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Abstract

Symmetry of Information (SoI) is a fundamental result in Kolmogorov complexity stating that for all
n-bit strings x and y, K(x, y) = K(y)+K(x | y) up to an additive error of O(log n) [ZL70]. In contrast,
understanding whether SoI holds for time-bounded Kolmogorov complexity measures is closely related
to longstanding open problems in complexity theory and cryptography, such as the P versus NP question
[LW95, Hir22] and the existence of one-way functions [HIL+23, HLO24, HLN24].

In this paper, we prove that SoI fails for rKt complexity, the randomized analogue of Levin’s Kt
complexity [Lev84]. This is the first unconditional result of this type for a randomized notion of time-
bounded Kolmogorov complexity. More generally, we establish a close relationship between the va-
lidity of SoI for rKt and the existence of randomized algorithms approximating rKt(x). Motivated by
applications in cryptography, we also establish the failure of SoI for a related notion called pKt com-
plexity [HLO24], and provide an extension of the results to the average-case setting. Finally, we prove
a near-optimal lower bound on the complexity of estimating conditional rKt, a result that might be of
independent interest.

Our findings complement those of [Ron04], who demonstrated the failure of SoI for Kt complexity.
In contrast, the randomized setting poses a significant challenge, which we overcome using insights from
[KK25], structural results about rKt implied by SoI, and techniques from meta-complexity [Oli19] and
the theory of computational pseudorandomness [TV07].
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1 Introduction

1.1 Overview

The Symmetry of Information (SoI) principle is a fundamental result in the theory of Kolmogorov com-
plexity [ZL70]. It states that for all n-bit strings x and y,

K(x, y) = K(y) + K(x | y)±O(log n).

The classical proof of SoI relies on an exhaustive search argument. In particular, the argument does not
appear to extend to time-bounded settings.

As noted by Levin [Lev03], Kolmogorov speculated that SoI could serve as a test case for demonstrating
that certain tasks inherently require exhaustive search. Over the last three decades, a series of works have
strengthened and formalized Kolmogorov’s intuition that the behavior of SoI in resource-bounded contexts
is deeply connected to core problems in computational complexity. For example, [LM93, LW95] showed
that the failure of SoI for Kt complexity implies NP ⊈ P, while its validity rules out the existence of
cryptographic one-way functions. More recently, [GK22, Hir22] established that the failure of SoI for Kt

implies the average-case hardness of NP, i.e., DistNP ⊈ AvgP. Similarly, [GKLO22] established that
the failure of SoI for the probabilistic measure pKt implies that DistNP ⊈ AvgBPP. For many other
results relating SoI to complexity theory, including applications in areas such as learning theory and meta-
complexity, we refer to [LR05, Lee06, Hir20, Hir21, Ila23, HN25, GHL+25] and references therein.

These results suggest two broad research directions:
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(i) Computational Characterizations of SoI. While previous results uncovered deep links between SoI
and complexity theory, currently there is no computational statement known to be equivalent to SoI
for a time-bounded measure.

(ii) Unconditional Failure of SoI. Given the above connections, it would be highly significant to deter-
mine, unconditionally, whether SoI fails in a variety of resource-bounded settings.

Regarding (i), [HIL+23] proved that one-way functions exist if and only if SoI fails on average for the
probabilistic measure pKt, i.e., for most strings drawn from some polynomial-time samplable distribution.
Similar results hold for the measures rKt [HLN24] and pKt [HLO24]. More recently, [KK25] established
an equivalence between a generalization of SoI and a corresponding complexity lower bound. However, it
remains open whether the standard formulation of SoI for measures such as Kt and pKt admits an exact
complexity-theoretic characterization.

In the direction of (ii), [Ron04] proved unconditionally that SoI fails for Levin’s Kt complexity, and
[LP22] later showed that a stronger formulation of SoI for Kt does not hold. Beyond these, no other un-
conditional failures of SoI in the time-bounded setting are known. Given the difficulty of showing failure
of SoI, some authors have considered instead relativized settings, and established the existence of oracle
worlds where time-bounded variants of SoI do not hold [LR05, Lee06, GHL+25].

Since probabilistic notions of Kolmogorov complexity have played a significant role in several recent
developments in time-bounded Kolmogorov complexity and meta-complexity (see, e.g., [Ila23, San23,
HIL+23, HN23, LP23, Hir23, GK23, HLO24, HLN24, LS24, HKLO24, GK24, LORS24, HN25, KK25,
LP25]), it would be particularly useful to understand the validity of SoI in the context of randomized com-
putations. A natural attempt to adapt the argument of [Ron04] — which shows the failure of SoI for Kt —
to the randomized setting of rKt runs into a significant obstacle. In more detail, in the deterministic setting,
a brute-force method can construct, in time 2n · poly(n), an n-bit string xn with Kt(xn) ≈ n. In contrast,
it is unclear how to construct, in randomized time 2n · poly(n), an n-bit string yn with rKt(yn) ≈ n (see
[LOS21] for related results).1 The difficulty lies in the lack of a canonical (pseudodeterministic) output
produced by a corresponding brute-force procedure, a feature that is essential for extending [Ron04]’s ar-
gument. Although there has been notable progress in the study of pseudodeterministic algorithms, current
results are insufficient to overcome this barrier.2

Using an approach completely different from [Ron04], we are able to make progress on directions (i)
and (ii). We prove, unconditionally, that SoI fails for rKt complexity with error term poly(log n). We obtain
a similar result for pKt. More generally, we characterize the failure of SoI for rKt in terms of the worst-
case computational complexity of approximating rKt. Then, building on these results and the underlying
techniques, we advance the study of the average-case failure of SoI, a direction that is both necessary and
sufficient to establish the existence of one-way functions. Finally, we obtain near-optimal bounds in a setting
where a longer conditional string appears in the SoI equation.

Conceptually, our results and techniques, which build on those of [Hir22, KK25] and related work, fully
exploit the interplay between symmetry of information and complexity lower bounds in the rKt setting.
In particular, symmetry of information can be used to derive lower bounds, while, conversely, such lower
bounds yield the failure of symmetry of information.

Next, we describe our contributions in more detail.
1In other words, we need the randomized procedure to output a fixed string with this property with high probability.
2In more detail, we need a strong enough pseudodeterministic PRG to adapt [Ron04]’s argument to rKt. Existing unconditional

results [OS17b, LOS21, CLO+23] do not provide the necessary PRG.
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1.2 Results

The definition of each relevant time-bounded Kolmogorov complexity measure is reviewed in Sec-
tion 2.2. Before formally stating our results, we also need to introduce the following notions.

For a function e : N → N and a Kolmogorov complexity measure κ (e.g., κ = rKt), we say that
Symmetry of Information (SoI) holds for κ with error e(n) if for every large enough n and for all strings
x, y ∈ {0, 1}n, we have

κ(x | y) ≤ κ(x, y)− κ(y) + e(n).

For instance, using this terminology, we know that SoI holds for κ = K (time-unbounded Kolmogorov
complexity) with error term e(n) = O(log n).

For functions α : {0, 1}∗ → N and T, γ : N → N, we say that α can be approximated up to an additive
term of order γ in randomized time T if there is a randomized algorithm A such that, for every large enough
n and x ∈ {0, 1}n, A(x) runs in time at most T (n) and

Pr
A

[
|A(x)− α(x)| ≤ γ(n)

]
≥ 1− 1

n
.

This probability bound can be amplified using standard techniques.
We are now ready to state our results.

Theorem 1 (SoI for rKt Yields Algorithm for Estimating rKt).
If SoI holds for rKt with error term e(n), then given x ∈ {0, 1}n, the value rKt(x) can be approximated up
to an additive term of order γ(n) = O(e(n) · log n) in randomized time T (n) = 2O(e(n)·logn).

Theorem 1 and the unconditional quasi-polynomial time complexity lower bound for estimating rKt
from [Oli19] immediately imply the following result.

Corollary 1 (SoI Fails for rKt with Polylogarithmic Error).
For every constant c ≥ 1, there are infinitely many values of n and strings x, y ∈ {0, 1}n such that rKt(x |
y) > rKt(x, y)− rKt(y) + (log n)c.

Corollary 1 provides the first unconditional result showing that symmetry of information fails for a
randomized notion of time-bounded Kolmogorov complexity.

Next, we show a converse to Theorem 1.

Theorem 2 (Algorithm for Estimating rKt Yields SoI for rKt).
Let T, γ : N → N be monotone functions. If given x ∈ {0, 1}n, the value rKt(x) can be approximated
up to an additive term of order γ(n) in randomized time T (n), then SoI holds for rKt with error term
e(n) = O(log T (O(n)) + γ(O(n)) + log3 n).

We obtain the following immediate consequence from Theorem 1 and Theorem 2.

Corollary 2 (Equivalence Between SoI for rKt and Its Meta-Complexity).
For any monotone function T (n) satisfying n ≤ T (n) ≤ 2n, the following statements are equivalent:3

1. SoI holds for rKt with error e(n) = Õ(log T (O(n))).

2. Given an input string x ∈ {0, 1}n, the value rKt(x) can be approximated up to an additive term of
order Õ(log T (O(n))) in time 2Õ(log T (O(n))).

3We write a(n) = Õ(b(n)) to denote that a(n) ≤ b(n) · poly(logn) for large n.
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Corollary 2 provides a computational characterization of worst-case symmetry of information for a
natural time-bounded Kolmogorov complexity measure.

Theorem 3 (SoI for pKt Yields Algorithm for Estimating pKt).
If SoI holds for pKt with error term e(n), then given x ∈ {0, 1}n and ε > 0 such that

ε ≥ C · (e(n) + log n)

n
,

where C ≥ 1 is an absolute constant, the value pKt(x) can be approximated up to an additive term εn in
randomized time 2O((logn+e(n))/ε).

Theorem 3 (using, say, ε = 1/10) and the unconditional quasi-polynomial time complexity lower bound
for estimating pKt from [HLO24] immediately imply the following result.

Corollary 3 (SoI Fails for pKt with Polylogarithmic Error).
For every constant c ≥ 1, there are infinitely many values of n and strings x, y ∈ {0, 1}n such that pKt(x |
y) > pKt(x, y)− pKt(y) + (log n)c.

Recall that [HLO24] showed that one-way functions exist if and only if SoI for pKt fails on average,
i.e., there is a polynomial-time samplable distribution D = {Dn}n≥1, where each Dn is supported over
{0, 1}n×{0, 1}n, such that with probability at least 1/poly(n) over (x, y) ∼ Dn, pKt(x | y) > pKt(x, y)−
pKt(y) + e(n), where e(n) = ω(log n). Corollary 3 makes progress on this front by showing that SoI for
pKt fails in the worst case with error poly(log n).

These results motivate the investigation of the failure of SoI on average over a polynomial-time sam-
plable distribution. We show that, for every constant C ≥ 1, we can sample in polynomial time a pair (x, y)
such that SoI fails with probability 1/poly(n) with error parameter e(n) = C · log n, for infinitely many
values of n.4

Theorem 4 (Average-Case Failure of SoI with Error e(n) = O(log n)).
Let κ ∈ {rKt, pKt}. For every constant C ≥ 1, there is a polynomial-time samplable distribution family
D = {Dn}n≥1, where each Dn is supported over {0, 1}n × {0, 1}n, for which the following holds. There is
a positive constant k such that, for infinitely many values of n, we have

Pr
(x,y)∼Dn

[κ(x | y) ≥ κ(x, y)− κ(y) + C · log n] ≥ 1

nk
.

These results leave open the possibility that SoI for rKt might hold with an error term e(n) larger than
poly(log n), such as e(n) = nε for some ε > 0. By Corollary 2, this is equivalent (up to poly(log n) factors)
to the existence of an algorithm that approximates rKt up to an additive term of order nε in time 2n

ε
.

Remark on BPTIME[T ] versus prBPTIME[T ] lower bounds. Let s : N → N with 1 ≤ s(n) ≤ n be
a polynomial-time computable function. The algorithm for estimating rKt obtained from Theorem 1 es-
tablishes that the corresponding computational problem Gap-MrKtP[s − γ, s + γ] is in prBPTIME[T ],
for an appropriate function T : N → N. Note that there might be strings x of intermediate complexity
s(|x|) − γ(|x|) < rKt(x) < s(|x|) + γ(|x|) that are accepted by the algorithm with probability exponen-
tially close to 1/2. For this reason, we need to use lower bounds against the promise class prBPTIME[T ] to

4Note the change in the order of quantifiers: given the constant C, there is a distribution D = {Dn}n≥1 such that the statement
holds. The time required to sample (x, y) ∼ Dn is bounded by a polynomial that depends on C.
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derive Corollary 1. In particular, we cannot rely on the quantitatively stronger lower bounds for Gap-MrKtP
against BPTIME[2o(n)] obtained in [Hir22].

