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Abstract

We show that Hilbert’s Nullstellensatz, the problem of deciding if a system of multivariate
polynomial equations has a solution in the algebraic closure of the underlying field, lies in the
counting hierarchy. More generally, we show that the number of solutions to a system of equations
can be computed in polynomial time with oracle access to the counting hierarchy. Our results
hold in particular for polynomials with coefficients in either the rational numbers or a finite field.
Previously, the best-known bounds on the complexities of these problems were PSPACE and
FPSPACE, respectively. Our main technical contribution is the construction of a uniform family
of constant-depth arithmetic circuits that compute the multivariate resultant.
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1 Introduction

1.1 Background

Polynomial equations are ubiquitous throughout mathematics and the sciences. They capture useful
geometric and physical relationships, such as the Pythagorean theorem or the altitude of a projectile
over time, and so have been the subject of investigation for centuries. The quadratic formula,
Gaussian elimination, and the Euclidean algorithm, all important tools for solving equations, were
known to ancient civilizations and are among the oldest algorithms to survive to the present day.
Renaissance mathematicians later discovered formulas for the solution of cubic and quartic equations,
and a great deal of effort was expended on the search for the quintic formula before Abel proved no
such formula exists. The parallel development of numerical techniques, such as Newton’s method,
provided a means of solving high-degree equations even in the absence of an explicit formula for
their solution, and they have since become an essential part of modern computational science.

Interest in solving polynomial equations has endured over time, and as computer science developed,
mathematicians were naturally led to questions about the computability and complexity of solving
equations. Already at the turn of the 20th century, predating the computer age, Hilbert [Hil02]
posed a list of twenty-three problems that might guide mathematical progress. Solving systems
of equations was the subject of his tenth problem. In modern terms, Hilbert asked if there is an
algorithm that takes as input polynomials f1, . . . , fm ∈ Z[x1, . . . , xn] and decides if the system of
equations f1 = · · · = fm = 0 has an integer solution. Matijasevič [Mat70], building on work of Davis,
Putnam, and Robinson [DPR61], showed that this problem is undecidable. However, if we seek
solutions in other domains, such as the real or complex numbers, this problem becomes decidable
and has a different story to tell.

Over the complex numbers—and more generally, an algebraically closed field—the starting
point for the solution of polynomial equations is Hilbert’s Nullstellensatz. Given polynomials
f1, . . . , fm ∈ C[x1, . . . , xn], the Nullstellensatz says that the system of equations f1 = · · · = fm = 0
has no solution in Cn if and only if there are polynomials g1, . . . , gm ∈ C[x1, . . . , xn] such that

f1(x)g1(x) + f2(x)g2(x) + · · ·+ fm(x)gm(x) = 1.

Thus, we can decide if the system f1 = · · · = fm = 0 has a solution by instead searching for
polynomials g1, . . . , gm that satisfy

∑m
i=1 figi = 1. Because of the key role the Nullstellensatz plays

in deciding the solvability of systems of equations, the computational problem of deciding whether
a system of polynomial equations has a solution is likewise referred to as Hilbert’s Nullstellensatz,
which we abbreviate as HN.

The Nullstellensatz reduces our original nonlinear problem to a linear one: inspecting the
coefficient of the monomial xa on both sides of the equation

∑m
i=1 figi = 1 yields a linear equation in

the unknown coefficients of the polynomials g1, . . . , gm. To turn this into an algorithm, we need to
bound the degrees of the polynomials g1, . . . , gm, should they exist. Hermann [Her26] was the first
to do so. She showed that if the fi have degree bounded by d and do not have a common solution,
then one can find gi of degree at most (2d)n2

n .1 This degree bound reduces the task of deciding the
solvability of f1 = · · · = fm = 0 to solving a system of linear equations of double-exponential size, a
task that can be carried out in double-exponential time. Since then, numerous works have proved
stronger bounds on the degrees (and heights) of the gi, leading to bounds of the form deg(gi) ≤ dn

[Bro87; CGH88; Kol88; FG90; Som99; KPS01; Jel05]. Naturally, these single-exponential degree
bounds imply that HN can be decided in exponential time, rather than double-exponential time, in
the size of the input.

1The proofs in Hermann’s original paper are incomplete, and the gaps were later filled by Seidenberg [Sei74].
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Although degree bounds of the form deg(gi) ≤ dn are essentially tight for the Nullstellensatz,
there is more to say about its complexity, as linear equations can be solved in a surprisingly
efficient manner. In 1976, Csanky [Csa76] designed an ingenious parallel algorithm to compute the
determinant of an n× n matrix in O(log2 n) time. The ensuing decade saw the design of parallel
algorithms for many problems of linear algebra, including the algorithm of Borodin, von zur Gathen,
and Hopcroft [BvH82] that solves linear systems in O(log2 n) parallel time. Combined with an
observation due to Borodin [Bor77] that parallel algorithms can be simulated in small space, this
leads to an algorithm that solves linear systems using only O(log2 n) space.2 Scaled up to the
exponentially-large systems of equations appearing in the Nullstellensatz (where the matrices have
size dpoly(n)), this results in a PSPACE algorithm to decide HN over an algebraically closed field,
which is the state of the art for this problem.

Much less is known about the computational hardness of solving systems of equations. By
arithmetizing SAT, it is easy to see that HN is NP-hard and that counting the number of solutions to
a system of equations (if this number is guaranteed to be finite) is #P-hard. These are the strongest
lower bounds known for the problem, and for good reason. Koiran [Koi96] showed that, assuming
the Generalized Riemann Hypothesis, HN over the complex numbers is in the complexity class AM.
Under plausible hardness assumptions, Miltersen and Vinodchandran [MV05] showed that AM = NP,
so Koiran’s work establishes that HN is conditionally NP-complete over C. In light of this, any lower
bound stronger than NP-hardness for HN would imply either a surprising collapse of complexity
classes, or that one of the two conjectures underlying Koiran’s NP algorithm is false.

Over other fields, the complexity of HN is less well understood. The aforementioned degree
bounds are valid over any field, so the Nullstellensatz can be decided in PSPACE over any algebraically
closed field, as long as the inputs lie in a subfield where arithmetic can be performed efficiently.
Koiran’s algorithm was recently extended by Ait El Manssour, Balaji, Nosan, Shirmohammadi, and
Worrell [ABNSW25] to decide the Nullstellensatz over C(y1, . . . , yk) in AM, again assuming the
Generalized Riemann Hypothesis. The situation is murkier over fields of positive characteristic. For
example, over finite fields, we only know that HN is NP-hard and can be decided in PSPACE. No
stronger lower bounds, nor better algorithms, are known, even conditionally.

Hilbert’s Nullstellensatz, in addition to being a problem of intrinsic interest, also plays a
central role in algebraic complexity, similar to the one occupied by boolean satisfiability in classical
complexity theory. Over a commutative ring R, the problem HNR—that is, deciding whether a
system of polynomial equations over R has a solution in R—is complete for NPR, the analogue of
NP in the Blum–Shub–Smale model of computation [BSS89; BCSS98]. The counting variant of HNR,
denoted by #HNR, where one must count the number of solutions to a system of equations over
a ring R, is similarly important in the theory of counting problems. Bürgisser and Cucker [BC06]
defined the complexity classes #PR and #PC, the counting versions of NPR and NPC, respectively,
and showed that #HNR and #HNC are complete for their respective classes. The Nullstellensatz is
also a useful algorithmic primitive in computational algebraic geometry: many problems of interest,
such as computing the dimension of an algebraic variety over an algebraically closed field [Koi97],
use the Nullstellensatz as an essential subroutine.

1.2 Our results

We show that a variety of problems related to solving systems of polynomial equations, chief among
them the Nullstellensatz, can be decided in CH, the counting hierarchy. We work in the Turing

2The algorithms of Csanky [Csa76] and Borodin, von zur Gathen, and Hopcroft [BvH82] were stated as arithmetic
algorithms, without regard to bit complexity, but they can likewise be implemented in O(log2 n) parallel time when
accounting for bit complexity.
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machine model, representing polynomials by the binary encoding of their coefficients. Throughout,
we consider systems of equations that have coefficients in the rational numbers, a number field, a
finite field, or a polynomial ring over such a field, all of which can be efficiently encoded in binary,
and are interested in their solvability over the algebraic closure of the coefficient field.

We use the dense representation of polynomials, where all monomials and their coefficients are
listed, including monomials with a coefficient of zero. One could also consider more expressive
encodings of a multivariate polynomial, either writing only the nonzero monomials of the polynomial
(the sparse representation) or describing an arithmetic circuit that computes it (the straight-line
program representation). By adding polynomially-many extension variables, both the sparse and
straight-line program representations can be converted to the dense representation. This conversion
preserves both the satisfiability and number of solutions (if this number is finite) of the original
system of equations.

Our main result is that Hilbert’s Nullstellensatz—that is, whether a system of equations over a
field F has a solution in the algebraic closure F—can be decided in CH.

Theorem 1.1 (see Theorem 6.9). Let F be one of the fields Q, Q(y1, . . . , yk), a number field K,
K(y1, . . . , yk), the finite field Fq, or Fq(y1, . . . , yk). Then Hilbert’s Nullstellensatz over F can be
decided in CH.

Before proceeding to our other results, we pause briefly to recall the counting hierarchy. The
counting hierarchy CH was first defined by Wagner [Wag86] to characterize the complexity of
combinatorial counting problems. The kth level of CH, denoted CkP, is defined inductively as

C0P := P

C1P := PP

CkP := PPCk−1 .

The counting hierarchy is the union of these classes, i.e., CH :=
⋃

k≥0 CkP. Alternatively, one can
define CH as the class of languages that are decidable by polynomial-time Turing machines with
a constant number of polynomially-bounded majority quantifiers, analogous to how PH captures
languages that are decidable in polynomial time by Turing machines that may use a constant number
of polynomially-bounded existential and universal quantifiers.

Where does the counting hierarchy sit in the landscape of complexity classes? Toda’s result that
PH ⊆ PPP [Tod91] shows that the polynomial-time hierarchy is contained in the second level of CH,
so we have the inclusion PH ⊆ CH. It is also easy to see that CH ⊆ PSPACE as a consequence of
PP ⊆ PSPACE. As the name suggests, the counting hierarchy captures the complexity of counting:
as a consequence of the definition, if FP = #P (i.e., if the permanent of a matrix can be computed
in polynomial time), then we have the collapse P = CH. For more details on the counting hierarchy,
we refer the reader to Allender and Wagner [AW90] and Torán [Tor91].

Returning to our results, Hilbert’s Nullstellensatz shows that a system of polynomial equations
f1, . . . , fm ∈ F[x1, . . . , xn] is unsatisfiable if and only if the constant polynomial 1 is in rad(f1, . . . , fm),
the radical of the ideal generated by f1, . . . , fm. More generally, the Nullstellensatz says that a
polynomial h ∈ F[x1, . . . , xn] vanishes on the common zeroes of f1, . . . , fm, called the variety of
f1, . . . , fm and denoted by V(f1, . . . , fm), if and only if h ∈ rad(f1, . . . , fm). The problem of deciding
if h ∈ rad(f1, . . . , fm), known as the radical ideal membership problem, is another basic problem in
computational algebraic geometry. The previously-mentioned degree bounds for the Nullstellensatz
also apply to the radical ideal membership problem, with an additional factor to account for the
degree of the polynomial h. These degree bounds imply that radical ideal membership, like HN, can
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be solved in PSPACE. By combining our main theorem with the Rabinowitsch trick, we improve
this bound, showing that radical ideal membership can be decided in CH.

Theorem 1.2 (see Corollary 7.1). Let F be one of the fields Q, Q(y1, . . . , yk), a number field K,
K(y1, . . . , yk), the finite field Fq, or Fq(y1, . . . , yk). Then the radical ideal membership problem over
F can be decided in CH.

In contrast, Mayr and Meyer [MM82] proved that the general ideal membership problem
is EXPSPACE-complete. Because of this, a similar improvement in the complexity of the ideal
membership problem would apply to the class EXPSPACE itself.

Once we know that a system of equations f1, . . . , fm ∈ F[x1, . . . , xn] has a solution, a natural
next step is to understand how many solutions this system has. One way to make this question
precise is to ask for the dimension of the variety V(f1, . . . , fm), which is a coarse measure of the
size of the solution set. A straightforward application of our main theorem lets us compute this
dimension in FPCH.

Theorem 1.3 (see Corollary 7.2). Let F be one of the fields Q, Q(y1, . . . , yk), a number field
K, K(y1, . . . , yk), the finite field Fq, or Fq(y1, . . . , yk). Given a set of polynomials f1, . . . , fm in
F[x1, . . . , xn], one can compute the dimension of the variety V(f1, . . . , fm) in FPCH.

When the variety V(f1, . . . , fm) is zero-dimensional, it consists of a finite set of points, so it
makes sense to ask for the number of solutions to the system f1 = · · · = fm = 0. Unlike the last two
applications of our main theorem, which follow by simple reductions to HN, we are not aware of a
simple reduction from counting points on a variety to HN. Despite this, our techniques easily extend
to this problem, allowing us to compute the number of points on a variety in FPCH.

Theorem 1.4 (see Theorem 6.16). Let F be one of the fields Q, Q(y1, . . . , yk), a number field
K, K(y1, . . . , yk), the finite field Fq, or Fq(y1, . . . , yk). Given a set of polynomials f1, . . . , fm in
F[x1, . . . , xn], one can compute the cardinality of the variety V(f1, . . . , fm) in FPCH.

Counting points on a variety is a basic problem of counting complexity whose precise classification
is not well understood. Bürgisser and Cucker [BC06] introduced the complexity class GCC, for
geometric counting complex problems, and showed that counting points on a complex variety is
complete for GCC.3 The class GCC and its functional analogue FPGCC contain natural counting
problems in algebraic geometry, including computing the geometric degree of a variety [BC06], the
Euler characteristic of a variety [BCL05], and the Hilbert polynomial of a smooth equidimensional
variety [BL07]. By arithmetizing #SAT, it is easy to see that counting points on a variety is at
least as hard as counting the number of satisfying assignments to a boolean formula, so #P ⊆ GCC.
Prior to our work, the best known upper bound on GCC was GCC ⊆ FPSPACE [BC06]. Theorem 1.4
improves this to GCC ⊆ FPCH.

Theorem 1.4 explains why our techniques only prove an upper bound of CH on the complexity of
HN, as opposed to placing HN in the polynomial-time hierarchy. The same techniques underlie the
proofs of Theorems 1.1 and 1.4. Because Theorem 1.4 addresses a #P-hard problem, the best upper
bound we can hope to prove with these techniques—excepting a surprising collapse of complexity
classes—is #P.

Finally, we mention a straightforward application of Theorem 1.1 to computing tensor rank, an
important problem in algebraic complexity related to the determination of the exponent of matrix
multiplication. By a direct reduction to HN, we can compute the rank of a given tensor in FPCH.

3Bürgisser and Cucker [BC06] also introduced the counting classes #PC and #PR as analogues of #P in the
Blum–Shub–Smale model of computation. Among other results, they proved that counting points on complex or real
varieties are complete problems for #PC and #PR, respectively.
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Theorem 1.5 (see Corollary 7.3). Let F be one of the fields Q, Q(y1, . . . , yk), a number field K,
K(y1, . . . , yk), the finite field Fq, or Fq(y1, . . . , yk). Given a tensor T ∈ Fd1 ⊗ · · · ⊗ Fdk , one can
compute the tensor rank of T over F in FPCH.

1.3 Proof overview

As we saw, we can decide if a system of polynomials f1, . . . , fm ∈ C[x1, . . . , xn] of degrees at most d
has a solution by deciding if the linear system

f1(x)g1(x) + f2(x)g2(x) + · · ·+ fm(x)gm(x) = 1.

is solvable, where the unknowns are the coefficients of the polynomials g1, . . . , gm ∈ C[x1, . . . , xn] of
degrees at most dn, which results in a system of equations of size dpoly(n). To improve the complexity
of HN, we will take advantage of the fact that these linear systems are not arbitrary, but instead
highly structured.

1.3.1 The resultant

To see what makes linear systems like
∑m

i=1 figi = 1 special, let us consider the problem of deciding
if a system of two equations f1, f2 ∈ C[x] in one variable has a solution. The determinant of the
linear system f1(x)g1(x) + f2(x)g2(x) = 1 is a well-known function of the coefficients of f1 and
f2 called their resultant, denoted by Res(f1, f2). The resultant has the remarkable property that
Res(f1, f2) = 0 if and only the system f1(x) = f2(x) = 0 has a solution. By definition, the resultant
is the determinant of a polynomially-large matrix, so it can be computed in polylogarithmic space
using Csanky’s algorithm [Csa76] for the determinant. This corresponds to a scaled-down version of
the PSPACE algorithm for HN.

Although the resultant is defined as a determinant, the resultant can be computed more effi-
ciently than the determinant itself. Andrews and Wigderson [AW24] showed that the resultant of
two polynomials can be computed by arithmetic circuits of constant depth and polynomial size,
something which is provably impossible for the determinant [LST25]. Because iterated addition and
multiplication of rational numbers can be computed by threshold circuits of constant depth and
polynomial size, i.e., in the class TC0 [HAM02], this implies that the resultant can also be computed
in TC0 when the input is represented in binary. As we will soon see, the class TC0 corresponds to
a scaled-down version of the counting hierarchy CH, so this algorithm is evidence that it may be
possible to improve the complexity of HN. The improved algorithm for the resultant relies on the
Poisson formula, which expresses Res(f1, f2) in terms of the complex roots of f1 and f2. Suppose
f1 and f2 are monic, and that f1 factors as f1(x) =

∏d
i=1(x− αi) over C. In this case, the Poisson

formula expresses the resultant of f1 and f2 as

Res(f1, f2) =

d∏
i=1

f2(αi).

Although not immediately obvious, this identity can be used to compute the resultant in constant
depth, since the coefficients of f1 provide useful information about its roots α1, . . . , αd.

The resultant can be generalized to many polynomials in several variables, and designing
algorithms to compute it will be essential for our work. Suppose F0, . . . , FN ∈ C[x0, . . . , xn] are
homogeneous polynomials of degrees d0, . . . , dn, respectively. There is a polynomial function of their
coefficients, likewise called the resultant and denoted Res(F0, . . . , Fn), such that Res(F0, . . . , Fn) = 0
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exactly when the system F0(x) = · · · = Fn(x) = 0 has a nonzero solution.4 Thus, if we can compute
the resultant efficiently, we can also decide HN, at least in the case of homogeneous systems where
the number of polynomials and variables match. The multivariate resultant can be expressed as
the quotient of two minors of a structured matrix of size

(
d0+···+dn

n

)
, called the Macaulay matrix of

F0, . . . , Fn. At worst, this matrix is exponentially large compared to
∑n

i=0

(
n+di
n

)
, the number of

coefficients of the polynomials F0, . . . , Fn, so any one of its minors can be computed in PSPACE.
Designing an improved algorithm to compute the multivariate resultant in FPCH will be the main
step in our proof that HN ∈ CH.

1.3.2 The counting hierarchy

Before describing how to compute the resultant in FPCH, let us see what sort of algorithmic power CH
provides. Just as the polynomial-time hierarchy PH is connected to bounded-depth boolean circuits
built from AND, OR, and NOT gates [FSS84], the counting hierarchy is related to bounded-depth
boolean circuits built from threshold and negation gates. For us, it will be useful to view CH through
its characterization in terms of polynomially-bounded majority quantifiers: a language L ⊆ {0, 1}∗
is in CH if there is a polynomially-bounded function p and a polynomial-time Turing machine M
such that

x ∈ L ⇐⇒ Maj y1 ∈ {0, 1}p(|x|) · · ·Maj yk ∈ {0, 1}p(|x|)M(x, y1, . . . , yk) accepts,

where the majority quantifier Maj y stipulates that the subsequent formula is true for the majority
of choices of the variable y. With a single majority quantifier, we can compute the majority function
(and more generally, any threshold function) over an exponentially-large set of bits, as long as any
single bit in this set can be computed in polynomial time. By repeating this observation, we can
evaluate an exponentially-large constant-depth threshold circuit in CH, as long as the connectivity
properties of this circuit can be decided by a polynomial-time Turing machine. More precisely, if a
boolean function f : {0, 1}∗ → {0, 1} can be computed by a polylogtime-uniform family of threshold
circuits of constant depth and exponential size, then f ∈ CH.

Bounded-depth threshold circuits are surprisingly powerful. Basic operations on rational numbers,
such as iterated addition, iterated multiplication, and division with remainder, can all be computed
by logtime-uniform families of TC0 circuits [HAM02]. This implies that threshold circuits can
simulate arithmetic circuits while only losing a constant factor in depth and a polynomial factor in
size. In particular, in CH, we can simulate a polylogtime-uniform family of arithmetic circuits of
bounded depth and exponential size. This is the main property of CH that we use in our algorithms.

1.3.3 Computing the resultant in constant depth

Now we return to the task of computing the multivariate resultant in FPCH. From our discussion
on the power of CH, it suffices to construct a polylogtime-uniform family of arithmetic circuits of
constant depth and exponential size that computes the resultant, and this is the route we will take.

Just as in the case of two polynomials, the multivariate resultant can be expressed in terms of
the evaluations of one polynomial at the common roots of the others. To set notation, let

F i(x) := Fi(x0, . . . , xn−1, 0)

fi(x) := fi(x0, . . . , xn−1, 1).

4Because the polynomials F0, . . . , Fn are homogeneous, the all-zeroes point is always a solution of the system
F0 = · · · = Fm = 0. The resultant detects when this system has a nontrivial solution, or equivalently, when this
system has a solution in projective space Pn.
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Then, assuming the smaller resultant Res(F 0, . . . , Fn−1) is not zero, the Poisson formula shows the
resultant factors as

Res(F0, . . . , Fn) = Res(F 0, . . . , Fn−1)
dn−1

∏
α∈V(f0,...,fn−1)

fn(α)m(α),

where V(f0, . . . , fn−1) ⊆ Cn is the set of common roots of f0, . . . , fn−1 (which is necessarily finite
by the assumption on the smaller resultant), and m(α) is the multiplicity of α as a solution to the
system f0 = · · · = fn−1 = 0. By recursively applying the Poisson formula to the smaller resultant
Res(F 0, . . . , Fn−1), we see that the original resultant Res(F0, . . . , Fn) we wanted to compute can
be expressed as a product of terms of the form

∏
α∈V(f0,...,fn−1)

fn(α)m(α). If we can compute one
such a term using a bounded-depth arithmetic circuit, then by computing all terms in parallel and
multiplying them, we obtain a bounded-depth arithmetic circuit for the resultant itself.

To compute a product of the form
∏

α∈V(f0,...,fn−1)
fn(α)m(α), it appears that we need to solve

the system of equations f0 = · · · = fn−1 = 0. In the case n = 1, this can avoided by using the
Girard–Newton identities [AW24]. While there are similar identities in the case n ≥ 2 (see [AiK81]
and references therein), they are more complicated, and it is not clear if they can be implemented
in constant depth. Instead, we will use a computationally explicit version of the implicit function
theorem to express the solutions of f0 = · · · = fn−1 = 0 as power series in the coefficients of
f0, . . . , fn−1, where initial segments of these power series can be computed by constant-depth circuits.
A similar idea appears in recent work of Bhattacharjee, Kumar, Rai, Ramanathan, Saptharishi, and
Saraf [BKR+25a], who used Lagrange inversion to show that low-depth arithmetic circuits are closed
under factorization. Their work, particularly its use of an explicit version of the implicit function
theorem, was a key inspiration for the results of this paper.

The implicit function theorem requires the Jacobian of (f0, . . . , fn−1) to be invertible at α, which
may not be true of the system we are given. To remedy this, we use the method of homotopy
continuation to obtain the roots of f0 = · · · = fn−1 = 0 by solving a different—but related—system
of equations. We will choose another system of homogeneous equations G0, . . . , Gn ∈ C[x0, . . . , xn],
unrelated to the Fi, where the solutions of G0 = · · · = Gn = 0 are explicitly known in advance and
at which the Jacobian is invertible. Letting t be a fresh variable, we then consider the system of
equations H0 = · · · = Hn = 0, where Hi is given by

Hi(t,x) := (1− t) ·Gi(x) + t · Fi(x).

This system is easy to solve at t = 0, since it simplifies to G0 = · · · = Gn = 0, whose solutions
are known to us. At t = 1, we recover the original system we wanted to solve. In particular,
if we can instead compute the resultant Res(H0, . . . ,Hn), then evaluating at t = 1 will recover
Res(F0, . . . , Fn).

Let

gi(x) := Gi(x0, . . . , xn−1, 1)

hi(t,x) := H(t, x0, . . . , xn−1, 1).

