Electronic Colloquium on Computational Complexity, Report No. 20 (2026)

Separating Quantum and Classical Advice with Good Codes

John Bostanci', Andrew Huang?, and Vinod Vaikuntanathan?

!Columbia University, New York, NY
*Massachusetts Institute of Technology, Cambridge, MA

Abstract

We show an unconditional classical oracle separation between the class of languages that can be verified using
a quantum proof (QMA) and the class of languages that can be verified with a classical proof (QCMA). Compared
to the recent work of Bostanci, Haferkamp, Nirkhe, and Zhandry (STOC 2026), our proof is conceptually and
technically simpler, and readily extends to other oracle separations. In particular, our techniques yield the first
unconditional classical oracle separation between the class of languages that can be decided with quantum advice
(BQP/qgpoly) and the class of languages that can be decided with classical advice (BQP /poly), improving on the
quantum oracle separation of Aaronson and Kuperberg (CCC 2007) and the classically-accessible classical oracle
separation of Li, Liu, Pelecanos and Yamakawa (ITCS 2024).

Our oracles are based on the code intersection problem introduced by Yamakawa and Zhandry (FOCS 2022),
combined with codes that have extremely good list-recovery properties.

ISSN 1433-8092

Contents

1

Introduction
1.1 OurWork . . oo e

Technical Overview

Discussion and Open Questions

3.1 Structured versus randomness in classical oracle separations L.
3.2 QMA-completeness of a decoding problem Lo o Lo o Lo
3.3 Simplifications to the separation
Preliminaries

N A o 1 o) o U
4.2 Probability and Complexity Theory

43 Coding Theory
4.4 Yao’s Box Problem and Non-Uniform Advice 0 i it i,

The Generalized Code Intersection Problem

5.1 Dehnitions and Basic Facts o o e e e
52 Technical Lemmas v vt v e e e e e e e e e e e e
5.3 The Biased Yamakawa-Zhandry Algorithm o o L.

Separating QMA from QCMA
6.1 The QMA Proof System
6.2 Non-Existence of QCMA Proof Systemso vt v i i i ittt

Separating BQP/qpoly from BQP /poly
Duals of Multiplicity Codes

Diagonalization Arguments

12
12
14
17

19
20
21

23

29

30

1 Introduction

We study the question of whether quantum proofs and advice provide more power than their classical counter-
parts. In the language of complexity theory, we consider whether the classes QMA and QCMA, and BQP/qpoly
and BQP /poly, are distinct. These questions, first posed by [AN02] (for proofs) and [N'Y04] (for advice), have
been long-standing open problems in the field of quantum complexity theory.

Given that unconditional separations seem out of reach today since they would imply breakthrough results like
P # PSPACE, research attention has shifted to providing oracular evidence for their separation. The first progress
towards this came from the seminal work of Aaronson and Kuperberg [AK07], who introduced the weaker notion
of a unitary, or quantum, oracle as a means to separate the classes of QMA and QCMA and asked whether their result
could be strengthened to a classical oracle separation. After along series of works which demonstrated either con-
ditional or non-standard separations [FK15, LLPY23, NN24, BDK24, Zha24, LMY25], the first unconditional
classical oracle separation between QMA and QCMA appeared in the recent work of [BHNZ25].

The oracle used in the separation of [BHNZ25] (which was introduced in the paper of Zhandry [Zha24])
leverages one of the most natural quantum properties to separate quantum from classical computers: whether
two functions are related by the Hadamard transform. This idea was first exploited in the work of [Aar10], who
presented the “Forrelation” problem, i.e., deciding whether two functions are related by the Hadamard transform,
as a candidate (oracle) separation between BQP and PH. The works of [Zha24] and [BHNZ25] lift this problem
to QMA with a variant dubbed “spectral Forrelation”. The separation of [BHNZ25] employs sophisticated tech-
niques to analyze Forrelated oracles, including ideas inspired by mathematical physics and Hamiltonian learning.
It is natural to wonder whether one can separate QMA from QCMA without using this heavy technical machinery.

Question 1: Is there a conceptually simpler classical oracle separation between QMA and QCMA?

A closely related problem to separating QMA from QCMA is that of separating BQP /qpoly, problems that can
be solved with quantum advice, from BQP/poly, problems that can be solved with classical advice. In addition to
their quantum oracle separation between QMA and QCMA, Aaronson and Kuperberg also gave a unitary oracle
separation for BQP/gpoly and BQP /poly and asked if this too could be lifted to a classical oracle separation. While
there is no formal equivalence relating advice and proof separations, one paradigm towards advice separations
follows the general outline of [AK07]. Their advice separation begins with a hard quantum search problem (which
is also used in their proof separation), and hides the value of a random language behind an oracle that expects
to receive the answer to that quantum search problem. The classical oracle separation of [BHNZ25], being a
kind of “classicalization” of the Aaronson-Kuperberg oracle, has a similar quantum search problem associated
with it. However, since a classical oracle can no longer directly check the answer to a quantum search problem,
obtaining a classical oracle separation between BQP/qpoly and BQP /poly seems to necessitate the use of a hard
classical search problem instead.

A parallel line of work starting from the paper of Yamakawa and Zhandry [YZ24] studies the “code intersec-
tion” problem. The code intersection problem exploits another way in which quantum algorithms can exploit
structure in functions: the ability to realize the convolution theorem as decoding in the Fourier basis (first noticed
in [Reg09]). [YZ24] used this to formulate a TENP problem that can be solved by an efficient quantum computer
but not by a classical one: given a random oracle H and code C' C ¥, find a codeword that hashes to the all
zeros string. This problem was later modified in the works of [Liu23, LLPY23, BDK24] to make some progress
towards a full separation between QMA and QCMA by restricting/modifying the query model in question (i.e.
by enforcing classical-only access or bounded adaptivity). Crucially, unlike the spectral Forrelation oracle, the
code intersection problem comes with a classical search problem, which [LLPY23] uses to lift their “classically-
accessible” oracle search problem to get a similar (non-standard) separation between BQP /qpoly and BQP /poly.
This leaves open the following question:

Question 2: Is there a (standard) classical oracle separation between BQP /qpoly and BQP /poly?

1.1 Our Work

We show that both these questions can be resolved using the “code intersection problem” studied in the work of
Yamakawa and Zhandry [YZ24], combined with codes that have extremely good list-recovery properties. An
important part of showing verifiable quantum advantage in [YZ24] was ruling out randomized classical algo-
rithms for solving their problem. At a high level, a classical algorithm might be able to find a few symbols that

hash to zero, but it has no way of knowing whether they can be combined to form a good codeword until it tries
almost every combination. As long as most (small) sets of symbols overlap with very few codewords, the chance
that a classical algorithm stumbles upon a codeword which hashes to the right value is exceedingly unlikely.

One would expect that for a truly random code, no large collection of codewords can have large overlap with
a small set of symbols. Inspired by the idea of pseudorandomness presented by [LMY25, Zha24], one might hope
to find linear codes that mimic the properties of a random code, in this case, codes with extremely good list-
recoverability. We formalize this intuition by showing that by substituting folded Reed-Solomon (FRS) codes in
the construction of [YZ24] with multiplicity codes (although any code with good expansion properties would
suffice), we can indeed separate QMA from QCMA.

Theorem 1.1 (Informal). There exists a classical oracle O such that QMAY ¢ QCMAY,

Our separation, in addition to admitting a much simpler proof, has an additional benefit over the result of
[BHNZ25]: our more structured oracle problem is naturally associated with a TFNP problem, allowing us to lift
our result to provide the first unconditional classical oracle separation between BQP /gpoly from BQP /poly
in a straightforward manner.!

Theorem 1.2 (Informal). There exists a classical oracle O such that BQP” /qpoly ¢ BQP? /poly.

In fact, our oracle separates NPY N coNPY N BQPO /qpoly from BQPO /poly, which seems to indicate a struc-
tural difference between our oracle and separations based on spectral Forrelation [Zha24, BHNZ25] or expander
mixing [Lut11, NN24, LMY25], which feel like they originate from QMA-complete problems.

2 Technical Overview

The Yamakawa-Zhandry Algorithm. Our separation begins with the code intersection problem [YZ24]:
given a code C C X" = (F3)", function H : [n] x ¥ — {0,1}, and hash = € {0,1}", find a codeword ¢ € C
such that H (i, ¢;) = x, for all i € [n] (we will use the shorthand H(c) = z to refer to this constraint). Yamakawa
and Zhandry show that when given oracle access to H, this problem has an efhcient quantum algorithm but
no (uniform) classical ones, giving a relativized separation between FP and FBQP. As our result will require
modifying the Yamakawa-Zhandry algorithm, we begin by briefly explaining how it works.

We begin by noting that it sufhces to be able to produce the state

|¢h) o > 0) = Y 1ga(v) - 1e() o),

viweC and H(v)=z vexn

where 1 () and 1(-) are indicator functions for the event H(v) = x and for the event v € C, respectively.
Taking inspiration from Regev’s reduction from SIS to LWE [Reg09], Yamakawa and Zhandry observe that |1
is the pointwise product of the states

6) =ld(@) x> W= > |v;) and ENEDMNE
veXn:H(v)=z =1 v,e3:H(i,v;)=x; veC
both of which can be prepared efhciently given access to H. By the convolution theorem, we know that

QET, [¢) o QFT, (|¢y) @ [6,)) = QFT, |6y} » QET, |6)

where © denotes the point-wise product of two vectors, and * their convolution. Therefore, it sufhices to efh-
ciently prepare the state |goal) := QFT_ [¢;) x QFT [¢), as QFTq_1 |goal) = |¢). If C'is a F,-linear code, then
QFT, |¢,) is simply the uniform superposition over the dual code C*, so we can produce the states

QFT, |6,) ® QFT, [¢o) x > \/Dy(e)le)@ Y |v)

ecyn veCt

! A similar idea appeared in [LLPY23], where a variant of the Yamakawa-Zhandry problem was used to give a separation between quantum
and classical advice for algorithms which are only allowed classical access to all oracles. As we will see later, our separation strictly improves on
this result since we rule out all BQP /poly algorithms with quantum oracle access while only requiring a single classical query given quantum
advice.

HOY Dm@mivie S Y /Daae 0w vte),

eex™ veCt eex™ veCt

while our desired state is

lgoal) = QFT_ [¢y) x QFT|go) o< Y /Dy .(e)[v+e),

veCt ecxn

where Dy () is the density function of QFT_ [¢;) (here, we are ignoring phases for simplicity of exposition).
For a completely random function H and a fixed z, we observe that Dy (-) will have roughly half of its weight
on 0 in each coordinate (since around half of all symbols in each coordinate should hash to 0 or 1), while the
remaining half of its weight will be close to uniform over nonzero symbols. By taking C to be a folded Reed-
Solomon (FRS) code with sufhciently high rate, Yamakawa and Zhandry show that one can efhciently decode
C* from errors over Dy, (-) with high probability and consequently prepare |goal) as desired.

Lifting the Separation. The obvious issue in using the code intersection problem to separate QMA from
QCMA, however, is that both QMA and QCMA algorithms can make quantum oracle access to H, and our problem
is already in BQP! Thus, we must make some modifications to the problem at hand.

First, as observed by [Liu23], the first phase of this algorithm can be made non-adaptive: the state |¢,) depends
only on C, while |¢,) depends only mildly on z, since we can simply prepare all 2n preimage states

[HH0) = Y o), HD) = Y)

zeX:H(1,2)=0 zeX:H(n,z)=1

before selecting |¢;) when given z. On the other hand, the second phase does not require access to H, and should
work equally well for all z. Therefore, if we are given the state

n n

ladvy) == @) |H; 1(0)) © &) |[H (1)) ® |¢)

i=1 =1

as our quantum proof or advice, we can produce |¢, (z)) := ®,_, |H; ' (z;)) for any = and use it to produce a
solution to the code intersection problem for z without access to H! We can therefore replace H with the much
weaker oracle Oy (z,v) that simply verifies if the vector v hashes to z.

Of course, this problem is still in NP C QCMA, since for a fixed z, the prover can always send any codeword v
that hashes to 2! Luckily, we claim that this is pretty much the only thing that the prover can do. To operationalize
this intuition, we note that our quantum proof/advice is in some sense encoding many codewords along with their
hashes in superposition. Thus, taking some inspiration from [LLPY23, BDK24], we define the Code Intersection
Subset Size problem as follows:

Estimate the size of a set £ C {0,1}" x X", which is promised to either be the full set {0, 1}" x £"
or asmall subset E C F' x £" C {0,1}" x £" where |F| < t for some threshold ¢ « 2, given access
to the following oracle O[H, E|(x, v):

OlH, El(z,v) — { 1 ifve c, H(v) = z,and (z,v) € E,
0 otherwise.

This problem is naturally in QMA: the prover can give as proof |adv;) which depends only on H. Given
ladv;), the verifier can sample a random 2 € {0, 1}" and should be able to produce with high probability v € C
such that H(v) = x. The oracle O therefore allows the verifier to check if # € E for any z, making the set
estimation problem trivial. In fact, the QMA verifier need not be concerned about malicious proofs, since a NO
instance of O always outputs 0 whenever z (which is sampled solely by the verifier) is not in F.

We note that our problem differs from the oracle problems defined in [LLPY23, BDK24], which take E =
F x ¥ for some small set F. This modification, while not impacting our QMA algorithm, will be crucial in
establishing a QCMA lower bound.

