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Abstract

We give new algorithms for tree evaluation (S. Cook et al. TOCT 2012) in the catalytic-computing
model (Buhrman et al. STOC 2014). Two existing approaches aim to solve tree evaluation (TreeEval) in
low space: on the one hand, J. Cook and Mertz (STOC 2024) give an algorithm for TreeEval running in
super-logarithmic space O(log nlog log n) and super-polynomial time n®0°8°e™_On the other hand, a
simple reduction from TreeEval to circuit evaluation, combined with the result of Buhrman et al. (STOC
2014), gives a catalytic algorithm for TreeEval running in logarithmic O(log n) free space and polynomial
time, but with polynomial catalytic space.

We show that the latter result can be improved. We give a catalytic algorithm for TreeEval with
logarithmic O(log n) free space, polynomial runtime, and subpolynomial 2! " catalytic space (for any
€ > 0). Our result opens a new line of attack on putting TreeEval in logspace, and immediately implies
an improved simulation of time by catalytic space, by the reduction of Williams (STOC 2025).

Our catalytic TreeEval algorithm is inspired by a connection to matching-vector families and private
information retrieval, and improved constructions of (uniform) matching-vector families would imply
improvements to our algorithm.
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1 Introduction

Space, unlike time, is a reusable resource. Catalytic computing studies the task of computing given a large
amount of full memory, which may be modified but must appear unchanged at the end of the computation.
A series of breakthrough results, initiated by Buhrman, Cleve, Koucky, Loff, and Speelman [BCK*14], show
that access to such full, catalytic space enables using less free space to solve problems than is otherwise
known. For example, Buhrman et al. [BCK"14] evaluate any uniform TC! circuit with O(log n) free space
and poly(n) catalytic space, while this task—which contains a complete problem for non-deterministic
logspace (NL)—is not known to be solvable with o(log® n) free space alone.

The power of catalytic space remains wide open. For instance, letting catalytic logspace (CL) be the
set of problems solvable in O(log n) free space and poly(n) catalytic space, it is consistent with current
knowledge both that all polynomial-time computations can be solved in CL (i.e., P C CL) or that CL is
no stronger than the class of computations done in O(log?® n) parallel time (i.e., CL € NC?). One critical
question to understanding this power is: how small can catalytic space be for it to be useful?

In this paper, we draw a new connection between catalytic computing and information-theoretic
cryptography. Building on this connection, we obtain a new catalytic algorithm for the tree evaluation
problem [CMW*12], abbreviated TreeEval. TreeEval has become a central protagonist in complexity theory
for its roles in (1) aiming to separate polynomial time P = Time(poly(n)) and logarithmic space L =
Space(O(log n)) [CMW ™12, CM24] and (2) giving new tradeoffs between space and time [Wil25], namely that
Time(T(n)) C Space(/T(n)log T(n)). In Section 3, we show that logarithmic free space and subpolynomial
catalytic space suffice to solve TreeEval:

Theorem 1.1. For every € > 0, TreeEval can be solved in O(log n) free space, 200°¢° ™ catalytic space, and
poly(n) runtime. (See Corollary 3.2 for a parameterized statement.)

By contrast, the threshold-circuit-evaluation algorithm of Buhrman et al. [BCK"14] implies a catalytic
algorithm for TreeEval with superpolynomially more catalytic space: it uses O(log n) free space, poly(n)
catalytic space, and polynomial runtime. At the same time, a brilliant algorithm of Cook and Mertz [CM24]
solves TreeEval with no catalytic space, but with more free space and superpolynomially larger runtime
than Theorem 1.1: it requires O(log n - log log n) space and n°1°81°¢™ time. Our algorithm admits smooth
tradeoffs that shrink the catalytic space at the expense of increasing the free space and the runtime. For
example, it implies the following new result:

Theorem 1.2. TreeEval can be solved in O(log n./loglog nloglog log n) free space, exp(exp(O(/loglog n)))
catalytic space, and n®N1°81°¢™ time. (See Corollary 3.3 for a parameterized statement.)

Implications. Our new catalytic algorithm for tree evaluation has two major direct implications:

1. A new line of attack on Tree Evaluation. Our technique can be thought of as a generalization of the
techniques in the breakthrough result of Cook and Mertz, allowing us to apply technical tools developed
in a cryptographic context. We view this as providing a direct line of attack on TreeEval (as we discuss
later, improvements to these technical tools now directly imply better algorithms) and an indirect one
(by building connections between tree evaluation, catalytic computation, and other areas).

2. New time-space tradeoffs in the catalytic-space model. Following the seminal reduction of Williams [Wil25],
our result implies the following corollary:



Corollary 1.3. For every € > 0, a time T = T(n) multitape Turing Machine can be decided in O(/T)
free space, 2°(7°) catalytic space, and 20GT) time,

Relative to Williams’ result, this shrinks the free space by a factor of O(,/log T) and shrinks the runtime

by superpolynomial factors (from 20(~vT1ogT) to 20 VD) time), at the expense of introducing a large
catalytic tape. Separately, combining the reduction of Williams with the catalytic circuit-evaluation
algorithm of Buhrman et al. [BCK"14] gives that Time(T) can be decided with O(+/T) free space and
200/T) catalytic space. Compared to this result, we shrink the catalytic tape by a superpolynomial factor.

We state this result along with some additional tradeoffs (including for circuit evaluation) in Section 5.

The core machinery driving our new catalytic TreeEval algorithm is a family of matching vectors [Gro00];
informally, this is a collection of vectors whose inner products fall in a restricted set. Matching vectors
give rise to the best known locally-decodable codes in the low query-complexity regime [DGY11] and
to the most communication-efficient information-theoretic private-information-retrieval schemes in the
few-server regime [DG16, GKS25]. Our result is the first use of such techniques in catalytic computing. We
view this connection as the main contribution of the paper, and we are optimistic for further applications
and connections between cryptography, coding theory, and catalytic computing.

For one direct example, there is a large gap between known upper and lower bounds for matching vector
families, and improvements to constructions of these families would directly improve our algorithm—even
up to the point of speeding up Cook-Mertz to polynomial time, with no loss in space. In particular:

Theorem 1.4 (Informal). Suppose that (sufficiently uniform) matching-vector families with parameters not
ruled out by known lower bounds exist. Then TreeEval can be solved with O(log nloglog n) free space and
polynomial time. (See Remark 3.4.)

1.1 Overview

The tree evaluation problem. We follow the presentation of Goldreich [Gol25]. The tree evaluation
problem, TreeEvaly, 4, is the following task [CMW™12]: given a binary tree of height h,' where

« each leaf node is indexed by u € {0, 1}" and labeled by a value v, € {0, 1} and
« each internal node is indexed by u € {0, 1} and labeled by a function f, : {0, 1} x {0, 1}’ — {0, 1},

evaluate the tree in a bottom-up manner by setting each internal node’s value to be the evaluation of its
function on its children’s values, and output the value of the root node. In other words, output the value vy
such that v, = f,(vy0,v,1) for all u € {0, 1}<". We note that the input length to the TreeEvaly, ; problem is
thus n = 2" . ¢. 2%

Our tree evaluation algorithm draws inspiration from information-theoretic cryptography, which we
unpack for the remainder of this overview. Before that, we note that our final construction is presented
in Section 3 and that the presentation therein is completely self-contained.