We are able to make further progress on the failure of SoI in the setting where the conditional string can
be significantly longer. More precisely, we say that conditional Symmetry of Information holds for rKt with
error e(n) if for every large enough length n ∈ N, strings x, y ∈ {0, 1}n, and w ∈ {0, 1}∗,5

rKt(x | y, w) ≤ rKt(x, y | w)− rKt(y | w) + e(n).

Note that the error term e(n) in the inequality above does not depend on the length of w.

Theorem 5 (Failure of Conditional SoI with Linear Error). There is a constant ε > 0 such that conditional
SoI with error e(n) ≤ ε · n fails for rKt.

In light of our results and techniques relating SoI and meta-complexity, it is also possible to obtain a
corresponding unconditional lower bound on the complexity of estimating conditional rKt complexity.

Theorem 6 (Exponential Hardness of Estimating Conditional rKt). For every 0 < α < β < 1 there
is a constant ε > 0 such that the following holds: There is no randomized algorithm running in time
2ε·|x| · poly(|w|) that accepts every pair (x,w) with rKt(x | w) ≥ β · |x| and rejects every pair (x,w) with
rKt(x | w) ≤ α · |x|.

We observe that the complexity of estimating conditional time-bounded Kolmogorov complexity by a
brute-force procedure depends primarily on the length of the non-conditional string x (see, e.g., Lemma 3).
Consequently, the aforementioned complexity lower bound is essentially optimal. We also note that the
statement is incomparable to the lower bound against BPTIME[2o(n)] from [Hir22] mentioned above, which
does not require a conditional string but cannot be extended to prBPTIME[·].

1.3 Techniques

We build on several previous works in meta-complexity, pseudorandomness, and time-bounded Kol-
mogorov complexity. First, we explain the techniques used to establish that symmetry of information fails
for rKt in the worst-case (Theorem 1 and Corollary 1).

As explained above, it is not clear how to apply Ronneburger’s technique to randomized computations,
since the corresponding brute-force procedure is not pseudodeterministic. A natural approach is to use
derandomization methods to obtain a pseudodeterministic construction of a string with large rKt complexity,
as required in the argument. However, it seems that a direct implementation of this approach can only show
failure of SoI for rKt under a derandomization hypothesis (see [HLO24]). To overcome this limitation, we
take a different route and avoid relying on [Ron04]’s technique.

Conceptually, our approach is to show that, assuming SoI holds for rKt with a small error term, there
exists a non-trivial randomized algorithm for estimating rKt complexity. We then invoke an existing uncon-
ditional lower bound on the complexity of estimating rKt [Oli19], obtaining a contradiction. A key subtlety
is that the estimation algorithm must be correct for all input strings of bounded rKt complexity. Prior results
showing that “SoI for a measure κ yields algorithms for estimating κ” did not guarantee this — they pro-
duced two-sided error algorithms that were correct on most strings, but not necessarily on all low-complexity

5Some results in the literature that consider conditional time-bounded Kolmogorov complexity explore that the running time
is less than the length of the conditional string. This is not the case here, and we do not require random access to the conditional
string.
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strings (see, e.g., [LW95], [Hir22], or the algorithm obtained by combining [LP20] and [HIL+23]). Notably,
[KK25] recently observed that algorithms with one-sided error can be obtained from a stronger form of SoI,
the “chain rule”. One of our main conceptual ideas is that, in the case of rKt complexity, the standard
formulation of SoI already suffices to obtain the required algorithm.

Under the assumption that SoI holds for rKt complexity with error term e(n) = poly(log n), we obtain
two consequences that are central to our approach. We discuss them next.

1) Generation of Candidate Programs. First, we employ an idea from the investigation of search-to-
decision reductions in time-bounded Kolmogorov complexity (see, e.g., [HKLO24]). For a string x ∈
{0, 1}n, we consider the rKt complexity of strings representing programs that encode x. In more detail, let
Π ∈ {0, 1}∗ be any string representing a randomized program that with high probability runs in time at most
tΠ and outputs x, and such that |Π| + log tΠ ≈ rKt(x). Under the validity of SoI for rKt, it is possible to
show that

rKt(Π | x) = O(log n+ e(n)).

Consequently, given x, the string Π admits a short and time-efficient representation. In particular, we can
produce a list of candidate programs for x by inspecting programs extracted from descriptions of bounded
length. A key difficulty is that testing if a program in the list indeed offers a representation of x requires
large running time.

In order to overcome the issue highlighted above, we show that, under SoI, there is always a program
whose overall complexity is not much larger and that runs in bounded time. We explain this next.

2) A Structural Result About rKt. Recall that

rKt(x) = min
Π∈{0,1}∗

t∈N

{
|Π|+ ⌈log t⌉

∣∣∣∣∣ Pr
r∼{0,1}t

[Π(r) outputs x within t steps] ≥ 2/3

}
.

In light of the inequality established in Item 1 above, we are interested in understanding if x admits a
program Π of running time tΠ such that |Π|+ log tΠ ≈ rKt(x) and, crucially, tΠ is small. If this is the case,
we can run the program and test in bounded time if it offers a valid representation of x.

We show that, assuming SoI for rKt with error e(n) = poly(log n), every n-bit string x admits a program
Π with log tΠ = poly(log n) such that (|Π| + log tΠ) − rKt(x) ≤ poly(log n). In other words, x admits
near-optimal representations in the sense of rKt where the running time contribution to the rKt bound is
small.

Roughly speaking, the proof of this structural result employs a recursive approach where in each step we
show that either the first half x1 of the string or its second half x2 (given x1) admits a time-efficient represen-
tation. To argue this, we make use of the time bottleneck enforced by SoI when comparing rKt(x1x2) with
rKt(x1) and rKt(x2 | x1). We recurse on the less efficient part, and after at most log n steps, we obtain a
time-efficient representation of the entire string that is not much longer than the best possible representation.

Crucially, in this approach we only need to invoke SoI log n times. This leads to significantly better
parameters compared with the approach of [KK25] (see Section 5).

Given the results from Items 1 and 2 described above, it is not difficult to estimate the rKt complexity
of a given string x, as explained next.

3) Approximating rKt(x). By Items 1 and 2, for every string x ∈ {0, 1}n, if rKt(x) ≤ k there is a program
Π such that:

(a) Π outputs x with high probability in time at most tΠ;

7



(b) |Π|+ log tΠ ≤ k + poly(log n);

(c) log tΠ ≤ poly(log n);

(d) rKt(Π | x) = poly(log n).

Consequently, given any x ∈ {0, 1}n, we can decide within randomized quasi-polynomial time whether
rKt(x) ≤ k + poly(log n) as follows: generate (with high probability) a list S of all programs Π satisfying
condition (d), and for each Π ∈ S verify whether conditions (a)–(c) hold (for a candidate value of k). If
some Π ∈ S passes all tests, we conclude that rKt(x) ≤ k + poly(log n).

The key observation is that, if rKt(x) ≤ k, then with high probability at least one program in S will
pass the tests; whereas if rKt(x) ≫ k + poly(log n), then with high probability none will. Therefore, Items
(a)–(d) yield a quasi-polynomial-time algorithm that approximates rKt(x) to within an additive poly(log n)
term with high probability.

4) Hardness of Approximating rKt(x). In summary, the above argument shows that if SoI holds for rKt
with error term e(n) = poly(log n), then there exists a randomized quasi-polynomial-time algorithm for
estimating rKt up to an additive error of order poly(log n). However, [Oli19] proved that no algorithm of
this complexity can distinguish strings with rKt complexity at most no(1) from those with complexity at
least n− 1. This contradiction establishes that SoI fails for rKt in the worst case.

The lower bound in [Oli19] relies on techniques from pseudorandomness [TV07] and on an indirect
diagonalization argument. A quantitatively stronger bound would directly imply the failure of SoI for rKt
with a larger error term. As noted in Corollary 2, achieving such a bound is equivalent to refuting weaker
forms of SoI.

The proof of Theorem 2 relies on methods from computational pseudorandomness. It is a simple adap-
tation of existing techniques [Hir22, GK22], and we refer to Section 4 for the details.

For the proof of Theorem 3, we rely on an idea from [KK25]. By multiple applications of SoI, it is possi-
ble to prove that pKt(x) is approximately

∑k
i=1 pKt(xi | xi−1 . . . x1), where we write x = xk . . . x1. Thus

we can reduce the task of approximating pKt(x) to that of approximating each value pKt(xi | xi−1 . . . x1),
provided that SoI with bounded error holds for all the corresponding pairs (xi, xi−1 . . . x1) of strings ob-
tained from x in this way. The main advantage here is that the length of each xi is considerably less than the
length of the original string x, thus pKt(xi | xi−1 . . . x1) is easier to approximate. This allows us to show
that pKt is easy to approximate under the assumption that SoI holds in the worst case.

The same idea can also be used as part of the proof of Corollary 1. However, this approach is not enough
to achieve the stronger parameters in Theorem 1 and Corollary 2.

In order to establish the failure of SoI on average with error term e(n) = O(log n) (Theorem 4), we
combine insights from the aforementioned proofs with techniques employed in [KK25] and [Oli19]. Below
we highlight some conceptual differences and key ideas, referring to Section 6 for the technical details. For
concreteness, we consider the case of rKt complexity. The argument for pKt is essentially the same.

Average-Case Failure of SoI (Theorem 4). We also proceed by contradiction, but this time we need to
work under a weaker assumption: for any efficiently samplable distribution, SoI holds for most string pairs
(x, y) (instead of for all pairs of strings). In particular, this weaker hypothesis does not yield an algorithm
that estimates the complexity of an arbitrary input string, as employed in the previous proofs.

Instead, by adapting the idea behind the proof of Theorem 3, we are able to obtain an efficient algorithm
that correctly estimates the rKt complexity of most strings. However, since we have limited control over
the strings on which the algorithm succeeds, it is not possible to invoke existing unconditional lower bounds
[Oli19], which require one-sided error algorithms for this task.
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Inspecting the proof of the unconditional complexity lower bound, a key ingredient is the ability to break
a pseudorandom generator under the assumption that rKt complexity can be approximated with one-sided
error. This is then employed to efficiently compute a PSPACE-complete language LTV [TV07] with special
properties, such as random-self-reducibility.

A central idea in our proof is to analyse the queries the algorithm for LTV needs to make to the algorithm
approximating rKt. Roughly speaking, we argue that either these queries induce an efficiently samplable
distribution of strings for which SoI fails with probability 1/poly(n) (similarly to the sketch of the proof
of Theorem 3 given above), or with overwhelming probability the queries are over strings for which we
succeed in approximating rKt. Since the former case does not happen due to the assumption that SoI holds
on average, we obtain that with high probability the queries are correctly answered.

Note that the win-win situation described above cannot be applied to each input string x for LTV, since
the first case employs that the queries are produced by a samplable distribution. But by considering a
random input string x as part of the analysis, we are able to leverage this idea to show that the PSPACE-
complete language LTV can be efficiently computed on most inputs. Then, using that this language is also
random-self-reducible, we get that LTV can be efficiently computed in the worst case. In turn, given that
this language is complete for PSPACE, it follows that PSPACE is contained in BPP.

Finally, adapting a construction from [KK25], we show that if PSPACE is contained in BPP and SoI
holds on average, then given 1n one can efficiently construct a string of large rKt complexity. But this is
impossible by the definition of rKt, i.e., a string that is easy to construct has small rKt complexity. This
contradiction completes the proof.

On the Connection to One-Way Functions and the Role of Adaptivity. We remark that the bounded error
term e(n) = C · log n is used twice in the argument sketched above. Firstly, it guarantees that queries to the
algorithm estimating rKt can be efficiently generated, and consequently, we obtain an efficiently samplable
distribution of pairs of strings over which SoI is considered. Secondly, during the final step of the proof,
the bound is used to provide a polynomial-time algorithm that constructs a string of large rKt complexity,
resulting in a contradiction.

There is some slackness in the second application of the bound e(n) = C · log n. The bottleneck related
to e(n) is in the first use of the bound. In more detail, as the constant C grows, the running time needed to
produce the distribution of queries (and corresponding distribution over pairs of strings) also grows. This is
because the queries can be adaptive, i.e., to obtain the next query we need to produce a candidate answer to
previous queries. In turn, in our proof the running time of the algorithm that attempts to correctly answer
each query is of the form t(n) = poly(nC).

