
Improved Parallel Repetition for GHZ-Supported
Games via Spreadness

Yang P. Liu∗ Shachar Lovett† Kunal Mittal‡

Abstract

We prove that for any 3-player game G, whose query distribution has the same
support as the GHZ game (i.e., all x, y, z ∈ {0, 1} satisfying x + y + z = 0 (mod 2)),
the value of the n-fold parallel repetition of G decays exponentially fast:

val(G⊗n) ≤ exp(−nc)

for all sufficiently large n, where c > 0 is an absolute constant.
We also prove a concentration bound for the parallel repetition of the GHZ game:

For any constant ϵ > 0, the probability that the players win at least a
(
3
4 + ϵ

)
fraction

of the n coordinates is at most exp(−nc), where c = c(ϵ) > 0 is a constant.
In both settings, our work exponentially improves upon the previous best known

bounds which were only polynomially small, i.e., of the order n−Ω(1). Our key technical
tool is the notion of algebraic spreadness adapted from the breakthrough work of Kelley
and Meka (FOCS ’23) on sets free of 3-term progressions.
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1 Introduction
In a k-player game G, a verifier samples a tuple of questions (x(1), . . . , x(k)) from a distribution
Q. Then, for each j ∈ {1, . . . , k}, the verifier gives the question x(j) to player j, and the player
gives back an answer a(j), which depends only on x(j). The verifier now declares whether
the players win or lose based on the evaluation of a predicate V (x, a) ∈ {0, 1} depending on
the questions x = (x(1), . . . , x(k)) and answers a = (a(1), . . . , a(k)). We define the game value,
denoted val(G), as the maximum winning probability (with respect to the distribution Q)
over all possible player strategies; see Definitions 3.8, 3.9 for formal definitions.

A natural question that arises is: How does the value of the game behave under parallel
repetition [FRS94]? The n-fold parallel repetition, denoted G⊗n, is a game where the players
play, and try to win, n independent copies of the game in parallel. More precisely, the
verifier samples questions (x

(1)
i , . . . , x

(k)
i ) ∼ Q independently for i = 1, . . . , n, and for each

j ∈ {1, . . . , k}, sends questions (x
(j)
1 , . . . , x

(j)
n ) to player j, to which they give back answers

(a
(j)
1 , . . . , a

(j)
n ). The verifier says the players win if V ((x

(1)
i , . . . , x

(k)
i ), (a

(1)
i , . . . , a

(k)
i )) = 1 for

each i ∈ {1, . . . , n}; see Definition 3.11 for a formal definition.
Note that for any game G, it holds that val(G⊗n) ≥ val(G)n, since the players can achieve

this value by repeating an optimal strategy in each of the n coordinates. Although one might
expect the naïve bound val(G⊗n) ≤ val(G)n to hold as well, this turns out to be false [For89,
Fei91, FV02, Raz11]. Roughly speaking, this failure occurs because the players do not have
to treat the n copies of the game independently, and can instead correlate their answers
among different copies. Remarkably, it turns out that this failure is intimately connected to
the geometry of high-dimensional Euclidean tilings [FKO07, KORW08, AK09, BM21].

Parallel repetition of 2-player games is well-understood. Raz [Raz98] showed that for
any game with value less than 1, the value of the n-fold parallel repetition decays expo-
nentially in n. Subsequent works have simplified this proof and strengthened the quan-
titative bounds [Hol09, BRR+09, Rao11, RR12, DS14, BG15]. These and related works
have led to several applications in various domains, including the theory of interactive
proofs [BOGKW88], PCPs and hardness of approximation [FGL+96, ABSS97, ALM+98,
AS98, BGS98, Fei98, Hås01, Kho02a, Kho02b, GHS02, DGKR05, DRS05], quantum infor-
mation [CHTW04, BBLV13], and communication complexity [PRW97, BBCR13, BRWY13].
The reader is referred to the survey [Raz10] for more details.

Parallel repetition of multiplayer games is much less understood. The only general bound
says that for any game G with value less than 1, it holds that val(G⊗n) ≤ 1/α(n), where α(n)
is a very slowly growing inverse-Ackermann function [Ver96, FK91, Pol12]. Recent work has
made substantial progress in understanding special cases of multiplayer games [DHVY17,
HR20, GHM+21, GHM+22, GMRZ22, BKM23, BBK+24, BBK+25, BBK+26]; however, the
general question remains wide open, even for 3-player games.

Proving improved parallel repetition for multiplayer games has several potential applica-
tions. It is known that a strong parallel repetition theorem for a certain class of multiplayer
games implies super-linear lower bounds for non-uniform Turing machines, which is a long-
standing open problem in complexity theory [MR21]. Additionally, parallel repetition in the
large answer alphabet regime is equivalent to many problems in high-dimensional extremal
combinatorics, such as the density Hales-Jewett problem, and the problem of square-free
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sets in finite fields [FV02, HHR16, Mit25]. Also, as stated in [DHVY17], it is believable that
improved understanding of parallel repetition can lead to a better understanding of commu-
nication complexity in the number-on-forehead (NOF) model, which is intimately connected
to circuit lower bounds.

The focus of this paper is the 3-player GHZ game [GHZ89], which proceeds as follows:
The verifier samples questions (x, y, z) ∈ {0, 1}3 uniformly at random such that x+y+z = 0
(mod 2), and the players’ goal is to give answers a, b, c ∈ {0, 1} respectively satisfying a+b+c
(mod 2) = x∨ y∨ z. The GHZ game has played a foundational role in quantum information
theory, due in part to the fact that quantum strategies can win this game with probability
1, whereas any classical strategy wins with probability at most 3/4. Moreover, the GHZ
game satisfies a self-testing property, which says that all quantum strategies achieving value
1 are essentially the same; this has led to applications like entanglement testing and device-
independent cryptography [ŠB20].

The problem of parallel repetition of the GHZ game has been discussed in several recent
works. Dinur, Harsha, Venkat and Yuen [DHVY17] extend the 2-player information-theoretic
techniques of Raz [Raz98] and prove parallel repetition for a specific class of multiplayer
games satisfying a certain connectivity property; they identify the GHZ game as a multiplayer
game which is in some sense maximally far from this class of games; regarding the difficulty
of the problem, they write

“We believe that the strong correlations present in the GHZ question distribution
represent the ‘hardest instance’ of the multiplayer parallel repetition problem.”

Subsequent research established polynomial decay bounds for the n-fold repetition of the
GHZ game, showing val(GHZ⊗n) ≤ n−Ω(1) [HR20, GHM+21]. Notably, these results apply
to any 3-player game G whose query distribution Q has the same support as the GHZ game
(i.e., {(x, y, z) ∈ {0, 1}3 : x+ y + z = 0 (mod 2)}).

More recently, an exponential decay bound was proven for the GHZ game [BKM23],
and then extended to all 3-player XOR games1 satisfying a certain distributional assump-
tion [BBK+25]. However, these works rely heavily on the XOR structure of the game predi-
cate, exploiting it via sophisticated tools from Fourier analysis and additive combinatorics.
For instance, in the case of the GHZ game, they observe that the predicate corresponds to
a linear equation over the group Z/4Z. Consequently, these techniques do not extend to
general game predicates lacking such XOR structure.

In this work, we improve upon the existing polynomial decay bounds [HR20, GHM+21]
by establishing a stretched exponential bound for all games sharing the query support of the
GHZ game. Crucially, unlike the aforementioned works on XOR games [BKM23, BBK+25],
our result is agnostic to the answer sets and the game predicate—it solely depends on the
support of the query distribution. Our technical approach is distinct as well: we utilize
spreadness-based arguments from recent works [KM23, KLM24, JLL+25], whose application
to the context of parallel repetition is novel.

Our main result is the following:
1In a 3-player XOR game, the answers a, b, c of the three players lie in some finite Abelian group H, and

the predicate is of the form a + b + c = φ(x, y, z), for some function φ mapping questions (x, y, z) of the
players to elements of H.
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Theorem 1.1 (Parallel Repetition for the GHZ query support). Let G be any 3-player game
with value val(G) < 1, whose query distribution has support{

(x, y, z) ∈ {0, 1}3 : x+ y + z = 0 (mod 2)
}
.

Then, for all sufficiently large n,2 it holds that

val(G⊗n) ≤ exp (−nc) ,

where c > 0 is an absolute constant.

We complement this result with a concentration bound for games with the GHZ query
distribution. To the best of our knowledge, the exponential decay bounds established in
prior works [BKM23, BBK+24] do not imply such concentration. We prove the following:

Theorem 1.2 (A Concentration Bound; restated and proved as Theorem 7.1). Let G be any
3-player game with value val(G) < 1, whose query distribution is uniform over the set{

(x, y, z) ∈ {0, 1}3 : x+ y + z = 0 (mod 2)
}
.

Then, for every constant ϵ > 0, there exists c = c(ϵ) > 0, such that for all sufficiently large
n,3 the probability that the players can win at least val(G) + ϵ fraction of the n coordinates
in the game G⊗n is at most exp (−nc).

As a direct consequence, we obtain a concentration bound for the standard GHZ game.

Corollary 1.3. For every constant ϵ > 0, there exists c = c(ϵ) > 0, such that the probability
of the players winning at least

(
3
4
+ ϵ

)
n coordinates in the game GHZ⊗n is at most exp (−nc).

It remains an interesting open problem to establish analogous concentration bounds (as
in Theorem 1.2) for games over the GHZ support where the underlying distribution is not
uniform.4

1.1 Organization

In Section 2, we give an overview of our proofs. In Section 3, we establish some preliminaries.
In Section 4, we define a notion of pseudorandomness, called algebraic spreadness, that will be
useful throughout this paper; we also show how to decompose arbitrary sets into components
satisfying this spreadness condition. In Section 5, we show that any diagonal-product set
composed of algebraically spread sets is uniformly covered by squares. Finally, in Section 6,
we use the results of the previous sections and prove parallel repetition for games with
the GHZ query support (Theorem 1.1). In Section 7, we prove our concentration bound
(Theorem 1.2).

2i.e., n ≥ N , where N is a constant depending on the game G.
3i.e., n ≥ N , where N is a constant depending on the game G and the parameter ϵ.
4We remark that Theorem 1.2, combined with a reduction similar to Lemma 3.12 (also see Footnote 6),

already implies the following: the probability that the players win at least 1 − β + ϵ fraction of the n
coordinates is at most exp(−nΩϵ(1)), where β = β(G) > 0 is a constant.
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2 Overview
In this section, we outline the proof of our main result (Theorem 1.1).

2.1 General Inductive Framework and High-Level Approach

We begin by introducing a general inductive framework for parallel repetition. Our proof
follows the basic setup established by Raz for parallel repetition of 2-player games [Raz98].

Let G be a 3-player game, whose query distribution Q has support

supp(Q) =
{
(x, y, z) ∈ F3

2 : x+ y + z = 0
}
.5

Here, we identified {0, 1} with the finite field F2. For the purpose of parallel repetition, we
may assume without loss of generality that Q is the uniform distribution over its support (see
Lemma 3.12).6 Now, consider the game G⊗n, and consider any strategy for the 3 players in
this game. For each i ∈ [n], let Wini be the event that the players win the ith coordinate. By
the chain rule, for any permutation i1, i2, . . . , in of [n], we can write the winning probability
as

Pr[Win1 ∧Win2 ∧ · · · ∧Winn] =
n∏

k=1

Pr[Winik |Wini1 ∧ · · · ∧Winik−1
].

To bound this, we proceed inductively. Assuming the players have won a set of coordinates
i1, . . . , ik, we aim to identify a hard coordinate i ∈ [n] whose conditional winning probability
is at most 1− Ω(1). Formally, we wish to prove the following condition:7

Inductive Step: For every product event E = E × F × G ⊆ Fn
2 × Fn

2 × Fn
2 , with measure

Pr[E ] ≥ α, there exists a coordinate i ∈ [n] such that Pr[Wini | E ] ≤ 1− Ω(1).

Establishing this condition for α = exp(−nΩ(1)) implies the desired bound on val(G⊗n) via
the inductive strategy above (see Lemma 3.13).

For the remainder of this overview, consider any product event E = E × F ×G ⊆ (Fn
2 )

3,
with measure Pr[E ] ≥ α = exp(−nΩ(1)). Our goal is to identify a coordinate i ∈ [n] that
remains hard to win when the inputs are conditioned on E . The proof proceeds in two main
steps:

1. Identify Hard Sets: We define a class of sets called squares, such that if the input
distribution is restricted to a square, many coordinates are hard to win.