An Entropic Viewpoint. To rule out QCMA proof systems, we first observe that the major difference between
quantum and classical proofs lies in their clonability. In particular, an (oracle) algorithm which uses a classical
witness can always be re-run with the same witness, even if it makes measurements. This simple and seemingly
obvious fact, first formally identified in [Zha24], was utilized to great effect by [BHNZ25] to give their classical
oracle separation, and we will take advantage of it as well.

To this end, suppose there was some Q-query QCMA verifier V which succeeded in the set estimation problem.
We observe that this means that V' can always distinguish between O[H, {0,1}" x £"] and O[H, E] whenever
E is small. But these oracles differ only at inputs (z,v) where v € C, H(v) = , and (z,v) ¢ E! Thus, by the
hybrid lemma [BBBV97], if we measure a random query that V makes to O[H, E], we should expect to get a
new pair (z,v) ¢ E such that v € C and H(v) = 2 with good probability provided E is small.> This gives
rise to a natural algorithm for guessing the hash values of codewords: starting with E = 0, simulate a run of V
with O[H, E] and measure a random query before adding the measurement outcome to E; rinse and repeat. By
our previous argument, conditioned on having a good witness, each iteration of this algorithm should correctly
produce a new codeword and hash with non-negligible probability. We can therefore turn V into a guesser with
non-uniform advice which correctly produces many distinct codewords and their hash values without making any
oracle queries. After guessing the classical w-bit witness, this gives rise to an unconditional no-query algorithm
which guesses the hash values of ¢ codewords in C for all ¢ < t with probability

L

We now argue that this is in fact impossible. Observing that H is independently random at each coordinate
i and symbol z € X, we can upper bound the success probability of any sampler which produces ¢ points by
(1)*®), where s(¢) is the minimum number of symbols that appear among ¢ distinct codewords in C. Taking
¢ =t = w(poly(n)), if we can argue that s(¢) = w(logn - £), then we see that

¢ ¢ ¢ s(0)
2poly<n).(1) _(1) > () _(1)<
poly(n) poly(n) gu(logn) 2 ’

which will give us our desired contradiction.

List Recovery and Code Expansion. How might we bound s(¢)? For any ¢ distinct codewords ¢y, ..., ¢, € C,
define the lists Sy, ..., S,, € ¥ such that S; consists of all symbols in 3 that appear in the ¢’th coordinate of some
codeword ¢; for j € [¢]. Clearly, s(¢) = min_ . > [S,], so there must be lists S}, ..., S5, such that

ICN(S;x ... x SE)| > and > 1S5 =s(0) .
i=1

We now see that the question of how small s(¢) can be is precisely characterized by the list-recoverability of C.
In particular, if we know that C is (L, O(L))-list-recoverable for L < ¢, then this would mean that % =
LS 1S5] = Q(0) as desired!

Note that this is a pretty strong condition; it necessitates the use of codes that have near-optimal list recovery,
a property that in particular is not satisfied by the FRS codes used by [YZ24] (see Subsection §3.3 for further
discussion). Fortunately, there is a fix: the setting of zero-error list recovery is closely linked to the notion of
unbalanced expanders, and the recent work of [KTS22] shows that multiplicity codes exhibit precisely the sort
of list recovery that we need. Moreover, the fact that multiplicity codes are [Fq—linear and that their duals have
relatively good distance [RZVW24] should guarantee the success of our QMA algorithm. We note that although
our dual code happens to admit efficient unique decoding, our separation only needs C* to be combinatorially
uniquely decodable, since we can always provide an (inefhcient) decoding oracle.

2Critically, if we have already successfully guessed some collection E of code words and hash values, we can always perfectly simulate
O[H, E). The same is not true for the oracles of [LLPY23, BDK24], for which even “small” sets correspond to exponentially many codewords.

A Final Complication. It seems that this rather simple argument completes our separation; after all, by switch-
ing to using multiplicity codes (rather than folded Reed-Solomon codes as in [YZ24, LLPY23, BDK24]), we
have been able to rule out all possible QCMA algorithms. Sadly, we have to deal with one final and rather subtle
issue, which has to do with the parameters of the multiplicity codes: in the process of obtaining excellent list
recovery/expansion from our multiplicity codes, we are forced to make the relative rate of our (primary) code
sub-constant, which means our dual code now has sub-constant relative distance! Recalling that our error distri-
bution should concentrate on vectors with Hamming weight roughly n/2, we observe that this level of noise is
now likely intolerable as there may not even exist a unique decoding most of the time under this error distribution.

Our solution is relatively simple, and it uses the generous amount of flexibility that the [Reg09, YZ24] algo-
rithm affords us. Instead of using a completely random function H, we will instead make our function biased in
favor of 0 (reminiscent of a recent strategy employed by [GGJL25]). That is, for each element o € %, H(i,0)
will take on the value 0 with probability p > 1. Thus, for z = 0", we can expect the error vectors in QFT [¢;)
to have Hamming weight ~ n(1 — p), drastically reducing the amount of noise that we are required to decode
from with respect to C*.

This change does not come for free, however: unlike in [GGJL25], where the goal was to invert only z = 0",
we need to be able to invert many z’s, including those with large Hamming weight. By biasing H towards 0, on
inputs like = 1™, we create an error distribution which has expected Hamming weight ~ np > n/2, thereby
worsening our ability to invert!

Our final idea is to observe that since our algorithm can only invert low Hamming-weight vectors z rather
than all vectors in {0, 1}, we can simply modify the problem to enforce this condition. Instead of trying to invert all
z € {0,1}", we can focus on inverting vectors of the form 0", where 2 € {0,1}" and 0 < ¢ « 1. That is,
we will now try to differentiate £ = {0,1}"™ x 0" x X" from E C F x 0" x X" where |F| <t « 2™,
Since 0" has Hamming weight at most n°, the corresponding error distribution for |¢; (z[0"~"")) will be
concentrated on vectors with Hamming weight at most n°+ (n—n*)(1—p) ~ n(1—p), guaranteeing the success
of our QMA algorithm provided our dual code has distance at least O(n(1 —p)) and p <1 —1/n'".

A General Recipe for a Classical Oracle Separation. Before describing the advice separation, we summarize
all of the steps we have taken so far to provide a general recipe for getting a QMA versus QCMA oracle separation.
We start with an infinite family of codes {C, } s, over a large alphabet ¥ (so that there are many solutions to the
code intersection problem) such that:

1. Cy can be efficiently decoded up to Q(A1*¢) errors for any constant c,
2. Codewords of C), consist of n = poly(\) many symbols from X,
3. C) has near optimal list recovery for sufhciently large .

Then for every A, we can sample hash functions Hy, ..., H,, to be biased so that roughly a A/n(\)-fraction of
symbols are pre-images of 1. We will ask for pre-images of z[[0"~* for 2 € {0, 1}*. The bias of the H;, together
with the fact that we ask for a hash that has at most A many 1’s, ensures that the dual decoding problem encounters
an error with O(\) Hamming weight with high probability, which falls under our dual decoding distance of
Q(A1*¢). Thus, the Yamakawa-Zhandry algorithm works and the problem stays in QMA. At the same time, a
QCMA verifier will imply a sampler that outputs v codewords of the code with probability poly(A)~*, and list
recovery will enforce that this corresponds to Q(v - n) symbols. The bias of the H; will mean that the probability
of guessing all symbols correctly will be (1 — A/ n)M ™ exp(—Av) < poly(\) ™", giving us a contradiction.
By instantiating this recipe with carefully chosen multiplicity codes, we arrive at our classical oracle separation.

Moving to the Advice Setting: BQP/qpoly vs. BQP/poly. Unfortunately, the set approximation problem
is easy with frusted advice: a single classical bit sufhces to indicate whether the set in question is large or small.
Here, the relative simplicity of our separation (which uses almost entirely classical ideas) and our use of a TFNP
problem allows us to extend our separation to the question of BQP /qpoly and BQP/poly. In contrast, it is not
at all obvious (to us) how to construct even a candidate separating language based on the (decisional) spectral
Forrelation problem of [BHNZ25].

In particular, the code intersection problem gives rise to the following BQP /qpoly language: begin by sam-
pling some random binary language £ C {0,1}". On input z € {0,1}", our oracle O will simply return whether

z € Lora ¢ L provided it is given a valid codeword v which hashes to z. On the one hand, our original QMA
algorithm still works as a BQP/qpoly machine, since |advy) is agnostic of z and allows us to produce v for all
z. On the other hand, as we have intuitively argued earlier, even trusted classical advice should not help a BQP
machine to produce many valid codewords, so for most x, any BQP machine with classical advice will not be able
to receive the output of the oracle indicating whether 2 € £. Since the advice is bounded, it cannot itself describe
many elements of £, so the BQP machine will fail to decide whether 2 € £ for most z. The problem of guessing
the value of a random function H given bounded-size advice and without querying H can be made precise by
appealing to results on Yao’s box problem due to Chung, Guo, Liu and Qian [CGLQ20]. We show that rela-
tively straightforward modifications of the argument used by [LLPY23] for ruling out classical-access BQP /poly
algorithms extend to ruling out generic BQP /poly algorithms as well, completing the advice separation.

Some Concluding Remarks. First, as in [BHNZ25], it is not hard to see that our oracles also separate the
clonable variants of QMA and BQP /gpoly from their regular counterparts.

Secondly, we emphasize that while the code intersection problem has previously been considered in the con-
text of proof and advice separations [Liu23, LLPY23, BDK24], all existing works employed FRS codes, which
(as mentioned earlier) do not enjoy strong enough list-recovery properties. In particular, running our argument
with FRS codes gives an upper bound on the sampling success probability which is too weak for any (even weak)
separation! On the other hand, multiplicity codes do not appear to have strong enough decoding properties to
handle the large amounts of noise that would be incurred by perfectly random functions H, which necessitates
our use of biased oracles and restriction to low Hamming-weight vectors (an idea which did not appear in earlier,
more limited, separations).

Finally, and unrelated to the main theme of this paper, in the process of modifying the Yamakawa-Zhandry
algorithm for our separation, we observe that biasing the random oracle H in question also has the benefit of
making the quantum algorithm in question much more efficient. As an example, if we tweak H to be even 2/3-
biased, this already decreases the noise level sufhciently that we can rely on (significantly faster) unique decoders
rather than list decoders, which currently appears to be the major bottleneck in runtime.

3 Discussion and Open Questions

3.1 Structured versus randomness in classical oracle separations

As stated in the introduction, one major barrier in lifting the oracle separation of [BHNZ25] to the advice setting
is that the oracle is most naturally associated with a hard quantum search problem, instead of a classical one.
In their classical oracle separation, the authors identify a way of sampling instances of the spectral Forrelation
problem such that the pair of functions that seems completely random, except that they are related by the Fourier
transform (and, in the case of [BHNZ25], one of the two oracles being sparse). In some informal sense, our oracle
separation enables an efficient quantum verifier to extract more information (namely, the solution to a hard search
problem) from its witness, but doing so seems to require additional structure in the oracle.

A natural question to ask is how much information can be encoded into a quantum state before it becomes
clonable, and whether our ideas are useful in encoding information into other kinds of quantum states. The
cryptographic analogy of a separation between QMA and QCMA (or, really UnclonableQ MA) is a primitive called
quantum money [Aar09]. These are states that can not be cloned, but can be verified, similar to witnesses for
QMA problems that are not in QCMA. An extremal form of this primitive (and this idea of encoding information
in a quantum state) is known as “copy-protected software”, wherein an efhicient quantum party can extract the
input output behavior of an entire classical function from a quantum state. Currently, there are several candidates
for quantum money constructions in the plain model [FGH'12, BNZ25, Zha25], but less is known about copy-
protected software. We hope that ideas from our separation might be useful in finding such constructions. To
make progress towards cryptographic instantiations, one concrete direction to explore is a precise characterization
of which witnesses cause our QMA verifier to accept with high probability.

3.2 QMA-completeness of a decoding problem

One interesting difference between our oracle separation and the oracle separation of [BHNZ25] is that their
oracle separation can be seen as an obfuscation of a QMA-complete problem. To elaborate further, just as problems

involving random sparse functions might model the difhculty of constructing a SAT solver which ignores the
structure of the SAT instance it receives, the spectral Forrelation problem models an algorithm for solving a two-
basis local Hamiltonian problem that does not look at the structure of the two local Hamiltonians it receives.
Note that despite the connection to a QMA-complete problem, this property is not actually needed to achieve a
separation between QMA and QCMA, as highlighted in the actual oracle separation of [BHNZ25]. In particular,
the “YES” and “NO” instances can be taken to have sets S of a fixed size £ or < £/10. Such distributions of
oracles can be easily distinguished by an AM protocol [GS86], but it appears unlikely that solving the actual
spectral Forrelation problem can be done in AM, because another way to sample “NO” instances of the spectral
Forrelation problem would be to re-sample sets S” independent of U. Distinguishing such pairs from Forrelated
pairs (S, U) seems to truly require a QMA verifier.

In contrast, the problem we construct really is in AM, as it directly involves distinguishing between large and
small sets, and any reasonable variant of the code intersection problem would likely remain in the polynomial
hierarchy. Of course, an oracle separation between QCMA and AM already exists (and in fact, comes from early
work on separating QMA from QCMA [FK15]!), but we find it intriguing that our separation relies on a problem
which appears to be of only intermediate difhculty and does not need the “full” power of QMA in some sense. In
fact, as our problem appears on its face to be completely unrelated to quantum algorithms, we believe it remains
an extremely interesting question to find a QMA-complete variant of the code intersection problem.

3.3 Simplifications to the separation

Naturally, one may ask if our separations can be made even simpler; here, we outline a few directions to consider.