Inspiration from cryptography. Our improved algorithm for TreeEval takes inspiration from cryptog-
raphy. This new connection is based on the following view: both catalytic computing and cryptographic
protocols work by operating on masked values. In particular, catalytic computation requires intermediate

'The tree evaluation problem was initially defined with tree fanin r > 2. For clarity, we focus on the r = 2 case; there is a
simple reduction from any constant r to r = 2 (see Lemma 2.7) that suffices for the application of [Wil25].



results to be written onto the catalytic tape, meaning these results are stored and accessed while masked
by the arbitrary contents of the catalytic tape 7. (Though it is tempting to overwrite the catalytic tape’s
content 7, this would not be a reversible transformation, likely breaking the contract of being able to restore
the tape to 7 at the end of the computation.) Similarly, cryptography shows how to privately outsource a
computation to untrusted parties by masking the computation’s inputs with randomness.

We make this connection more precise in the special case of TreeEvaly, , and information-theoretic
private information retrieval (PIR). A PIR protocol [CGKS95, CGKS98] is defined with respect to a database
DB € R"8, which holds npg records that are each elements in some ring R, and a number of servers s > 2.
The protocol allows a user to read a record from the database DB, which is stored on the s servers, without
revealing to any of the servers what record was read. Informally, a PIR protocol consists of three algorithms:

1. Query(i € [npg]) — quy, ..., qug, which the user runs on the index i that it wants to read, to produce s
PIR queries, each of which is sent to one of the s PIR servers.

2. Answer(DB, qu) — ans, which each server runs on the database DB and on the PIR query qu it received,
to produce a PIR answer ans.

3. Reconstruct(i, ansy, ..., anss) — R, which the user runs on its index i and on the PIR answers from
each server, to recover the i record of the database DB.

The privacy requirement in PIR guarantees that the marginal distribution of each qu, for j € [s], is
independent of the index i queried. In many PIR schemes [CGKS95, BIM00, WY05], this is achieved by
additively masking the index i (encoded as an element of some vector space) with uniformly-sampled
randomness.

Connecting tree evaluation to private information retrieval. Consider a particular node u in the
TreeEval tree. The algorithm’s task at this node is to evaluate the function f,(v,,v41) or, equivalently, to
retrieve the entry corresponding to index v,|[v,; from the truth table of f, (which consists of 22/ records
in {0, 1}%). The challenge is that the algorithm must do this without seeing either of v,, v, in the clear: to
save space, the algorithm stores these values on the catalytic tape and accesses them masked by the tape’s
arbitrary initial contents.

This work starts by taking the view that the Cook-Mertz algorithm for TreeEval [CM24] can be seen as
solving this task by making white-box use of an s-server PIR protocol. Very roughly, this use of PIR allows
for retrieving any entry in the truth table of the function f,, by making s calls to the Answer algorithm—in a
way that none of these s calls gets to see the index being retrieved. The TreeEval procedure runs each of
these s calls to Answer (simulating each of the s PIR servers) in sequence and, in between, makes recursive
calls on the child nodes to prepare the corresponding PIR queries (output by the Query algorithm) on
the catalytic tape. Finally, using the Reconstruct algorithm, the TreeEval procedure can recover the value
fu(vyo, vy1) on the catalytic tape—as always, masked by the catalytic tape’s initial contents.

This mapping from private information retrieval to catalytic computation of a function f, is a conceptual
link, intended as an intuitive (rather than a formal) correspondence. Making it precise requires imposing
a number of structural requirements on the PIR scheme, which we describe in Section 4. An immediate
distinction (see Remark 4.3) is that PIR usually masks queries uniformly at random, while in TreeEval we
must work with a possibly adversarially chosen catalytic tape as the mask. These can be unified by simply
restricting attention to PIR schemes that have perfect correctness. Furthermore, we require a PIR scheme
that can be massaged to

1. run the Answer and Reconstruct methods interleaved with each other to save space,



2. have the PIR queries quy, ..., qu, each take the form 7 +encode;(i) for some random value 7 (which will
be our catalytic tape) and some deterministic function encode; applied to the index i being queried,
for j € [s], and

3. allow the servers to “concatenate” PIR queries for values v,9 and v,; into a PIR query for v,l|v,1.

Then, this mapping from PIR to TreeEval requires running PIR over a database that is not exactly the truth
table of f,, but instead that maps each value in the truth table of f, to a PIR query for that index (which
lets us prepare the PIR query for the next layer of the tree). Nonetheless, we view this connection as a
useful abstraction for describing our scheme, and as an open route to obtaining more advances in catalytic
computing by building on cryptographic techniques. Towards this end, in Section 4, we formally define a
new primitive, which we call catalytic information retrieval, that allows us to take a unified view of the
algorithm of [CM24] and our work.

Which PIR scheme to use? The PIR protocol embedded in Cook-Mertz [CM24] relies on classic Reed-
Muller codes [CGKS95, WY05]. However, we show that this is not the only option: in this work, we
make white-box use of the most communication-efficient PIR protocols known to date, based on matching-
vector codes [DG16, GKS25]. The advantage of these PIR schemes is that they can achieve subpolynomial
communication with only a constant number of servers, whereas Reed-Muller PIR requires a superconstant
number of servers to do so. (In particular, Cook-Mertz uses Reed-Muller PIR with s = poly(log npg) = poly(¢)
servers.) The benefit of having fewer servers is that our TreeEval algorithm requires only a constant number
of recursive calls at each level of the tree, and so only a constant amount of free space at each node to
track this call stack. As a result, we obtain improvements in both the required amount of free space
and runtime. However, a limitation is that matching-vector PIR with a constant number of servers has
larger communication than Reed-Muller PIR with poly(log npg) servers; correspondingly, our new TreeEval
algorithm requires a larger catalytic tape, which Cook-Mertz does not.

To be more precise, when running TreeEval over a tree with height /& and ¢-bit labels using a “suitable”
PIR protocol (as described above), that has s servers and communication complexity CC, we recover a
TreeEval algorithm that requires:

« O(s) recursive calls at each node,
« O(hlog s) free space to track which recursive call is being executed at each node in the call stack,
« O(CC) catalytic space to store PIR queries and answers as they are being computed, and

« additional O(log CC + ¢) free space, to stream through the database while answering PIR queries
(note that this cost is only incurred at one node at a time).

In sum, ignoring low-order terms, the free space of the TreeEval algorithm would be O(hlog s +1log CC + ¢),
the catalytic space would be O(CC), and the runtime would be poly(s" - 2¢). This view recovers the result of
Cook and Mertz [CM24, Gol25] by simply regarding the catalytic space as true space, and using Reed-Muller
PIR with s = poly(¢) servers and CC = O(log £) communication, giving a TreeEval algorithm that requires
O(hlog ¢+ ¢) space and poly(£" - 2" time.

Instead, as mentioned above, our new TreeEval algorithm uses low-communication PIR protocols based
on matching-vector families. For any constant parameter ¢t > 1, these schemes use 2! servers, while



achieving communication complexity CC = exp(5((log npe)/!)) [Efr12, DG16, GKS25].% As a result, our
true space goes down to O(h + £) and our time to poly(2"*). (The log CC term in the true space is lower-
order.) The tradeoff is that the catalytic space (equivalent to the PIR scheme’s communication) is no longer
logarithmic; instead, it grows to be subpolynomial in the input length: exp(O(£'/*)). Making this algorithm
work requires heavy white-box use of these PIR protocols. We defer these technical details to Section 3,
and provide some additional discussion on the relation to PIR in Section 4. We describe applications to new
tradeoffs between time, space, and catalytic space, obtained via the reduction of [Wil25], in Section 5.

1.2 Related Work

Algorithms for Tree Evaluation. There has been extensive work on algorithms [Bar89, BC92, CMW ™12,
CM20, CM22, CM24] and lower bounds [CMW ™12, Liu13, EMP18, IN19] for tree evaluation, as well as on
evaluating classes of circuits in the catalytic model [BCK" 14, AM25, CP25]. Though prior algorithms for
tree evaluation use the catalytic model as an intermediate tool to save space, we give the first catalytic
algorithm for tree evaluation (apart from the algorithm implicit in the work of [BCK"14]), showing that
subpolynomial catalytic space suffices to use only logarithmic free space.

