good partial assignments for ¢ that contains 7.

By Lemma the system ®,, can be satisfied by an H,-good affine restriction p of block-size
at most O(log(5)). Let o € H, be an assignment induced by p on the unlifted variables; the size of
o is at most O(log.S). Consider the subgraph G, of G consisting of all nodes reachable from wp,.
By Lemma applying p to G, yields a parity decision DAG refuting ¢Ylsog. O

Proof of Theorem [6.1 By Lemma there exists a (w, h)-winning strategy for ¢.

Define d(w, h,S) as the minimum depth of a parity decision DAG of size at most S refuting
¢ o g, where the minimum ranges over all CNF formulas ¢ possessing a (w, h)-winning strategy.
Our goal is to show that d(w, h, S) > Q (min{h, w?/log S}). Assume that this minimum is attained
by a formula ¢, and fix a (w, h)-winning strategy B for .

Consider H := {7 | (1,|7]) € B}. By Lemma|[3.3] H is a min{w, h}-good set of assignments for
®.

If A < 2w, then the theorem follows from Lemma So we assume that A > 2w. In this case,
‘H has the one-time rollback property. Indeed, consider some 7 € H, we know that (7,|7|) € B. If
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o C 7, then (o,|7|) € B. Let us define H, := {7 | Fi <|7|+ |r|: (7,i) € B}. It is easy to see that
H, is a set of w-good assignments for ¢ and that o € H,.

Consider a parity decision DAG G refuting ¢ o g, let S be an upper bound on the size of G. By
Lemma [6.2] applied to H there is a node v of G such that there is an absolute constant ¢ > 0 and
a path from the source to v of length at least (w —1)/6 (we denote by G, a subgraph of G that
contains all nodes that are reachable from v) and there is an affine restriction p of block-size at
most clog S and a partial assignment o from H, for some 7 € H of size at most clog S such that
G|, is a parity decision DAG refuting (¢|s) © g.

Since the block-size of ¢ is at most clog S, there exists a (h—w — [clog S|, w — [clog S)-winning
strategy B’ for ¢|,; for example if (o, k) € B, we can choose

B ={(r\o,j)|(m,j+k)eB,or}
Therefore,
d(w,h,S) > wT—l +d(w — [clog S],h —w — [clog ST, S).
Unrolling the recurrence yields
d(h,w, S) > Q(min{h, w?/log S}).
O

We apply this theorem to the supercritical size-depth tradeoff for resolution by Buss and Thapen
[10]. It is convenient to use the corollary of this tradeoff presented in [22].

Theorem 6.3 ([10, 22]). There exists a family of unsatisfiable CNF formulas {¥,,}>° ; such that

— W, contains n variables;

— the width of ¥,, is O(logn) and, moreover, ¥,, has a resolution refutation of size poly(n) and
of width O(logn);

— any resolution refutation of ¥,, of width at most n/401og n has depth greater than n2/400 log? n.

Theorem 6.4. There is a family of formulas 1), from n variables of size poly(n) such that v, has
polynomial size resolution refutation, and for any S > 0, any Res(®) refutation of size S has depth
at least Q(n?/(log®nlog S)).

Proof. Let U,, be a formula from Theorem [6.3] Let g = MAJ3; it is a 1-stifling gadget. Then
U, 0 g is a formula in O(logn)-CNF of size poly(n) and it has a resolution refutation of size
poly(n). By Theorem any Res(®) refutation of W,, o g of size at most S has depth at least
Q(n?/(log*nlog S)). O

Corollary 6.5. If d(n) = o(n?/log*n), then Depth-d(n) Res(®) does not polynomially simulates
resolution.

Proof. Consider the formula 1, from Theorem . Applying Theorem with S = 21°g2", we
obtain that any Res(&) refutation of v, of depth d(n) must have size at least 2log”n  \which is
superpolynomial in n. ]
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7 A Quadratic Size Lower Bound for Unrestricted Res(®)

In this section, we present a quadratic size lower bound for Res(®). We begin with a linear-algebraic
lemma, next recall the necessary previous results, and then conclude with the proof of the main
theorem.

Lemma 7.1. Let Vi, Vs, ..., V5 be linear subspaces of F”, where F is a field. Assume that V; = {0}
and that for every i € [s — 1] there exists a vector x; € F™ such that V;11 C (V; U {x;}). Then there
exists a nonzero vector @ such that |{i € [s] | # € V;}| > dim V, that is, = belongs to at least dim V;
of the subspaces V;.

