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Abstract
Guo, Saxena, and Sinhababu (TOC’18, CCC’18) defined a natural, approximative analog of the
polynomial system satisfiability problem, which they called approximate polynomial satisfiability
(APS). They proved algebraic and geometric properties of it and showed an NP-hardness lower
bound and a PSPACE upper bound for it. They further established how the problem naturally occurs
in border complexity and Geometric complexity theory (GCT) and used the problem to construct
hitting sets for VP in PSPACE, hence greatly mitigating the GCT chasm.

The starting point of this work is the observation that Guo, Saxena, and Sinhababu’s criterion
for non-existence of approximative solution can be interpreted as an analog of Weak Hilbert’s
Nullstellensatz in the approximative setting. We extend their work by proving an analog of Strong
Hilbert’s Nullstellensatz in the approximative setting. Concretely, we give an algebraic criterion for
containment between approximative solution sets defined by systems of polynomials. In fact, this
characterization turns out to be equivalent to membership in the integral closure over a maximal
ideal of a local subring of C(x1, . . . , xn) determined by the given polynomials. In addition, we use
our proof to provide a PSPACE algorithm for testing this containment, exponentially better than
the EXPSPACE bounds for polynomial subalgebra mebership testing and the polynomial integral
closure membership testing, hence matching the complexity bound of Guo, Saxena, and Sinhababu’s
Weak Approximative Nullstellensatz.
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1 Introduction

Deciding whether a multivariate polynomial system has a common zero is a central problem
in mathematics, engineering, and computer science. Over an algebraically closed field, the
classical Weak Hilbert Nullstellensatz characterizes non-emptiness of an affine algebraic set
via the existence of an explicit polynomial certificate, while the Strong Hilbert Nullstellensatz
characterizes containment of varieties by relating vanishing on a solution set to membership
in a radical ideal (equivalently, by allowing powers) [9, 30]. From the algorithmic viewpoint,
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the complexity of such feasibility and containment questions has been studied for decades,
with PSPACE upper bounds appearing already in the context of algebraic decision problems
and quantifier elimination [7, 25, 24]. In fact, over fields of characteristic zero, the feasibil-
ity/containment question can be decided in the low levels of the polynomial hierarchy [24],
assuming the Generalized Reimann Hypothesis (GRH).

In many settings, exact satisfiability is often too strong an ask. Hence, one cares about
infinitesimal approximation rather than equality. An example that clearly demonstrates this
is the following.

▶ Example 1. Let f1, f2 ∈ C[x, y] such that f1 = xy − 1 and f2 = x. Clearly, these
polynomials have no common root over C2. However, geometrically, the curves seem to
converge on the y-axis. To capture such convergence we can allow the variables to take values
in C(ε) where ε is an infinitesimally small parameter. In this case, the point p = (ε, 1

ε ) ∈ C(ε)2

is an approximative common root the system, as limε→0 f1(p) = limε→0 f2(p) = 0.

Guo, Saxena, and Sinhababu (GSS) formalized this perspective by introducing approximate
polynomial satisfiability (APS) [17].

▶ Problem 1 (Approximate Polynomial Satisfiability (APS)). Given polynomials f = f1, . . . , fm ∈
C[x1, . . . , xn], does there exist β ∈ C(ε)n such that for all i, fi(β) is in the ideal εC[ε] of
C[ε]? If yes, then we say that f is in APS.

▶ Example 2. While this notion of approximation allows us to capture more solutions,
it doesn’t mean that every system of polynomials now has a solution. For example, take
f1, f2 ∈ C[x, y] such that f1 = xy and f2 = xy + 1. No assignment to x, y from C(ε)2 can
make this satisfiable in the above approximative sense.

▶ Remark 1. As shown in Example 1, approximative solutions differ from affine solutions. Not
only that, GSS showed that these approximative solutions also differed projective solutions.
They showed that while every approximative solution is a projective solution, the converse is
not true.

Informally, APS asks whether a polynomial system admits solutions that satisfy the constraints
to all orders in an infinitesimal parameter (equivalently, whether a target point lies in the
Zariski closure of a polynomial map’s image, as made precise in [17]). This captures the
“border” viewpoint pervasive in algebraic complexity, where one studies limits of efficiently
computable objects. Further, they showed that APS captures canonical border phenomena
such as tensor border rank (see [6, 26]).