For each solution α ∈ Cn of the system g0 = · · · = gn−1 = 0, there is a corresponding power
series solution φα(t) ∈ CJtKn of h0 = · · · = hn−1 = 0, and all solutions of h0 = · · · = hn−1 = 0
arise in this way. The coefficients of the power series solution φα(t) are polynomial functions of
the coefficients of the original system f0, . . . , fn−1. Importantly, the first (n+ 1)dn coefficients of
these power series can be computed from the coefficients of f0, . . . , fn−1 using an arithmetic circuit
of constant depth and size bounded by dpoly(n), where d = max(d0, . . . , dn−1). This allows us to
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compute an approximate solution φ̃α(t) ∈ C[t]n that agrees with φα(t) up to degree (n + 1)dn.
By evaluating hn on each of the approximate solutions φ̃α(t) and using the Poisson formula, we
compute a polynomial R̃es(H0, . . . ,Hn) that agrees with the resultant Res(H0, . . . ,Hn) modulo
t(n+1)dn . Because the resultant is a polynomial of degree at most (n+1)dn, we can use interpolation
to recover the terms of R̃es(H0, . . . ,Hn) of degree at most (n+ 1)dn in t, which necessarily equal
the resultant Res(H0, . . . ,Hn).

This approach produces a family of arithmetic circuits of constant depth and exponential size to
compute the resultant. To conclude that the resultant can be computed in FPCH, we need to ensure
that this family of circuits is sufficiently uniform. Most parts of this algorithm are easily shown to
be uniform. The only part that is not immediately uniform is our use of evaluation-interpolation
to compute the coefficients of a polynomial from its evaluations. Doing this requires constructing
a uniform family of constant-depth arithmetic circuits to compute the inverse of a Vandermonde
matrix, which we do using an explicit description of the inverse of the Vandermonde matrix at the
points 1, 2, . . . , N in terms of Stirling numbers.

So far, we have seen how to compute the resultant of polynomials over Q in FPCH. The same
algorithm would likewise produce constant-depth arithmetic circuits to compute the resultant over
all fields, but the notion of uniformity for arithmetic circuits becomes more difficult to work with over
finite fields. In particular, our circuits would need access to constants from an extension field, and
one must bound the uniformity of these constants in some way. In contrast, over Q, constant-free
circuits are sufficient for our purposes, and one only needs to bound the uniformity of the circuit’s
structure. To compute the resultant over other fields, such as the finite field Fp, we use the fact
that the resultant is essentially the same polynomial over all fields. In particular, for polynomials
F0, . . . , Fn ∈ Fp[x0, . . . , xn], if we lift Fi to the polynomial F̂i ∈ Z[x0, . . . , xn], then the resultant
satisfies

Res(F0, . . . , Fn) = Res(F̂0, . . . , F̂n) mod p.

Thus, to compute the resultant over Fp in FPCH, we lift the input to the integers, compute the
resultant over the integers, and then reduce this value modulo p.

1.3.4 From homogeneous to affine systems

Computing the resultant in FPCH allows us to decide if a system of n homogeneous equations in n
variables has a nonzero solution, or in other words, if it has a solution in projective space Pn−1. It is
not difficult to extend this to an algorithm that handles non-square projective systems: if we are
given m equations F1 = · · · = Fm = 0 in n variables where m > n, one can show that the system
G1 = · · · = Gn = 0 obtained by taking each Gi to be a random linear combination of the Fj has the
same set of solutions with high probability. Deciding the solvability of inhomogeneous equations
is more difficult. The natural approach is to homogenize a given inhomogeneous system, but this
does not necessarily preserve the solvability of the system of equations. For example, the system
x+ y − 1 = x+ y − 2 = 0 has no solution, but its homogenization x+ y − z = x+ y − 2z = 0 has
the nonzero solution (1,−1, 0).

Fortunately, this problem has already been solved. The generalized characteristic polynomial of
Canny [Can90], later extended by Ierardi [Ier89a], allows us to decide if an inhomogeneous system of
equations has a solution by performing a resultant computation on a slight perturbation of the given
system. A small variation on the construction of the generalized characteristic polynomial produces
a univariate polynomial whose roots are in one-to-one correspondence with solutions of the given
system of equations, assuming this number is finite. This reduces the task of counting solutions
to a multivariate system of equations to counting the number of distinct roots of a univariate
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polynomial of exponentially-large degree, but whose coefficients can be computed in FPCH. To do
this in FPCH, we adapt the squarefree factorization algorithm of Andrews and Wigderson [AW24]
that computed the squarefree decomposition of a univariate polynomial using arithmetic circuits of
constant depth and polynomial size. Scaled up to polynomials of exponential degree, this results in
an FPCH algorithm that counts the number of distinct roots of a given polynomial.

1.4 Organization

The rest of this paper is organized as follows. Section 2 introduces notation and also introduces the
notion of uniformity we use for boolean and arithmetic circuit families. It also covers preliminary
material in computational algebra. In Section 3, we show that basic operations, including polynomial
interpolation, can be performed by uniform families of constant-depth arithmetic circuits. Section 4
introduces the multivariate resultant, collecting well-known properties of the resultant and describing
how the resultant can be used to decide the Nullstellensatz and count solutions to zero-dimensional
systems of equations. In Section 5, we construct a uniform family of constant-depth arithmetic
circuits that compute the multivariate resultant. Section 6 transfers this circuit family to the
boolean setting, obtaining CH algorithms for the multivariate resultant and, as a consequence, the
Nullstellensatz. Finally, we conclude in Section 7 with a few straightforward applications of our
algorithm for the Nullstellensatz.

2 Preliminaries

2.1 Notation and conventions

Throughout this work, we use F to denote a field. Various results that we use and present have
differing requirements on the field F (for example, some results require the field to be large enough).
Each statement will clearly state the requirement on the field F. If we make no such qualification
in the statement of a particular result, then that result holds for any field. We denote by F the
algebraic closure of F.

The coefficient subfield of a field F is the largest algebraic extension of the prime field of F within
F. For example, if F = Q(y), then the coefficient subfield of F is Q, and if F = Fpa , then F is its own
coefficient subfield.

We write F[x1, . . . , xn] and F(x1, . . . , xn), respectively, for the ring of polynomials and field of
rational functions in the variables x1, . . . , xn and with coefficients in F. We abbreviate vectors as
x = (x1, . . . , xn). For a ∈ Nn, we write xa for the monomial xa11 · · ·xann . We write |a| for the sum∑n

i=1 ai.
By a form of degree d, we mean a homogeneous element of F[x1, . . . , xn] of degree d. We denote

forms by capital letters and inhomogeneous polynomials by lowercase letters. Often, we will work
with a pair of polynomials where one is the (de-)homogenization of the other. In these cases, we use
upper- and lowercase variants of the same letter as a mnemonic device to indicate this relationship.
For example, if F ∈ F[x0, x1, . . . , xn] is a form, we will denote its dehomogenization F (1, x1, . . . , xn)
by f(x1, . . . , xn). Likewise, if f ∈ F[x1, . . . , xn] is an inhomogeneous polynomial of degree d, we write
F for its homogenization xd0f(x1/x0, . . . , xn/x0). In some settings we might choose to homogenize
and dehomogenize using a different variable, which will be made clear in context.

For polynomials f1, . . . , fm ∈ F[x1, . . . , xn], we write V(f1, . . . , fm) for the set of common zeroes
of f1, . . . , fm in Fn. When dealing with forms F1, . . . , Fm ∈ F[x0, . . . , xn], we instead consider their
zero set V(F1, . . . , Fm) in the projective space Pn

F. We usually suppress the field dependence from
this notation and just write Pn for n-dimensional projective space.
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We use Vand(x1, . . . , xn) to denote the Vandermonde matrix defined using x1, . . . , xn. Specifically,
the entry in position i, j in the above matrix is xj−1

i .
We will frequently have to refer to the trailing term and trailing part of a polynomial with respect

to some variable. For convenience, we define the following piece of notation.

Definition 2.1. Suppose f ∈ F[t, y1, . . . , ym] is a non-zero polynomial. The trailing term of f with
respect to t, denoted by TTt f(y1, . . . , ym), is the coefficient of the lowest-degree term in f when viewed
as a polynomial in t. Concretely, if f = tifi(y1, . . . , ym)+ ti+1fi+1(y1, . . . , ym)+ · · ·+ tdfd(y1, . . . , ym)
where fi(y) ̸= 0, then TTt f = fi.

The trailing part of f with respect to t, written TPt f , is the polynomial obtained by factoring
out the highest power of t from f . In the above setting, we have TPt f = fi + tfi+1 + · · ·+ td−ifd.

By convention, the trailing term and the trailing part of the zero polynomial are zero. ♢

We follow the convention that a variety is any set of solutions of a system of polynomial equations
over an algebraically closed field. In particular, varieties need not be irreducible. We also follow
the convention that the degree of a reducible projective or affine variety (denoted deg V ) is the sum
of the degrees of all irreducible components. The greatest common divisor of any two univariate
polynomials with coefficients in a field F will always be monic.

2.2 Uniformity of boolean and arithmetic circuit families

In this subsection, we discuss the notion of uniformity for boolean and arithmetic circuit families,
starting with the boolean case. We restrict our discussion to families of boolean threshold circuits.

There are a number of different ways of measuring the uniformity of boolean circuits [Vol99]. In
our work, we measure the uniformity of a boolean circuit by the complexity of its direct connection
language, defined below. This notion is particularly well-suited for very weak circuit classes, such
as constant-depth circuits. We follow the presentation of Vollmer [Vol99], but with one important
modification: while most work on uniformity addresses circuit families indexed by a single parameter
n ∈ N, we will work with circuit families indexed by an arbitrary number of parameters n1, . . . , nk ∈ N,
and so we adapt the notion of the direct connection language to this setting. Before we define the
direct connection language, we must define the notion of admissible encodings of circuits.

Definition 2.2 ([Vol99, Definition 2.14]). Let C = (Ck,n1,...,nk
)k,n1,...,nk∈N be a family of boolean

circuits of size s := s(k, n1, . . . , nk). An admissible encoding of C is a numbering of the gates of each
circuit C = Ck,n1,...,nk

in the family with the following properties.

1. If C has m input gates, then they are numbered 0, . . . ,m− 1.
2. If C has m′ output gates, then they are numbered m, . . . ,m+m′ − 1.
3. There is a constant c, depending only on the circuit family, such that the binary representation

of the number of any gate in C has length at most c · log(s). ♢

For circuit families of threshold circuits with admissible encodings, we define the direct connection
language as follows.

Definition 2.3 (Direct connection language). Let C = (Ck,n1,...,nk
)k,n1,...,nk∈N be a family of threshold

circuits with an admissible encoding. Suppose a numbering of the gate types (AND, OR, NOT, MAJ,
0, 1) is fixed. The direct connection language of C, denoted by LDC(C), is the language consisting of
binary encodings of tuples (k, n1, . . . , nk, a, p, b), where

1. a is the number of a gate in Ck,n1,...,nk
.

2. If p ̸= ϵ, then b is the number of a gate in Ck,n1,...,nk
that is a direct predecessor of a.
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3. If p = ϵ, then b encodes the gate type of a (using the fixed numbering of gate types). ♢

By modifying the allowed gate types, the above definition can also be extended to other types
of families of boolean circuits, however we will only work with threshold circuits in this article.
The uniformity of a circuit family can be measured using the complexity of the direct connection
language as follows.

Definition 2.4. Let C = (Ck,n1,...,nk
)k,n1,...,nk∈N be a family of threshold circuits of size s :=

s(k, n1, . . . , nk) with an admissible encoding. We say that the circuit family C is polylogtime-uniform
if

1. its direct connection language LDC(C) can be decided in time polynomial in log(s) + log(k) +∑k
i=1 log(ni), and

2. the number of inputs and outputs of Ck,n1,...,nk
, and an upper bound on the size s can be

computed in time polynomial in log(s) + log(k) +
∑k

i=1 log(ni), given (k, n1, . . . , nk) as input.

We say that the circuit family C is logtime-uniform if both of these tasks can be done in time linear
in log(s) + log(k) +

∑k
i=1 log(ni). ♢

For circuit families indexed by a single parameter, the above definition requires that a Turing
machine can decide the direct connection language in time polylogarithmic in the size of the circuit
and the index within the circuit family. We remark that the second item above is not usually part of
the standard definition. We include it to make it easier to compose circuits uniformly.

In the preceding definitions, the first index is the count of the number of remaining indices. In
the circuits we design, we will extend this slightly, and allow the number of indices to be a function
of the first index. This will always be a very simple function, in all applications the number of
indices will be linear in the first index, for example twice the first index plus two. In the cases where
the number of indices is just constant, for example families indexed by a single parameter, we do not
use the first index as the count of the number of indices. For example, a single indexed family of
circuits is just written (Cn)n, as opposed to (C1,n)n as the above notation might suggest. We also
use vector notation as short hand for multi-indexed families. For example, we use (Cn)n to denote a
family indexed by k, n1, . . . , nk, and use Cn to denote a specific circuit in the family. In all cases,
the exact number of indices will always be clear from context.

Remark 2.5. The definition of admissible encodings gives us a lot of freedom when picking how the
gates have to be numbered. Other than the input and output gates, we are allowed to number the
gates in any way, as long as the restriction on the length is respected. This freedom allows us to
number our gates using more than just the integers 1 through s: it makes it possible to interpret
tuples of integers as gate names, as we explain now. In what follows, to avoid confusion, when we
number gates by objects other than natural numbers, we will refer to the name of a gate instead of
its number.

Here is for instance how we can design circuits where gate names are pairs of natural numbers.
There exist efficient schemes to encode pairs of natural numbers as a single natural number, and
these encoding schemes are efficiently invertible when an inverse exists. If we fix such a scheme, we
can use pairs such as (i, j) as names, with the understanding that the actual number of the gate is
encoding of the pair (i, j) as a single natural number.

Care must be taken to respect the condition on the input and output numbering: we have
to ensure that the encoding scheme is such that these gates are mapped to 0, . . . ,m − 1 and
m, . . . ,m+m′ − 1. In all instances where we rely on such naming conventions, given the name of
an input, resp. output, gate (by means of a pair, or tuple, of integers) we will always be able to
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decide that this is an input, resp. output, and determine its index in the allotted time; the same
will hold for the converse direction. For gates other than inputs and outputs, we will use a scheme
as described above to map a pair (or tuple) of integers to a single integer greater that m+m′ − 1
and conversely (recall that the number of inputs and outputs can be computed in polylogarithmic
time). ♢

Remark 2.6. Suppose we are working with a polylogtime-uniform circuit family. The gate name
and the index of the circuit can be used to efficiently determine the type of a gate as follows. Given
the index (k, n1, . . . , nk) of a circuit and the name a of a gate in the circuit, we iterate over all gate
types b and check if the tuple (k, n1, . . . , nk, a, ϵ, b) is in the direct connection language. Since there
are a constant number of gate types, this allows us to compute the type of a gate, given its name.

On input (k, n1, . . . , nk, a), we can also decide if a candidate gate name a is valid in time
polynomial in log(s) + log(k) +

∑k
i=1 log(ni). We first compute an upper bound s′ on s; this can be

done in the allotted time, by definition; then, we test if the length of a is at most c log(s′), for the
constant c from Definition 2.2. Since log(s′) itself is polynomial in log(s) + log(k) +

∑k
i=1 log(ni),

this also fits in our time bound. If not, we reject. Else, we proceed as above, forming the strings
(k, n1, . . . , nk, a, ϵ, b) for all gate types b and checking if they belong to the direct connection language.

Similarly, we can always determine if a given gate is an input or output gate, since we can
determine the number of inputs and outputs to a particular circuit. ♢

Remark 2.7. In our circuits, we will also carefully order the inputs and outputs to make other
computations easier. For example, if the output of a circuit represents the entries of a matrix, we
might choose to arrange the outputs in row major order. If the outputs of the circuits represent
coefficients of a polynomial, we will fix a monomial ordering and order the outputs accordingly. ♢

We now define uniform families of arithmetic circuits. We start with the definition of an arithmetic
circuit.

Definition 2.8. Let F be a field and let F(x) be the field of rational functions in the variables
x1, . . . , xn over F. An arithmetic circuit over F is a directed acyclic graph. The vertices of this graph
of in-degree zero are either called input gates and are labeled by a variable xi, or called constant
gates and are labeled by a field element α ∈ F. Vertices of positive in-degree are called internal gates
and are labeled by an operation from {+,×,÷}. Vertices of out-degree zero are called output gates.
Each gate of the circuit naturally computes an element of F(x), assuming no division by zero takes
place in the circuit, which we require. If {f1, . . . , fm} are the functions computed by the output
gates of the circuit, we say that the circuit computes the functions f1, . . . , fm. The size of the circuit
is the number of wires in the circuit. The depth of the circuit is the length of the longest path from
an input to an output of the circuit.

If the only constants labeling the input gates of the circuit are 0,+1, and −1, we say that the
circuit is constant-free. For a fixed variable xi, if the subtree rooted at the denominator of each
division gate in the circuit does not contain the input gate corresponding to xi, then we say that the
circuit is division-free with respect to xi. If X ′ is a subset of variables and the circuit is division-free
with respect to every variable in X ′, we say the circuit is division-free with respect to X ′. If the
circuit is division-free with respect to all variables, we say the circuit is weakly division-free. ♢

When working with families of arithmetic circuits, uniformity also has to take into account the
complexity of constructing the field elements used in the circuit (the elements α in Definition 2.8).
Various definitions of uniformity that take the field elements into account are discussed in [Gat86].
In this work, we will restrict ourselves to circuits that are constant-free. Any field element that we
want to use within the circuit has to be constructed using +1 and −1. This sidesteps the issue of
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having to define a notion of uniformity for the field elements used in the circuit family. We can thus
work with a notion of uniformity for arithmetic circuit families that closely mirrors the notion for
boolean circuit families.

We will later want to simulate our arithmetic circuits using boolean threshold circuits. We
will define our notion of uniformity in a way that affords this simulation. In the boolean case, the
direct connection language only answered queries of the form is a gate of type b? and is gate b a
predecessor of gate a?. For the sake of the simulation, we place a slightly more stringent requirement
on the uniformity of arithmetic circuit families. Given a gate a with k predecessors, we want to be
able to answer queries of the form is gate b the ith predecessor of gate a?. For this, we of course
require an ordering of all predecessors of each gate in the circuit. This will be part of the definition
of an admissible encoding of an arithmetic circuit.

Definition 2.9 (Admissible encoding). Let F be a field and let C = (Ck,n1,...,nk
)k,n1,...,nk∈N be a

family of constant-free arithmetic circuits over F of size s := s(k, n1, . . . , nk). An admissible encoding
of C is a numbering of the gates of each circuit C = Ck,n1,...,nk

in the family with the following
properties.

1. If C has m input gates, then they are numbered 0, . . . ,m− 1.
2. If C has m′ output gates, then they are numbered m, . . . ,m+m′ − 1.
3. There is a constant c, depending only on the circuit family, such that the binary representation

of the number of any gate in C has length at most c · log(s).

Further, for each gate a ∈ C, we fix a numbering of the set of immediate predecessors of a in C.
We require that this numbering of predecessors is contiguous, that is, it starts at 1 and ends at
the arity of a. We do not require the numbering of predecessors to respect the numbering of the
gates themselves: if b1 and b2 are two predecessors of a, with b1 preceding b2 in the numbering of
the gates of C, we do not require b1 to precede b2 in the numbering of the predecessors of a. For
division gates, we require that the numerator occurs before the denominator in the numbering of the
predecessors. ♢

Definition 2.10. Let F be a field and let C = (Ck,n1,...,nk
)k,n1,...,nk∈N be a family of constant-free

arithmetic circuits over F with an admissible encoding. Suppose a numbering of the gate types
(+,−,×,÷,+1, 0,−1) is fixed. The direct connection language of C, denoted by LDC(C), is the
language consisting of binary encodings of tuples (k, n1, . . . , nk, a, p, b), where

1. a is the number of a gate in Ck,n1,...,nk
.

2. If p ̸= ϵ, then b is the number of the pth predecessor gate in Ck,n1,...,nk
of a.

3. If p = ϵ, then b encodes the gate type of a (using the fixed numbering of gate types). ♢

As in the boolean case, we measure the uniformity of a circuit family C = (Ck,n1,...,nk
)k,n1,...,nk∈N

by the complexity of its direct connection language LDC(C).

Definition 2.11. Let F be a field and let C = (Ck,n1,...,nk
)k,n1,...,nk∈N be a family of constant-free

arithmetic circuits of size s := s(k, n1, . . . , nk) over F with an admissible encoding. We say that the
circuit family C is polylogtime-uniform if

1. its direct connection language LDC(C) can be decided in time polynomial in log(s) + log(k) +∑k
i=1 log(ni),

2. the number of inputs and outputs of Ck,n1,...,nk
, and an upper bound on the size s can be

computed in time polynomial in log(s) + log(k) +
∑k

i=1 log(ni), given (k, n1, . . . , nk) as input.
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3. the arity of a gate can be computed in time polynomial in log(s)+ log(k)+
∑k

i=1 log(ni), given
(k, n1, . . . , nk) and the gate name as input.

We say that the circuit family C is logtime-uniform if these tasks can be carried out in time linear in
log(s) + log(k) +

∑k
i=1 log(ni). ♢

Remarks 2.5 to 2.7 apply verbatim in the arithmetic setting.

2.3 Integer, rational, and finite field arithmetic

In this section, we discuss how elements of various domains are represented by Turing machines and
boolean circuits. We also outline some basic integer and rational arithmetic operations that are in
TC0.

Elements of Z will be represented in base two with an additional sign bit. For an integer a ∈ Z,
the height of a is defined to be ⌈log2(|a|)⌉, therefore, an integer of height h is represented using h+1
bits (taking into account the sign bit). The height of a polynomial with coefficients in Z is defined
to be the maximum of the heights of its coefficients. In this representation, the following holds.

Theorem 2.12. The following functions are in logtime-uniform TC0.

1. Iterated Integer Addition: Given n integers a1, . . . , an as input, each consisting of at
most n bits, compute the sum a1 + · · ·+ an.

2. Iterated Integer Multiplication: Given n integers a1, . . . , an as input, each consisting
of at most n bits, compute the product a1 · · · an.

3. Integer Division: Given integers a and b as input, compute ⌊a/b⌋.

4. Polynomial Division with Remainder: given integers a0, . . . , an and b0, . . . , bm as input,
where bm ≠ 0 and n ≥ m, compute d := bn−m+1

m and integers q0, . . . , qn−m, r0, . . . , rm−1 such
that for

f(x) := anx
n + · · ·+ a1x+ a0 q(x) := qn−mxn−m + · · ·+ q1x+ q0

g(x) := bmxm + · · ·+ b1x+ b0 r(x) := rm−1x
m−1 + · · ·+ r1x+ r0,

we have d · f(x) = q(x)g(x) + r(x).

5. Iterated Polynomial Multiplication: given integers a1,0, . . . , am,n as input, compute
integers b0, . . . , bmn such that

bmnx
mn + bmn−1x

mn−1 + · · ·+ b1x+ b0 =
m∏
i=1

(ai,nx
n + ai,n−1x

n−1 + · · ·+ ai,1x+ ai,0).

Proof. Item 1 is classical, see [RT92]. Items 2 and 3 are the main result of [HAM02]. Items 4 and
5 are from [HAM02, Corollary 6.5]. For all items above, the number of input and output bits are
easily computable from the index of a circuit in the corresponding family.

The operation performed in item 4 is pseudodivision. The polynomials q and r in the notation
above are called the pseudoquotient and pseudoremainder of f and g respectively.

Multivariate polynomials will be represented in the dense representation. In other words, the
coefficient of every monomial up to a specified degree, including the ones that are zero, will be
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listed. To multiply polynomials in Z[y1, . . . , yk], we use the Kronecker substitution to reduce to
the univariate case. If we want to multiply m such polynomials of degree d, then we substitute
z(md+1)i for each yi. This gives us m polynomials of degree (md)O(k), which we can multiply using
the univariate multiplication circuit provided by Theorem 2.12. The coefficients of the y monomials
in the product can be read off from the coefficients of z in the product after the above substitution.

An element of q ∈ Q will be represented by a pair of integers a, b with b ̸= 0 such that q = a/b,
where a, b may have common factors. The reason we allow a, b to have common factors is that
computing integer GCD is not known to be in TC0, therefore the circuits we are working with cannot
convert a fraction to lowest terms. The height of a pair of integers a, b is simply the maximum of
the heights of a and b.

Iterated multiplication and addition of rational numbers in the above representation can be
carried out by polylogtime-uniform TC0 circuits as follows. For iterated multiplication, we separately
multiply the numerators and denominators using the circuits for iterated integer multiplication
(Theorem 2.12). This directly gives us a representation of the product. For iterated addition, we
first bring all elements to a common denominator. This common denominator is the product of the
denominators of the input, and so a representation of each input over this common denominator can
be computed using the circuit for iterated integer multiplication from Theorem 2.12. Once we have
this representation, we can add the numerators using the circuit for iterated integer addition, again
from Theorem 2.12.

