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Abstract

We give new algorithms for tree evaluation (S. Cook et al. TOCT 2012) in the catalytic-computing

model (Buhrman et al. STOC 2014). Two existing approaches aim to solve tree evaluation (TreeEval) in

low space: on the one hand, J. Cook and Mertz (STOC 2024) give an algorithm for TreeEval running in

super-logarithmic space 𝑂(log 𝑛 log log 𝑛) and super-polynomial time 𝑛𝑂(log log 𝑛)
. On the other hand, a

simple reduction from TreeEval to circuit evaluation, combined with the result of Buhrman et al. (STOC

2014), gives a catalytic algorithm for TreeEval running in logarithmic 𝑂(log 𝑛) free space and polynomial

time, but with polynomial catalytic space.

We show that the latter result can be improved. We give a catalytic algorithm for TreeEval with

logarithmic 𝑂(log 𝑛) free space, polynomial runtime, and subpolynomial 2log
𝜀 𝑛

catalytic space (for any

𝜖 > 0). Our result opens a new line of attack on putting TreeEval in logspace, and immediately implies

an improved simulation of time by catalytic space, by the reduction of Williams (STOC 2025).

Our catalytic TreeEval algorithm is inspired by a connection to matching-vector families and private

information retrieval, and improved constructions of (uniform) matching-vector families would imply

improvements to our algorithm.
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1 Introduction

Space, unlike time, is a reusable resource. Catalytic computing studies the task of computing given a large

amount of full memory, which may be modified but must appear unchanged at the end of the computation.

A series of breakthrough results, initiated by Buhrman, Cleve, Koucký, Loff, and Speelman [BCK
+
14], show

that access to such full, catalytic space enables using less free space to solve problems than is otherwise

known. For example, Buhrman et al. [BCK
+
14] evaluate any uniform TC1

circuit with 𝑂(log 𝑛) free space
and poly(𝑛) catalytic space, while this task—which contains a complete problem for non-deterministic

logspace (NL)—is not known to be solvable with 𝑜(log2 𝑛) free space alone.
The power of catalytic space remains wide open. For instance, letting catalytic logspace (CL) be the

set of problems solvable in 𝑂(log 𝑛) free space and poly(𝑛) catalytic space, it is consistent with current

knowledge both that all polynomial-time computations can be solved in CL (i.e., P ⊆ CL) or that CL is

no stronger than the class of computations done in 𝑂(log2 𝑛) parallel time (i.e., CL ⊆ NC2
). One critical

question to understanding this power is: how small can catalytic space be for it to be useful?

In this paper, we draw a new connection between catalytic computing and information-theoretic

cryptography. Building on this connection, we obtain a new catalytic algorithm for the tree evaluation

problem [CMW
+
12], abbreviated TreeEval. TreeEval has become a central protagonist in complexity theory

for its roles in (1) aiming to separate polynomial time P = Time(poly(𝑛)) and logarithmic space L =
Space(𝑂(log 𝑛)) [CMW

+
12, CM24] and (2) giving new tradeoffs between space and time [Wil25], namely that

Time(𝑇 (𝑛)) ⊆ Space(
√
𝑇 (𝑛) log 𝑇 (𝑛)). In Section 3, we show that logarithmic free space and subpolynomial

catalytic space suffice to solve TreeEval:

Theorem 1.1. For every 𝜖 > 0, TreeEval can be solved in 𝑂(log 𝑛) free space, 2𝑂(log𝜖 𝑛) catalytic space, and
poly(𝑛) runtime. (See Corollary 3.2 for a parameterized statement.)

By contrast, the threshold-circuit-evaluation algorithm of Buhrman et al. [BCK
+
14] implies a catalytic

algorithm for TreeEval with superpolynomially more catalytic space: it uses 𝑂(log 𝑛) free space, poly(𝑛)
catalytic space, and polynomial runtime. At the same time, a brilliant algorithm of Cook and Mertz [CM24]

solves TreeEval with no catalytic space, but with more free space and superpolynomially larger runtime

than Theorem 1.1: it requires 𝑂(log 𝑛 ⋅ log log 𝑛) space and 𝑛𝑂(log log 𝑛)
time. Our algorithm admits smooth

tradeoffs that shrink the catalytic space at the expense of increasing the free space and the runtime. For

example, it implies the following new result:

Theorem 1.2. TreeEval can be solved in 𝑂(log 𝑛
√
log log 𝑛 log log log 𝑛) free space, exp(exp(𝑂(

√
log log 𝑛)))

catalytic space, and 𝑛𝑂(
√

log log 𝑛) time. (See Corollary 3.3 for a parameterized statement.)

Implications. Our new catalytic algorithm for tree evaluation has two major direct implications:

1. A new line of attack on Tree Evaluation. Our technique can be thought of as a generalization of the

techniques in the breakthrough result of Cook and Mertz, allowing us to apply technical tools developed

in a cryptographic context. We view this as providing a direct line of attack on TreeEval (as we discuss

later, improvements to these technical tools now directly imply better algorithms) and an indirect one

(by building connections between tree evaluation, catalytic computation, and other areas).

2. New time-space tradeoffs in the catalytic-space model. Following the seminal reduction ofWilliams [Wil25],

our result implies the following corollary:
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Corollary 1.3. For every 𝜖 > 0, a time 𝑇 = 𝑇 (𝑛) multitape Turing Machine can be decided in 𝑂(
√
𝑇)

free space, 2𝑂(𝑇 𝜖)
catalytic space, and 2𝑂(

√
𝑇)

time.

Relative to Williams’ result, this shrinks the free space by a factor of 𝑂(
√
log 𝑇 ) and shrinks the runtime

by superpolynomial factors (from 2𝑂(
√

𝑇 log 𝑇 )
to 2𝑂(

√
𝑇)

time), at the expense of introducing a large

catalytic tape. Separately, combining the reduction of Williams with the catalytic circuit-evaluation

algorithm of Buhrman et al. [BCK
+
14] gives that Time(𝑇 ) can be decided with 𝑂(

√
𝑇) free space and

2𝑂(
√
𝑇)

catalytic space. Compared to this result, we shrink the catalytic tape by a superpolynomial factor.

We state this result along with some additional tradeoffs (including for circuit evaluation) in Section 5.

The core machinery driving our new catalytic TreeEval algorithm is a family ofmatching vectors [Gro00];
informally, this is a collection of vectors whose inner products fall in a restricted set. Matching vectors

give rise to the best known locally-decodable codes in the low query-complexity regime [DGY11] and

to the most communication-efficient information-theoretic private-information-retrieval schemes in the

few-server regime [DG16, GKS25]. Our result is the first use of such techniques in catalytic computing. We

view this connection as the main contribution of the paper, and we are optimistic for further applications

and connections between cryptography, coding theory, and catalytic computing.

For one direct example, there is a large gap between known upper and lower bounds for matching vector

families, and improvements to constructions of these families would directly improve our algorithm—even

up to the point of speeding up Cook-Mertz to polynomial time, with no loss in space. In particular:

Theorem 1.4 (Informal). Suppose that (sufficiently uniform) matching-vector families with parameters not
ruled out by known lower bounds exist. Then TreeEval can be solved with 𝑂(log 𝑛 log log 𝑛) free space and
polynomial time. (See Remark 3.4.)

1.1 Overview

The tree evaluation problem. We follow the presentation of Goldreich [Gol25]. The tree evaluation

problem, TreeEvalℎ,𝓁, is the following task [CMW
+
12]: given a binary tree of height ℎ,1 where

• each leaf node is indexed by 𝑢 ∈ {0, 1}ℎ and labeled by a value 𝑣𝑢 ∈ {0, 1}𝓁 and

• each internal node is indexed by 𝑢 ∈ {0, 1}<ℎ and labeled by a function 𝑓𝑢 ∶ {0, 1}𝓁 × {0, 1}𝓁 → {0, 1}𝓁,

evaluate the tree in a bottom-up manner by setting each internal node’s value to be the evaluation of its

function on its children’s values, and output the value of the root node. In other words, output the value 𝑣∅
such that 𝑣𝑢 = 𝑓𝑢(𝑣𝑢0, 𝑣𝑢1) for all 𝑢 ∈ {0, 1}<ℎ. We note that the input length to the TreeEvalℎ,𝓁 problem is

thus 𝑛 = 2ℎ ⋅ 𝓁 ⋅ 22𝓁.
Our tree evaluation algorithm draws inspiration from information-theoretic cryptography, which we

unpack for the remainder of this overview. Before that, we note that our final construction is presented

in Section 3 and that the presentation therein is completely self-contained.

Inspiration from cryptography. Our improved algorithm for TreeEval takes inspiration from cryptog-

raphy. This new connection is based on the following view: both catalytic computing and cryptographic

protocols work by operating on masked values. In particular, catalytic computation requires intermediate

1
The tree evaluation problem was initially defined with tree fanin 𝑟 ≥ 2. For clarity, we focus on the 𝑟 = 2 case; there is a

simple reduction from any constant 𝑟 to 𝑟 = 2 (see Lemma 2.7) that suffices for the application of [Wil25].
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results to be written onto the catalytic tape, meaning these results are stored and accessed while masked

by the arbitrary contents of the catalytic tape 𝜏. (Though it is tempting to overwrite the catalytic tape’s

content 𝜏, this would not be a reversible transformation, likely breaking the contract of being able to restore

the tape to 𝜏 at the end of the computation.) Similarly, cryptography shows how to privately outsource a

computation to untrusted parties by masking the computation’s inputs with randomness.

We make this connection more precise in the special case of TreeEvalℎ,𝓁 and information-theoretic

private information retrieval (PIR). A PIR protocol [CGKS95, CGKS98] is defined with respect to a database

DB ∈ 𝑛DB
, which holds 𝑛DB records that are each elements in some ring , and a number of servers 𝑠 ≥ 2.

The protocol allows a user to read a record from the database DB, which is stored on the 𝑠 servers, without
revealing to any of the servers what record was read. Informally, a PIR protocol consists of three algorithms:

1. Query(𝑖 ∈ [𝑛DB]) → qu1, … , qu𝑠 , which the user runs on the index 𝑖 that it wants to read, to produce 𝑠
PIR queries, each of which is sent to one of the 𝑠 PIR servers.

2. Answer(DB, qu) → ans, which each server runs on the database DB and on the PIR query qu it received,

to produce a PIR answer ans.

3. Reconstruct(𝑖, ans1, … , ans𝑠) → , which the user runs on its index 𝑖 and on the PIR answers from

each server, to recover the 𝑖th record of the database DB.

The privacy requirement in PIR guarantees that the marginal distribution of each qu𝑗 , for 𝑗 ∈ [𝑠], is
independent of the index 𝑖 queried. In many PIR schemes [CGKS95, BIM00, WY05], this is achieved by

additively masking the index 𝑖 (encoded as an element of some vector space) with uniformly-sampled

randomness.

Connecting tree evaluation to private information retrieval. Consider a particular node 𝑢 in the

TreeEval tree. The algorithm’s task at this node is to evaluate the function 𝑓𝑢(𝑣𝑢0, 𝑣𝑢1) or, equivalently, to
retrieve the entry corresponding to index 𝑣𝑢0||𝑣𝑢1 from the truth table of 𝑓𝑢 (which consists of 22𝓁 records
in {0, 1}𝓁). The challenge is that the algorithm must do this without seeing either of 𝑣𝑢0, 𝑣𝑢1 in the clear: to

save space, the algorithm stores these values on the catalytic tape and accesses them masked by the tape’s

arbitrary initial contents.