The adaptivity of the queries is a result of the procedure employed to show that LTV is in BPP using an
algorithm that approximates rKt complexity. It relies on another special property of LTV called downward-
self-reducibility. This leads to adaptive queries to the oracle approximating rKt during the computation
of LTV on an input y, where the degree of adaptivity corresponds to the length of y.6 Moreover, there is
evidence that adaptivity might be essential (see [HW20, SS22] and references therein).

In contrast, for the connection to one-way functions, one needs to sample in polynomial time a distribu-
tion for which SoI fails on average with error term e(n) = ω(log n).

Finally, we discuss the proof of Theorem 5 and the role of measuring the SoI error and time complexity
as a function of the length of the non-conditional string only. The proof of Theorem 6 employs similar ideas,

6In more detail, the algorithm for LTV, on an input string y of length n, first constructs a sequence of n circuits C1, . . .,
Cn, where each circuit Ci decides LTV on inputs of length i, then evaluates the final circuit Cn on y. The i-th stage of the
construction relies on the circuit Ci−1 and issues a new batch of queries that need to be answered before producing Ci. We refer to
[IW01, OS17a] for more details.
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and we refer the reader to Section 7.

Stronger Failure of Conditional SoI (Theorem 5). We consider here a weaker setting of parameters
for simplicity; the near-optimal bound can be obtained by optimizing the argument. In order to derive a
contradiction, assume that conditional SoI holds for rKt with error e(n) = no(1). We note that, by exploring
the connection to meta-complexity, this allows us to estimate rKt(y | z) in time sub-exponential in |y|. A key
idea is to revisit one of the main lemmas in [Oli19]. The lemma states that LTV ∈ BPPGapMrKtP[nε,n−1].
In particular, we can efficiently decide the PSPACE-complete language LTV if rKt can be estimated in
polynomial time, or more generally, a time-T (n) algorithm for the meta-computational problem allows us
to compute LTV in time T (poly(n)). This lemma is shown by analysing rKt(y), where y ≜ GLTV(z) ∈
{0, 1}n, z ∼ {0, 1}nΩ(1)

is a random seed, and G is a pseudorandom generator with a suitable reconstruction
routine.

An important insight is to analyse instead rKt(y | z), with y as above, and to show how to iteratively
bootstrap the upper bound on rKt(y | z) and on the complexity of computing LTV (without an oracle) using

• the reduction (via breaking pseudorandomness) behind the inclusion LTV ∈ BPPGapMrKtP[nε,n−1];

• and that conditional rKt can be estimated in time sub-exponential in the length of the first string.

For instance, combining these two items, we can compute LTV in time 2n
o(1)

. Consequently, it is possible to
derive a stronger version of the first bullet where it is enough to have an oracle that distinguishes complexity
“no(1) versus n − 1” instead of “nε versus n − 1”, since with a faster algorithm for LTV each output
string GLTV(z) admits a better upper bound on its conditional rKt complexity.7 Moreover, by a standard
observation that holds in the setting of breaking a generator, we can truncate y = GLTV(z) and consider
only a prefix of this string, which allows us to reduce the length of y while maintaining the length of the
conditional string z (the random seed). This is desirable since the upper bound on the running time in the
second item only depends on the length of the first string.

Crucially, once we get a better upper bound on rKt(y | z) and on the complexity of computing LTV

without an oracle using one application of the aforementioned idea, we can apply the same argument again
to achieve further gains. In a bit more detail, once we have a better upper bound on the complexity of
computing LTV, we derive a better upper bound on the conditional Kolmogorov complexity of the strings
produced by the generator when given oracle access to LTV. In turn, this allows us to truncate the output
of the generator even more while still obtaining a correct distinguisher using the algorithm that estimates
conditional complexity (and as explained above, shorter strings lead to smaller running times in the second
item). (This informal exposition omits a relevant point: the analysis of the pseudorandom generator G and
of its reconstruction procedure should remain valid even if the random seed is exposed. It is possible to
verify that this is the case; see Lemma 16.)

By a careful implementation of this strategy, it is possible to fully bootstrap the original lemma from
[Oli19] and to compute LTV in polynomial time without oracle access.8 Perhaps interestingly, the iterative
applications of the bootstrapping argument described above take place at the meta level, i.e., during the
analysis of the conditional rKt complexity of the involved strings, and not at the algorithmic level itself.

Once we obtain that LTV is easy to compute and a corresponding upper bound for PSPACE, with some
additional work it is possible to derive a contradiction using the initial assumption that conditional SoI holds.
For more details about the proof of Theorem 5, see Section 7.

7Note that an oracle that estimates conditional complexity can also be used to estimate complexity by setting the conditional
string to be the empty string.

8There is a certain parallel between this approach and the Learning Speedup Lemma from [OS17a] and its proof, though the
technical details are different.
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2 Preliminaries

2.1 Notation

We denote the empty string by ϵ, and the length of a string x by |x|. For strings x ∈ {0, 1}n and
y ∈ {0, 1}m, their concatenation is written as x ◦ y ∈ {0, 1}n+m.

If x ∼ D, then x is sampled from the distribution D. For any a in the support of D, D(a) denotes
its probability. We write Uℓ for the uniform distribution over {0, 1}ℓ. We say that a distribution family
D = {Dn}n≥1 can be sampled in time T (n) if there is a randomized algorithm A(1n) running in time at
most T (n) such that, for every n ≥ 1, the output of A on input 1n is distributed exactly as Dn.

2.2 Time-Bounded Kolmogorov Complexity

We fix a time-efficient universal machine U , and define time-bounded Kolmogorov complexity with re-
spect to U (see [LV19] for the required background in Kolmogorov complexity). In other words, whenever
we say that a program Π outputs x in t steps, formally, this means that U(Π) = x when U runs for at most
t steps on input Π. Our results are robust with respect to encoding choices.

Kt Complexity. For strings x, y ∈ {0, 1}∗, the (Levin) time-bounded Kolmogorov complexity of x condi-
tioned on y [Lev84] is defined as

Kt(x | y) ≜ min
Π∈{0,1}∗

t∈N

{|Π|+ ⌈log t⌉ | Π(y) outputs x within t steps}.

We define Kt(x) as Kt(x | ϵ), where ϵ denotes the empty string.

rKt Complexity. Similarly, for x, y ∈ {0, 1}∗ and 0 < λ ≤ 1, the λ-randomized time-bounded Kolmogorov
complexity of x conditioned on y [Oli19] is defined as

rKtλ(x | y) = min
Π∈{0,1}∗

t∈N

{
|Π|+ ⌈log t⌉

∣∣∣∣∣ Pr
r∼{0,1}t

[Π(y, r) outputs x within t steps] ≥ λ

}
.

We omit the subscript λ when λ = 2/3.

pKt Complexity. For x ∈ {0, 1}∗ and 0 < λ ≤ 1, the λ-probabilistic time-bounded Kolmogorov complexity
of x [HLO24], denoted by pKtλ(x), is defined to be the minimum k ∈ N such that with probability at least
λ over r ∼ {0, 1}2

k

, there exist a program Π ∈ {0, 1}∗ and a time bound t ∈ N such that |Π|+ ⌈log t⌉ ≤ k
and Π(r) outputs x within t steps. Equivalently

pKtλ(x) ≜ min

{
k ∈ N

∣∣ Pr
r∼{0,1}2k

[Kt(x | r) ≤ k] ≥ λ

}
.
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We omit the subscript λ when λ = 2/3. This definition can be extended to conditional probabilistic Kol-
mogorov complexity in the natural way.

For technical reasons, we also need the following definition.

rKt,O Complexity. For x ∈ {0, 1}∗, t ∈ N, and an oracle O ⊆ {0, 1}∗, the randomized t-time-bounded
Kolmogorov complexity of x is defined as

rKt,O(x) = min
Π∈{0,1}∗

{
|Π|

∣∣∣∣ Pr
r∼{0,1}t

[
ΠO(r) outputs x within t steps

]
≥ 2

3

}
where ΠO denotes the computation of Π with oracle access to O.

2.3 Useful Results

The following results show that the complexity measures rKtλ and pKtλ are robust with respect to the
probability threshold λ.

Lemma 1 (Success Amplification for rKt [LO21]). For any string x ∈ {0, 1}n, y ∈ {0, 1}∗ and 0 < λ ≤ 1,

rKt(x | y) ≤ rKtλ(x | y) +O(log(1/λ)).

Lemma 2 (Success Amplification for pKt [HLO24]). For any string x ∈ {0, 1}n, y ∈ {0, 1}∗, and 0 ≤
α < β ≤ 1, we have

pKtβ(x | y) ≤ pKtα(x | y) +O(log(q/α) + log n),

where q ≜ ln(1/(1− β)).

It is not difficult to estimate rKt and pKt in exponential time. More precisely, using standard techniques
(see [Oli19]), it is possible to establish the following results.9

Lemma 3 (Estimating rKt in Exponential Time). There exists a randomized algorithm A : {0, 1}∗ ×
{0, 1}∗ → N, such that for any string x ∈ {0, 1}n and y ∈ {0, 1}m, A(x, y) runs in time 2O(n) · poly(m),
and

Pr
A
[rKt(x | y)−O(1) ≤ A(x, y) ≤ rKt(x | y)] ≥ 1− 2−n

2
. (1)

Lemma 4 (Estimating pKt in Exponential Time). There exists a randomized algorithm A : {0, 1}∗ ×
{0, 1}∗ → N, such that for any string x ∈ {0, 1}n and y ∈ {0, 1}m, A(x, y) runs in time 2O(n) · poly(m),
and

Pr
A
[pKt(x | y)−O(1) ≤ A(x, y) ≤ pKt(x | y)] ≥ 1− 2−n

2
. (2)

Finally, the following simple lemma will be useful.

Lemma 5 (Padding). There exists a constant C such that the following holds. Let κ ∈ {rKt, pKt}. Then for
any n ∈ N and any strings x, y ∈ {0, 1}∗ satisfying |x|, |y| ≤ n, we have

|κ(x | y)− κ(x ◦ 1n−|x| | y ◦ 1n−|y|)| ≤ C · log n.
9We observe that the additive error O(1) appearing in the approximation in Lemma 3 and Lemma 4 depends on details of the

computational model. More precisely, this overhead is caused by the need to consider the complexity measure with respect to
different probability thresholds (e.g., rKtλ1(x) and rKtλ2(x) with λ1 = 2/3 and λ2 = 3/4) and the corresponding difference in
complexity. We note that employing a computational model for which the additive approximation overhead is O(logn) instead of
O(1) does not affect our results.
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2.4 Pseudorandomness

We will need the following pseudorandom generator construction.

Lemma 6 (See, e.g., [Hir22] and [HIL+23, Lemma 26]). There exists a polynomial p and a function family
G = {Gn,m} such that, for all sufficiently large n,m, t ∈ N such that m ≤ 2n and n ≤ t ≤ 2n,

Gn,m : {0, 1}n × {0, 1}d → {0, 1}m,

and for every x ∈ {0, 1}n and any function D : {0, 1}m × {0, 1}t → {0, 1}, if∣∣∣∣∣∣∣ Pr
z∼{0,1}d
w′∼{0,1}t

[
D(Gm(x; z);w′) = 1

]
− Pr

w∼{0,1}m
w′∼{0,1}t

[
D(w;w′) = 1

]∣∣∣∣∣∣∣ ≥
1

m
,

then
rKp(n,t),D(x) ≤ m+O(log3 n).

Here, d = O(log3 n) and Gn,m can be computed in time poly(n).

2.5 The Trevisan-Vadhan PSPACE-Complete Language

Definition 1 (Downward Self Reducibility). We say that a language L is downward self reducible if there is
a deterministic polynomial-time algorithm A such that for every n and all x ∈ {0, 1}n, ALn−1(x) = Ln(x).

Definition 2 (Random Self Reducibility). We say that a language L is δ(n)-random-self-reducible if there is
a probabilistic polynomial-time algorithm Cor(-) such that, for any function g : {0, 1}n → {0, 1} satisfying
Prx∼Un [g(x) = L(x)] ≥ 1 − δ(n), PrCor[Corg(x) = L(x)] ≥ 5/6 for any x ∈ {0, 1}n. We say L is
random-self-reducible if it is 1

p(n) -random-self-reducible for some polynomial p(n).

Lemma 7 ([TV07]). There exists a PSPACE-complete language LTV that is both downward self reducible
and random self reducible.

We will use such LTV in many different places throughout this paper.

3 SoI to Meta-Complexity: Proof of Theorem 1

The proof of Theorem 1 is based on the following lemma showing that, under SoI, rK2O(e(n))
(x) is

approximately equal to rKt(x). This lemma allows us to approximate rKt instead of rKt, and thus we only
need to consider efficient programs instead of arbitrary programs.