By the primitive element theorem, every number field K is of the form Q[α] ∼= Q[z]/(g(z)), where
α is an algebraic number with minimal polynomial g(z). Elements of a number field K will therefore
be represented by polynomials in Q[z] of degree less than deg g. Whenever we work with such a
number field, we will assume that g(z) is given as part of the input.

Elements of Fp, where p is a prime, will be represented by an integer between 0 and p−1 inclusive.
The height of an element of Fp is defined to be log(p).

The finite field Fpa is isomorphic to Fp[z]/(g(z)) for some irreducible polynomial g(z) ∈ Fp[z] of
degree a. Elements of the field Fpa will therefore be represented by polynomials in Fp[z] of degree
less than a. Whenever we work with such a finite field, we will assume that g(z) is given as part of
the input and that g(z) is monic. The height of an element of Fpa is defined to be a log(p). For each
of the rings R discussed above, the height of a polynomial with coefficients in R is the maximum of
the heights of the coefficients.

Our algorithms will occasionally require the fields we work with to have coefficient subfields that
are larger than some bound B. If our inputs lie in a field with coefficient subfield Fpa where pa is
less than B, then we will instead pass to a field extension that is large enough and work over that
field instead. The following lemma shows that this can be done efficiently by a Turing machine.

Lemma 2.13. Given a finite field Fpa via an irreducible polynomial g(y) ∈ Fp[y] of degree a, and a
bound B, there is a Las Vegas algorithm that explicitly constructs a finite field Fpb such that pb ≥ B
and Fpa is a subfield of Fpb. The algorithm also constructs an Fp-linear map ϕ (represented as a
matrix in the powers of y bases) that maps Fpa to an isomorphic subfield of Fpb . The expected running
time of the algorithm is polynomial in a log p and log |B|.

Proof. Recall that Fpn is a subfield of Fpm if and only if m is a multiple of n. We therefore pick b to
be the first multiple of a that is larger than log |B|/ log p. To construct an irreducible polynomial of
degree b, we simply sample a random polynomial of degree b in Fp[y] and test for irreducibility. By
[GG13, Corollary 14.39], this can be performed using Õ

(
b3 + b2 log p

)
operations in Fp in expectation.

Let this irreducible polynomial be h(y).
To construct the map between Fpa and Fpb , we simply find a root of g in Fpb . That such a root

exists follows from Fermat’s little theorem and the structure of the factorization of polynomials
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in finite fields, see for example [GG13, Theorem 14.2]. By [GG13, Corollary 14.16], finding this
root requires Õ(ab log p) operations in Fpb in expectation. If α is such a root, then the map
ϕ : Fp[y]/(g(y)) → Fpb sending y to α is an isomorphism between Fpa and a subfield of Fpb .

We remark that the method above is far from the optimal way of constructing a compatible field
extension. However, it will suffice for our applications.

3 Uniformity of basic operations on arithmetic circuits

In this section, we show that basic operations on arithmetic circuits can be carried out in a uniformity-
preserving manner. In particular, we show that polynomial interpolation—a standard tool used to
construct low-depth arithmetic circuits—admits a uniform implementation. As a consequence, we
obtain uniform families of arithmetic circuits to compute the elementary symmetric polynomials and
the inverse of a symbolic Vandermonde matrix.

The main technical tool we use these constructions is an explicit formula for the entries of the
inverse of the Vandermonde matrix Vand(1, . . . , n) in terms of Stirling numbers of the first kind.
Combined with an explicit formula for Stirling numbers, we obtain a circuit family that computes
the entries of the inverse of Vand(1, . . . , n). We caution the reader that the following proof will
be painstakingly detailed, only because it is the first proof that uses that the above notions of
uniformity.

Lemma 3.1. There exists a polylogtime-uniform family of constant-free, constant-depth circuits
C = (Cn)n∈N over Q where Cn has no inputs, n2 outputs, size poly(n) and computes the entries of
the inverse of the Vandermonde matrix Vand(1, . . . , n).

Proof. An explicit formula for the entries of Vand−1(1, . . . , n) was given by Macon and Spitzbart
[MS58], and the following statement is from [EFP98, Lemma 4]. Letting Vn denote Vand(1, . . . , n),
we have (

V −1
n

)
j,i

= (−1)i+j
n∑

k=max(i,j)

1

(k − 1)!

(
k − 1

i− 1

)
s(k, j), (1)

where s(·, ·) denotes the Stirling number of the first kind. These Stirling numbers can be computed
using the formula

s(a, b) =
2a−b∑
j=a

(
j − 1

b− 1

)(
2a− b

j

) j−a∑
m=0

(−1)m+a−bmj−b

m!(j − a−m)!
, (2)

which follows from combining explicit formulas for Stirling numbers of the second kind with symmetric
formulas relating the two kinds of Stirling numbers (see [Cha02, Equation 8.21]).

We implement the circuit Cn using these formulas. Our gate names will be tuples of numbers.

1. We start with 2n copies of the constants +1 and −1. For each i ∈ [2n], the gates with names
(0, i) and (1, i) are constant gates labeled by the constants +1 and −1, respectively.

2. Next, we compute 2n copies of each number from 1 to 2n. For each i, j ∈ [2n], the gate with
name (2, i, j) is a + gate whose inputs are the gates with names (0, k) for k ≤ i. The gate
(2, i, j) computes i. The pth predecessor of (2, i, j) is (0, p).

3. We then compute factorials. For each i ∈ [2n], the gate with name (3, i) is a × gate whose
inputs are the gates named (1, j) for j ≤ i. The gate (3, i) computes i!. The pth predecessor of
(3, i) is (1, p).
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4. We now compute binomial coefficients. For each i ∈ [2n] and j ≤ i, we have gates with
names (4, 1, i, j) and (4, 2, i, j). The gate (4, 1, i, j) is a × gate whose inputs are, in order, the
gates (3, j) and (3, i− j). The gate (4, 2, i, j) is a ÷ gate whose numerator is (3, i) and whose
denominator is (4, 1, i, j). Since (3, i) computes i! and (4, 1, i, j) computes (i− j)! · j!, the gate
(4, 2, i, j) computes

(
i
j

)
.

5. Next, we compute numbers of the form ij as i and j vary over [2n]. In particular, for each
i, j ∈ [2n], the gate (5, i, j) is a × gate with inputs (2, i, k) for each k ≤ j (the predecessors
will be numbered in this order also). In this way, the gate (5, i, j) computes ij .

6. Now we compute the Stirling numbers using Eq. (2). For each a, b ∈ [n] where b ≤ a, we
compute the (j,m) term in the double sum, where j ∈ {a, . . . , 2a− b} and m ∈ {0, . . . , j − a},
as follows.

(a) The gate (6, a, b, j,m, 1) is a × gate that has inputs (3,m) and (3, j − a−m). This gate
computes the product of factorials m! · (j − a−m)!.

(b) The gate (6, a, b, j,m, 2) is a × gate whose first input is (5,m, j − b) and whose second
input is either (0, 1) or (1, 1), depending on the parity of m+ a− b. This gate computes
(−1)m+a−bmj−b.

(c) The gate (6, a, b, j,m, 3) is a ÷ gate with numerator (6, a, b, j,m, 2) and denominator
(6, a, b, j,m, 1). This gate computes (−1)m+a−bmj−b

m!(j−a−m)! .

(d) Finally, the gate (6, a, b, j,m, 4) is a × gate with inputs (6, a, b, j,m, 3), (4, 2, 2a− b, j),
and (4, 2, j − 1, b− 1). This gate computes

(
j−1
b−1

)(
2a−b
j

) (−1)m+a−b

m!(j−a−m)! , which is precisely the
(j,m) term appearing in the double sum used to compute the Stirling number s(a, b).

For each of the gates above, the predecessors are numbered in the order we have presented
them. To compute the Stirling number s(a, b), we add a + gate (7, a, b) whose inputs are
(6, a, b, j,m, 4) for all j ∈ {a, . . . , 2a− b} and m ∈ {0, . . . , j − a}. The predecessors of (7, a, b)
are numbered in lexicographic order based on (j,m). Given a, b, and p in binary, computing
the pth element in the lexicographic order of the pairs that satisfy the constraint can be done
in polynomial time.

7. Finally, we compute the entries of the inverse of the Vandermonde matrix using Eq. (1). For
each i, j ∈ [n], we compute the kth term in the summation, where k ∈ {max(i, j), . . . , n}, as
follows.

(a) The gate (8, i, j, k, 1) is a ÷ gate with numerator (0, 1) and denominator (3, k − 1). This
gate computes 1

(k−1)! .

(b) The gate (8, i, j, k, 2) is a × gate whose inputs are (8, i, j, k, 1), (4, 2, k − 1, i − 1), and
(7, k, j). This gate computes 1

(k−1)!

(
k−1
i−1

)
s(k, j).

To compute the (i, j) entry of V −1
n , we add a + gate (9, i, j) whose inputs are (8, i, j, k, 2) for

all k ∈ {max(i, j), . . . , n}. We add a final × gate (10, i, j) with inputs (9, i, j) and either (0, 1)
or (1, 1), depending on the parity of i+ j. By Eq. (1), the gate (10, i, j) correctly computes
the (j, i) entry of V −1

n .

Finally, for each of the gates above, its predecessors are numbered in the order we presented
them.
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From the preceding description of the circuit computing V −1
n , it is clear that the size of the

circuit is polynomial in n and the depth is bounded by a universal constant. The above description
also serves to bound the uniformity of the circuit family. There are a fixed number of rules that
determine the type of a gate and its predecessors. These directly translate into a construction of a
Turing machine that can, in polynomial time in log(n), determine the type of a gate or decide if one
gate is a predecessor of another. The only gates with more than a constant number of predecessors
are those computing various constants and the gates with names (7, i, j) and (9, i, j). For each of
these gates, the circuit description shows how to compute the pth predecessor of a in time polynomial
in the binary length of the gate names and the index of the circuit. Therefore we can compute the
pth predecessor of a and check if this matches with b to decide the direct connection language. The
circuit construction explicitly states the arity of every gate, so this can also be computed efficiently.
Finally, the size of the circuit is also apparent from the above construction, therefore the required
upper bound on the size can also be computed efficiently.

Uniformity of interpolation will follow from the above lemma. We start by showing how the
coefficients of a single variable can be interpolated, and then handle the general case.

Lemma 3.2. Let C = (Cn)n be a polylogtime-uniform family of arithmetic circuits over Q of size sn
and depth bounded by a constant ∆, and with one output. Let fn be the rational function computed
by Cn, let y be a distinguished variable, and suppose that every Cn is division-free with respect to y,
so that fn ∈ Q(x)[y].

Let dn be an upper bound on the degree of fn in y, and let fn,0, . . . , fn,dn ∈ Q(x) be such that

fn(x, y) =

dn∑
i=0

fn,i(x)y
i.

Finally, suppose that a binary representation of dn can be computed from a binary representation of
n in time polynomial in the binary length of n and log(dn). Then there exists a polylogtime-uniform
family D = (Dn)n of arithmetic circuits over Q of size poly(sn, dn) and depth at most ∆+ O(1)
such that Dn computes fn,0, . . . , fn,dn.

Proof. Fix C = Cn, f = fn, and d = dn. We describe the circuit D = Dn.
The circuit D starts by computing the numbers 1, . . . , d + 1. As in the proof of Lemma 3.1,

we have a set of gates labeled by the constant 1, and we use sum gates to compute 1, . . . , d + 1
from these constants. The constant gates are named (1, i) for i ∈ [d+ 1], and the gates computing
1, . . . , d+ 1 are named (2, i) for i ∈ [d+ 1]. For these sum gates, the pth predecessor of (2, i) is (1, p),
as long as p ≤ i.

The circuit D then contains d+ 1 copies of C. In the ith copy, the input gate y is converted to
sum gate with a single input, namely the gate (2, i) that computes the number i. The other input
gates of C are also converted to sum gates whose only input is the input gate of D labeled by the
same variable. Therefore, these copies of C compute the partial evaluations f(x, 1), . . . , f(x, d+ 1).
The condition that y is not in any denominator of C ensures that the circuit does not divide by
zero. The gates in these copies of C are named as follows: if v is the name of a gate in C, then the
corresponding gate in the ith copy of C in D is named (3, i, v).

The circuit D also has a copy of the circuit constructed in Lemma 3.1 that computes the inverse
of the Vandermonde matrix Vand(1, . . . , d+ 1). We denote this circuit by V . For each gate named
v in V , its corresponding copy in D is named (4, v).

The polynomial fn,i(x) is the inner product of a column of the inverse of the Vandermonde
matrix, and the outputs of the copies of C. These are computed using d+ 1 product gates and one
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sum gate each. For each i, j ∈ [d+ 1], the gate (5, i, j) is a × gate connected to the output of the
jth copy of C and the (j, i) entry of the inverse of the Vandermonde matrix, and its predecessors are
numbered in this order. For each i ∈ [d+ 1], the gate (6, i) is a + gate with inputs (5, i, j) for all
j ∈ [d+ 1]. The pth predecessor of (6, i) is (5, i, p). The gate (6, i) computes the polynomial fn,i(x).

The claims on the size and depth of the circuit family D follow from the above description and
the corresponding bounds on the subcircuits of D. We now argue that D is a polylogtime-uniform
family by describing how the direct connection language is decided.

Let TC and TV denote the Turing machines that decide the direct connection languages of C and
V , respectively. We will design a Turing machine TD that decides the direct connection language of
D. Let (n, a, p, b) be an input to TD. From the first entry in the gate name a, we can determine
where in D the gate lies: whether it is part of computing the constants, a gate within a copy of
C, part of the circuit that computes the inverse of the Vandermonde matrix, or part of the inner
product computation. If a is part of the subcircuit that computes the constants, then deciding if the
input is a YES instance is straightforward.

Suppose a is part of the ith copy of C. From a, we can extract the name va of the gate within
C of which a is a copy. The machine ensures i ≤ d + 1 (recall that d = dn can be computed in
polynomial time in the binary length of n and dn), and rejects otherwise. If va corresponds to the
input variable y, then TD accepts if p = ϵ and b denotes the type +, or if p = 1 and b is the gate
computing the constant i; all other inputs are rejected. If va corresponds to any other input gate,
then similarly we accept if either p = ϵ and b denotes +, or if p = 1 and b is the input gate in D
labeled by the same variable. If va is not an input gate and if p = ϵ, then the machine TD simulates
TC on the input (n, va, p, b) and accepts or rejects accordingly. If p ̸= ϵ, then TD checks if b is also a
gate in the ith copy of C. If not, the machine rejects. Otherwise, the machine TD simulates TC on
(n, va, p, vb), where vb is the name of the gate in C corresponding to b.

If a is instead part of the circuit V , we instead will simulate TV on an appropriate input to
decide if (n, a, p, b) is in the direct connection language of D. This again requires extracting the
name of the gate within the circuit V from a, and potentially doing the same for b if p ̸= ϵ. The
requirement that the binary representation of dn can be written down in time polynomial in the
binary representation of n ensures that the input to TV can be computed by TD in the allotted time.

Finally, if a is part of the inner product subcircuit, then it is either connected to the outputs of
the copies of C and V (which is the case for gates labeled (5, i, j)) or to other gates in the inner
product subcircuit (which is the case for gates labeled (6, i)). In the first case, to decide if b is a
predecessor of a, we can check if b is an output gate of the correct subcircuit. If a = (5, i, j) then
based on whether p = 1 or 2, b is either the output of the jth copy of C or the (j, i) entry of the
inverse of the Vandermonde matrix. The latter case is handled similarly. The above description
explicitly states the arity of every gate, so this can likewise be computed efficiently (with oracle
calls to decide the arity of gates in C if required). If Cn has m inputs then Dn has m− 1 inputs,
and Dn always has dn + 1 outputs. Finally, a bound on the size of Dn follows from a bound on the
size of Cn, the parameter dn, and the size of the circuit for the inverse of the Vandermonde matrix,
therefore such a bound can easily be computed.

Our proofs of uniformity will often be similar to the one above: we will construct our circuits
using previously-constructed uniform subcircuits, along with some other simple machinery. In all
cases, the direct connection language will be decided by simulating the Turing machines that decide
the direct connection languages of the subcircuits. Therefore, the remaining proofs will not be as
low-level as the two proofs of uniformity above.

Uniformity of multivariate interpolation follows from Lemma 3.2 using Kronecker substitution.
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Lemma 3.3. Let C = (Cn)n be a polylogtime-uniform family of arithmetic circuits over Q of size sn
and depth bounded by a constant ∆, and with one output. Let fn be the rational function computed
by Cn, let y be a distinguished set of mn variables, and suppose that every Cn is division-free with
respect to y, so that fn ∈ Q(x)[y].

Let dn be an upper bound on the degree of fn in y, and for each α ∈ Nmn with |α| ≤ dn, let
fn,α ∈ Q(x) be the coefficient of yα in fn. Finally, suppose that binary representations of dn and
mn can be computed from a binary representation of n in time polynomial in the binary length of n
and log(dn).

Then there exists a polylogtime-uniform family D = (Dn)n of arithmetic circuits over Q of size
poly(sn, (dn + 1)mn) and depth at most ∆+O(1) such that Dn computes fn,α for all α ∈ Nmn with
|α| ≤ dn.

Proof. We use Kronecker substitution. Define gn as

gn(x, z) := fn

(
x, z, zdn+1, z(dn+1)2 , . . . , z(dn+1)mn−1

)
.

The polynomial gn has degree at most dn · (dn + 1)mn and can be computed by a constant-free circuit
of size poly(sn, (dn + 1)mn) and depth ∆+O(1) as follows. We construct a circuit with inputs x, z.
Using + gates to copy z and × gates, we can create gates that compute the powers z(dn+1)i for all
i ∈ [mn − 1]. The numbering of the predecessor gates will be the natural one, similar to how we
computed powers and factorials in previous proofs.

We then have a copy of the circuit for fn, with all input gates changed to + gates and wired to
the inputs x and these powers of z. The gates are named as in previous proofs: the names indicate
what power of z the gate is involved in computing, or that the gate is part of the circuit for fn, in
which case the name will contain the name of the corresponding gate within the circuit for fn. This
circuit family that computes {gn}n is polylogtime-uniform. The direct connection language can be
decided by simulating the Turing machine for the circuit family C for gates in the subcircuit that
computes fn.

We now apply Lemma 3.2 to this circuit family (the family is division-free with respect to z,
and we can compute the binary representation of dn · (dn + 1)mn in time polynomial in the binary
length of n and mn log(dn)). This gives us a circuit family that computes the coefficients of gn as
a polynomial in z, which are in bijection with the coefficients fn,α. The gate names in the circuit
computing the coefficients of gn encode the power of z whose coefficient is being computed. Given
this, it is easy to compute the monomial α whose coefficient is being computed at each gate: this
just involves changing a number to base dn + 1 and listing the digits.

Lemma 3.3 allows us to extract the coefficient of every monomial in the distinguished variables.
For some applications, we will need to obtain the coefficients of a given polynomial when treated as
a univariate polynomial in many different distinguished variables y. The following lemma shows
that this task can be performed uniformly.

Lemma 3.4. Let C = (Cn)n be a polylogtime-uniform family of arithmetic circuits over Q of size sn

and depth bounded by a constant ∆. Let f (k)
n be the rational functions computed by Cn, for k ∈ [m′

n],
let y be a distinguished set of mn variables, and suppose that every Cn is division-free with respect to
y, so that each f

(k)
n is in Q(x)[y].

Let dn be an upper bound on the degree of all f (k)
n in y, and for each 0 ≤ i ≤ dn, j ∈ [mn] and

k ∈ [m′
n], let f (k)

n,j,i ∈ Q(x)[y1, . . . , yj−1, yj+1, . . . , ymn ] be such that

f
(k)
n =

dn∑
i=0

f
(k)
n,j,iy

i
j .
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Finally, suppose that binary representations of dn and mn can be computed from a binary represen-
tation of n in time polynomial in the binary length of n and log(dn).

Then there exists a polylogtime-uniform family D = (Dn)n of arithmetic circuits over Q of size
poly(sn,mn, dn) and depth ∆+O(1) such that Dn computes f

(k)
n,j,i for all 0 ≤ i ≤ dn, j ∈ [mn] and

k ∈ [m′
n].

Proof. This proof is similar to that of Lemma 3.2. Fix C = Cn, f = fn, and d = dn. We describe
the circuit D = Dn.

The circuit D has set of gates named (1, i) that are constant gates labeled by the constant 1,
and a set of + gates (2, i) for i ∈ [d] that compute the numbers 1, . . . , d+ 1. The predecessors are
numbered the obvious way. The circuit D then has mn(dn + 1) copies of C, one for every pair (i, j)
with 0 ≤ i ≤ dn and 1 ≤ j ≤ mn. The gates in the (i, j)th copy are named (3, i, j, v), where v is the
name of the corresponding gate in C. In the (i, j)th copy of C, the input gates labeled by yj are
replaced by an arity-one summation gate whose child is the gate (2, i) computing the integer i.

The circuit D then has a copy of the circuit V from Lemma 3.1 that computes the inverse of
the Vandermonde matrix Vand(1, . . . , dn + 1). These gates are named (4, v), where v is the name
of the corresponding gate in V . Following this, the circuit D has gates (5, k, ∗) and (6, k, ∗) that
compute all required products of the evaluations and the matrix inverse. Again the predecessors will
be numbered just as in the proof of Lemma 3.2.

The claimed bounds on the size and depth of D follow from the description above. It remains to
show how the direct connection language of D is decided. Let (n, a, p, b) be an input to the machine
deciding the direct connection language. If a is of the form (t, ∗) with t ̸= 3, then deciding if this is
a YES instance can be done the exact same way as in the proof of Lemma 3.2. If a is of the form
(3, i, j, v), and if v is an input gate within C, we can use the indices i, j to ensure that the input is
wired to the correct constant or variable (we first check that 0 ≤ i ≤ dn and 1 ≤ j ≤ mn, which
takes time polynomial in the binary length of n, by assumption). In particular, if the input is xt
with t ̸= j, then the gate must be wired to xt itself, otherwise if t = j then the input is wired to the
gate computing the constant i. The rest of the computation is also the exact same as in the proof of
Lemma 3.2.

A corollary of the above interpolation results is a uniform family of circuits that compute the
elementary symmetric polynomials.

Lemma 3.5. There exists a polylogtime-uniform family of constant-free, weakly division-free,
constant-depth arithmetic circuits C = (Cn)n over Q such that Cn has size poly(n) and computes the
elementary symmetric polynomials e1, . . . , en on n variables.

Proof. We use the constant-depth circuits for the elementary symmetric polynomials designed by
Ben-Or. There exists a polylogtime-uniform family D = (Dn)n of constant-free, polynomial-size,
constant-depth circuits over Q such that Dn has n+1 inputs x1, . . . , xn, t, and computes

∏n
i=1(xi + t).

Indeed Dn can just compute this polynomial using n sum gates and a single product gate. The
degree of Dn is exactly n, and D is division-free. Therefore, D satisfies all the assumptions in
Lemma 3.2, and we can invoke Lemma 3.2 to obtain C.

Using Lemma 3.5, we can also construct a uniform family of circuits that compute the inverse of
a generic Vandermonde matrix.

Lemma 3.6. There exists a polylogtime-uniform family of constant-free, constant-depth arithmetic
circuits C = (Cn)n over Q such that Cn has size poly(n) and computes the entries of the inverse of
the matrix Vand(x1, . . . , xn).
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Proof. The circuit uses the following two facts: the determinant of V := Vand(x1, . . . , xn) is∏
i<j(xi − xj), and the entries of the inverse of this matrix can be written as

V −1
i,j =

(−1)n−ien−i(x1, . . . , xj−1, xj+1, . . . , xn)∏
k ̸=j(xj − xk)

.

We now describe the circuit Cn. This circuit contains n copies of the circuit for the elementary
symmetric polynomials in n− 1 variables constructed in Lemma 3.5. To the jth copy, the inputs
provided are x1, . . . , xj−1, xj+1, . . . , xn. The circuit also has n subcircuits where the jth one computes∏

k ̸=j(xj − xk). Finally, the circuit combines these to compute the entries of the inverse. The claims
on the size and depth are straightforward given the above description. For uniformity, the argument
is essentially the same as the one in the proof of Lemma 3.2: the Turing machine that has to
decide the direct connection language of C can simulate the Turing machines that decide the direct
connection languages of the constituent subcircuits. Note that the output gate that computes the
entry at position (i, j) in the inverse will have (i, j) encoded in its name.