This work starts by taking the view that the Cook-Mertz algorithm for TreeEval [CM24] can be seen as

solving this task by making white-box use of an 𝑠-server PIR protocol. Very roughly, this use of PIR allows

for retrieving any entry in the truth table of the function 𝑓𝑢 by making 𝑠 calls to the Answer algorithm—in a

way that none of these 𝑠 calls gets to see the index being retrieved. The TreeEval procedure runs each of

these 𝑠 calls to Answer (simulating each of the 𝑠 PIR servers) in sequence and, in between, makes recursive

calls on the child nodes to prepare the corresponding PIR queries (output by the Query algorithm) on

the catalytic tape. Finally, using the Reconstruct algorithm, the TreeEval procedure can recover the value

𝑓𝑢(𝑣𝑢0, 𝑣𝑢1) on the catalytic tape—as always, masked by the catalytic tape’s initial contents.

This mapping from private information retrieval to catalytic computation of a function 𝑓𝑢 is a conceptual
link, intended as an intuitive (rather than a formal) correspondence. Making it precise requires imposing

a number of structural requirements on the PIR scheme, which we describe in Section 4. An immediate

distinction (see Remark 4.3) is that PIR usually masks queries uniformly at random, while in TreeEval we

must work with a possibly adversarially chosen catalytic tape as the mask. These can be unified by simply

restricting attention to PIR schemes that have perfect correctness. Furthermore, we require a PIR scheme

that can be massaged to

1. run the Answer and Reconstruct methods interleaved with each other to save space,
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2. have the PIR queries qu1, … , qu𝑠 each take the form 𝜏+encode𝑗 (𝑖) for some random value 𝜏 (which will
be our catalytic tape) and some deterministic function encode𝑗 applied to the index 𝑖 being queried,
for 𝑗 ∈ [𝑠], and

3. allow the servers to “concatenate” PIR queries for values 𝑣𝑢0 and 𝑣𝑢1 into a PIR query for 𝑣𝑢0||𝑣𝑢1.

Then, this mapping from PIR to TreeEval requires running PIR over a database that is not exactly the truth

table of 𝑓𝑢, but instead that maps each value in the truth table of 𝑓𝑢 to a PIR query for that index (which

lets us prepare the PIR query for the next layer of the tree). Nonetheless, we view this connection as a

useful abstraction for describing our scheme, and as an open route to obtaining more advances in catalytic

computing by building on cryptographic techniques. Towards this end, in Section 4, we formally define a

new primitive, which we call catalytic information retrieval, that allows us to take a unified view of the

algorithm of [CM24] and our work.

Which PIR scheme to use? The PIR protocol embedded in Cook-Mertz [CM24] relies on classic Reed-

Muller codes [CGKS95, WY05]. However, we show that this is not the only option: in this work, we

make white-box use of the most communication-efficient PIR protocols known to date, based on matching-

vector codes [DG16, GKS25]. The advantage of these PIR schemes is that they can achieve subpolynomial

communication with only a constant number of servers, whereas Reed-Muller PIR requires a superconstant

number of servers to do so. (In particular, Cook-Mertz uses Reed-Muller PIR with 𝑠 = poly(log 𝑛DB) = poly(𝓁)
servers.) The benefit of having fewer servers is that our TreeEval algorithm requires only a constant number

of recursive calls at each level of the tree, and so only a constant amount of free space at each node to

track this call stack. As a result, we obtain improvements in both the required amount of free space

and runtime. However, a limitation is that matching-vector PIR with a constant number of servers has

larger communication than Reed-Muller PIR with poly(log 𝑛DB) servers; correspondingly, our new TreeEval

algorithm requires a larger catalytic tape, which Cook-Mertz does not.

To be more precise, when running TreeEval over a tree with height ℎ and 𝓁-bit labels using a “suitable”

PIR protocol (as described above), that has 𝑠 servers and communication complexity CC, we recover a

TreeEval algorithm that requires:

• 𝑂(𝑠) recursive calls at each node,

• 𝑂(ℎ log 𝑠) free space to track which recursive call is being executed at each node in the call stack,

• 𝑂(CC) catalytic space to store PIR queries and answers as they are being computed, and

• additional 𝑂(logCC + 𝓁) free space, to stream through the database while answering PIR queries

(note that this cost is only incurred at one node at a time).

In sum, ignoring low-order terms, the free space of the TreeEval algorithm would be 𝑂(ℎ log 𝑠 + logCC+ 𝓁),
the catalytic space would be 𝑂(CC), and the runtime would be poly(𝑠ℎ ⋅ 2𝓁). This view recovers the result of

Cook and Mertz [CM24, Gol25] by simply regarding the catalytic space as true space, and using Reed-Muller

PIR with 𝑠 = poly(𝓁) servers and CC = 𝑂(log 𝓁) communication, giving a TreeEval algorithm that requires

𝑂(ℎ log 𝓁 + 𝓁) space and poly(𝓁ℎ ⋅ 2𝓁+ℎ) time.

Instead, as mentioned above, our new TreeEval algorithm uses low-communication PIR protocols based

on matching-vector families. For any constant parameter 𝑡 ≥ 1, these schemes use 2𝑡 servers, while
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achieving communication complexity CC = exp(𝑂((log 𝑛DB)1/𝑡)) [Efr12, DG16, GKS25].2 As a result, our
true space goes down to 𝑂(ℎ + 𝓁) and our time to poly(2ℎ+𝓁). (The logCC term in the true space is lower-

order.) The tradeoff is that the catalytic space (equivalent to the PIR scheme’s communication) is no longer

logarithmic; instead, it grows to be subpolynomial in the input length: exp(𝑂(𝓁1/𝑡)). Making this algorithm

work requires heavy white-box use of these PIR protocols. We defer these technical details to Section 3,

and provide some additional discussion on the relation to PIR in Section 4. We describe applications to new

tradeoffs between time, space, and catalytic space, obtained via the reduction of [Wil25], in Section 5.

1.2 Related Work

Algorithms for Tree Evaluation. There has been extensive work on algorithms [Bar89, BC92, CMW
+
12,

CM20, CM22, CM24] and lower bounds [CMW
+
12, Liu13, EMP18, IN19] for tree evaluation, as well as on

evaluating classes of circuits in the catalytic model [BCK
+
14, AM25, CP25]. Though prior algorithms for

tree evaluation use the catalytic model as an intermediate tool to save space, we give the first catalytic
algorithm for tree evaluation (apart from the algorithm implicit in the work of [BCK

+
14]), showing that

subpolynomial catalytic space suffices to use only logarithmic free space.

Time-Space Tradeoffs. The breakthrough result of Williams [Wil25] improved on the 50 year old result

of Hopcroft, Paul, and Valiant [HPV77] that Time(𝑡) ⊆ Space(𝑂(𝑡/ log 𝑡)). To the best of our knowledge,

the relationship between time (and space) and catalytic space remains wide open, and we are the first to

give results in this area. It would even be consistent with current knowledge that P ⊆ CL – meaning that

we could evaluate any size-𝑛 circuit using 𝑂(log 𝑛) free space and poly(𝑛) catalytic space.

Matching Vectors. Yekhanin [Yek08] first used matching vectors to obtain new families of locally decodable

codes, starting a cascade of subsequent works [KY09, Efr09, IS10, DGY11, Yek12]. Since then, matching-

vector codes have found applications in low-communication PIR [DG16, GKS25] and other cryptographic

protocols like conditional disclosure of secrets and linear secret sharing [LBA25]. To date, the best known

families of matching vectors are due to Grolmusz [Gro00], building on work by Barrington, Beigel, and

Rudich [BBR94].

1.3 Open Questions

Our work leaves open a number of questions. The most immediate is whether TreeEval is indeed in classical

logspace, or in simultaneous polynomial time and log𝑐 𝑛 space for 𝑐 < 2. Building on this work, one

approach to showing TreeEval ∈ L would be to design a procedure for materializing matching vectors “on

the fly” from a much more succinct representation stored in catalytic space. This could bring down the

catalytic-space usage of our algorithm—perhaps all the way to 𝑂(log 𝑛) total space.
A second open question is whether known lower bounds on families of PIR schemes or of locally-

decodable codes translate to lower bounds on TreeEval. For example, a number of works [BIM00] show

that, in PIR, the servers must inherently run in Ω(𝑛) time to answer PIR queries. It remains open to prove

an analogous bound on the runtime of TreeEval—or, alternatively, to use techniques from the PIR literature

for circumventing this bound to speed up TreeEval.

2
In fact, [DG16, GKS25] show even better tradeoffs between the communication and the number of servers. [DG16] achieve

the stated communication with just 2𝑡−1 servers and [GKS25] show that this can be improved for certain numbers of servers

using 𝑆-decoding polynomials [CFL
+
13]. Though the results by [Efr12] suffice for our purposes, these techniques would yield

fine-grained improvements to our theorems.
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Finally, we leave open whether it is possible to port other techniques from cryptography to obtain

further improvements in catalytic computing.

2 Preliminaries

Notation. For an integer 𝑁 , we write [𝑁 ] to be the set {1, 2, … , 𝑁 }. Throughout our presentation, we will
use reg ← state to indicate that the register reg is updated to hold the contents of state. We will let exp(⋅)
and log(⋅) denote the base 2 exponential and logarithm, though the choice of base will not affect our results.

2.1 The Catalytic Space Model

We first define catalytic machines:

Definition 2.1. A catalytic machine 𝑀 is defined as a Turing machine in the usual sense—i.e., a read-only

input tape, a write-only output tape, and a (space-bounded) read-write work tape—with an additional

read-write tape known as the catalytic tape. Unlike the ordinary work tape, the catalytic tape is initialized

to hold an arbitrary string 𝜏, and 𝑀 has the restriction that for any initial setting of the catalytic tape, at

the end of its computation the catalytic tape must be returned to the original state 𝜏.

We parameterize such a catalytic computation by three resources: time, space, and catalytic space.

Definition 2.2. Let CatTimeSpace [𝐶(𝑛), 𝑆(𝑛), 𝑇 (𝑛)] be the class of languages recognized by catalytic

machines that, on inputs of size 𝑛 ∈ ℕ, use 𝑂(𝑆(𝑛)) workspace and 𝑂(𝐶(𝑛)) catalytic space and run in time

𝑂(𝑇 (𝑛)) in the worst case.

Remark 2.3 (Representations of rings on the catalytic tape). Our algorithms (and those of Cook and Mertz

and many other works) interpret the catalytic tape as holding a vector in ℤ𝑂(𝑑)
𝑚 , though the definition of

catalytic space gives a catalytic tape that consists of bits. This translation requires some care: for example, if

we naively represent ℤ3 with 2 bits, the catalytic tape could consist of values which do not correspond to an

element of the ring. However, we can deal with this with a standard trick [CP25] that increases the space to

represent each element in ℤ𝑚 to 𝑂(log(𝑑𝑚)) bits and increases the runtime by an additive poly(𝑚𝑑). If our
initial registers are 𝜏1, … , 𝜏𝑂(𝑑) ∈ ℤ𝑚, we search for an offset Δ ∈ {0, 1}𝑂(log 𝑑𝑚)

such that 𝜏𝑖 + Δ represents a

valid entry in ℤ𝑚 for every 𝑖. We store Δ during the computation, then subtract it from each register before

halting.