Lemma 8. Suppose that SoI holds for rKt with error term e(n). Then there is t ≤ 2O(e(n)+logn) such that
for every string x ∈ {0, 1}n it holds that rKt(x) ≤ rKt(x) +O(e(n) · log n).

Proof. We start with the following observation. Let x ∈ {0, 1}r and y ∈ {0, 1}k such that r + k ≤ n be
arbitrary strings, and let us split x into two halves x1, x2. Let m1,m2 be programs that generate x1 given
y and x2 given x1, y and witness the values rKt(x1 | y), rKt(x2 | x1, y), respectively. We denote their
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respective running times by t1, t2. We note that we can generate x given y by running m1 and then m2. This
employs a program of length |m1|+ |m2|+O(log n) and running time O(t1 + t2). Thus, we get that

rKt(x | y) ≤ |m1|+ |m2|+ log(t1 + t2) +O(log n)

≤ rKt(x1 | y) + rKt(x2 | x1, y)− logmin(t1, t2) +O(log n).

On the other hand, by SoI it holds that

rKt(x | y) ≥ rKt(x1, x2, y)− rKt(y)

≥ rKt(x2 | x1, y) + rKt(x1, y)− rKt(y)− e(n)

≥ rKt(x2 | x1, y) + rKt(x1 | y)− 2e(n).

Combining both inequalities, it follows that

rKt(x1 | y) + rKt(x2 | x1, y)− 2e(n) ≤ rKt(x1 | y) + rKt(x2 | x1, y)− logmin(t1, t2) +O(log n)

logmin(t1, t2) ≤ 2e(n) +O(log n).

That is, either m1 or m2 run in time less than 22e(n) · poly(n).
Given x ∈ {0, 1}n, we construct a program that witnesses the upper bound on rKt(x). The program

contains a partition of x into log n contiguous parts and log n sub-programs. The i-th program generates the
i-th part of the partition, given all the parts before it. To construct the partition, we initially divide x into two
(almost) equal parts x1, x2. By the observation appearing above, one of the strings has a program that runs
in time 22e(n) ·poly(n). We put this part into the partition and its program, and continue to divide recursively
the other part by the same procedure. After log n steps, we remain with a part of length O(1) that we add to
the partition, and take some O(1) length and time program for it. By amplifying the success probabilities of
each of the programs to 1− 1

3n , we can get that the program returns the string x with probability at least 2
3 .

It remains to bound the running time of the program and its description length. It is easy to see that the
running time of each sub-program is at most 22e(n) · poly(n) (even after amplification) and thus the total
running time is at most 2O(e(n)) ·poly(n). Regarding the description length, let x1, . . . , xlogn be the partition
of x, and let m1, . . . ,mlogn be the sub-programs. Then, the overall length of the sub-programs is

logn∑
i=1

|mi| ≤
logn∑
i=1

rKt(xi | x1 . . . xi−1)

≤ rKt(x) + e(n) · log n.

Due to its recursive description, the partition can be described using additional O(log n) bits, and thus the
total length of the program is at most rKt(x) +O(e(n) · log n), as desired.

Before describing the algorithm that estimates rKt, we observe the following fact. One does not have to
go over all strings to find an (almost) optimal description for a string x, but rather it is sufficient to just go
over the strings that can be generated from x in bounded time. In more detail, let x ∈ {0, 1}n be a string,
and let m be a program that witnesses rKt(x) ≤ rKt(x) + O(e(n) · log n) for t ≤ 2O(e(n)+logn). Then it
holds that

rKt(m | x) ≤ rKt(m,x)− rKt(x) + e(n)

≤ |m|+ log t+O(log n)− rKt(x) + e(n)

≤ rKt(x)− rKt(x) +O(e(n) + log n)

≤ O(e(n) · log n),
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where the second inequality holds as there exists a program that prints m then runs m to produce x.
We now describe the algorithm for estimating rKt(x).

1. Given x ∈ {0, 1}n, the algorithm runs all programs of length O(e(n) · log n) given x. It repeats each
program n times, generating 2O(e(n)·logn) strings. We interpret the strings as programs.

2. The algorithm runs each program O(n) times, each run for at most 2O(e(n)·logn) steps. For a given
program, if more than 3

4 of the runs output x, the algorithm stores this description of x.

3. The algorithm returns the length of the minimal description of x found in the last step.

It is easy to see that the running time of the algorithm is at most 2O(e(n)·logn). We now prove its correctness.
First, note that if a description of x has probability less than 2

3 of generating x, then the probability that it is
accepted in Item 2 is at most 2−2n by a Chernoff bound. By a union bound, we get that, with probability at
least 1 − 2−n, the minimal description that the algorithm finds is a valid description of x that runs in time
2O(e(n)·logn). Consequently,

rKt(x) ≥ rKt(x)− log t = rKt(x)−O(e(n) · log n).

On the other hand, let m be a program description that witnesses rKt
1−2−n(x) ≤ rKt(x) + O(e(n) · log n)

for t ≤ 2O(e(n)+logn). This program exists by Lemma 8 by amplifying the success probability from 2
3 to

1− 2−n. By the above calculation, we have that rKt(m | x) ≤ O(e(n) · log n) and therefore the algorithm
goes over the program m′ that generates m given x. As the algorithm runs m′ a total of O(n) times, it
succeeds in generating m with probability at least 1 − 2−n. Then, it is easy to see that this program passes
step Item 2 with high probability. Thus the output is at most rKt(x) +O(e(n) · log n), as desired.

4 Meta-Complexity to SoI: Proof of Theorem 2

Since the argument is similar to other proofs in the literature (see, e.g., [Hir22] and [HKLO24]), here
we only provide a sketch and a discussion of the relevant parameters.

Let T, γ : N → N be monotone functions. Assume there exists a randomized algorithm A(v) that runs
in time at most T (ℓ) on any input v ∈ {0, 1}ℓ and approximates rKt(v) up to an additive term of order γ(ℓ).
We aim to show that, for every x, y ∈ {0, 1}n,

rKt(x | y) ≤ rKt(x, y)− rKt(y) + e(n), (3)

where e(n) = O(log T (ℓ) + γ(ℓ) + log3 n) and ℓ = O(n). We can assume that for every large enough ℓ,
γ(ℓ) ≤ ε · ℓ and T (ℓ) ≤ 2ε·ℓ, for a small enough constant ε > 0, since otherwise the inequality is trivial.

We assume without loss of generality that γ(ℓ) ≥ 1. For ℓ ≥ 1, consider the sets

Syes
ℓ ≜

{
v ∈ {0, 1}ℓ | rKt(v) ≤ ℓ− 4 · γ(ℓ)

}
,

Sno
ℓ ≜

{
v ∈ {0, 1}ℓ | rKt(v) ≥ ℓ− 1

}
.

Note that these sets can be separated by algorithm A in randomized time T (ℓ) for any large enough input
length ℓ.
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Fix x, y ∈ {0, 1}n. Let m and m′ be parameters to be fixed later. Let G = {Gn,m} be the generator
from Lemma 6 with corresponding randomness parameter d = O(log3 n) and output length m. Consider
the following distributions supported over strings of length ℓ ≜ m+m′:

D1 ≜ Gn,m(x, z) ◦ Gn,m′(y, z′) where z, z′ ∼ Ud,

D2 ≜ w ◦ Gn,m′(y, z′) where w ∼ Um and z′ ∼ Ud,

D3 ≜ w ◦ w′ where w ∼ Um and w′ ∼ Um′ .

Jumping ahead, we will select m and m′ in a way such that distributions D1 and D2 are distinguished by
any uniform randomized test that separates the sets Syes

ℓ and Sno
ℓ defined above. In turn, this will allow us

to distinguish distributions Gn,m(x,Ud) and Um when given y and access to A, which together with our
choice of parameters and properties of the generator, will allow us to establish Equation (3). We provide
more details next.

By a standard hybrid argument, in order to distinguish distributions D1 and D2, it is enough to show that
D2 and D3 are indistinguishable, while D1 and D3 can be distinguished. The notion of indistinguishability
considered below refers to randomized uniform algorithms running in time at most poly(T (ℓ)) and possibly
making use of O(log n) bits of advice.

Choice of m′ and indistinguishability of D2 and D3. Note that it is enough to establish the indistin-
guishability of Gn,m′(y,Ud) and Um′ . By Lemma 6, indistinguishability with respect to a randomized
procedure D running in time T (m′) holds provided that rKpoly(T (m′)),D(y) > m′ + O(log3 n). Ora-
cle access to D can be eliminated if D is uniform and requires at most O(log n) bits of advice. Since
rKt(y) ≤ rKpoly(T (m′))(y)+O(log T (m′)), with respect to uniform algorithms running in time poly(T (m′)),
we can guarantee indistinguishability if we set

m′ ≜ rKt(y)−O(log3 n)−O(log T (m′)).

For m′ to be well defined, we must have rKt(y) ≥ C · log3 n + C · log T (m′) for a large enough C. This
can be assumed without loss of generality, since otherwise Equation (3) already holds for the desired bound
e(n). In addition, note that m′ ≤ 2n.

Choice of m and distinguishability of D1 and D3. First, a simple argument shows that every string
u ∈ Support(D1) satisfies rKt(u) ≤ rKt(x, y) + 2d + O(log n) = rKt(x, y) + O(log3 n). On the other
hand, with probability Ω(1), a string u ∼ D3 satisfies rKt(u) ≥ m +m′ − 1 = ℓ − 1. Therefore, the sets
Syes
ℓ and Sno

ℓ distinguish these distributions if rKt(x, y) + O(log3 n) ≤ ℓ − 4 · γ(ℓ). Since ℓ = m + m′,
using the definition of m′ and the monotonicity of γ and T , it is enough to set

m ≜ rKt(x, y)− rKt(y) +O(log3 n) +O(γ(O(n))) +O(log T (O(n))).

Under our assumption that T (ℓ) ≤ 2ε·ℓ and γ(ℓ) ≤ ε ·ℓ, we get that m = O(n), and consequently ℓ = O(n).

It follows from the above discussion that distributions D1 and D2 can be distinguished by running A(u)
and comparing the output value with a fixed threshold. The latter can be specified using O(log n) bits of
advice.

Next, we argue that with this we can distinguish the distributions Gn,m(x,Ud) and Um, given y and
access to A. To see this, it is enough to consider the randomized distinguisher Dy that, given a string
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v ∈ {0, 1}m, produces the string u = v ◦Gn,m′(y,Ud) and invokes the aforementioned distinguisher for D1

and D2. By a simple reduction, Dy distinguishes Gn,m(x,Ud) and Um. It follows from Lemma 6 that

rKpoly(n),Dy(x) ≤ m+O(log3 n).

Moreover, since Dy can be computed when given access to y by running A on inputs of length O(n), we
get that

rKt(x | y) ≤ m+O(log3 n) +O(log T (O(n))).

Finally, Equation (3) follows from this upper bound and the definition of m. This completes the proof.

5 The Case of pKt Complexity: Proof of Theorem 3

For the sake of contradiction, assume that SoI holds for pKt with error term e(n). By padding strings
of length less than n, it is easy to see that SoI also holds for strings of length at most n with error term
e(n) +O(log n). That is, for any strings x ∈ {0, 1}∗, y ∈ {0, 1}∗, where |x| ≤ n and |y| ≤ n, we have

pKt(x, y) ≥ pKt(x | y) + pKt(y)− e(n)−O(log(n)).

Since we have pKt(x, y) ≤ pKt(x | y) + pKt(y) +O(log(n)) by computing y and x in sequence, we get

|pKt(x, y)− pKt(x | y)− pKt(y)| ≤ e(n) +O(log(n)).

Moreover, by applying SoI twice and padding strings if necessary, it is not hard to see that SoI also holds
when conditioning on a string z such that |y|+ |z| ≤ n and |x|+ |y| ≤ n (see, e.g., the proof of Lemma 8).
In other words, we have the following bound:

|pKt(x, y | z)− pKt(x | y, z)− pKt(y | z)| ≤ 2 · e(n) +O(log(n)). (4)

Let C1, C2 be the constants hidden by big O notations in Equation (2) and Equation (4) respectively,
and let C = max(C1, C2). Now for a given x ∈ {0, 1}n and ε > 0 satisfying the appropriate constraint, we
set k = ⌊ εn

2·e(n)+2C logn⌋. Note that the value k is well defined due to the assumed lower bound on ε. We
split x into k pieces x = x1 ◦ x2 ◦ · · · ◦ xk, where each xi has length ⌈nk ⌉ except for xk, which has length
n− ⌈nk ⌉ · (k − 1). Now by applying Equation (4) k times, we get∣∣∣∣∣pKt(x)−

k∑
i=1

pKt(xi | xi+1 ◦ · · · ◦ xk)

∣∣∣∣∣ ≤ k · (2 · e(n) + C log n).