4 The multivariate resultant

This section discusses the theory of resultants. We first introduce the multivariate resultant, which
is a generalization of the usual resultant to multiple polynomials in several variables that tests
when a system of homogeneous polynomial equations has a solution. We will then discuss how the
multivariate resultant can be used to test when systems of inhomogeneous equations have solutions.
Finally, we will discuss how the multivariate resultant can be used to count the number of solutions
in zero-dimensional systems.

For a friendly introduction to the multivariate resultant, we refer the reader to Cox, Little, and
O’Shea [CLO05, Chapter 3]. A comprehensive treatment of resultants can be found in the book of
Gelfand, Kapranov, and Zelevinsky [GKZ94], in the survey of Ierardi and Kozen [IK93], or in the
work of Jouanolou [Jou91].

4.1 Multivariate resultants

The resultant of two univariate polynomials f, g is a polynomial in the coefficients of f and g that
vanishes exactly when f and g have a common solution in the algebraic closure F of the base field F.
The multivariate resultant generalizes this, and detects when a homogeneous system of equations
has projective solutions.

Throughout this section, we fix a natural number n ∈ N and a choice of natural numbers
d0, . . . , dn ∈ N. For d ∈ N, we write Mn,d for the set of homogeneous degree-d monomials in the
n + 1 variables x0, . . . , xn. We take u = {ui,α | i ∈ {0, . . . , n},α ∈ Mn,d} to be a set of variables
corresponding to the coefficients of n+1 homogeneous polynomials of degrees d0, . . . , dn, respectively.

With this notation in hand, we now define the multivariate resultant.

Definition 4.1 (see, e.g., [Jou91, Proposition 2.3]). Let F be any field. The resultant Resd0,...,dn ∈
F[u] is the unique polynomial satisfying the following conditions.

1. If F0, . . . , Fn ∈ F[x0, . . . , xn] are homogeneous polynomials of degrees d0, . . . , dn, respectively,
then Resd0,...,dn(F0, . . . , Fn) = 0 if and only if the system of equations F0(x) = · · · = Fn(x) = 0
has a solution in Pn

F. By Resd0,...,dn(F0, . . . , Fn) we mean the evaluation of Resd0,...,dn obtained
by setting ui,α equal to the coefficient of the monomial xα in Fi.
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2. Resd0,...,dn(x
d0
0 , . . . , xdnn ) = 1.

3. The polynomial Resd0,...,dn is irreducible in F[u].

Moreover, if we write ResQd0,...,dn and ResFd0,...,dn for the resultants over Q and F, respectively, then
the former has integer coefficients and ResFd0,...,dn is the image of ResQd0,...,dn under the natural ring
homomorphism Z[u] → F[u]. ♢

When n and the degrees d0, . . . , dn are clear from context, we will drop the subscript and use
Res to denote the resultant Resd0,...,dn . The existence of a polynomial satisfying Definition 4.1 is
not obvious. We refer the reader interested in the existence of the resultant to Jouanolou [Jou91].
The final statement in Definition 4.1, the fact that the resultant over any field is the image of the
resultant over the integers, will be crucial in our proofs.

The multivariate resultant generalizes the determinant. Consider a collection of homogeneous
linear forms L0, . . . , Ln ∈ F[x0, . . . , xn] given by Li(x) =

∑n
j=0 ai,jxj . The system of equations

L0(x) = · · · = Ln(x) = 0 has a nonzero solution exactly when

det


a0,0 a0,1 · · · a0,n
a1,0 a1,1 · · · a1,n
...

...
. . .

...
an,0 an,1 · · · an,n

 = 0.

Likewise, from Definition 4.1, we know that this system has a nonzero solution exactly when
Res1,...,1(L0, . . . , Ln) = 0. This is no coincidence: the polynomials Res1,...,1(u) and detn+1(u) are
the same!

It is clear from the definition of the resultant that it is a polynomial in
∑n

i=0

(
n+di
di

)
variables.

Less obvious is its degree, which is provided by the following lemma.

Lemma 4.2 (see, e.g., [CLO05, Chapter 3, Theorem 3.1]). The resultant Resd0,...,dn(u) is ho-
mogeneous of degree d0 · · · di−1di+1 · · · dn with respect to the variables {ui,α |α ∈ Mn,di} and is
homogeneous of total degree

∑n
i=0 d0 · · · di−1di+1 · · · dn.

Our work will focus on the design of uniform circuits of constant depth and size dpoly(n) that
compute the resultant. To design such circuits, we will use non-determinantal formulations of the
resultant, since determinants provably require super-polynomial size to compute using circuits of
bounded depth [LST21; For24] and are conjectured to not be computable by quasipolynomial-size
circuits of bounded depth. In particular, we will make use of the following identity, known as the
Poisson formula, that expresses the resultant Resd0,...,dn as a product of two terms: one is the smaller
resultant Resd0,...,dn−1 , and the other is related to the values attained by Fn on the common zeroes
of F0, . . . , Fn−1. The special case of the Poisson formula corresponding to n = 1 was used to design
constant-depth circuits for the bivariate resultant [AW24; BKR+25b]; its multivariate generalization
was already used by Jeronimo and Sabia [JS07], and will likewise be key in designing low-depth
circuits for the multivariate resultant.

Theorem 4.3 (see, e.g., [CLO05, Chapter 3, Section 3, Exercise 8]). Let F0, . . . , Fn ∈ F[x] be
homogeneous polynomials of degrees d0, . . . , dn, respectively. For i ∈ {0, 1, . . . , n}, let

F i(x) := Fi(x0, . . . , xn−1, 0)

fi(x) := Fi(x0, . . . , xn−1, 1).
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Suppose Resd0,...,dn−1(F 0, . . . , Fn−1) ̸= 0. Then the resultant Resd0,...,dn(F0, . . . , Fn) satisfies the
identity

Resd0,...,dn(F0, . . . , Fn) = Resd0,...,dn−1(F 0, . . . , Fn−1)
dn ·

∏
α∈V(f0,...,fn−1)

fn(α)m(α),

where V(f0, . . . , fn−1) ⊆ Fn is the finite set of common zeroes of f0, . . . , fn−1 in the algebraic closure
Fn and m(α) ∈ N is the multiplicity of α in V(f0, . . . , fn−1).

4.2 Satisfiability of affine systems

The resultant naturally suggests an algorithm to decide the satisfiability (in the algebraic closure of
the coefficient field) of homogeneous systems of n+1 equations in n+1 variables, which are known as
square systems. Given equations F0(x) = F1(x) = · · · = Fn(x) = 0, we simply compute the resultant
Res(F0, . . . , Fn) and report that this system is satisfiable if and only if Res(F0, . . . , Fn) = 0. To solve
a larger system F0 = · · · = Fm = 0 of homogeneous equations, one can reduce to the square case by
forming n+ 1 random linear combinations of the Fi. With good probability, the resulting square
system will be equisatisfiable with the original system, so algorithms that compute the resultant
allow us to decide the satisfiability of homogeneous systems of equations of any size. What about
systems of inhomogeneous equations?

A natural strategy to solve a system of inhomogeneous equations is to homogenize the system and
attempt to use the resultant. This strategy works for some, but not all, affine systems, depending on
the behaviour at infinity of the homogenized equations. A classical method for using the multivariate
resultant to study affine systems is the method of generalized characteristic polynomials, introduced
by Canny [Can90]. Here, instead of just homogenizing an affine system, an additional perturbation
is used to eliminate degenerate behaviour at infinity. Using this method, Ierardi [Ier89a] obtained a
clean reduction from the task of testing satisfiability of affine systems to computing multivariate
resultants of polynomials with coefficients in small polynomial rings. In this subsection, we recall
Ierardi’s reduction. We direct the reader to Ierardi’s PhD thesis ([Ier89b]) for an explanation of the
rather beautiful geometric ideas that underlie the reduction and related constructions.

We now quote Ierardi’s reduction from testing satisfiability of affine systems to computing
multivariate resultants. In the following result and in the rest of this section, we make the following
assumptions:

(A) the field F is one of Q, Fpa , Q(y1, . . . , yk) or Fpa(y1, . . . , yk)

(B) in the latter two cases, the input to our algorithms have coefficients that are polynomial in y.

In particular, the height of such input, as introduced in Section 2.3, is always well-defined.

Proposition 4.4 ([Ier89a]). Suppose that (A) and (B) hold, and let f1, . . . , fm ∈ F[x1, . . . , xn] be
polynomials of degree at most d and height at most h. Suppose the coefficient subfield of F has at
least 15ndn elements. There is a polynomial-time Monte Carlo algorithm with success probability 2/3
that takes as inputs f1, . . . , fm, and produces a set of polynomials Gi,j ∈ F[t, w, u, x0, . . . , xn] with
0 ≤ i ≤ n and 1 ≤ j ≤ n with the following properties.

• Each Gi,j is homogeneous in x0, . . . , xn of degree at most d.

• Each Gi,j has degree at most n in w and degree at most one in t and u.

• Each Gi,j has height at most h · (n log d)c for a universal constant c.
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• The variety V(f1, . . . , fm) is nonempty if and only if there exists a j such that

(TTw TTtRes(G0,j , . . . , Gn,j))(0) = 0,

where the resultant Res(G0,j , . . . , Gn,j) is computed by regarding the Gi,j as polynomials in x
with coefficients in F(t, w, u).

The proof of the above reduction is essentially the content of [Ier89a, §§2–3]. We provide an
outline of the proof below, although we import a technical statement regarding the multivariate
resultant without proof (Lemma 4.7). This technical lemma will also be useful when we show how
the resultant can be used to count solutions in a zero dimensional system.

We start by defining a notion of limit set for projective varieties.

Definition 4.5. Let G1, . . . , Gn ∈ F[x0, . . . , xn] be forms of degrees d1, . . . , dn respectively. Let
V0 := V(G1, . . . , Gn) be the variety defined by G1, . . . , Gn. The limit set of V0 is the subvariety V ∗

0

of V0 obtained by the following procedure.
Let t be a new variable. Define Ĝi := Gi + t · xdii and let V := V

(
Ĝ1, . . . , Ĝn

)
⊆ Pn × A. Let

V ∗ denote the union of the components of V that are not contained within a subspace of the form
V(t− τ) for any τ ∈ F. Equivalently, these are the components of V whose projection onto A is
surjective. Define V ∗

0 := V ∗ ∩V(t = 0), which we treat as a variety in Pn. ♢

Lemma 4.6. For any forms G1, . . . , Gn ∈ F[x0, . . . , xn] of degrees d1, . . . , dn, the limit set V ∗
0 is

a finite subset of V(G1, . . . , Gn) that contains all its isolated points. The set V ∗
0 has size at most∏n

i=1 di.

Proof. The first statement is the content of [Ier89a, Lemma 2.3]. The second statement follows from
Bézout’s inequality ([BCS97, Theorem 8.28]) applied to Ĝ1, . . . , Ĝn: since V ∗

0 is finite, its cardinality
is bounded above by the Bézout number of Ĝ1, . . . , Ĝn seen as polynomials in F(t)[x0, . . . , xn].

We now quote the technical lemma from Ierardi [Ier89a] that produces a polynomial R∗
0 whose

factors are linear polynomials that correspond to the points of the limit set V ∗
0 .

Lemma 4.7 ([Ier89a, Lemma 2.6]). Let G1, . . . , Gn ∈ F[x0, . . . , xn] be forms of degrees d1, . . . , dn.
Let F1, . . . , Fm ∈ F[x0, . . . , xn] be additional homogeneous forms of degree d. Define Ĝi := Gi + txdii .
Define L ∈ F[x0, . . . , xn, u0, . . . , un, v1, . . . , vm, t] as L :=

∑n
i=0 uix

d
i +

∑m
j=1 vjFj. Define

R∗
0 := TTtRes

(
Ĝ1, . . . , Ĝn, L

)
,

where the resultant Res
(
Ĝ1, . . . , Ĝn, L

)
is computed by viewing the Gi and L as polynomials in x

with coefficients in F(u,v, t).
Then the polynomial R∗

0 ∈ F[u,v] factors into a product of linear forms over F. For each point
α ∈ V ∗

0 in the limit set of V(G1, . . . , Gn), the linear polynomial
∑n

i=0 uiα
d
i +

∑m
j=1 vjFj(α) is a

factor of R∗
0. Moreover, every factor of R∗

0 has this structure for some α ∈ V ∗
0 .

The above lemma generalizes the method of U -resultants for zero-dimensional projective systems.
As a consequence of Lemma 4.7, we can use resultants to detect isolated points of an affine system
of equations.
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Lemma 4.8. Let B ⊆ F \ {0} be a subset of the coefficient subfield of F. Let g1, . . . , gn, f1, . . . , fm ∈
F[x1, . . . , xn] be polynomials of degree at most d. Let γ1, . . . , γm be nonzero field elements picked
independently and uniformly at random from B. Define Fi and Gi to be the homogenizations of the
polynomials fi and gi, respectively, with respect to a new variable x0. Define Ĝi := Gi + txdeg gii and
H := u0x

d
0 +

∑n
i=1w

ixdi +
∑m

j=1 γjx
d−degFj

0 Fj. Define

β :=
(
TTw TTtRes

(
Ĝ1, . . . , Ĝn, H

))
(0),

where the resultant Res
(
Ĝ1, . . . , Ĝn, H

)
is computed by viewing the Ĝi and H as polynomials in x

with coefficients in F(u0, w, t).
With probability at least 1 − dn/|B| over the choice of γ, the following holds. If β = 0, then

V(f1, . . . , fm, g1, . . . , gn) ̸= ∅, and in particular V(f1, . . . , fm) ≠ ∅. Conversely, if there exists an
isolated point α′ ∈ V(g1, . . . , gn) such that α′ ∈ V(f1, . . . , fm), then β = 0.

Proof. Define L := u0x
d
0 +

∑n
i=1 uix

d
i +

∑m
j=1 vjx

d−degFj

0 Fj , where the ui and vj are variables. Let

R := Res
(
Ĝ1, . . . , Ĝn, L

)
,

where this resultant is computed by viewing the Ĝi and L as polynomials in x with coefficients in
F(u,v, t). Let R∗

0 := TTtR and let V ∗
0 be the limit set (as defined in Definition 4.5) of G1, . . . , Gn.

By Lemma 4.7, we know that R∗
0 factors into linear forms that look like

n∑
i=0

uiα
d
i +

m∑
j=1

vjα
d−degFj

0 Fj(α),

where α ∈ V ∗
0 is a point in the limit set of G1, . . . , Gn. If there is a factor of R∗

0 that is independent
of v1, . . . , vm, then the corresponding point α lies in V

(
xd−degF1
0 F1, . . . , x

d−degFm
0 Fm

)
. If this factor

further depends on u0, then we can write α = (1,α′), and the point α′ lies in V(g1, . . . , gn, f1, . . . , fm).
Conversely, if there is an isolated point α′ ∈ V(g1, . . . , gn) such that α′ ∈ V(f1, . . . , fm), then
(1,α′) ∈ V ∗

0 and the corresponding factor of R∗
0 will depend on u0 and be independent of v1, . . . , vm.

Now let r denote the resultant
Res
(
Ĝ1, . . . , Ĝn, H

)
,

where the polynomials Ĝi and H are viewed as polynomials in x with coefficients in F(u0, w, t). The
form H is obtained from L by substituting ui 7→ wi for i ∈ [n] and vj 7→ γj for j ∈ [m]. Since the
resultant is a polynomial function of the coefficients, we have r = R(t, u0, w, w

2, . . . , wn, γ1, . . . , γm).
Under the same substitution, a factor of R∗

0 corresponding to α ∈ V ∗
0 is mapped to

u0α
d
0 +

n∑
i=1

wiαd
i +

m∑
j=1

γjα
d−degFj

0 Fj(α).

Each factor of R∗
0 depends on at least one of u0, . . . , un, since α is a point in projective space.

Combined with the fact that the polynomials u0, w, . . . , w
n are linearly independent, it follows that

no factor of R∗
0 is mapped to zero under the above substitution. In particular, R∗

0 is nonzero under
this substitution. This implies that TTt r = R∗

0(u0, w, w
2, . . . , wn, γ1, . . . , γn). Define r∗0 := TTt r.

We have β = (TTw r∗0)(0) by definition.
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Any factor of R∗
0 that depends on one of the variables in v is mapped to a polynomial with

nonzero constant term with probability at least 1−1/|B|. Since V ∗
0 has size at most dn (Lemma 4.6),

every such factor of R∗
0 is mapped to a polynomial with a nonzero constant term with probability at

least 1− dn/|B|. We show that the conclusion of the lemma holds whenever this event occurs.
Assume therefore that the event occurs. Suppose β = 0. This implies that some factor of r∗0 not

divisible by w has a constant term of zero. By assumption, every factor of R∗
0 that depends on a

variable in v results in a factor of r∗0 that has a nonzero constant term, so it must be the case that
some factor R̂ of R∗

0 does not depend on any variable in v. Moreover, the factor R̂ depends on u0,
since the corresponding factor of r∗0 is not divisible by w. Together, these conditions imply that the
point α ∈ V ∗

0 ⊆ V (G1, . . . , Gn) corresponding to R̂ satisfies α0 ̸= 0 and Fj(α) = 0 for all j ∈ [m].
This means that α′ ∈ V(g1, . . . , gn, f1, . . . , fm), where α = (1,α′). This set is thus nonempty as
claimed.

Conversely, suppose there is an isolated point α′ ∈ V(g1, . . . , gn) such that α′ ∈ V(f1, . . . , fm).
Because α′ is an isolated point of V(g1, . . . , gn), we have (1,α′) ∈ V ∗

0 , so there is a factor of R∗
0, and

thus a factor of r∗0, corresponding to (1,α′). The corresponding factor of r∗0 has the form

u0 +
n∑

i=1

wiαd
i .

This polynomial is not divisible by w and has a constant term of zero, so it follows that β = 0, as
desired.

With Lemma 4.8, we can finish the proof of Proposition 4.4. The argument will require the
following standard results regarding random hyperplane sections and varieties defined by random
linear combinations of a given set of polynomials.

Lemma 4.9. Let B ⊆ F be a finite set. Let V ⊆ Pn be a projective variety of dimension r and degree
D. Suppose ℓ is a linear form with each coefficient picked independently and uniformly at random
from B. Then with probability at least 1−D/|B|, the intersection V ∩V(ℓ) has dimension r − 1. If
ℓ1, . . . , ℓr+1 are linear forms chosen the same way, then V ∩V(ℓ1, . . . , ℓr+1) = ∅ with probability at
least 1− (r + 1)D/|B|.

Let W ⊆ An be a projective variety of dimension r and degree D. Suppose ℓ is a linear polynomial
with each coefficient picked independently and uniformly at random from B. Then with probability at
least 1−2D/|B|, the intersection W ∩V(ℓ) has dimension r−1. If ℓ1, . . . , ℓr+1 are linear polynomials
chosen the same way, then W ∩V(ℓ1, . . . , ℓr+1) = ∅ with probability at least 1− 2(r + 1)D/|B|.

Lemma 4.10. Let B ⊆ F be a finite set. Let f1, . . . , fm ∈ F[x1, . . . , xn] be polynomials of degree
at most d. Suppose g1, . . . , gn+1 are linear combinations of f1, . . . , fm, with each coefficient picked
independently and uniformly at random from B. Then with probability at least 1− (n+ 1)dn/|B|, the
following is true. For each s ∈ [n+ 1], every irreducible component of V(g1, . . . , gs) of codimension
less than s is a component of V(f1, . . . , fm). As a consequence, V(g1, . . . , gn+1) = V(f1, . . . , fm).
The analogous result in the projective setting also holds.

The proof of both Lemma 4.9 and Lemma 4.10 are implicit in the methods of Heintz [Hei83].
For an explicit proof of the latter, see for example [KP96, Lemma 36]. The former can be proved
using essentially the same arguments.

Proof of Proposition 4.4. If the coefficient subfield of F is Q, let B be the set of natural numbers
{1, . . . , 15ndn}. If the coefficient subfield of F is finite, let B be the set of nonzero elements of the
coefficient subfield. For a fixed j ∈ [n], we construct G0,j , . . . , Gn,j as follows. Let g1,j , . . . , gj,j
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be random linear combinations of f1, . . . , fm, where the coefficients are picked independently and
uniformly from B. Let gj+1,j , . . . , gn,j be random linear polynomials, with coefficients picked
independently and uniformly from B. For i ∈ [n], let Gi,j be defined as Gi,j := ghi,j + tx

deg gi,j
i ,

where ghi,j is the homogenization of gi,j with respect to a new variable x0. To construct G0,j ,
we pick elements γ1,j , . . . , γm,j independently and uniformly at random from B, and set G0,j :=

u0x
d
0 +

∑n
i=1w

ixdi +
∑m

k=1 γk,jx
d−deg fk
0 Fk, where Fk is the homogenization of fk with respect to the

variable x0. These polynomials have the claimed degree and height bounds. For each j, define

βj := (TTw TTtRes(G1,j , . . . , Gn,j , G0,j))(0).

With probability at least 1 − ndn/|B|, the conclusion of Lemma 4.8 holds for all the βj . For the
rest of the proof, we assume that this event occurs. If βj = 0 for any j, then V(f1, . . . , fm) ̸= ∅. To
complete the proof, it suffices to show that if V(f1, . . . , fm) ≠ ∅, then βj = 0 for some j. We show
that this happens with high probability.

To this end, let s := n−dimV(f1, . . . , fm). By Lemma 4.10, with probability at least 1−2ndn/|B|,
the polynomials g1,s, . . . , gs,s define an equidimensional variety of codimension s. Each component
of V(f1, . . . , fm) is contained in some component of V(g1,s, . . . , gs,s). In particular, each component
of V(f1, . . . , fm) of maximal dimension is a component of V(g1,s, . . . , gs,s).

Since gs+1,s, . . . , gn,s are linear polynomials with coefficients from B, by Lemma 4.9 it holds that

dim(V(g1,s, . . . , gs,s) ∩V(gs+1,s, . . . , gn,s)) = 0

with probability at least 1− 2ndn/|B|. In particular, the variety V(g1,s, . . . , gn,s) is nonempty and
every point is isolated. Further, this variety contains points from each component of V(g1,s, . . . , gs,s).
By the previous observation, it contains points from V(f1, . . . , fm). The converse direction of
Lemma 4.8 now shows that βs = 0. Using a union bound we deduce that the above algorithm
succeeds with probability at least 1− 5ndn/|B|, which can be lower bounded by 2/3 using the size
of B.

4.3 Counting solutions in zero-dimensional systems

As we have seen so far, resultants are a useful tool for deciding the satisfiability of systems of
polynomial equations, even in the non-square and affine cases. If a system of equations is satisfiable,
a natural next task is to determine how many solutions the system has. Of course, the space of
solutions may be positive-dimensional, in which case there are an infinite number of solutions. When
the solution set is zero-dimensional (and hence a finite set), we can meaningfully speak about the
task of counting the number of solutions. In this subsection, we show that the resultant is also useful
for the task of counting the number of solutions to a zero-dimensional system of equations.

We start with the easier case of zero-dimensional projective systems.

Lemma 4.11. Suppose that (A) and (B) hold, and let F1, . . . , Fm ∈ F[x1, . . . , xn] be homogeneous
polynomials of degree at most d and height at most h. Suppose the coefficient subfield of F has at
least 100nd2n elements. Suppose V(F1, . . . , Fm) is a finite nonempty set. There is a polynomial-time
Monte Carlo algorithm with success probability 2/3 that takes as inputs F1, . . . , Fm, and produces
two sets of polynomials G0,1, . . . , Gn,1 and G0,2, . . . , Gn,2 with coefficients in F[u] with the following
properties.

• Each Gi,j is homogeneous in x0, . . . , xn of degree at most d and has degree at most one in u.

• Each Gi,j has height at most h · (n log d)c for a universal constant c.
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• The size of V(F1, . . . , Fm) is exactly the number of distinct roots (in F) of

gcd(Res(G0,1, . . . , Gn,1),Res(G0,2, . . . , Gn,2)),

where these resultants are computed by regarding the Gi,j as polynomials in x with coefficients
in F(u).

Proof. If the coefficient subfield of F is Q, let B be the set of natural numbers
{
1, . . . , 100nd2n

}
. If

the coefficient subfield of F is finite, let B be the set of nonzero elements of the coefficient subfield.
We work with the polynomials{

xd−degFi
j · Fi | i ∈ [m], j ∈ {0, 1, . . . , n}

}
instead of the original polynomials, as this does not change the zero set but ensures that all
polynomials in our system have the same degree. In the rest of the proof we continue to use
F1, . . . , Fm to refer to this new set of polynomials.

Let V := V(F1, . . . , Fm) be the zero set of F1, . . . , Fm. It consists of at most dn points by Bézout’s
inequality ([BCS97, Theorem 8.28]). We apply a random change of coordinates to ensure that all
points in V lie on the chart x0 = 1. We do this by replacing each xi by

∑n
j=0 γi,jxj , where γi,j are

picked from B independently and uniformly at random. With probability at least 1− dn/|B|, the
points in V lie on x0 = 1 after this linear transformation.