Along with this, GSS also showed that computationally this problem is NP-Hard and, in
fact, lies in PSPACE when the input polynomials are given as algebraic circuits. They do this
by showing that existence of an approximative solution to a set of polynomials is equivalent
to testing whether all the annihilators of the input polynomials have constant term 0 (Note
that given a field k and polynomials f := {f1, . . . , fm} ∈ k[x1, . . . , xn], an annihilator of f is
a polynomial A(y1, . . . , ym) ∈ k[y1, . . . , ym] such that A(f1, . . . , fm) = 0).

We observe that this can be reformulated as a weak “approximative” Nullstellensatz.
Intuitively, the non-existence of an approximate solution is equivalent to the existence of
an annihilator having a non-zero constant (equivalently, constant term being 1) which is
analogous to a variety defined by polynomials being empty if 1 lies in their ideal. Hence,
we call their characterization the Weak Approximative Nullstellensatz (WAN), and formally
define it below. Before that, we need to define the approximative vanishing set of a given
system of polynomials.
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▶ Definition 1 (Approximative Vanishing Set (AV)). Given polynomials f := f1, . . . , fm ∈
C[x1, . . . , xn] the approximative vanishing set AV(f) is defined as:

AV(f) := {β ∈ C(ε)n | ∀i, fi(β) = ε
pi,β(ε)
qi,β(ε) with pi,β , qi,β ∈ C[z], and qi,β(0) ̸= 0}.

▶ Example 3. Using Example 1, AV(f1, f2) contains the point (ε, 1
ε ). But it also contains

many other points like (ε2, 1
ε2 ), ( ε

1+ε , 1+ε
ε ), and so on.

▶ Remark 2. In [17], APS is defined as containing those β ∈ C(ε)n such that fi(β) is in the
ideal εC[ε] of C[ε], while in our case fi(β) has numerators in the same ideal, but denominators
are polynomials in ε with non-zero constant terms. These two conditions are equivalent when
talking about non-emptiness of approximate vanishing sets. To see this assume for some
β ∈ C(ε)n, for all i, fi(β) = ε

pi,β(ε)
qi,β(ε) . Then, we can scale β to get β′ = β

∏m
i=1 qi,β(ε) such

that fi(β′) lies in the ideal εC[ε] of C[ε].

▶ Remark 3. We choose all such β ∈ C(ε)n as geometrically all these points also ensure that
fi(β) converges to 0 in the limit. Further, this is more aligned with the literature on valued
fields (see [13] for more details on valued fields and Ganzstellensatz in §1.2).

▶ Theorem 1.1 (Weak Approximative Nullstellensatz (WAN), [17]). Given polynomials f =
f1, . . . , fm ∈ C[x1, . . . , xn], AV(f) is empty if and only if there exists an annihilator of f with
constant-term 1.

Thus, GSS showed that computationally testing WAN is in PSPACE. Not only that, they
showed that this enables the construction of hitting sets for VP in PSPACE (over any field),
thereby substantially narrowing the “GCT chasm” studied before in [32, 14]. For complex
numbers, PSPACE-constructible hitting sets for the closure of small algebraic circuits already
appear in the work of Forbes and Shpilka [15].

1.1 Our Contributions
The starting point of this work is the observation that the GSS algebraic criterion for
non-existence of approximative solutions can be viewed as an analog of the Weak Hilbert’s
Nullstellensatz (WHN) in the approximative setting. In classical algebraic geometry, the
next structural step is the Strong Hilbert’s Nullstellensatz (SHN), which answers questions
about containment of solutions. Formally, it asks whether polynomial constraints defining
one variety force another polynomial to vanish? Motivated by this, we study the following
natural problem about containment of approximative vanishing sets.

▶ Problem 2. Given two systems of polynomials f = (f1, . . . , fm) and g = (g1, . . . , gt) over
C, decide whether the approximative solution set of f is contained in that of g, i.e., whether
every infinitesimal solution to f necessarily satisfies g (in the same approximative sense).

The containment condition mentioned above is not always obvious to check, as demonstrated
in the following example.