Time-Space Tradeoffs. The breakthrough result of Williams [Wil25] improved on the 50 year old result
of Hopcroft, Paul, and Valiant [HPV77] that Time(t) C Space(O(t/log t)). To the best of our knowledge,
the relationship between time (and space) and catalytic space remains wide open, and we are the first to
give results in this area. It would even be consistent with current knowledge that P C CL — meaning that
we could evaluate any size-n circuit using O(log n) free space and poly(n) catalytic space.

Matching Vectors. Yekhanin [Yek08] first used matching vectors to obtain new families of locally decodable
codes, starting a cascade of subsequent works [KY09, Efr09, IS10, DGY11, Yek12]. Since then, matching-
vector codes have found applications in low-communication PIR [DG16, GKS25] and other cryptographic
protocols like conditional disclosure of secrets and linear secret sharing [LBA25]. To date, the best known
families of matching vectors are due to Grolmusz [Gro00], building on work by Barrington, Beigel, and
Rudich [BBR94].

1.3 Open Questions

Our work leaves open a number of questions. The most immediate is whether TreeEval is indeed in classical
logspace, or in simultaneous polynomial time and log® n space for ¢ < 2. Building on this work, one
approach to showing TreeEval € L would be to design a procedure for materializing matching vectors “on
the fly” from a much more succinct representation stored in catalytic space. This could bring down the
catalytic-space usage of our algorithm—perhaps all the way to O(log n) total space.

A second open question is whether known lower bounds on families of PIR schemes or of locally-
decodable codes translate to lower bounds on TreeEval. For example, a number of works [BIM00] show
that, in PIR, the servers must inherently run in Q(n) time to answer PIR queries. It remains open to prove
an analogous bound on the runtime of TreeEval—or, alternatively, to use techniques from the PIR literature
for circumventing this bound to speed up TreeEval.

In fact, [DG16, GKS25] show even better tradeoffs between the communication and the number of servers. [DG16] achieve
the stated communication with just 2'~! servers and [GKS25] show that this can be improved for certain numbers of servers
using S-decoding polynomials [CFL*13]. Though the results by [Efr12] suffice for our purposes, these techniques would yield
fine-grained improvements to our theorems.



Finally, we leave open whether it is possible to port other techniques from cryptography to obtain
further improvements in catalytic computing.

2 Preliminaries

Notation. For an integer N, we write [N] to be the set {1, 2, ..., N}. Throughout our presentation, we will
use reg « state to indicate that the register reg is updated to hold the contents of state. We will let exp(-)
and log(-) denote the base 2 exponential and logarithm, though the choice of base will not affect our results.

2.1 The Catalytic Space Model

We first define catalytic machines:

Definition 2.1. A catalytic machine M is defined as a Turing machine in the usual sense—i.e., a read-only
input tape, a write-only output tape, and a (space-bounded) read-write work tape—with an additional
read-write tape known as the catalytic tape. Unlike the ordinary work tape, the catalytic tape is initialized
to hold an arbitrary string z, and M has the restriction that for any initial setting of the catalytic tape, at
the end of its computation the catalytic tape must be returned to the original state 7.

We parameterize such a catalytic computation by three resources: time, space, and catalytic space.

Definition 2.2. Let CatTimeSpace [C(n), S(n), T(n)] be the class of languages recognized by catalytic
machines that, on inputs of size n € N, use O(S(n)) workspace and O(C(n)) catalytic space and run in time
O(T(n)) in the worst case.

Remark 2.3 (Representations of rings on the catalytic tape). Our algorithms (and those of Cook and Mertz
and many other works) interpret the catalytic tape as holding a vector in Z9(9), though the definition of
catalytic space gives a catalytic tape that consists of bits. This translation requires some care: for example, if
we naively represent Zs with 2 bits, the catalytic tape could consist of values which do not correspond to an
element of the ring. However, we can deal with this with a standard trick [CP25] that increases the space to
represent each element in Z,, to O(log(dm)) bits and increases the runtime by an additive poly(md). If our
initial registers are 71, ..., To(g) € Zm, We search for an offset A € {0, 1}0(log dm) such that 7; + A represents a
valid entry in Z,, for every i. We store A during the computation, then subtract it from each register before
halting.

2.2 Existing Algorithms for Tree Evaluation

We recall prior algorithms for tree evaluation. The lowest-space procedure for tree evaluation is a brilliant
algorithm due to Cook and Mertz:

Theorem 2.4 ((CM24]). TreeEvaly, € Space[ O(log(n) - loglog(n))].

A further result of [Sto23, Gol25] reduces the space by a logloglog(n) factor.
Furthermore, the observation that TreeEvaly, , can be computed by an unbounded fan-in circuit of depth
O(h) and size poly(n), combined with the catalytic circuit-evaluation algorithm of [BCK" 14], gives that:

Theorem 2.5 ([BCK*14]). TreeEval, , € CatTimeSpace [n¢, O(log n), n] .



Remark 2.6. This result follows from reducing TreeEvalj ; to a circuit and then evaluating such a circuit in
CL. However, the smallest circuit class known to contain TreeEvaly, ¢ (log-depth unbounded-fanin circuits)
also contains a complete problem for non-deterministic logspace NL. Thus, improving the catalytic space
of the latter step even to n' ¢ is ruled out by conjectured time-space tradeoffs for NL [CP25].

Finally, we can reduce from TreeEval with constant (but greater than 2) fanin to tree eval with fanin 2,
at a mild cost to the height.

Lemma 2.7. There is a space O(hlog r + {r)-reduction from TreeEvaly g, to TreeEvalpiog r1,e[r/2],2-

Proof. We set £ = ¢-[r/2]. For every node u in the original tree with children uy, ..., u,, we place a tree
gadget with r leaves with height [log r]. We think of the values at leaves uy, ..., u, as ¢-bit strings padded
by 047/21=¢_ All non-root nodes in the gadget tree simply collect the values passed from their children, using
that the output is of sufficient length to propagate both. The root node in the gadget, which has v,,,, ..., vy,

as input, has output f,(py,, ..., py,) padded by 047/21=¢_ This transformation is clearly logspace uniform in
the size of the resulting tree, and preserves the value at the root. O

2.3 Matching Vector Families

We next define matching-vector families and verify some useful facts about them. Let py, ps, ..., p; be t
distinct odd primes. Let m = p; ... p;, and let Z,, = Z./mZ denote the ring of integers modulo m.

Definition 2.8. Forv, € Z,,,...,v; € Z,,, we let CRT(vy, ..., v;) denote the unique value v € Z,, such that
v=u; (mod p;) fori € [t].

Definition 2.9. Let d be a positive integer. We say that two collections of vectors (U, V), where U =
(uy,...,un) € (ZHN and V = (vq, ..., vy) € (ZE)N, form a matching-vector family over ZZ of size N, if:

1. for every i, j € [N], it holds that (u;, v;) € {0, 1} mod py for k € [t], and
2. for every i, j € [N], we have i = j if and only if (u;, v;) = 1.

Definition 2.10. We say such a (sequence of) families {U, V}nen is logspace uniform if there is an
algorithm that, on input (N, i, j, p1,..., pt) where i, j € [N], prints u;, v; to the output tape and runs in
space O(log N + log d + logm).3

Remark 2.11. For convenience, our definition of matching-vector families differs in a minor way from the
customary definition [Efr12, DG16]: rather than having Item 2 say that the inner product of w; with v;
is 0 iff i = j, we say that this inner product is 1. These definitions are equivalent, up to increasing the
dimension d by one: if we define u} = (u;|1) and v} = (=v,]|1), then it holds that (u/,v}) = 1 - (u;, v;). As
a result, Item 1 is preserved by this transformation, and moreover we have (u;, v;) = 0 & (u/,v}) = 1.