Let G1,1, . . . , Gn,1 be a set of random linear combinations of the equations F1, . . . , Fm, where
each coefficient is picked independently and uniformly from B. By Lemma 4.10, with probability at
least 1−2ndn/|B|, the zero set V1 := V(G1,1, . . . , Gn,1) is a finite set and contains V as a subset. The
system F1|x0=0 = · · · = Fm|x0=0 = 0 is unsatisfiable. The system G1,1|x0=0 = · · · = Gn,1|x0=0 = 0
consists of random linear combinations of the Fi|x0=0, so by Lemma 4.10, this system has no roots
with probability at least 1− 2ndn/|B|. Equivalently, with this probability, every point of V1 lies on
the chart x0 = 1.

Similarly, let G1,2, . . . , Gn,2 be a set of random linear combinations of F1, . . . , Fm and let V2 be
their zero set. It again is a finite set that contains V and lies on the chart x0 = 1. Further, we claim
that if V1 is a finite set, then V1 ∩ V2 = V with probability at least 1− dn/|B|. If α ∈ V1 \ V is a
point, then there is some Fj such that Fj(α) ̸= 0, therefore with probability at least 1− 1/|B|, we
have G1,2(α) ̸= 0. The fact that V1 is finite implies that |V1| ≤ dn, so the claimed bound on the
probability that V1 ∩ V2 = V follows by a union bound.

We now sample β1, . . . , βn ∈ B independently and uniformly, and define L := x0 + β1ux1 +
β2ux2 + · · ·+ βnuxn. By the Poisson formula (Theorem 4.3), the resultant Res(G1,1, . . . , Gn,1, L)
can be factored as

Res(G1,1, . . . , Gn,1, L) = c ·
∏
α∈V1

L(α)mα ,

where mα is the multiplicity of α in V1 and c ∈ F \ {0}. Simplifying, and using the fact that all
roots lie on the affine chart x0 = 1, we obtain

Res(G1,1, . . . , Gn,1, L) = c ·
∏
α∈V1

(
1 + u

n∑
i=1

βiαi

)mα

.

Since the βi were picked randomly, the sum
∑n

i=1 βiαi takes distinct values for distinct roots with
probability at least 1− d2n/|B|. Similarly, we have

Res(G1,2, . . . , Gn,2, L) = c′ ·
∏
α∈V2

(
1 + u

n∑
i=1

βiαi

)nα

,
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where nα is the multiplicity of α in V2 and c′ ∈ F \ {0}. It is now clear that if we take the GCD of
these two resultants, then the number of distinct roots of the GCD in F is equal to the number of
distinct points in V1 ∩ V2 = V . Therefore we are done by setting G0,1 = G0,2 = L and using a union
bound to control the probabilities of all the required events.

We now give our main reduction, showing that the resultant can be used to count the number of
solutions to a zero-dimensional affine system. The idea will be similar to that in Lemma 4.11. We
will take random linear combinations of the given system to reduce to the case when the number
of variables and polynomials are the same. Here, we have to use the generalized characteristic
polynomial instead of the resultant itself to compute the sizes of zero sets of these random systems.

Proposition 4.12. Suppose that (A) and (B) hold, and let f1, . . . , fm ∈ F[x1, . . . , xn] be polynomials
of degree at most d and height at most h. Suppose the coefficient subfield of F has at least 100nd2n

elements. Suppose V(f1, . . . , fm) is a finite nonempty set. There is a polynomial-time Monte Carlo
algorithm with success probability 2/3 that takes as inputs f1, . . . , fm, and produces two sets of
polynomials G0,1, . . . , Gn,1 and G0,2, . . . , Gn,2 with coefficients in F[u, t] with the following properties.

• Each Gi,j is homogeneous in x0, . . . , xn of degree at most d and has degree at most one in u
and t.

• Each Gi,j has height at most h · (n log d)c for a universal constant c.

• The size of V(f1, . . . , fm) is exactly the number of distinct roots (in F) of

gcd(TPuTTtRes(G0,1, G1,1, . . . , Gn,1),TPuTTtRes(G0,2, G1,2, . . . , Gn,2)),

where these resultants are computed by regarding the Gi,j as polynomials in x with coefficients
in F(t, u).

Proof. If the coefficient subfield of F is Q, let B be the set of natural numbers
{
1, . . . , 100nd2n

}
. If the

coefficient subfield of F is finite, let B be the set of nonzero elements of the coefficient subfield. Define
V := V(f1, . . . , fm). Let g1,1, . . . , gn,1 and g1,2, . . . , gn,2 be two random sets of linear combinations
of f1, . . . , fm, with coefficients picked from B. Let V1 := V(g1,1, . . . , gn,1) and V2 := V(g1,2, . . . , gn,2).
By Bézout’s inequality and Lemma 4.10, with probability at least 1 − 6ndn/|B|, the zero sets V1

and V2 are finite and satisfy V1 ∩ V2 = V (refer to the proof of Lemma 4.11 for details).
We now define Gi,j := ghi,j + t · xdii , where di is the degree of gi,j and ghi,j is the homogenization of

gi,j with respect to a new variable x0. Finally, define L := x0+β1ux1+ · · ·+βnuxn where β1, . . . , βn
are sampled independently and uniformly at random from B. Consider now

(R1)
∗
0 := TTtRes(G1,1, . . . , Gn,1, L).

By Lemma 4.7, we can deduce that (R1)
∗
0 factors into a product of linear forms, one for each point

in the limiting set (V1)
∗
0. Every point of V1 is in this this set, and further these are the only points

of (V1)
∗
0 that lie on the chart x0 = 1. The remaining factors that correspond to points in (V1)

∗
0 on

the hyperplane x0 = 0 are just the polynomial u. Therefore, if we consider TPu(R1)
∗
0, every factor

is of the form (1 + u
∑n

i=1 βiαi) of some α ∈ V1, and for every α ∈ V1 there is a factor of this form.
Note that we make no claim about the multiplicities. With probability at least 1 − d2n/|B|, the
coefficient of u corresponding to each point, namely

∑n
i=1 βiαi, is distinct. We can do the same

operation with g1,2, . . . , gn,2. Then the number of distinct roots of gcd(TPu(R1)
∗
0,TPu(R2)

∗
0) in F is

clearly the size of V1 ∩ V2 with probability at least 1− 2d2n/|B| over the choice of β1, . . . , βn. Hence
we are done by setting G0,1 = G0,2 = L.
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5 Constant-depth circuits for the resultant

In this section, we design a polylogtime-uniform family of constant-depth arithmetic circuits for the
multivariate resultant Resd0,...,dn . Our circuits will be indexed by n, d0, . . . , dn, and our base field
is Q. The following subsection will establish some notation and explain the high level idea of our
construction. The subsequent subsections will contain the details.

5.1 Notation and proof overview

Let n be a positive integer, and let d0, . . . , dn be positive integers. Let u0, . . . ,un be n+ 1 sets of
variables, with ui = (ui,α) for all multi-indices α = (α0, . . . , αn) such that |α| = di. In other words,
ui consists of one variable for each monomial in n+1 variables of degree di. We let U denote the sum
of the sizes of these sets of variables, so U =

∑n
i=0

(
n+di
di

)
. We use S to denote the polynomial ring

Q[u0, . . . ,un], and we write K for the field of fractions of S. Recall that the multivariate resultant
(Section 4.1) is an element of the ring S with integer coefficients.

For j = 0, . . . , n, we define polynomials Fj ∈ S[x] as

Fj =
∑
α∈uj

uj,αx
α0
0 · · ·xαn

n .

Any set of forms P0, . . . , Pn of degrees d0, . . . , dn can be obtained by specializing F0, . . . , Fn. We
wish to use the Poisson formula (Theorem 4.3) to compute the multivariate resultant. The formula
states that the following identity holds.

Resd0,...,dn(F0, . . . , Fn) = Resd0,...,dn−1(F 0, . . . , Fn−1)
dn ·

∏
α∈V(f0,...,fn−1)

fn(α)m(α),

where F j = Fj |xn=0 and fj = Fj |xn=1. We will apply this formula recursively to compute the first
term, therefore we will have to study the polynomials Fj |xi+1=0,...,xn=0 and Fj |xi=1,xi+1=0,...,xn=0 for
every i. We give these polynomials and some related objects names to be able to refer to them easily.

For any i, j ∈ {0, 1, . . . , n}, we let ui,j ⊆ ui denote those variables ui,α with αj+1 = · · · = αn = 0.
In other words, these variables ui,j correspond to monomials that only depend on x0, . . . , xj . We let
Fi,j denote the polynomial

Fi,j =
∑

α∈ui,j

ui,αx
α0
0 · · ·xαn

n .

The polynomial Fi,j is a generic degree-di form in the variables x0, . . . , xj . We use fi,j to denote the
specialization Fi,j(x0, . . . , xj−1, 1).

Let Fj denote the vector of polynomials (F0,j , . . . , Fj,j). This is a vector of j + 1 generic
polynomials in j + 1 variables of degrees d0, . . . , dj . We write Uj for the number of coefficients in
this system, so Uj =

∑j
i=0

(
di+j
j

)
.

Let Resj ∈ Q[u0,j , . . . ,uj,j ] denote the resultant Resd0,...,dj ((F0,j , . . . , Fj,j)) (the degrees d0, . . . , dj
are fixed throughout). The polynomial Resj depends on the degrees d0, . . . , dj , but we suppress this
from notation to avoid clutter. Given a set of forms P0, . . . , Pj ∈ Q[x0, . . . , xj ] of degrees d0, . . . , dj ,
we use Resj(P) to denote the evaluation of Resj at the coefficients of P0, . . . , Pj .

In the notation above, the second term in the Poisson formula involves the roots of the polynomials
f0,n, . . . , fn−1,n. These roots lie in the algebraic closure of K. However, it is computationally difficult
to describe and perform arithmetic with elements of K. We will instead work with roots that lie in a
power series ring. These are easier to manipulate, since we usually only require computing them to
some bounded precision.
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The roots of f0,n, . . . , fn−1,n do not admit power series representations in the ring QJu0, . . . ,unK.
This is already apparent even in the case when n = 1, and d0 = 2. In this case we want the roots of
a generic bivariate polynomial u0,(2,0)x20 + u0,(1,1)x0 + u0,(0,2). The expression for the roots involves
the square root of the discriminant u20,(1,1) − 4u0,(2,0)u0,(0,2), but this element is not a square in the
ring QJu0, . . . ,unK.

We will instead find power series roots of f0,n, . . . , fn−1,n using a homotopy. We introduce a new
variable t, and for each i = 0, . . . , n we define polynomials

Hi,n := (1− t)Gi,n + tFi,n,

where Gi,n ∈ Q[x0, . . . , xn] are yet to be defined. We have Hi,n|t=1 = Fi,n, and Hi,n|t=0 = Gi,n.
The polynomials H0,n, . . . ,Hn,n define a homotopy between the roots of F0,n, . . . , Fn,n and the roots
of G0,n, . . . , Gn,n. The system of equations defined by the polynomials G0,n, . . . , Gn,n is called the
initial system the homotopy. We define hi,n := Hi,n|xn=1 and gi,n := Gi|xn=1. The forms Gi,n will
be chosen such that computing the roots of the equations g0,n, . . . , gn−1,n can be easily performed
by constant-free uniform constant-depth circuits. We will also ensure that all roots of the system are
simple, and that the Jacobian at each root can also be computed by such circuits.

A consequence of the simplicity of the roots of g0,n, . . . , gn−1,n is that h0,n, . . . , hn−1,n admit
power series roots in t, whose constant terms are exactly the roots of g0,n, . . . , gn−1,n. Hensel lifting
and Newton iteration give constructive proofs of the existence of these roots. In fact a Newton
iteration with linear rate of convergence gives a constructive proof of the existence of roots of
the above system in SJtK, that is, roots that are power series in one variable with coefficients are
polynomial in the remaining variables. While Newton iteration and Hensel lifting give constructive
proofs, following either construction only gives us uniform circuits of polylogarithmic depth for these
roots. This is insufficient for our applications. We will instead compute these roots using an explicit
implicit function theorem ([AY83, Proposition 20.3]).

More generally, to handle the recursive terms in the Poisson formula, we define polynomials
Gi,j , Hi,j for all 1 ≤ j ≤ n and 0 ≤ i ≤ j by specializing G0,n, . . . , Gn,n and H0,n, . . . ,Hn,n

respectively. In each case, G0,j , . . . , Gj,j will be the initial system for H0,j , . . . ,Hj,j . We will apply
the Poisson formula and the above mentioned explicit formulas for the roots to compute the resultant
of H0,n, . . . ,Hn,n. This computation will be carried out in SJtK up to a certain precision. This
precision will be chosen such that truncating and setting t = 1 will allow us to recover Resn(Fn).

The next subsection describes the initial systems, and shows that their roots, and the Jacobian
evaluated at the roots can be computed by uniform constant-depth circuits. The subsection after
that carries out the rest of the discussion above.

We point out that the algorithm in [JS07] already combines homotopy techniques with the
Poisson formula to compute resultants. The homotopy in that article uses starting systems with a
similar structure as the polynomials gi,j mentioned above, but bypasses the introduction of the new
variable t. If we let ν0, . . . ,νj be the coefficients of these polynomials, their algorithm uses Newton
iteration to produce a straight-line program that computes rational function approximations to the
roots of f0,j , . . . , fj−1,j in Q[[u0 − ν0, . . . ,uj−1 − νj−1]], injects them into the product formula, and
eliminates divisions. The explicit implicit function theorem in [AY83] also applies for the homotopy
in [JS07], but in this context, it would result in circuits of double exponential size.

5.2 The initial systems

We now describe the initial systems, that is, the polynomials Gi,j . The following construction
is from [HJSS02] (and is also briefly mentioned in [MSW95]), in the more general case of multi-
homogeneous systems.
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Definition 5.1 (Initial System). For any integer m and for j ∈ {0, 1, . . . , n}, we define the linear
form Lj,m as

Lj,m(x) := x0 +mx1 + · · ·+mj−1xj−1 +mjxj .

We use ℓj,m to denote the specialization of Lj,m at xj = 1.
Define subsets of integers A0, . . . , An as A0 := {1, . . . , d0}, A1 := {d0 + 1, . . . , d0 + d1}, and so

on. The set Ai has size di, and all of these sets are pairwise disjoint. For i ∈ {0, 1, . . . , n}, we define
the form Gi,j ∈ Q[x] as

Gi,j(x) :=
∏
k∈Ai

Lj,k(x).

We use Gj to denote the vector of polynomials (G0,j , . . . , Gj,j). Finally, gi,j denotes the specialization
of Gi,j to xj = 1, and gj denotes the vector of polynomials (g0,j , . . . , gj−1,j). ♢

Observe that each Gi,j is a form of degree di in the variables x0, . . . , xj . The reason why we use
gj to denote g0,j , . . . , gj−1,j (and not the more natural choice of g0,j , . . . , gj,j) is that when applying
the Poisson formula to H0,j , . . . ,Hj,j , the term corresponding to the product of roots will only
involve solving the system H0,j |xj=1, . . . ,Hj−1,j |xj=1.

The following lemma captures some basic properties about the zeroes of the systems gj . Define
e0 := 0. For i = 1, . . . , n define ei := d0 + · · ·+ di−1.

Lemma 5.2. For each j ∈ {0, 1, . . . , n}, let Bj := [d0] × [d1] × · · · × [dj−1]. For each c ∈ Bj, the
linear system ℓj,c0 = ℓj,e1+c1 = · · · = ℓj,ej−1+cj−1 = 0 has a single common solution, which we denote
by rc. The set of such rc are exactly the set of common zeroes of gj.

Proof. For each choice of c, the matrix corresponding to the linear system is a Vandermonde matrix,
and is therefore invertible. This shows that a unique solution exists. Further, for any fixed c, if ℓ is
a linear form of the type ℓj,m for any m that is not among e0 + c0, . . . , ej−1 + cj−1, then the system
of linear equations

ℓ, ℓj,e0+c0 , . . . , ℓj,ej−1+cj−1

is unsatisfiable. This can be seen by homogenizing the system and observing that the corresponding
matrix is again a Vandermonde matrix, so the zero vector is the only solution. These two facts also
imply that the set of common zeroes of gj are exactly rc.

Next, we compute the Jacobian of the system gj at each of its solutions rc.

Lemma 5.3. Let the notion be as in the statement of Lemma 5.2. For c ∈ Bj, and i ≤ j, define
κc,i as

κc,i :=
gi,j

ℓj,ei+ci

(rc).

Then the Jacobian of gj at rc, denoted Jc, is an invertible matrix and factors as

Jc = diag(κc,0, . . . , κc,j−1) ·Vand(e0 + c0, . . . , ej−1 + cj−1).

Proof. The partial derivative of gi,j with respect to xa is given by

∂agi,j(x) =

di∑
k′=1

∏
k ̸=k′

ℓj,ei+k(x) · ∂aℓj,ei+k′(x) =

di∑
k′=1

∏
k ̸=k′

ℓj,ei+k(x) ·
(
ei + k′

)a
.

When evaluated at rc, the only term that survives in the above summation is the one where ℓj,ei+ci

is omitted, since ℓj,ei+ci vanishes at rc. In this summand, the first product term when evaluated at
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rc is exactly κc,i. This shows the claimed factorization for the Jacobian. The proof of Lemma 5.2
shows that the κc,i are nonzero, since rc is not a root of any linear polynomial that is a factor of gi,j ,
other than ℓj,ei+ci . The fact that the Jacobian is invertible now follows from the factorization.

For each j, the solution rc, the Jacobian Jc, and its inverse J −1
c are all rational functions of c.

The following lemma describes polylogtime-uniform, constant-free, constant-depth circuits that take
as input c and compute these rational functions.

Lemma 5.4. There exists a polylogtime-uniform family of constant-free circuits Cinit indexed by
j, d0, . . . , dj−1 with the following properties.

• The circuit C init
j,d0,...,dj−1

has size polynomial in j + d0 + · · · + dj−1, and depth bounded by a
universal constant.

• The circuit C init
j,d0,...,dj−1

has j input gates, labeled by the variables z0, . . . , zj−1. The circuit has
j + 2j2 output gates.

• On input (c0, . . . , cj−1) ∈ [d0]×· · ·× [dj−1], this circuit computes rc, the entries of the Jacobian
Jc, and the entries of its inverse J −1

c .

Proof. We first describe the circuit C = C init
j,d0,...,dj−1

. Recall that ek denotes the sum d0 + · · ·+ dk−1.
The circuit C has gates that compute all the integers between 1 and ej by repeatedly adding the
constant 1. It has + gates that compute the polynomials e0+ z0, . . . , ej−1+ zj−1 by adding zj to the
integer ej−1. The circuit has gates that compute the polynomials −(e0 + z0)

j , . . . ,−(ej−1 + zj−1)
j .

This will require introducing more copies of the gates that compute e0 + z0. The gates for these
computations will be named (1, ∗) for some ∗ (which itself will be a tuple), analogous to how gates
performing similar tasks were named in the proof of Lemma 3.1. The circuit has a copy of the circuit
C ′ for the inverse of a general Vandermonde matrix of size j × j (Lemma 3.6), whose inputs are
connected to the gates computing the above polynomials. These gates will be named (2, v) where v
is the name of the gate in the circuit C ′. The output of this subcircuit computes the inverse of the
Vandermonde matrix Vand(e0 + z0, . . . , ej−1 + zj−1). The circuit then multiplies the inverse of the
Vandermonde matrix with the vector (−(e0 + z0)

j , . . . ,−(ej−1 + zj−1)
j). Denote the entries of the

resulting vector by rz. These gates will be named (3, ∗).
Next, for each i ∈ {0, . . . , j − 1}, the circuit has gates that compute the polynomials

di∑
k′=1

∏
k ̸=k′

ℓj,ei+k(x0, . . . , xj−1),

and evaluates them at rz. Call these evaluations κz,i, the gates will be named (4, ∗). The circuit
then has gates that compute the matrix product

Jz := diag(κz,1, . . . , κz,j−1) ·Vand(e0 + z0, . . . , ej−1 + zj−1)

Finally, the circuit has gates that compute the inverse of Jz using the factorization above and the
entries of Vand(e0 + z0, . . . , ej−1 + zj−1)

−1 computed earlier. These gates can also be named as
above. In all cases, a natural numbering of the predecessor of each gates is clear from the description.

We argue that evaluating this circuit on c computes the root rc, the Jacobian Jc and its inverse
correctly. It follows from the definition of rc that rz(c) = rc. To see that κz,i(c) = κc,i, we observe
that when evaluated at rc, the only summand in the expression for κz,i that does not vanish is the
one where ℓj,ei+ci is omitted. From this and Lemma 5.3, it follows that the inverse and Jacobian are
computed correctly.
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The claims on the size and depth of the circuit follow from the above construction and the bounds
on the sizes of the subcircuits used. Uniformity follows by a simulation argument, as in the proof
of Lemma 3.2, together with the above description. For the gates in the copy of C ′, that is, gates
named (2, v) for some v, since v can be deduced from this name, the Turing machine can simulate the
machine that decides the direct connection language of the circuit family from Lemma 3.6 whenever
required. For all other gates, the above description of the circuit can be used to design the Turing
machine, similar to the proof of Lemma 3.1.

5.3 The resultant of the system defining the homotopy

We can now describe the system that defines the homotopy.

Definition 5.5. For any i, j ∈ {0, 1, . . . , n}, let Hi,j(x, t) denote the polynomial

Hi,j(x, t) := (1− t)Gi,j(x) + tFi,j(x),

which we regard as an element of K(t)[x]. For any such i and j, we use hi,j to denote the specialization
of Hi,j at xj = 1. Let Hj denote the vector of polynomials (H0,j , . . . ,Hj,j) and hj denote the vector
of polynomials (h0,j , . . . , hj−1,j). ♢

Specializing Hi,j and hi,j to t = 0 gives us Gi,j and gi,j respectively, and specializing to t = 1 gives
Fi,j and fi,j . Further, for j ∈ [n], setting xj to zero in H0,j , . . . ,Hj−1,j gives us H0,j−1, . . . ,Hj−1,j−1.
Via the Poisson formula, we can derive an expression for Resn(Hn).

Lemma 5.6. For each j ∈ {0, 1, . . . , n}, let Vj ⊆ K(t)
j

denote the set of common zeroes of
h0,j , . . . , hj−1,j. We have

Resn(Hn) =
(
1 + t

(
u0,(d0,0,...,0) − 1

))∏n
i=1 di ×

∏
ρ∈V1

h1,1(ρ)


∏n

i=2 di

×

∏
ρ∈V2

h2,2(ρ)


∏n

i=3 di

× · · · ×

∏
ρ∈Vn

hn,n(ρ)

.

Proof. We have F0,0 = u0,(d0,0,...,0)x
d0
0 and G0,0 = xd00 . Therefore, Res(H0,0) = 1+ t

(
u0,(d0,0,...,0) − 1

)
,

using the fact that the resultant of a single form in one variable is just the coefficient ([Jou91,
Example 2.1]). For the systems Hj , the Poisson formula (Theorem 4.3) applies, since the specialization
to t = 1 results in generic forms. Unrolling the recurrence of the Poisson formula gives us the above
expression.

As described above, the sets Vj are finite sets of points with coordinates in K(t). In this
form, they are not amenable to manipulation by arithmetic circuits and Turing machines. Define
A := Q[u0, . . . ,un]JtK. Consider the hi,j as polynomials in the ring A[x0, . . . , xj−1]. The above
observations, combined with the discussion in Section 5.2, allows us to apply Hensel’s lemma to this
system of equations.

Lemma 5.7. Let j ∈ [n]. As elements of A[x0, . . . , xj−1], the set of polynomials hj admits d0 · · · dj−1

roots in A. For each rc ∈ Bj as defined in Lemma 5.2, there is a root ρc ∈ Aj of hj that satisfies ρc

(mod t) = rc. The set of polynomials has no other roots in any extension of A.
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Proof. The first statement follows from a multivariate version of Hensel’s lemma, see for example
[Eis13, Exercise 7.26]. The final statement follows from Bézout’s inequality.

We will use an explicit version of the implicit function theorem to compute the ρc to the required
precision. To apply this theorem, we have to perform some shifting and scaling to ensure that the
root ρc we are computing has no constant term, and that the Jacobian at the origin after shifting is
the identity.

Definition 5.8. Let j ∈ [n] and c ∈ Bj . Define the shifted and scaled system h̃c as

h̃c(x) := J −1
c hj(x+ rc).