2.2 Existing Algorithms for Tree Evaluation

We recall prior algorithms for tree evaluation. The lowest-space procedure for tree evaluation is a brilliant

algorithm due to Cook and Mertz:

Theorem 2.4 ([CM24]). TreeEvalh,𝓁 ∈ Space[𝑂(log(𝑛) ⋅ log log(𝑛))].

A further result of [Sto23, Gol25] reduces the space by a log log log(𝑛) factor.
Furthermore, the observation that TreeEvalℎ,𝓁 can be computed by an unbounded fan-in circuit of depth

𝑂(ℎ) and size poly(𝑛), combined with the catalytic circuit-evaluation algorithm of [BCK
+
14], gives that:

Theorem 2.5 ([BCK
+
14]). TreeEvalh,𝓁 ∈ CatTimeSpace [𝑛𝑐 , 𝑂(log 𝑛), 𝑛𝑐] .
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Remark 2.6. This result follows from reducing TreeEvalℎ,𝓁 to a circuit and then evaluating such a circuit in

CL. However, the smallest circuit class known to contain TreeEvalℎ,𝓁 (log-depth unbounded-fanin circuits)

also contains a complete problem for non-deterministic logspace NL. Thus, improving the catalytic space

of the latter step even to 𝑛1−𝜀 is ruled out by conjectured time-space tradeoffs for NL [CP25].

Finally, we can reduce from TreeEval with constant (but greater than 2) fanin to tree eval with fanin 2,
at a mild cost to the height.

Lemma 2.7. There is a space 𝑂(ℎ log 𝑟 + 𝓁𝑟)-reduction from TreeEvalℎ,𝓁,𝑟 to TreeEvalℎ⌈log 𝑟⌉,𝓁⋅⌈𝑟/2⌉,2.

Proof. We set 𝓁′ = 𝓁 ⋅ ⌈𝑟/2⌉. For every node 𝑢 in the original tree with children 𝑢1, … , 𝑢𝑟 , we place a tree
gadget with 𝑟 leaves with height ⌈log 𝑟⌉. We think of the values at leaves 𝑢1, … , 𝑢𝑟 as 𝓁-bit strings padded
by 0𝓁⌈𝑟/2⌉−𝓁. All non-root nodes in the gadget tree simply collect the values passed from their children, using

that the output is of sufficient length to propagate both. The root node in the gadget, which has 𝑣𝑢1 , … , 𝑣𝑢𝑟
as input, has output 𝑓𝑢(𝑝𝑢1 , … , 𝑝𝑢𝑟 ) padded by 0𝓁⌈𝑟/2⌉−𝓁. This transformation is clearly logspace uniform in

the size of the resulting tree, and preserves the value at the root.

2.3 Matching Vector Families

We next define matching-vector families and verify some useful facts about them. Let 𝑝1, 𝑝2, … , 𝑝𝑡 be 𝑡
distinct odd primes. Let 𝑚 = 𝑝1…𝑝𝑡 , and let ℤ𝑚 = ℤ/𝑚ℤ denote the ring of integers modulo 𝑚.

Definition 2.8. For 𝑣1 ∈ ℤ𝑝1 , … , 𝑣𝑡 ∈ ℤ𝑝𝑡 , we let CRT(𝑣1, … , 𝑣𝑡) denote the unique value 𝑣 ∈ ℤ𝑚 such that

𝑣 ≡ 𝑣𝑖 (mod 𝑝𝑖) for 𝑖 ∈ [𝑡].

Definition 2.9. Let 𝑑 be a positive integer. We say that two collections of vectors (𝑈 , 𝑉 ), where 𝑈 =
(𝐮1, … , 𝐮𝑁 ) ∈ (ℤ𝑑

𝑚)𝑁 and 𝑉 = (𝐯1, … , 𝐯𝑁 ) ∈ (ℤ𝑑
𝑚)𝑁 , form a matching-vector family over ℤ𝑑

𝑚 of size 𝑁 , if:

1. for every 𝑖, 𝑗 ∈ [𝑁 ], it holds that ⟨𝐮𝑖, 𝐯𝑗 ⟩ ∈ {0, 1} mod 𝑝𝑘 for 𝑘 ∈ [𝑡], and

2. for every 𝑖, 𝑗 ∈ [𝑁 ], we have 𝑖 = 𝑗 if and only if ⟨𝐮𝑖, 𝐯𝑗 ⟩ = 1.

Definition 2.10. We say such a (sequence of) families {𝑈 , 𝑉 }𝑁∈ℕ is logspace uniform if there is an

algorithm that, on input (1𝑁 , 𝑖, 𝑗 , 𝑝1, … , 𝑝𝑡) where 𝑖, 𝑗 ∈ [𝑁 ], prints 𝐮𝑖, 𝐯𝑗 to the output tape and runs in

space 𝑂(log𝑁 + log 𝑑 + log𝑚).3

Remark 2.11. For convenience, our definition of matching-vector families differs in a minor way from the

customary definition [Efr12, DG16]: rather than having Item 2 say that the inner product of 𝐮𝑖 with 𝐯𝑗
is 0 iff 𝑖 = 𝑗 , we say that this inner product is 1. These definitions are equivalent, up to increasing the

dimension 𝑑 by one: if we define 𝐮′𝑖 = (𝐮𝑖||1) and 𝐯′𝑗 = (−𝐯𝑗 ||1), then it holds that ⟨𝐮′𝑖 , 𝐯′𝑗 ⟩ = 1 − ⟨𝐮𝑖, 𝐯𝑗 ⟩. As
a result, Item 1 is preserved by this transformation, and moreover we have ⟨𝐮𝑖, 𝐯𝑗 ⟩ = 0 ⇔ ⟨𝐮′𝑖 , 𝐯′𝑗 ⟩ = 1.

A crucial ingredient to our constructions is the following theorem:

Theorem 2.12 ([BBR94, Gro00, DGY11]). Let 𝑚 be the product of 𝑡 distinct primes 𝑝1, … , 𝑝𝑡 . Let 𝑤 be a
positive integer. Then there exists a logspace-uniform matching-vector family over ℤ𝑑

𝑚 of size 𝑁 , where:

𝑁 ∶= (
⌈𝑤1+1/𝑡⌉

𝑤 ), and

3
Note that we allow space logarithmic in the modulus (versus doubly logarithmic). This does not affect the ultimate complexity

of any of our constructions.
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𝑑 ∶= 1 +
⌊(𝑚𝑤)1/𝑡 ⌋

∑
𝑗=0 (

⌈𝑤1+1/𝑡⌉
𝑗 ).

Proof Sketch. This is immediate from setting parameters suitably in [DGY11, Lemma 11]. In their theorem,

we set ℎ = ⌈𝑤1+1/𝑡⌉ and for each 𝑖 ∈ [𝑡] take 𝑒𝑖 to be minimal such that 𝑝𝑒𝑖
𝑖 > (𝑚𝑤)1/𝑡/𝑝𝑖. This implies that

∏𝑖 𝑝
𝑒𝑖
𝑖 > 𝑚𝑤/∏𝑖 𝑝𝑖 = 𝑤, and moreover for any 𝑖 we have 𝑝𝑒𝑖

𝑖 ≤ (𝑚𝑤)1/𝑡 . Finally, [DGY11, Lemma 11] does

not state logspace-uniformity but it is immediate from their construction. We verify this in Section A.

The following corollary is straightforward; we defer its proof to Section B.

Corollary 2.13. All of the following hold:

1. ([Gro00]) Let 𝑡 be constant and 𝑝1, … , 𝑝𝑡 be 𝑡 fixed odd primes. Then for any 𝓁 ≥ 1, there exists a
logspace-uniformmatching-vector family overℤ𝑝1𝑝2…𝑝𝑡 of size 2𝓁with dimension 𝑑 = exp (𝑂 (𝓁1/𝑡(log 𝓁)1−1/𝑡)).

2. For any 𝓁 ≥ 1, let 𝑡 =
√
log 𝓁 − log log 𝓁/2 + 𝑂(1), and let 𝑝1, … , 𝑝𝑡 be the first 𝑡 odd primes. Then

there exists a logspace-uniform matching-vector family over ℤ𝑝1𝑝2…𝑝𝑡 of size 2𝓁 with dimension

𝑑 = exp(exp(𝑂(
√
log 𝓁))).

3 Main Result: Catalytic Tree Evaluation from Matching Vectors

We now prove the following theorem:

Theorem 3.1. Let odd primes 𝑝1, … , 𝑝𝑡 be given as input and let𝑚 = ∏𝑖 𝑝𝑖. Suppose there exists an𝑂(𝓁)-space
uniform matching vector family of size 2𝓁 overℤ𝑑

𝑚, and suppose additionally that 𝑑 log𝑚 ≤ poly(2ℎ+𝓁). Assume
our algorithm is given the following resources:

• a catalytic tape of length 𝑂(𝑑 log(𝑑𝑚)).

• on the input tape, the truth table of a function 𝑓𝑢 ∶ {0, 1}𝓁 × {0, 1}𝓁 → {0, 1}𝓁 for every 𝑢 ∈ {0, 1}<ℎ, and
inputs 𝑣𝑢 ∈ {0, 1}𝓁 for 𝑢 ∈ {0, 1}ℎ.

Then, there exists an algorithm that uses 𝑂(𝓁 + ℎ log𝑚) free space and time poly(2𝓁+ℎ𝑡) and outputs 𝑣∅ (i.e.,
the result of TreeEval).

We can then combine this result with the matching-vector families given by Corollary 2.13 to read off

the results in the introduction:

Corollary 3.2. For any 𝜖 > 0, we can solve TreeEvalℎ,𝓁 in 𝑂(𝓁 + ℎ) free space, exp(𝑂(𝓁𝜖)) catalytic space,
and poly(2𝓁+ℎ) time.

Proof. This follows by taking Item 1 of Corollary 2.13 with 𝑡 a sufficiently large constant, e.g., 𝑡 = ⌈3/𝜖⌉.

Corollary 3.3. We can solve TreeEvalℎ,𝓁 in𝑂(𝓁+ℎ
√
log 𝓁 log log 𝓁) free space, exp(exp(𝑂(

√
log 𝓁))) catalytic

space, and poly(2𝓁+ℎ
√

log 𝓁) time.

Proof. This follows from Item 2 of Corollary 2.13.
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Remark 3.4 (Better tree evaluation from better matching-vector families). There is a wide gap between the

best-known constructions and lower bounds for matching-vector families. To the best of our knowledge, it

would be consistent with current lower bounds [TB98, BDL14, ADL
+
25, GGMT25] for there to be matching-

vector families (with 𝑡, 𝑝1, … , 𝑝𝑡 all constant) of size 2𝓁 and dimension 𝑂(𝓁 log 𝓁).4 If such matching-vector

families were to exist, then Theorem 3.1 would imply an algorithm for TreeEval that simultaneously uses

𝑂(log 𝑛 log log 𝑛) space—matching [CM24]—and runs in polynomial time.