On Round-Reduction Arguments. The work of [BDK24] can be thought of as a round-reduction argument
as follows: in the style of [AK07], we will, given any QCMA proof system, fix some classical witness which
corresponds to the largest set of NO instances. The polynomial bound on the size of the proof means that
the collection of functions H which are consistent with this witness remains substantial, and in particular the
distribution over all consistent H must have large min-entropy. We conclude that the set of symbols S which
have low entropy conditioned on this classical proof is also bounded.

We now look at the verifier’s inputs to the oracle in the first round of queries. Observe that any inputs
corresponding to non-codewords, as well as ones which have low overlap with S will be correct with negligible
probability. By the hybrid lemma, it sufhces to restrict our attention to codewords which have high overlap with
S (so called “dangerous” inputs) — but this set is bounded precisely by the list recovery of our code! At this stage,
we can simply give away the values of H on dangerous inputs for free, allowing the verifier to simulate its first
round of queries. As a consequence, we can peel off a round of queries at the cost of requiring more advice.
Repeating this “peeling and bloating” routine with FRS codes results in a o(log n/loglog n)-round bound.

Sadly, this approach seems fairly doomed if we stick to the Yamakawa-Zhandry problem: even with nearly
optimal list recovery, our advice will certainly increase by some constant factor with each round, so we would
remain stuck at an o(n)-round bound. One could imagine a better argument that uses some special property of
any collection of recovered codewords that ensures these lists do not grow by too much iteratively, but this seems
quite difhicult (and would definitely be much more complicated!).

Other Codes? One might wonder why we need multiplicity codes here — after all, there are other codes which
give rise to unbalanced expanders besides those of [K TS22], namely the constructions of [GUV09], but examining
these constructions in closer detail presents some unexpected issues:

1. [GUV09] construct two unbalanced expanders with near-optimal expansion, one based on Parvaresh-
Vardy codes and the other based on a subcode of FRS codes. Alas, neither of these instantiations are linear,
which means our quantum proof/advice-based algorithm will fail.

2. [GUV09] also considers unbalanced expanders based on plain FRS codes, which are linear in some sense,
but such expanders have expansion which is too weak to show classical hardness.

On the Necessity of Near-Optimal List Recovery. Our proof relies on fairly strong expansion/list recovery
properties of the underlying code C. It is not hard to see that we can tolerate slightly suboptimal expansion, i.e.

if s(¢) = Q(¢/poly(n)). Extending our sampling-based argument to work for polynomial or super-polynomial
expansion, i.e. s(¢) = ¢, would open the door to a much larger class of usable codes.

What About Random Linear Codes? It is well known that random linear codes (RLCs) and their duals have
good distance with high probability, and they are by definition linear, which means our quantum proof/advice-
based algorithm will succeed. However, to show classical hardness, we need near-optimal list recovery, which
remains a challenging open problem to show for RLCs [LS25]. We believe that a proof of such a result for RLCs
is the clearest way to conceptually simplify our separation.

4 Preliminaries

4.1 Notation

We say that a function 6 : N — [0, 1] is inverse polynomial if there exists a polynomial p such that §(n) < 1/p(n)
for suthciently large n. A function € : N [0, 1] is negligible if for every polynomial p, for all suthciently large
n, e(n) < 1/p(n) foralln > N.

We use the notation id to denote the identity operator. We will occasionally concentate superscripts when it
is clear from context, so QFT ®" denotes (QFT ")®". We will also sometimes abbreviate the tensor product
state [0)" as [0™).

A register R is a named finite-dimensional complex Hilbert space. If A, B, C are registers, for example, then
the concatenation ABC denotes the tensor product of the associated Hilbert spaces. For a linear transformation L
and register R, we write Ly to indicate that L acts on R, and similarly we write o, to indicate that a state ¢ is in
the register R.

4.2 Probability and Complexity Theory

Definition 4.1 (Modified from [BHNZ25]). We use the phrase “an oracle” to refer to a function O : {0,1}* — {0,1}.
A quantum query algorithm is a quantum circuit that interacts with an oracle O : {0,1}* — {0,1} via a query gate
|z,b) — |2, b@® O(x)), which acts on an |x| + 1-qubit query register for various x. The algorithm is described by an
alternating sequence of unitaries (drawn from any fixed gate set) and query gates. After all gates are applied, a designated
qubit is measured in the standard basis to determine acceptance. The circuit has ancilla qubits which are initialized to |0)
and all intermediate unitaries may act on an arbitrary (but finite) number of qubits.

A quantum query algorithm may also receive an auxiliary witness or advice as input. A quantum witness/advice state
is a state |1p) on some (finite) number of qubits, while a classical witness/advice string is a (finite) bitstring w, treated as a
computational basis state. The algorithm’s acceptance probability may depend on both the oracle and the witness.

Definition 4.2 ([BHNZ25]). We denote a family of quantum oracle circuits/algorithms by {A,} en, where the index
A corresponds to the length of the explicit input to the computational problem. {Ay} ey is P-uniform if there exists a
deterministic polynomlal time Turmg machine M that, on input 1)‘ oulputs afull classical a'escrzptzon ofthe circuit A .
The runtime of M implies that Ay has at most poly(X) gates (oracle or elementary), queries O at lengths of at most
poly(N), and receives witnesses/advice of length at most poly(X).

We can now define the complexity classes that we will consider in this work.

Definition 4.3 (Oracle QCMA). A promise language £° = (£, £o0)® C {0,1}* is in QCMA if there exists a

yes?
P—um’formfamily ofquantum oracle circuits Ay with Ay accepting a witness oflcngth t(N), such thatfor every input T of
length X = ||,

* 7€ Ly = Fwe {0,1}W sr Pr{A(v,w) = 1] >

C»D\NJ

yes

cx €L,y = Ve {0,1}N Pr[A{(z, W) =1] < 1.

Definition 4.4 (Oracle QMA). A promise language £° = (£,eq, £ro)® C {0,1}* is in QMA? if there exists a P-

yes’

uniform family of quantum oracle circuits A, with Ay accepting a wzmess of length t(X), such that for every input x of
length X\ = ||,

* 1€ Ly = W) € (CHEW st PrlAf (2, |¢) =1] > 2,

yes
sz €Ly = VI[P € (CHEN PrA(z, [¢) = 1] < 1.

Definition 4.5 (Oracle BQP/poly). A promise language £° = (Lo, £,0)° C {0,1}* is in BQP? /poly if there

yes)

exists a P-uniform family of quantum oracle circuits A, with A, accepting advice of length t(\) and an advice family
{adv, } s where |advy| = t(X), such that for every input of length X = ||,

* 1€ Ly = PrlAf(z,advy) =1] > 2

yes

cx €L, = Pr[A{(z,advy) =1] < L.

If t(X) = 0 then we say £° € BQPY.

Definition 4.6 (Oracle BQP/qpoly). A promise language £° = (£, s, £1o)° C {0,1}* is in BQP? /qpoly if there

yes>

exists a P-uniform family of quantum oracle circuits A with Ay accepting advice of length t(\) and an advice family
{ladv,)} oy where |advy) € (C?)®N | such that for every input x of length X = ||,

* 2 €L, = PrlAS(z,]adv,)) =1] >

yes
cx €L,y = Pr[Af(z, |adv,)) =1] <
Given a quantum query algorithm, we can define the query mass of the algorithm on a particular set of inputs.

Definition 4.7 (Query mass). For an oracle circuit A making Q quantum queries to an oracle O with input domain
D, lety” ol |2) [4b,) be the state of the algorithm immediately before their i’th query to O, where the first register is the

input register to the oracle and let M, (i) = a2 be the query mass of « in the i’th query. For a subset V C [Q] x D,
let M, = > i ayev Ma(i) be the total query mass of points in V.

The following theorem was proven in [BBBV97], using the hybrid method.

Theorem 4.8 (Hybrid method [BBBV97]). Let A be an oracle circuit which makes Q queries to an oracle O with input
domain D. If we modify O into an oracle O" which differs only on a set of time-input pairs V C [Q] x D, then

IPHAC() = 1] — Pr[A” () = 1]| < 4./QDT
Finally, we will also use some basic probability lemmas.
Lemma 4.9 (Chernoft Bound). Let X,..., X, be independent random variables taking values in {0,1}, X :=
S Xy, and p == E[X]. For any § > 0, it holds that Pr[X > (14 6)u] < e 02/ (249),

Lemma 4.10 (Borel-Cantelli, [Bor09, Can17]). Let {X,}cy be a sequence of (not necessarily independent) random
variables with values in {0,1}. IfZiO:l E[X,] < oo, then Pr [Ziil X, =o0] =0.

4.3 Coding Theory

For a prime power ¢, we denote by F, the finite field of order ¢ and denote by (F,)_;[X] the set of univariate
polynomials over [, with degree less than &.

Definition 4.11. A code of length n € N over an alphabet X is a subser C C ¥, C' C X" is said to be F -linear if its
alphabet 3> = % for some field ¥, and a positive integer s > 1 and C'is an F ~linear subspace of . Equwalently, this
means that for any two codewords x,y € C and scalar o € T, both x 4y and a-zareinC.

For an [-linear code C, the dual code of C' is the code C’L C (F3)™ containing all strings ¢’ € (F3)™ which satisfy

Jorall ¢ € C. Observe that C+ is always F ~linear, and that |C| - |C*| = |S|™ if and only if C is F ~linear.

For any vector z € X", define hw(z) € [0,7n] as the Hamming weight of z, i.e. the number of nonzero
elements in z. We say that C C £" has distance d if for any two distinct codewords ¢4, ¢, € C, hw(c; —¢;) > d.

Definition 4.12 (Formal and Hasse derivatives). Let f X) = Z _,@; X7 € F,[X] be a univariate polynomial over
F,- We define the i’th formal and Hasse derivatives of f(X) as the lmear operators which take f(X) to the polynomials

z”: aXJZ and {1 zn:()anl

ji Jj=t

respectively. Note that flil(X) = il f(X) for all i and f.

Definition 4.13 (Univariate multiplicity codes, from [RT97, NieO1, KSY14]). Let F, be a finite field and let
s be a positive integer. Let ay, ..., a,, be distinct points in [, and let k < sn be a positive integer. The univariate
multiplicity code Mult, ¢ (ay, ..., oK) is the code over the alphabet 33 = [}, of length n which associates each polynomial

f(X) € (F,)[X] to the codeword ¢ € ¥ such that for i € [n],

ci = (f0(), fM (), e, F7 (),
where f\9) is the j’th Hasse derivative of f. Let Mult, ¢ = Mult s (1,...,q;k); note that Mult, g is T -linear.

Definition 4.14 (List recoverable). A code C C X" is (¢, L)-list recoverable if for all S, ..., S, C % such that
H(zq,...,z,) € C:Vie[n],z;, €S;}| <L.

Definition 4.15 (Expanders [GUV09]). A bipartite graph with N left-vertices, M right-vertices, and left-degree D is

specified by a function T : [N] x [D] — [M], where T'(x,y) denotes the y’th neighbor of . For a set X C [N, we write

L(X) to denote its set of neighbors |, _ e D@, y). Foraset T C [M], we write LISTR(T) = {x : T'(x) C T}.

We say that T is a (K, A)-expander if for every set X C [N] of size at most K, |[I'(X)| > A - |X|. Note that if T
is a (K, A)-expander then for all B < K and all sets T such that |T| < AB, [LIST(T)| < B.

Our separation will utilize expanders based on multiplicity codes as constructed in [KTS22].?

Theorem 4.16 ([KTS22]). For every field F, k, s € N such that 15 < s + 1 < k < char(F), identify the elements
of[l-_’; with univariate polynomials of degree less than k. Define the graph T : [F]qC xF,— [Ffl+1 by

L(f,y) = (v,),), Fo),
where f1is the i’th formal derivative of f in F,[X]. For every K > 0,T is a (K, A)-expander where

k$—|—1 1
A=q HorD

-(gK)=T.

Corollary 4.17. For each security parameter X € N, let k = X3, \> < q < 2)5 be any prime, and s = X. Identify the
elements of ¥ with univariate polynomials of degree less than k. Define the code C§ € X7 = (F$) with encoding map

Enc(f) = {(fCy), M) ... F7 W)} yer

where fU% is the i’th formal derivative of f. Then, for sufficiently large \, C3 is (£,20)-list recoverable if ¢ < 2° = 2*.
Proof. Set K = 2°*! and fix £ < 2%; Theorem 4.16 implies that T : F* x F, — F5™ isa (K, A)-expander where

1 1 1
A>q_k:(s;—) _q_k(s+)

1
(gK)sT = 5 (q-25T1) 51 > q/2,

for sufhiciently large .

¥We note that the proof of expansion extends straightforwardly to subgraphs of I' defined by taking edges corresponding to subsets
S C [, although it suffices for us to take S = F,.

10

Fix any lists S, ..., S, C ¥ such that % >>7 . 15;] < € and consider the set

q

R= U R,, R, :={(i,wy,...,w,_q): (wy,...,ws_1) € S;}.
i=1

Observe that R is a set of right vertices of " and that |R| = 37 |5, < ¢f < A-2¢ < AK. Now consider the
set X of all polynomials f such that for all i € [q], Enc(f); € S;; our goal is to bound |X|. By construction,
X = LISTR(R), so it follows that | X| = |LIST(R)| < 2¢.

In our parameter regime, it is straightforward to see that the code Cy, = Mult, ; , has the same list-recoverability
For
as (4, since for fields F, where char(F,) > s, Cy and C are identical up to scalar factors.