This system has ρc − rc as a root, which has a vanishing constant term in every coordinate. The
Jacobian at zero of this system is the identity matrix. Let ∆c denote the Jacobian determinant
of this system. Note that we hide j in the notation h̃c for brevity, as it will always be clear from
context. ♢

Each polynomial in h̃c lies in S[t, x0, . . . , xj−1]. We now quote an explicit version of the implicit
function theorem, specialized to the system described in Definition 5.8.

Lemma 5.9 (Implicit Function Theorem [AY83, Proposition 20.3]). Let ρ̃c = (ρ̃c,0(t), . . . , ρ̃c,j−1(t))

be the root of h̃c with vanishing constant term in every coordinate. Write ρ̃c,i(t) =
∑

N≥0 ρ̃c,i,N tN

with coefficients ρ̃c,i,N ∈ S. Then the coefficient ρ̃c,i,N is given by

ρ̃c,i,N =
∑

(b0,...,bj−1)∈Nj

|b|≤2N

(−1)|b| coeff(xi(h̃c,0(x)− x0)
b0 · · · (h̃c,j−1(x)− xj−1)

bj−1∆c, t
Nxb00 · · ·xbj−1

j−1 ).

Proof. The result we cite from [AY83, Proposition 20.3] is complex-analytic, but deriving the formal
statement above from it is straightforward.

In what follows, j and c are fixed. Lemma 5.7 pointed out that the coefficients of ρ̃c are
polynomials in u0, . . . ,un, that is, ρ̃c,i,N is in Q[u0, . . . ,un] for all i,N . We use Qi,N to denote
the polynomials appearing as right-hand sides in the statement of Lemma 5.9, so our claim is that
ρ̃c,i,N = Qi,N for all i and all N (these polynomials actually only involve u0, . . . ,uj−1, but this has
no bearing on the proof).

Choose ν0, . . . ,νn with entries in C and let h̃c,ν be the polynomials in C[t][x0, . . . , xj−1] obtained
by evaluating u at ν in h̃c. Through this evaluation, we see that the unique formal power series
root with vanishing constant term to h̃c,ν = 0 is ρ̃c(ν, t), whose coefficients are ρ̃c,i,N (ν), for
i = 0, . . . , j − 1 and N ≥ 0. On the other hand, applying [AY83, Proposition 20.3] to h̃c,ν tells us
that the ith coordinate of the unique analytic root to these equations with vanishing constant term is∑

N≥0

∑
|B|∈Nj

|b|≤2N

(−1)|b| coeff(xi(h̃c,ν,0(x)− x0)
b0 · · · (h̃c,ν,j−1(x)− xj−1)

bj−1∆c,ν , t
Nxb00 · · ·xbj−1

j−1 )t
N

=
∑
N≥0

Qi,N (ν)tN ,

where ∆c,ν is the Jacobian determinant of h̃c,ν with respect to x0, . . . , xj−1 (we note that [AY83]
uses the notation Dα,β

w,z to denote the partial derivative ∂α
w∂

β
z ).

Since an analytic root is also a root over the ring of formal power series, we deduce that
ρ̃c,i,N (ν) = Qi,N (ν) for all i, N , and ν, so that ρ̃c,i,N = Qi,N for all i and N .
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The root ρc of hj is a shift of ρ̃c by rc. If ρc,i,N are the coefficients of t in the coordinates of
ρc then ρc,i,N = ρ̃c,i,N for N ≥ 1, and ρc,0,N = rc. Using Lemma 5.9, we can thus compute ρc up
to any precision of our choice. To compute the resultant, we will require the coefficients ρc,i,N for
N up to P :=

∑n
i=0

∏
j ̸=i dj , which is the degree of Resn(Hn) in the variable t (Lemma 4.2). We

now describe the circuits carrying out the above computations. That there exist constant-depth
circuits that do the above computations follows directly from the above formula. The part that takes
some work is establishing that there exist uniform circuit families that implement the expression in
Lemma 5.9.

We start by showing that the shifted and scaled system, along with its Jacobian determinant,
can be computed efficiently.

Lemma 5.10. There exists a polylogtime-uniform family of constant-free circuits Cscaled indexed by
j, d0, . . . , dj−1 with the following properties.

• The circuit Cscaled
j,d0,...,dj−1

has size polynomial in Uj and exp(poly(j)), and depth bounded by a
universal constant.

• The circuit Cscaled
j,d0,...,dj−1

has Uj +2j+1 input gates, labeled by variables u0, . . . ,uj, x0, . . . , xj−1,
z0, . . . , zj−1, t. The circuit has j + 1 output gates. The circuit is division-free with respect to
u0, . . . ,uj , x0, . . . , xj−1, t.

• When z0, . . . , zc−1 are specialized to (c0, . . . , cj−1) ∈ Bj, the circuit computes the polynomials
h̃c(x0, . . . , xj−1, t) and the Jacobian determinant ∆c(x0, . . . , xj−1, t).

Proof. The construction of Cscaled requires us to define auxiliary circuit families C′ and C′′. We start
with the construction of C′.

The family C′ is also indexed by j, d0, . . . , dj−1 and takes the same input variables as C. We
describe C ′ = C ′

j,d0,...,dj−1
. It contains as a subcircuit a copy of the circuit C init

j,d0,...,dj−1
, constructed

in Lemma 5.4, that takes as input the variables z. Let rz, Jz, and J −1
z denote the outputs of this

subcircuit. The circuit C ′ also contains a subcircuit that computes the polynomials hj . Computing
the polynomials hj amounts to computing the polynomials fj and gj , and can be done using the
definition of gj . The subcircuit that computes hj is given as input x+ rz, so it computes hj(x+ rz).
Next, C ′ computes the matrix-vector product of J −1

z and hj(x+ rz). Denote the resulting output
by h̃z. Note that if we specialize z to c ∈ Bj , then h̃z is exactly h̃c. It is straightforward to see that
the family C′ described above is polylogtime-uniform, using a simulation argument as in the proof of
Lemma 3.2. The size of C ′ is polynomial in Uj , and the degree in x of each output is bounded by
d0 + · · ·+ dj−1. The depth of C ′ is bounded by a universal constant. Further, the denominators in
all division gates are free of any variable in x.

We now construct C′′. The family C′′ is also indexed by j, d0, . . . , dj−1 and takes the same input
variables as C. It is obtained by applying Lemma 3.4 to the family C′, with distinguished variables
x0, . . . , xj−1. The statements at the end of the previous paragraph show that C′ meets all the
required assumptions for this interpolation result to apply. The resulting circuit C ′′ = C ′′

j,d0,...,dj−1

has size polynomial in Uj , and computes the coefficients of every output of C ′
j,d0,...,dj−1

in each of the
variables x0, . . . , xj−1. This circuit family is also polylogtime-uniform and consists of constant-depth
circuits.

We now describe the circuit C = Cscaled
n,j,d0,...,dj−1

. The circuit C contains a copy of the circuit
C ′ = C ′

j,d0,...,dj−1
, whose outputs are also outputs of C. These gates will be named (1, v) where v is

the name of the gate within C ′. Next C contains a copy of C ′′ = C ′′
j,d0,...,dj−1

. These gates will be
named (2, v) where v is the name of the gate within the circuit obtained from interpolation.
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Using the coefficients of xk in h̃z computed in the subcircuit C ′′, the circuit C then computes
the entries of the Jacobian matrix of h̃z. The partial derivatives with respect to xk are just linear
combinations, weighted by powers of xk, of the coefficients of h̃z viewed as a polynomial in xk.
Finally, the circuit C computes the determinant of this Jacobian using the trivial depth-two circuit
for determinants of j × j matrices, that is, by expanding it out into j! summands. The gates for
these computations will be named (3, ∗).

We now bound the size of C. The size of the subcircuits C ′, C ′′, and the circuitry to compute the
partial derivatives can be bounded by poly(Uj). To compute the determinant, we use a depth-two
circuit that has size polynomial in j!, which can be bounded by exp(poly(j)). The size of C is
therefore polynomial in Uj and exp(poly(j)) as claimed. The proof of uniformity is a simulation
argument, just as the previous proofs. As before, our naming scheme allows us to deduce the name
of a gate within each of the subcircuits, which can be used to simulate the Turing machine that
decides the direct connection language of each subcircuit whenever required.

Using Lemma 5.10, we now show that the truncations of the power series roots can be computed
by uniform constant-depth circuits.

Lemma 5.11. There exists a polylogtime-uniform family of constant-free circuits Croot indexed by
parameters n, j, d0, . . . , dn with the following properties.

• The circuit Croot
n,j,d0,...,dn

has size bounded by P poly(n), where P :=
∑n

i=0

∏
j ̸=i dj, and depth

bounded by a universal constant.

• The circuit Croot
n,j,d0,...,dn

has Uj+j+1 input gates, labeled by variables u0, . . . ,uj−1, z0, . . . , zj−1, t.
The circuit has j output gates. The circuit is division-free with respect to u0, . . . ,uj , t.

• When the inputs z0, . . . , zj−1 are specialized to c0, . . . , cj−1, the circuit computes the truncated
roots

∑
N≤P ρc,i,N tN for each i ≤ j − 1.

Proof. We start by defining an auxiliary circuit family C′. This family will be indexed by the parame-
ters n, j, d0, . . . , dn, k, b0, . . . , bj−1. The input variables will be u0, . . . ,uj , x0, . . . , xj−1, z0, . . . , zj−1, t.

If k ≥ j or if b0 + · · ·+ bj−1 > 2P , then the corresponding circuit in C′ is just the empty circuit.
These conditions can be checked in time that is polynomial in the description of the index. We
describe the circuit in the case where the indices satisfy k < j and b0 + · · · bj−1 ≤ 2P .

The circuit C ′ contains a copy of Cscaled
j,d0,...,dj−1

from Lemma 5.10. This computes h̃z and its
Jacobian determinant ∆z. As usual, these gates are named (1, v), where v is the name of the
corresponding gate within Cscaled

j,d0,...,dj−1
. The circuit then has b0 copies of a sum gate, each of which

computes h̃z,0(x)− x0. These are named (2, 0, i) for i ≤ b0. Similarly, for each e < j, there are be
copies of h̃z,t(x) − xe computed by sum gates named (2, e, i) for i ≤ be. For each e < j, there is
a product gate (3, e) that multiplies these copies to compute (hz,e(x)− xe)

be . Finally, there is a
multiplication gate that has inputs (3, e) for all e, the variable xk, and the Jacobian determinant ∆z

that was computed by the copy of Cscaled
j,d0,...,dj−1

. The circuit therefore computes the polynomial

xk(h̃z,0(x)− x0)
b0 · · · (h̃z,j−1(x)− xj−1)

bj−1∆z.

Uniformity of this circuit family follows from a simulation argument, since the gate names allow us
to recover the gate names within the copy of Cscaled

j,d0,...,dj−1
. No division gate involves division by a

polynomial that depends on x or t. The size of the circuit C ′ is polynomial in P (note that Uj is
itself polynomial in P ). The degree in x and t of the polynomial computed by C ′ can likewise be
bounded by poly(P ).
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Using the family C′, we define another auxiliary circuit family C′′ with the same indices. The
family C′′ is obtained by applying multivariate interpolation (Lemma 3.3) to C′ to interpolate out
the coefficients of t, x0, . . . , xj−1. The statements at the end of the previous paragraph show that
the assumptions required for the interpolation hold. To summarize the construction so far, we
have a polylogtime-uniform family C′′ such that C ′′ = C ′′

n,j,d0,...,dn,k,b0,...,bj−1
has input variables

u0, . . . ,uj−1, z0, . . . , zj−1, and computes the coefficients of

xk(h̃z,0(x)− x0)
b0 · · · (h̃z,j−1(x)− xj−1)

bj−1∆z

as a polynomial in t, x0, . . . , xj−1. The size of C ′′ is bounded by P poly(n), and the depth is a universal
constant.

With this family in hand, we return to the construction of Croot
n,j,d0,...,dn

. Fix indices n, j, d0, . . . , dn.
We describe the circuit C = Croot

n,j,d0,...,dn
. For every vector b ∈ Nj with |b| ≤ 2P and for every k < j,

the circuit C contains a copy of C ′′
n,j,d0,...,dn,k,b0,...,bj−1

. We will call this subcircuit Cb,k in the rest of
this argument for brevity. The names of each gate in Cb,k are of the form (1,b, k, v) where v is the
name of the corresponding gate within the subcircuit. For each b, k, and each N ≤ P , the circuit C
has a product gate that computes

(−1)|b| · coeff(xi(h̃z,0 − x0)
b0 · · · (h̃z,j−1 − xj−1)

bj−1∆z, t
Nxb00 · · ·xbj−1

j−1 )

by taking as input a constant gate with constant −1 and the coefficient from the copy of Cb,k. These
product gates are named (2,b, k,N). For each 1 ≤ N ≤ P and each k < j, the circuit C contains a
sum gate that uses the above gates to compute

ρz,k,N :=
∑

(b0,...,bj−1), |b|≤2N

(−1)|b| · coeff(xk(h̃z,0 − x0)
b0 · · · (h̃z,j−1 − xj−1)

bj−1∆z, t
Nxb00 · · ·xbj−1

j−1 ).

These gates are named (3, N, k). The predecessors of the summation gates are numbered in
lexicographic order based on b. All that remains is to compute the constant terms ρz,k,0, which
are simply rz. For this, the circuit C contains a copy of C init

j,d0,...,dj−1
, whose gates are named (4, v)

where v is the name of the corresponding gate within the subcircuit. With all the coefficients
ρz,i,N computed as above, the circuit has product gates that compute ρz,k,N tN for each N ≤ P and
k ≤ j − 1, and addition gates that add these to compute

∑
N≤P ρz,k,N tN for each k ≤ j − 1. These

gates have names of the form (5, ∗).
We now bound the size of the circuit. The total number of vectors b with |b| ≤ 2P is bounded by

P poly(n). The size of each copy Cb,k is bounded by P poly(n), and consequently the size of the whole
circuit is bounded by P poly(n). The fact that the depth is a universal constant is straightforward.

We now argue that the circuit family is uniform. Let TC be the name of the machine that we will
construct to decide the direct connection language of Croot. Let TC′ and TC′” be the machines that
decide the direct connection languages of C′ and C′′, respectively. Suppose (n, j, d0, . . . , dn, a, p, a

′) is
an input to TC . The bound P can be computed from the index in polynomial time. Suppose a has a
name of the form (1,b, k, v). The key observation is that the machine TC can simulate the machine
TC′′ on inputs of the form (n, j, d0, . . . , dn, k, b0, . . . , bj−1, v, p, a

′′), where a′′ is either a gate type, or
the name of a gate within Cb,k. This will allow TC to use TC′ to decide if (n, j, d0, . . . , dn, a, p, a′)
is a YES instance. As before, if v is an input or output gate of the subcircuit, then TC uses the
description in the construction above to check if the gate is wired correctly. The rest of the argument,
and the argument when a is of the form (2, ∗), (3, ∗), (4, ∗) or (5, ∗) is the usual simulation argument
that we have repeated before.

With this, we can compute Resn(Fn) via a polylogtime-uniform family of constant-depth circuits.

39



Lemma 5.12. There exists a polylogtime-uniform family of weakly division-free, constant-free circuits
CRes indexed by parameters n, d0, . . . , dn with the following properties.

• The circuit CRes
n,d0,...,dn

has size bounded by P poly(n), where P =
∑n

i=0

∏
j ̸=i dj, and depth bounded

by a universal constant.

• The circuit CRes
n,d0,...,dn

has U :=
∑n

i=0

(
n+di
n

)
input gates, labeled by u0 . . . ,un. The circuit has

a single output gate.

• The circuit computes the multivariate resultant Resn(Fn) in the variables u0, . . . ,un.

Proof. We start by constructing an auxiliary family C′ indexed by n, d0, . . . , dn. Fix indices
n, d0, . . . , dn. The inputs to C ′ = C ′

n,d0,...,dn
will be variables u0, . . . ,un, t.

We now describe C ′. For each j ∈ [n], the circuit C ′ has d0 · · · dj−1 copies of the circuit Croot
n,j,d0,...,dn

from Lemma 5.11 as sub-circuits. The names of the gates are (1, j, i, v), where i ≤ d0 · · · dj−1 and v
is the name of the corresponding gate within the subcircuit. In addition, the circuit C ′ has gates
that compute each of the integers 1, . . . ,

∑n
i=1 di.

The elements of Bj = [d0]× · · · × [dj−1] are tuples of integers of length j, and Bj itself has size
d0 · · · dj−1. Given d0, . . . , dn, j, n, and i in binary, computing the ith element of Bj in lexicographic
order can be done in polynomial time. In C ′, the ith copy of Croot

n,j,d0,...,dn
is evaluated at the ith

element of Bj using the integers 1, . . . ,
∑

di computed above. By Lemma 5.11, each of the output
gates of the copies computes approximations (in t) of the roots of the system hj .

The circuit C ′ also has copies of a subcircuit that computes the polynomials h1,1, . . . , hn,n, as in
the proof of Lemma 5.10. Specifically, it has one copy of hj,j for each element of Bj . To the input
gates of the ith copy of hj,j , we wire the approximate roots constructed using the ith element of Bj .
Consequently, for each c ∈ Bj , the circuit computes hj,j(ρ

′
c), where ρ′

c = ρc (mod tP ). Finally, the
circuit C ′ has gates that use these evaluations to implement the Poisson formula (Lemma 5.6).

To summarize, the circuit C ′
n,d0,...,dn

implements the Poisson formula for Resn(Hn), except it uses
approximations of the roots of hj in the ring AJtK. The order of approximation is P =

∑n
i=0

∏
j ̸=i dj ,

and the output has degree P poly(n). The fact that C ′ has size P poly(n), constant depth, and the
family C′ is polylogtime-uniform follows by the same argument as in previous constructions. No
division gate in C ′ involves division by a polynomial that depends on t. Further, the degree in t of
the polynomial computed by C ′ is bounded by P poly(n).

Applying Lemma 3.2 to the family C′ with distinguished variable t results in a circuit family
C′′ that computes the coefficients in t of the above approximation to Resn(Hn). The family C′′ is
polylogtime-uniform and consists of circuits of size P poly(n).

We now return to the construction of CRes
n,d0,...,dn

. This circuit has a copy of C ′′
n,d0,...,dn

. It has one
additional summation gate that sums the outputs of C ′′

n,d0,...,dn
corresponding to the coefficients of ti

for i ≤ P . The computed polynomial is the same as the one obtained by truncating the approximate
computation of the resultant and evaluating at t = 1. By the Poisson formula, the degree bounds
on the resultant, and the construction of the homotopy, this polynomial is exactly Resn(Fn). The
claims on the size, depth, and uniformity are again straightforward.

In Sections 4.2 and 4.3, we saw examples of how the resultant can be used to solve problems
beyond satisfiability of square homogeneous systems. In these applications, we often have to compute
the resultant of a set of polynomials whose coefficients are themselves polynomials. If these coefficients
come from the ring Q[w1, . . . , wk], then the resultant is itself a polynomial in Q[w1, . . . , wk], and
can be computed by simply substituting these polynomial coefficients in the circuit for Resn(Fn)
designed above.
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If the coefficients are polynomials in w1, . . . , wk of degree at most D, then the resulting compu-
tation can also be seen as taking U ·

(
k+D
k

)
inputs, one corresponding to each monomial in the w

variables in each coefficient of Fn, and having at most (Dndn)O(k) outputs, where d := maxi di. The
outputs correspond to the coefficients of the w variables in the computed resultant. The following
corollary states that this computation can be carried out by polylogtime-uniform circuits of constant
depth. It is an easy corollary of the above resultant computation and the uniformity of interpolation.

Corollary 5.13. There exists a polylogtime-uniform family of weakly division-free, constant-free
circuits Ccomposed indexed by parameters n, d0, . . . , dn, k,D with the following properties.

• The circuit Ccomposed
n,d0,...,dn,k,D

has size bounded by (PD)poly(n,k), where P =
∑n

i=0

∏
j ̸=i dj, and

depth bounded by a universal constant.

• The circuit has U ·
(
k+D
k

)
input variables, which we denote by ui,α,β (where β ∈ Nk satisfies

|β| ≤ D). The circuit has
(
DD′+k

k

)
outputs, where D′ is the degree of Resn(Fn).

• When evaluated at γi,α,β, the output gates compute the coefficients of the monomials in w of
the resultant of the polynomials

Hi =
∑
α

∑
β

γi,α,βx
αwβ

with respect to the variables x.

Proof. There exist polylogtime-uniform constant-depth circuits that compute the polynomials∑
β ui,α,βw

β for each i and α. We then compose these with the circuit for Resn(Fn) obtained from
Lemma 5.12. The resulting circuit is polylogtime-uniform and computes a polynomial in the variables
w and ui,α,β. The degree in the w variables is at most DD′. We use Lemma 3.3 to interpolate out
the coefficients of monomials in w. This resulting circuit satisfies the depth, size, and uniformity
requirements that we claim.

6 Deciding the Nullstellensatz in the counting hierarchy

In this section, we prove that Hilbert’s Nullstellensatz can be decided in the counting hierarchy. To
do this, we prove a general transfer theorem that translates uniform constructions of arithmetic
circuits into algorithms that can be run on Turing machines.

To every family of polynomials F = (fn)n with rational coefficients, there is an associated family
of boolean functions F̂ = (f̂n,h)n,h, where f̂n,h corresponds to evaluation of fn on tuples of rational
numbers represented by pairs of integers of height at most h. Our goal will be to show that if the
family of polynomials F can be computed by polylogtime-uniform arithmetic circuits of constant
depth and exponential size, then this associated family of boolean functions can be computed in the
counting hierarchy CH. Once we have this in hand, an immediate corollary of Lemma 5.12 will be an
FPCH algorithm to evaluate the multivariate resultant. Applying the reductions of Propositions 4.4
and 4.12 will yield CH and FPCH algorithms for the decision and counting versions of Hilbert’s
Nullstellensatz, respectively.

6.1 From uniform arithmetic circuits to the counting hierarchy

Our proof of the transfer theorem proceeds in two steps. We first use the polylogtime-uniform
arithmetic circuits for the family F to construct polylogtime-uniform threshold circuits of similar
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size and depth for the boolean functions f̂n,h. The fact that arithmetic circuits can be simulated
efficiently by threshold circuits is a straightforward consequence of the fact that iterated addition
and iterated multiplication are in logtime-uniform TC0 (items 1 and 2 of Theorem 2.12, respectively).
The uniformity of the resulting threshold circuits is a consequence of the logtime-uniformity of
iterated addition and multiplication combined with the assumed uniformity of the arithmetic circuits
that compute F .

We then show that this family of threshold circuits for f̂n,h can be evaluated in CH. Even
though these threshold circuits are exponentially large, the fact that they are uniform means that a
polynomial-time Turing machine can use nested majority quantifiers to simulate them. The number
of majority quantifiers used in this simulation corresponds to the depth of the threshold circuit that
computes f̂n,h. Since we build threshold circuits of constant depth for f̂n,h, the resulting evaluation
procedure uses a bounded number of majority quantifiers, and hence lies in the counting hierarchy.

Neither of these ideas are fundamentally new to our work. Agrawal, Allender, and Datta
[AAD00] observed that arithmetic circuits can be transformed into threshold circuits that evaluate
the corresponding polynomial on {0, 1}-valued inputs, and that this transformation preserves the size
and depth of the circuit. Allender, Koucký, Ronneburger, Roy, and Vinay [AKRRV01] proved a result
similar to ours, showing that exponentially-large constant-depth arithmetic circuits can be converted
to CH algorithms. This second result uses threshold circuits as an intermediate representation in the
same manner as our work.

Although these ideas are present in prior work, we are not aware of any reference that starts
with a uniform family of arithmetic circuits for a polynomial family F and concludes that the
corresponding boolean functions can be computed in CH. Because of this, we provide complete
details for the results of this section.

We start by converting arithmetic circuits into threshold circuits by implementing each arithmetic
gate as a TC0 sub-circuit using Theorem 2.12. Because the circuits provided by Theorem 2.12 are
uniform, this procedure preserves the uniformity present in the family of arithmetic circuits. The
families of boolean functions we construct throughout this subsection treat their inputs as sequences
of rational numbers, represented as pairs of integers. To make these functions total rather than
partial, we adopt the convention that if any such pair of integers is of the form (a, 0), the boolean
function evaluates to zero. In what follows, we tacitly assume that inputs are well-formed, since this
can be decided in polynomial time as a preprocessing step.

Lemma 6.1. Let C = (Cn)n be a polylogtime-uniform family of weakly division-free, constant-free
arithmetic circuits over Q of size sn and depth ∆ ∈ N. Let fn ∈ Q[x1, . . . , xmn ] be the polynomial
computed by Cn. There exists a family of boolean functions f̂n,h indexed by n and a natural number
h with the following properties.