Then for each i, we use the algorithm A in Lemma 4 to estimate pKt(xi | xi+1 ◦ · · · ◦ xk) in time 2O(|xi|) ·
poly(n) = 2O(n/k+logn) = 2O((e(n)+logn)/ε). Let ri be the estimation for pKt(xi | xi+1 ◦ · · · ◦ xk).
Then, by a union bound, with probability at least 1 − k · 2−n over the randomness of A, for each i, we get
|ri − pKt(xi | xi+1 ◦ · · · ◦ xk)| ≤ C. Consequently,∣∣∣∣∣pKt(x)−

k∑
i=1

ri

∣∣∣∣∣ ≤
∣∣∣∣∣pKt(x)−

k∑
i=1

pKt(xi | xi+1 ◦ · · · ◦ xk)

∣∣∣∣∣+
k∑

i=1

|ri − pKt(xi | xi+1 ◦ · · · ◦ xk)|

≤ k · (2 · e(n) + C log n+ C)

≤ εn.

Hence we have an algorithm running in time k · 2O((e(n)+logn)/ε) = 2O((e(n)+logn)/ε), that with high prob-
ability, estimates pKt(x) within εn additive error.
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6 Failure of SoI on Average: Proof of Theorem 4

We start with a proof for rKt, and we note that the proof for pKt is almost identical (see Remark 1). For
the sake of contradiction, we assume that SoI holds on average, i.e., there exists a constant C1 ≥ 0 such that
for every polynomial-time samplable distribution family D = {Dn}n≥1, where each Dn is supported over
{0, 1}n × {0, 1}n, and every polynomial p(n), it holds for all large enough n that

Pr
(x,y)∼Dn

[rKt(y | x) + rKt(x) ≤ rKt(y, x) + C1 log n] ≥ 1− 1

p(n)
. (5)

We consider the promise problem Gap-MrKtP[0.1n, 0.9n], where the “yes” instances are given by {x |
rKt(x) ≥ 0.9|x|}, and the “no” instances are given by {x | rKt(x) ≤ 0.1|x|}. It will also be useful
to view this promise problem as the relation consisting of all valid solutions. We say that (x,Yes) ∈
Gap-MrKtP[0.1n, 0.9n] if rKt(x) ≥ 0.9|x|, and (x,No) ∈ Gap-MrKtP[0.1n, 0.9n] if rKt(x) ≤ 0.1|x|. We
start by showing that the validity of SoI on average implies that Gap-MrKtP can be efficiently solved on
average (i.e., with respect to polynomial-time samplable distributions).

We now describe a randomized algorithm Esti(x, 1n), which will be useful for our proof. Let C1 be
the constant from Equation (5), C2 be the constant hidden by O(1) in Lemma 3, and C3 be the constant in
Lemma 5. Let k ≜

⌊
|x|

3C2+3(C1+3C3) logn

⌋
. For an input string x, let x1, . . . , xk be its decomposition into k

parts of almost equal size. Then, for each i ∈ [k], the algorithm estimates rKt(xi | xi−1 ◦ · · · ◦ x1) using the
algorithm A from Lemma 3. We denote the estimate by ei. Then the algorithm outputs Yes if

∑
i ei ≥ 0.5n,

and No otherwise. It is not hard to see that Esti(x, 1n) runs in time polynomial in n and |x|.

Lemma 9. If SoI for rKt holds on average, then for every polynomial p(n), q(n) ≥ n and any polynomial-
time samplable distribution D = {Dn}n≥1 where each Dn is supported over {0, 1}≤q(n), it holds for every
sufficiently large n ∈ N that

Pr
x∼Dn,Esti

[
(x,Esti(x, 1q(n))) ∈ Gap-MrKtP[0.1n, 0.9n]

]
≥ 1− 1

p(n)
.

Proof. For each x ∈ Dn, let x1, . . . , xk be the division of x in Esti(x, 1q(n)). Let D be the sampler such
that D(1n) samples Dn in polynomial time. We note that the following two conditions are sufficient for
(x,Esti(x, 1n)) ∈ Gap-MrKtP[0.1n, 0.9n]:

1. For all i ∈ [k], A estimates rKt(xi | xi−1 ◦ · · · ◦ x1) with at most C2 additive error.

2. For all i ∈ [k], |rKt(xi◦· · ·◦x1)−rKt(xi | xi−1◦· · ·◦x1)−rKt(xi−1◦· · ·◦x1)| ≤ (C1+3C3)·log q(n).

This is because when both conditions hold, by telescoping we get∣∣∣∣∣
k∑

i=1

ei − rKt(x)

∣∣∣∣∣ ≤ ((C1 + 3C3) · log q(n) + C2) · k ≤ |x|
3

for all sufficiently large n. Therefore, if rKt(x) ≥ 0.9|x| then
∑

ei ≥ (0.9 − 0.34)|x| ≥ 0.5|x| and
Esti(x, 1q(n)) outputs Yes, and similarly when rKt(x) ≤ 0.1|x|, Esti(x, 1q(n)) outputs No. Next, we estimate
the probability of one of the conditions failing.

By Lemma 3 and a union bound over i ∈ [k], Item 1 fails with probability at most t(n) · 2−Ω(log2 n),
which is less than 1

2p(n) for all sufficiently large n. We claim that the probability of Item 2 failing is upper
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bounded by 1
2p(n) for all sufficiently large n. Otherwise, we define a sampler D′ which on input 1n, runs

in polynomial time, and samples a pair of strings from {0, 1}n × {0, 1}n: D′(1n) first runs D(1q
−1(n)) to

obtain x, then samples i ∼ [k], and finally outputs (xi ◦ 1n−|xi|, xi−1 ◦ · · · ◦ x1 ◦ 1n−|xi−1|− ··· −|x1|). By
Lemma 5 and our assumption that Item 2 fails with probability 1

2p(n) for infinitely many n, we get

Pr
(x,y)←D′(1n)

[|rKt(x ◦ y)− rKt(x | y)− rKt(y)| ≥ C1 log n] ≥
1

2p(q−1(n)) · n
≥ 1

2n · p(n)

for infinitely many n, which contradicts our assumption that SoI holds on average for rKt. Hence by a
union bound, for all sufficiently large n, the probability that both Item 1 and Item 2 are satisfied is at least
1− 1/p(n).

Let t(n) be the polynomial upper bound on the number of random bits used by Esti(·, 1n). We would like
to define a randomized oracle Gn : {0, 1}≤n → {Yes,No} that is correlated with Esti(·, 1n) and agrees with
Gap-MrKtP[0.1n, 0.9n]. To do this, for any function F : {0, 1}≤n → {0, 1}t(n), we denote by EstiF (·, 1n)
the algorithm that uses F (x) as the (internal) randomness for Esti(x, 1n). We then define the oracle GF

n as
follows:

GF
n (x) =


Yes, rKt(x) ≥ 0.9|x|
No, rKt(x) ≤ 0.1|x|
EstiF (x, 1n), 0.1|x| < rKt(x) < 0.9|x|

The next lemma shows that GF
n (·) and EstiF (·, 1n) cannot be distinguished with significant advantage when

accessed as oracles:

Lemma 10. Assume that SoI for rKt holds on average. Let s(n) be any polynomial, and let R(-) : {0, 1}n×
{0, 1}s(n) → {0, 1} be any deterministic polynomial-time algorithm with oracle access running in time
s(n). Let p(n) be any polynomial, and let D = {Dn}n≥1 be any polynomial-time samplable distribution
where each Dn is supported over {0, 1}n. Then for every large enough n, we have

Pr
x∼Dn,r∼Us(n),

F∼{0,1}≤r(n)→{0,1}t(s(n))

[
REstiF (·,1s(n))(x, r) = R

GF
s(n)

(·)
(x, r)

]
≥ 1− 1

p(n)
.

Proof. We define a polynomial-time sampler D′ that works as follows.

On input 1n, D′ samples x ∼ Dn, r ∼ Us(n), and i ∼ [s(n)]. Then it runs R(-)(x, r). For the first
(i−1) oracle queries y1, . . . , yi−1 by R(-)(x, r), D′ returns Esti(y1, 1s(n)), . . . ,Esti(yi−1, 1s(n))
respectively. When R(-)(x, r) makes the i-th query yi, D′ outputs yi and halts. If R(-)(x, r) halts
before making the i-th query, then D′ outputs 1s(n).

It is not hard to see that D′(1n) runs in time poly(n), and outputs a string of length at most s(n). By
Lemma 9, we have

Pr
y←D′(1n),Esti

[
(y,Esti(y, 1s(n)) ̸∈ Gap-MrKtP[0.1n, 0.9n])

]
≤ 1

s(n) · p(n)
.

By the definition of GF
n , we get

Pr
y←D′(1n),F∼{0,1}≤s(n)→{0,1}t(s(n))

[
EstiF (y, 1s(n)) ̸= GF

s(n)(y)
]
≤ 1

s(n) · p(n)
. (6)
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Now over the random choice of x, r, F , for i ∈ [s(n)], let Ei denote the event that, the first (i − 1) oracle
queries of REstiF (·,1s(n))(x, r) and R

GF
s(n)

(·)
(x, r) returned the same answer, while the i-th oracle query re-

turned different answers. Note that we can think of D′(1n) as first sampling x, r, F (F is sampled implicitly
when sampling the randomness for Esti), and then sampling i ∼ [s(n)], and finally outputting yi. By the
definition of Ei, when D′ samples i and Ei holds, it must hold that EstiF (yi, 1s(n)) ̸= GF

s(n)(yi). Hence we
have

Pr
y←D′(1n),F∼{0,1}≤s(n)→{0,1}t(s(n))

[
EstiF (y, 1s(n)) ̸= GF

s(n)(y)
]
≥ 1

s(n)
·
s(n)∑
i=1

Pr[Ei]. (7)

Combining Equations (6) and (7), we get

s(n)∑
i=1

Pr[Ei] ≤
1

p(n)
.

Since R is deterministic, REstiF (·,1s(n))(x, r) and R
GF
s(n)

(·)
(x, r) outputting different answers implies that at

least one of the oracle queries returned different answers. Hence by a union bound, we get

Pr
x∼Dn,r∼Us(n),

F∼{0,1}≤r(n)→{0,1}t(s(n))

[
REstiF (·,1s(n))(x, r) ̸= R

GF
s(n)

(·)
(x, r)

]
≤

s(n)∑
i=1

Pr[Ei] ≤
1

p(n)
,

which completes the proof.

Lemma 11 ([Oli19]). Let LTV be the PSPACE-complete language in Lemma 7. Then there exists a proba-
bilistic polynomial-time algorithm R, such that for any randomized oracle O satisfying

Pr[O(x) = 1] ≥ 2

3
, ∀x s.t. rKt(x) ≥ 0.9|x|,

Pr[O(x) = 1] ≤ 1

3
, ∀x s.t. rKt(x) ≤ 0.1|x|,

RO decides LTV with error probability at most 2−n.

Lemma 12. If SoI for rKt holds on average, then PSPACE ⊆ BPP.

Proof. Assume that LTV from Lemma 7 is 1
p(n) -random-self-reducible for a polynomial p(n), and let s(n)

be the polynomial bound on the running time of R in Lemma 11. We view R as a deterministic algorithm
taking two inputs, the first being the original input x ∈ {0, 1}n, and the second being the randomness
r ∈ {0, 1}s(n). By the definition of GF

s(n), we get

Pr
x∼Un,r∼Us(n),

F∼{0,1}≤s(n)→{0,1}t(s(n))

[
R
GF
s(n)

(·)
(x, r) ̸= LTV(x)

]
≤ 2−n. (8)

By Lemma 10, we get

Pr
x∼Un,r∼Us(n),

F∼{0,1}≤s(n)→{0,1}t(s(n))

[
REstiF (·,1s(n))(x, r) ̸= R

GF
s(n)

(·)
(x, r)

]
≤ 1

7p(n)
. (9)
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Applying a union bound over Equations (8) and (9), we have

Pr
x∼Un,r∼Us(n),

F∼{0,1}≤s(n)→{0,1}t(s(n))

[
REstiF (·,1s(n))(x, r) ̸= LTV(x)

]
≤ 1

7p(n)
+ 2−n ≤ 1

6p(n)
.