A crucial ingredient to our constructions is the following theorem:

Theorem 2.12 ([BBR94, Gro00, DGY11]). Let m be the product of t distinct primes py, ..., p;. Let w be a
positive integer. Then there exists a logspace-uniform matching-vector family over Z2 of size N, where:

+1/t
N := ([Wl 1 ]>, and

w

3Note that we allow space logarithmic in the modulus (versus doubly logarithmic). This does not affect the ultimate complexity
of any of our constructions.



L(mw)'/*] 1+1/t
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Proof Sketch. This is immediate from setting parameters suitably in [DGY11, Lemma 11]. In their theorem,
we set h = [w'*1/*] and for each i € [¢] take ¢; to be minimal such that p{ > (mw)"/*/p;. This implies that
IL p¢ > mw/T1; pi = w, and moreover for any i we have p? < (mw)!/*. Finally, [DGY11, Lemma 11] does
not state logspace-uniformity but it is immediate from their construction. We verify this in Section A. [

The following corollary is straightforward; we defer its proof to Section B.
Corollary 2.13. All of the following hold:

1. ([Gro00]) Let t be constant and py, ..., p; be t fixed odd primes. Then for any ¢ > 1, there exists a
logspace-uniform matching-vector family over Z, ,, , of size 2‘ with dimension d = exp (O (1{’1/ ‘(log )1/ ) )

2. Forany £ > 1,let t = \[log £ —loglog ¢/2 + O(1), and let py, ..., p; be the first ¢ odd primes. Then
there exists a logspace-uniform matching-vector family over Z,, ,, ,, of size 2* with dimension

d = exp(exp(O(4/log ©))).

3 Main Result: Catalytic Tree Evaluation from Matching Vectors

We now prove the following theorem:

Theorem 3.1. Let odd primes py, ..., p; be given as input and letm = []; p;. Suppose there exists an O(£)-space
uniform matching vector family of size 2¢ over Z¢, and suppose additionally that d log m < poly(2"*?). Assume
our algorithm is given the following resources:

« a catalytic tape of length O(d log(dm)).

« on the input tape, the truth table of a function f, : {0, 1} x {0, 1} — {0, 1}’ for every u € {0,1}", and
inputs v, € {0, 1} for u € {0, 1}".

Then, there exists an algorithm that uses O(£ + hlog m) free space and time poly(2**) and outputs vy, (i.e.,
the result of TreeEval).

We can then combine this result with the matching-vector families given by Corollary 2.13 to read off
the results in the introduction:

Corollary 3.2. For any € > 0, we can solve TreeEvaly, , in O(¢ + h) free space, exp(O(¢¢)) catalytic space,
and poly(2¢*") time.

Proof. This follows by taking Item 1 of Corollary 2.13 with ¢ a sufficiently large constant, e.g., t = [3/e]. O

Corollary 3.3. We can solve TreeEvaly, , in O(¢£+ h,/log floglog ¢) free space, exp(exp(O(4/log ¢))) catalytic

log ¢

space, and poly(2:*" ) time.

Proof. This follows from Item 2 of Corollary 2.13. O



Remark 3.4 (Better tree evaluation from better matching-vector families). There is a wide gap between the
best-known constructions and lower bounds for matching-vector families. To the best of our knowledge, it
would be consistent with current lower bounds [TB98, BDL14, ADL*25, GGMT25] for there to be matching-
vector families (with t, p1, ..., p; all constant) of size 2¢ and dimension O(¢log £).* If such matching-vector
families were to exist, then Theorem 3.1 would imply an algorithm for TreeEval that simultaneously uses
O(log nloglog n) space—matching [CM24]—and runs in polynomial time.

3.1 Recursive Step: One Level of Tree Evaluation

The main technical workhorse for our results is the following theorem:

Theorem 3.5. Let m = pip;... p; be a product of t distinct odd primes that are given as input. Suppose
there exists an O(£)-space uniform matching vector family {u,,v, € Z% : x € {0,1}} of size 2¢ over Z2..
Additionally, let {ws : s €10, 1}(} be any O(f)-space uniform collection of vectors in Z<. Suppose our
algorithm is given the following resources:

. global space comprising three registersx,y,z € Z%;
« the truth table of a function f : {0, 1} x {0, 1}* — {0, 1} on the input tape; and

« an oracle O that takes as input a scalar y € Z,, and bits ctrl, o € {0, 1} in local space and updates the
registers as follows. In the below, a, b € {0, 1}’ are some bitstrings.

— ifo =0, let A denote u, ifctrl = 0 and v, otherwise. The oracle will update x < x + yA and leave
all other registers unchanged. (Here, by x we mean the first of the three catalytic registers, and y
refers to the second catalytic register.)

— ifo =1, let A denoteuy, if ctrl = 0 and v, otherwise. The oracle will updatey < y + yA and leave
all other registers unchanged.

Then, there exists an algorithm that takes as input a scalar y € Zy, in local space and updates z < z+ yW (o 1)
(while leaving the x and 'y registers unchanged). Moreover, the algorithm uses O(£ + log m + log(d - log m))
local space, and before making all oracle calls erases all but O(log m) bits of this space. The algorithm runs in
time poly(2:*! - d - log m) and makes 2°) queries to O.

Corollary 3.6. We will use three corollaries of this theorem:

« letting w; = u;, we can update z < z + yus(,p);

« letting w = v, we can update z < z + yv(q); and

o letting w; = s (with appropriate zero padding), we can update z < z + ys.
Before we prove the theorem, we begin with some preliminary lemmas:
Lemma 3.7. Let p be prime. For any g1, g2 € Z,,, consider the polynomial:

f(X) = X538 mod p _ X(g1+1)gz mod p _ Xgl(gz+1) mod p + X(g1+1)(gz+1) mod p € Z[X]

This polynomial is nonzero. Moreover, its nonzero coefficients are all in the set {—2,—1, 1, 2}.

It was shown by [BDL14] that under the polynomial Freiman-Ruzsa conjecture [Ruz99] over ZZ, the inequality 2¢ <
exp(0(d/logd)) = d > Q(flog ¢) must hold (assuming m is constant). This conjecture was recently proven by [GGMT25].



Proof. Suppose for the sake of contradiction that this polynomial is zero. Then, we would necessarily have
f’(1) = 0. However, we have

fO=ge-(@+D)ge-gl@+D+(@+D(g+1)=1 (mod p),

which is a contradiction. It follows that the polynomial is nonzero. In addition, it is apparent that any
coefficients of this polynomial must be integers in the interval [-2, 2], so the conclusion follows. O

Lemma 3.8. We can compute and store both (x,v,) and (y, vy) using O(f) local space, at most O(log m) local
space during oracle calls, and 4 calls to ©O. At the end, none of the global space registers will be changed.

Proof. This follows from the standard catalytic computing approach for computing inner products:
1. Compute tmp,; = (x,y) and write it into local space.
2. Swap the x,y registers. The global state is now (y, x, z).
3. Use O with o = 0,ctrl = 1, y = 1. The global state is now (y + v,, X, z).
4. Compute the inner product tmp, = (y + v,, x) and write it into local space.
5. Use @ with o = 0,ctrl = 1, y = —1 to return the global state to (y, x, z).
6. Use O with o0 = 1,ctrl = 1, y = 1 to update the global state to (y, x + v, z).
7. Compute the inner product tmp; = (y, x + v};,) and write it into local space.
8. Use @ with o = 1,ctrl = 1, y = —1 to update the global state to (y, x, z).
9. Swap the x,y registers.