5The framework applies to all k-player games, but we restrict to 3 player games with the GHZ queries.
6Roughly speaking, this is because any distribution Q contains a small copy of the uniform distribution

over supp(Q), and hence winning n copies under the distribution Q is at least as hard as winning Ω(n) copies
under the the uniform distribution.

7Conditioning on the event Wini1 ∧ · · · ∧Winik can introduce complex correlations among the players’
inputs. However, this event depends deterministically on the questions and answers of the players in coor-
dinates i1, . . . , ik, and hence instead of conditioning on the event Wini1 ∧ · · · ∧Winik , we can condition on
typical questions and answers to the players in coordinates i1, . . . , ik. This induces a product event on the
players’ input.
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2. Distributional Approximation: We show that the conditional distribution Q⊗n|E
can be approximated (in ℓ1 distance) by a convex combination of such square distri-
butions.

Combining these steps establishes that Pr[Wini | E ] ≤ 1−Ω(1) for randomly chosen i ∈ [n].

2.2 Step 1: Squares are Hard

Since the third player’s input in G⊗n is fully determined by the inputs to the first two
players (inputs (x, y, z) ∈ supp(Q)n ⊆ (Fn

2 )
3 satisfy z = x + y), we can analyze the game

primarily by only looking at inputs of the first two players. The restriction of a product
event E = E × F ×G to the first two players is captured by a diagonal-product set, defined
as follows:

Definition 2.1 (Diagonal-Product Set). Given sets X,Y, Z ⊆ Fn
2 , we define the correspond-

ing diagonal-product set, denoted S(X, Y, Z), as

S(X, Y, Z) = {(x, y) ∈ Fn
2 × Fn

2 : x ∈ X, y ∈ Y, x+ y ∈ Z} .

Sampling inputs (x, y, z) ∼ Q⊗n|E is the same as sampling (x, y) ∼ S(E,F,G) uniformly
and setting z = x+ y.

We now define our hard sets, that are squares in Fn
2 × Fn

2 :

Definition 2.2 (Square). A square sx,y,w ⊆ Fn
2 × Fn

2 , for x, y, w ∈ Fn
2 , is the set

sx,y,w = {(x, y), (x+ w, y), (x, y + w), (x+ w, y + w)} .

Remark 2.3. Given a square s ⊆ Fn
2 × Fn

2 , suppose we wish to represent it as s = sx,y,w.
Note that the width w is uniquely determined by the square s. If w = 0, the square contains
a single point, in which case (x, y) is uniquely determined. If w ̸= 0, the square sx,y,w has 4
different representations, given by sx,y,w = sx+w,y,w = sx,y+w,w = sx+w,y+w,w.

The crucial property of a square is its local hardness: Consider a square s = sx0,y0,w,
and a coordinate i ∈ [n] such that wi ̸= 0 (a non-trivial coordinate).8 Suppose the inputs
(x, y, z) to the three players are sampled from the square s as follows: let (x, y) ∼ s be
chosen uniformly at random, and let z = x + y. Under this distribution, no strategy of the
players can win coordinate i with probability more than val(G). Roughly speaking, this is
true since this distribution “looks exactly the same” as the base distribution Q, and hence
the players can embed a single copy of the game G into coordinate i of this distribution; see
Lemma 6.4 for formal details of this step.9

8A coordinate is non-trivial if and only if the points in s do not have a constant value in this coordinate.
9We remark that the set of inputs {(x, y, x+ y) : (x, y) ∈ s} was introduced in the work [GHM+21],

where they call this set a bow-tie. We also note that squares correspond to the maximal forbidden-subgraphs
inside the GHZ query distribution (in the sense that no player strategy can win on all four points of a square),
and the largest size of square-free sets in Fn

2 × Fn
2 exactly captures the value of the n-fold parallel repetition

of the GHZ query distribution in the large answer alphabet regime [Mit25].
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2.3 Step 2: Approximating the Distribution

The second, and more technically demanding, step of the proof is to show that the distribu-
tion Q⊗n|E is well-approximated by a mixture of square distributions as above. Equiv-
alently, we wish to approximate the uniform distribution over the diagonal-product set
S = S(E,F,G), denoted US, by a convex combination of uniform distributions over squares.
Specifically, we analyze the distribution µ generated as follows: sample a square s ⊆ S
uniformly at random, and output an element uniformly at random from s.

Note that a priori it is not even clear that the set S contains squares, and that the distri-
bution µ is well-defined. However, we utilize the concept of algebraic spreadness, a pseudo-
randomness notion introduced in the breakthrough work of Kelley and Meka on bounds for
sets without 3-term arithmetic progressions [KM23]. They show that algebraically spread
subsets behave like random subsets in a certain sense (see Definition 4.1 and Theorem 4.2);
in our setting, we show that if all E,F,G are algebraically spread, the set S contains the
expected density of squares. Our approximation argument proceeds in two stages:

Uniformization: Given arbitrary sets E,F,G, we decompose the diagonal-product set
S(E,F,G) into disjoint components S(E1, F1, G1) ∪ S(E2, F2, G2) · · · ∪ S(ET , FT , GT ) (plus
a negligible remainder), such that within each component, the sets Ei, Fi, Gi are all alge-
braically spread. This generalizes the recent decomposition technique of [JLL+25], which
achieved algebraic spreadness for only two out of the three sets and used it to prove bounds
on corner-free sets in finite fields. We extend this to all three sets via a careful recursive
argument; see Section 4.2 for more details.

Counting and Approximation: Assuming that all of E,F,G are algebraically spread,
we demonstrate that they behave like random sets of the same density, and that the square-
sampling distribution µ approximates the uniform distribution US in ℓ1 distance. We prove
this by establishing tight bounds on the ℓ2 norm (collision probability) of the distribution µ.
A key technical tool here is a recent graph-counting result of [FHHK24], based on a pseu-
dorandomness notion called combinatorial spreadness, which we show holds in our setting.
See Lemma 5.5 and Proposition 5.6 for more details on this step.

Why Algebraic Spreadness? A crucial difference between our work and previous poly-
nomial decay bounds [GHM+21] lies in the choice of the pseudorandomness property for the
sets E,F,G. Prior works use the concept of Fourier-uniformity (pseudorandomness against
linear tests), and yield bounds when the density α = Pr[E ] is at least polynomial, i.e., of
the order n−O(1). The use of algebraic spreadness enables us to surpass this barrier and
get bounds even when the density α = exp(−nΩ(1)) is exponentially smaller. However, this
improvement incurs a significant technical cost. Both the decomposition and approxima-
tion steps are standard under Fourier uniformity, whereas establishing them under algebraic
spreadness constitutes the main technical contribution of this work.
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3 Preliminaries
Let N = {1, 2, . . .} denote the set of natural numbers. For n ∈ N, we use [n] to denote the
set {1, 2, . . . , n}.

3.1 Probability Distributions

Let P be a distribution (over an underlying finite set Ω, which is usually clear from context).
We use supp(P ) = {ω ∈ Ω : P [ω] > 0} to denote the support of the distribution P . For an
event E ⊆ Ω with P [E] > 0, we use P |E to denote the conditional probability distribution
P conditioned on E.

For distributions P and Q over a set Ω, the ℓ1-distance between them is defined as

∥P −Q∥1 =
∑
ω∈Ω

|P [ω]−Q[ω]| .

We state a useful tail bound on the sum of independent random variables:

Fact 3.1 (Chernoff Bounds, see [MU05] for reference). Let X1, . . . , Xn ∈ {0, 1} be indepen-
dent random variables each with mean µ, and let X =

∑n
i=1Xi. Then, for all δ ∈ (0, 1),

Pr [X ≤ (1− δ)µn] ≤ e−
δ2µn

2 ,

Pr [X ≥ (1 + δ)µn] ≤ e−
δ2µn

3 .

We also state another useful lemma:

Lemma 3.2. Let t, n ∈ N, t < n. Let µ be the uniform distribution on [n], and let ν be the
uniform distribution on [n− t]. Then, ∥µ− ν∥1 = 2t/n.

Proof. We have ∥µ− ν∥1 =
∑n−t

i=1

(
1

n−t
− 1

n

)
+
∑n

i=n−t+1
1
n
= 2t

n
.

3.2 Vector Spaces over GF(2)

Let V be a finite dimensional vector space over F2, with the uniform measure; often we shall
have V = Fn

2 for some n ∈ N.

Definition 3.3 (Inner Product). For functions f, g : V → R, define their inner product as

⟨f, g⟩ = E
x∼V

[f(x)g(x)],

where x ∼ V denotes that x is uniformly chosen from V.

Definition 3.4 (Lp norm). For f : V → R, and p ≥ 1, we define

∥f∥p = E[fp]1/p.

9



Definition 3.5 (Convolution). For f, g : V → R, we define their convolution as

(f ∗ g)(x) = E
y∼V

[f(y)g(x+ y)].

We observe the following simple fact:

Fact 3.6. For functions f, g, h : V → R,

⟨f ∗ g, h⟩ = ⟨f ∗ h, g⟩ = ⟨g ∗ h, f⟩ = E
x,y∼V

[f(x)g(y)h(x+ y)].

Definition 3.7 (Density Function). For a nonempty set A ⊆ V, we define its density func-
tion as

φA =
1A

E [1A]
=

1A

|A| / |V|
.

Note that E[φA] = 1.

3.3 3-Player Games and Parallel Repetition

We overview some basic definitions regarding multiplayer games. We shall restrict our focus
to 3-player games.

Definition 3.8 (3-Player Game). A 3-player game G is a tuple G = (X ×Y ×Z, A×B ×
C, Q, Vpred), where the question sets X ,Y ,Z and the answer sets A,B, C are finite sets, Q
is a probability distribution over X ×Y ×Z, and Vpred : (X ×Y ×Z)× (A×B×C)→ {0, 1}
is a predicate.

The game G proceeds as follows: A verifier samples questions (X, Y, Z) ∼ Q; then, the
verifier sends X to player 1, Y to player 2, and Z to player 3, to which the players respond
back with answers A ∈ A, B ∈ B, C ∈ C respectively. Finally, the verifier declares that the
players win if and only if Vpred((X, Y, Z), (A,B,C)) = 1.

Definition 3.9 (Game Value). Let G = (X × Y × Z, A × B × C, Q, Vpred) be a 3-player
game. The value of the game G, denoted val(G), is defined as

val(G) = max
f,g,h

Pr
(X,Y,Z)∼Q

[Vpred ((X, Y, Z), (f(X), g(Y ), h(Z))) = 1] ,

where the maximum is over player strategies f : X → A, g : Y → B, h : Z → C.

Fact 3.10. The game value is unchanged even if the players are allowed to use public and
private randomness, since there always exists some optimal fixed values of the random strings.

Next, we define the parallel repetition of a 3-player game, which corresponds to playing
n independent copies of the game in parallel.

Definition 3.11 (Parallel Repetition). Let G = (X×Y×Z, A×B×C, Q, Vpred) be a 3-player
game. We define its n-fold repetition as G⊗n = (X n×Yn×Zn, An×Bn×Cn, Q⊗n, V ⊗n

pred). The
distribution Q⊗n is the n-fold product of the distribution Q with itself, i.e., Q⊗n[(x, y, z)] =∏n

i=1Q[(xi, yi, zi)] for each x ∈ X n, y ∈ Yn, z ∈ Zn. The predicate V ⊗n
pred is defined as

V ⊗n
pred((x, y, z), (a, b, c)) =

∧n
i=1 Vpred((xi, yi, zi), (ai, bi, ci)).

10



3.3.1 Some Basic Results on Parallel Repetition

We state a lemma from [FV02], which shows that it suffices to prove parallel repetition in
the case when the game’s distribution is uniform over its support:

Lemma 3.12 ([GHM+22, Lemma 3.14]). Let G = (X × Y × Z, A × B × C, Q, Vpred) be
a 3-player game such that val(G) < 1. Let G̃ = (X × Y × Z, A × B × C, U, Vpred), where
U is the uniform distribution over supp(Q). Then, val(G̃) < 1, and there exists a constant
c = c(G) > 0, such that for every sufficiently large n ∈ N,

val(G⊗n) ≤ 2 · val(G̃⊗⌊cn⌋).