Corollary 4.18. For each security parameter X € N, let k = X3, \5 < q < 2X® be any prime, and s = X. Then, for
sufficiently large A, Cy = Mult, ¢ is (¢, 20)-list recoverable for all ¢ < 22,
Finally, we will use a result about duals of univariate multiplicity codes which we reprove in Section §A.*

Theorem 4.19 ([RZVW24]). For all parameters s, q, and k < sq, (I\/Iultsfq’k)l has distance at least ®£L.

4.4 Yao’s Box Problem and Non-Uniform Advice

We will need the following results on non-uniform advice for our separation between BQP /qpoly and BQP /poly.

Theorem 4.20 ([CGLQ20]). Let G : [N] — {0,1} be a random function. Let A be an unbounded-time algorithm,
with S bits of classical advice z¢,. For an index x € [N, let G|* : N — {0,1} denote the function that results from
removing x from G, in other words, on inputs ' # x, G(2’) = G|*(2’) and G|*(x) = 0. The probability that A
computes G(z) while making Q quantum queries to G|* for a random index x is at most
1/3

. 1 (S +logN)Q
Pr [AC] — < = W Tlog V)Y
Pl (sg.0) = Gla)] < 5 + 0

Lemma 4.21. Let G : {0,1}* — {0,1} be a uniformly random function. For an algorithm A that makes Q(\) =
poly(X) quantum queries to G and a family of t(X\) = poly(\)-bit classical advice {zg} g, suppose that

3
Pr [AC = G(z)] > <.
oo o A% (e,) = Gla)] >

Then, for sufficiently large N, for a m fraction of z € {0,1}*, measuring a random query of A< (for randomly
sampled G) will produce x with probability at least m.

Proof. The proof closely follows [LLPY23], but considers quantum queries instead of classical ones. The only
way for A to distinguish G from G| is to have nontrivial query mass at z. Denote by M, ,, the total query mass
that « is placed by A when querying G. For each G and we have that

| Pr[A (26, 7) = G()] = PIIA" (2, 2) = G(a)]] <4,/QMq .-

Now we consider the case when we uniform randomly choose «+ {0, 1}*, and require A% (2, z) to output
G(z). This is exactly Yao’s box problem, so by Theorem 4.20,

G,x 22

[\]

1/3
Pr[A%" (26,2) = G(2)] < E +0 (W> = % + negl(\)

= PrlAO(eg,0) = Gla)] - PrlA®T (og,) = Gla)) 2 15— negl(V).

4We note that the work we cite ((RZVW24]) was recently retracted, but the particular theorem we use remains correct. For completeness,
an entirely self-contained proof of this fact is given in the appendix.

11

Thus,
E (Mo,] > £ [o [AG(zG,m:G<x>1—Pr[AG'”<zG,x>=G<x>]>2]

2
1 _ Pyl 4G _ 1
by Jensen’s inequality. Finally, by a Markov inequality, we see that

L], 1
= 3200Q] © 320002

Pr { (Mg .| > — negl(\).

Thus, for sufhciently large), fora m —negl(\) > W fraction of z € {0, 1}*, measuring a random query

of AY (for randomly sampled G) will produce z with probability at least O

1
3200Q2

5 The Generalized Code Intersection Problem

5.1 Definitions and Basic Facts

We begin by recalling the definitions and basic results from [YZ24]. Much of this section will be taken directly
from [YZ24], with only minor modifications. We first define the code intersection relation, which is essentially
the problem of finding codewords over n symbols whose symbols have a particular hash value.

Definition 5.1 (Code intersection relation, adapted from [YZ24, LLPY23, BDK24]). For a function H : [n]x % —
{0,1} and a code C C 57", define the code intersection relation Re g C{0, 13" x X7 by

Rog ={(x,v) = (x1, ..., 2,01, ...,0,) : ((v1,...,0,) € C) A (Vi € [n], H(i,v;) = 2;)}.

Remark 5.2. We canview H : [n] x X — {0, 1} as a collection of n many functions, H(i,-) : ¥ — {0,1}, and we will
at times use the notation H; : ¥ — {0, 1} when referring to the function corresponding to the i’th output coordinate of H.

Definition 5.3 (Trace over a finite field [YZ24]). For any prime power g = r™ where r is prime, we define the trace

function Tr(z) := Z:io «™ which maps elements of B, to .. The trace function is ¥ .~linear: for all a,b € ¥, and
x,y € F, Tr(ax 4 by) = a Tr(x) + b Tr(y). In addition, for any x € F, Zyew; Wl @Y — 0 here w, = 2T

Definition 5.4 (Quantum Fourier transform over a finite field [YZ24]). For a finite field ¥, where ¢ = r™ and r
is prime, the quantum Fourier transform over F is the unitary denoted by QFT, such that for any x € F,

1 Tr(z-2)
QFT |z) = — wr |z) .
o= 75 2

The QFT over an alphabet ¥ = T3 is the s-wise tensor product of QFT : forx = (zy,...,z,) € %,

QFTy [x) := QFT." [a,) ... |2,) =

Trxz
T

Similarly, for any positive integer n and x € ", we have

n 1 Tr(x-z
QT) = [2w).

zexn

The unitary QFT can be approximated within error < in operator norm in time poly(log g,log 1/¢) [CW02, vDHI06].

12

Definition 5.5 (Fourler transform of a function [YZ24]). For functions f,g: X" — C, we define

f@) = iy 30 eI, (f-g)(x) =) g0, and (fxa)x) = 3 Sy

|E‘ xexm yex™

QFTY" Y fx)[x) =Y f(2) |z

xexn zeXm"

Note that

Fact 5.6 ([YZ24]). The following properties hold for the Fourier transform:

1. (Parseval’s equality) For all functions f : " — C, 3 o [f(X)* =2, 50 1f(2)]2

2. (Pointwise transform) Suppose that we have f; : ¥ — C fori € [n] and f : " — C is defined by f(x) :=
[T, filw,). Then f(z) =TI, fi(z).

3. (Convolution theorem) For all functions f,g,h : £ — C, fg= ‘
flgxh)=(F*(G D).
Lemma 5.7 (Fourier transform of a linear code). Let C C X" = (F$)™ be any F ~linear code. Then,

f(u):{\/% ifuecC, — f(u):{\/lcT ifuect,

0 otherwise. 0 otherwise.

st (f % §), Fxg = |SI"2(f - §), and

Proof. Since C'is [,-linear, |C| - |C*| = |£]", and thus for any z € C*,

1
— f Tr (wz) —)
= i 2 W = e S =
Finally, f(z) = 0 for z ¢ C'* by Parseval’s equality. The reverse direction follows by an identical argument. [J

Lemma 5.8. Let), |¢) be states such that ||¢)|| = 1 and ||¢p) — |¢)|| < e < 1. Then,

) — il < 2.
Proof- By the reverse/inverse triangle inequality,

o) | =1 =1 I =1 I < W) =19 | = = [d) | =1 —e>0.

We can thus define the normalized state |¢') := ﬁ By the regular triangle inequality,
He) =16 I < W) = 1o) [+ 1) — o) | < e + Il é) | — 1] < 2e. O
Lemma 5.9 ([BV93]). Let [4),|¢) be states such that || |) | = |||¢) || = 1 and | |2) — |¢) || < e. Then the total

variation distance between the probability distributions resulting from measurements of |¢) and |1)) is at most 4e.

Now we state the main algorithmic result of [YZ24], namely that a quantum algorithm can approximately
implement the convolution trick for some families of functions.

Lemma 5.10 ([YZ24]). Let [¢)) and |¢) be quantum states on a quantum system over an alphabet X2 = 3 written as
Y)=Y V) and |¢) = Wle)le)
uexn ecxyn

for functions V,W : £™ — C. Let F : X" — X" be a function and let GOOD C X" x X" be a subset such that for any
(u,e) € GOOD, we have F(u + e) = u. Define BAD := (X" x ¥™) \ GOOD. Suppose that

Yo VW(e)P<e and H

(u,e)eBAD zexn

Y. VW)

(u,e)eBAD:u+e=z

13

Define the unitaries U,yq and U, as follows:

Uwa= Y. |uteuleu and Up= Y |wu—F(w))w,ul.

(u,e)ex x 3™ (u,w)exn xxn

Then,

H(QFT;@" ®id) - Up - Upgg - (QFTY" @ QFTY")) [¢) — |2 Y (V(2) - W(2)) [2) [0)[| < Ve + V6.

zexn

Lemmas 5.8 to 5.10 imply the following corollary (as the QFT, U, 44, and Uy, are unitaries).

Corollary 5.11. Let V and W be functions, and € and & be the corresponding error parameters from Lemma 5.10. For
any property P : ™ — {0, 1}, if | |¢) || = || [¢) | = 1 and measuring (in the standard basis) the normalization of

S["2 Y (Viz) - W(z))|2)]0)

zexn

produces an outcome z such that P(z) = 1 with probability p, then measuring (in the standard basis)
(QFT" " ®id) - Up - Upsa - (QFTE" ® QFTE") [9) [¢)

produces an outcome z such that P(z) = 1 with probability at least p — 8(1/ + V/5).

5.2 Technical Lemmas

In this section, we state some technical lemmas to extend the Yamakawa-Zhandry algorithm to work with biased
oracles. We first introduce a pair of functions V and W that represent normalized indicators for a code C and the
preimages of any output b for a function H. For any F -linear code C' C X" = (F$)", function H : [n] x ¥ —

{0,1}, and string b € {0, 1}, let V : ¥" — C, WiH“bi : Y — C,and WHD . 3n 5 C be defined as follows:

V(u):{lc ueC

3)
0 otherwise
H. b,
oo 11{ - ec Tz 04
Wb () = { i ,
0 otherwise

O H, b,
WHJ)(el?"'?en) :HW ' (ei)a

where TiH“b" C X is the subset consisting of e; € ¥ such that H,(e;) = b;.

2

Definition 5.12 (p-biased distribution). For any p € [0,1] and set 3, let Bias, 5, denote the distribution over functions
from ¥ to {0,1} that samples F = £ — {0,1} with probability ¥ MI(1 — p)lF Ol Let Bias,, , 5, denotes the
distribution over functions G : [n] x ¥ — {0,1} that samples G with probability Bias,, ,, +(G) :=], Bias, 5(G,).

The following claim follows immediately from the definition of Bias,, ,, 5.

Claim 5.13. Let m be any permutation over X3 (resp. ™). Then, the distributions Bias, 5, and Bias,, 5o (resp. Bias,, , &

and Bias,, ,, 5, o) are identical.

The following lemma shows that when we take the Fourier transform of the preimage state of H, sampled
from Bias,, y:, the resulting Fourier coefhicients are uniform over all non-zero elements of ¥, and have constant
weight (either p or 1 — p depending on if we are taking the preimage of 0 or 1) on 0.

Claim 5.14. Fix any string b € {0,1}", for all i € [n] and o,0” € £\ {0}, it holds that

E nv’v‘;”i’l’i(ovJ:{p STy E (W)= E W)

H,+Bias, 5, 1—p ifbi =0 H;+Bias, 5 ' H,<Bias, y,

Proof- We can directly compute the expected Fourier weight on 0 as follows:

2 H..b,
2 Eq, [T [p ifb =1
H,; <—B|as |:’W 0>‘ :| - Hiniasp‘Z [] |E| - {1 —p lfb2 =0 '

Since o # 0 (resp. o # 0), for any w € F, the number of z € X such that o - z = w is |$|/q. Therefore, there is
a permutation 7, s : ¥ — Ysuch that o -z = 0’ - m, ,/(2) for all z € . Thus, by Claim 5.13,

|2

zeX

~ 2
2 B Tr(a z)
H, eBlas |:‘W)‘ :| N H’iHEasp,E \/E Z . :l

zZEX

r 2
> Tr(a/-ﬂ /(z))
= E 77 (2)) - wr i
H;+Bias, 5 || 1 /|Z Zezz:: Moo ()]

r 2
- ,U/) Tr(o’ 2)
o H,i<—l[3Eiaspyz A /|Z Z) wr]

z2EX

r 2
_ E) Tr(a -z)
H;+Bias, 5 || 4 /|Z Z :l

zEX
2
] . 0

- (W0 (o
H,;+Bias, 5, |: ¢ (U)

For any function Dec: : ¥" — X", define the sets G := {e € X" : Vu € C*,Deci(u+e) =u}, B:= X"\ G,
GOOD := C* x Gand BAD := (£" x £") \ GOOD. By construction, Dec. (u+€) = u for all (u,e) € GOOD.

Applying the definition of V from Lemma 5.7, we see that for all b € {0, 1}" and functions H,

2
> [Pl = 3 3| rhe| = E[e
(u,e)eBAD ucC't ecB |C ecB
We can apply the same logic to get that
2 2
> Yoo V) Wibe)l =Y > V() Wih(e)
zeX™ [(u,e)eBAD:ute=z zeX" ugucréiezﬂz

Definition 5.15. Let D,, ;, be the distribution over X3 that takes 0 with probability 1 —p if b = 0 (resp. probability p if
b = 1) and otherwise takes a uniformly random element of £\ {0}. For any bitstring b € {0,1}", define the distribution
D, p over X" to be the Cartesian product of the distributions D, , .

Definition 5.16. Fix any [~linear code C' C X", function Decq. = X" — X", set S € {0,1}", p € [0,1], and real-
valued function ju : N — R. (C,Dec.) is said to be (p, 1, S)-good if for all X € N andb € S, Pro.p le € B] < p()).