Note that tmp, — tmp; = (x,V,) and tmp; — tmp; = (y, V;), so we are done. O

3.2 Proof of Theorem 3.5

We next give the algorithm that underlies Theorem 3.5, together with its proof of correctness and efficiency
analysis. Except where stated, all arithmetic is carried out modulo m.

Algorithm. We use y* to denote the value of y that is given as input, along with the input function
f:{0,1} x {0, 1} — {0, 1}".
1. Use Lemma 3.8 to compute g; = (x,V,) and g = (y, Vp).

2. For each i € [t], compute the polynomial fi(X) = X&& modpi _ x(gi+Dge mod pi _ xgi(g+1) mod pi 4
XD+ mod pi ¢ 71 X By Lemma 3.7, this polynomial is nonzero over Z,,[X] and therefore over
Z[X| as well. Let ;X% be the lexicographically first nonzero monomial in £;(X). Since all exponents
in f; are reduced mod p;, we can regard f; as an element of Z,,. We know from the lemma that
a; € {—2,—1,1,2} and hence it is coprime to m.

3. Repeat for all bits by, ..., by, cq,..., ¢; € {0, 1}:
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(a) Using two queries to O, make the updates:

X < x+ CRT(by, ..., by) - u,
y <y + CRT(cy, ..., ¢t) - up.

(For example, the first update would be with ¢ = 0,ctrl = 0, y = CRT(by, ..., b;). Recall that
CRT(by, ..., b;),CRT(cy, ..., ¢;) are scalars in Z,, and u,, u; are vectors in an)

(b) Repeat for all r, s € {0, 1}":
i. Compute (x,v,) - (y,Vs) mod m.
ii. If the result is equal to CRT(f, ..., f;), update

-1
i€[t]

(Here, all multiplicative inverses are computed mod m.)

(c) Using two queries to O, restore:
X < X + CRT(=by,...,—bs) - u,
y <y + CRT(—cq,...,—¢t) - up.
Proof of correctness. We prove correctness in a few steps:

Lemma 3.9. Foranyi € [t] and r, s € {0, 1}¢, we have:

a;, if (r,s) = (a, b),

§ ; (_1)bi+q =10, if(“as Vr> : <ub:Vs> =0 (mOd Pi)’
b,’,CiG{O,l} b h .
(c+bug v ){y+erup,v)=pi  (mod pi) arbitrary, otherwise.

Proof. First we address the second case where at least one of the inner products is 0 mod p;. Assume
without loss of generality that (ug, v,) = 0 (mod p;); the other case is analogous. In this case, whether
or not (X + b; - ug, v,) - (y + ¢ - up, vs) = f; (mod p;) is independent of the choice of b;. Thus ¢; ranges
over § € {0, 1} such that (x,v,) - (y + d - up,vy) = f; (mod p;), and for each such § there are two terms
corresponding to b; = 0 and b; = 1. Pairing up terms corresponding to (b;, ¢;) = (0, §) and (1, &) (for each
included §) implies the conclusion.

In the first case, the condition (x + b; - u,, v,) - (y + ¢ - up, vy = f; (mod p;) that we are summing
over simplifies to (g; + b;)(g2 + ¢;) = f; (mod p;), noting that by the matching vector guarantee we have
(ug, vy) = (up,vy) =1 (mod p;). Now, we note that the polynomial f;(X) can also be written as

Z (_1)b1+0i ,X(g1+bi)(g2+0i) mod i,
bi,CiG{O,l}

Thus, our expression of interest is the coefficient of X# in f,(X), which is &; by construction. The conclusion
follows. O

Lemma 3.10. Foranyr,s € {0, 1}, we have:

) (C1)Beatira) — { [ . i(r.5) = (a.b),

b1,...,bt,c1,...,00€{0,1} 0, else.

(x+biug, vy ){y+eiuy,v)=p;  (mod p;)vie(t]

11



Proof. We can start by factoring over the independent choices of b;, ¢; for each prime p; to obtain:

Z (—l)zie[f](bi+ci) = H Z (_1)bi+€i ]

bi,....bt,c1,...,c1€{0,1} i€[t] bi,c;€{0,1}
(etbiug,vi)(y+eiup,ve)=p;  (mod py)Vvie[t] (xtbiua,vp)(y+eiup.ve)=pi  (mod pi)
If r # a, then by the matching vector guarantee there must exist an i such that (u,,v,) = 0 (mod p;). The
corresponding term in the above product will be 0 by Lemma 3.9, which will make the entire product 0. We
may argue similarly if s = b.
If (r, s) = (a, b), then by Lemma 3.9, the i*" term in the above product is o;, implying the conclusion. [

Correctness of our algorithm is then immediate from the following corollary:

Corollary 3.11. We have:

(H “i> "Wiab) = Z W (r,s) * Z (=1)Zietn(bi+ed |

ie[t] I’,SE{O,l}[ bl,...,bt,Cl,...,CtE{O,l}
(xtbiug,vy){y+ciup,vs)=p  (mod p;)vie[t]

Proof. By Lemma 3.10, the left-hand side and right-hand side are identical linear forms in the collection
fwrs : r,s€{0,1}}. O

Efficiency analysis. The stated runtime guarantee is clear. (The poly(d - log m) factor is to allow for basic
arithmetic operations in the x, y, z registers.)’
It remains to tally up the space needed at each point in the computation:

« In step 1, we compute and store gi, g» in clean local space (of which we need O(log m)).

« In step 2, we compute and store the coefficients a;, ; in local space O(t + Y e[, log pi) = O(log m),
which we persist across the entire computation.

« In step 3, we use O(t) = O(logm) local space to store the bits by, ..., b; and cy, ..., ¢;. Then, in
steps (a) and (c) in this loop, this is all of the information we store. During step (b), where we use
O(¢ + log(d - log m)) local space to keep track of the values r and s (each of bitlength ¢) and to keep
pointers into registers x,y, z, we do not invoke the oracle. O

Remark 3.12 (An alternate view in terms of polynomial rings). The reader might rightly suspect that our
algorithm arose from a more complicated construction over the polynomial ring R := Z,[X;, ..., X;] /(X' —
1, sz -1,..., ti‘ — 1), akin to those of [DGY11, DG16, GKS25]. In this setting, our registers would be in
R4 rather than Z%, and the update to the z register can be thought of as adding some multiple of

H ( Z (_1)bi+CiXi(g1+bi)(g2+Ci)) — Hfz(Xz)
i=1

=1 \ b;,c;€{0,1}

The resulting algorithm keeps track of unnecessary information (and makes unnecessary changes to the
catalytic tape); we only ever need one monomial of a polynomial in R, and the algorithm we present arises
from making this simplification.

’Recall that arithmetic mod m can be computed in polynomial time and linear space in the input representation, i.e., O(log m).
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3.3 Proof of Theorem 3.1

Finally, we use Theorem 3.5 in the natural recursive fashion to prove Theorem 3.1. For u € {0, 1}<" specifying
a node in the tree, recall that v, is the value of the TreeEval instance at that node.

We instantiate a single free space register u € {0, 1}" to track the current location in the tree, which we
initialize to @ (corresponding to the root node). We allocate O(¢+ t+log m+log(dlogm)) = O(£+h+logm)
bits of free workspace to be used temporarily by the algorithm of Theorem 3.5 between its oracle calls, and
h - O(log m) free space allocated for storing the O(log m) free space used by the algorithm at each level
while making oracle calls.