We state an inductive parallel repetition criterion from [Raz98]:

Lemma 3.13 ([BBK+26, Lemma B.1]). Let G = (X × Y × Z, A × B × C, Q, Vpred) be
a 3-player game, and consider its n-fold repetition G⊗n = (X n × Yn × Zn, An × Bn ×
Cn, Q⊗n, V ⊗n

pred) for some sufficiently large n ∈ N. Fix optimal strategies for the 3 players in
this game, and for each i ∈ [n], let Wini be the event that this strategy wins the ith coordinate
of the game.

Let ϵ > 0 be a constant, and α ∈ (0, 1], α ≥ 2−n be such that the following condition
holds: For every product event E × F × G ⊆ X n × Yn × Zn with PrQ⊗n [E × F × G] ≥ α,
there exists a coordinate i ∈ [n] such that Pr [Wini |E × F ×G] ≤ 1− ϵ.

Then, for some constant c = c(G), it holds that val(G⊗n) ≤ αc.

4 Algebraic Spreadness and Uniformization
In this section, we overview a notion of pseudorandomness called algebraic spreadness. We
also show how to decompose arbitrary sets into components that satisfy this spreadness
definition.

4.1 Algebraic Spreadness

Definition 4.1 (Algebraic Spreadness). Let V ⊆ Fn
2 be an affine subspace. We say that

a subset A ⊆ V is (r, ϵ)-algebraically spread within V if for all affine subspaces V ′ ⊆ V
satisfying dim(V ′) ≥ dim(V)− r, it holds that

|A ∩ V ′|
|V ′|

≤ (1 + ϵ) · |A|
|V|

.

We state a useful result about spread subsets.

Theorem 4.2. Let d ≥ 1, ϵ ∈ (0, 1/4). Then, there exists a sufficiently large integer r =
d8ϵ−O(1), and a sufficiently small δ = Ω(ϵ), such that the following holds: Suppose A,B,C ⊆
Fn
2 are sets each of size at least 2−d · |Fn

2 |. Then,

11



(i) ([KM23, Proposition 2.16]) If at least two of A,B,C are (r, δ)-algebraically spread,

|⟨φA ∗ φB, φC⟩ − 1| ≤ ϵ.10

(ii) ([KM23, Proposition 4.10]) If at least one of A,B,C is (r, δ)-algebraically spread,

⟨φA ∗ φB, φC⟩ ≤ 1 + ϵ.

4.2 Uniformization

In this section, we describe a procedure that takes an arbitrary set X ⊆ Fn
2 and approximately

decomposes it into components that are algebraically spread. More generally, we find a
simultaneous decomposition for three sets X, Y, Z, compatible with the diagonal-product:

Proposition 4.3. Let r ∈ N, ϵ, η ∈ (0, 1/10), and let X,Y, Z ⊆ V for a linear subspace
V ⊆ Fn

2 . Define α = |S(X, Y, Z)| /|V|2. Then, there exists Cη = (1/η)O(1) ≥ 1 (that depends
only on η), an integer T ∈ N, and for each i ∈ [T ], a linear subspace Vi ⊆ V, points
xi, yi ∈ V/Vi, and subsets Xi ⊆ xi + Vi, Yi ⊆ yi + Vi, Zi ⊆ xi + yi + Vi, such that:

1. dim(Vi) ≥ dim(V)− rϵ−3 log2(4/α)
Cη for all i ∈ [T ].

2. S(X1, Y1, Z1), . . . , S(XT , YT , ZT ) are disjoint subsets of S(X, Y, Z) such that∣∣S(X, Y, Z) \ ∪T
i=1S(Xi, Yi, Zi)

∣∣ ≤ η |S(X,Y, Z)| .

The diagonal-product sets are defined as in Definition 2.1.

3. For all i ∈ [T ], we have |Xi| , |Yi| , |Zi| ≥ 2−(log2(4/α))
Cη · |Vi|, and Xi, Yi, Zi are (r, ϵ)-

algebraically spread within xi + Vi, yi + Vi, xi + yi + Vi respectively.

The proof of the above proposition is based on [JLL+25, Section 5.3], with the exception
that we work to make all the 3 sets spread (instead of just 2). As a result, we obtain a
weaker dependence on the parameter η compared to their two set version; however, this is
inconsequential in our setting, as we use this only for constant η. In the following subsections,
we first show how to decompose one set, then two sets, and finally three sets.

4.2.1 Uniformization for 1 Set

We first show how to decompose a single set X into spread components. Before that, we
show that any large set contains a spread set in it.

Lemma 4.4 (Existence of a Spread Subset). Let r ∈ N, ϵ ∈ (0, 1), and let X ⊆ V for a
linear subspace V ⊆ Fn

2 . Define αX = |X| / |V|. Then, there exists an affine subspace V ′ ⊆ V
such that:

10For example, if both A,B are algebraically spread, we have |⟨φA ∗ φB , φC⟩ − 1| ≤ 2 ∥φA ∗ φB − 1∥d ≤ ϵ,
where the first inequality follows from Hölder’s inequality, and the second inequality follows from [KM23,
Proposition 2.16].
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1. dim(V ′) ≥ dim(V)− rϵ−1 log2(1/αX).

2. The set X ′ = X ∩V ′ satisfies |X′|
|V ′| ≥ αX , and X ′ is (r, ϵ)-algebraically spread within V ′.

Proof. We proceed iteratively. Let V(0) = V ; for t = 0, 1, 2, . . . we do the following: if
X ∩ V(t) is (r, ϵ)-algebraically spread within V(t), we stop; otherwise, there exists some
subspace V(t+1) ⊆ V(t) such that dim(V(t+1)) ≥ dim(V (t))− r, and∣∣X ∩ V(t+1)

∣∣
|V(t+1)|

> (1 + ϵ) ·
∣∣X ∩ V(t)

∣∣
|V(t)|

.

If we have not stopped till step t, we have dim(V(t)) ≥ dim(V)− rt, and∣∣X ∩ V(t+1)
∣∣

|V(t+1)|
≥ (1 + ϵ)tαX ≥ 2ϵtαX .

Since this density cannot exceed 1, we must stop for some t ≤ ϵ−1 log2(1/αX).

Using the above lemma, we show how to decompose a single set into spread components.

Lemma 4.5 (Uniformization for 1 Set). Let r ∈ N, ϵ, η ∈ (0, 1). Let X ⊆ V for a linear
subspace V ⊆ Fn

2 . Then, there exists T ∈ N, and for each i ∈ [T ], an affine subspace Vi ⊆ V
and a subset Xi ⊆ Vi, such that:

1. dim(Vi) ≥ dim(V)− rϵ−1 log2(1/η) for all i ∈ [T ].

2. X1, . . . , XT are disjoint subsets of X such that
∣∣X \ ∪i∈[T ]Xi

∣∣ ≤ η |V|.

3. For all i ∈ [T ], |Xi| ≥ η |Vi| and Xi is (r, ϵ)-algebraically spread within Vi.

Proof. We proceed iteratively, via the following algorithm: Let X(1) = X, V(1) = V . At
any time step t, if

∣∣X(t)
∣∣ ≤ η |V|, we stop. Else, if

∣∣X(t)
∣∣ ≥ η |V|, by Lemma 4.4, we

find an affine subspace Vt ⊆ V of dimension dim(Vt) ≥ dim(V) − rϵ−1 log2(1/η), such that
Xt := X(t) ∩ Vt satisfies |Xt| ≥ η |Vt|, and Xt is (r, ϵ)-algebraically spread within Vt. Then,
we define X(t+1) = X(t) \Xt.

Finally, suppose we stop at step T + 1. Then, we can write X as a disjoint union
X = X(T+1) ∪X1 ∪X2 ∪ · · · ∪XT , with

∣∣X(T+1)
∣∣ ≤ η |V|.

Remarks 4.6. Note that

1. It must hold that T ≤ 2(1+r/ϵ) log2(1/η), since for all i ∈ [T ],

|Xi|
|V|

=
|Xi|
|Vi|
· |Vi|
|V|
≥ η · 2−r log2(1/η)/ϵ = 2−(1+r/ϵ) log2(1/η),

and
∑T

i=1 |Xi| ≤ |X| ≤ |V|.

2. It is useful to think of η = η′ · |X|
|V| , to get a multiplicative approximation for the set X.
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4.2.2 Uniformization for 2 Sets

Next, we state a lemma about decomposing the product X ×Y of two sets X, Y into spread
components.

Lemma 4.7 (Uniformization for 2 Sets, [JLL+25, Lemma 5.9]). Let r ∈ N, ϵ, η ∈ (0, 1/10),
and let X,Y ⊆ V for a linear subspace V ⊆ Fn

2 . Define αXY = |X| |Y | /|V|2. Then, there
exists T ∈ N, and for each i ∈ [T ], a linear subspace Vi ⊆ V, points xi, yi ∈ V/Vi, and
subsets Xi ⊆ xi + Vi, Yi ⊆ yi + Vi, such that:

1. dim(Vi) ≥ dim(V)−O (rϵ−2 log2(1/αXY )
2 log2(1/η) + rϵ−2 log2(1/η)

5) for all i ∈ [T ].

2. X1 × Y1, . . . , XT × YT are disjoint subsets of X × Y such that∣∣(X × Y ) \ ∪i∈[T ](Xi × Yi)
∣∣ ≤ η |X × Y |

3. For all i ∈ [T ], we have |Xi × Yi| ≥ κ · |Vi|2 for κ ≥ 2−O(log2(1/η)
2) ·αXY , and Xi, Yi are

(r, ϵ)-algebraically spread within xi + Vi, yi + Vi respectively.

4.2.3 Uniformization for 3 Sets

We shall prove Proposition 4.3 and show how to decompose three sets into spread compo-
nents, compatible with the diagonal-product. We start by stating a simple fact about the
size of a diagonal-product S(X, Y, Z), which along with Theorem 4.2 allows us to control
this size when at least one or two of X,Y, Z are spread.

Fact 4.8. Let X,Y, Z ⊆ V for a linear subspace V ⊆ Fn
2 , and let αX = |X| /|V|, αY =

|Y | /|V|, αZ = |Z| /|V|. Then, |S(X,Y, Z)| = αXαY αZ · ⟨φX ∗ φY , φZ⟩.

First, we show a one round partitioning result for S(X, Y, Z):

Lemma 4.9. Let η ∈ (0, 1/50), and let X, Y, Z ⊆ V for a linear subspace V ⊆ Fn
2 . Define

α = |S(X,Y, Z)| / |V|2. Then, there exists an integer r′ = O(log2(1/(ηα))
16), and constant

ϵ′ = Ω(1), such that the following hold:
Let r ∈ N, ϵ ∈ (0, 1/10) satisfy r ≥ r′, ϵ ≤ ϵ′. Then, there exists T ∈ N , a set

G ⊆ [T ], and for each i ∈ [T ], a linear subspace Vi ⊆ V, points xi, yi ∈ V/Vi, and subsets
Xi ⊆ xi + Vi, Yi ⊆ yi + Vi, Zi ⊆ xi + yi + Vi, such that

1. dim(Vi) ≥ dim(V)−O (rϵ−3 log2(1/(ηα))
6) for all i ∈ [T ].

2. S(X1, Y1, Z1), . . . , S(XT , YT , ZT ) are disjoint subsets of S(X, Y, Z) such that∣∣S(X, Y, Z) \ ∪T
i=1S(Xi, Yi, Zi)

∣∣ ≤ 4η |S(X,Y, Z)| .

3. |S(Xi, Yi, Zi)| ≥ 2−O(log2(1/(ηα))
2) · |Vi|2 for all i ∈ [T ].

4. For all i ∈ G, the sets Xi, Yi, Zi are (r, ϵ)-algebraically spread within xi+Vi, yi+Vi, xi+
yi + Vi respectively.
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5.
∑

i∈G |S(Xi, Yi, Zi)| ≥ 1
10
· |S(X,Y, Z)|.

Proof. Let κ = 2−O(log2(1/(ηα))
2) ·αXY ≥ 2−O(log2(1/(ηα))

2) be as in the third item in Lemma 4.7,
when applied with parameter ηα; we may assume κ ≤ ηα/2. Let r′ = O(log2(1/κ)

8), ϵ′ =
Ω(1) be as in Theorem 4.2 with density κ/2 and error 1/10 (that is, with d← log2(2/κ) and
ϵ← 1/10).