▶ Example 4. Given f1, f2, g, h ∈ C[x, y] where f1 = x, f2 = xy − 1, g = x2y, h = xy2 − 1.
Containment of AV: It can be verified that AV(f1, f2) ⊇ AV(g, f2).
Non-containment of AV: It is easy to see that AV(f1, h) ⊋ AV(f1, f2) as (ε, 1

ε ) lies
in AV(f1, f2) but not AV(f1, h), and similarly AV(f1, h) ⊊ AV(f1, f2) as (ε2, 1

ε ) lies in
AV(f1, h) but not AV(f1, f2).
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▶ Remark 4. We do not need to always check the containment for the whole system of
polynomials together. Instead, we can check containment for each individual polynomial. This
is because AV(g1, . . . , gt) = ∩t

i=1AV(gi). Hence, checking AV(g1, . . . , gt) ⊇ AV(f1, . . . , fm) is
equivalent to checking AV(gi) ⊇ AV(f1, . . . , fm) for each i ∈ [t].

In the approximative setting, this is the natural strengthening of WAN. To resolve this
question, we prove our main result.

▶ Theorem 1.2 (Strong Approximative Nullstellensatz (SAN)). Given a set of polynomials
f1, . . . , fm, g ∈ C[x1, . . . , xn],

AV(g) ⊇ AV(f1, . . . , fm) if and only if gr =
r−1∑
i=0

Fi(f1, . . . , fm)
1 + Gi(f1, . . . , fm)gi,

for some r ∈ N, and constant free polynomials Fi, Gi ∈ C[y1, . . . , ym], for 0 ≤ i ≤ r − 1.

▶ Example 5. Consider polynomials f1, f2 ∈ C[x, y] where f1 = xy2 −y+x2y and f2 = xy−1.
Then, it can be verified that g = x such that AV(g) ⊇ AV(f1, f2). On first look, its hard to
see why this is true. But if we use our algebraic criterion, then g2 = f1

1+f2
g − f2 certifies this

containment.

Clearly, SAN implies WAN: if AV(f1, . . . , fm) was empty then 1 would lie in their integral
closure. Using the characetrization above, we can rearrange to get 1 = A(f1, . . . , fm) where
A(y1, . . . , ym) was constant-free in C[y1, . . . , ym]. But this simply means that there exists an
annihilator with constant-term 1. Further, our containment criterion can be reformulated as
a membership condition in the integral closure over a maximal ideal of a local subring of
C(x1, . . . , xn) determined by f , see Section 2 for more details. This connects approximative
containment to classical commutative-algebraic notions surrounding integral dependence
and closure [19, 37]. We informally state our correspondence theorem here. For a formal
statement, see Theorem 2.1.

▶ Theorem 1.3 (Approximate Vanishing to Integral Closure correspondence (Informal)). For
f1, . . . , fm, g ∈ C[x1, . . . , xn], AV(g) ⊇ AV(f1, . . . , fm) if and only if g lies in the integral
closure of a local subring of C(x1, . . . , xn) determined by f1, . . . , fm.

As discussed before, GSS also gave a PSPACE algorithm for testing WAN. In the same
spirit, we also look at the computational problem defined by SAN. We assume the polynomials
are given as algebraic circuits. Formally, we define the computational problem of testing
SAN as the following:

▶ Problem 3 (Computational Problem of testing SAN). Given polynomials f1, . . . , fm, g ∈
C[x1, . . . , xn], SAN is the decision problem asking whether AV(g) ⊇ AV(f1, . . . , fm).

Depending on the context, we will use SAN interchangeably for both the decision problem
and the containment criteria. We show that testing containment of approximate vanishing
sets can also be done in PSPACE, thus matching the upper bound of WAN.

▶ Theorem 1.4. SAN is in PSPACE.

This beautifully coincides with the known matching upper bounds of the WHN and SHN in
conventional algebraic geometry, where it is typically achieved through the use of “Rabinow-
itsch’s trick” [36].
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1.2 Related works
In this section, we survey the known related works and their implications in our setting.
Hilbert’s Nullstellensatz: It is well-known that the Weak Hilbert’s Nullstellensatz (WHN)
and the Strong Hilbert’s Nullstellensatz (SHN) are equivalent [9]. Typically, this equivalence
is achieved using “Rabinowitsch’s trick” [36]. The trick works like this: given polynomials
f1, .., fm, g ∈ C[x1, .., xn], checking whether the zeroset of g contains the zeroset of f1, . . . , fm