We interpret the catalytic tape as holding registers x,y, z € Z. To handle that the catalytic tape consists
of bits and not elements of Z,,, we use Remark 2.3 (and the catalytic tape thus has length O(d log(dm))).
We store the final [#/ log m] coordinates of z using free space, which we denote reg.

Finally, we invoke Theorem 3.5 at the root node with y* = 1 and w, = s (where we cast s € Zw togm]
and pad to the appropriate length). We discuss how to handle oracle calls made by the one-level algorithm
below. Once this procedure halts, we have that z is in configuration reg + vy (and x, y are unmodified), so
we subtract reg and obtain vy as desired. Lastly, we run the algorithm again with y* = —1 and w = s. It is
easy to see that after this the catalytic tape is entirely restored, so we halt and return vg.

Handling oracle calls. Suppose the one-level algorithm corresponding to node u at level i € {2, ..., h}
makes a call to @ with input y, ctrl and bit . First, if i = 2 (so the call corresponds to a leaf node at layer 1
of the tree) we define a = v,y and b = v,;. We directly use O(¢ + log(dlogm)) = O(£ + h) local space to
make the update to x or y specified by the oracle API.

Otherwise, store y,ctrl, 0 and the currently used free space of the algorithm in the O(log m) bits of
free space allocated for level i. If ¢ = 0 we swap x,z, and if 0 = 1 we swap y,z. Both swaps can be
performed using O(log(d logm)) = O(£ + h) temporary free space (which we then erase). We update the
global indicator of our current node to u < uo, and invoke the algorithm of Theorem 3.5 with

u ctrl=0

v ctrl=1

fzfu Y*:y Wz{

and note that the child algorithm can store which part of the matching-vector family it should apply with a
single bit of free space. After the child algorithm returns, we again swap x,zif 0 =0 andy,zif ¢ = 1, and
update u to reflect the current node. By the correctness of the child algorithm, we have that this procedure
halts with the register update specified by the oracle APL

Correctness. By Theorem 3.5 and the fact that we implement the specified oracle AP, when the algorithm
is run at node u with y* and vector family w, it updates zto z + y* - W ¢(, »,,) = Z+ ¥” - Wy,. This establishes
correctness by a simple inductive argument.

Runtime. Each single-level algorithm makes 2°( oracle calls and runs in time poly(2¢ - dlogm) =
poly(2i41), so an induction gives a final runtime 20" . poly(2+6+1) = poly(20+/1). O

4 An Alternate View: Catalytic Tree Evaluation from Private Informa-
tion Retrieval

Next, we give an alternate presentation of Section 3’s algorithm, phrased closer to the language of private
information retrieval (PIR).
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4.1 Background: Informal Definition of PIR

A PIR protocol is defined with respect to a database size npg € N, a ring R, and a number of servers s > 2.
It consists of three polynomial-time algorithms:

1. Query(i) = quy, ..., qu,, which takes as input an index i € [npg] into a database and produces s PIR
queries to be sent to each of the s servers.

2. Answer(DB, qu) — ans, which takes as input a database DB € R"®® and a PIR query qu and produces
a PIR answer ans.

3. Reconstruct(i, ansy, ..., ans;) — R, which takes as input the index being read and the s servers’ answers
and outputs the i record of the database DB.

The scheme’s privacy requires the marginal distribution of each query qu;, for j € [s], to be independent of
the index i being queried.

4.2 Modifying the PIR Requirements for Tree Evaluation

We next show that, if a PIR scheme can be massaged into a tuple of algorithms with certain structural
properties, then it can be used to build a catalytic algorithm for TreeEval. At a high level, these properties
correspond to the following intuitive requirements:

+ The query routine samples some common randomness with which it additively masks a fixed sequence
of elements (that depend only on the index being queried), one of which is sent to each server.

« The user can effectively make a query for a pair of indices a||b (in a larger database of size n3g) by
building a PIR query for a and a PIR query for b independently.

+ The reconstruction functionality can be pulled into the Answer routine, given some small state that
depends on the indices queried and on the randomness used. After this, reconstructing the record
from each server’s answer is just addition.

« All algorithms are low-space, and the servers can answer PIR queries by streaming over the database.

Definition of catalytic information retrieval. To be more formal, we define the syntax for a new object,
which we call catalytic information retrieval (CIR), to be the following tuple of three algorithms:

1. DetQuery(a € [npg], j € [s], p € {0,1}) = R, a deterministic algorithm that takes in an index a into
the database, a server j € [s], and a bit s and produces the deterministic part of the query for the j
server.

In our scheme, the user makes queries to a tuple of indices a||b simultaneously. To do so, our user:

« samples two ring elements x, y < R.

« sends to server j € [s] the pair of PIR queries qu; < x + DetQuery(a, j,0) and qu; — y+
DetQuery(b, j,1).

14



2. GetStateP+*(x € R,y € R) — st € {0,1}*, a deterministic oracle algorithm that takes as input two
registers holding the randomness x and y, and produces the state st needed for reconstruction.

The oracle O, takes as input a register t € R, bits o, u € {0, 1}, a factor y € {—1,1}, and a server
index j € [s] and updates
t < t + y - DetQuery(c, j, ),

where cis aif 0 =0, else it is b.

3. AnswerAndReconstruct(DB € R"™® st, j € [s],qu € R,qu’ € R) — ans € R, a deterministic algorithm
that takes as input the database DB, the reconstruction state st, the server index j € [s], and the two
queries qu and qu’, and outputs an answer ans.

We require a CIR scheme to satisfy two properties: correctness and efficiency.

Definition 4.1 (Correctness). We require that for any a, b € [npg] and x, y € R, it holds that:

DBy = Z AnswerAndReconstruct(DB, GetState?+* (x, ¥), j, x + DetQuery(a, j, 0), y + DetQuery(b, j, 1)).
Jjels]

Definition 4.2. We say a CIR scheme is space-efficient if each of the following are true:

« We can represent a valid element of R on the catalytic tape in space 5(Iog |R|), and we can perform
arithmetic operations in R in time poly log |R| and additional space O(loglog |R]).

« GetState+> is computable with catalytic registers x, y; it uses O(log npg) free space, and O([st|) free
space during every call to O; and

« AnswerAndReconstruct is computable with O(log npg) free space and runs in time poly(npg), provided
that we can random access into DB in O(log npg) space.

Remark 4.3. Jumping ahead to the setting of TreeEval, note that in that setting the ring elements x, y will
not be sampled at random; rather, they will be the contents of a possibly adversarially chosen catalytic tape.

This is why Definition 4.1 insists on perfect correctness. Our reason for describing a CIR scheme as
sampling x, y is to be consistent with the typical PIR framework where each query needs to be marginally
uniformly random.

4.3 Tree Evaluation Algorithm

We begin with the one-level algorithm for TreeEvaly ¢, following Section 3.1, recast in the language of
catalytic information retrieval.

Theorem 4.4. Assume we have a space-efficient CIR scheme. Suppose our algorithm is given the following
resources:

o global space comprising registers x,y,z € R; and
« the truth table of a function f : {0,1} x {0, 1} — {0, 1} on the input tape;

« the oracle O, (as defined in Item 2 of Section 4.2).
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Then, there exists an algorithm that takes as input a scalar y* € {—1,+1}, a bit p* € {0, 1}, and an index j* € [s]
in local space and updates
z < z+y" - DetQuery(f(a,b), ", u*),

while leaving the x and y registers unchanged. Moreover, the algorithm uses O(£ + log |R| + |st| + log s) local
space and before making all oracle calls erases all but O(|st| + log s) bits of this space, makes O(s) queries to
Op, and runs in time poly(2¢, log|R, s, 21).