Let r0 = r + ⌈rϵ−1 log2(1/(ηα))⌉. By Lemma 4.7 applied to X × Y , with parameters
r0, ϵ/10, ηα, we may find T ∈ N, and for each t ∈ [T ] a linear subspace Vt of dimension
dim(Vt) ≥ dim(V) − O (r0ϵ

−2 log2(1/(ηα))
5), points xt, yt ∈ V/Vt, and subsets Xt ⊆ xt +

Vt, Yt ⊆ yt+Vt of size |Xt| |Yt| / |Vt|2 ≥ κ, such that Xt, Yt are (r0, ϵ/10)-algebraically spread
inside xt+Vt, yt+Vt respectively. Also, we have that X1×Y1, . . . , XT×YT are disjoint subsets
of X×Y , with X̃Y = (X×Y )\∪t∈[T ](Xt×Yt) satisfying |X̃Y | ≤ ηα |X × Y |. In particular,
it also holds that S(X1, Y1, Z), . . . , S(XT , YT , Z) are disjoint subsets of S(X, Y, Z).

Now, consider any t ∈ [T ]. Observe that S(Xt, Yt, Z) = S(Xt, Yt, Zt), where Zt = Z ∩
(xt+tt+Vt). We shall now further decompose S(Xt, Yt, Zt) so as to make the third set spread.
By Lemma 4.5 applied to Zt,11 with parameters r, ϵ, ηα, we can find Tt ∈ N, and for each
t′ ∈ [Tt], a linear subspace Vt,t′ ⊆ Vt of dimension dim(Vt,t′) ≥ dim(Vt)− rϵ−1 log2(1/(ηα)), a
point zt,t′ ∈ Vt/Vt,t′ , and a subset Zt,t′ ⊆ xt + yt + zt,t′ + Vt,t′ of size |Zt,t′ | ≥ ηα |Vt,t′| that is
(r, ϵ)-algebraically spread. Also, we may write Zt as a disjoint union Zt = Zt,1∪· · ·∪Zt,Tt∪Z̃t,
with |Z̃t| ≤ ηα |Vt|.

Note that for all t ∈ [T ], t′ ∈ [Tt], we have S(Xt, Yt, Zt,t′) = ∪z∈Vt/Vt,t′
S(Xt,t′,z, Yt,t′,z, Zt,t′),

where Xt,t′,z = Xt ∩ (xt + z + Vt,t′), Yt,t′,z = Yt ∩ (yt + z + zt,t′ + Vt,t′); recall Zt,t′ ⊆
xt + yt + zt,t′ + Vt,t′ .

Finally, we define the sets Xi, Yi, Zi in the lemma statement as all Xt,t′,z, Yt,t′,z, Zt,t′ , for
t ∈ [T ], t′ ∈ [Tt], z ∈ Vt/Vt,t′ that satisfy

|S(Xt,t′,z, Yt,t′,z, Zt,t′)| ≥ η2α2κ · |Vt,t′|2 .

Also, we define G to contain all Xt,t′,z, Yt,t′,z, Zt,t′ satisfying

|Xt,t′,z|
|Vt,t′|

≥ (1− 4ϵ/10) · |Xt|
|Vt|

,
|Yt,t′,z|
|Vt,t′|

≥ (1− 4ϵ/10) · |Yt|
|Vt|

.

We will show later (in the last item below) that the pieces in the set G also satisfy the
condition |S(Xt,t′,z, Yt,t′,z, Zt,t′)| ≥ η2α2κ · |Vt,t′|2. Now, we verify each of the conclusions in
the lemma statement:

1. We have for all t, t′ that

dim(Vt,t′) ≥ dim(Vt)− rϵ−1 log2(1/(ηα))

≥ dim(V)−O
(
r0ϵ

−2 log2(1/(ηα))
5
)

≥ dim(V)−O
(
rϵ−3 log2(1/(ηα))

6
)
.

11Formally, we shift the set Zt so it lies in the linear subspace Vt, then apply the lemma and shift back.
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2. By construction, it holds that the sets S(Xi, Yi, Zi) are disjoint subsets of S(X, Y, Z).
Let I to denote all (t, t′, z) such that |S(Xt,t′,z, Yt,t′,z, Zt,t′)| < η2α2κ · |Vt,t′ |2. Then, the
quantity |S(X, Y, Z)| −

∑
i |S(Xi, Yi, Zi)| equals

|X̃Y ∩ {(x, y) : x+ y ∈ Z} |+
∑
t

|S(Xt, Yt, Z̃t)|+
∑

(t,t′,z)∈I

|S(Xt,t′,z, Yt,t′,z, Zt,t′)| .

We bound each of these one by one.

(a) The first term is at most |X̃Y | ≤ ηα |X| |Y | ≤ ηα |V|2.
(b) For any t ∈ [T ], we have that Xt, Yt are (r0, ϵ/10)-algebraically spread, and hence

also (r, ϵ)-algebraically spread. Thus, by Theorem 4.2, we have |S(Xt, Yt, Z̃t)| ≤
1.1 · |Xt| |Yt| · ηα. Here, we used that Xt, Yt have density at least κ, and also that
for this calculation we may assume that Z̃t has density at least κ (which is at
most ηα/2) by possibly adding more elements to Z̃t. Hence, the second term is
at most∑

t∈[T ]

|S(Xt, Yt, Z̃t)| ≤ 1.1 · ηα ·
∑
t∈[T ]

|Xt| |Yt| ≤ 1.1 · ηα · |X| |Y | ≤ 1.1 · ηα |V|2 .

(c) The third term is at most∑
(t,t′,z)∈I

|S(Xt,t′,z, Yt,t′,z, Zt,t′)| ≤
∑

(t,t′,z)∈I

η2α2κ · |Vt,t′ |2 ≤
∑
t,t′

z∈Vt/Vt,t′

η2α2κ · |Vt,t′|2

=
∑
t,t′

ηακ · (ηα |Vt,t′|) · |Vt| ≤
∑
t,t′

ηακ · |Zt,t′ | · |Vt|

≤
∑
t

ηα ·
(
κ |Vt|2

)
≤

∑
t

ηα · |Xt| |Yt| ≤ ηα |V|2 .

Combining, we get the bound 3.1 · ηα |V|2 ≤ 4η |S(X,Y, Z)|.

3. By construction, we have |S(Xi, Yi, Zi)| ≥ η2α2κ |Vi|2 ≥ 2−O(log2(1/(ηα))
2) · |Vi|2.

4. Each Zt,t′ is (r, ϵ)-algebraically spread within xt + yt + zt,t′ + Vt,t′ .

Now, consider any Xt,t′,z such that |Xt,t′,z|
|Vt,t′ | ≥ (1 − 4ϵ/10) · |Xt|

|Vt| . We show that it is

(r, ϵ)-algebraically spread within xt + z + Vt,t′ . For this, let W ⊆ xt + z + Vt,t′ be any
affine subspace satisfying dim(W) ≥ dim(Vt,t′) − r ≥ dim(Vt) − r0. Then, as Xt is
(r0, ϵ/10)-algebraically spread within xt + Vt, we get

|Xt,t′,z ∩W|
|W|

=
|Xt ∩W|
|W|

≤
(
1 +

ϵ

10

)
· |Xt|
|Vt|
≤

(
1 + ϵ

10

)(
1− 4ϵ

10

) · |Xt,t′,z|
|Vt,t′ |

≤ (1 + ϵ) · |Xt,t′,z|
|Vt,t′ |

.

A similar argument shows that Yt,t′,z is (r, ϵ)-algebraically spread within yt+ z+ zt,t′ +

Vt,t′ , assuming that |Yt,t′,z|
|Vt,t′| ≥ (1− 4ϵ/10) · |Yt|

|Vt| .
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5. Consider any piece Xt,t′,z, Yt,t′,z, Zt,t′ in G. This satisfies
|Xt,t′,z|
|Vt,t′ |

≥ (1−4ϵ/10) · |Xt|
|Vt|
≥ κ

2
,
|Yt,t′,z|
|Vt,t′|

≥ (1−4ϵ/10) · |Yt|
|Vt|
≥ κ

2
,
|Zt,t′ |
|Vt,t′ |

≥ ηα ≥ κ

2
.

Since all three are (r, ϵ)-algebraically spread, with r ≥ r′, ϵ ≤ ϵ′, by Theorem 4.2,

|S(Xt,t′,z, Yt,t′,z, Zt,t′)| ≥
9

10
· |Xt,t′,z|
|Vt,t′ |

· |Yt,t′,z|
|Vt,t′|

· |Zt,t′|
|Vt,t′ |

· |Vt,t′|2

≥ 9

10
·
(
1− 4ϵ

10

)2

· |Xt| |Yt|
|Vt|2

· |Zt,t′|
|Vt,t′ |

· |Vt,t′|2

≥ 1

2
· |Xt| |Yt|
|Vt|2

· |Zt,t′ | |Vt,t′ | . (1)

In particular, the above is at least 1/2 ·κ · ηα |Vt,t′ |2 ≥ η2α2κ · |Vt,t′|2, which shows that
the pieces in G are a subset of the pieces Xi, Yi, Zi that were not discarded.
Now, fix any t ∈ [T ], t′ ∈ [Tt]. We show that

Pr
z∼Vt/Vt,t′

[
|Xt,t′,z|
|Vt,t′|

≥ (1− 4ϵ/10) · |Xt|
|Vt|

]
≥ 4/5.

For this, let p denote the probability on the left hand side. Observe that for every
z ∈ Vt/Vt,t′ , as Xt is (r0, ϵ/10)-algebraically spread within xt + Vt, we have the upper

bound |Xt,t′,z|
|Vt,t′| ≤ (1 + ϵ/10) · |Xt|

|Vt| . This implies that

|Xt|
|Vt|

= E
z∼Vt/Vt,t′

[
|Xt,t′,z|
|Vt,t′ |

]
≤ (1− p) · (1− 4ϵ/10) · |Xt|

|Vt|
+ p · (1 + ϵ/10) · |Xt|

|Vt|
,

which gives p ≥ 4/5.
Thus, for any t ∈ [T ], t′ ∈ [Tt], by the above, and by using a similar bound for Yt,t′,z,

Pr
z∼Vt/Vt,t′

[
|Xt,t′,z|
|Vt,t′ |

≥ (1− 4ϵ/10) · |Xt|
|Vt|

,
|Yt,t′,z|
|Vt,t′|

≥ (1− 4ϵ/10) · |Yt|
|Vt|

]
≥ 3/5.

Combining with the earlier bound (Equation 1), we get∑
i∈G

|S(Xi, Yi, Zi)| ≥
∑

t∈[T ],t′∈[Tt]

1

2
· |Xt| |Yt|
|Vt|2

· |Zt,t′ | |Vt,t′ | ·
(
3

5
· |Vt|
|Vt,t′ |

)
=

∑
t∈[T ],t′∈[Tt]

3

10
· |Xt| |Yt|
|Vt|

· |Zt,t′ |

≥
∑
t∈[T ]

3

10
· |Xt| |Yt|
|Vt|

· (|Zt| − ηα |Vt|)

=
∑
t∈[T ]

3

10
· |Xt| |Yt| |Zt|

|Vt|
− ηα

∑
t∈[T ]

|Xt| |Yt|

≥
∑
t∈[T ]

3

10
· |Xt| |Yt| |Zt|

|Vt|
· 1 [|Zt| ≥ ηα |Vt|]− ηα |V|2 .
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Now, as Xt, Yt are (r0, ϵ/10)-algebraically spread within xt + Vt, yt + Vt respectively,
by the choice of r′, ϵ′, and by Theorem 4.2, we have |S(Xt, Yt, Zt)| ≤ 1.1 · |Xt||Yt||Zt|

|Vt|
whenever |Zt| ≥ ηα |Vt| ≥ κ |Vt|. Hence,∑
i∈G

|S(Xi, Yi, Zi)| ≥
∑
t∈[T ]

3

10
· 1

1.1
· |S(Xt, Yt, Zt)| · 1 [|Zt| ≥ ηα |Vt|]− ηα |V|2

≥ 0.25 ·
∑
t∈[T ]

|S(Xt, Yt, Zt)| −
∑
t∈[T ]

|S(Xt, Yt, Zt)| · 1 [|Zt| < ηα |Vt|]− ηα |V|2

≥ 0.25 · |S(X,Y, Z)| − ηα |V|2 − 1.1 ·
∑
t∈[T ]

|Xt| |Yt| ηα− ηα |V|2 .

≥ 0.25 · |S(X,Y, Z)| − 3.1ηα |V|2

= (0.25− 3.1η) · |S(X,Y, Z)| ≥ 0.1 · |S(X, Y, Z)| .