3.1 Recursive Step: One Level of Tree Evaluation

The main technical workhorse for our results is the following theorem:

Theorem 3.5. Let 𝑚 = 𝑝1𝑝2…𝑝𝑡 be a product of 𝑡 distinct odd primes that are given as input. Suppose
there exists an 𝑂(𝓁)-space uniform matching vector family {𝐮𝑥 , 𝐯𝑥 ∈ ℤ𝑑

𝑚 ∶ 𝑥 ∈ {0, 1}𝓁} of size 2𝓁 over ℤ𝑑
𝑚.

Additionally, let
{
𝐰𝑠 ∶ 𝑠 ∈ {0, 1}𝓁

}
be any 𝑂(𝓁)-space uniform collection of vectors in ℤ𝑑

𝑚. Suppose our
algorithm is given the following resources:

• global space comprising three registers 𝐱, 𝐲, 𝐳 ∈ ℤ𝑑
𝑚;

• the truth table of a function 𝑓 ∶ {0, 1}𝓁 × {0, 1}𝓁 → {0, 1}𝓁 on the input tape; and

• an oracle  that takes as input a scalar 𝛾 ∈ ℤ𝑚 and bits ctrl, 𝜎 ∈ {0, 1} in local space and updates the
registers as follows. In the below, 𝑎, 𝑏 ∈ {0, 1}𝓁 are some bitstrings.

– if 𝜎 = 0, let Δ denote 𝐮𝑎 if ctrl = 0 and 𝐯𝑎 otherwise. The oracle will update 𝐱 ← 𝐱 + 𝛾Δ and leave
all other registers unchanged. (Here, by 𝐱 we mean the first of the three catalytic registers, and 𝐲
refers to the second catalytic register.)

– if 𝜎 = 1, let Δ denote 𝐮𝑏 if ctrl = 0 and 𝐯𝑏 otherwise. The oracle will update 𝐲 ← 𝐲+ 𝛾Δ and leave
all other registers unchanged.

Then, there exists an algorithm that takes as input a scalar 𝛾 ∈ ℤ𝑚 in local space and updates 𝐳 ← 𝐳+ 𝛾𝐰𝑓 (𝑎,𝑏)
(while leaving the 𝐱 and 𝐲 registers unchanged). Moreover, the algorithm uses 𝑂(𝓁 + log𝑚 + log(𝑑 ⋅ log𝑚))
local space, and before making all oracle calls erases all but 𝑂(log𝑚) bits of this space. The algorithm runs in
time poly(2𝓁+𝑡 ⋅ 𝑑 ⋅ log𝑚) and makes 2𝑂(𝑡) queries to .

Corollary 3.6. We will use three corollaries of this theorem:

• letting 𝐰𝑠 = 𝐮𝑠 , we can update 𝐳 ← 𝐳 + 𝛾𝐮𝑓 (𝑎,𝑏);

• letting 𝐰𝑠 = 𝐯𝑠 , we can update 𝐳 ← 𝐳 + 𝛾𝐯𝑓 (𝑎,𝑏); and

• letting 𝐰𝑠 = 𝑠 (with appropriate zero padding), we can update 𝐳 ← 𝐳 + 𝛾𝑠.

Before we prove the theorem, we begin with some preliminary lemmas:

Lemma 3.7. Let 𝑝 be prime. For any 𝑔1, 𝑔2 ∈ ℤ𝑝 , consider the polynomial:

𝑓 (𝑋) = 𝑋𝑔1𝑔2 mod 𝑝 − 𝑋 (𝑔1+1)𝑔2 mod 𝑝 − 𝑋𝑔1(𝑔2+1) mod 𝑝 + 𝑋 (𝑔1+1)(𝑔2+1) mod 𝑝 ∈ ℤ[𝑋].

This polynomial is nonzero. Moreover, its nonzero coefficients are all in the set {−2, −1, 1, 2}.
4
It was shown by [BDL14] that under the polynomial Freiman-Ruzsa conjecture [Ruz99] over ℤ𝑑

𝑚, the inequality 2𝓁 ≤
exp(𝑂(𝑑/ log 𝑑)) ⇒ 𝑑 ≥ Ω(𝓁 log 𝓁) must hold (assuming 𝑚 is constant). This conjecture was recently proven by [GGMT25].
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Proof. Suppose for the sake of contradiction that this polynomial is zero. Then, we would necessarily have

𝑓 ′(1) = 0. However, we have

𝑓 ′(1) ≡ 𝑔1𝑔2 − (𝑔1 + 1)𝑔2 − 𝑔1(𝑔2 + 1) + (𝑔1 + 1)(𝑔2 + 1) ≡ 1 (mod 𝑝),

which is a contradiction. It follows that the polynomial is nonzero. In addition, it is apparent that any

coefficients of this polynomial must be integers in the interval [−2, 2], so the conclusion follows.

Lemma 3.8. We can compute and store both ⟨𝐱, 𝐯𝑎⟩ and ⟨𝐲, 𝐯𝑏⟩ using 𝑂(𝓁) local space, at most 𝑂(log𝑚) local
space during oracle calls, and 4 calls to . At the end, none of the global space registers will be changed.

Proof. This follows from the standard catalytic computing approach for computing inner products:

1. Compute tmp1 = ⟨𝐱, 𝐲⟩ and write it into local space.

2. Swap the 𝐱, 𝐲 registers. The global state is now (𝐲, 𝐱, 𝐳).

3. Use  with 𝜎 = 0, ctrl = 1, 𝛾 = 1. The global state is now (𝐲 + 𝐯𝑎, 𝐱, 𝐳).

4. Compute the inner product tmp2 = ⟨𝐲 + 𝐯𝑎, 𝐱⟩ and write it into local space.

5. Use  with 𝜎 = 0, ctrl = 1, 𝛾 = −1 to return the global state to (𝐲, 𝐱, 𝐳).

6. Use  with 𝜎 = 1, ctrl = 1, 𝛾 = 1 to update the global state to (𝐲, 𝐱 + 𝐯𝑏 , 𝐳).

7. Compute the inner product tmp3 = ⟨𝐲, 𝐱 + 𝐯𝑏⟩ and write it into local space.

8. Use  with 𝜎 = 1, ctrl = 1, 𝛾 = −1 to update the global state to (𝐲, 𝐱, 𝐳).

9. Swap the 𝐱, 𝐲 registers.

Note that tmp2 − tmp1 = ⟨𝐱, 𝐯𝑎⟩ and tmp3 − tmp1 = ⟨𝐲, 𝐯𝑏⟩, so we are done.

3.2 Proof of Theorem 3.5

We next give the algorithm that underlies Theorem 3.5, together with its proof of correctness and efficiency

analysis. Except where stated, all arithmetic is carried out modulo 𝑚.

Algorithm. We use 𝛾 ∗
to denote the value of 𝛾 that is given as input, along with the input function

𝑓 ∶ {0, 1}𝓁 × {0, 1}𝓁 → {0, 1}𝓁.

1. Use Lemma 3.8 to compute 𝑔1 = ⟨𝐱, 𝐯𝑎⟩ and 𝑔2 = ⟨𝐲, 𝐯𝑏⟩.

2. For each 𝑖 ∈ [𝑡], compute the polynomial 𝑓𝑖(𝑋) = 𝑋𝑔1𝑔2 mod 𝑝𝑖 − 𝑋 (𝑔1+1)𝑔2 mod 𝑝𝑖 − 𝑋𝑔1(𝑔2+1) mod 𝑝𝑖 +
𝑋 (𝑔1+1)(𝑔2+1) mod 𝑝𝑖 ∈ ℤ[𝑋]. By Lemma 3.7, this polynomial is nonzero over ℤ𝑝𝑖[𝑋] and therefore over

ℤ[𝑋] as well. Let 𝛼𝑖𝑋𝛽𝑖
be the lexicographically first nonzero monomial in 𝑓𝑖(𝑋). Since all exponents

in 𝛽𝑖 are reduced mod 𝑝𝑖, we can regard 𝛽𝑖 as an element of ℤ𝑝𝑖 . We know from the lemma that

𝛼𝑖 ∈ {−2, −1, 1, 2} and hence it is coprime to 𝑚.

3. Repeat for all bits 𝑏1, … , 𝑏𝑡 , 𝑐1, … , 𝑐𝑡 ∈ {0, 1}:
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(a) Using two queries to , make the updates:

𝐱 ← 𝐱 + CRT(𝑏1, … , 𝑏𝑡) ⋅ 𝐮𝑎
𝐲 ← 𝐲 + CRT(𝑐1, … , 𝑐𝑡) ⋅ 𝐮𝑏 .

(For example, the first update would be with 𝜎 = 0, ctrl = 0, 𝛾 = CRT(𝑏1, … , 𝑏𝑡). Recall that
CRT(𝑏1, … , 𝑏𝑡),CRT(𝑐1, … , 𝑐𝑡) are scalars in ℤ𝑚 and 𝐮𝑎, 𝐮𝑏 are vectors in ℤ𝑑

𝑚.)

(b) Repeat for all 𝑟, 𝑠 ∈ {0, 1}𝓁:
i. Compute ⟨𝐱, 𝐯𝑟⟩ ⋅ ⟨𝐲, 𝐯𝑠⟩ mod 𝑚.
ii. If the result is equal to CRT(𝛽1, … , 𝛽𝑡), update

𝐳 ← 𝐳 + 𝛾 ∗ ⋅ 𝐰𝑓 (𝑟,𝑠) ⋅ (−1)∑𝑖∈[𝑡](𝑏𝑖+𝑐𝑖) ⋅
(
∏
𝑖∈[𝑡]

𝛼𝑖)

−1

.

(Here, all multiplicative inverses are computed mod 𝑚.)
(c) Using two queries to , restore:

𝐱 ← 𝐱 + CRT(−𝑏1, … , −𝑏𝑡) ⋅ 𝐮𝑎
𝐲 ← 𝐲 + CRT(−𝑐1, … , −𝑐𝑡) ⋅ 𝐮𝑏 .

Proof of correctness. We prove correctness in a few steps:

Lemma 3.9. For any 𝑖 ∈ [𝑡] and 𝑟, 𝑠 ∈ {0, 1}𝓁, we have:

∑
𝑏𝑖,𝑐𝑖∈{0,1}

⟨𝐱+𝑏𝑖 ⋅𝐮𝑎,𝐯𝑟 ⟩⋅⟨𝐲+𝑐𝑖 ⋅𝐮𝑏 ,𝐯𝑠⟩≡𝛽𝑖 (mod 𝑝𝑖)

(−1)𝑏𝑖+𝑐𝑖 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝛼𝑖, if (𝑟, 𝑠) = (𝑎, 𝑏),
0, if ⟨𝐮𝑎, 𝐯𝑟⟩ ⋅ ⟨𝐮𝑏 , 𝐯𝑠⟩ ≡ 0 (mod 𝑝𝑖),
arbitrary, otherwise.