By Markov’s inequality, we get

Pr
r∼Us(n),Esti

[
Pr

x∼Un

[
REsti(·,1s(n))(x, r) ̸= LTV(x)

]
≥ 1

p(n)

]
≤ 1

6
.

In other words, with probability at least 5/6 over r and the internal randomness of Esti, REsti(·,1s(n))(·, r)
decides LTV correctly on a 1− 1/p(n) fraction of inputs. Since LTV is 1

p(n) -random-self-reducible, we can
use the corrector Cor to compute LTV(x) for any x ∈ {0, 1}n with error probability at most 1/6. Hence we
get

∀x ∈ {0, 1}n, Pr
r∼Us(n),Esti,Cor

[
CorR

Esti(·,1s(n))(·,r)(x) = LTV(x)

]
≥ 5

6
· 5
6
>

2

3
.

That is, we can decide LTV in probabilistic polynomial time.

Now we are ready to reach contradiction. Note that for strings x, y of length at most n, deciding exactly
whether rKt(x | y) < 2c log n is in PSPACE. Therefore, there exists an efficient deterministic algorithm
N such that, given oracle access to a PSPACE complete language, it outputs x1, . . . , xk ∈ {0, 1}2c logn for
k =

⌊
n

2c logn

⌋
such that for every i < r, we have

rKt(xi | xi+1 ◦ · · · ◦ xk) ≥ 2c log n.

This can be done using a brute force iteration over xk, . . . , x1 by computing randomized Kolmogorov com-
plexity using the PSPACE oracle. By replacing each PSPACE oracle with calls to the BPP algorithm
provided by Lemma 12 (and amplifying its success probability), we get that x1 ◦ · · · ◦ xk can be computed
in polynomial time, and therefore rKt(x1 ◦ · · · ◦xk) ≤ O(log n). On the other hand, given 1n and uniformly
random bits, we can efficiently generate the string pairs

(xi, xi+1 ◦ · · · ◦ xk).

Therefore, we can apply SoI on this polynomial-time samplable distribution with error 1
2n and thus all SoI

inequalities must hold. As a result, we get that

rKt(x1 ◦ · · · ◦ xk) ≥
∑

rKt(xi | xi+1 ◦ · · · ◦ xk)− k · c log n

≥ k · 2c log n− k · c log n
= k · c log n.

For sufficiently large n, due to our choice of k, the bound k·c log n is larger than rKt(x1◦· · ·◦xk) ≤ O(log n)
and thus we get a contradiction.

Remark 1. The above proof also works with pKt. We first note that Lemma 10 does not depend at all
on properties of rKt and would have essentially the same proof using Gap-MpKtP instead of Gap-MrKtP.
Lemma 12 only needs the fact that Gap-MrKtP can be used to break the appropriate PRG. It is easy to see
that the same holds for pKt. Besides that, in Lemma 9 and at the end of the proof we rely on the following
facts:
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• Exactly computing rKt(x, y) for x of logarithmic and y of polynomial length is in PSPACE.

• Estimating rKt(x, y) up to additive error for x of logarithmic and y of polynomial length can be done
in polynomial time.

• For every x that can be constructed by an efficient (randomized) algorithm it holds that rKt(x) ≤
O(log n).

It is easy to see that all properties hold for pKt as well.

7 Stronger Bounds for Conditional SoI: Proofs of Theorem 5 and Theorem 6

Before diving into the formal proof of Theorem 5, we will discuss the intuition behind the argument and
also give a sketch of the proof.

Technical Overview. Assume that conditional SoI holds for rKt with error e(n) = ε · n, where ε > 0 is a
small constant to be determined later. Using an idea similar to the proof of Theorem 3, we can construct an
algorithm A such that given x ∈ {0, 1}n and y ∈ {0, 1}m, A(x, y) decides the promise problem of whether
rKt(x | y) ≤ 0.1n or rKt(x | y) ≥ 0.9n with high probability in time 2O(ε·n) ·mO(1) (see Lemma 14). This
does not contradict [Oli19], which only gives a lower bound on the running time of the form npoly(logn).
Hence we will look more carefully into the proof of [Oli19].

In [Oli19], they used the PRG G : {0, 1}n → {0, 1}nc
from [IW01], initialized with the PSPACE-

complete language LTV of [TV07]. Here G(·) is computable in polynomial time with oracle access to
LTV on length at most n, which is computable in space nd and thus time 2n

d
. We choose the param-

eters such that c > d. Hence rKt(G(z)) ≤ n + nd + O(log n) for any z ∈ {0, 1}n, while from a
counting argument, rKt(r) ≥ nc − O(1) for most of the strings r ∈ {0, 1}nc

. Therefore any algo-
rithm deciding Gap-MrKtP[0.1n, 0.9n] is a distinguisher for G. Then, from the uniform polynomial-time
reconstruction procedure of G, if Gap-MrKtP[0.1n, 0.9n] ∈ prBPTIME[T (n)], we would get LTV ∈
BPTIME[T (O(nc)) · poly(n)]. Modulo polynomial overheads in parameters, this would eventually con-
tradict Gap-MrKtP[0.1n, 0.9n] ∈ prBPTIME[T (n)] when T (n) is less than a half-exponential function,
i.e., T (T (n)) < 2n. But in our setting, T (n) = 2ε·n is too large for this proof to work.

The key insight is that, once we get LTV ∈ BPTIME[2O(ε·nc)], we can compute G in probabilistic time
2O(ε·nc). This gives rKt(G(z) | z) ≤ O(ε · nc). Hence to distinguish (G(z), z) from (r, z) where r, z
are sampled uniformly from {0, 1}nc

and {0, 1}n, respectively10, it suffices to run A(u′, z), where u′ is
the prefix of the first string of length O(ε · nc). But this only takes time 2O(ε2·nc), and the reconstruction
procedure gives LTV ∈ BPTIME[2O(ε2·nc)]. When the constant ε is chosen to be small enough, this is faster
than the BPTIME[2O(ε·nc)] upper bound we obtained earlier!

Using the insight from above, we can iteratively apply the following “bootstrapping” argument:

1. Assume LTV ∈ BPTIME[2s(n)].

2. Since G is polynomial-time computable with oracle queries to LTV at length at most n, rKt(G(z) |
z) ≲ s(n).

10Different from the usual definition, here the distinguisher also gets the seed as part of its input. Nevertheless, we show that
only a minor modification is required for the reconstruction procedure to work for this “weaker” distinguisher; see Lemma 16.
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3. When the distinguisher gets (u, a), it only needs to invoke A on a and the length-O(s(n)) prefix of u,
which runs in time 2O(ε·s(n)).

4. Using the above distinguisher, the reconstruction procedure of G gives LTV ∈ BPTIME[2O(ε·s(n))].

Roughly speaking, if we start from LTV ∈ BPTIME[2n
c
] and apply the above argument i times, we

would get LTV ∈ BPTIME[2(c
′ε)i·nc

] for some constant c′. Thus in principle, if ε is small enough and we
set i = O(log n), we get LTV ∈ BPP and thus PSPACE ⊆ BPP!

By successively designing algorithms P1, . . . , Pi, where each Pi is faster than Pi−1, it is not hard to
show that the iterative argument works for a fixed constant i. However, to obtain LTV ∈ BPP, the number
of times we bootstrap depends on the input length n. For this reason, in the proof of Lemma 17 given below,
we will describe a single algorithm P that works as described above (i.e., using the reconstruction procedure
for a distinguisher D that truncates the first input string to a certain length), such that P (i, n) runs in time
22

−i·nO(1)
, and outputs a circuit deciding LTV on length n. Due to the need for a value of i that depends

on n, we must be particularly careful with the constants hidden by big O(·) notations, which might blow
up after super-constantly many rounds, and with corner cases, like when i is too large, or when the first
string that D gets is shorter than the length of the prefix we need to maintain to guarantee correctness of the
distinguisher.

Once we obtain PSPACE ⊆ BPP, we can contradict the conditional SoI of rKt by explicitly construct-
ing a sequence of strings whose concatenation should have large rKt complexity, in a short time.

We now provide the formal proof. We will rely on the relation between uniform computations and
Boolean circuits. The following standard statement is sufficient for our purposes.

Lemma 13. There exists a constant Ccirc such that for every input length n ≥ 2, the following holds. Let
P be a program that runs in time t(n). There exists a circuit C of size at most (n + t(n))Ccirc that agrees
with P over inputs of length n. Moreover, this circuit can be produced in time (n+ t(n))Ccirc given P and
n. On the other hand, any circuit C of size k and of input size n can be simulated on a given input in time
(n+ k)Ccirc .

First, we derive the following consequence from the validity of conditional SoI.

Lemma 14. Suppose that conditional symmetry of information holds for rKt with error log n ≤ e(n) ≤
n/40. Then there exists a constant C and an algorithm A(x, y) that gets two input strings x ∈ {0, 1}n and
y ∈ {0, 1}m (we may also write A(x | y) to match the notation for conditional Kolmogorov complexity),
where n ≤ m, runs in time 2C·e(n) · mC , and with probability at least 1 − 2−100(n+m) over its internal
randomness, A(x, y) returns 1 if rKt(x | y) ≥ 0.9|x| and 0 if rKt(x | y) ≤ 0.1|x|.

Proof. By padding (see Lemma 5), from conditional symmetry of information for rKt, we get that for every
x, y, w ∈ {0, 1}∗ where |x|, |y| ≤ n, it holds that |rKt(y | x,w)+ rKt(x | w)− rKt(x, y | w)| ≤ CSoI · e(n)
for some constant CSoI. Suppose the algorithm in Lemma 3 runs in time 2Ct·n · mCt and makes at most
Ct additive error when estimating conditional rKt, where Ct is a universal constant. The algorithm A splits
x into x = x1 ◦ x2 ◦ · · · ◦ xℓ, where x1, . . . , xℓ−1 are of length ⌈40(CSoI + Ct)e(n)⌉, and xℓ has length
≤ ⌈40(CSoI + Ct)e(n)⌉. Then, for each i ∈ [ℓ], let ei be the estimation of rKt(xi | x1 ◦ · · · ◦ xi−1 ◦ y) by
the algorithm from Lemma 3. Finally, A returns 1 if

∑ℓ
i=1 ei ≥

n
2 , and 0 otherwise.

To analyze the correctness of this algorithm, first note that applying ℓ times the conditional symmetry of
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information for rKt, we get∣∣∣∣∣rKt(x | y)−
ℓ∑

i=1

rKt(xi | x1 ◦ · · · ◦ xi−1 ◦ y)

∣∣∣∣∣ ≤ ℓ · e(n) ≤ n

20
.

Additionally, if all estimates ei are correct within Ct additive error of rKt(xi | x1 ◦ · · · ◦ xi−1 ◦ y), which
happens with high probability by standard repetition, we obtain that

∣∣∣rKt(x | y)−
∑ℓ

i=1 ei

∣∣∣ is at most

≤

∣∣∣∣∣rKt(x | y)−
ℓ∑

i=1

rKt(xi | x1 ◦ · · · ◦ xi−1 ◦ y)

∣∣∣∣∣+
ℓ∑

i=1

|rKt(xi | x1 ◦ · · · ◦ xi−1 ◦ y)− ei|

≤ n

20
+ ℓ · Ct

≤ n

10
.

This establishes the correctness of the algorithm. Finally, the total running time is 240·Ct(Ct+CSoI)·e(n) ·
poly(m), since we only need to run the algorithm from Lemma 3 on length ⌈40(CSoI + Ct)e(n)⌉ at most n
times.

We recall that LTV denotes the PSPACE-complete language of Lemma 7. The following lemma is the
key technical result of this section.

Lemma 15 (Collapse of PSPACE from Conditional SoI). There exist constants ε0 > 0 and c0 ≥ 1 such that
if conditional symmetry of information holds for rKt with error e(n) ≤ ε0 · n, then LTV ∈ BPTIME[nc0 ].

Roughly speaking, we prove Lemma 15 by designing a randomized algorithm P such that, for any i ∈ N
and x ∈ {0, 1}n, P (i, x) runs in time 2n·2

−i · poly(n) and computes P (i, x) = LTV(x) with probability at
least 2/3. By setting i = O(log n), we obtain the desired result.

To begin with, we will use the pseudorandom generator with uniform reconstruction from [IW01], but
with a slight modification in the reconstruction algorithm. More precisely, we observe that its reconstruction
properties remain valid when its seed is also provided to the distinguisher.

Lemma 16 (Extension of [IW01]). Let L be a language that is both downward-self-reducible and random-
self-reducible. Then for any large enough constant c, there exists a generator G and a randomized oracle
algorithm Rec(-,-) such that

• G : {0, 1}pin(n) → {0, 1}pout(n), where pin(n) ≥ n and pout(n) = Ω(nc) are both polynomials.