is equivalent to checking if the zeroset of the polynomials f1, . . . , fm, 1−yg ∈ C[x1, .., xn, y] is
empty or not. Further, this also ensures that WHN and SHN are computationally equivalent.
Hence, a natural starting point is to see if this correspondence also holds in the approximative
setting. However, this is not the case and “Rabinowitsch’s trick” can’t be directly used to
get equivalence between WAN and SAN. This can be intuitively seen as follows: Suppose at
a point p ∈ Cn, fi(p) = g(p) = 0 for all i. Then, clearly the polynomial 1 − yg is non-zero.
However, in the approximative setting this does not hold. Since we are now looking at
approximative vanishing instead of exact vanishing, it might be the case that at p ∈ C(ε)n,
g(p) = ε p(ε)

q(ε) where q(0) ̸= 0 and p(ε) ̸= 0. Then setting y = 1
ε

q(ε)
p(ε) ∈ C(ε) ensures that

the polynomial 1 − yg approximatively vanishes. Thus, this extra polynomial doesn’t fully
capture the notion of approximative vanishing. hence, the conventional Rabinowitsch trick
can’t be used to show equivalence of WAN and SAN. At the same time, this also makes the
path to obtain efficient runtime for the decision problem SAN unclear.
ε-approximate Nullstellensatz: In an interesting parallel direction, Göös et al. [16]
defined the notion of ε-approximate Nullstellensatz. In particular, they used a robust version
of the WHN to show separations in proof complexity where they show that Resolution proofs
cannot be efficiently simulated by Sherali-Adams proofs when the coefficients are written in
unary.
Subalgebra Membership: Looking at the geometric containment AV(g) ⊇ AV(f1, . . . , fm),
it is natural to ask whether the notion of subalgebra membership can be used to capture
this algebraically. Given polynomials g, f1, . . . , fm ∈ C[x1, .., xn], the subalgebra membership
problem asks if g can be written as g =

∑
akfk1

1 . . . fkm
m , where the sum is finite. Recently,

it was shown that, in the general case, this problem is EXPSPACE-complete, see [22] for
definitions and more details. However, while subalgebra membership implies containment of
approximative vanishing sets, the converse is not true. This can be seen by the following
example.

▶ Example 6. Given f1, f2 ∈ C[x, y], such that f1 = x2 and f2 = x2y − 1. Let g = x. It is
easy to verify that AV(g) = AV(f1), and hence AV(g) ⊇ AV(f1, f2). However, g doesn’t lie in
the subalgebra formed bsy C[f1, f2].

Ganzstellensatz: The closest related notions to SAN in literature comes from the work on
Ganzstellensatz, see [23, 35, 18, 27] for more details. These works approach this question
through the point of view of valuations. Let K := C{{ε}}, i.e., field of Puiseux series over
C with the ε-adic valuation valε of ε normalized to 1, and let g, f1, . . . , fm ∈ K[x1, . . . , xn].
Consider the set S ⊂ Kn such that for all s ∈ S and for all i ∈ [m], valε(fi(s)) ≥ 0. Then
they give an algebraic criterion on g such that for all s ∈ S, valε(g(s)) ≥ 0. Restricting
to our setting, i.e., when g, f1, . . . , fm ∈ C[x1, . . . , xn], the criterion of Haskell and Yaffe
[18] gives that g is integral over C[f1, . . . , fm], i.e., gr =

∑r−1
i=0 Fig

i for some r ∈ N and
Fi ∈ C[f1, . . . , fm]. Clearly, if g is integral over C[f1, . . . , fm], then valε(g(s)) ≥ 0, for all
s ∈ Kn such that for all i ∈ [m], valε(fi(s)) ≥ 0. .
Another way to interpret this is the following: they look at all points such that when f1, . . . , fm
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is “well-behaved”, then so is g. That is, for all points s in S = {β ∈ Kn | limε→0 fi(β) =
a, a ∈ C}, they want limε→0 g(s) = b for some b ∈ C. In particular, they don’t enforce the
condition of “vanishing”. While close to our setting, it is a different characterization. The
following example demonstrates this.

▶ Example 7. Using Example 6, we know that for f1 = x2y and f2 = xy − 1, g = x

contains their approximative vanishing set. However, for s = ( 1
ϵ , ϵ3), we have limε→0 f1(s) =

0, limε→0 f2(s) = −1, but limε→0 g(s) does not exist. Hence, g does not lie in the Ganzstel-
lensatz criterion for f1, f2 defined above.

1.3 Our methods
In this section, our aim is to convey the fundamental ideas behind the proofs of our main
results. Hence, we occasionally gloss over the finer technical arguments needed to formally
prove the claims.