Proof. First we address the second case where at least one of the inner products is 0 mod 𝑝𝑖. Assume

without loss of generality that ⟨𝐮𝑎, 𝐯𝑟⟩ ≡ 0 (mod 𝑝𝑖); the other case is analogous. In this case, whether

or not ⟨𝐱 + 𝑏𝑖 ⋅ 𝐮𝑎, 𝐯𝑟⟩ ⋅ ⟨𝐲 + 𝑐𝑖 ⋅ 𝐮𝑏 , 𝐯𝑠⟩ ≡ 𝛽𝑖 (mod 𝑝𝑖) is independent of the choice of 𝑏𝑖. Thus 𝑐𝑖 ranges
over 𝛿 ∈ {0, 1} such that ⟨𝐱, 𝐯𝑟⟩ ⋅ ⟨𝐲 + 𝛿 ⋅ 𝐮𝑏 , 𝐯𝑠⟩ ≡ 𝛽𝑖 (mod 𝑝𝑖), and for each such 𝛿 there are two terms

corresponding to 𝑏𝑖 = 0 and 𝑏𝑖 = 1. Pairing up terms corresponding to (𝑏𝑖, 𝑐𝑖) = (0, 𝛿) and (1, 𝛿) (for each
included 𝛿) implies the conclusion.

In the first case, the condition ⟨𝐱 + 𝑏𝑖 ⋅ 𝐮𝑎, 𝐯𝑟⟩ ⋅ ⟨𝐲 + 𝑐𝑖 ⋅ 𝐮𝑏 , 𝐯𝑠⟩ ≡ 𝛽𝑖 (mod 𝑝𝑖) that we are summing

over simplifies to (𝑔1 + 𝑏𝑖)(𝑔2 + 𝑐𝑖) ≡ 𝛽𝑖 (mod 𝑝𝑖), noting that by the matching vector guarantee we have

⟨𝐮𝑎, 𝐯𝑟⟩ ≡ ⟨𝐮𝑏 , 𝐯𝑠⟩ ≡ 1 (mod 𝑝𝑖). Now, we note that the polynomial 𝑓𝑖(𝑋) can also be written as

∑
𝑏𝑖,𝑐𝑖∈{0,1}

(−1)𝑏𝑖+𝑐𝑖 ⋅ 𝑋 (𝑔1+𝑏𝑖)(𝑔2+𝑐𝑖) mod 𝑝𝑖 .

Thus, our expression of interest is the coefficient of 𝑋𝛽𝑖
in 𝑓𝑖(𝑋), which is 𝛼𝑖 by construction. The conclusion

follows.

Lemma 3.10. For any 𝑟, 𝑠 ∈ {0, 1}𝓁, we have:

∑
𝑏1,…,𝑏𝑡 ,𝑐1,…,𝑐𝑡∈{0,1}

⟨𝐱+𝑏𝑖 ⋅𝐮𝑎,𝐯𝑟 ⟩⋅⟨𝐲+𝑐𝑖 ⋅𝐮𝑏 ,𝐯𝑠⟩≡𝛽𝑖 (mod 𝑝𝑖)∀𝑖∈[𝑡]

(−1)∑𝑖∈[𝑡](𝑏𝑖+𝑐𝑖) =

{
∏𝑖∈[𝑡] 𝛼𝑖, if (𝑟, 𝑠) = (𝑎, 𝑏),
0, else.
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Proof. We can start by factoring over the independent choices of 𝑏𝑖, 𝑐𝑖 for each prime 𝑝𝑖 to obtain:

∑
𝑏1,…,𝑏𝑡 ,𝑐1,…,𝑐𝑡∈{0,1}

⟨𝐱+𝑏𝑖 ⋅𝐮𝑎,𝐯𝑟 ⟩⋅⟨𝐲+𝑐𝑖 ⋅𝐮𝑏 ,𝐯𝑠⟩≡𝛽𝑖 (mod 𝑝𝑖)∀𝑖∈[𝑡]

(−1)∑𝑖∈[𝑡](𝑏𝑖+𝑐𝑖) = ∏
𝑖∈[𝑡]

⎡
⎢
⎢
⎢
⎣

∑
𝑏𝑖,𝑐𝑖∈{0,1}

⟨𝐱+𝑏𝑖 ⋅𝐮𝑎,𝐯𝑟 ⟩⋅⟨𝐲+𝑐𝑖 ⋅𝐮𝑏 ,𝐯𝑠⟩≡𝛽𝑖 (mod 𝑝𝑖)

(−1)𝑏𝑖+𝑐𝑖
⎤
⎥
⎥
⎥
⎦

.

If 𝑟 ≠ 𝑎, then by the matching vector guarantee there must exist an 𝑖 such that ⟨𝐮𝑎, 𝐯𝑟⟩ ≡ 0 (mod 𝑝𝑖). The
corresponding term in the above product will be 0 by Lemma 3.9, which will make the entire product 0. We

may argue similarly if 𝑠 ≠ 𝑏 .
If (𝑟, 𝑠) = (𝑎, 𝑏), then by Lemma 3.9, the 𝑖th term in the above product is 𝛼𝑖, implying the conclusion.

Correctness of our algorithm is then immediate from the following corollary:

Corollary 3.11. We have:

(
∏
𝑖∈[𝑡]

𝛼𝑖)
⋅ 𝐰𝑓 (𝑎,𝑏) = ∑

𝑟,𝑠∈{0,1}𝓁
𝐰𝑓 (𝑟,𝑠) ⋅

⎡
⎢
⎢
⎢
⎣

∑
𝑏1,…,𝑏𝑡 ,𝑐1,…,𝑐𝑡∈{0,1}

⟨𝐱+𝑏𝑖 ⋅𝐮𝑎,𝐯𝑟 ⟩⋅⟨𝐲+𝑐𝑖 ⋅𝐮𝑏 ,𝐯𝑠⟩≡𝛽𝑖 (mod 𝑝𝑖)∀𝑖∈[𝑡]

(−1)∑𝑖∈[𝑡](𝑏𝑖+𝑐𝑖)
⎤
⎥
⎥
⎥
⎦

.

Proof. By Lemma 3.10, the left-hand side and right-hand side are identical linear forms in the collection

{𝐰𝑟,𝑠 ∶ 𝑟, 𝑠 ∈ {0, 1}𝓁}.

Efficiency analysis. The stated runtime guarantee is clear. (The poly(𝑑 ⋅ log𝑚) factor is to allow for basic

arithmetic operations in the 𝐱, 𝐲, 𝐳 registers.)5

It remains to tally up the space needed at each point in the computation:

• In step 1, we compute and store 𝑔1, 𝑔2 in clean local space (of which we need 𝑂(log𝑚)).

• In step 2, we compute and store the coefficients 𝛼𝑖, 𝛽𝑖 in local space 𝑂(𝑡 + ∑𝑖∈[𝑡] log 𝑝𝑖) = 𝑂(log𝑚),
which we persist across the entire computation.

• In step 3, we use 𝑂(𝑡) = 𝑂(log𝑚) local space to store the bits 𝑏1, … , 𝑏𝑡 and 𝑐1, … , 𝑐𝑡 . Then, in

steps (a) and (c) in this loop, this is all of the information we store. During step (b), where we use

𝑂(𝓁 + log(𝑑 ⋅ log𝑚)) local space to keep track of the values 𝑟 and 𝑠 (each of bitlength 𝓁) and to keep

pointers into registers 𝐱, 𝐲, 𝐳, we do not invoke the oracle.

Remark 3.12 (An alternate view in terms of polynomial rings). The reader might rightly suspect that our

algorithm arose from amore complicated construction over the polynomial ring ∶= ℤ𝑚[𝑋1, … , 𝑋𝑡]/(𝑋
𝑝1
1 −

1, 𝑋𝑝2
2 − 1,… , 𝑋𝑝𝑡

𝑡 − 1), akin to those of [DGY11, DG16, GKS25]. In this setting, our registers would be in

𝑑
rather than ℤ𝑑

𝑚, and the update to the 𝐳 register can be thought of as adding some multiple of

𝑡
∏
𝑖=1 (

∑
𝑏𝑖,𝑐𝑖∈{0,1}

(−1)𝑏𝑖+𝑐𝑖𝑋 (𝑔1+𝑏𝑖)(𝑔2+𝑐𝑖)
𝑖 )

=
𝑡

∏
𝑖=1

𝑓𝑖(𝑋𝑖).

The resulting algorithm keeps track of unnecessary information (and makes unnecessary changes to the

catalytic tape); we only ever need one monomial of a polynomial in, and the algorithm we present arises

from making this simplification.

5
Recall that arithmetic mod 𝑚 can be computed in polynomial time and linear space in the input representation, i.e., 𝑂(log𝑚).
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3.3 Proof of Theorem 3.1

Finally, we use Theorem 3.5 in the natural recursive fashion to prove Theorem 3.1. For 𝑢 ∈ {0, 1}≤ℎ specifying
a node in the tree, recall that 𝑣𝑢 is the value of the TreeEval instance at that node.

We instantiate a single free space register 𝑢 ∈ {0, 1}≤ℎ to track the current location in the tree, which we

initialize to ∅ (corresponding to the root node). We allocate𝑂(𝓁+𝑡+log𝑚+log(𝑑 log𝑚)) = 𝑂(𝓁+ℎ+log𝑚)
bits of free workspace to be used temporarily by the algorithm of Theorem 3.5 between its oracle calls, and

ℎ ⋅ 𝑂(log𝑚) free space allocated for storing the 𝑂(log𝑚) free space used by the algorithm at each level

while making oracle calls.

We interpret the catalytic tape as holding registers 𝐱, 𝐲, 𝐳 ∈ ℤ𝑑
𝑚. To handle that the catalytic tape consists

of bits and not elements of ℤ𝑚, we use Remark 2.3 (and the catalytic tape thus has length 𝑂(𝑑 log(𝑑𝑚))).
We store the final ⌈𝓁/ log𝑚⌉ coordinates of 𝐳 using free space, which we denote reg.

Finally, we invoke Theorem 3.5 at the root node with 𝛾 ∗ = 1 and 𝐰𝑠 = 𝑠 (where we cast 𝑠 ∈ ℤ⌈𝓁/ log𝑚⌉
𝑚

and pad to the appropriate length). We discuss how to handle oracle calls made by the one-level algorithm

below. Once this procedure halts, we have that 𝐳 is in configuration reg + 𝑣∅ (and 𝐱, 𝐲 are unmodified), so

we subtract reg and obtain 𝑣∅ as desired. Lastly, we run the algorithm again with 𝛾 ∗ = −1 and 𝐰𝑠 = 𝑠. It is
easy to see that after this the catalytic tape is entirely restored, so we halt and return 𝑣∅.

Handling oracle calls. Suppose the one-level algorithm corresponding to node 𝑢 at level 𝑖 ∈ {2, … , ℎ}
makes a call to  with input 𝛾 , ctrl and bit 𝜎. First, if 𝑖 = 2 (so the call corresponds to a leaf node at layer 1
of the tree) we define 𝑎 = 𝑣𝑢0 and 𝑏 = 𝑣𝑢1. We directly use 𝑂(𝓁 + log(𝑑 log𝑚)) = 𝑂(𝓁 + ℎ) local space to
make the update to 𝐱 or 𝐲 specified by the oracle API.