• There exists a deterministic algorithm B(-) and a polynomial prun(n), such that for any s ∈ {0, 1}pin(n),
BO(s) runs in time prun(n), makes queries to O only on inputs of length n, and outputs a string of
length pout(n). Moreover, BL(s) = G(s).

• RecD,O(1n) runs in time prun(n), making queries to D only over input length pin(n)+pout(n) and to
O only over input length n − 1, and outputs a (deterministic) oracle circuit C(-) : {0, 1}n → {0, 1}
which has oracle gates of input size exactly pin(n) + pout(n).

• For any distinguisher D : {0, 1}pin(n)+pout(n) → {0, 1} such that

Pr
z∼Upin(n)

[D(z ◦G(z)) = 1]− Pr
z∼Upin(n),r∼Upout(n)

[D(z ◦ r) = 1] ≥ 1

n
,
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with probability at least 1−2−100n, RecD,L(1n) outputs a circuit C as above such that CD(x) = L(x)
for every x ∈ {0, 1}n.

Proof Sketch. Our construction of G is the same as [IW01], initialized with the truth table of L over in-
puts of appropriate length. However, the distinguisher D we are assuming here is weaker than the standard
definition, since it also gets the seed for G as part of its input. Nevertheless, we claim that only a slight mod-
ification is required for Rec, that is, when applying the hybrid argument and the predictor-to-distinguisher
reduction in the first step. This will be explained in more detail in the following paragraphs.

Recall that in [IW01], they define a function h : {0, 1}ph(n) → {0, 1} which is essentially the hardness
amplification of L, and they also used an explicitly constructible combinatorial design {Si}i∈[pout(n)] such
that Si ⊆ [pin(n)] and |Si| = ph(n). They then defined G(z) = h(z|S1) ◦h(z|S2) ◦ · · · ◦h(z|Spout(n)

), where
z|Si is the restriction of z to the coordinates specified by Si. Then for any distinguisher D, using a hy-
brid argument and the predictor-to-distinguisher reduction, Rec first obtains a D-oracle circuit that predicts
hph(n) with 1/2 + 1/poly(n) probability over uniform inputs. From this, using hardness amplification, it
obtains a D-oracle circuit that predicts fn with 1−1/poly(n) probability over uniform inputs. Finally, using
the random self-reducibility of LTV, it obtains a D-oracle circuit that computes fn correctly on every input
with high probability. We observe that only the first step, i.e., obtaining a D-oracle circuit predicting hph(n)
with 1/2 + 1/poly(n) probability, requires modification. In fact, the second and third steps are black-box
reductions between circuits, and they do not use D directly.

By definition of the distinguisher, we get

Pr
z∼Upin(n)

[
D
(
z ◦ h(z|S1) ◦ · · · ◦ h(z|Spout(n)

)
)
= 1

]
− Pr

z∼Upin(n),r∼Upout(n)

[
D
(
z ◦ r1 ◦ · · · ◦ rpout(n)

)
= 1

]
≥ 1

n
.

By applying the hybrid argument on the last pout(n) bits, there exists some i0 ∈ [pout(n)] such that

Pr
z∼Upin(n),r∼Upout(n)

[
D
(
z ◦ h(z|S1) ◦ · · · ◦ h(z|Si0−1) ◦ h(z|Si0

) ◦ ri0+1 ◦ · · · ◦ rpout(n)

)
= 1

]
− Pr

z∼Upin(n),r∼Upout(n)

[
D
(
z ◦ h(z|S1) ◦ · · · ◦ h(z|Si0−1) ◦ ri0 ◦ ri0+1 ◦ · · · ◦ rpout(n)

)
= 1

]
≥ 1

n · pout(n)
.

In fact, Rec can find such i0 with high probability by enumerating over every i ∈ [pout(n)], and estimating the
probabilities by sampling, while computing L using its oracle access to L at length n−1 and downward self
reducibility. Next we describe an algorithm Pred for predicting h(·): on input s ∈ {0, 1}ph(n), it sets z|Si0

=

s, samples z|Si0
uniformly from {0, 1}pin(n)−ph(n), samples r uniformly from {0, 1}pout(n), and samples b

uniformly from {0, 1}. Then Pred outputs b if D(z ◦h(z|S1)◦ · · · ◦h(z|Si0−1)◦ b◦ri0+1 ◦ · · · ◦rpout(n)) = 1,
and 1− b otherwise. Then by some calculations, we have

Pr
s∼Uph(n),z|Si0

∼Upin(n)−ph(n)

r∼Upout(n),b∼U1

[
Pred(s, z|Si0

, r, b) = h(s)
]
≥ 1

2
+

1

n · pout(n)
.

By Markov’s inequality, we get

Pr
z|Si0

∼Upin(n)−ph(n)

r∼Upout(n),b∼U1

[
Pr

s∼Uph(n)

[
Pred(s, z|Si0

, r, b) = h(s)
]
≥ 1

2
+

1

2n · pout(n)

]
≥ 1

2n · pout(n)
.
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Therefore if Rec samples z|Si0
, r and b uniformly for poly(n) times, with high probability there is one

sample such that Pred(·, z|Si0
, r, b) has 1

2 + 1
2n·pout(n)

success probability for estimating h(·), and this can
be checked with high probability by using oracle access to L and estimating the success probability of
Pred(·, z|Si0

, r, b). Then for the good sample, Pred(·, z|Si0
, r, b) can be transformed into a D-oracle circuit,

by saving z|Si0
, r, b, as well as the truth table for h(z|Sj) of every j ̸= i0 when z|Si0

is fixed, as advice. The
rest of the proof is the same as [IW01].

Lemma 17 (Bootstrapping Lemma for LTV). Suppose there exists a constant ε0 > 0 such that conditional
symmetry of information holds for rKt with error e(n) ≤ ε0 · n. Then there exists a constant CP and a
probabilistic algorithm P (i, n) such that, for every i and n, the following conditions hold:

• With probability at least 1− 2−10(1− 2−n), P (i, n) outputs a circuit C deciding LTV on length n.

• The algorithm P (i, n) runs in time at most 22
−i·CP ·nCP · (n+ i)CP .

• The output circuit C is of size at most 22
−i·CP ·nCP · (n+ i)CP .

Since LTV is PSPACE-complete, it is easy to see that by plugging in i = O(log n) in Lemma 17 and
running the corresponding circuit, we obtain Lemma 15.

Proof. Before we describe how algorithm P works, we give several definitions. For simplicity, we assume
that n ≥ 2. Let Ccirc be the constant from Lemma 13. Let CA be the constant from Lemma 14. We set
ε0 = (1600·C2

circ·CA)
−1. Let CTV be the constant such that LTV from Lemma 7 is computable in time 2n

CTV

on input length n ≥ 2. Let G, pin, pout, prun be the generator and polynomials from Lemma 16 initialized
with LTV and constant c̃ = ⌈CTV⌉+ 1. Let Crun be a constant such that pin(n), pout(n), prun(n) ≤ nCrun for
n ≥ 2. As pout = Ω(nc̃), there must exist some natural number n0 such that for every n ≥ n0 it holds that
pout(n) ≥ 800 · (C2

circ · (nCTV + log n)).
Next, we will define more refined bounds on the running time and output length of the program P . We

define α(i, n) = max(nCTV ·2−i, 2)+ log n. We define a constant C† that is at least (1000C3
circ ·CA ·Crun +

2Ccirc · (nCTV
0 + log n0)). We also require C† to be larger than the description length of some programs

(specifically, P and G, to be described later), which contain the description of C† itself. However, since
the description of C† only takes logC† + O(1) bits, this will be satisfied by a large enough C†. We then
define C ′ = 4 ·C† ·Ccirc. We will inductively prove that P (i, n) actually runs in time at most 2C

′·α(i,n), and
outputs a circuit of size at most 2C

†·α(i,n).

Description of P (i, n). We now describe the algorithm P (i, n). When i = 0, n = 2, or C†α(i, n) ≥
Ccirc · (nCTV + log n), the algorithm simply prints the circuit corresponding to the 2n

CTV -time brute-force
algorithm for LTV. For i > ⌈CTV · log(n)⌉, the algorithm just runs P (⌈CTV · log(n)⌉, n). For all other cases,
we first describe a subroutine D(i, ·, ·), which is supposed to work as a distinguisher as stated in Lemma 16.
D(i, ·, ·) gets two strings u1 ∈ {0, 1}pin(n) and u2 ∈ {0, 1}pout(n) as input, and defines u′ as the prefix of
u2 of length 100C ′α(i − 1, n). (In fact, as we will show later, |u2| is at least 100C ′α(i − 1, n) in this
case.) Then D just returns A(u′ | u1), where A is the algorithm for estimating conditional rKt as defined in
Lemma 14. After defining D, we now describe the algorithm P (i, n). It first runs P (i, n − 1) to get some
circuit Cn−1, and also obtains a circuit CD by randomly fixing the internal randomness of D(i, ·, ·). Then it
runs RecCD,Cn−1(1n) to get some circuit C′ with oracle access to CD, and finally replaces the oracle gate for
CD in C′ with CD.
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To finish this proof, we first establish the bound on the running time and output length of P , then prove
its correctness.

Bounds on the running time of P (i, n). The bound on the running time is proven by induction on n. For
the base case of the induction, when n = 2, we get by Lemma 13 that the running time is bounded by

(2 + 22
CTV )Ccirc ≤ 22Ccirc·2CTV ≤ 22C

′ ≤ 2C
′α(i,2).

For the induction step, we start by examining the case where 0 < i ≤ ⌈CTV · log(n)⌉ and C† ·α(i, n) <
Ccirc · (nCTV + log n). By Lemma 14, D(i, ·, ·) runs in time

2CA·e(100·C′·α(i−1,n)) · pin(n)
CA ≤ 2100CA·C′·α(i−1,n)·ε0 · nCA·Crun .

Hence by Lemma 13, CD has size at most

2100Ccirc·CA·C′·α(i−1,n)·ε0 · n2Ccirc·CA·Crun .

Recall that P (i, n) first runs P (i, n−1) to get the circuit Cn−1 (of size at most 2C
†·α(i,n−1) by our induction

hypothesis), and then runs RecCD,Cn−1 in time prun(n) with at most prun(n) oracle queries to CD and Cn−1.
Hence we can upper bound the running time of P (i, n) by

2C
′α(i,n−1) + prun(n) · 2Ccirc·C†·α(i,n−1) · n2Ccirc + prun(n) · 2100C

2
circ·CA·C′·α(i−1,n)·ε0 · n4C2

circ·CA·Crun .

We can upper bound the running time by the following calculation:

prun(n) ·
(
2Ccirc·C†·α(i,n−1) · n2Ccirc + 2100C

2
circ·CA·C′·α(i−1,n)·ε0 · n4C2

circ·CA·Crun
)
+ 2C

′α(i,n−1)

≤ n8C2
circ·CA·Crun ·

(
2Ccirc·C†·α(i,n−1) + 2100C

2
circ·CA·C′·α(i−1,n)·ε0

)
+ 2C

′α(i,n−1)

≤ n8C2
circ·CA·Crun ·

(
2200C

2
circ·CA·C′·α(i,n)·ε0 + 2Ccirc·C†·α(i,n−1)

)
+ 2C

′α(i,n−1)

≤ 2(8C
2
circ·CA·Crun+200C2

circ·CA·C′·ε0+Ccirc·C†)·α(i,n) + 2C
′α(i,n−1)

≤ 2(C
′/8+200C2

circ·CA·C′·ε0+C′/4)·α(i,n) + 2C
′α(i,n−1)

≤ 2(
3
8
C′+C′/8)·α(i,n) + 2C

′α(i,n−1)

= 2C
′/2·α(i,n) + 2C

′α(i,n−1)

= 2
C′
2
·(max(nCTV ·2−i,2)+logn) + 2C

′(max((n−1)CTV ·2−i,2)+log(n−1))

≤ 2C
′·max(nCTV ·2−i,2) · (n

C′
2 + (n− 1)C

′
)

≤ 2C
′·max(nCTV ·2−i,2) · nC′

= 2C
′α(i,n).

For the case where i > ⌈CTV · log n⌉, it holds that nCTV · 2−i ≤ 2. Therefore, α(i, n) = α(⌈CTV ·
log n⌉, n). By the previous case analysis, we know that P (⌈CTV·log n⌉, n) runs in time at most 2C

′α(⌈CTV·logn⌉,n).
Hence P (i, n) runs in time at most 2C

′α(⌈CTV·logn⌉,n) = 2C
′α(i,n).