Lemma 5.17. Suppose that (C',Decq.) is (p, p1, S)-good. Then, for all A € N and b € S,

E lz ‘VAVH,b(e)ﬂ < u(N).
ecB

H+Bias,, ,, 5

15

Proof. By Claim 5.14, D, (e;) = E p, (W% (e,)|2] for all e; € > where (slightly abusing notation) Dy, (+) is
the density function of the distribution D, p,- Moreover, for any e = (ey,...,e,) € Z” string b and function

H, since WH"bf(\e) =11, W% (e,), by Fact 5.6, we have that W (e) = H:L:l Wl (e,). Thus, D MOE
E e Bias, , 5 [[WHb(e)|?] for all e € ¥™. By linearity of expectation, we see that forall A € Nand b € S,

— 2
i [Sef] -5, [l - aue- g eemsun o

ecB ec ecB ecB Pb

We define the function B : £ — C to be the inverse Fourier transform of the indicator function B(e) = 1.
Claim 5.18. Suppose that (C,Dece.) is (p, i, S)-good. Then for all X € N, b € S, and z € T",

[E" , U(B* WHvb)(z)ﬂ < pu(N).

H<«Bias,,

Proof. For z,z, € X", define the permutation 7, , : X" — X" as 7, , (z) =z + 2, —2z;. By Claim 5.13,

Zy52y

E - |lEewrmoie) | = B |1 B Wz, - x)]

H<Bias,, , » H+Bias,, |, »» xexn

= ek ZB<x>.WH°”zo’zvb<zlx>}

H+Bias,, , »» xexn

- 2
_ H, b _
N HeBi[Es Z Blx) - W (2, —x)]

n,p,5 xXEDN

~ [|(B*WH*b)(zl)‘2].

H<Bias,, |, »»

Thus, by Lemma 5.17, we have that forall A\ e N,b € S,andz € X",

Hb 2 _ 1 Hb 2
B (CEETE S e o ER R
1 —~ —~ 2
= n/2 I H,b
T meeh, lZE IS/2B(z) - Wb () 1
_ i H, b
n HeBi[Esn,p,z Z;L ’B W)‘ 1
_ 17 H,b 2
N HeBi[Esn)p,E LEZB‘W <Z>‘] < H().- =
Claim 5.19. For any function H and string b € {0,1}", it holds that
2
Yoo DY V) Wibe) = > |(V-(BxWHb)(z)y .
Z€X™ lueCt ecB: zeEXN

ute=z
Proof. For any z € X", we use the fact that V(x) = 0 for x ¢ C* to show that
Yo Vi) -WHbe)= > V(u)-Ble) Wb(e) = (V (B-WTh))(z) = (V- (Bx WHE))(z),
ueC ecB: ueR” ecxm:

ute=z ute=z

where the first equality follows from the definition of B as the indicator function for B, and the last equality
follows from the convolution theorem. The claim then follows from Parseval’s equality. O

16

Corollary 5.20. Suppose that (C',Dece.) is (p, i, S)-good. Then for all \ € N andb € S,
2

Sl 2 Vi) We)| | <uh).

z2€X™ |ueCtecB:
ute=z

HeBiasn,p,2

Proof- By Claims 5.18 and 5.19, we have that forall A\ € Nand b € S,

2

S V) Whhe)| | = E [ZMV-(B*W“))(Zﬂ
zeXyn

H<Bias H<Bias

PP zenn lueCt eeB: s
ute=z
£ | e
—_— * ’ z
H<Bias,, |, »» eC |C‘

|C| ZHeBlas |:‘<B*WH’b)<Z)‘2:|
1

< =) RA) = p(A). O

5.3 The Biased Yamakawa-Zhandry Algorithm

We are now ready to present our modified algorithm for handling biased oracles.

Definition 5.21 (The Yamakawa-Zhandry advice state). For a code C € ¥ and function H : [n] x ¥ — {0,1},
define the sets S, :={e € £ : H(i,e) = b} for (i,b) € [n] x {0,1}. Let |¢;,) and |} denote the following states:

1 .
== s ey]Sl #0

— ¢ /ISl €Jip f b and Z |u)
|L) otherwise Y |C ueC

We define the advice state for (C', H), denoted by |adv) (or |advy) when the code C' is implicit) as follows:

L ®?:1 ‘¢i,0> ® |¢z1>) ® [¥) l/[|¢lb> a |J_>for all (4,b) € [n] x {0,1},
[advyy) = | L) otherwise.

Theorem 5.22. Fix any F -linear code C C X" = (F3)", function Dec. = X" — X, set S € {0,1}", p € [0,1/2],
and function p = N — [0, 1] such that (C,Decc.) is (p, u, S)-good. Let BiasedYZ = BiasedYZy,, _ be the quantum
algorithm described in Figure 1 and |advy;) be the state described in Definition 521. Then, for all X € N:

1. BiasedYZ runs in time poly(n, s,log ¢, X) + Ty, where T, is the time required to compute Dece ..

Dec

2. Forall C and H, |advy) is a O(snlog q)-qubit state.
3. For all stringsb € S,

: i >1— 1/4 _ o9—4X
HeBlizgn,p,z Biaggyz[(b,v) € Rg p ¢ v + BiasedYZ([advy) ,b)] > 1 —8u()) 2

>1—(2n(1 —p)® 4+ 2u(N)"?).

Proof. Throughout this proof, we assume that 2,(\)'/* < 1, since the theorem holds trivially otherwise. Upon
inspection, we see that |advy) is a O(2nlog(|Z]) + log(|X|™)) = O(snlog q)-qubit state.
We now analyze the runtime of BiasedYZ. First, observe that step 1 runs in time O(snlogg). To imple-

ment steps 2 and 5, note that QFT5" (and its inverse) can be implemented with total error at most 274} /4 in

17

BiasedYZ,,. , (Jadvy),b):
1. If Jadvy;) # |L), construct the state (®), |9ib,))a ® [¥0)g by re-arranging |advy); else, return L.
2. Apply (QFTS")A ® (QFTS")g.
3. Controlled on register B, add the value of register B to register A.

4. Apply Decc: to uncompute register B given the value of register A.

. Apply (QFT5"®™")x ® idg and measure register A to get an outcome v € X". Output v.

ul

Figure 1: Biased Yamakawa-Zhandry Algorithm BiasedYZ ladvy),b)

Decci(

poly(n, s,log q,log 2**) = poly(n, s,log g, \) time. Finally, step 3 consists of adding in ¥, which can be done
in poly(n, s,logq) time, and step 4 takes time T, by definition. In total, we have that BiasedYZ runs in time
O(snlogq) + poly(n, s,log g, A) + poly(n, s,log q) + Tp.. = poly(n, s,log g, \) + Tp,..

We finish by analyzing the correctness of BiasedYZ. For fixed (i,b) € [n] x {0,1}, |¢;,) # |L) with prob-
ability at least 1 — (1 — p)”®l (as long as at least one symbol hashes to b under H(i,-)). By a union bound,
ladvy;) # | L) with probability at least 1 — 2n(1 — p)®!. Thus, using the definition of V and W from Section 5.2,
we will assume for the remainder of the proof that |adv) = Y V(u)W(e) |u)|e). Then, by Lemma 5.17

and Corollary 5.20, we have that forall b € S,

u,ecxm”

o H<Bias

B D o R B Do L

np:2 | (4,e)eBAD i
and
9 2
| Yo VWit | = E |3 | > Vi We)| | <uh).
H+Bias,, , s zc5n | (u,0)SBAD: H<Bias,, |, »» 2€2" |ueCt eeB:
Uhe—z u+te=z

Fixing b € S, Markov’s inequality and the union bound implies that H satisfies both

S [Pw P <u) amd Y| Y T W] <2

(u,e)eBAD z€X" [(u,e)eBAD:u+e=z

with probability at least 1 — 2(\)'/2 over Bias,, ,, y;. For these H, by Lemma 5.10,

H (QFT"*" @id) - Upge, * Unga - (QETY" ® QFTY") Q) [6ip,) ® 1))
A i=1

— |22 (Vi(z) - WHE(z)) 2) [0) || < 2604

ze¥n

Since |advy) # |L) and 2u(\)V* < 1, the state |tgt) = |S["/?2 > pesn (V(2) WHb(z))|z) is nonzero. But
measuring (the normalization of) |tgt) in the standard basis always produces vectors v such that (b,v) € Ry p.

Thus, by Corollary 5.11, the output of BiasedYZ will be a vector v such that (b,v) € R¢ 5 with probability at
least 1 — 8u(\)/4 — 274 (where the 274* term comes from approximating the QFT).

We conclude that with probability 1 — (2n(1 — p)I*! + 2u(X)!/?) over Bias,, ,, y,, BiasedYZ succeeds with
probability at least 1 — 8(\)1/* — 27#* for any given b € S, as desired. O

18

Finally, we show that our choice of code satishes the required conditions of Theorem 5.22.

Corollary 5.23. For each security parameter A € N, define the code Cy = Mult, ¢, where N < q < 2X5 is a prime,
k = X3, and s = X. Then, there exists an efficient/uniform quantum algorithm BiasedYZ and a family of poly(\)-qubit

states {|adv)} g such that the following holds for sufficiently large X, for all sirings x € {0,1}*,

Pr [Pr{(z]072,v) € Rey jr + v < BiasedYZ(Jadvy) ,2)] > 1—27%] > 1—272%,
H<—Biasq,1/>\4,}3 A0

Proof. We begin by arguing that there exists a deterministic algorithm Dec. and function 4 that for sufhciently
large X satisfies y1(\) < 275, such that Ty, = poly()) and (Cy,Deccy) is (3, 1, {0, 1} x 097*)-good. Define
the subset G := {e € X9 hwlep,1.y) < 33l —)\)} By the Chernoff bound (Lemma 4.9), for any z € {0,1}*,

[IBN

Pr legd]= Pr |:hW(e[>\+1:q]) > 111)\)] <e T <278

4
1/24,z]09- X €Dy 34 gjoa—r A

e«—D

so it sufhices to consider decoding only errors e € G. Theorem 4.19 implies that for all e € G (assuming A > 50),
11 .
hw(e) = hw(e(;.y) + hw(ep 1.q) <A+ F(q —) < 25X < A?/2 < dist(Cy) /2.

It therefore sufhices to uniquely decode C5 in a deterministic and efhicient manner. We set 41 to be the maximum
probability (across all) that unique decoding for Cy succeeds with error distribution D, /31 ,j94-2; thus, by our
previous argument, (\) < 278X a5 long as A > 50.

By Theorem A.5, we know that Cy = GM, 5 (Uy,..., Uy L, .. ¢35 — k). From Lemma A.3, it is easy to
see that A; ;(X) can be computed in poly(s, ¢) = poly()) time, and thus a, ; (and consequently U; and U;) can
be computed in poly(A) time. Finally, it remains to efhciently uniquely decode Mult, ¢, which we can do
deterministically in poly(s, ¢) = poly()\) time [Nie0O1, KSY14, Kop15].>

Applying Theorem 5.22 gives a family of poly(\)-qubit states {|adv;)} 5 and a poly(\)-time uniform algo-
rithm 3 such that for A > 50 and all strings = € {0, 1}*,

Pr [Pr{(2]0972,v) € Re pr+ v+ Blladvy), 2 0774)] > 1— 27223 = 274] > 1 — 2g(1 — p)¥| — 27471
H<—Biasqy1/>\4,2 A2
= Pr [Pr[(m”Oq’/\,v) € R v+ B(ladvy),z|0T2)] > 1 — 2”\] >1-—2"2
HeBias, /34 rs A
The algorithm BiasedYZ simply runs B(|advy) , z[|07~*) given advice |advy) and input z € {0, 1} O

We therefore have the following corollary by a simple union bound over all z € {0,1}*.

Corollary 5.24. For each security parameter A € N, define the code Cy = Mult, ¢, where N < q < 2X5 is a prime,

k = X3, and s = X. Then, there exists an efficient/uniform quantum algorithm BiasedYZ and a family of poly(\)-qubit
states {|adv)} i such that for sufficiently large A,

Pr [V € {0, 13}, Pr[(2]07A,v) € Re, g+ v 4 BiasedYZ(|advy) ,2)] > 1—27] > 1-27*.

HHB'aSq.l/A‘l,ES

6 Separating QMA from QCMA

For the rest of the paper, we fix a code family C := Mult, ¢, for N < g <2\ aprimeS k= M\ ands = A\
For any subset £ C {0,1}* x X% and function H : [¢] x ¥ — {0, 1}, we define the oracle

1 if (20972, v) € Re g A (2,V) € E,
0 otherwise.

O[H, E](x,v) = {

>In fact, a simple extension of the Berlekamp-Welch algorithm [WB86] gives efficient unique decoding for univariate muleiplicity codes.
To be concrete, we can take g to be the smallest prime larger than A> (which is always at most 2)%).

19

Our proofs in this section are fairly standard and follow [BHNZ25], but we include them for completeness.

We begin by defining an oracle-input problem based on the code intersection subset size checking problem.
Note that our NO instances are slightly different than those considered in [LLPY23, BDK24], which will affect
the QCMA lower bound, but not the QMA containment.

Definition 6.1 (YES and NO instances of the code intersection subset size problem). Let Good denote the set of
Sunctions H : [q] x F5 — {0, 1} such that the algorithm in Corollary 524 succeeds on all - € {0,1}* with probability at
least 2/3. Our oracle-input separation between QMA and QCMA involves distinguishing between O[H , E] with H and
E being the following:

1. YES instances: H € Good and E = {0,1}* x X4,
2. NO instances: H € Good and subsets E C F x X1 C {0,1}* x X9 such that |F| < 2*/3.