Otherwise, store 𝛾 , ctrl, 𝜎 and the currently used free space of the algorithm in the 𝑂(log𝑚) bits of
free space allocated for level 𝑖. If 𝜎 = 0 we swap 𝐱, 𝐳, and if 𝜎 = 1 we swap 𝐲, 𝐳. Both swaps can be

performed using 𝑂(log(𝑑 log𝑚)) = 𝑂(𝓁 + ℎ) temporary free space (which we then erase). We update the

global indicator of our current node to 𝑢 ← 𝑢𝜎, and invoke the algorithm of Theorem 3.5 with

𝑓 = 𝑓𝑢 𝛾 ∗ = 𝛾 𝐰 =

{
𝐮 ctrl = 0
𝐯 ctrl = 1

and note that the child algorithm can store which part of the matching-vector family it should apply with a

single bit of free space. After the child algorithm returns, we again swap 𝐱, 𝐳 if 𝜎 = 0 and 𝐲, 𝐳 if 𝜎 = 1, and
update 𝑢 to reflect the current node. By the correctness of the child algorithm, we have that this procedure

halts with the register update specified by the oracle API.

Correctness. By Theorem 3.5 and the fact that we implement the specified oracle API, when the algorithm

is run at node 𝑢 with 𝛾 ∗
and vector family𝐰, it updates 𝐳 to 𝐳+𝛾 ∗ ⋅𝐰𝑓 (𝑣𝑢0,𝑣𝑢1) = 𝐳+𝛾 ∗ ⋅𝐰𝑣𝑢 . This establishes

correctness by a simple inductive argument.

Runtime. Each single-level algorithm makes 2𝑂(𝑡)
oracle calls and runs in time poly(2𝓁+𝑡 ⋅ 𝑑 log𝑚) =

poly(2ℎ+𝓁+𝑡), so an induction gives a final runtime 2𝑂(𝑡ℎ) ⋅ poly(2ℎ+𝓁+𝑡) = poly(2𝓁+ℎ𝑡).

4 An Alternate View: Catalytic Tree Evaluation from Private Informa-
tion Retrieval

Next, we give an alternate presentation of Section 3’s algorithm, phrased closer to the language of private

information retrieval (PIR).
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4.1 Background: Informal Definition of PIR

A PIR protocol is defined with respect to a database size 𝑛DB ∈ ℕ, a ring , and a number of servers 𝑠 ≥ 2.
It consists of three polynomial-time algorithms:

1. Query(𝑖) → qu1, … , qu𝑠 , which takes as input an index 𝑖 ∈ [𝑛DB] into a database and produces 𝑠 PIR
queries to be sent to each of the 𝑠 servers.

2. Answer(DB, qu) → ans, which takes as input a database DB ∈ 𝑛DB
and a PIR query qu and produces

a PIR answer ans.

3. Reconstruct(𝑖, ans1, … , ans𝑠) → , which takes as input the index being read and the 𝑠 servers’ answers
and outputs the 𝑖th record of the database DB.

The scheme’s privacy requires the marginal distribution of each query qu𝑗 , for 𝑗 ∈ [𝑠], to be independent of

the index 𝑖 being queried.

4.2 Modifying the PIR Requirements for Tree Evaluation

We next show that, if a PIR scheme can be massaged into a tuple of algorithms with certain structural

properties, then it can be used to build a catalytic algorithm for TreeEval. At a high level, these properties

correspond to the following intuitive requirements:

• The query routine samples some common randomness with which it additively masks a fixed sequence

of elements (that depend only on the index being queried), one of which is sent to each server.

• The user can effectively make a query for a pair of indices 𝑎||𝑏 (in a larger database of size 𝑛2DB) by
building a PIR query for 𝑎 and a PIR query for 𝑏 independently.

• The reconstruction functionality can be pulled into the Answer routine, given some small state that

depends on the indices queried and on the randomness used. After this, reconstructing the record

from each server’s answer is just addition.

• All algorithms are low-space, and the servers can answer PIR queries by streaming over the database.

Definition of catalytic information retrieval. To be more formal, we define the syntax for a new object,

which we call catalytic information retrieval (CIR), to be the following tuple of three algorithms:

1. DetQuery(𝑎 ∈ [𝑛DB], 𝑗 ∈ [𝑠], 𝜇 ∈ {0, 1}) → , a deterministic algorithm that takes in an index 𝑎 into

the database, a server 𝑗 ∈ [𝑠], and a bit 𝜇 and produces the deterministic part of the query for the 𝑗 th

server.

In our scheme, the user makes queries to a tuple of indices 𝑎||𝑏 simultaneously. To do so, our user:

• samples two ring elements 𝑥, 𝑦 ←R .

• sends to server 𝑗 ∈ [𝑠] the pair of PIR queries qu𝑗 ← 𝑥 + DetQuery(𝑎, 𝑗 , 0) and qu′𝑗 ← 𝑦 +
DetQuery(𝑏, 𝑗 , 1).

14



2. GetState𝑎,𝑏 (𝑥 ∈ , 𝑦 ∈ ) → st ∈ {0, 1}∗, a deterministic oracle algorithm that takes as input two

registers holding the randomness 𝑥 and 𝑦, and produces the state st needed for reconstruction.

The oracle 𝑎,𝑏 takes as input a register 𝑡 ∈ , bits 𝜎, 𝜇 ∈ {0, 1}, a factor 𝛾 ∈ {−1, 1}, and a server

index 𝑗 ∈ [𝑠] and updates

𝑡 ← 𝑡 + 𝛾 ⋅ DetQuery(𝑐, 𝑗 , 𝜇),

where 𝑐 is 𝑎 if 𝜎 = 0, else it is 𝑏 .

3. AnswerAndReconstruct(DB ∈ 𝑛DB , st, 𝑗 ∈ [𝑠], qu ∈ , qu′ ∈ ) → ans ∈ , a deterministic algorithm

that takes as input the database DB, the reconstruction state st, the server index 𝑗 ∈ [𝑠], and the two

queries qu and qu′, and outputs an answer ans.

We require a CIR scheme to satisfy two properties: correctness and efficiency.

Definition 4.1 (Correctness). We require that for any 𝑎, 𝑏 ∈ [𝑛DB] and 𝑥, 𝑦 ∈ , it holds that:

DB𝑎||𝑏 = ∑
𝑗∈[𝑠]

AnswerAndReconstruct(DB,GetState𝑎,𝑏 (𝑥, 𝑦), 𝑗 , 𝑥 + DetQuery(𝑎, 𝑗 , 0), 𝑦 + DetQuery(𝑏, 𝑗 , 1)).

Definition 4.2. We say a CIR scheme is space-efficient if each of the following are true:

• We can represent a valid element of  on the catalytic tape in space 𝑂(log ||), and we can perform

arithmetic operations in in time poly log || and additional space 𝑂(log log ||).

• GetState𝑎,𝑏
is computable with catalytic registers 𝑥, 𝑦; it uses 𝑂(log 𝑛DB) free space, and 𝑂(|st|) free

space during every call to ; and

• AnswerAndReconstruct is computable with 𝑂(log 𝑛DB) free space and runs in time poly(𝑛DB), provided
that we can random access into DB in 𝑂(log 𝑛DB) space.

Remark 4.3. Jumping ahead to the setting of TreeEval, note that in that setting the ring elements 𝑥, 𝑦 will

not be sampled at random; rather, they will be the contents of a possibly adversarially chosen catalytic tape.

This is why Definition 4.1 insists on perfect correctness. Our reason for describing a CIR scheme as

sampling 𝑥, 𝑦 is to be consistent with the typical PIR framework where each query needs to be marginally

uniformly random.

4.3 Tree Evaluation Algorithm

We begin with the one-level algorithm for TreeEvalℎ,𝓁, following Section 3.1, recast in the language of

catalytic information retrieval.

Theorem 4.4. Assume we have a space-efficient CIR scheme. Suppose our algorithm is given the following
resources:

• global space comprising registers 𝑥, 𝑦, 𝑧 ∈ ; and

• the truth table of a function 𝑓 ∶ {0, 1}𝓁 × {0, 1}𝓁 → {0, 1}𝓁 on the input tape;

• the oracle 𝑎,𝑏 (as defined in Item 2 of Section 4.2).
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Then, there exists an algorithm that takes as input a scalar 𝛾 ∗ ∈ {−1, +1}, a bit 𝜇∗ ∈ {0, 1}, and an index 𝑗∗ ∈ [𝑠]
in local space and updates

𝑧 ← 𝑧 + 𝛾 ∗ ⋅ DetQuery(𝑓 (𝑎, 𝑏), 𝑗∗, 𝜇∗),

while leaving the 𝑥 and 𝑦 registers unchanged. Moreover, the algorithm uses 𝑂(𝓁 + log || + |st| + log 𝑠) local
space and before making all oracle calls erases all but 𝑂(|st| + log 𝑠) bits of this space, makes 𝑂(𝑠) queries to
𝑎,𝑏 , and runs in time poly(2𝓁, log ||, 𝑠, 2|st|).

Proof. We sketch the algorithm below and omit proofs of efficiency since they closely follow the proof

of Theorem 3.5.

1. Let DB be the 22𝓁-record database that, in position (𝑟||𝑠), contains the record computed as

𝛾 ∗ ⋅ DetQuery(𝑓 (𝑟, 𝑠), 𝑗∗, 𝜇∗).

2. Compute st ← GetState𝑎,𝑏 (𝑥, 𝑦), making oracle queries to 𝑎,𝑏 . Then, store st in free space.

3. Repeat for each server indexed by 𝑗 ∈ [𝑠]:

(a) Using two queries to 𝑎,𝑏 , make the updates:

𝑥 ← 𝑥 + DetQuery(𝑎, 𝑗 , 0)
𝑦 ← 𝑦 + DetQuery(𝑏, 𝑗 , 1).

(b) Using CIR with respect to the database defined in Item 1, update

𝑧 ← 𝑧 + AnswerAndReconstruct(DB, st, 𝑗 , 𝑥, 𝑦)

(c) Using two queries to 𝑎,𝑏 , restore:

𝑥 ← 𝑥 − DetQuery(𝑎, 𝑗 , 0)
𝑦 ← 𝑦 − DetQuery(𝑏, 𝑗 , 1).

The next theorem readily follows by using the same recursive strategy as in Theorem 3.1.

Theorem 4.5. Suppose the CIR scheme is space-efficient. Then, using the one-level algorithm above (where
we implement the oracle 𝑎,𝑏 using a recursive instantiation of the algorithm in the natural way), we get
an algorithm for TreeEvalℎ,𝓁 that uses 𝑂(log ||) catalytic space, 𝑂(ℎ ⋅ |st| + ℎ log 𝑠 + 𝓁) free space, and
𝑂(𝑠)ℎ ⋅ poly(2𝓁, log ||, |st|) runtime.