Proof ideas for Theorem 1.2 (SAN): One direction is easy to show, that is if g lies in the
defined integral closure, then it will contain the approximative vanishing set of f1, . . . , fm.
Intuitively, when all the fi vanish approximatively, so will Fi, Gi in Theorem 1.2, hence so
will g, see Proof 2 for details. For the converse direction, as discussed above, the conventional
Rabinowitsch’s trick doesn’t work in the approximative setting. However, when geometrically
looking at the containment of approximative vanishing sets, simultaneous approximative
vanishing of f1, . . . , fm forces g to also approximatively vanish, which is equivalent to saying
that g neither diverges nor converges to a non-zero constant c ∈ C (see Lemma 1 for more
details). We call these two conditions the “approximative Rabinowitsch tricks”. Using these
two conditions along with GSS criterion (Theorem 1.1) we can obtain the desired formulation
as follows. Using the first trick (the non-divergence condition), we first obtain a univariate
polynomial P of degree r with coefficients from C[f1, ..., fm], such that g satisfies P (see
Lemma 2). Using the obtained polynomial recursively along with the second approximative
Rabinowitsch trick (non-convergence to any non-zero constant), we can get the claimed
characterization (refer to Lemma 3 and subsequent discussion).

Proof ideas for Theorem 1.4 (SAN in PSPACE): Apriori, it is not clear how to put the
decision problem of SAN in PSPACE using the geometric conditions obtained in Lemma 1.
This is because the second approximative Rabinowitsch’s condition (non-convergence to any
non-zero constant) requires the elimination of a universal quantifier. Quantifier elimination
for algebraically closed fields and its complexity has a long history, with foundational
algorithms due to Chistov and Grigor’ev [8]. Ierardi developed an exponential-space decision
procedure for the first-order theory of algebraically closed fields and showed improved space
bounds under bounded alternations [20]. Hence, a naive elimination-based approach to SAN
would suggest an EXPSPACE upper bound. Even if we use the algebraic criterion devised
in Theroem 1.2, it is not clear how to put the decision problem in PSPACE. de Jong [11]
gave an algorithm for computing the integral closure which requires computation of ideals in
the intermediate steps. Typically this involves the use of Gröbner Basis methods, for which
doubly-exponential degree bounds are known in the worst case [29, 12, 1]. Consequently, one
should expect an EXPSPACE algorithm.

However, we are looking for polynomials in a specific integral closure defined by a local
subring determined by the input polynomials. This additional structure, along with known
annihilator bounds (see Theorem 3.1) help us in attaining a PSPACE algorithm. We can
interpret our algebraic characterization in Theorem 1.2 as a univariate polynomial P of
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degree r with coefficients from C[f1, ..., fm], such that g satisfies P . Hence, this means that
the polynomials g, f1, . . . , fm have a non-zero annihilator. However, currently, we cannot say
anything about the degree bounds of this annihilator, as Theorem 3.1 does not guarantee an
exponential degree bound for all the annihilators, but the minimal one, and the annihilator
obtained through P might not be the minimal annihilator of g, f1, . . . , fm. To overcome
this, we now use the random reduction trick introduced by GSS (see Theorem 3.2), where
they show that given a system of polynomials f1, . . . , fm of transcendence degree ρ, we can
reduce to ρ + 1 random linear combinations of these fi such that the non-emptiness of AV is
preserved. The advantage of doing this is the following: the annihilator ideal of ℓ polynomials
is principal if the transcendence degree is ℓ − 1 (see [17, 21]). Once we have this, we can
now degree bound all the annihilators appearing in the proofs of Lemma 2 and Lemma 3,
both of which only deal with non-emptiness of approximative vanishing set, thanks to our
approximative Rabinowitsch tricks, and hence, GSS’ random reduction lemma can indeed
be invoked. Repeated application of this helps us to finally upper bound, in Theorem 1.2,
the exponent r and the degrees of Fi’s and Gi’s to at most singly exponential in the input
parameters using the degree bound on the minimal annihilating polynomial [33, 21]. Finally,
we only need to solve a system of exponentially many linear equations in exponentially many
variables, which is known to be in PSPACE [4, 10, 31], see Section 3 for details.

2 Proof of Strong Approximative Nullstellensatz

In this section we prove our main characterization theorem, the Strong Approximative
Nullstellensatz, where analogous to the ideal-variety correspondence in algebraic geometry,
we have the correspondence between the integral closure (over a maximal ideal of a local/frac-
tional/natural subring of C(x1, . . . , xn) determined by f1, . . . . , fm) and the approximative
vanishing set (recall Definition 1).