For the middle term |S(Xt, Yt, Zt)| · 1 [|Zt| < ηα], we used that Xt, Yt are (r0, ϵ/10)-
algebraically spread within xt + Vt, yt + Vt respectively, and also for the purpose of
calculating an upper bound assumed that |Zt| / |Vt| ≥ κ which can be obtained by
possibly adding more elements to Zt.

We write down a simpler version of the above lemma, with the assumption on r, ϵ removed:

Corollary 4.10. Let r ∈ N, ϵ, η ∈ (1/10), and let X,Y, Z ⊆ V for a linear subspace V ⊆ Fn
2 .

Define α = |S(X,Y, Z)| / |V|2. Then, there exists T ∈ N , a set G ⊆ [T ], and for each i ∈ [T ],
a linear subspace Vi ⊆ V, points xi, yi ∈ V/Vi, and subsets Xi ⊆ xi + Vi, Yi ⊆ yi + Vi, Zi ⊆
xi + yi + Vi, such that

1. dim(Vi) ≥ dim(V)−O (rϵ−3 log2(1/(ηα))
6 + ϵ−3 log2(1/(ηα))

22) for all i ∈ [T ].

2. S(X1, Y1, Z1), . . . , S(XT , YT , ZT ) are disjoint subsets of S(X, Y, Z) such that∣∣S(X, Y, Z) \ ∪T
i=1S(Xi, Yi, Zi)

∣∣ ≤ η |S(X,Y, Z)| .

3. |S(Xi, Yi, Zi)| ≥ 2−O(log2(1/(ηα))
2) · |Vi|2 for all i ∈ [T ].

4. For all i ∈ G, the sets Xi, Yi, Zi are (r, ϵ)-algebraically spread within xi+Vi, yi+Vi, xi+
yi + Vi respectively.

5.
∑

i∈G |S(Xi, Yi, Zi)| ≥ 1
10
· |S(X,Y, Z)|.

Proof. We plug in the parameter η/5 in Lemma 4.9 to get r′ = O(log2(1/(ηα))
16), and

ϵ′ = Ω(1). Then, we use the lemma with parameters r0 = r + r′ and ϵ0 = ϵ · ϵ′, noting that
any set which is (r0, ϵ0)-algebraically spread is also (r, ϵ)-algebraically spread.

Finally, we complete the main result of this section:
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Proof of Proposition 4.3. We perform the following recursive process, given sets X, Y, Z ⊆ V :
Let T ∈ N, G ⊆ [T ], and subsets Xi ⊆ xi + Vi, Yi ⊆ yi + Vi, Zi ⊆ xi + yi + Vi be as in
Corollary 4.10, with parameters r, ϵ

10
, η2

100
. Now, for each i ∈ [T ]\G, we invoke Corollary 4.10

recursively on Xi, Yi, Zi,12 with parameters r, ϵ
10
, η2

100
. We terminate when the recursion depth

is L = ⌈20 log2(1/η)⌉, and throw away all the remaining pieces at this point.
Note that for any Xi, Yi, Zi lying in affine shifts of a linear subspace Vi ⊆ V , that the

algorithm sees at some point but does not throw away, it holds that

|S(Xi, Yi, Zi)|
|Vi|2

≥ 2−(log2(4/α))
poly(1/η)

.

This follows by Corollary 4.10, as the measure reduces from β to 2−O(log2(1/(ηβ))
2) in a single

step, and the number of steps is L = O(log2(1/η)). With this observation, we verify each of
the conclusions in the statement of the proposition:

1. At each step, the dimension reduces by at most rϵ−3 log2(4/α)
poly(1/η), and the number

of steps is L = O(log2(1/η)).

2. The disjointness of the pieces follows by construction.

At each recursive layer, the total size of pieces thrown out is at most η2

100
· |S(X, Y, Z)|.

Additionally, at any layer the total size of the pieces being recursed on is at most 9/10
times the total size of pieces in the previous layer; in particular, the total size of pieces
at layer L is at most (9/10)L · |S(X, Y, Z)| ≤ η2 |S(X, Y, Z)|. Hence, the total fraction
of pieces thrown out is at most

η2

100
· 21 log2(1/η) + η2 ≤ η.

3. The size bound for Xi, Yi, Zi is as above, and spreadness follows by Corollary 4.10.

5 Uniform Square Covers
In this section, we show that any diagonal-product set (see Definition 2.1) composed of alge-
braically spread sets (see Definition 4.1) is uniformly covered by squares (see Definition 2.2).
In Section 5.1, we introduce a combinatorial notion of spreadness that will be useful for us;
in Section 5.2, we show that algebraically spread sets satisfy this definition (in a specific
way); finally, in Section 5.3, we prove Proposition 5.6, our square covering result.

5.1 Combinatorial Spreadness and Graph Counts

We state some useful definitions from [KLM24]:
12Formally, we shift the sets so they all in the linear subspace Vi, then apply the corollary and shift back.
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Definition 5.1 (Combinatorial Spreadness). Let X, Y be finite sets, and let f : X × Y →
{0, 1}. We say that f is (r, ϵ)-combinatorially spread if for every S ⊆ X, T ⊆ Y satisfying
|S × T | ≥ 2−r |X × Y |, it holds that

E
(x,y)∼S×T

[f(x, y)] ≤ (1 + ϵ)E[f ],

where E[f ] = E(x,y)∼X×Y [f(x, y)].

Definition 5.2 (Lower Bounded Left-Marginals). Let X,Y be finite sets, and let f : X×Y →
{0, 1}. We say that f has (r, ϵ)-lower bounded left-marginals if

Pr
x∼X

[
E

y∼Y
[f(x, y)] ≤ (1− ϵ) · E[f ]

]
≤ 2−r.

We state a result about graph counts in spread sets:

Theorem 5.3 ([FHHK24, Theorem 2.1]). For any k ∈ N, ϵ ∈ (0, 1), there exists sufficiently
small γ = γ(ϵ, k) > 0, and sufficiently large C = C(ϵ, k) ∈ N, such that the following holds:

Let H = ([k], E) be an oriented graph, where (i, j) ∈ E implies i < j. Let X1, . . . , Xk

be finite sets; let d ≥ 1, and for each (i, j) ∈ E, let fij : Xi × Xj → {0, 1} be a function
satisfying:

1. E[fij] ≥ 2−d,

2. fij is (Cd2, γ)-combinatorially spread, and

3. fij has (Cd, γ)-lower bounded left-marginals.

Then, it holds that∣∣∣∣∣∣ E
x1∼X1,...,xk∼Xk

 ∏
(i,j)∈E

fij(xi, xj)

− ∏
(i,j)∈E

E[fij]

∣∣∣∣∣∣ ≤ ϵ ·
∏

(i,j)∈E
E[fij].

5.2 Algebraic Spreadness implies Graph Counts

We show that a certain function corresponding to algebraically spread sets is both combina-
torially spread and has lower bounded left-marginals.

Lemma 5.4. Let d, r ≥ 1, ϵ ∈ (0, 1/4). Then, there exists a sufficiently large integer s =
(r8 + d8) · ϵ−O(1), and a sufficiently small δ = Ω(ϵ), such that the following holds:

Let X,Y, Z ⊆ Fn
2 be subsets each of density at least 2−d, and such that Y, Z are (s, δ)-

algebraically spread. Then, the function f : X×Y → {0, 1}, given by f(x, y) = 1 [x+ y ∈ Z],
satisfies:

1. |E[f ]− αZ | ≤ ϵ · αZ, where αZ = |Z| /2n,

2. f is (r, ϵ)-combinatorially spread, and
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3. f has (r, ϵ)-lower bounded left-marginals.

Proof. Let s, δ be such that Theorem 4.2 holds with parameters r + d, ϵ/4.
First, we have

E[f ] = Pr
x∼X,y∼Y

[x+ y ∈ Z] = ⟨φX ∗ φY ,1Z⟩ = αZ · ⟨φX ∗ φY , φZ⟩.

Hence, by Theorem 4.2(i), it holds that

|E[f ]− αZ | ≤
ϵ

4
· αZ .

Next, we show combinatorial spreadness. Let S ⊆ X, T ⊆ Y be such that |S × T | ≥
2−r |X × Y |. We can write

E
(x,y)∼S×T

[f(x, y)] = αZ · ⟨φS ∗ φT , φZ⟩.

Since |X| ≥ 2−d · 2n, we have |S| · |Y | ≥ |S × T | ≥ 2−r · |X × Y | ≥ 2−r · 2n−d · |Y |, and so
|S| ≥ 2−(r+d) · 2n. Similarly, |T | ≥ 2−(r+d) · 2n, and hence, by Theorem 4.2(ii), we get

E
(x,y)∼S×T

[f(x, y)] ≤
(
1 +

ϵ

4

)
αZ ≤

(
1 +

ϵ

4

)
·
(
1− ϵ

4

)−1

E[f ] ≤ (1 + ϵ) · E[f ].

Finally, we show lower bounded left-marginals. Define A ⊆ X by

A =

{
x ∈ X : E

y∼Y
[f(x, y)] ≤ (1− ϵ) · E[f ]

}
.

Suppose, for the sake of contradiction, that |A| > 2−r|X|; then, |A| ≥ 2−(r+d) · 2n. By the
definition of A, we have

E
x∼A,y∼Y

[f(x, y)] ≤ (1− ϵ)E[f ].

On the other hand, by Theorem 4.2(i), we have

E
x∼A,y∼Y

[f(x, y)] = αZ ·⟨φA∗φY , φZ⟩ ≥
(
1− ϵ

4

)
αZ ≥

(
1− ϵ

4

)
·
(
1 +

ϵ

4

)−1

E[f ] > (1−ϵ)E[f ],

which is a contradiction.

5.3 Squares inside Spread Diagonal-Product Sets

In this subsection, we prove our square covering result. We start by proving the following
counting lemma:

Lemma 5.5. Let ϵ ∈ (0, 1/4) be a constant, and let d ≥ 1. Then, there exists a sufficiently
large integer r = Oϵ(d

16) and sufficiently small δ = δ(ϵ) > 0 such that the following holds:
Let X,Y, Z ⊆ Fn

2 be each of density at least 2−d, and such that all of X,Y, Z are (r, δ)-
algebraically spread. Let S = S(X, Y, Z) be as in Definition 2.1, and let Γ : Fn

2 × Fn
2 → R

be the function mapping (x, y) to the normalized number of squares (see Definition 2.2) in
S containing (x, y), i.e.,

Γ(x, y) = E
w∼Fn

2

[1 [sx,y,w ⊆ S]] .

Define αX = E[1X ], αY = E[1Y ], αZ = E[1Z ]. Then, it holds that
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1. ||S| · 2−2n − αXαY αZ | ≤ ϵ · αXαY αZ.

2. |∥Γ∥1 − α2
Xα

2
Y α

2
Z | ≤ ϵ · α2

Xα
2
Y α

2
Z.

3.
∣∣∥Γ∥22 − α3

Xα
3
Y α

3
Z

∣∣ ≤ ϵ · α3
Xα

3
Y α

3
Z.

Proof. Let f : X × Y → {0, 1} , g : Y × Z → {0, 1} , h : X × Z → {0, 1} be given by

f(x, y) = 1[x+ y ∈ Z], g(y, z) = 1[y + z ∈ X], h(x, z) = 1[x+ z ∈ Y ].

Let γ = γ( ϵ
10
, 4) ≤ ϵ

10
, C = C( ϵ

10
, 4) be as in Theorem 5.3. Then, by Lemma 5.4 and

the choice of parameters (r, δ), we may assume that f (and similarly g, h) is such that
|E[f ]− αZ | ≤ γαZ ≤ ϵ

10
αZ , and f is (Cd2, γ)-combinatorially spread, and f has (Cd, γ)-

lower bounded left-marginals.
First, observe that

|S| · 2−2n = E
x,y∼Fn

2

[1 [x ∈ X, y ∈ Y, x+ y ∈ Z]] = αXαY Pr
x∼X,y∼Y

[x+ y ∈ Z] = αXαY E[f ].

The result now follows, as |E[f ]− αZ | ≤ γαZ ≤ ϵ
10
αZ .