Remark 6.2. One can also embed O[H, E] : {0,1}* x 9 — {0,1} into a binary input domain oracle with \ +
qlog |X| < N=bit inputs, in such a way that for sufficiently large X > Xy (where X\, € N is some constant), there is at
most one security parameter associated with each input length.

6.1 The QMA Proof System

We first show that there is a QMA proof system that distinguishes between YES and NO instances of the code
intersection subset size checking problem, as defined in Definition 6.1.

Lemma 6.3 (A QMA proof system). There exists a polynomial-time uniform quantum query algorithm V which makes
one query to the oracle O[H, E), such that for sufficiently large A, the following holds:

1. Completeness. For all H € Good, when E = {0, 1}* x X9, there exists a poly(X)-qubit state |adv ;) such that

Pr[VOH-El(Jadvy)) = 1] > %

2. Soundness. For all H, sets E C F x £ C {0,1}* x X4 where |F| < 2*/3, and quantum states |advy;),

Pr[VOH-El(|advy)) = 1] <

Wl =

Proof- By definition, for H € Good as defined in Corollary 5.24, there exists a poly(\)-qubit state |adv;) and
efhicient algorithm BiasedYZ such that for any = € {0,1}*,

2
a2 : i >1—-22> 2.
BiasP;(erZ[(a:HO ,V) € Re, y : v < BiasedYZ(ladvy),z)] > 1 —-27" > 3
The verifier V operates as follows: it samples a uniformly random « € {0, 1}* and runs v < BiasedYZ(|advy) , z).
Finally, V' queries O at (z,v) and returns the output of O. The efhciency/uniformity of V' follows from the
efhiciency of BiasedYZ and the fact that V makes one oracle query.
We now argue completeness and soundness. If E = {0, 1}* x 9, then

Pr[VOHEl(Jadvy)) = 1] = s e I[(:UHOQ*/\,V) € Re, v < BiasedYZ(ladvy) ,z)] >

CX)\[\D

On the other hand, if E C F x £9 C {0,1}* x ¥4 and |F| < 2*/3, then V will never output 1 if z ¢ F. Thus,
for all H and quantum states |advy;),

PrVOHEl(|advy)) = 1] < Pr [z € F] <
z+{0,1}*

oa\H

20

6.2 Non-Existence of QCMA Proof Systems
We begin by showing that any QCMA verifier/algorithm can be turned into a very good hash value guesser.

Lemma 6.4 (Good guessers from QCMA algorithms). Assume there exists a QCMA algorithm A such that for instances
of size \, A takes a t(\)-bit witness and makes Q(\) oracle queries. Then for all £ < 23 there exists a algorithm Guesser
which makes no queries such that for any H € Good,

Vi # g, (2;,v,) # (2;,V;)

0
1
: i» Vi ¢« Guesser(19)| > 27t ())
A(%”Oq_)\vvi) ERCA,H {(Iz L)}Zfl (19 144(2)()\)2

Proof. The algorithm A9l can be thought of starting from a state |w, 0) and applying a sequence of unitaries
Vo, -, Vg interlaced with queries to O[H, E] before measuring the first qubit in the standard basis. The state of
the algorithm right before its final measurement is then given by

Vo - OlH,E|-Vo_, - O[H, E]...0[H, E]- Vy |w,0) .

Let Guesser be the algorithm described in Figure 2 which outputs £ tuples of codewords and hash values.

Guesser(19):
1. Sample a random w € {0,1}" and initialize Ay = 0.
2. Fori e [{]:
(a) Sample j « {0,...,Q — 1} uniformly randomly.
b) Compute the state V.OA V. ,...Ox V;|w,0), where @, is the oracle unitary defined b
p Va, Vi Ya, Vo A Ty Y

1 if(z,v) €A,
0 otherwise.

‘$7V> |y> |z> = |.1‘,V> ‘yEBfAFl (CC,V)> ‘Z>7 Where fAFl (.%‘,V) = {

(c) Measure the first register in the standard basis for output (z, v) and update A, := A, _; U{(z,v)}.

3. Output A,.

Figure 2: The Hash Value Guesser, given a successful QCMA verifier for the code intersection subset size problem.

Let G be the event that the witness w sampled is a good witness for H, and let E; be the event that the i’th

round of Guesser appends a tuple (x,v) ¢ A, ; such that (z|09°*,v) € Rg_y.

Claim 6.5. Vi € [(], Pr[E;|E;_y A ... A Ey A Gl 2 gz

Proof- Fix an index 1 < ¢ < £. Observe that conditioned on E; A ... A E;_; occurring, this means that A;_;
consists of 4 — 1 distinct tuples {(x;,v;)}'=} such that (2;[07*,v;) € Ro p forall 1 <j<i—1.

Since O, = O[H, A,] corresponds to a NO instance (as |A,; ;| = i—1 < ¢ < 2*/3) while O[H, {0, 1}* x
34] corresponds to a YES instance, by the completeness and soundness of the QCMA algorithm A and the fact
that the event G implies we have a good witness, Theorem 4.8 implies that the query mass on the inputs where
the two oracles differ must be at least ((2/3 — 1/3)/4)?/Q = 1/144Q.

AsO,, and O[H,{0,1}* x 29] differ precisely on inputs (,v) ¢ A; ; where (2]|097*,v) € R¢_ ., it follows
that measuring a random query of A produces a good tuple (z, v) with probability at least & - 1715 = 1g>- U

Observing that Pr[G] > 27t as there is always at least one good witness for any H, we conclude that
¢

4
1
> : |E,_| A ... 27]
Pr[E, A ... A E,] > Pr[G] ilijr[EJEl,l AN NEANG] =2 (14462@)2) =

21

Separately, we can show the following upper bound on the success probability of Guesser. The bound follows
from the fact that Guesser is not making any queries to the oracle, and thus knows nothing about H.

Lemma 6.6 (Guessing probability upper bound). For sufficiently large), the following holds: fix any algorithm
Guesser which makes no oracle queries. Then, for all ¢ < 2*,

Vi # 7, (z;,v; T,V 1\ M2
r 70 (@ N vi) # (@5, 9)) {(z;,v;) }i_, + Guesser(1%)| < (1 — —4>
HeBias, yha s | A (2,]097%,v;) € Re, m A
Proof- Consider any output (z,Vy, ..., x,,V,) of Guesser. First, observe that if (z;,v;) are distinct and H(v;) =
2,]|097*, then we must have distinct v; or else Guesser will fail. Since we require v; € C, for all i € [¢], we now
consider the sets S;={ceX|Tie [f] (v;); = o} torall j € [g].

By definition, for alli € [¢]and j € [q], (Vi)j € S}, so if we think of {S;}7_, as input lists, the output list for
the code C', must contain v; € [¢] and thus [v € C, : Vj € [¢],v; € S;| > L.

Corollary 4.18 thus implies that % 221851 = £/2 if X is sufhciently large. In order for Guesser to succeed, it
must correctly guess the output of H on all symbols in | J!_, S; which contain at least 2180 = L = \5¢/2

- . : . . : 1. A3 6/2
distinct points. Since we sample H « Bias; ;/ys r this occurs with probability at most (1-5) . O

We can combine the upper bound and lower bound to conclude that any QCMA algorithm A for the code
intersection subset size problem must misclassify some YES or NO instance.

Lemma 6.7. For all constants a > 0 and functions Q(X), t(X) that satisfy Q(X) < aX? t(X\) < aX® for sufficiently
large \. Then for sufficiently large X, for all quantum query algorithms A which take a classical witness of length t(X) and
make Q(N) queries to the oracle O[H, E| of size X, there exists an oracle O[H*, E*| of size A such that H* € Good and

1. either E* = {0,1}* x X9, but for all witnesses w of length t(X),

Pr[ACH El(w) = 1] <

Wl o

2. or B C F* x %9 C {0,1}* x X9 where | F*| < 2*/3, but there exists a witness @ of length t(X) such that

o 1
Pr[ACHE () = 1] > 3

Proof- Suppose for the sake of contradiction that A properly classifies all YES and NO instances. Setting ¢ =t <
2} /3, we can apply Corollary 5.24 and Lemma 6.4, yielding a guesser Guesser where

Pr VZ#]? (':E’L"Vi>7é($]7v_])
HeBiasqyl/A{Fs A (.CCzHOqi)\ V>> S RCM

VZ#J (Ly, z)# (mJ7V])

> Pr \
HHBIaSq,l/)\‘l,Ug szO(I 7Vi) c RC>\7

N) H) R) H)
=2 '(144@@)2) -2)2<576Q(A)2> '

But this is impossible as Lemma 6.6 implies that the success probability of Guesser is at most

1 APE(N)/2 e 1 t(X)
1—— < (e=M2)? _— . O
()\4) < (e < <576Q()\)2>

A straightforward diagonalization argument thus gives us our desired separation (see Section §B for details).

:{(x;,v;)}_; + Guesser(1")1

:{(z;,v;)}_; < Guesser(1")

He Good] . Pr [H € Good|

H‘_B'asq,1/>\4,ug

Theorem 6.8. There exists a classical oracle @ : {0,1}* — {0, 1} such that QMA® N AMY C QCMA®7

7We note that this separation can be easily strengthened to QMAO nsep’ - QCMAO, as with most set-approximation-flavored oracles.

22

7 Separating BQP/qpoly from BQP /poly

We begin by proving the main technical result of this section, which is a search-like separation between BQP /gpoly
and BQP /poly. In particular, we prove that given as input an oracle O[H, E] for E = {0,1}* x 9 and H sampled
from Bias, 1 /xs 55, and @ € {0, 1}*, the problem of finding a codeword v whose hash values correspond to z is

in BQP/qpoly (where the advice is allowed to depend on the oracle, but not on z) but not BQP/poly.

Lemma 7.1. For all security parameters X € N, let \> < q < 2% be a prime, k = X3, and s = \, and dcﬁne the code
Cy = Mult, g . In addition, for all A, define the st Ey := {0, 1}* x B9, where 32 = F. Then the following hold:

1. There is an polynomial—time unlform quantum query algorithm A, such thatfor all oracles O there exists afamily
of poly(\)-qubit quantum advice states (depending only on the oracle) {|z)} ¢ such that

Pr [Va € {0, 13}, Pr{(z]092,v) € Rp, g ¢ v < AVTEN (2,]25))] > 1—negl())] > 1—negl(X).

H<—B|asq’1/k4,|ﬂ51

2. For all unbounded-time quantum algorithms B that make Q(X) = poly(X) oracle queries to O, and all families of
t(X) = poly(\)-bit classical advice strings (depending only on the oracle) {z} o,

Pr ([0, v) € Roy g+ v = BB (2, 2)] < negl(M).

H“Biasq,u,\‘l,wg ,x+{0,1}*

Proof- Throughout this proof we will assume that X is sufhciently large and argue with respect to asymptotics.
To prove Item 1, we simply set the advice as |z) = |advy) from Corollary 5.24, and the algorithm just runs the
algorithm in Corollary 5.24, which implies that

Pr [Vz € {0,1}}, Pr{(z]072,v) € Rp py: v Allzp),2)] > 1—272] > 1—27A,

HFBIaSq,]/)\‘I,I}'é

We now move to proving Item 2. Suppose for the sake of contradiction that there exists a polynomial p()),
an adversary B which makes Q(\) = poly()\) oracle queries, and a family of ¢(\) = poly(\)-bit classical advice
{20} o such that for infinitely many A,

1

p(A)’

Pr (2092, v) € Rey py : v = BOHEN (2,)] >

H“Biasq,uﬂ.rg ,o{0,1}*

Our goal will be to arrive at a contradiction by showing that this algorithm 2 implies a (too good) sampler for
R¢, g that works for infinitely many choices of A. Consider the Q-query algorithm AEN (4) which samples
arandom z < {0,1}*, runs BOHEAl (2 7) to get v, and outputs (z,v). By the definition of B, we have

1

P 092 v) € Rpe 5 ¢ (a,v) « AHEN > 1
HeB s (2072, v) € Rgy gy = (,V) 1 (20)] > oy (1)

for infinitely many A. We denote with A the set of all X for which this bound holds. At a very high level, we will
first show that for all but finitely many X € A, A;’s queries are concentrated on very few points. Once we know
that queries to A4, are concentrated on a couple points, replacing the real oracle with an oracle that only contains
those few points will give rise to a sampler for many more points than are contained within the oracle itself.

For each function H and set S C {0,1}* x X%, we define M}, 5 as the query mass that A, places on points
which differ between O[H, S] and O[H E] Let SmallSet; be the event that there exists a list L;; C {0,1}* x %4

A

SuChthat‘LH|<2 /2andMHL _W
Claim 7.2. Whenever SmallSet; does not occur, for all ¢ < 22, there is an algorithm, Guesser, which makes no queries

¢
to an oracle, and outputs a list of € distinct points from R, g with probability at least 27 - (W)Q%M) .

23

Proof. The algorithm Guesser is identical to the algorithm in Figure 2, except starting from .4, instead of a QCMA
verifier for the code intersection subset size problem.
The proof follows similarly as well. Let X; be the event that the ¢’th round of Guesser(1°) outputs a tuple

(z,v) ¢ A,y such that (2|09, v) € R¢, 5 and G be the event that the advice is guessed correctly. By assump-
tion, and because |A; ;| < 2*/2, we have that A4 places at least m query mass on points which differ
between O[H, A, ;] and O[H, E,]. Therefore, we have that Pr[X,|X; A ... A X, ; AG] > W.