Remark 4.6. We note that an even more general variant of a CIR scheme would still give new algorithms for

TreeEval. For example, GetState could also use the 𝑧 register as catalytic space. Additionally, we do not need
to work over a ring; we could work over an arbitrary universe and replace additions and subtractions

with reversible updates. We refrain from formally presenting these abstractions for the sake of clarity.
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4.4 Special Cases

The algorithm of Cook and Mertz. We now sketch how the algorithm of Cook and Mertz [CM24] can

also be viewed as arising from a CIR scheme. For clarity, we will assume 𝑛DB = 22𝓁 and that DB is viewed as

the truth table of a function 𝑓 ∶ {0, 1}𝓁 × {0, 1}𝓁 → {0, 1}𝓁. We make the following choices:

• 𝔽 will be a prime field of order 𝑂(𝓁) that has a primitive 𝑠th root of unity 𝜔 for some 𝑠 ∈ (2𝓁, |𝔽|);

• The ring will be 𝔽𝓁;

• The number of servers will be 𝑠; and

• 𝑔 ∶  × →  will be the multilinear extension of 𝑓 .

We now define the CIR scheme as follows:

• DetQuery(𝑎, 𝑗 , 𝜇) ∶= 𝜔−𝑗𝑎 (note that 𝜇 is irrelevant for this construction);

• GetState will not do anything, i.e., st = ⊥;

• AnswerAndReconstruct(DB, st, 𝑗 , 𝑥, 𝑦) ∶= 𝑔(𝜔𝑗𝑥, 𝜔𝑗𝑦)/𝑚. Here, 𝑔(⋅) is computed on the fly in space

𝑂(𝓁).

Since the number of servers is 𝑂(𝓁), this recovers the 𝑂(𝓁 + ℎ log 𝓁) free space and 𝑂(𝓁) catalytic space
of [CM24, Theorem 1.3].

6

The algorithm of Section 3. Here, the correspondence is easier to see because the presentation of our

algorithm in this section is modeled off of Section 3. We sketch the correspondence below:

• The ring is ℤ2𝑑
𝑚 , hence we denote the catalytic registers 𝐱, 𝐲, 𝐳 with boldface.

• There are 22𝑡 servers which we identify with strings of 2𝑡 bits 𝑏1, … , 𝑏𝑡 , 𝑐1, … , 𝑐𝑡 ;

• DetQuery(𝑎, 𝑗 = (𝑏1, … , 𝑏𝑡 , 𝑐1, … , 𝑐𝑡), 𝜇) ∶=

{
CRT(𝑏1, … , 𝑏𝑡) ⋅ (𝐮𝑎||𝐯𝑎), if 𝜇 = 0
CRT(𝑐1, … , 𝑐𝑡) ⋅ (𝐮𝑎||𝐯𝑎), if 𝜇 = 1.

• GetState will compute and store 𝑔1, 𝑔2, and all the 𝛼𝑖’s and 𝛽𝑖’s in st. In a little more detail, we will

isolate 𝐱trunc, 𝐲trunc ∈ ℤ𝑑
𝑚 to be the first 𝑑 entries of 𝐱, 𝐲 respectively and compute 𝑔1 = ⟨𝐱trunc, 𝐯𝑎⟩ and

𝑔2 = ⟨𝐲trunc, 𝐯𝑏⟩, which could potentially require some swaps within the 𝐱, 𝐲 registers that can be

reversed.

The oracle queries in Lemma 3.8 can be instantiated by setting 𝑏1 = … = 𝑏𝑡 = 𝑐1 = … = 𝑐𝑡 = 1, so
that the factor coming from each CRT term is just ±1.

• AnswerAndReconstruct(DB, st, 𝑗 = (𝑏1, … , 𝑏𝑡 , 𝑐1, … , 𝑐𝑡), 𝐱, 𝐲): this will be equal to

∑
𝑟,𝑠∈{0,1}𝓁

{
DB𝑟||𝑠 ⋅ (−1)∑𝑖∈[𝑡](𝑏𝑖+𝑐𝑖) ⋅ (∏𝑖∈[𝑡] 𝛼𝑖)

−1 , if ⟨𝐱trunc, 𝐯𝑟⟩ ⋅ ⟨𝐲trunc, 𝐯𝑠⟩ ≡ CRT(𝛽1, … , 𝛽𝑡) (mod 𝑚),
0, otherwise.

6
The algorithm of Cook-Mertz does not work in the catalytic space model, so they do not need to incur the space overhead of

the transformation in Remark 2.3 (since they can initialize all registers to valid representations).
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Here the number of servers is 22𝑡 , |st| = 𝑂(log𝑚), and log || = 𝑂(𝑑 log𝑚). Plugging these in to Theo-

rem 4.5 recovers the statement of Theorem 3.1, noting that we assume 𝑑 log𝑚 ≤ poly(2ℎ+𝓁) and that the

transformation of Remark 2.3 will only require catalytic space 𝑂(𝑑 log(𝑑𝑚)) to represent an element of .

Motivating the algorithm of Section 3. We take the opportunity here to provide some high-level

intuition for the various departures our algorithm in Section 3 makes from typical PIR protocols based on

matching vector families [DGY11, DG16, GKS25, LBA25]. We start with the following simpler construction

of 2𝑡-server PIR [Efr12] given a matching vector family of size 𝑁 over ℤ𝑑
𝑚 (where 𝑚 = 𝑝1…𝑝𝑡 is a product

of 𝑡 primes). Let 𝑞 be a prime such that𝑚|𝑞 −1. Let 𝑔1, … , 𝑔𝑡 ∈ ℤ𝑞 be elements with respective order 𝑝1…𝑝𝑡 .
Servers are indexed by tuples (𝑏1, … , 𝑏𝑡) ∈ {0, 1}𝑡 of bits. The protocol now proceeds as follows:

• Suppose the client has an index 𝑖∗ ∈ [𝑁 ]. They will sample uniformly random 𝐫 ← ℤ𝑑
𝑚 and send

server (𝑏1, … , 𝑏𝑡) the point 𝐫 + CRT(𝑏1, … , 𝑏𝑡) ⋅ 𝐮𝑖∗ ∈ ℤ𝑑
𝑚.

• Given a vector qu ∈ ℤ𝑑
𝑚, server (𝑏1, … , 𝑏𝑡) will reply with:

ans𝑏1,…,𝑏𝑡 = ∑
𝑖∈[𝑁 ]

DB𝑖 ⋅
𝑡

∏
𝑗=1

𝑔⟨qu,𝐯𝑖⟩𝑗 = ∑
𝑖∈[𝑁 ]

DB𝑖 ⋅
𝑡

∏
𝑗=1

𝑔⟨𝐫+𝑏𝑗𝐮𝑖∗ ,𝐯𝑖⟩𝑗 .

• The client will now compute:

∑
𝑏1,…,𝑏𝑡∈{0,1}

(−1)∑𝑖∈[𝑡] 𝑏𝑖ans𝑏1,…,𝑏𝑡 = ∑
𝑏1,…,𝑏𝑡∈{0,1}

(−1)∑𝑖∈[𝑡] 𝑏𝑖 ∑
𝑖∈[𝑁 ]

DB𝑖 ⋅
𝑡

∏
𝑗=1

𝑔⟨𝐫+𝑏𝑗𝐮𝑖∗ ,𝐯𝑖⟩𝑗

= ∑
𝑖∈[𝑁 ]

DB𝑖 ⋅
⎡
⎢
⎢
⎣

𝑡
∏
𝑗=1

⎛
⎜
⎜
⎝
∑

𝑏𝑗∈{0,1}
(−1)𝑏𝑗𝑔⟨𝐫+𝑏𝑗𝐮𝑖∗ ,𝐯𝑖⟩𝑗

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

= ∑
𝑖∈[𝑁 ]

DB𝑖 ⋅ [

𝑡
∏
𝑗=1

𝑔⟨𝐫,𝐯𝑖⟩𝑗 (1 − 𝑔⟨𝐮𝑖∗ ,𝐯𝑖⟩𝑗 )]

= DB𝑖∗ ⋅
𝑡

∏
𝑗=1

𝑔⟨𝐫,𝐯𝑖∗ ⟩𝑗 (1 − 𝑔𝑗 ),

from which they can recover DB𝑖∗ .

When adapting this to tree evaluation, we face the following natural obstacles:

1. The CIR protocol needs to be composable with itself in order to recursively apply it when going up

the tree. To this end, we ensure that our queries and reconstructed answers both take the form of

adding a matching vector into a catalytic register.

2. Thus, when carrying out one level of tree evaluation, we assume we can update 𝐱 ← 𝐱 + 𝐮𝑎 and
𝐲 ← 𝐲 + 𝐮𝑏 . However, what we really need for CIR is to be able to make queries that are indexed by

the tuple (𝑎, 𝑏). This can be seen in the equation in Definition 4.1. Our solution is roughly inspired by

the fact that the tensored collection of vectors {𝐮𝑎 ⊗ 𝐮𝑏 , 𝐯𝑎 ⊗ 𝐯𝑏 ∶ 𝑎, 𝑏 ∈ {0, 1}𝓁} is itself a matching

vector family over ℤ𝑑2
𝑚 . We cannot actually write these tensor products down, but instead stream

through them to remain in low space.
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3. The recursive composability requires the CIR queries and answers to have the same type. For the

simple scheme sketched above, this cannot be true! DB𝑖∗ lives in ℤ𝑞 , where there needs to be an

element of multiplicative order 𝑚, while the queries live in ℤ𝑚. To remedy this, we move away from

ℤ𝑞 to a formal polynomial ring over ℤ𝑚—following the original presentations of [DGY11, Efr12,

DG16, GKS25]—where we can adjoin formal variables of multiplicative degree dividing 𝑚. As noted
in Remark 3.12, this leads us to work over the ring ℤ𝑚[𝑋1, … , 𝑋𝑡]/(𝑋

𝑝1
1 − 1,… , 𝑋𝑝𝑡

𝑡 − 1). Following
this approach comes with minor difficulties, but we can simplify the resulting construction to get rid

of the polynomial ring, yielding the construction in Section 3.1.

5 Application: New Time-Space-Catalytic Space Tradeoffs

5.1 The Reduction of Williams

We recall the reduction from Time[𝑡] to tree evaluation.

Theorem 5.1 ([Wil25]). For every language 𝐿 in Time[𝑡], there is a machine that on input 𝑥 ∈ {0, 1}𝑛 runs in
space 𝑂(

√
𝑡) and outputs a TreeEvalℎ,𝓁 instance with ℎ = 𝑂(

√
𝑡) and 𝓁 = 𝑂(

√
𝑡) such that the output of the

tree eval instance is 𝐿(𝑥).

We remark that the result of Williams outputs a TreeEval instance with fanin 𝑟 ≥ 2 for some constant 𝑟 that
depends on the language 𝐿, but the result as stated above is immediate from Lemma 2.7.

Subsequently, Shalunov gave a direct reduction from size-𝑆 circuit evaluation to TreeEvalℎ,𝓁:

Theorem 5.2 ([Sha25]). There is a 𝑂(
√
𝑆) space algorithm that, given a circuit 𝐶 with 𝑆 gates7 and input

𝑥 ∈ {0, 1}𝑛, outputs a TreeEvalℎ,𝓁 instance with ℎ = 𝑂(
√
𝑆) and 𝓁 = 𝑂(

√
𝑆) such that the output of the tree eval

instance is 𝐶(𝑥).