For i = 0, by Lemma 13, the running time of the algorithm is 2Ccirc·nCTV · nCcirc , which can be upper
bounded by

2Ccirc·nCTV · nCcirc = 2Ccirc·(nCTV+logn) ≤ 2Ccirc·α(0,n) ≤ 2C
′·α(0,n).
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For the case where C† · α(i, n) ≥ Ccirc · (nCTV + log n), the running time can be upper bounded by

2Ccirc·nCTV · nCcirc ≤ 2Ccirc·(nCTV+logn) ≤ 2C
†·α(i,n) ≤ 2C

′·α(i,n),

where the second inequality comes from the condition for this case.

Bounds on the size of the output circuit of P (i, n). We now bound the size of the circuit printed by
P (i, n). P (i, n) either prints the circuit for the brute-force algorithm for LTV, or outputs the circuit returned
by RecCD,Cn−1 . In the former case, by Lemma 13, the output length is at most 2Ccirc·nCTV · nCcirc , which
happens when i = 0, n = 2 or C†α(i, n) ≥ Ccirc·(nCTV+log n). When i = 0 or n = 2, it is not hard to show
that 2Ccirc·nCTV · nCcirc ≤ 2C

†·α(i,n) by calculation. For the case where C† · α(i, n) ≥ Ccirc · (nCTV + log n),
we have that 2Ccirc·nCTV · nCcirc ≤ 2C

†·α(i,n) holds trivially.
For the case where P (i, n) runs RecCD,Cn−1(1n), the circuit returned by RecCD,Cn−1(1n) is of size at

most prun(n) with prun(n) oracle gates for CD, and then the oracle gates are replaced by the actual circuit
CD, which is of size

2100Ccirc·CA·C′·α(i−1,n)·ε0 · n2Ccirc·CA·Crun .

Hence the size of the output circuit can be upper bounded by

prun(n) · 2100Ccirc·CA·C′·α(i−1,n)·ε0 · n2Ccirc·CA·Crun

≤ 2100Ccirc·CA·C′·α(i−1,n)·ε0 · n3Ccirc·CA·Crun

≤ 2200Ccirc·CA·C′·α(i,n)·ε0 · nC†/2

≤ 2(200Ccirc·CA·C′·ε0+C†/2)·α(i,n)

≤ 2(C
†/2+C†/2)·α(i,n)

≤ 2C
†·α(i,n).

Correctness of P (i, n). We prove the correctness by induction. The proposition we will show is that with
probability at least 1− 2−10(1− 2−n), the program P (i, n) outputs a circuit that decides LTV on length n.
We will do the induction over i and n simultaneously, i.e., assuming the induction hypothesis holds for both
P (i− 1, n) and P (i, n− 1), then the proposition is also correct for P (i, n). The base cases are when i = 0
or n = 2, where with probability 1, P (i, n) transforms the brute-force algorithm for LTV into the output
circuit.

In the induction step, we assume that for some i > 0 and n > 2, the proposition holds for both P (i−1, n)
and P (i, n − 1). We will prove that P (i, n) outputs a correct circuit with probability 1 − 2−10(1 − 2−n).
For the case where C†α(i, n) ≥ Ccirc · (nCTV + log n), with probability 1, P (i, n) transforms the brute-
force algorithm for LTV into the output circuit. For the case where i > ⌈log(CTV · n)⌉, the correctness
reduces to P (⌈log(CTV · n)⌉, n). Therefore we will focus on the case where 0 < i ≤ ⌈log(CTV · n)⌉ and
C† · α(i, n) < Ccirc · (nCTV + log n) in the following paragraphs.

Notice that the conjunction of the following three events is sufficient for P (i, n) to output a circuit
deciding LTV on length n:

1. CD 1/n-distinguishes (u1, u2) from (u1, G(u1)), where u1 and u2 are sampled uniformly from the
sets {0, 1}pin(n) and {0, 1}pout(n), respectively.

2. P (i, n− 1) outputs a circuit Cn−1 that decides LTV on length n− 1.
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3. RecCD,Cn−1(1n) returns a circuit with oracle access to CD that decides LTV on length n.

By our inductive hypothesis, Item 2 happens with probability at least 1− 2−10(1− 2−n+1). By Lemma 16,
conditioning on Item 1 happening, Item 3 happens with probability at least 1− 2−100n. Hence it remains to
lower bound the probability of Item 1.

We start by claiming that 100C ′α(i− 1, n) ≤ pout(n), so that u2 can have a prefix of the desired length.
This follows from the following computation. First, we note that

C ′α(i− 1, n) ≤ 2(C ′α(i, n)) = 8Ccirc · C† · α(i, n) ≤ (8C2
circ · (nCTV + log n)),

where the last inequality follows from our assumption that C† · α(i, n) < Ccirc · (nCTV + log n). Hence by
definition of n0, if n ≥ n0, then

pout(n) ≥ 100 · (8C2
circ · (nCTV + log n)) ≥ 100C ′α(i− 1, n).

On the other hand, for n < n0 we have

C† · α(i, n) ≥ C† ≥ Ccirc · (nCTV
0 + log n0) ≥ Ccirc · (nCTV + log n),

which contradicts the condition C† · α(i, n) < Ccirc · (nCTV + log n) for this case.
By a standard counting argument, for uniformly random u1 ∈ {0, 1}pin(n), u′ ∈ {0, 1}100C′α(i−1,n), with

high probability (≥ 9/10) it holds that

rKt(u′ | u1) ≥ 100C ′α(i− 1, n)− 10 ≥ 90C ′α(i− 1, n). (10)

Next we analyze the case where u1 is sampled uniformly at random, but u′ is the prefix of G(u1). By the
induction hypothesis and Lemma 13, with probability at least 1− 2−10 ≥ 2/3 over the internal randomness
of P (i− 1, n), it outputs a circuit of size 2C

†·α(i−1,n) deciding LTV in time 2C
′·α(i−1,n), which can then be

evaluated in time 2Ccirc·C†·α(i−1,n). Since G(·) can be computed in time prun(n) with oracle access to LTV,
we have

rKt(u′ | u1) ≤ rKt(G(u1) | u1) + 2 log i+ 2 log n+O(1)

≤ C ′ · α(i− 1, n) + Ccirc · C† · α(i− 1, n) + 2 log prun(n) + 2 log i+ 2 log n+O(1)

≤ C ′ · α(i− 1, n) + Ccirc · C† · α(i− 1, n) + 6Crun log n+O(1).

Here the O(1) depends only on the description of P,G and the length of a small program that lets us cut the
full output of G into u′, so we may assume it is at most C ′ by setting C† large enough from the beginning.
As C ′ ≥ Crun and C ′ ≥ Ccirc · C†, we get that

rKt(u′ | u1) ≤ C ′ · α(i− 1, n) + Ccirc · C† · α(i− 1, n) + 6Crun log n+O(1) ≤ 10C ′α(i− 1, n). (11)

Now by Lemma 14 and a union bound, with probability at least 1 − 2−99pin(n) ≥ 1 − 2−20n over the
internal randomness of A, A(u′ | u1) decides the promise problem of whether rKt(u′ | u1) ≤ 0.1|u′|
or rKt(u′ | u1) ≥ 0.9|u′| correctly for every (u′, u1) ∈ {0, 1}100C′α(i−1,n) × {0, 1}pin(n). Combined
with Equations (10) and (11), with probability at least 1 − 2−20n, CD will 1/2-distinguish (u1, u2) from
(u1, G(u1)).

Now by a union bound, the probability of Items 1 to 3 happening together is at least

1− (2−20n + 2−10(1− 2−n+1) + 2−100n) ≥ 1− (2−n−11 + 2−10(1− 2−n+1) + 2−n−11)

= 1− 2−10(1− 2−n).

Hence with probability at least 1−2−10(1−2−n), P (i, n) outputs a circuit deciding LTV on length n, which
completes the proof of correctness.

29



Using Lemma 15, we are now ready to prove Theorem 5.

Proof of Theorem 5. Let ε0 and c0 be the constants of Lemma 15. We consider two cases: either LTV ̸∈
BPTIME[nc0 ], or LTV ∈ BPTIME[nc0 ]. In the former case, by Lemma 15, conditional SoI fails for rKt with
error e(n) ≤ ε0 · n. In the latter case, note that given a string y and a length n, finding the lexicographically
first string x of length n such that rKt(x | y) ≥ 0.9|x| can be done by exhaustively testing every program of
length at most O(|x|) and every random string of length at most 2O(|x|), in space 2O(|x|) · poly(|y|). By our
assumption that LTV ∈ BPTIME[nc0 ] and the PSPACE-completeness of LTV, there exists some constant c1
and a probabilistic algorithm running in time 2c1·|x| ·|y|c1 outputting such x with probability at least 1−2−|x|.
Now let n be a sufficiently large integer. We set k = 10c1, and define k strings x1, . . . , xk each of length n,
such that for every i, xi is the lexicographically first string in {0, 1}n satisfying rKt(xi | x1 ◦ · · · ◦ xi−1) ≥
0.9n. Then by using the probabilistic algorithm described above, given n as input, x1, . . . , xk can be found
sequentially in time 2c1·n · (kn)c1 · k with probability at least 2/3. This gives us

rKt(x1 ◦ · · · ◦ xk) ≤ c1 · n+O(log n). (12)

On the other hand, assuming conditional SoI for rKt with error e(n), by applying SoI (k − 1) times we get

rKt(x1 ◦ · · · ◦ xk) ≥ 0.9kn− k · e(kn) = 9c1 · n− 10c1 · e(10c1 · n). (13)

But this contradicts Equation (12) for e(n) ≤ n/(100c1) and large enough n. In conclusion, if we set
ε ≤ min(ε0, (100c1)

−1), then the conditional SoI for rKt does not hold with error e(n) ≤ ε · n.

Next, we adapt the argument above and establish a corresponding lower bound on the complexity of
estimating conditional rKt complexity (Theorem 6).

Proof of Theorem 6. In order to derive a contradiction, assume there is a probabilistic algorithm A with the
properties in the statement. First, we observe that the proof of Lemma 15 still holds assuming the existence
of A, after an appropriate modification of the parameters. Indeed, the crucial point is that conditional SoI
is only employed in the proof to obtain an algorithm that distinguishes strings of bounded conditional rKt
complexity from random, and the parameters of A are sufficient for this. Consequently, there exists some
constant c ≥ 1 and ε0 > 0, such that for any ε < ε0, if A(x,w) runs in time 2ε·|x| · poly(|w|), then
LTV ∈ BPTIME[nc].

Now consider the following space-bounded deterministic procedure B(1n). It goes over all strings s
of length n and exactly computes the acceptance probability of A(s, ϵ), where ϵ is the empty string, and
returns the lexicographically first string x that is accepted with probability at least 2/3. It is easy to see
that B(1n) runs in space 2O(ε·n) for some constant CB . Then, from LTV ∈ BPTIME[nc] and the PSPACE-
completeness of LTV, it follows that x can also be constructed with high probability in time 2c

′·ε·n for some
constant c′. The latter implies that rKt(x) ≤ c′ · ε · n+O(log n).

By setting ε ≤ min(ε0, α/(2c
′)), we have rKt(x) ≤ (α/2) · n+O(log n). However, by the correctness

of A, it must hold that rKt(x) ≥ α · n. Hence we get a contradiction when n is sufficiently large.
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[LW95] Luc Longpré and Osamu Watanabe. On symmetry of information and polynomial time invert-
ibility. Inf. Comput., 121(1):14–22, 1995.

[Oli19] Igor C. Oliveira. Randomness and intractability in Kolmogorov complexity. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 32:1–32:14, 2019.

[OS17a] Igor C. Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit lower
bounds, and pseudorandomness. In Computational Complexity Conference (CCC), pages 18:1–
18:49, 2017.

[OS17b] Igor C. Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexponential
time. In Symposium on Theory of Computing (STOC), pages 665–677, 2017.

[Ron04] Detlef Ronneburger. Kolmogorov Complexity and Derandomization. PhD thesis, Rutgers Uni-
versity, 2004.

[San23] Rahul Santhanam. An algorithmic approach to uniform lower bounds. In Computational Com-
plexity Conference (CCC), pages 35:1–35:26, 2023.

[SS22] Michael E. Saks and Rahul Santhanam. On randomized reductions to the random strings. In
Computational Complexity Conference (CCC), pages 29:1–29:30, 2022.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. Computational Complexity, 16(4):331–364, 2007.

[ZL70] Alexander K. Zvonkin and Leonid A. Levin. The complexity of finite objects and the algorith-
mic concepts of randomness and information. UMN (Russian Math. Surveys), 25(6):83–124,
1970.

33

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