Proof. We prove the lemma by induction on k := dim V5. The base cases k = 0 and k£ = 1 are
immediate. Assume that k£ > 1.
For each ¢ € [s], define V/ := V; N V5. Note that

T = Vigr N Ve © (ViU {z}) N Vs

Notice that,
dim((V; U {2;}) N V5) < dim(V; N Vi) + 1 = dim(V}) + 1.

Therefore, there exists a vector x} € F™ such that
(Viudai}) N Vs C{(ViN Vi) U{af}) = (VU {af}),

and hence V| C (V/ U {z}}) for every i € [s — 1].

Since V{ = {0}, dim(V{) = k, and for every i € [s — 1] we have dim(V;_;) < dim(V}') + 1, there
exists j € [s — 1] such that dim(V}) =k — 1.

Applying the induction hypothesis to the sequence V{, V3, ..., V], we obtain a nonzero vector
x that belongs to at least k — 1 of these subspaces. Since Vs contains every V/, the vector z also
belongs to Vs. Hence x belongs to at least k of the original subspaces Vi,..., Vy (namely, to at least

k —1 among Vi,...,V}, and also to V), completing the induction step. O

We will use the following result of Alekseev and Itsykson [4], which shows that resolution width
lifts to width in Res(®).

Theorem 7.2 ([4]). Let ¢ be an unsatisfiable CNF formula such that every resolution refutation
of ¢ has width at least w. Let g be a 1-stifling gadget. Then every Res(®) refutation of ¢ o g has
width at least w.

We will also need the following basic fact about resolution width.

Lemma 7.3 ([§]). Let ¢ be an unsatisfiable CNF formula of resolution width w, and let z be
a variable of ¢. Then there exists a value a € {0,1} such that the restricted formula ¢|;.—, has
resolution width at least w — 1.

Theorem 7.4. Let ¢(y1,y2,...,Yym) be an unsatisfiable CNF formula such that every resolution
refutation of ¢ has width at least w. Let g : {0,1}* — {0,1} be a 1-stifling gadget. Then any

Res() refutation of ¢ o g has size at least %
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Proof. We prove the theorem by induction on w. The base case w = 1 is trivial.

Let G be a parity decision DAG refuting ¢ o g of minimum size. By Theorem G contains
a node v such that the linear system ®, labeling this node has rank at least w. Fix a path
v1,...,0s = v from the source v; to v. Since G has minimum size, we may assume that for all i € [s]
the system ®,, is satisfiable, and that for all i € [s — 1] the equation labeling the edge (v;, vi+1) is
consistent with ®,,,.

For each i € [s], let V; denote the vector space of linear equations spanned by the equations of
®,,. We have V; = {0 = 0} and dim(V;) = rk(®,) > w. Moreover, for every i € [s — 1], the space
Vi1 is contained in the span of V; and the equation labeling the edge (v;,v;11). By Lemma
there exists a nontrivial equation f = a that belongs to at least w of the spaces V;, for i € [s].

Since all systems ®,,, are satisfiable, f = a is different from 0 = 1. In particular, the linear form
f contains at least one variable x;, j, .

By Lemma there exists a € {0, 1} such that the restricted formula ¢|,, .=, has resolution
width at least w — 1. Let p; be a partial assignment that assigns Boolean values to all lifted variables
from the igth block except x;, j,, in such a way that these assignments force y;, = a independently
of the value of z;, j,. Such an assignment p; exists since g is 1-stifling. By Proposition , the
restricted formula (¢ o g)|,, is semantically equivalent to 90|y¢0:=a o g, and every clause of the former
contains a clause of the latter.

Next, define an affine restriction ps supported on the one variable

Lig,jo *= f‘pl + Tig,jo +a+1,

and let p := p1 U p2. By Proposition the restricted DAG G|, refutates @’ym::a og.

Since the resolution width of cp\yi();:a is at least w — 1, the induction hypothesis implies that the
size of G|, is at least % On the other hand, G contains at least w nodes whose linear systems
are falsified by p, namely those whose associated spaces contain the equation f = a. Therefore, the
size of G|, is smaller than the size of G by at least w nodes. It follows that the size of G is at least

%, completing the proof. O
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