Proof. We sketch the algorithm below and omit proofs of efficiency since they closely follow the proof
of Theorem 3.5.

1. Let DB be the 22‘-record database that, in position (r||s), contains the record computed as
)’* . DetQueW(f(r, S), j*> )U*)

2. Compute st < GetState?+* (x, y), making oracle queries to @, ;. Then, store st in free space.
3. Repeat for each server indexed by j € [s]:
(a) Using two queries to O, , make the updates:
x < x + DetQuery(aq, j,0)
y < y + DetQuery(b, j, 1).
(b) Using CIR with respect to the database defined in Item 1, update

z < z + AnswerAndReconstruct(DB, st, j, x, y)

(c) Using two queries to O, ;, restore:

x < x — DetQuery(a, j,0)
y <« vy — DetQuery(b, j, 1). O

The next theorem readily follows by using the same recursive strategy as in Theorem 3.1.

Theorem 4.5. Suppose the CIR scheme is space-efficient. Then, using the one-level algorithm above (where
we implement the oracle O, using a recursive instantiation of the algorithm in the natural way), we get
an algorithm for TreeEvaly, that uses O(log |[R|) catalytic space, O(h - |st| + hlogs + £) free space, and
O(s)" - poly(2¢,log |R|, |st]) runtime.

Remark 4.6. We note that an even more general variant of a CIR scheme would still give new algorithms for
TreeEval. For example, GetState could also use the z register as catalytic space. Additionally, we do not need
to work over a ring R; we could work over an arbitrary universe and replace additions and subtractions
with reversible updates. We refrain from formally presenting these abstractions for the sake of clarity.

16



4.4 Special Cases

The algorithm of Cook and Mertz. We now sketch how the algorithm of Cook and Mertz [CM24] can
also be viewed as arising from a CIR scheme. For clarity, we will assume npg = 22 and that DB is viewed as
the truth table of a function f : {0, 1}* x {0, 1} — {0, 1}*. We make the following choices:

« F will be a prime field of order O(¢) that has a primitive sth root of unity « for some s € (2¢,|F|);
« The ring R will be F;
« The number of servers will be s; and
+ g : R xR — R will be the multilinear extension of f.
We now define the CIR scheme as follows:
« DetQuery(a, j, 1) := w ’a (note that y is irrelevant for this construction);
+ GetState will not do anything, i.e., st = L;

« AnswerAndReconstruct(DB, st, j, x, y) := g(@’x, w’y)/m. Here, g(-) is computed on the fly in space
o(?).

Since the number of servers is O(¥), this recovers the O(¢ + hlog ¢) free space and O(?) catalytic space
of [CM24, Theorem 1.3].°

The algorithm of Section 3. Here, the correspondence is easier to see because the presentation of our
algorithm in this section is modeled off of Section 3. We sketch the correspondence below:

« The ring R is Z2¢, hence we denote the catalytic registers x, y, z with boldface.
« There are 22! servers which we identify with strings of 2t bits by, ..., b;, c1,..., ¢;;

CRT(by,..., b)) - (ug]|vy), if p =0

+ DetQuery(a,j = (by,.... b, c1,eceyc) ) 2= .
CRT(cyy.wesr) - (ugllvg), if pp = 1.

« GetState will compute and store gy, g», and all the ¢;’s and f;’s in st. In a little more detail, we will
isolate X¢rync, Ytrunc € Z;’L to be the first d entries of x, y respectively and compute g; = (X¢runc, V) and
&2 = (Ytrunc, Vi), which could potentially require some swaps within the x,y registers that can be
reversed.

The oracle queries in Lemma 3.8 can be instantiated by setting by = ... = b; =¢; =...=¢; =1, 50
that the factor coming from each CRT term is just +1.

« AnswerAndReconstruct(DB, st, j = (b1, ..., by, c1, ..., ¢1), X, y): this will be equal to

e -1 .
DB,s - (—1)Zi€[‘](b’+cl) : (Hie[t] Ofi) » if (Xtrune, Vi) * (Ytrune, Vs) = CRT(By, ..., B;)  (mod m),
rsefoay | 0> otherwise.

The algorithm of Cook-Mertz does not work in the catalytic space model, so they do not need to incur the space overhead of
the transformation in Remark 2.3 (since they can initialize all registers to valid representations).
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Here the number of servers is 2%, |stf = O(log m), and log |R| = O(d log m). Plugging these in to Theo-
rem 4.5 recovers the statement of Theorem 3.1, noting that we assume d logm < poly(2"*?) and that the
transformation of Remark 2.3 will only require catalytic space O(d log(dm)) to represent an element of R.

Motivating the algorithm of Section 3. We take the opportunity here to provide some high-level
intuition for the various departures our algorithm in Section 3 makes from typical PIR protocols based on
matching vector families [DGY11, DG16, GKS25, LBA25]. We start with the following simpler construction
of 2-server PIR [Efr12] given a matching vector family of size N over Z¢ (where m = p; ... p; is a product
of ¢ primes). Let q be a prime such that m|q—1. Let gy, ..., g € Z, be elements with respective order p; ... p;.
Servers are indexed by tuples (b1, ..., b;) € {0, 1}! of bits. The protocol now proceeds as follows:

« Suppose the client has an index i* € [N]. They will sample uniformly random r < Z¢ and send
server (b, ..., b;) the point r + CRT(b4, ..., b;) - u € fol.

 Given a vector qu € Zfﬂl, server (by, ..., b;) will reply with:

ansp, Z DB; - Hg]quw Z DB, - H (rbyup,vi)

i€[N] i€[N]

+ The client will now compute:

Z ( 1)215“] bi Z DB; - Hg(r+b U Vi)

Z (_1)Zie[t] biansbl,,.,,b,

by,...,b;€{0,1} by,...,b;€{0,1} i€[N] Jj=1
t
= Yoos |[| T g
i€[N] j=1 \b;ef0,1}

DB, - (rv, ( U*,vi))]
T |l

t
=DB; - [ [ &1 - g,
=1

from which they can recover DB;«.
When adapting this to tree evaluation, we face the following natural obstacles:

1. The CIR protocol needs to be composable with itself in order to recursively apply it when going up
the tree. To this end, we ensure that our queries and reconstructed answers both take the form of
adding a matching vector into a catalytic register.

2. Thus, when carrying out one level of tree evaluation, we assume we can update x < x + u, and
y <y + u;,. However, what we really need for CIR is to be able to make queries that are indexed by
the tuple (a, b). This can be seen in the equation in Definition 4.1. Our solution is roughly inspired by
the fact that the tensored collection of vectors {u, ® u,v, ® v;, : a, b € {0, 1}'} is itself a matching
vector family over anf. We cannot actually write these tensor products down, but instead stream
through them to remain in low space.
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3. The recursive composability requires the CIR queries and answers to have the same type. For the
simple scheme sketched above, this cannot be true! DB;- lives in Z,, where there needs to be an
element of multiplicative order m, while the queries live in Z,,. To remedy this, we move away from
Z4 to a formal polynomial ring over Z,,—following the original presentations of [DGY11, Efr12,
DG16, GKS25]—where we can adjoin formal variables of multiplicative degree dividing m. As noted
in Remark 3.12, this leads us to work over the ring Z,,[ X, ..., Xt]/(X{01 —-1,..., Xf' — 1). Following
this approach comes with minor difficulties, but we can simplify the resulting construction to get rid
of the polynomial ring, yielding the construction in Section 3.1.

5 Application: New Time-Space-Catalytic Space Tradeoffs

5.1 The Reduction of Williams

We recall the reduction from Time[t] to tree evaluation.