Next, we note that

∥Γ∥1 = E
x,y,w∼Fn

2

[1 [sx,y,w ⊆ S]]

= E
x,y,w∼Fn

2

[1X(x)1X(x+ w)1Y (y)1Y (y + w)1Z(x+ y)1Z(x+ y + w)]

= E
x,y,z∼Fn

2

[1X(x)1X(y + z)1Y (y)1Y (x+ z)1Z(x+ y)1Z(z)] (replace w = x+ y + z)

= αXαY αZ E
x∼X,y∼Y,z∼Z

[f(x, y)g(y, z)h(x, z)] .

Now, by Theorem 5.3 (with the oriented graph {(1, 2), (1, 3), (2, 3)}, with 1, 2, 3 labelled by
X, Y, Z respectively), we get

(1− ϵ) · αXαY αZ ≤
(
1− ϵ

10

)4

· αXαY αZ

≤
(
1− ϵ

10

)
· E[f ]E[g]E[h]

≤ E
x∼X,y∼Y,z∼Z

[f(x, y)g(y, z)h(x, z)]

≤
(
1 +

ϵ

10

)
· E[f ]E[g]E[h]

≤
(
1 +

ϵ

10

)4

· αXαY αZ ≤ (1 + ϵ) · αXαY αZ ,

and hence ∣∣∥Γ∥1 − α2
Xα

2
Y α

2
Z

∣∣ ≤ ϵ · α2
Xα

2
Y α

2
Z .
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Finally, we can write

∥Γ∥22 = E
x,y,w,w′∼Fn

2

[1 [sx,y,w ⊆ S, sx,y,w′ ⊆ S]]

= E
x,y,z,z′∼Fn

2

[1 [sx,y,x+y+z ⊆ S, sx,y,x+y+z′ ⊆ S]] (replace w = x+ y + z, w′ = x+ y + z′)

= E
x,y,z,z′∼Fn

2

[1X(x)1X(y + z)1X(y + z′)1Y (y)1Y (x+ z)1Y (x+ z′)1Z(x+ y)1Z(z)1Z(z
′)]

= αXαY α
2
Z E

x∼X,y∼Y,z,z′∼Z
[f(x, y)g(y, z)g(y, z′)h(x, z)h(x, z′)] .

Now, by Theorem 5.3 (with the oriented graph {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}, with 1, 2, 3, 4
labelled by X, Y, Z, Z respectively), we get

(1− ϵ) · α2
Xα

2
Y αZ ≤

(
1− ϵ

10

)6

· α2
Xα

2
Y αZ

≤
(
1− ϵ

10

)
· E[f ]E[g]2 E[h]2

≤ E
x∼X,y∼Y,z,z′∼Z

[f(x, y)g(y, z)g(y, z′)h(x, z)h(x, z′)]

≤
(
1 +

ϵ

10

)
· E[f ]E[g]2 E[h]2

≤
(
1 +

ϵ

10

)6

· α2
Xα

2
Y αZ ≤ (1 + ϵ) · α2

Xα
2
Y αZ ,

and hence ∣∣∥Γ∥22 − α3
Xα

3
Y α

3
Z

∣∣ ≤ ϵ · α3
Xα

3
Y α

3
Z .

With the above, we are ready to prove the main result of this section.

Proposition 5.6. Let ϵ ∈ (0, 1/4) be a constant, and let d ≥ 1. Then, there exists a
sufficiently large integer r = Oϵ(d

16) and sufficiently small δ = δ(ϵ) > 0 such that the
following holds:

Let X,Y, Z ⊆ Fn
2 , be each of density at least 2−d, and such that all of X,Y, Z are (r, δ)-

algebraically spread. Let S = S(X,Y, Z) be as in Definition 2.1, and let T denote the set of
all squares in S (see Definition 2.2); formally,

T =
{
(x, y, w) ∈ (Fn

2 )
3 : sx,y,w ⊆ S

}
.

Define αX = E[1X ], αY = E[1Y ], αZ = E[1Z ]. Then, it holds that

1. ||S| · 2−2n − αXαY αZ | ≤ ϵ · αXαY αZ.

2. ||T | · 2−3n − α2
Xα

2
Y α

2
Z | ≤ ϵ · α2

Xα
2
Y α

2
Z.

3. Let µ be the distribution on S obtained as follows: Pick a random square in S, by
picking uniformly at random (x, y, w) ∼ T ; then, output a uniformly random element
from the set sx,y,w. It holds that

∥µ− US∥1 ≤ ϵ,

where US denotes the uniform distribution over S.
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Proof. Let (r, δ) be such that Lemma 5.5 holds with parameters d and ϵ2/5 := γ, and let Γ
be the function as in the statement of Lemma 5.5. By Lemma 5.5, it directly holds that∣∣|S| · 2−2n − αXαY αZ

∣∣ ≤ γ · αXαY αZ ≤ ϵ · αXαY αZ .

Now, observe that
|T | =

∑
x,y,w∈Fn

2

1 [sx,y,w ⊆ S] = 23n ∥Γ∥1 ,

and hence by Lemma 5.5,∣∣|T | · 2−3n − α2
Xα

2
Y α

2
Z

∣∣ ≤ γ · α2
Xα

2
Y α

2
Z ≤ ϵ · α2

Xα
2
Y α

2
Z .

Finally, we recall Remark 2.3: every square sx,y,w ⊆ S with w ̸= 0 occurs exactly 4
times in T , as sx,y,w = sx+w,y,w = sx,y+w,w = sx+w,y+w,w. Also, when w = 0, we have
sx,y,0 = {(x, y)}. Thus, for any (x, y) ∈ S,

µ[(x, y)] =
1

|T |
·

 ∑
w∈Fn

2 ,w ̸=0

4 · 1 [sx,y,w ⊆ S] · 1
4
+ 1 [sx,y,0 ⊆ S] · 1

 =
Γ(x, y) · 2n

|T |
. (2)

Hence, we can compute the ℓ2-norm of µ as

∥µ∥22 =
∑

(x,y)∈S

µ[(x, y)]2

=
22n

|T |2
·

∑
(x,y)∈S

Γ(x, y)2

=
22n

|T |2
·
∑

x,y∈Fn
2

Γ(x, y)2 (as Γ(x, y) = 0 for (x, y) ̸∈ S)

=
24n

|T |2
· ∥Γ∥22 .

Now, by Lemma 5.5, we obtain

∥µ∥22 ≤
24n

|T |2
· (1 + γ) · α3

Xα
3
Y α

3
Z ,

and so,

∥µ∥22 · |S| ≤ 24n · (1 + γ) · α3
Xα

3
Y α

3
Z ·
|S|
|T |2

≤ 24n · (1 + γ) · α3
Xα

3
Y α

3
Z ·

(1 + γ) · αXαY αZ · 22n

(1− γ)2 · α4
Xα

4
Y α

4
Z · 26n

=
(1 + γ)2

(1− γ)2
≤ 1 + 5γ. (as γ ≤ 0.1)

Finally, by Cauchy-Schwarz, we get

∥µ− US∥1 ≤
(
|S| · ∥µ− US∥22

)1/2
=

(
|S| ·

(
∥µ∥22 −

1

|S|

))1/2

≤
√
5γ = ϵ.
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6 Parallel Repetition for Games with the GHZ Query
Support

This section is devoted to the proof of Theorem 1.1. By Lemma 3.12, it suffices to consider
the case where Q is the uniform distribution over supp(Q). We prove the following:

Theorem 6.1. Let G = (X × Y × Z, A × B × C, Q, Vpred) be any 3-player game with
X = Y = Z = F2, and with Q the uniform distribution over

supp(Q) =
{
(x, y, z) ∈ F3

2 : x+ y + z = 0
}
,

and such that val(G) < 1. Then, for all sufficiently large n,2 it holds that

val(G⊗n) ≤ exp (−nc) ,

where c > 0 is an absolute constant.

The remainder of this section is devoted to the proof of the above theorem. Towards
this, we fix a 3-player game G as in the statement of the theorem; in particular, we must
have that val(G) ≤ 3/4.

The main step of the proof is to prove that the game G⊗n has a hard coordinate when
the inputs to the players are conditioned on a product event with sufficiently large measure.
We carry this out in two parts: first, in Section 6.1, we prove this statement assuming that
each of the three sets in the product event are well spread (as in Definition 4.1) inside some
large subspace of Fn

2 ; then, in Section 6.2, we prove the statement for general product events,
using our uniformization strategy.

6.1 Hard Coordinate under Spread Product Events

We consider the game G⊗n = (X n×Yn×Zn, An×Bn×Cn, Q⊗n, V ⊗n
pred) for some sufficiently

large n ∈ N. Fix any strategies for the 3 players in this game, and for each i ∈ [n], let
Wini ⊆ X n × Yn ×Zn be the event that this strategy wins the ith coordinate of the game.

Lemma 6.2. For any 1 ≤ d ≤ o(n), and constant ϵ ∈ (0, 1/4), there exists a (sufficiently
large) integer r = Oϵ(d

16), and a (sufficiently small) constant 0 < δ = δ(ϵ) < 1, such that
the following holds:

Let V ⊆ Fn
2 be a linear subspace of dimension dim(V) ≥ n− o(n), and let E,F,G ⊆ V be

such that each of them is (r, δ)-algebraically spread within V (see Definition 4.1), and such
that each of the densities |E|

|V| ,
|F |
|V| ,

|G|
|V| ≥ 2−d. Then,

E
i∼[n]

[
Pr
Q⊗n

[Wini | E × F ×G]

]
≤ 1

2
+

val(G)
2

+ ϵ.

The remainder of this subsection is devoted to the proof of the Lemma 6.2. We fix
some 1 ≤ d ≤ o(n), and constant ϵ ∈ (0, 1/4), and let r = Oϵ(d

16), δ = δ(ϵ) > 0 be so
that Proposition 5.6 holds with the parameters d, ϵ

2
. Let V ⊆ Fn

2 be a linear subspace of
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dimension dim(V) ≥ n− o(n), and let E,F,G ⊆ V be each (r, δ)-algebraically spread within
V , and such that each of the densities αE = |E|

|V| , αF = |F |
|V| , αG = |G|

|V| is at least 2−d.
We start by proving a lemma that demonstrates the usefulness of squares. It says that

the no strategy for the game G⊗n can win on non-trivial coordinates of squares.

Definition 6.3 (Non-trivial coordinates). For a square s = sx,y,w ⊆ Fn
2 × Fn

2 , as in Defini-
tion 2.2, we define its set of non-trivial coordinates as

Is = {i ∈ [n] : wi ̸= 0} .

This is well-defined since w is uniquely determined by the square s (see Remark 2.3).

Lemma 6.4. Let s be a square, and let i ∈ Is be a non-trivial coordinate in s. Then,

Pr
(x,y)∼s

[(x, y, x+ y) ∈Wini] ≤ val(G) < 1.

Proof. Let x0, y0, w ∈ Fn
2 be such that s = sx0,y0,w, and wi ̸= 0. We may assume that

(x0)i = 0 (by possibly replacing x0 with x0 + w) and similarly (y0)i = 0. Define the points
x1 = x0 + w, y1 = y0 + w, z0 = x0 + y0, z1 = z0 + w. Also, define

s̃ = {(x, y, x+ y) : (x, y) ∈ s}
= {(x0, y0, z0), (x0, y1, z1), (x1, y0, z1), (x1, y1, z0)}
= {(xα, yβ, zγ) : (α, β, γ) ∈ supp(Q)}

Note that s̃ ⊆ supp(Q)n and all points in s̃ are valid inputs to the players in the game G⊗n.
Moreover, these satisfy (xα, yβ, zγ)i = (α, β, γ) for each (α, β, γ) ∈ supp(Q).

Observe that the distribution of (x, y, x + y) for (x, y) ∼ s is simply the uniform distri-
bution over the 4 points in s̃. Hence, it suffices to show that no strategies f : Fn

2 → A, g :
Fn
2 → B, h : Fn

2 → C for the ith coordinate in G⊗n can win on more than val(G) fraction
of the points s̃. For this, consider any such functions f, g, h. Using these, we construct a
strategy for the base game G as follows:

1. The verifier chooses (α, β, γ) ∼ Q, and gives them to the three players respectively.

2. Player 1 outputs f(xα), Player 2 outputs g(yβ), and Player 3 outputs h(zγ).

On any input (α, β, γ) ∈ supp(Q), as observed before, the ith coordinate of the vector
(xα, yβ, zγ) ∈ s̃ equals (α, β, γ). Hence, probability that the above strategy wins the game
G equals the fraction of points in s̃ on which f, g, h win the ith coordinate of G⊗n. By the
definition of game value, this is at most val(G).