Applying the chain rule, together with the fact that Pr[G] > 2-tN) we get that the probability of sampling ¢
distinct points from R g is at least

1 l
256p2<A>Q2<A)> '

As a corollary, we have that for all but finitely many A € A, SmallSet; must occur with high probability.

Pr(X, A A X, AG] > 271 (

Claim 7.3. There are only finitely many X € A such that Pry_giss SmallSety] <1 — 4

,1/A4,[r5'[(A
Proof- Assume for the sake of contradiction that there are infinitely many A € A such that Pr[SmallSet;| <

1— %. Whenever SmallSet;; does not occur, the previous claim gives us a sampler. Thus, when H is sampled
p(A)

from Bias, ;54 ;. the probability of the sampler outputting ¢ distinct points from R, is at least

Vi# j, (2;,v;) # (2,7,)

1
o -
HeBias, 1 xaps | A (.TZHOQ Vi) € RCA’H

¢ ¢ —t 1 !
:{(z;,v;)}5_ < Guesser(1)1 > @ -2t (WW) .

Taking ¢ = max{t, A} < A2 < 9A gives a sampling success probability of

By <5l2p(A)12Q(A)2>Z = (204817(;)3@@)2)6’

which is a contradiction since Lemma 6.6 implies this success probability should be at most

ot 1 ¢
(7)< (2048p<A>SQ<A>2> | -

Now we know that SmallSet; occurs with high probability for infinitely many A € A. For all H for which
SmallSet ;; occurs, we denote Ly to refer to any arbitrary set of size at most 2*/2 such that My, 7=~ < PHTZIRVeTNE
if SmallSet; does not occur, then we define L%, := (. For each function H, define the punctured oracle

1 if (20972, v) € Ry A (2,v) € Ly,
0 otherwise.

Oy (z,v) = {

Then we have that, conditioned on A being such that Pry;_gi. [SmallSet] > 1 — 1

4 s
q,1/04FS

Pr [(ac||0q”\,v) € Re g (w,v) ¢ /llo*H(zO)\SmaIISetH]

H“B'asqg/)ﬁ,rg

Y . O[H,E]
> Hesiaff_lwg (20972, v) € Re g+ (x,v) = AT (20)|SmallSet ;| — 0

> P =X : OlH. B I -
> Hesiasqﬂwg (20772, v) € Rey gy = (2,v) <= AT (26) A SmallSet] ey
R S |

e 2p(N) 2p(\) ¢

In the first line, we use the hybrid lemma (Theorem 4.8) combined with our bound on the query mass of A,
outside of L. In the second line, we use the definition of conditional probability, together with the fact that

24

Pr[SmallSet ;] < 1. We conclude by using a union bound, together with the fact that Pr[SmallSet;] > 1 — 7
and the fact that the probability of A; sampling a point in R¢, p; is at least -5 by assumption.

To arrive at a contradiction we construct yet another sampler. By the definition of .4;, running it produces a
uniformly random z € {0, 1}*, so there exists an algorithm A, which, on input 1, runs A, ¢ times and satisfies

Vi g (2, V) # (25,75)

‘ ¢
r (v, — /l Zh, 1
H“Biasq,1/,\4,[rg (xl”Oq Avvi) c Rc/\’H {(79 z) =1 (O» >‘|

e .
1 1—1
> P SmallSet || A T o |-
_HeBiasqul//\A‘y[Fé[mafi>e H] e} <2p(>\) 2X)

Here we applied the definition of conditional probability and used the fact that since the z;’s are uniformly
random, the probability that z; € U;i {z;} is at most ‘.

As O has at most 2*/2 nonzero points, we can hardwire 2*/2 - (X + log |$|9) < 22/3 bits of advice and
simulate O%;. By guessing this extra advice along with z, we get an algorithm 4 such that for ¢ = 234,

VZ#J (Ly, Z)#(x]7vj)

Pr A
HeBias, pa e | A (2,]0977,v;) € RCAvH
N 1 1 -1
> 9—(t)+223) (1 —) ‘ < -)
w) Mam ==

_e'ﬁ<2pl(/\)_2€>>2_e'<%>e:<@)g'

Applying Lemma 6.6 for £ = 2304 < 22 we have a contradicting upper bound on the success probability of

Vi j, (2, v;) # (25,7) 1\ V02 1\
Pr o Vi Ay, vy) Yo, — Ag(1t (1_7> <e M2« () .
HeBias, yna g | A (2,072, v;) € N Ao vilkia (1) At B 6p(A)

O

; {<932‘7Vz‘)}f:1 — A3(1£>]

Having shown that there is a search problem outside of BQP/poly, we now apply Lemma 4.21. This was
essentially established in [LLPY23], but we make minor modifications to deal with quantum queries.

Lemma 7.4. There is a family of distributions {’D)\})\Ew, where D, is supported on tuples (G,0") of functions G :
{0,13* = {0,1} and O : {0, 1}PYN — £0, 132NN sarisfying the following:

1. There is an polynomial-time uniform quantum algorithm A which makes one query to O such that for all O" there
exists a family of poly(\)-qubit quantum advice {|z4/)} o such that

R 1A Pr[AY (|20,) ,) = G(z)] > 1 — negl(\)] > 1 — negl()) .

2. For all quantum query algorithms algorithm B that makes poly(X) queries to " and receiving a family of poly(\)-
bit classical advice {zy: } o depending only on ¢,

(B (20, 7) = G(x)] <

o] w

bl

Pr
(G,0")«Dy ,z<{0,1}*
for all sufficiently large A.
Proof. Define D, as follows: first, sample a random function G : {0,1}* — {0,1} and H «+ Bias, 1 /x4 r; and let

O (2,v) = G(z) if (2|07 v) € Re, ms
[otherW1se.

25

We begin by showing easiness with quantum advice. Let (A’, {|z};)}) be the algorithm and advice family
from Item 1 of Lemma 7.1. We now construct an algorithm .4 and family of mixed state advice {py }o/). We
describe a randomized procedure to set po, given an oracle @', but in reality, we will set po to be the mixed
state corresponding to the mixture over outputs of this procedure. Sample (G, H) from the distribution of D
conditioned on O’; by construction, the joint distribution of (G, H, ") sampled in this procedure is identical to
D,. We then set our advice to be py, = |2};). The algorithm A on input z will run v < A’ (py,, z), query (z,v)
to (', and output whatever ¢’ returns. Item 1 of Lemma 7.1 then implies that A is efhicient/uniform and that

(G Ol%r » [Vz € {0, 13}, Pr[AY (por,) = G(x)] > 1 — negl(A)] > 1 — negl()).

Now suppose for the sake of contradiction that there was some algorithm 3B which made Q(\) = poly(\)
queries and had ¢(\) = poly(\)-bit classical advice {2/} such that for infinitely many A,

P BY (2, 2) = G(x)] >
(G,o/)i zn[(207, 7) ()]
z+{0,1}*

ot w

We know that O’ returns G(x) only if the query (2,v) € R¢ . Thus, by a direct reduction to Lemma 4.21, for

a o0ory? fraction of @ € {0,1}*, measuring a random query of 3 to a randomly sampled oracle 0 < D, will
produce (z,v) € R with probability at least m.

But now observe that 0’ can be simulated by querying G and 0, := O[H, {0, 1}* x £9]. Thus, for each func-
tion G, we define the following Q-query algorithm B’[G] and classical advice {z(,[G]}. First, construct ¢’ from
(G, 0) (since O uniquely determines H) before setting 2,[G] := 2. B'[G]%(24,[G], x) will run B (2},[G], x)
where B’ will simulate the oracle O’ using its own oracle @ and the hardwired oracle G and measure a uniformly
chosen query of B. As noted earlier, this means that

) SO 1 _ 1
GB}-,I[(I‘7V) € RCA,H v B [G] (ZO[G]’J:)] > 3200 - 4000 - Q()\)él - POIY(/\)

By taking G* which maximizes the above probability,” (B'[G*], {2},|G*]}y) breaks Item 2 of Lemma 7.1. O
A simple diagonalization argument gives us our desired separation (see Section §{B for details).

Theorem 7.5. There is a classical oracle O such that BQPO/qpoly ANPY N coNP? C BQPO/poly.10

Acknowledgments. We thank Anand Natarajan, Scott Aaronson, Joe Carolan, Ryan Williams, Rohan Goyal,
Venkatesan Guruswami, Mary Wootters and Rachel Zhang for patiently answering our many questions. JB is
supported by Henry Yuen’s AFOSR award FA9550-23-1-0363. VV gratefully acknowledges support from a
Simons Investigator Award and a Ford Foundation Chair.

References

[Aar07] Scott Aaronson. The learnability of quantum states. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 463(2088):3089-3114, 2007.

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In 2009 24th Annual IEEE Con-
ference on Computational Complexity, pages 229-242. IEEE, 2009.

8This is without loss of generality as a mixed state is a distribution over pure states and so there is always a pure state advice that is at least
as good as the mixed state advice.
°As noted in [LLPY23], finding G* does not actually require access to the specific H since B’ can find G* by itself by using its unbounded
computational power to enumerate over all possible G and O ;.
101¢ is not hard to extend this separation to show that YQP(j ANPY N coNP? C BQP(j /poly, where YQP is the class of problems that can
be decided by a BQP machine with untrusted quantum advice [Aar07, AD14].

26

[Aar10]

[AD14]
[AKO07]

[ANO02]
[BBBV97]

[BDK24]
[BHNZ25]
[Bla24]
[BNZ25]
[Bor09]
[BV93]
[Can17]
[CGLQ20]
[CWO02]

[DKSS13]

[FGH"12]

[FK15]
[GGJL25]

[GS86]

Scott Aaronson. Bqp and the polynomial hierarchy. In Proceedings of the Forty-Second ACM Sym-
posium on Theory of Computing, STOC *10, page 141-150, New York, NY, USA, 2010. Association
for Computing Machinery.

Scott Aaronson and Andrew Drucker. A full characterization of quantum advice. SIAM Journal on
Computing, 43(3):1131—1183, 2014.

Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice. In Tiventy-Second
Annual IEEE Conference on Computational Complexity (CCC’07), pages 115-128. IEEE, 2007.

Dorit Aharonov and Tomer Naveh. Quantum np-a survey. arXiv preprint quant-ph/0210077, 2002.

Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses
of quantum computing. SIAMjournal on Computing, 26(5):1510—1523, 1997.

Shalev Ben-David and Srijita Kundu. Oracle separation of gma and gcma with bounded adaptivity.
arXiv preprint arXiv:2402.00298, 2024.

John Bostanci, Jonas Haferkamp, Chinmay Nirkhe, and Mark Zhandry. Separating qma from qcma
with a classical oracle. arXiv preprint arXiv:2511.09551, 2025.

lan F Blake. Essays on Coding Theory. Cambridge University Press, 2024.

John Bostanci, Barak Nehoran, and Mark Zhandry. A general quantum duality for representations
of groups with applications to quantum money, lightning, and fire. In Proceedings of the 57th Annual
ACM Symposium on Theory of Computing, pages 201-212, 2025.

Emile Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo
Matematico di Palermo (1884-1940), 27(1):247-271, 1909.

Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing, pages 11-20, 1993.

Francesco Cantelli. Sulla probabilista come limita della frequencza. Rend. Accad. Lincei, 26:39, 1917.

Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. Tight quantum time-space tradeoffs
for function inversion. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 673-684. IEEE, 2020,

Cleve and Watrous. Sharp quantum versus classical query complexity separations. Algorithmica,
34(4):449-461, 2002.

Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the method of
multiplicities, with applications to kakeya sets and mergers. SIAM Journal on Computing, 42(6):2305—
2328, 2013.

Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and Peter Shor. Quantum
money from knots. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pages 276-289, 2012.

Bill Fefferman and Shelby Kimmel. Quantum vs classical proofs and subset verification. arXiv preprint
arXiv:1510.06750, 2015.

Mika G6s, Tom Gur, Siddhartha Jain, and Jiawei Li. Quantum communication advantage in tfnp.
In Proceedings of the 57th Annual ACM Symposium on Theory of Computing, pages 1465-1475, 2025.

S Goldwasser and M Sipser. Private coins versus public coins in interactive proof systems. In Pro-
ceedings ofthe Elghteenth Annual ACM Symposium on Theory ofComputing, STOC 86, page 59-68,
New York, NY, USA, 1986. Association for Computing Machinery.

27

[GUV09]

[Kop15]
[KSY14]

[KTS22]

[Liu23]

[LLPY?23]

[LMY25]
[LS25]

[Lut11]
[Nie01]
[NN24]
[NY04]
[Reg09]
[RT97]
[RZVW24]
[vDHIO06]
[WBS6]
[YZ24]
[Zha24]

[Zha25]

Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and ran-
domness extractors from parvaresh-vardy codes. Journal of the ACM (JACM), 56(4):1-34, 2009.

Swastik Kopparty. Some remarks on multiplicity codes. arXiv preprint arXiv:1505.07547, 2015.

Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-time
decoding. Journal of the ACM (JACM), 61(5):1-20, 2014.

Itay Kalev and Amnon Ta-Shma. Unbalanced expanders from multiplicity codes. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2022), pages 12-1. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2022.

Qipeng Liu. Non-uniformity and quantum advice in the quantum random oracle model. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 117-143.
Springer, 2023.

Xingjian Li, Qipeng Liu, Angelos Pelecanos, and Takashi Yamakawa. Classical vs quantum advice
and proofs under classically-accessible oracle. arXiv preprint arXiv:2303.04298, 2023.