5.2 Applications of Catalytic Tree Evaluation

Corollary 1.3 follows immediately from Corollary 3.2 and Theorem 5.1. We can also plug in Corollary 3.3

to obtain a different corollary. For this, we use that the algorithm of Theorem 5.1 can produce a TreeEval

instance of height 𝑡/𝑏 and 𝓁 = 𝑏 for any space constructible function 𝑏 . We instantiate it with 𝑏 =√
𝑡 ⋅ log1/4(𝑡) and obtain the following:

Corollary 5.3. Time(𝑡) ⊆ CatTimeSpace [exp exp(𝑂(
√
log 𝑡)), 𝑂(

√
𝑡 ⋅ log1/4(𝑡) log log log 𝑡), 2𝑂(

√
𝑡⋅log1/4(𝑡))

].

Finally, combining Theorem 5.2 with Theorem 1.1 immediately gives the following:

Corollary 5.4. For any 𝜀 > 0, size-𝑆 circuit evaluation can be decided in 𝑂(
√
𝑆) free space, 2𝑂(𝑆𝜀)

catalytic

space, and 2𝑂(
√
𝑆)
time.
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7
The description size is thus 𝑂(𝑆 log 𝑆) bits.
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A Verifying the Uniformity of the Matching-Vector Family

The fact that the matching-vector family of [DGY11, Lemma 11] is logspace uniform is not explicitly stated,

but follows immediately from the construction. We verify this below, making no claims to originality. We

exactly follow their notation.

Definition A.1. Let 𝑝1, … , 𝑝𝑡 be distinct primes and let 𝑚 = ∏𝑖 𝑝𝑖. The canonical set 𝑆 in ℤ𝑚 is the set of

nonzero 𝑠 where 𝑠 ∈ {0, 1} mod 𝑝𝑖 for every 𝑖.

Lemma A.2. Let 𝑚 = ∏𝑡
𝑖=1 𝑝𝑖 be a product of distinct primes that are given as input. Let 𝑤, 𝑔 and 𝑒1, … , 𝑒𝑡 be

given such that∏𝑡
𝑖=1 𝑝

𝑒𝑖
𝑖 > 𝑤 and ℎ ≥ 𝑤. Let 𝑑 = max𝑖 𝑝𝑒𝑖

𝑖 . There exists a space 𝑂(log𝑁 + 𝑑 log ℎ + log𝑚)-
uniform8 matching vector family of size 𝑁 = (ℎ𝑤) in ℤ𝑛

𝑚 where 𝑛 = ( ℎ
≤𝑑).

We first define polynomial matching families:

8
In both regimes we work with log(𝑁 ) ≥ 𝑑 log ℎ, so this meets the definition of logspace-uniformity.
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Definition A.3 (Polynomial Matching Family, Definition 35). Let 𝑆 ⊆ ℤ𝑚 ⧵ {0}. We say that a set of

polynomials  = {𝑓1, … , 𝑓𝑘} ⊆ ℤ𝑚[𝑧1, … , 𝑧ℎ] and a set of points 𝑥 = {𝑥1, … , 𝑥𝑘} ⊆ ℤℎ
𝑚 form a space-𝑠

uniform polynomial 𝑆-matching family of size 𝑘 if

• for all 𝑖 ∈ [𝑘], 𝑓𝑖(𝑥𝑖) = 0;

• for all 𝑖, 𝑗 ∈ [𝑘] such that 𝑖 ≠ 𝑗 , 𝑓𝑗 (𝐱𝑖) ∈ 𝑆.

• There is a space 𝑠 algorithm that prints  .

First, such a family can be turned into matching vectors by an observation of Sudan. Let  , be a

logspace-uniform 𝑘-sized polynomial matching family. For 𝑖 ∈ [𝑘], let supp(𝑓𝑖) denote the set of monomials

in the support of the polynomial 𝑓𝑖. Define supp() = ⋃𝑘
𝑖=1 supp(𝑓𝑖) and dim() = |supp()|.

Lemma A.4 (Lemma 36). A space-𝑠 uniform 𝑘-size polynomial 𝑆-matching family  , over ℤ𝑚 yields a
space-𝑂(𝑠 + log𝑚) uniform 𝑘-sized matching vector family in ℤ𝑛

𝑚, where 𝑛 = dim().

Proof. We have by assumption that we can enumerate over the monomials in  in space 𝑂(𝑠) (and hence

print the coefficient of each monomial).

Let mon1, … ,mon𝑛 be these monomials, and let

𝑓𝑗 =
𝑛
∑
𝑙=1

𝑐𝑗𝑙 ⋅ mon𝑙

where 𝑐𝑗𝑙 ∈ ℤ𝑚.

Finally, we let 𝐮𝑖 ∈ ℤ𝑛
𝑚 be the 𝑛-dimensional vector of the coefficients of 𝑓𝑖. It is straightforward that

we can enumerate over monomials in 𝑂(𝑠) and determine if 𝑓𝑖 contains this monomial, and if so read off

the coefficient. Next, let 𝐯𝑗 ∈ ℤ𝑛
𝑚 be the vector of evaluations of the monomials at 𝑥𝑗 . Here we can again

enumerate over the vectors 𝑥𝑗 in space 𝑂(𝑠) and perform this evaluation in space 𝑂(𝑠 + log𝑚).

We then construct such a family. We require low-degree polynomials which compute the weight of 𝑥
mod 𝑝𝑒𝑖

𝑖 :

Lemma A.5 (Theorem 2.16 [Gop06]). There is a space 𝑂(𝑑 log ℎ) algorithm9 that given 𝑖 ∈ [𝑡] and 𝑤 prints
an explicit multilinear polynomial 𝑓𝑖(𝑧1, … , 𝑧ℎ) ∈ ℤ𝑝𝑖[𝑧1, … , 𝑧ℎ] where deg(𝑓𝑖) ≤ 𝑝𝑒𝑖

𝑖 − 1 and for 𝑥 ∈ {0, 1}ℎ:

𝑓𝑖(𝑥) =

{
0 mod 𝑝𝑖 ∑𝑖 𝑥𝑖 ≡ 𝑤 mod 𝑝𝑒𝑖

𝑖

1 o.w.

From this we immediately obtain that in space 𝑂(𝑑 log ℎ + log𝑚) we can obtain the following:

Corollary A.6 (Corollary 38). There is a space 𝑂(𝑑 log ℎ + log𝑚) algorithm that prints an explicit degree

𝑑 multilinear polynomial 𝑓𝑖(𝑧1, … , 𝑧ℎ) ∈ ℤ𝑚[𝑧1, … , 𝑧ℎ] for 𝑥 ∈ {0, 1}ℎ:

𝑓𝑖(𝑥) =

{
0 mod 𝑚 ∑𝑖 𝑥𝑖 = 𝑤
𝑠 mod 𝑚 ∑𝑖 𝑥𝑖 < 𝑤

In the above,∑𝑖 𝑥𝑖 is being computed over ℤ.
9
The explicitness is not stated but is immediate from the construction.
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Claim A.7. Let 𝑁 = (ℎ𝑤). There is a space 𝑂(log𝑁)-computable bijection from [𝑁 ] to sets 𝑇 ⊆ [ℎ] of size
𝑤.

Proof. For a given combination 𝑇 , denote the elements of 𝑇 in decreasing order as 𝑐𝑤 > … > 𝑐1 ≥ 0. We

express this combination as the number

𝐾 = (
𝑐𝑤
𝑤) + (

𝑐𝑤−1

𝑤 − 1)
+ …(

𝑐1
1)

.

There is a greedy algorithm that prints 𝑐𝑤, … , 𝑐1 given 𝐾 that runs in space 𝑂(log𝑁) as follows. We let

𝑆 = 0 and 𝑖 = 𝑤 and choose 𝑐𝑖 maximal such that

(
𝑐𝑖
𝑖 )

≤ 𝐾 − 𝑆 and set 𝑆 ← 𝑆 + (
𝑐𝑖
𝑖 )

.

Since we can store 𝑆 using 𝑂(log𝑁) bits since all values are bounded by 𝑁 (so we can obviously compute

coefficients in space 𝑂(log𝑁)) we are done.

Proof of Lemma 11. We construct a polynomial 𝑆-matching family and apply Lemma A.4.

We work with subsets 𝑇 ⊆ [ℎ] of size 𝑤. We use the 𝑂(log𝑁)-space function [𝑁 ] → {0, 1}𝑇 of Theo-

rem A.7 and hence index these sets as numbers in [𝑁 ] without loss of generality.
For each such set 𝑇 , letting 𝑓 be the polynomial of Corollary A.6, we define 𝑓𝑇 as the polynomial where

we set 𝑧𝑗 = 0 for 𝑗 ∉ 𝑇 . We can clearly construct this polynomial in space 𝑂(log 𝑘 +𝑑 log ℎ+ log𝑚). Finally,
let 𝑥𝑇 ∈ {0, 1}ℎ be the indicator of 𝑇 . We WLOG extend supp() to be all monomials of degree at most 𝑑,
which we can enumerate over in space 𝑂(𝑑 log ℎ). Thus, the total space required to print the polynomial

family (and hence the matching vector family) is 𝑂(log 𝑘 + (𝑑 log ℎ) + log𝑚) as desired.

B Proof of Corollary 2.13

Item 1 is immediate and exactly the result proven by [Gro00] (by taking𝑤 = Θ(𝓁/ log 𝓁)). Item 2 also follows

directly from Theorem 2.12 by taking 𝑤 = Θ(𝓁/
√
log 𝓁) and 𝑡 =

√
log𝑤. We know by the prime number

theorem that 𝑚 = 𝑡𝑡+𝑜(𝑡). The dimension can be bounded above by (𝑚𝑤)1/𝑡 + 1 times (
⌈𝑤1+1/𝑡 ⌉
⌊(𝑚𝑤)1/𝑡 ⌋), noting that

the last binomial coefficient must be the largest since 𝑡1+𝑜(1) < 𝑤/2 ⇒ 𝑚1/𝑡 < 𝑤/2 ⇒ (𝑚𝑤)1/𝑡 < 𝑤1+1/𝑡/2.
To bound the first factor (the number of binomial coefficients), note that:

(𝑚𝑤)1/𝑡 ≤ 𝑡1+𝑜(1)𝑤1/𝑡

= (log𝑤)1/2+𝑜(1)2
√

log𝑤

≤ exp(𝑂(
√
log𝑤))

= exp(𝑂(
√
log 𝓁)).

We can bound the largest binomial coefficient by:

(
𝑒⌈𝑤1+1/𝑡⌉
⌊(𝑚𝑤)1/𝑡⌋)

(𝑚𝑤)1/𝑡

≤ (
3𝑤1+1/𝑡

(𝑚𝑤)1/𝑡)

(𝑚𝑤)1/𝑡

≤ (𝑤/𝑡1−𝑜(1))𝑡
1+𝑜(1)𝑤1/𝑡

= exp (𝑡1+𝑜(1) ⋅ 𝑤1/𝑡 ⋅ (log𝑤 − log 𝑡 + 𝑜(log 𝑡)))
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= exp((log𝑤)1/2+𝑜(1) ⋅ 2
√

log𝑤 ⋅ log𝑤)
= exp(exp(𝑂(

√
log𝑤)))

= exp(exp(𝑂(
√
log 𝓁))).

Multiplying these two bounds implies the conclusion.
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