• For each n and h, the function f̂n,h has 2mn(h+ 1) inputs, which are interpreted as mn

rational numbers represented by a pair of integers of height h. Further, the function has
2h · (sn log sn)∆ + 2 outputs, which are interpreted as a single rational number represented by
a pair of integers of height h · (sn log sn)∆.

• If (a1, b1), . . . , (amn , bmn) are representations of rational numbers of height at most h, then
f̂n,h((a1, b1), . . . , (amn , bmn)) is a representation of fn(a1/b1, . . . , amn/bmn).

• There exists a polylogtime-uniform family D = (Dn,h)n,h of threshold circuits of depth O(∆)

and size poly
(
h, (sn log sn)

∆
)

that compute the functions f̂n,h.

Proof. We will construct circuits for f̂n,h from the circuit Cn by replacing each arithmetic gate with
a threshold circuit that implements iterated addition and iterated multiplication of rational numbers,

42



using items 1 and 2 of Theorem 2.12. To do this, we first need to bound the heights of the integers
used to represent intermediate values in Cn, as this will determine the size of the threshold circuits
we need to correctly simulate the operations done in Cn. For each gate v in the circuit Cn, we will
compute a rational number av/bv that represents the value of the gate on the given input. We set
C = Cn and s = sn in the next part of this discussion for brevity.

For a gate v, the depth of v is the length of the longest path starting from v and ending at either
an input gate or a constant gate. For example, input gates and constant gates have depth 0, while a
gate that only has constant gates as input has depth 1. We claim that if v has depth δ in C, then
whenever the inputs to C are represented by pairs of integers of height at most h, the values of av
and bv can be represented by integers of height bounded by h · (s log s)δ. We prove this by induction
on δ. When δ = 0, the gate v is either an input to the circuit or one of the constants 0,+1,−1.
If v is a constant, then clearly the heights of av and bv are at most 1. If v is an input, then by
assumption, the numerator av and denominator bv both have height at most h.

When δ ≥ 1, we proceed by case analysis depending on the operation labeling the gate v.

• Suppose v = v1 + · · ·+ vk is an addition gate. Because the circuit C has size bounded by s,
we know k ≤ s. Each vi is represented by a quotient ai/bi where, by induction, the integers ai
and bi have height at most h · (s log s)δ−1. We represent the value of v as a/b, where

a :=

(
a1
b1

+ · · ·+ ak
bk

)
b1 · · · bk = a1b2 · · · bk + b1a2b3 · · · bk + · · · + b1 · · · bk−1ak

b := b1 · · · bk.

Every product appearing in the definitions of a and b above is a product of k numbers, each
of which have height h · (s log s)δ−1. This means that each such product—and in particular,
the integer b—has height kh · (s log s)δ−1. The integer a is a sum of k such terms, so has
height k log(k)h · (s log s)δ−1. The fact that k ≤ s implies that a and b have height at most
h · (s log s)δ, as claimed.

• Suppose v = v1 × · · · × vk is a product gate. As in the previous case, we know k ≤ s. Each vi
is represented by a quotient ai/bi where, by induction, the integers ai and bi have height at
most h · (s log s)δ−1. We represent the value of v as a/b, where

a := a1 · · · ak
b := b1 · · · bk.

The same analysis as in the case where v is an addition gate shows that a and b have height at
most h · (s log s)δ.

• Finally, suppose v = v1/v2 is a division gate. The values of v1 and v2 are represented by
the quotients a1/b1 and a2/b2, respectively. By induction, each ai and bi has height at most
h · (s log s)δ−1. We represent v as the quotient a/b, where

a := a1b2

b := a2b1.

It is clear that both a and b have height at most 2h · (s log s)δ−1 ≤ h · (s log s)δ, as claimed.

To construct the circuit for the boolean function f̂n,h, we replace each of the arithmetic gates
in C with a threshold circuit that implements the corresponding operation, using the TC0 circuits
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provided by Theorem 2.12. We also replace each of the constant gates by a set of 1 and 0 gates that
encode representations of the respective constant. As the analysis above shows, it suffices to use
threshold circuits that implement iterated addition and iterated multiplication of at most s integers
of height h · (s log s)∆, since this is the maximum height required to represent the value of any gate
in the circuit when evaluated on an input of height at most h. These operations can be performed
with threshold circuits of constant depth and size hO(1)(s log s)O(∆). The fact that the arithmetic
circuit C is weakly division-free ensures that as long as all the inputs are well-formed, no division by
zero takes place when evaluating the circuit in the above manner.

Formally, the threshold circuits provided by Theorem 2.12 perform iterated addition or multipli-
cation of h · (s log s)∆ integers of height h · (s log s)∆, even though gates in C have fan-in bounded
by s. To deal with this, we hardwire the superfluous inputs of these threshold subcircuits to the
constant 0 for iterated addition and the constant 1 for iterated multiplication. Similarly, these
threshold circuits will have more than h · (s log s)∆ bits of output. We ignore these extra bits of
output, since we know they will not affect the result of our simulation.

Since the circuit C has size s and depth ∆, it is clear that this procedure results in a threshold
circuit of size hO(1)(s log s)O(∆) and depth O(∆) that correctly computes a binary representation of
the output of the circuit C on inputs of height h. We denote the resulting threshold circuit by Dn,h

and define the boolean function f̂n,h to be the function computed by Dn,h.
It remains to bound the uniformity of the circuit family D = (Dn,h)n,h. The names of gates

in Dn,h that are part of threshold circuits simulating arithmetic will be a tuple (1, v, u), where
v is the name of the gate in Cn that is being simulated and u is the name of a gate within the
threshold subcircuit that simulates the arithmetic of v. The other gates in Dn,h, namely those
that compute encodings of the integers 1 and 0 to be used in the extra inputs to the arithmetic
subcircuits, have names of the form (2, ∗). Let TC , T+, and T× be Turing machines that decide the
direct connection languages of C, threshold circuits for iterated addition, and threshold circuits for
iterated multiplication, respectively. Denote by TD the Turing machine that we will design to decide
the direct connection language of D.

Let (n, h, a, p, b) be an input to TD. Suppose a = (1, va, ua). If p = ϵ, then TD must accept if b
represents the type of a. To decide this, the machine TD first computes the type of the gate va using
TC . If va is a summation gate, then TD simulates T+ to compute the type of ua and accepts if b
matches this type. If va is a product gate, then TD simulates either T+ or T×, as appropriate, to
compute the type of ua and accept or reject accordingly. If va is a division gate, then TD simulates
T× to compute the type of ua. If va is an input gate of the subcircuit but a is not an input gate of
Dn,h, then we adopt the (arbitrary) convention that the type of a is OR.

If p ̸= ϵ, then the machine TD branches based on b.

• TD first checks if b is of the form (1, vb, ub). In this case, it branches further as follows.

– Suppose va = vb. In this case, a and b are part of the same subcircuit implementing
arithmetic. The machine computes the type of the gate va as in the above paragraph,
and uses the corresponding Turing machine to check if ub is a predecessor of ua. If so, it
accepts, and if not then it rejects.

– Suppose va ̸= vb. In this case, the machine checks if ua is an input gate in the threshold
subcircuit, and rejects if it is not. If it is, then TD computes integers p1 and p2 such that
ua is the p1

th bit of the p2
th rational number input to the threshold subcircuit. It then

computes the arity of va and rejects if the arity is less than p2. If the arity is more than
p2, the machine uses TC to check if vb is the p2

th input to va in Cn. It also checks if ub is
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the p1
th output bit of its corresponding threshold subcircuit. If all of these checks pass, it

accepts the string. If any of them fail, it rejects.

• Suppose b has name (2, ∗). In this case, as above, the machine TD checks that a is an input
bit. It then computes integers p1 and p2 such that ua is the p1

th bit of the p2
th integer input

to the threshold circuit. The machine TD verifies that the arity of va is at most p2. Finally,
TD computes the type of a and, based on whether a is a summation or multiplication gate,
checks that b is the correct bit in the encoding of the 0 or 1 that is used for the extra inputs.
If all these checks pass, TD accepts its input.

The case when a = (2, ∗) can be handled in a similar manner. All computations take time
polylogarithmic in the size of the final circuit and polynomial in the binary representation of the
index. This shows that the circuit family D is polylogtime-uniform.

While Lemma 6.1 is stated for single output circuit families, it can be easily extended to circuit
families with multiple outputs. In this case, the boolean function fn,h computes a tuple of binary
representations of natural numbers, one for each output gate of Cn. The proof itself requires no
changes.

Next, we show that uniform threshold circuits of constant depth and exponential size can be
evaluated in the counting hierarchy. Of course, the number of output gates in such a circuit may
itself be exponential, so it may not be possible to write down the complete output in polynomial
time. We instead show that given a multi-index n, an input to the nth circuit in the family, and
an index i, we can compute the ith bit of the corresponding output in CH, a problem we formalize
below.

Definition 6.2. Let F :=
(
fn : {0, 1}m

′
n → {0, 1}mn

)
n

be a multi-indexed family of boolean
functions. The language LF corresponding to F is defined as

LF := {(i, b, x,n) | fn(x)i = b}.

If D is a family of circuits, then we abuse notation and use LD to denote the language corresponding
to the family of functions computed by D. ♢

Next, we show that if D is a polylogtime-uniform family of exponentially-large threshold circuits,
then the language LD corresponding to D lies in the counting hierarchy.

Lemma 6.3 (see, e.g., [ABKPM09, Proof of Theorem 4.1]). Let D = (Dn)n be a polylogtime-uniform
family of threshold circuits of size sn and depth ∆, where Dn has mn inputs. Let LD be the language
corresponding to the circuit family D as defined in Definition 6.2. Suppose sn ≤ exp(poly(mn)).
Then LD ∈ CH.

Proof. For an integer δ ∈ N, consider the auxiliary language

Lδ := {(g, b, x,n) | g is a gate of depth at most δ in the circuit Dn and evaluates to b on input x},

where the gate name g and index n into the circuit family are provided in binary. We will prove by
induction on δ that Lδ ∈ CH.

As a first step, we show that given (g, b, x,n) as input, we can check if x has length mn in
time polynomial in the length of the input. Recall that, by the definition of uniformity, there is a
polynomially-bounded increasing function T : N → N and a Turing machine M such that given input
n, the machine M runs in time at most T (log(sn) +N) and computes mn, where N =

∑
i log ni.
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To decide if x has length mn, we are only allowed time polynomial in |g| + |x| + N , rather than
log(sn) +N . Let Q be a polynomially-bounded increasing function such that log(sn) ≤ Q(mn). To
check if x has the correct length, we simulate M on input n for at most T (Q(|x|) +N) steps. If
this simulation terminates, we obtain mn and can check if |x| = mn. If this simulation does not
terminate, then we know that x is too short to be a valid input to Cn. When x has the correct
length, the fact that log(sn) ≤ Q(mn) also implies that the name of every gate in Cn has length
bounded by a polynomial function of the length of the input (g, b, x,n). In the rest of this proof, all
our machines will perform the above check first and reject if it fails.

We now consider the language L0. We receive (g, b, x,n) as input and must decide if g is a gate
labeled by a constant or if g is an input gate of Dn and, if so, whether g evaluates to b on input x.
By the assumed size and uniformity of the circuit family D, we can decide if g is an input gate in
polynomial time (in the length of (g, b, x,n)) and, if so, determine which input bit xi labels g. In
this case we accept (g, b, x,n) if and only if b = xi, where xi is the input bit that labels g. If g is not
an input gate, we can check if it has type 0, +1, or −1, and accept if b matches the type. We reject
all other inputs. This shows that L0 ∈ P ⊆ CH.

When δ ≥ 1, we will show that the language Lδ can be decided in PP with oracle access to Lδ−1.
As Lδ−1 ∈ CH by induction, we can conclude that Lδ ∈ CH. Let (g, b, x,n) be the input to Lδ. By
the assumed size and uniformity of D, we can determine the type of the gate g in time polynomial in
the length of (g, b, x,n). Without loss of generality, we may assume that D consists only of majority
and negation gates, since the case of input and constant gates can be handled as above.

• Suppose g is a negation gate. We first nondeterministically guess a gate h and verify, using
the uniformity of D, whether h is the child of g. The fact that the names of all gates are
bounded by a polynomial function of the length of the input (g, b, x,n) allows us to perform
this step. If h is not the child of g, then we nondeterministically branch once more, accepting
in one path and rejecting in the other, so that the branches corresponding to non-children of g
contribute the same number of accepting and rejecting paths. If h is the child of g, then we
use oracle access to Lδ−1 to check if (h, 1 − b, x,n) ∈ Lδ−1, accepting (g, b, x,n) if and only
if (h, 1 − b, x,n) ∈ Lδ−1. The majority of computation paths are accepting exactly when g
evaluates to b on input x, so we can decide if (g, b, x,n) ∈ Lδ using a PPLδ−1 algorithm.

• Suppose g is a majority gate. As in the previous case, we nondeterministically guess a gate h
and verify if h is a child of g, again doing this using the uniformity of D. If h is not a child of
g, we branch into one accepting and one rejecting path so the non-children of g contribute an
equal number of accepting and rejecting paths. If h is a child of g, we use the Lδ−1 oracle to
decide if h evaluates to b on input x and accept if and only if this is the case. The majority of
computation paths are accepting exactly when the majority of the children of g evaluate to b
on input x, so we can decide if (g, b, x,n) ∈ Lδ using a PPLδ−1 algorithm.

In both cases, we can decide if (g, b, x,n) ∈ Lδ in PPLδ−1 as claimed. As a consequence, we obtain
L∆ ∈ CH.

We now consider LD. Given an input (i, b, x,n), the uniformity of D also allows us to compute
the name of the output gate corresponding to the index i. We can then decide if the string is a YES
instance using an oracle to L∆. This proves LD ∈ CH.

By combining the preceding lemmas, we conclude that if a family of polynomials F can be
computed by a uniform family of arithmetic circuits of exponential size and constant depth, and if
the corresponding family of boolean functions is F̂ , then LF̂ is in CH.
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Corollary 6.4. Let C = (Cn)n be a polylogtime-uniform family of weakly division-free, constant-free,
constant-depth arithmetic circuits of size sn, where Cn has mn inputs. Let D denote the circuit
family constructed in Lemma 6.1 that computes boolean functions corresponding to the polynomials
computed by C. Suppose that sn ≤ exp(poly(mn)). Then LD ∈ CH.

Proof. Combining the assumptions on the size of the circuits in C with the bounds on the size of D
guaranteed by Lemma 6.1, we see that D satisfies the assumptions of Lemma 6.3. The result follows
by an application of Lemma 6.3 to D.

We need one final simulation result. Suppose we have a family of functions (fn)n that map n bits
to 2n bits. Suppose we also have a polylogtime-uniform family D = (Dn)n of polynomial-sized TC0

circuits where Dn takes n bits as input. In this setting, we can define a family of functions obtained
by composing D2n with fn for each n. The following lemma states that the language corresponding
to this composed function family can be decided in CHLF .

Lemma 6.5. Let D = (Dn)n be a polylogtime-uniform family of polynomial-size threshold circuits
of depth ∆, where Dn has n inputs. Let F =

(
fn : {0, 1}m

′
n → {0, 1}mn

)
n

be a family of boolean
functions. Suppose mn ≤ exp(poly(m′

n)) and that a binary representation of mn can be computed
in polynomial time given a unary representation of m′

n and a binary representation of n. Let
D ◦ F = (Dmn ◦ fn)n denote the family of composed functions. Then LD◦F ∈ CHLF . In particular,
if LF ∈ CH, then LD◦F ∈ CH.

Proof. We proceed as in the proof of Lemma 6.3. For δ ∈ N, consider the auxiliary language

Lδ := {(g, b, x,n) | g is a gate of depth at most δ in Dmn and evaluates to b on input fn(x)}

By induction on δ, we will show that Lδ ∈ CHLF .
As a first step, we query LF on the inputs (1, 1, x,n) and (1, 0, x,n). The length of x is equal

to m′
n if and only if exactly one of these two strings is in LF , so these queries allow us to ensure

that x has the correct length to be a valid input to fn. Whenever x has the correct length, we have
mn ≤ exp(poly(|x|)) by assumption. In the rest of this argument, all our machines will perform the
above check.

We now consider the case when δ = 0. We receive (g, b, x,n) as input and must decide if g is an
input gate of Dmn and, if so, whether g evaluates to b on input fn(x). Because the circuit family D
is polylogtime-uniform, and by the observation at the end of the previous paragraph, we can decide
if g is an input gate in time polynomial in the length of the input (g, b, x,n). If g is the pth input
gate, then we use an oracle call to LF to decide if (p, b, x,n) ∈ LF and accept if and only if this
oracle call returns YES. If g is a gate of type 0 or 1, then we accept or reject depending on b. This
shows that Lδ ∈ PLF ⊆ CHLF .

For δ ≥ 1, the same argument as in the proof of Lemma 6.3 shows that Lδ can be decided
in PP with oracle access to Lδ−1. By induction, we have Lδ−1 ∈ CHLF , so this implies that
Lδ ∈ PPCHLF

= CHLF as desired.
In particular, by taking δ = ∆ and using uniformity of D as in the proof of Lemma 6.3, we

obtain LD◦F ∈ CHLF . If in addition LF ∈ CH, then we have LD◦F ∈ CHCH = CH as claimed.

A frequent use case of Lemma 6.5 will be to compose two uniform families of threshold circuits,
where the inner family is of exponential size and the outer family is of polynomial size. By Lemma 6.3,
the output gates of the inner family can be evaluated in CH. Combining this with Lemma 6.5 above
shows that the composition can also be evaluated in CH.
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We will also encounter the following extension of the above situation. We have a family of circuits
of exponential size, with multiple outputs. These outputs will be naturally grouped together, and
we want to compose each group of outputs with a polynomial sized circuit. For example, the first
circuit family computes the coefficients of a polynomial with coefficients in Z, and we want to reduce
each coefficient modulo a prime p. In this setting, we can derive the same conclusion as Lemma 6.5,
under the same assumptions. Essentially the same proof as that of Lemma 6.5 applies in this setting,
therefore we omit the proof.

Lemma 6.6. Let D = (Dn)n be a polylogtime-uniform family of polynomial-size threshold circuits of

depth ∆, where Dn has n inputs. Let F =

(
fn : {0, 1}m

′
n → {0, 1}m

(1)
n ×m

(2)
n

)
n

be a family of boolean

functions. Suppose mn ≤ exp(poly(m′
n)) and that binary representations of m(1)

n and m
(2)
n can be

computed in polynomial time from a unary representation of m′
n and a binary representation of n.

Let D ◦ F denote the family of functions obtained by composing each of the m
(2)
n sets of outputs

of fn with the function computed by D
m

(1)
n

. Then LD◦F ∈ CHLF . In particular, if LF ∈ CH, then
LD◦F ∈ CH.

6.2 Computing the resultant and deciding the Nullstellensatz

Applying Corollary 6.4 to the uniform circuit family for the multivariate resultant obtained in
Lemma 5.12, we conclude that the multivariate resultant over Z can be evaluated in the counting
hierarchy. Using this algorithm for the resultant over Z as a starting point, we can likewise conclude
that the resultant over other domains, such as Fp, can be computed in the counting hierarchy. This
uses the fact that the resultant over Z has integer coefficients and that its image modulo p is precisely
the resultant over Fp (see Definition 4.1). Because of this, we can compute the resultant over Fp by
first lifting the input to polynomials with integer coefficients, then computing the resultant over the
integers, and finally reducing the result modulo p. Similar ideas allow us to compute resultants over
Fpa and Fpa [y1, . . . , yk].

Recall that in Section 2.3 we discussed various integral domains and how elements of these
domains can be represented in binary. If R is any such domain, and if f ∈ R[x1, . . . , xn] is a
polynomial, then we can define boolean functions f̂h corresponding to evaluation of f on inputs of
height at most h, analogous to the previous section where we did this for R = Z and R = Q.

Theorem 6.7. Let R be one of the rings Z,Z[y1, . . . , yk], Fp, Fp[y1, . . . , yk], Fpa , or Fpa [y1, . . . , yk],
where p is a prime number. Let FR be the family of boolean functions corresponding to the resultant
over R. Then LFR

∈ CH.

Proof. We proceed by case analysis depending on the choice of the ring R.

• R = Z: Apply Corollary 6.4 to the circuits of Lemma 5.12. The statement of Lemma 5.12
provides bounds on the size and number of inputs of the circuits, and these are seen to satisfy
the requirements of Corollary 6.4. The resulting threshold circuits treat their inputs as rational
numbers represented by pairs of integers. These circuits can be evaluated at the given integer
inputs by representing the integer a with the pair (a, 1). The output of these circuits is the
value of the resultant, represented as a rational number (a, b).

Because the resultant is a polynomial with integer coefficients, its evaluation at an integer-
valued point is itself an integer. This implies that a/b is an integer, so b necessarily divides
a. To compute the binary representation of a/b, we compose the family of threshold circuits
for the resultant with a circuit for integer division (item 3 of Theorem 2.12) to obtain a
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circuit family that computes the integer representation of the resultant. The conclusion of
Lemma 6.1 provides bounds on the bit complexity of a and b, and therefore the requirements
to invoke Lemma 6.5 with the circuits for division are satisfied. By Lemma 6.5, because the
language corresponding to a rational representation of the resultant is in CH, so is the language
corresponding to the integer representation of the resultant.

• R = Z[y1, . . . , yk]: Corollary 5.13 constructs a polylogtime-uniform family of arithmetic circuits
that take as input polynomials F0, . . . , Fn ∈ Q[y1, . . . , yk][x0, . . . , xn] and outputs the coefficient
of the resultant Res(F0, . . . , Fn), which is itself a polynomial in Q[y1, . . . , yk]. If the polynomials
Fi have degree at most d in the x variables and degree at most D in the y variables, then these
circuits have size bounded by (ndD)poly(n,k), which is at most singly-exponential in terms of
the number of inputs. Applying the multi-output analogue of Corollary 6.4 to these arithmetic
circuits allows us to decide the language corresponding to the resultant over Q[y1, . . . , yk] in
CH. As above, Corollary 5.13 provides bounds on size and number of inputs of the circuits,
which are seen to satisfy the requirements in Corollary 6.4. The resulting threshold circuits
can be evaluated at inputs from Z[y1, . . . , yk] by representing the integer a with (a, 1) as in
the previous case.

Similar to the integer case, when the input F0, . . . , Fn are elements of Z[y1, . . . , yk][x0, . . . , xn],
the resultant Res(F0, . . . , Fn) is a polynomial with integer coefficients, rather than rational
coefficients. Therefore, we can use Lemma 6.6 to compose the family of threshold circuits for the
resultant with circuits for integer division (item 3 of Theorem 2.12) applied to each coefficient
to obtain integer representations of the coefficients of Res(F0, . . . , Fn). By Lemma 6.6, since
the language corresponding to the resultant over Q[y1, . . . , yk] is in CH, so is the language
corresponding to these composed functions that compute the integer resultant.

• R = Fp: Denote the input polynomials by F0, . . . , Fn ∈ Fp[x]. We can lift these to a collection
of polynomials F̂0, . . . , F̂n ∈ Z[x] with integer coefficients by lifting each element of Fp to an
integer between 0 and p− 1 inclusive. Using the result from the case R = Z, we can decide the
value of any bit of Res(F̂0, . . . , F̂n) in CH. The resultant Res(F̂0, . . . , F̂n) is an integer. The
fact that the resultant over Fp is the image of the resultant over Z under the map Z → Fp (see
Definition 4.1) means that

Res(F0, . . . , Fn) = Res(F̂0, . . . , F̂n) mod p.

Thus, it remains to compute the remainder of Res(F̂0, . . . , F̂n) modulo p. By item 3 of
Theorem 2.12, there are logtime-uniform TC0 circuits for integer division with remainder. In
particular, there are logtime-uniform TC0 circuits that compute the remainder of an integer
when divided by p. We can compose these with the circuits that compute the resultant of
F̂0, . . . , F̂n using Lemma 6.5. Since the language corresponding to the latter is in CH, so is the
language corresponding to the composed functions, which is exactly the resultant over Fp.

• R = Fp[y1, . . . , yk]: We reduce to the case of R = Z[y1, . . . , yk] in a manner completely
analogous to the case of R = Fp. Let F0, . . . , Fn ∈ Fp[y1, . . . , yk][x] be the input polynomials,
and let F̂0, . . . , F̂n ∈ Z[y][x] be their lifts to the integers. Then we have

Res(F0, . . . , Fn) = Res(F̂0, . . . , F̂n) mod p,

so we can compute Res(F0, . . . , Fn) by first computing Res(F̂0, . . . , F̂n) and then reducing each
coefficient in this resultant modulo p as in the case of R = Fp above, using Lemma 6.6.
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• R = Fpa : Recall that Fpa is isomorphic to Fp[z]/(g(z)), where g ∈ Fp[z] is a degree-a irreducible
polynomial. Let F0, . . . , Fn ∈ Fpa [x] be the input polynomials, and let F̂0, . . . , F̂n ∈ Z[z][x] be
their lifts to Z[z]. Let ĝ be a monic lift of g(z) to Z[z]. As in previous cases, by the universality
of the resultant (see Definition 4.1), we have

Res(F0, . . . , Fn) = Res(F̂0, . . . , F̂n) mod (p, ĝ(z)).