Next, we show that the spreadness of E,F,G ⊆ V guarantees that S = S(E,F,G) (see
Definition 2.1) is covered uniformly by squares. For this, let T denote the set of all squares
contained in S; formally,

T =
{
(x, y, w) ∈ V3 : sx,y,w ⊆ S

}
.

Let US denote the uniform distribution over S. Also, let µ be the distribution on S obtained
as follows: Pick a random square in S, by picking uniformly at random (x, y, w) ∼ T ; then,
output a uniformly random element from the set sx,y,w.
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Lemma 6.5. We have that

1.
∣∣∣ |S|
|V|2 − αEαFαG

∣∣∣ ≤ ϵ
2
· αEαFαG.

2.
∣∣∣ |T |
|V|3 − α2

Eα
2
Fα

2
G

∣∣∣ ≤ ϵ
2
· α2

Eα
2
Fα

2
G.

3. ∥µ− US∥1 ≤
ϵ
2
.

Proof. This follows directly by Proposition 5.6, applied with respect to V ∼= Fdim(V)
2 . Note

that the definition of squares is coordinate-free, and hence the proposition is applicable.

Before completing the proof of Lemma 6.2, we show that a random square inside S =
S(E,F,G) contains many non-trivial coordinates.

Lemma 6.6. Let (x, y, w) ∼ T , and let s = sx,y,w. Then,

E |Is| ≥
n

2
· (1− o(1)).

Proof. For any 0 < θ < 1, we have

Pr
[
|Is| ≤ (1− θ) · n

2

]
= Pr

(x,y,w)∼T
[|{i : wi ̸= 0}| ≤ (1− θ) · n/2]

=
1

|T |
∑

(x,y,w)∈T

1 [|{i : wi ̸= 0}| ≤ (1− θ) · n/2]

≤ 1

|T |
∑

x,y,w∈Fn
2

1 [|{i : wi ̸= 0}| ≤ (1− θ) · n/2]

=
23n

|T |
Pr

w∼Fn
2

[|{i : wi ̸= 0}| ≤ (1− θ) · n/2] .

By Fact 3.1, we have, Prw∼Fn
2
[|{i : wi ̸= 0}| ≤ (1− θ) · n/2] ≤ 2−θ2n/4, and by Lemma 6.5,

we have
|T |
23n
≥ |V|

3

23n
· (1− ϵ/2) · α2

Eα
2
Fα

2
G ≥ 2−3·(n−dim(V)) · 1

2
· 2−6d ≥ 2−κn,

for some κ = o(1). Combining everything, we get

Pr
[
|Is| ≤ (1− θ) · n

2

]
≤ 2κn · 2−θ2n/4 = 2−(θ2−4κ)n/4.

Now, we choose θ = max {3
√
κ, n−0.1} ≤ o(1), and so the above probability is o(1). Hence,

E |Is| ≥
n

2
· (1− θ) · (1− o(1)) ≥ n

2
· (1− o(1)).

Finally, we complete the proof.
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Proof of Lemma 6.2. For any i ∈ [n], and S = S(E,F,G), we can write

Pr
Q⊗n

[Wini | E × F ×G] = Pr
x,y∼Fn

2

[(x, y, x+ y) ∈Wini | (x, y, x+ y) ∈ E × F ×G]

= Pr
x,y∼Fn

2

[(x, y, x+ y) ∈Wini | (x, y) ∈ S]

= Pr
(x,y)∼S

[(x, y, x+ y) ∈Wini] .

By Lemma 6.5, this can be bounded as

Pr
Q⊗n

[Wini | E × F ×G] ≤ E
(x0,y0,w)∼T

E
(x,y)∼sx0,y0,w

[1 [(x, y, x+ y) ∈Wini]] +
ϵ

2
. (3)

Observe that for a fixed square (x0, y0, w) ∈ T , s = sx0,y0,w, by Lemma 6.4, we can bound

E
(x,y)∼sx0,y0,w

[1 [(x, y, x+ y) ∈Wini]] ≤ 1− (1− val(G)) · 1 [i ∈ Is] .

Plugging this into the above, and taking expectation over i ∼ [n], we obtain

E
i∼[n]

[
Pr
Q⊗n

[Wini | E × F ×G]

]
≤ E

i∼[n]
E

(x0,y0,w)∼T

[
1− (1− val(G)) · 1

[
i ∈ Isx0,y0,w

]]
+

ϵ

2

= 1− (1− val(G))
n

E
(x0,y0,w)∼T

|Isx0,y0,w |+
ϵ

2
.

≤ 1− (1− val(G)) · 1
2
· (1− o(1)) +

ϵ

2
(by Lemma 6.6)

≤ 1

2
+

val(G)
2

+
ϵ

2
+ o(1) ≤ 1

2
+

val(G)
2

+ ϵ.

6.2 Hard Coordinate under General Product Events

Now, we work with general product events. Consider the game G⊗n = (X n×Yn×Zn, An×
Bn × Cn, Q⊗n, V ⊗n

pred) for some sufficiently large n ∈ N. Fix any strategies for the 3 players
in this game, and for each i ∈ [n], let Wini ⊆ X n ×Yn ×Zn be the event that this strategy
wins the ith coordinate of the game. We prove that:

Lemma 6.7. For any constant ϵ ∈ (0, 1/4), there exists a constant c = c(ϵ) > 0, such that
the following holds: For any sets E,F,G ⊆ Fn

2 with PrQ⊗n [E × F ×G] ≥ 2−nc, it holds that

E
i∼[n]

[
Pr
Q⊗n

[Wini | E × F ×G]

]
≤ 1

2
+

val(G)
2

+ ϵ.

Proof. Let d = n1/20, and let r = Oϵ(d
16) ∈ N and constant 0 < δ = δ(ϵ) < 1/10 satisfy the

statement of Lemma 6.2, with parameters d, ϵ/2.
Let η = ϵ/3, and let C = Cη be the constant as in Proposition 4.3. Let d0 = d1/C =

n1/(20C) and let E,F,G ⊆ Fn
2 be such that α = PrQ⊗n [E × F ×G] ≥ 4 · 2−d0 . Note that the

lemma statement will hold with c(ϵ) = 1/(40C).
Let S = S(E,F,G) be as in Definition 2.1; this satisfies |S| = 22nα. Now, by Propo-

sition 4.3, (with parameters r, δ, η, and the space Fn
2 ), we find an integer T ∈ N, and for

each t ∈ [T ], a linear subspace Vt ⊆ Fn
2 , points et, ft ∈ Fn

2 , and subsets Et ⊆ et + Vt, Ft ⊆
ft + Vt, Gt ⊆ et + ft + Vt, such that:
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1. For all t ∈ [T ], we have dim(Vt) ≥ n− rδ−3 log2(4/α)
C = n−O(d17) ≥ n− o(n).

2. S(E1, F1, G1), . . . , S(ET , FT , GT ) are disjoint subsets of S such that∣∣S \ ∪Tt=1S(Et, Ft, Gt)
∣∣ ≤ η |S| = ηα · 22n.

3. For all t ∈ [T ], we have |Et| , |Ft| , |Gt| ≥ 2− log2(4/α)
C |Vt| ≥ 2−d |Vt|, and Et, Ft, Gt are

(r, δ)-algebraically spread within et + Vt, ft + Vt, e+ ft + Vt respectively.

Now, for any i ∈ [n], we may write

Pr
Q⊗n

[Wini | E × F ×G] = α−1 · Pr
Q⊗n

[Wini ∩ E × F ×G]

= α−1 · Pr
x,y∼Fn

2

[(x, y, x+ y) ∈Wini ∩ (x, y) ∈ S(E,F,G)]

≤ η +
T∑
t=1

α−1 · Pr
x,y∼Fn

2

[(x, y, x+ y) ∈Wini ∩ (x, y) ∈ S(Et, Ft, Gt)]

= η +
T∑
t=1

α−1 · Pr
Q⊗n

[Wini ∩ Et × Ft ×Gt]

= η +
T∑
t=1

α−1 · Pr
Q⊗n

[Wini | Et × Ft ×Gt] ·
|S(Et, Ft, Gt)|

22n
.

Also, by Lemma 6.2, we have for each t ∈ [T ], that

E
i∼[n]

[
Pr
Q⊗n

[Wini | Et × Ft ×Gt]

]
≤ 1 + val(G) + ϵ

2
.

Here, we note that when the inputs are drawn conditioned on Et×Ft×Gt, the three players
can shift them by et, ft, et+ft ∈ Fn

2 respectively; now the inputs to each player lie in spread
subsets of the linear subspace Vt, and the lemma is applicable. Finally, combining the above
two equations, and recalling η = ϵ/3, we get

E
i∼[n]

[
Pr
Q⊗n

[Wini | E × F ×G]

]
≤ η +

T∑
t=1

α−1 · E
i∼[n]

[
Pr
Q⊗n

[Wini | Et × Ft ×Gt]

]
· |S(Et, Ft, Gt)|

22n

≤ η +
T∑
t=1

α−1 ·
(
1 + val(G) + ϵ

2

)
· |S(Et, Ft, Gt)|

22n

= η + α−1 ·
(
1 + val(G) + ϵ

2

)
·
∑T

t=1 |S(Et, Ft, Gt)|
22n

≤ η + α−1 ·
(
1 + val(G) + ϵ

2

)
· |S|
22n

= η +
1 + val(G) + ϵ

2

≤ 1

2
+

val(G)
2

+ ϵ.

With the above, the proof of our main theorem is direct:
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Proof of Theorem 6.1. The theorem follows by combining Lemma 3.13 with Lemma 6.7,
applied with the parameter choice ϵ = 0.1, recalling that val(G) ≤ 3/4.

Proof of Theorem 1.1. The theorem follows by combining Theorem 6.1 and Lemma 3.12.

7 A Concentration Bound
We also prove a concentration bound for the GHZ game:

Theorem 7.1. Let G = (X × Y × Z, A × B × C, Q, Vpred) be any 3-player game with
X = Y = Z = F2, and with Q the uniform distribution over

supp(Q) =
{
(x, y, z) ∈ F3

2 : x+ y + z = 0
}
,

and such that val(G) < 1. Then, for every constant ϵ ∈ (0, 1/4), there exists a constant
c = c(ϵ) > 0, such that the following holds for all sufficiently large n:3

Consider the game G⊗n, and consider any strategies for the 3 players in this game. Then,
if Z denotes the number of coordinates that the players win, it holds that

Pr [Z ≥ (val(G) + ϵ) · n] ≤ exp (−nc) .

The remainder of this section is devoted to the proof of the above theorem. Towards
this, we fix a game G as in the statement of the theorem. Consider the game G⊗n =
(X n × Yn × Zn, An × Bn × Cn, Q⊗n, V ⊗n

pred) for some sufficiently large n ∈ N. Also, fix any
strategies for the 3 players in this game, and for each i ∈ [n], let Wini ⊆ X n × Yn × Zn be
the event that this strategy wins the ith coordinate of the game. For each S ⊆ [n], we use
WinS to denote the event ∧i∈SWini.

7.1 An Improved Bound for Product Events

The first step in our proof is to prove an improved version of Lemma 6.7, where we don’t
lose a “factor of 2.” We prove the following:

Lemma 7.2. For any constant ϵ ∈ (0, 1/4), there exists c = c(ϵ) > 0, such that the following
holds: For any sets E,F,G ⊆ Fn

2 with PrQ⊗n [E × F ×G] ≥ 2−nc, it holds that

E
i∼[n]

[
Pr
Q⊗n

[Wini | E × F ×G]

]
≤ val(G) + ϵ.

The proof of the above lemma exactly follows the proof in Section 6, so we only mention
how to improve it. We note that the only place where we lost a factor of 2 in the bound was
in the proof of Lemma 6.2; the proof of Lemma 6.7, using uniformization, goes through as is
if an improved version of Lemma 6.2 is proved. Now, in Lemma 6.2, we proceed in exactly
the same manner upto Equation (3), which says (after taking expectation over i ∼ [n])

E
i∼[n]

[
Pr
Q⊗n

[Wini | E × F ×G]

]
≤ E

i∼[n]
E

(x0,y0,w)∼T
E

(x,y)∼sx0,y0,w

[1 [(x, y, x+ y) ∈Wini]] +
ϵ

2
.
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The factor 2 loss now occurred because when (x0, y0, w) ∼ T , the event wi = 1 occurs
with probability roughly 1/2 (see Lemma 6.6), and we can only apply Lemma 6.4 when this
holds. To improve upon this bound, we will replace the distribution with one where we are
already conditioning on the event wi = 1, and only then apply Lemma 6.4; this requires
proving a stronger version of Lemma 6.6, which says that the distribution of (x, y) in the
above statement remains unaffected even when the square is sampled conditioned on wi = 1.
Formally, we prove:

Lemma 7.3. Recall the distribution µ on S obtained as follows: choose (x0, y0, w) ∼ T ,
and let (x, y) ∼ sx0,y0,w. For any i ∈ [n], define the distribution νi as follows: choose
(x0, y0, w) ∼ T conditioned on wi = 1, and let (x, y) ∼ sx0,y0,w. Then, we have

E
i∼[n]
∥µ− νi∥1 ≤ o(1).