Jiahui Liu, Saachi Mutreja, and Henry Yuen. Qma vs. qcma and pseudorandomness, 2025.

Ray Li and Nikhil Shagrithaya. Near-optimal list-recovery of linear code families. arXiv preprint
arXiv:2502.13877, 2025.

Andrew Lutomirski. Component mixers and a hardness result for counterfeiting quantum money.
arXiv preprint arXiv:1107.0321, 2011.

Rasmus Refslund Nielsen. List decoding of linear block codes. Department of Mathematics, Technical
University of Denmark, 2001.

Anand Natarajan and Chinmay Nirkhe. A distribution testing oracle separation between qma and
qcma. Quantum, 8:1377, 2024.

Harumichi Nishimura and Tomoyuki Yamakami. Polynomial time quantum computation with
advice. Information Processing Letters, 90(4):195-204, 2004.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of
the ACM (JACM,), 56(6):1-40, 2009.

M Yu Rosenbloom and Michael Anatol’evich Tsfasman. Codes for the m-metric. Problemy Peredachi
Informatsii, 33(1):55-63, 1997.

Noga Ron-Zewi, S Venkitesh, and Mary Wootters. Efficient list-decoding of polynomial ideal
codes with optimal list size. arXiv preprint arXiv:2401.14517, 2024.

Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum algorithms for some hidden shift prob-
lems. SIAM Journal on Computing, 36(3):763-778, 2006.

Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block codes, December 30
1986. US Patent 4,633,470.

Takashi Yamakawa and Mark Zhandry. Verihable quantum advantage without structure. Journal
of the ACM, 71(3):1-50, 2024

Mark Zhandry. Toward separating QMA from QCMA with a classical oracle. arXiv preprint
arXiv:2411.01718, 2024.

Mark Zhandry. Quantum money from abelian group actions. TheoretiCS, 4, 2025.

28

A Duals of Multiplicity Codes

For a field F, the multiplicity mult(f, a) of a polynomial f € F [X] at a point a € F, is the largest integer m so

that f¥)(a) = 0 for any non-negative integer i < m. The multiplicity Schwartz-Zippel Lemma from [DKSS13]
says that a nonzero degree k univariate polynomial can vanish on at most k points, counting multiplicities.

Lemma A.1 ([DKSS13]). Let f € F [X] be a nonzero polynomial of degree at most k. Then Y. mult(f,) < k.

Fact A.2 (Hasse derivatives, see [Bla24]). The following properties hold for the Hasse derivative:
1. For any polynomial f(X) € F ,[X], integer i > 0, and point o € [, FO(a) is the coefficient of X' in f(X + a).
2. (Linearity) For any f,g € Fole), \peF,andi >0, (A f+p- @)D =X fO 4 g,

3. (Product rule) For any f,g € F [x] and i > 0, we have (f - g)V) = ZZ::O [glik),
We first derive a natural analogue of Lagrange interpolation for the setting of Hasse derivatives.

Lemma A.3 (Hermite interpolation). Let F, be a field, s > 1 be a positive integer, and oy, ..., av,, be distinct points in
F,. Fori € [n] and 0 < j <s—1, define ju;(X) := Hﬂ#(X_ a;)® and n;(X) = (u;(X)) mod (X —)%,

Then, for all f(X) € (F,) o[X], we can write f(X) =" Zé ! A; J(X) f9(a), where

Proof- We begin by showing that for any i,7" € [n] and 0 < j, 7/ < s—1, Ag?(ai,) = 1if (i,7) :J(z",j’) and
0 otherwise. First, if i’ # 4, then A; ;(X + o) = X* - B, ;(X) for some polynomial B, ;(X) so Agfj)(ai,) =0

forall j, 5. Slmﬂarly, since A, ;(X + o;) = X7 - C; ;(X) for some polynomial C; ;(X), Agf;)(ai) = 0 whenever

i =14 and j/ < j. It thus remains to consider i = ¢’ and j < j'. By the product rule, we know that
s—1—j ® (k) 7 Y k k)
Z:u j) ' ni ((XJ(X - ai)J+t = Z:u’zj l : 1, ! (az)
t=0 k=j

—Z/N 00y 0 (ay) = (- m) I ().

By construction, (u; - 7;)(X) =14 h(X) - (X — a;)* for some polynomial h(X), so p1;(X + ;) - n;(X + ;) =
1+ X°-h(X +a;). As0 < j/ —j < s— 1, we conclude that (; - 1,)" 9 (e;) equals 1 if 7/ = j and 0 otherwise.

Now, let g(X) = > | Zj;é A, ;(X)f9 (). Note that since deg A
deg(g— f) < sn—1. Butforany i’ € [n] and 0 < j* < s — 1, we have that

pdeg f < sn — 1, we know that

n s—1

(9— f)(j/>(ai’) = g(j/)(ai)— Z ZA ())9 (a Dl = f<j/)(0‘i/) = f<j/)(0‘i/) - f<j/)(04i/) =0.
=1 j=0

Thus, by the multiplicity Schwartz-Zippel Lemma (Lemma A.1), (g — f)(X) = 0 and so f(X) = g(X). O

Definition A.4 (Generalized multiplicity codes). For invertible matrices Uy, ..., U,, € F5*%, define the generalized
multiplicity (GM) code GM, ¢ (U, Upsag, s oi k) s= {(Uy ey, -, Uy o) ¢ € Mult g (g, 0,3 K)

Note that GM codes have distance at least n — % by Lemma A.1.

Theorem A.5 (Duality of GM codes). Let F,, be a field, and s > 1 be a positive integer, and oy, ..., v, be distinct
points in I . Then there exist invertible matrices Uy, ..., U, € B35 s0 thatfor any positive integer k < sn,

Mult, p (. 0 k) = GM g (U, Ui, o a i sn— k)L,

29

Proof. Consider any pair of polynomials f(X) € (F,)_,[X]and g(X) € (F,)_,, x[X]. Let h(X) := f(X)-g(X),
and note that 7(X) has degree at most sn — 2. By Lemma A.3, there exist polynomials A; ;(X) such that

|
—

S

B =35 A (0RO (0).

%

Il
—
.

Il
=}

Letting a; ; denote the coefhcient of X"~ in A, ;(X), we see that the coefhcient of X*"~! in h(X) is

|
—

s—1 n s J

> ai Al a;; 3" FO(a,)gi 0 (a;) = 0,

=1 j i=1 j =0

I}
o
Il
o

by the product rule and the fact that degh < sn — 2. Consider the following anti-triangular matrices:

Qo Qi1 " Qg1
a; 0
— 3,1 SXS
Ui= : <0 : SR
a,q 0 - 0

If we define f; := (fO(a,), ..., f* V() € FSand g; := (9% (), ..., 9" V() € F3, we see that

n s—1 J
meU 9;) ZfT U, g, = ZZawa g9 (a;) = 0.
i1 i=1 j=0 =
We claim that U; are invertible. To see this, note that by Lemma A.3, for any i € [n],
Ao 1(X) = p(X)(X — ;) (o) = m; (o) (X — ay)s 1 H —)
/757(

soa; o 1 =n;(a;). As p; -m; = 1 mod (X —)%, p;(;) - m;(e;) = 1 and thus a; , ; # 0. Consequently,
’L s—1 det() f,sfl ’ (_1)5(8_1>/2 :/é O’

where J is the s x s reversal/exchange matrix. Thus, we have shown that " | (Ency(f);,Encer(g);) = 0 for
all f and g, where C':= Mult, ¢ (oy,...,0,3k) and C" := GM_ ¢ (Uy, ..., Ups o, ..., a3 sn — k). We conclude
that C' = (C”)* as both C and (C")* are vector spaces of dimension k. O

det(U;) =

Corollary A.6 (Theorem 4.19). For all parameters s, g, and k < sq, (I\/IuItS’[Fq’k)L has distance at least ®1L.

Proof. By Theorem A.5, dist((Mult, ¢ ;") = dist(GM ¢ (U, .., Ugi 1,0 g5 — k) > ¢ — S0 = 4. 0

s

B Diagonalization Arguments

Proof of Theorem 6.8. The proof is nearly identical to that of [BHNZ25], but we include it for completeness. Let
O : {0,1}* — {0,1} be an oracle and let O, be the restriction to A7-bit inputs, where the lower threshold is
Ao (per Remark 6.2). We define the unary (promise) language £9 so that 1* € £Y precisely when O, is a YES
instance and 1* ¢ £Y precisely when @, is a NO instance.

We consider only oracles O such that each restriction to size A7-bit inputs encodes either a YES or NO
instance, and so the containment £¢ € QMAY follows from Lemma 6.3 (as we can hardcode the values of £9
on all inputs of length at most A]). Showing that £9 € AM? for all @ is simple: Arthur samples z < {0,1}*
and Merlin responds with any v € 3 such that (07*,v) € R,y (which always exists as H € Good). Arthur
accepts iff O(z,v) = 1. Completeness and soundness follow essentially immediately.

Now we prove the lower bound for QCMA machines. Let M, M,, ... be an enumeration of all possible Turing
machines. Identify any surjective function ¢ : N — N? and define functions j,a : N — N by (j(k), a(k)) = ¢(k).

30

Define F': N — N so that F'(a) is the minimum value such that forall A > F(a), any Q(X) < aA® query algorithm
with t(X) < aA®-length classical witness must misclassify some ¢@,. By Lemma 6.7, for every integer a, F'(a) is
well-defined. We identify integers ny, n,, ... where the oracles will be defined to be nonzero. Define integers
ny =1+ F(a(1)),n, =1+ max{F(a(k)),a(k — 1)(n,_1)**D}. Forany n € N\ {n;,n,,...}, let O equal 0
everywhere. For these input lengths, @, is trivially a NO instance.

For each 5 € N, run M, on input 1" for a(ﬁ)nzm

steps and interpret its output as a quantum query
circuit 4, which accepts a classical witness. For every query that .4, makes of length < n,, use the previously
generated definitions of the oracle O to hardcode these answers. For queries A,, makes of length > n,, replace
the oracle gates with identity circuits. The resulting circuit will be B,, , which only makes queries of length n,..
This new algorithm B,, can be used to derive an oracle ©,, by applying Lemma 6.7.

It remains to prove that no QCMAY algorithm exists. Assume, for contradiction, that there exists a P-uniform
family of oracle circuits {4, } that solves the code intersection problem with witnesses of length ¢(\) = poly())
and Q(\) = poly(A) queries. Then, {A,} appears in the Turing machine enumeration as some M. and there
exists some a* such that ¢(\), Q(\) < a*A”". As ¢ is a surjection, there exists a &* such that ¢(k*) = (j*,a*). Let
A, , be the quantum circuit for inputs of length n,... Since the oracle is defined as being 0 for inputs ¢ {n,n,, ...}
and n,..,; > a*nf., each query gate for inputs of length > n,. is an identity gate. Thus the circuit B,, has the
that

exact same output as A,, . on inputs of size n,.. However, using Lemma 6.7, we constructed an oracle 0,
will misclassify. Therefore, 4, will answer incorrectly on input 1"+, completing the proof. O

B

M, *

Proof of Theorem 7.5. Our proof will closely follow [LLPY23]. Suppose that for each A we generate (G, 0}) +
D, and define a language £ := e GAH(D) and an oracle O’ that returns O] (z) on a query = € {0,1}*. It

ol
suffices to show that £9" ¢ BQPO//qpoly ANPY N coNPY and £ ¢ BQPY /poly with probability 1.

To see that £9" € BQ pY’ /qpoly with probability 1, observe that Item 1 of Lemma 7.4 implies that there is a
BQP machine A9 with polynomial-size quantum advice that decides £9 onall x of length A with probability at
least 1 — 5 for sufficiently large A. As 327" 5 = %2 < o0, the Borel-Cantelli lemma (Lemma 4.10) implies that
A9 decides £9" for all but finitely many A with probability 1. By hard-coding all z’s where A4 and £ disagree,
A can be modified into a BQP/qpoly machine .A4’”" that decides £%" on all x € {0, 1}* with probability 1.

In addition, for any 2 € {0,1}*, we can give any v where (2]097*,v) € Rc, p to certify G(z). Thus, by a
Chernoff/union bound, we know that with probability 1 — negl(\) over D, there exists an NP /coNP certificate
forall z € {0,1}*. We conclude via an identical argument that £9° € NP”" 1 coNP”" with probability 1.

For a BQP machine B that takes poly())-bit classical advice, we define S5()) to be the event over the choice
of (G, 0") that there is a poly(\)-bit classical advice family {2z}« such that

PrVz € {0,1}}, BY (20, 2) = G(z)] >

QJ\N)

By Item 2 of Lemma 7.4, there exists A € N such that for all BQP machines B, Pry, [S5(A)] < 5 forall A > .

We will consider a sequence of input lengths A;, X,, ... defined by \; := T'(\;_;) + 1, where T'(}) is the
running time of B on input of length A\. This means that when B’s input length is ;_;, it cannot query the
oracle on input lengths > A, so it must be the case that

Pr[S5(A)[S5(Ag) A oo A Sz(A;_1)] = Pr[Sz(N;)]

oo o0 9
y L < . 5(A; < — =0.
= Pr[Sz(1) ASp(2) A..] < Pr L/\OSB(] HPf Sp(A)IS5(Ag) Ao A Sp(A;)] g 10 =0
But there are countably many BQP machines, so Pr[33B : Sg(1) A S5(2) A ...] = 0. We conclude that £9° ¢
BQPY /poly with probability 1 over the choice of (G, ("), as desired. O
ECcC ISSN 14338092

31

https://eccc.weizmann.ac.il