Theorem 5.1 ((Wil25]). For every language L in Time[t], there is a machine that on input x € {0, 1}" runs in
space O(+/t) and outputs a TreeEvaly ; instance with h = O(\/t) and £ = O(/t) such that the output of the
tree eval instance is L(x).

We remark that the result of Williams outputs a TreeEval instance with fanin r > 2 for some constant r that
depends on the language L, but the result as stated above is immediate from Lemma 2.7.
Subsequently, Shalunov gave a direct reduction from size-S circuit evaluation to TreeEvaly,

Theorem 5.2 ([Sha25]). There is a O(\/S) space algorithm that, given a circuit C with S gates’ and input
x € {0, 1}", outputs a TreeEvaly, ; instance with h = O(\/S) and £ = O(/S) such that the output of the tree eval
instance is C(x).

5.2 Applications of Catalytic Tree Evaluation

Corollary 1.3 follows immediately from Corollary 3.2 and Theorem 5.1. We can also plug in Corollary 3.3
to obtain a different corollary. For this, we use that the algorithm of Theorem 5.1 can produce a TreeEval
instance of height t/b and ¢ = b for any space constructible function b. We instantiate it with b =
Jt -log!/4(t) and obtain the following:

Corollary 5.3. Time(t) C CatTimeSpace [exp exp(O(4/log t)), O(+/t - log1/4(t) log log log t), 20(Jrlog! (1) |
Finally, combining Theorem 5.2 with Theorem 1.1 immediately gives the following:

Corollary 5.4. For any ¢ > 0, size-S circuit evaluation can be decided in O(+/S) free space, 20057 catalytic
space, and 2055) time.
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"The description size is thus O(S log S) bits.
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A Verifying the Uniformity of the Matching-Vector Family

The fact that the matching-vector family of [DGY11, Lemma 11] is logspace uniform is not explicitly stated,

but follows immediately from the construction. We verify this below, making no claims to originality. We

exactly follow their notation.

Definition A.1. Let py, ..., p; be distinct primes and let m = []; p;. The canonical set S in Z,, is the set of

nonzero s where s € {0,1} mod p; for every i.

Lemma A.2. Letm = [[i_, p; be a product of distinct primes that are given as input. Let w, g and ey, ..., e; be

t

given such that [[,_; p;' > w and h > w. Let d = max; p;". There exists a space O(log N + d log h + log m)-
uniform® matching vector family of size N = (i’}) inZ,, wheren = (ghd).

We first define polynomial matching families:

8In both regimes we work with log(N) > dlog h, so this meets the definition of logspace-uniformity.
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Definition A.3 (Polynomial Matching Family, Definition 35). Let S C Z,, \ {0}. We say that a set of
polynomials ¥ = {fi,..., fk} € Zm[z1,...,zn] and a set of points x = {xy,...,x¢} C Zf‘n form a space-s
uniform polynomial S-matching family of size k if

o foralli € [k], fi(x;) = 0;
« foralli, j € [k] such that i # j, fj(x;) € S.
« There is a space s algorithm that prints F.

First, such a family can be turned into matching vectors by an observation of Sudan. Let F, X be a
logspace-uniform k-sized polynomial matching family. For i € [k], let supp(f;) denote the set of monomials
in the support of the polynomial f;. Define supp(F) = Ule supp(f;) and dim(F) = |supp(F)|.

Lemma A.4 (Lemma 36). A space-s uniform k-size polynomial S-matching family F,X over Z,, yields a
space-O(s + log m) uniform k-sized matching vector family in Z7,, where n = dim(F).

Proof. We have by assumption that we can enumerate over the monomials in F in space O(s) (and hence
print the coefficient of each monomial).
Let MON7, ..., MON, be these monomials, and let

n
fj = Z Cj - MON;
I=1

where cj; € Zj,.

Finally, we let u; € Z be the n-dimensional vector of the coefficients of f. It is straightforward that
we can enumerate over monomials in O(s) and determine if f; contains this monomial, and if so read off
the coefficient. Next, let v; € Z], be the vector of evaluations of the monomials at x;. Here we can again
enumerate over the vectors x; in space O(s) and perform this evaluation in space O(s + logm). ]

We then construct such a family. We require low-degree polynomials which compute the weight of x
mod p;:

Lemma A.5 (Theorem 2.16 [Gop06]). There is a space O(d log h) algorithm’ that given i € [t] and w prints
an explicit multilinear polynomial f((z1,...,zy) € Zp,[z1, ..., zn] where deg(f) < pi' — 1 and for x € {0, 1}":

0 modp; Y;xi=w mod p/
ﬁﬂ=[ , ,

1 0. W.

From this we immediately obtain that in space O(d log h + log m) we can obtain the following:

Corollary A.6 (Corollary 38). There is a space O(d log h + log m) algorithm that prints an explicit degree
d multilinear polynomial fi(zy, ..., z) € Zp|z1, ..., z4] for x € {0, 1}

fi(x)=[0 modm Y,;xi=w

s modm Y,;x<w

In the above, ) ; x; is being computed over Z.

The explicitness is not stated but is immediate from the construction.
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Claim A.7. Let N = (‘Z) There is a space O(log N)-computable bijection from [N] to sets T C [h] of size
w.

Proof. For a given combination T, denote the elements of T in decreasing order as c,, > ... > ¢; > 0. We
express this combination as the number

There is a greedy algorithm that prints c,,, ..., ¢; given K that runs in space O(log N) as follows. We let
S =0and i = w and choose ¢; maximal such that

(Cl> <K-SandsetS « S+ (Cl>
i i

Since we can store S using O(log N) bits since all values are bounded by N (so we can obviously compute
coefficients in space O(log N)) we are done. O]

Proof of Lemma 11. We construct a polynomial S-matching family and apply Lemma A 4.

We work with subsets T C [h] of size w. We use the O(log N)-space function [N] — {0, 1}? of Theo-
rem A.7 and hence index these sets as numbers in [ N] without loss of generality.

For each such set T, letting f be the polynomial of Corollary A.6, we define fr as the polynomial where
we set z; = 0 for j ¢ T. We can clearly construct this polynomial in space O(log k + d log h +log m). Finally,
let x7 € {0, 1} be the indicator of T. We WLOG extend supp(F) to be all monomials of degree at most d,
which we can enumerate over in space O(d log h). Thus, the total space required to print the polynomial
family (and hence the matching vector family) is O(log k + (d log h) + log m) as desired. O]

B Proof of Corollary 2.13

Item 1 is immediate and exactly the result proven by [Gro00] (by taking w = ©(¢/ log £)). Item 2 also follows

directly from Theorem 2.12 by taking w = ©(¢//log ¢) and ¢t = /log w. We know by the prime number

witl/t .
theorem that m = ¢+°Y). The dimension can be bounded above by (mw)'/* + 1 times ( [w! 11 ] >, noting that
[(mw)!/t]

the last binomial coefficient must be the largest since t'+°() < w/2 = m'/t < w/2 = (mw)"/t < wi*1/t /2.
To bound the first factor (the number of binomial coefficients), note that:

(mw)l/t < t1+o(1)W1/t

— (IOg W)1/2+o(1)2 logw

< exp(O(y/log w))
= exp(O(4/log ?)).

We can bound the largest binomial coefficient by:

e[wit1/1] (mw)!/! 3l +1/1 (mw)!/!
ARG <=
(l(mw)l/tJ) - <(mW)1/t>
< (w/tl_o(l))tHo(l)Wl/t

= exp ("W . W/ (log w — log t + o(log 1)))
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= exp ((log w)l/2Ho@ g logw joe w)

— exp(exp(O(\[log w)))
= exp(exp(O(+log ).

Multiplying these two bounds implies the conclusion. O
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