In the proof, we will need the following technical lemma, whose proof is deferred to
Appendix A.

Lemma 7.4. Let T ⊆ Fn
2 × Fn

2 × Fn
2 be any set of size at least 23n−o(n). Let (X,Y,W ) ∼ T

be chosen uniformly at random. Then,

E
i∼[n]

∥∥PX,Y |Wi=1 − PX,Y

∥∥
1
≤ o(1).

Here, PX,Y denotes the marginal distribution of (X, Y ), and PX,Y |Wi=1 denotes the marginal
distribution of (X, Y ) conditioned on the event Wi = 1.

Proof of Lemma 7.3. First, observe the distribution µ is the same as the following distri-
bution: choose (x0, y0, w) ∼ T , and output (x0, y0). This can seen from Equation (2):
essentially, this follows by Remark 2.3, as every square with w ̸= 0 occurs 4 times in T , and
each point in such a square is chosen with probability 1/4 after the square is chosen; also,
each square with w = 0 occurs only once, however the point within this square is chosen
with probability 1 after such a square is chosen. By a similar reasoning, for every i ∈ [n],
the distribution νi is the same as the following: choose (x0, y0, w) ∼ T | wi = 1, and output
(x0, y0).

Now, observe that by Lemma 6.5, we have

|T | ≥ |V|3 · (1− ϵ/2) · α2
Eα

2
Fα

2
G ≥ 23n−(3(n−dim(V))+1+6d) ≥ 23n−o(n).

The result now follows by Lemma 7.4.

Finally, we complete the proof of the improved bound:

Proof of Lemma 7.2. As observed before, it suffices to improve Lemma 6.2, and we have

E
i∼[n]

[
Pr
Q⊗n

[Wini | E × F ×G]

]
≤ E

i∼[n]
E

(x0,y0,w)∼T
E

(x,y)∼sx0,y0,w

[1 [(x, y, x+ y) ∈Wini]] +
ϵ

2
.

By Lemma 7.3 and Lemma 6.4, the above is at most

E
i∼[n]

E
(x0,y0,w)∼T |wi=1

E
(x,y)∼sx0,y0,w

[1 [(x, y, x+ y) ∈Wini]] +
ϵ

2
+ o(1) ≤ val(G) + ϵ

2
+ o(1)

≤ val(G) + ϵ.
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7.2 Random Sets are Hard under Parallel Repetition

We prove a strengthening of Theorem 6.1, by using an argument similar to the proof of
Lemma 3.13.

Lemma 7.5. For every constant ϵ ∈ (0, 1/4), there exists c = c(ϵ) > 0, such that for every
integer 1 ≤ t ≤ nc, it holds that

E
|S|=t

[
Pr
Q⊗n

[WinS]

]
≤ 2 · (val(G) + ϵ)t ,

where E|S|=t denotes that the expectation is over a uniformly chosen subset S ⊆ [n] of size t.

Proof. Let ϵ ∈ (0, 1/4) be any constant, and let 0 < c ≤ 1 be as in Lemma 7.2 with respect
to the parameter ϵ/2. We show that the lemma holds with constant c/2.

More formally, by induction on t, we show that for every 1 ≤ t ≤ ⌊nc/2⌋,

E
|S|=t

[
Pr
Q⊗n

[WinS]

]
≤ (val(G) + ϵ)t + t · 2−nc/2 ≤ 2 · (val(G) + ϵ)t.

Note that the second inequality holds as we may assume that val(G) ≥ 1/4 (or else val(G) = 0

and there is nothing to prove) in which case t · 2−nc/2 ≤ (1/4)n
c/2 ≤ (1/4)t ≤ (val(G) + ϵ)t.

The base case t = 1 holds trivially as PrQ⊗n [Wini] ≤ val(G) for each i ∈ [n]. For
the inductive step, consider any 1 ≤ t < ⌊nc/2⌋, and suppose that E|T |=t [PrQ⊗n [WinT ]] ≤
(val(G) + ϵ)t + t · 2−nc/2. Then, we have

E
|S|=t+1

[
Pr
Q⊗n

[WinS]

]
= E

|T |=t
E

i∼[n]\T

[
Pr
Q⊗n

[WinT ∧Wini]

]
= E

|T |=t

[
Pr
Q⊗n

[WinT ] · E
i∼[n]\T

[
Pr
Q⊗n

[Wini |WinT ]

]]
.

With the above expression in mind, we fix any set T ⊆ [n] of size t, and calculate an upper
bound for Ei∼[n]\T [Pr [Wini |WinT ]]. Let R ∈ (F2 × F2 × F2 ×A× B × C)T be the random
variable consisting of the questions and answers of the players in coordinates given by set
T ; note that this random variable takes at most (8|A||B||C|)t ≤ 2O(t) possible values. Also,
observe that the event WinT is a deterministic function of R. Let R be the set of all values r
of the random variable R that satisfy the event WinT , and let R′ ⊆ R be the set of all r ∈ R
such that PrQ⊗n [R = r] ≥ 2−nc . Note that by Lemma 7.2, we have that for each r ∈ R′,

E
i∼[n]

Pr
Q⊗n

[Wini | R = r] ≤ val(G) + ϵ

2
,

since the event R = r is a product event with respect to the three players.
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Hence, we get

E
i∼[n]\T

[
Pr
Q⊗n

[Wini |WinT ]

]
≤ E

i∼[n]

[
Pr
Q⊗n

[Wini |WinT ]

]
+

2t

n
(Lemma 3.2)

=
∑
r∈R

Ei∼[n] [PrQ⊗n [Wini | R = r]] · PrQ⊗n [R = r]

PrQ⊗n [WinT ]
+ o(1)

≤
∑
r∈R′

(
val(G) + ϵ

2

)
·
PrQ⊗n [R = r]

PrQ⊗n [WinT ]
+

∑
r∈R\R′

1 · 2−nc

PrQ⊗n [WinT ]
+ o(1)

≤
(
val(G) + ϵ

2

)
+

(8|A||B||C|)t · 2−nc

PrQ⊗n [WinT ]
+ o(1)

≤ val(G) + ϵ+
2O(nc/2)−nc

PrQ⊗n [WinT ]
≤ val(G) + ϵ+

2−nc/2

PrQ⊗n [WinT ]
.

Combining this with the above, and using the inductive hypothesis, we get

E
|S|=t+1

[
Pr
Q⊗n

[WinS]

]
= E

|T |=t

[
Pr
Q⊗n

[WinT ] ·
(

val(G) + ϵ+
2−nc/2

PrQ⊗n [WinT ]

)]
.

≤ E
|T |=t

[
Pr
Q⊗n

[WinT ]

]
· (val(G) + ϵ) + 2−nc/2.

≤
(
(val(G) + ϵ)t + t · 2−nc/2

)
· (val(G) + ϵ) + 2−nc/2

≤ (val(G) + ϵ)t+1 + (t+ 1) · 2−nc/2.

7.3 Proof of the Concentration Bound

Finally, we complete the proof of our concentration bound, using standard arguments [Rao11]:

Proof of Theorem 7.1. Consider any constant ϵ ∈ (0, 1/4), let 0 < c < 1 be as in Lemma 7.5
with the parameter ϵ/2, and let t = ⌊nc⌋.

Let Z be the random variable denoting the number of coordinates won by the players.
Whenever Z ≥ (val(G) + ϵ) · n, we pick a uniformly random subset S of size t from the
coordinates that the players won. Note that for any fixed subset T ⊆ [n] of size t, the
probability that S equals T is at most

(
(val(G)+ϵ)·n

t

)−1
. Hence, we have

Pr [Z ≥ (val(G) + ϵ) · n] ≤
∑

T⊆[n],|T |=t

Pr[S = T ] · Pr[WinT ]

≤
∑

T⊆[n],|T |=t

(
(val(G) + ϵ) · n

t

)−1

· Pr[WinT ].

Now, using Lemma 7.5, we get
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Pr [Z ≥ (val(G) + ϵ) · n] ≤
(
n

t

)
·
(
(val(G) + ϵ) · n

t

)−1

· 2 · (val(G) + ϵ/2)t

≤
(

n

(val(G) + ϵ) · n− t

)t

· 2 · (val(G) + ϵ/2)t

≤ 2 ·
(

val(G) + ϵ/2

val(G) + ϵ− o(1)

)t

= 2 ·
(
1− ϵ/2− o(1)

val(G) + ϵ− o(1)

)t

≤ 2 · (1− ϵ/4)t

≤ 21−ϵt/4 ≤ 2−nc/2

.
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A Marginals of a Conditional Distribution
In this section, we prove Lemma 7.4. Our proof will use some basic information theory, and
the reader is referred to [CT06] for an excellent introduction to information theory. Recall
that for a random variable X over a finite set Ω, its entropy is defined as

H(X) = −
∑
x∈Ω

Pr[X = x] · log2(Pr[X = x]).

We have the following simple fact:

Lemma A.1. Let X ∈ {0, 1} be a binary valued random variable. Then,∣∣∣∣Pr[X = 1]− 1

2

∣∣∣∣2 ≤ 1−H(X).

Proof. Let δ =
∣∣Pr[X = 1]− 1

2

∣∣. The lemma statement is equivalent to the inequality

δ2 ≤ 1−H(X) = 1 +

(
1

2
+ δ

)
log2

(
1

2
+ δ

)
+

(
1

2
− δ

)
log2

(
1

2
− δ

)
,

which is true for all δ ∈ [0, 1/2].

Next, we prove the main lemma of this section:
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Proof of Lemma 7.4. Suppose that |T | ≥ 2(3−δ)n for some δ = o(1). Then, we have

(3− δ)n ≤ H(X,Y,W ) = H(X, Y ) +H(W | X, Y ) ≤ 2n+
n∑

i=1

H(Wi | X, Y ),

which implies
E

i∼[n]
[H(Wi | X, Y )] ≥ 1− δ.

Define the set
G =

{
i ∈ [n] : H(Wi|X, Y ) ≥ 1−

√
δ
}
.

Then, by Markov’s inequality, we have Pri∼[n] [i ̸∈ G] ≤
√
δ.

Now, consider any i ∈ G. By Cauchy-Schwarz and Lemma A.1, we have(
E

(x,y)∼PX,Y

∣∣∣∣Pr [Wi = 1|X = x, Y = y]− 1

2

∣∣∣∣)2

≤ E
(x,y)∼PX,Y

∣∣∣∣Pr [Wi = 1|x, y]− 1

2

∣∣∣∣2
≤ E

(x,y)∼PX,Y

[1−H(Wi|x, y)]

= 1−H(Wi|X, Y ) ≤
√
δ.

Hence, by the triangle inequality, we have∣∣∣∣Pr [Wi = 1]− 1

2

∣∣∣∣ ≤ E
(x,y)∼PX,Y

∣∣∣∣Pr [Wi = 1|x, y]− 1

2

∣∣∣∣ ≤ δ1/4.

By the above, we get∥∥PX,Y |Wi=1 − PX,Y

∥∥
1
=

∑
x,y

|Pr[x, y|Wi = 1]− Pr[x, y]|

= E
(x,y)∼PX,Y

∣∣∣∣Pr[Wi = 1|x, y]
Pr[Wi = 1]

− 1
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≤ E
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1/2
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+ E
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∣∣∣∣ 1

Pr[Wi = 1]
− 1

1/2
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≤ 2 · δ1/4 + Pr[Wi = 1] · δ1/4

Pr[Wi = 1] · 1/2
≤ 4δ1/4.

Hence,

E
i∼[n]

∥∥PX,Y |Wi=1 − PX,Y

∥∥
1
≤ 4δ1/4 + 2 · Pr

i∼[n]
[i ̸∈ G] ≤ 4δ1/4 + 2δ1/2 ≤ o(1).
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