By the case R = Z[z], we can compute Res(F̂0, . . . , F̂n) in CH, which is an element of Z[z]. We
use the circuit for pseudodivision over Z (item 4 of Theorem 2.12) combined with Lemma 6.5 to
pseudodivide this polynomial by ĝ. Since ĝ is monic, the pseudoquotient is the actual quotient.
We then reduce the coefficients modulo p using circuits for integer division as in previous cases
to obtain the resultant Res(F0, . . . , Fn).

• R = Fpa [y1, . . . , yk]: We reduce to the case of R = Z[y] as above by lifting the inputs. We
then compute the resultant, pseudodivide each coefficient of y by a lift of ĝ, and then reduce
every coefficient modulo p.

By invoking the reduction of Proposition 4.4 from deciding the Nullstellensatz to computing the
resultant, we obtain a CH procedure to decide satisfiability of systems of polynomial equations. To
handle the case where the inputs have coefficients in a number field, we lift to the rational numbers
using the following lemma.

Lemma 6.8. Let K := Q[α] be a number field and let g ∈ Q[z] be the minimal polynomial of α.
Let f1, . . . , fm ∈ K[x1, . . . , xn] be a set of polynomials. Define f ′

1, . . . , f
′
m ∈ Q[x1, . . . , xn, z] to be the

polynomials obtained from f1, . . . , fm by writing each K-coefficient as a polynomial in Q[z] of degree
less than deg g. Then V(f1, . . . , fm) ≠ ∅ if and only if V(f ′

1, · · · , f ′
m, g) ≠ ∅. Further, if the former

variety is zero-dimensional and has r points, then the latter variety is zero-dimensional and has
r · deg g points.

Proof. The rings K[x]/(f1, . . . , fm) and Q[x, z]/(f ′
1, . . . , f

′
m, g) are isomorphic. By the Nullstellensatz,

V(f1, · · · , fm) ̸= ∅ if and only if K[x]/(f1, . . . , fm) is not the zero ring. Similarly, V(f ′
1, · · · , f ′

m, g) ̸=
∅ if and only if Q[x, z]/(f ′

1, . . . , f
′
m, g) is not the zero ring. The first statement follows directly from

these three facts.
Assume now that V(f1, . . . , fm) is a zero-dimensional variety. The size of this variety, which

we denote by r, is exactly the dimension of K[x]/ rad(f1, . . . , fm) as a K-vector space. Let L be a
splitting field of g. Let α1, . . . , αe be the roots of g in L, where e = deg g and α = α1. The number
of points in V(f ′

1, . . . , f
′
m, g) with last coordinate α1 is exactly r by definition.

Let σ1, . . . , σe be automorphisms of L such that σi(α) = αi for every i. Define Ki := σi(K).
The isomorphism σi induces an isomorphism K[x]/ rad(f1, . . . , fm) ∼= Ki[x]/ rad(σi(f1), . . . , σi(fm)).
Combined with the statements in the previous paragraph, this isomorphism shows that the number
of points with last coordinate αi in V(f ′

1, . . . , f
′
m, g) is r for every i. This completes the proof of the

second statement.

We now combine Proposition 4.4 with Theorem 6.7 to prove that Hilbert’s Nullstellensatz can be
decided in CH.

Theorem 6.9. Let R be one of the rings Z, Z[y1, . . . , yk], a number field K, K[y1, . . . , yk], Fp,
Fp[y1, . . . , yk], Fpa, or Fpa [y1, . . . , yk], where p is a prime number. Then Hilbert’s Nullstellensatz
over R can be decided in CH.
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Proof. Let f1, . . . , fm ∈ R[x1, . . . , xn] be the polynomials whose satisfiability we must decide. Let d
and h be bounds on the degrees and heights, respectively, of the fi. If R is either K or K[y1, . . . , yk]
then we use Lemma 6.8 to reduce to the case when R = Q or Q[y1, . . . , yk], respectively, after which
we pass to a common denominator, further reducing to the case R = Z or R = Z[y1, . . . , yk]. If R is
one of the rings Fp,Fpa ,Fp[y1, . . . , yk],Fpa [y1, . . . , yk] and if p (or pa) is smaller than 15ndn, then we
use Lemma 2.13 to pass to an extension Fpb or Fpb [y1, . . . , yk] such that pb ≥ 15ndn. The degree of
the extension required is polynomial in the input size, therefore doing so only increases the heights of
the inputs by a polynomial factor. Similarly, arithmetic in the extension can be simulated efficiently
using arithmetic in the original ring R. Further, satisfiability of the system is unchanged by passing
to extensions.

Apply the randomized algorithm of Proposition 4.4 to the input f1, . . . , fm and denote the
resulting polynomials by Gi,j ∈ R[t, w, u, x0, . . . , xn] where i ∈ {0, 1, . . . , n} and j ∈ [n]. To decide
if the system f1 = · · · = fm = 0 is satisfiable, we must decide if there is a j ∈ [n] such that
(TTw TTtRes(G0,j , . . . , Gn,j))(0) = 0.

This second task can be solved in CH as follows. We iterate over all choices of j ∈ [n]. For each
j ∈ [n], we compute Rj(t, w, u) := Res(G0,j , . . . , Gn,j) in CH using the algorithm of Theorem 6.7.
The resultant Rj is computed with respect to the x variables and is a polynomial in R[t, w, u]. Our
task is to decide if TTw TTtRj has a zero constant term. We do this in CH as follows: we first
nondeterministically guess the exponents of the trailing monomials of Rj with respect to t and w,
and then verify that (1) the corresponding polynomial in u has a zero constant term, and (2) all
smaller monomials in t and w have a coefficient of zero. The first verification task can be done in
CH, since we can compute the coefficients of Rj in CH. The second can be done in coNP with a CH
oracle, since we must verify that all smaller monomials have a zero coefficient, and the coefficient of
any single monomial can be computed in CH. Since coNPCH = CH, this second verification task can
likewise be performed in CH.

Thus, we have a randomized reduction from the task of deciding satisfiability of f1 = · · · = fm = 0
to a problem that can be solved in CH. This reduction succeeds with probability at least 2/3, so
Hilbert’s Nullstellensatz is in BPPCH. Since BPP ⊆ PP ⊆ CH, we can decide Hilbert’s Nullstellensatz
in CH as claimed.

6.3 Counting solutions in zero-dimensional systems

In Section 4.3, we saw that to count solutions to zero-dimensional systems of equations, it is sufficient
to compute multivariate resultants, univariate GCD’s, and count the number of distinct roots of
a univariate polynomial in the algebraic closure of its coefficient field. The results of Section 6.2
show that we can compute multivariate resultants in CH. In this section, we develop the additional
machinery necessary to compute univariate GCD’s and the number of distinct roots of a univariate
polynomial. For our application to counting roots of zero-dimensional systems of equations, we need
to perform these operations on polynomials of exponentially-large degree. The coefficients of these
polynomials will be computable in CH, and our goal is to compute the coefficients of the GCD and
the number of distinct roots in CH. To do this, it suffices, by Lemmas 6.5 and 6.6, to show that the
GCD and number of distinct roots can be computed in polylogtime-uniform TC0.

We start by observing that the resultant of two polynomials can be computed by polylogtime-
uniform TC0 circuits. This follows from Lemma 6.1 applied to the circuits we construct for the
multivariate resultant of two polynomials.

Lemma 6.10. Let R be one of the rings Z,Z[y1, . . . , yk],Q,Q[y1, . . . , yk], Fp, Fp[y1, . . . , yk], Fpa , or
Fpa [y1, . . . , yk], where p is a prime number. Then the resultant of two univariate polynomials with
coefficients in R can be computed in polylogtime-uniform TC0.
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Proof. The circuits we construct in Lemma 5.12 and Corollary 5.13 for the multivariate resultant
are polynomial sized when n = 2. Applying Lemma 6.1 to these circuits immediately gives us
polylogtime-uniform TC0 circuits over Q and Q[y] respectively. For the remaining rings, we use the
same arguments as in the proof of Theorem 6.7, first lifting the input to Z or Z[y1, . . . , yk], then
computing the resultant, and finally projecting back down to the desired ring R.

We note that constant-depth algebraic circuits for the resultant of two polynomials have been
constructed prior to our work. Andrews and Wigderson [AW24] construct circuits for such resultants
over Q using constant depth versions of the Girard–Newton identities, and Bhattacharjee, Kumar,
Rai, Ramanathan, Saptharishi, and Saraf [BKR+25b] construct circuits over any field using Lagrange
inversion. Neither of these works addressed the uniformity of their construction, but it is not hard
to deduce uniformity of their constructions (in the case of the latter work, only when the field is Q)
using the results in Section 3.

Remark 6.11. It is not hard to show that the resultant of two univariate polynomials is complete for
polylogtime-uniform TC0. As Lemma 6.10 shows, the resultant of two polynomials can be computed
in polylogtime-uniform TC0. To show that the resultant is TC0-hard, we reduce from the known
TC0-complete problem of integer powering: given an n-bit integer a and an O(log n)-bit integer b,
compute ab. Hesse, Allender, and Mix Barrington [HAM02] showed that powering is complete for
logtime-uniform TC0. To reduce integer powering to the resultant, observe that if we regard the
constant 1 as a polynomial of degree b, then

Res(a, 1) = ab.

In particular, to compute ab, it suffices to compute the resultant of two univariate polynomials of
degree at most nO(1). This proves that the resultant is hard for logtime-uniform TC0. ♢

We now show how resultant computations can be used to compute greatest common divisors of
univariate polynomials. The following reduction is from [BKR+25b].

Lemma 6.12 ([BKR+25b, Section 1.2]). Let F be a field. If f and g are univariate polynomials in
F[x], then

gcd(f, g)(y) =
TTz Resx(z · (y − x) + f(x), f(x) + u · g(x))

TTz Resx(z + f(x), f(x) + u · g(x))
.

Proof. For any univariate polynomials a, b, c ∈ F[x], the Poisson formula implies that, up to a sign,
we have

TTz Resx(zb+ c, a) = a
max(deg b,deg c)
0

 ∏
α∈V(a)\V(c)

c(α)m(α)

×

 ∏
α∈V(a)∩V(c)

b(α)m(α)

,

where z is a new variable, a0 is the leading coefficient of a, and m(α) is the multiplicity of α as a
root of a. As a consequence, we have, up to a sign,∏

α∈V(a)∩V(c)

b(α)m(α) = a
max(0,deg b−deg c)
0

TTz Resx(zb+ c, a)

TTz Resx(z + c, a)
.

Now consider the polynomials f, g ∈ F[x] and let u be a new variable. As a polynomial with
coefficients in F(u), the polynomial f(x) + ug(x) factors into a product of linear forms. All common
factors of f(x) and f(x)+ug(x) are necessarily factors of gcd(f, g). Moreover, these common factors
have the same multiplicity in f(x) + ug(x) as they do in gcd(f, g). The result now follows from
the discussion above invoked in the field F(u, y), with a(x) = f(x) + u · g(x), b(x) = (y − x), and
c(x) = f(x).
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By combining Lemma 6.10 with Lemma 6.12, we obtain a polylogtime-uniform family of TC0

circuits to compute the GCD of two polynomials.

Lemma 6.13. Let R be one of the rings Z, Z[y1, . . . , yk], Fp, Fp[y1, . . . , yk], Fpa , or Fpa [y1, . . . , yk],
where p is a prime number. Then the greatest common divisor in the fraction field of R of two
univariate polynomials with coefficients in R can be computed in polylogtime-uniform TC0. The
coefficients of the GCD will be represented as bi/c with bi, c ∈ R.

Proof. Suppose f and g are the inputs. We compute resultants r1 := Resx(z · (y − x) + f, f + u · g)
and r2 := Resx(z + f, f + u · g) by invoking Lemma 6.10 for the ring R[z, u, y]. From r1, r2, the
trailing terms a1 := TTz r1 and a2 := TTz r2 can be computed by inspection of the coefficients as
follows. For each 0 ≤ i ≤ deg(a1), we first determine if the coefficient of zi in r1 corresponds to
TTz r1 by checking that some monomial ziujyk has a nonzero coefficient in r1 and that all monomials
of the form zi

′
ujyk for i′ < i have coefficients of zero. We then compute the bits of the coefficient of

the monomial ujyk in TTz r1: the ℓth bit of this coefficient is 1 exactly when there is some i such
that (1) the coefficient of zi corresponds to TTz r1, and (2) the ℓth bit of the coefficient of ziujyk in
r1 is a 1. This computation can be carried out by polynomial-size constant-depth boolean circuits
built from AND and OR gates in a straightforward manner. An entirely analogous computation
produces the coefficients of a2 = TTz r2.

We have a1 ∈ R[u, y] and a2 ∈ R[u]. By Lemma 6.12, we know that a2 divides a1, that the
quotient is independent of u, and that the quotient is the GCD of f and g. Suppose a1 =

∑
i a1,iy

i

with a1,i ∈ R[u]. The only way for a1/a2 to be independent of u is for each a1,i to be a multiple of
a2 in the fraction field of R. This multiple can therefore be read off of just the leading terms; that
is, a1,i/a2 is simply the leading coefficient of a1,i divided by that of a2. Setting c to be the leading
coefficient of a2 and bi to be the leading coefficient of a1,i therefore gives us the GCD in the required
form.

Next, we show how resultant computations can be used to compute factors of a univariate
polynomial f that correspond to roots that occur with multiplicity at least k. This computation is
inspired by the squarefree decomposition algorithm in [AW24]. For a univariate polynomial f with
coefficients in a field F, we define f>k as

f>k(x) :=
∏

α∈V(f),m(α)>k

(y − α)m(α),

the product of all factors of multiplicity greater than k.

Lemma 6.14. Let F be a field. If f is a polynomial in F[x], then we have

f>k = c′ ·
TTz Resx

(
z · (y − x) + D(f) + vD2(f) + · · ·+ vk−1Dk(f), f

)
TTz Resx

(
z +D(f) + vD2(f) + · · ·+ vk−1Dk(f), f

) ,

where Di(f) is the ith Hasse derivative of f and c′ ∈ F \ {0}.

Proof. We invoke the equation∏
α∈V(a)∩V(c)

b(α)m(α) = a
max(0,deg b−deg c)
0

TTz Resx(zb+ c, a)

TTz Resx(z + c, a)
,

with a(x) = f(x), b(x) = (y − x), and c(x) = D(f) + vD2(f) + · · ·+ vk−1Dk(f), where v is a new
variable. Any α ∈ V(f) ∩V(c) is necessarily a root of D(f), . . . ,Dk(f). The roots of f that are also
roots of these Hasse derivatives are exactly those roots of f that occur with multiplicity more than
k. Thus, f>k(y) is precisely

∏
α∈V(f)∩V(c)(y − α)m(α) as claimed.
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We also define f=k as f>k−1(x)/f>k. If f=k has degree r, then f(x) has exactly r/k distinct roots
that occur with multiplicity exactly k. Observe that the denominator in the expression in Lemma 6.14
is independent of y, so to compute the y-degree of f>k, it suffices to compute the numerator. Using
this observation, we design a polylogtime-uniform family of TC0 circuits to compute the number of
distinct roots of a univariate polynomial.

Lemma 6.15. Let R be one of the rings Z, Z[y1, . . . , yk], Fp, Fp[y1, . . . , yk], Fpa , or Fpa [y1, . . . , yk],
where p is a prime number. Let K be the algebraic closure of the field of fractions of R. Then the
number of distinct roots in K of a univariate polynomial with coefficients in R can be computed in
polylogtime-uniform TC0.

Proof. Let f ∈ R[x] be the input polynomial. First, we compute all the Hasse derivatives Di(f)
for 1 ≤ i ≤ deg f in parallel. This involves only integer arithmetic. Then we compute the
resultants rk := TTz Resx

(
z · (y − x) + D(f) + vD2(f) + · · ·+ vk−1Dk(f), f

)
using the circuit from

Lemma 6.10 for the ring R[z, y, v]. By Lemma 6.14 and the discussion following it, the y-degree of
rk is exactly the y-degree of f>k. Once these degrees are computed for all k up to deg f , we can
compute

deg f − deg f>1 +
deg f>1 − deg f>2

2
+ · · ·+ deg f>d−1

d

using circuits for integer arithmetic, and this is the desired number of distinct roots of f in K.

Now that we have polylogtime-uniform TC0 algorithms to compute GCD’s and the number of
roots, we are ready to state the main result of this subsection. Using Proposition 4.12, we obtain a
CH algorithm to count the number of solutions to a zero-dimensional system of polynomial equations.

Theorem 6.16. Let R be one of the rings Z, Z[y1, . . . , yk], a number field K, K[y1, . . . , yk], Fp,
Fp[y1, . . . , yk], Fpa, or Fpa [y1, . . . , yk], where p is a prime number. Let L be the algebraic closure of
the field of fractions of R. There is a FPCH algorithm that counts the number of solutions in Ln to
zero-dimensional systems of polynomial equations with coefficients in R.

Proof. Let f1, . . . , fm ∈ R[x1, . . . , xn] be the polynomials whose roots we must count. Let d and
h be bounds on the degrees and heights, respectively, of the fi. If R is either K or K[y1, . . . , yk],
then we use Lemma 6.8 to reduce to the case when R = Q or Q[y1, . . . , yk], respectively, and then
subsequently pass to a common denominator to reduce to the case where R = Z or R = Z[y1, . . . , yk],
since scaling by field elements does not change the number of roots. If R is one of the rings Fp, Fpa ,
Fp[y1, . . . , yk], or Fpa [y1, . . . , yk], and if p (or pa) is smaller than 100nd2n, then we use Lemma 2.13
to pass to an extension Fpb or Fpb [y1, . . . , yk] such that pb ≥ 100nd2n. The degree of the extension
required is polynomial in the input size, therefore doing so only increases the heights of the inputs
by a polynomial factor. Similarly, arithmetic in the extension can be simulated efficiently using
arithmetic in the original ring R. Further, the number of roots is unchanged by passing to extensions.

Apply the randomized algorithm of Proposition 4.12 to the input f1, . . . , fm and denote the
resulting polynomials by Gi,j ∈ R[t, u, x0, . . . , xn] where i ∈ {0, 1, . . . , n} and j ∈ {1, 2}. To count
the number of roots of f1 = · · · = fm = 0, we must count the number of distinct roots of the GCD
of TPuTTtRes(G0,1, . . . , Gn,1) and TPuTTtRes(G0,2, . . . , Gn,2).

This task can be solved in CH as follows. For j = 1, 2, we compute Rj(t, u) := Res(G0,j , . . . , Gn,j)
in CH using the algorithm of Theorem 6.7. The resultant Rj is computed with respect to the
x variables and is a polynomial in R[t, u]. We first nondeterministically guess the exponents of
the trailing monomials of Rj with respect to t, and then verify all smaller monomials in t have a
coefficient of zero. This can be done in coNP with a CH oracle, since coefficient in u of the coefficients
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of any single monomial in t can be computed in CH. Since coNPCH = CH, this verification task can
be performed in CH.

We then nondeterministically guess the exponent of the trailing monomial of u in TTtRj . This
again can be done in CH. We then have access to the polynomials TPuTTtRj in the form of CH
oracles for the coefficients of each monomial. Using Lemma 6.5 and Lemma 6.13, we can obtain CH
oracles to the coefficients of the GCD of these two polynomials. These coefficients will be represented
as ratios with a common denominator, but we can ignore the denominator since scaling will not affect
the next step. Finally, using Lemma 6.5 once more with Lemma 6.15, we can count the number of
distinct roots, which is the same as the number of roots of the original system.

Thus, we have a randomized reduction from the task of counting the number of roots of
f1 = · · · = fm = 0 to a problem that can be solved in FPCH. This reduction succeeds with probability
at least 2/3, so the counting version of Hilbert’s Nullstellensatz is in the functional version of BPPCH,
which in turn lies in FPCH.

7 Applications of the Nullstellensatz

In this section, we give a few examples of problems that can be reduced to Hilbert’s Nullstellensatz.
These problems were previously only known to be in PSPACE, and our results show that they can in
fact be solved in CH. This list is far from exhaustive. In this section, we let F denote any field for
which our results hold, namely Q, a number field K, a finite field Fq, or a function field over one
of these fields. In the function field case we assume that the inputs are restricted to polynomials
instead of arbitrary rational functions.

The first application is to deciding radical ideal membership in the algebraic closure. Equivalently,
this is the problem of testing if a given polynomial vanishes on a given variety.

Corollary 7.1. Given polynomials g, f1, . . . , fm ∈ F[x1, . . . , xn], deciding if

g ∈ rad
(
(f1, . . . , fm)F[x1, . . . , xn]

)
can be done in CH.

Proof. Consider the system of equations f1 = · · · = fm = 1−zg = 0, where z is a new variable. By the
Nullstellensatz, the condition that g ∈ rad

(
(f1, . . . , fm)F[x1, . . . , xn]

)
is equivalent to the condition

that this system is not satisfiable. This is usually called the Rabinowitsch trick. Satisfiability can be
decided in CH, and therefore so can membership in the ideal rad

(
(f1, . . . , fm)F[x1, . . . , xn]

)
.

The second problem is that of computing the dimension of an algebraic variety given its defining
equations. To make this a decision problem, our algorithms will also take as input a number and will
decide if the dimension equals this number. A similar reduction between computing the dimension
of a variety and Hilbert’s Nullstellensatz was given by Koiran [Koi97].

Corollary 7.2. Given polynomials f1, . . . , fm ∈ F[x1, . . . , xn] and an integer r, deciding if

dimV(f1, . . . , fm) = r

can be done in CH.

Proof. We design a randomized Turing reduction to satisfiability. Let d := maxdeg fi and let B ⊆ F
be a subset of size at least 100n2dn. If F is not big enough to pick this subset, we pass to a sufficiently-
large field extension using Lemma 2.13. Let ℓ1, . . . , ℓn be random linear polynomials whose coefficients
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are picked uniformly and independently from B. For any integer k, if dimV(f1, . . . , fm) ≥ k, then
with probability at least 1− 2ndn/|B|, the system f1 = · · · = fm = ℓ1 = · · · = ℓk = 0 is satisfiable
(Lemma 4.9). Conversely, if dimV(f1, . . . , fm) < k, then with the same probability, the system
f1 = · · · = fm = ℓ1 = · · · = ℓk = 0 is unsatisfiable. Therefore, based on the satisfiability of these
systems for all k ∈ [n], we can compute the dimension of V(f1, . . . , fm) and decide if this equals
r.

The final application we discuss is the computation of the rank of a tensor over F. We are given
a tensor T ∈ Fd1 ⊗ · · · ⊗ Fdk and a natural number r ∈ N as input, and we must decide if T the
rank of T is equal to r. It is straightforward to write down a system of polynomial equations that is
solvable if and only if T has rank at most r. Since Theorem 6.9 allows us to decide the solvability of
this system of equations over the algebraic closure F in CH, we can likewise decide in CH whether T
has rank r when viewed as a tensor over the algebraic closure F.

Corollary 7.3. Given an integer r and a tensor T ∈ Fd1 ⊗ · · · ⊗ Fdk explicitly as a list of entries,
deciding if the rank of T as an element of Fd1 ⊗ · · · ⊗ Fdk is exactly r is in CH.

Proof. Every tensor in Fd1 ⊗ · · · ⊗ Fdk has rank at most d1 · · · dk, so if r > d1 · · · dk, we immediately
reject the input. Otherwise, let xi,j,p be a set of variables where i ∈ [k], j ∈ [di], and p ∈ [r]. For
each index (j1, . . . , jk) ∈ [d1]× · · · × [dk], we write the polynomial equation

Tj1,...,jk =
r∑

p=1

k∏
i=1

xi,ji,p.

Taken together, these equations express that the tensor T can be written as the sum of r rank-
one tensors, where the pth such tensor is the outer product of the vectors x1,•,p ⊗ · · · ⊗ xk,•,p for
xi,•,p = (xi,1,p, . . . , xi,di,p). It follows that this system of equations is satisfiable over F if and only if
T has rank at most r as a tensor over F.

This is a collection of at most d1 · · · dk equations in at most k · (d1 · · · dk)2 variables. Since the
tensor T is given as a list of d1 · · · dk field elements, we can write down this system of equations in
time that is polynomial in the size of the input. Applying the algorithm of Theorem 6.9 allow us
to decide if T has rank at most r in CH. To decide if the rank of T is exactly r, we use the same
procedure to test if T has rank at most r − 1, again in CH.
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