It is easy to see the correspondence with WHN in the classical setting: the vanishing set
V (f1, . . . , fm) of f1, . . . , fm ∈ C[x1, . . . , xn] is empty ⇐⇒ 1 ∈ ⟨f1, . . . , fm⟩. Similarly, in the
classical setting SHN says that the ideal generated by all functions vanishing on V (f1, . . . , fm)
is exactly the radicle ideal

√
⟨f1, . . . , fm⟩, or in other words, if f ∈ C[x1, . . . , xn], then

fr ∈ ⟨f1, . . . , fm⟩ ⇐⇒ V (f1, . . . , fm) ⊆ V (f). We now present the natural analogue of SHN
in the approximative setting.

▶ Theorem (Strong Approximative Nullstellensatz (SAN)). Given f1, . . . , fm, g ∈ C[x1, . . . , xn],

AV(g) ⊇ AV(f1, . . . , fm) if and only if gr =
r−1∑
i=0

Fi

1 + Gi
gi,

for some r ∈ N, where Fi, Gi are constant free polynomials in C[f1, . . . , fm].

We first prove the easier direction of the theorem, that the algebraic condition implies the
geometric condition: g being in the integral closure implies that the approximative vanishing
set of g contains the common approximative vanishing set of f1, . . . , fm. Before moving
forward, we give some definitions. For a nonzero h(ε) ∈ C(ε), define ordε(h) to be the highest
power of ε dividing h, i.e., the unique integer t ∈ Z such that

h(ε) = εt · p(ε)
q(ε) with p, q ∈ C[ε], p(0) ̸= 0, q(0) ̸= 0.

Set ordε(0) = +∞. Then ordε(h1 + h2) ≥ min{ordε(h1), ordε(h2)}, where equality holds
if ordε(h1) ̸= ordε(h2), and ordε(h1h2) = ordε(h1) + ordε(h2). We say h ≡ 0 mod ε ⇐⇒
ordε(h) ≥ 1, and h ≡ c mod ε, for some c ∈ C \ {0} ⇐⇒ ordε(h) = 0 and c = h(0).
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Proof. (⇐) Assume that for some r ∈ N and Fi, Gi ∈ C[f1, . . . , fm] constant free polynomials,
for 0 ≤ i ≤ r − 1, the identity

gr =
r−1∑
i=0

Fi

1 + Gi
gi

holds. Let x = (x1, . . . , xn) ∈ C(ε)n be such that for all 1 ≤ j ≤ m, fj(x) ≡ 0 mod ε.

We show that f(x) ≡ 0 mod ε. Since each Fi and Gi is constant-free in C[f1, . . . , fm],
every monomial in Fi (resp. Gi) contains at least one fj . Therefore, for 0 ≤ i ≤ r − 1,
substituting x gives ordε(Fi) ≥ 1 and ordε(Gi) ≥ 1. In particular, ordε(1 + Gi(x)) =
min{ordε(1), ordε(Gi(x))}. Let u := g(x) ∈ C(ε) and define

ci := Fi(x)
1 + Gi(x) ∈ C(ε).

Therefore, ordε(ci) = ordε(Fi(x) − ordε(1 + Gi(x)) ≥ 1, and ur =
∑r−1

i=0 ci ui. Comparing
the orders one obtains

r ordε(u) ≥ min
0≤i≤r−1

(
ordε(ciu

i)
)

= min
0≤i≤r−1

(
ordε(ci)+i ordε(u)

)
≥ min

0≤i≤r−1
(1+i ordε(u)) ≥ 1.

Since ordε(u) ∈ Z, so ordε(u) ≥ 1, or equivalently g(x) ≡ 0 mod ε. ◀

The converse direction — showing that the geometric condition implies the algebraic
condition — is significantly more involved. The first step towards this is to reduce the
containment problem for approximative vanishing sets to the problem of emptiness of
approximative vanishing set, taking inspiration from the classical Rabinowitsch trick. In
contrast to the classical Rabinowitsch trick, we do not obtain a single augmented system
whose WAN-infeasibility is equivalent to containment. Instead, we obtain one fixed APS-
infeasibility instance (see Condition 2) together with a family of APS-infeasibility instances
indexed by all nonzero scalars c ∈ C (see Condition 1). A key additional step is a finiteness
reduction: although, Condition 1 is stated universally over all c ̸= 0, we show that it suffices
to check it for only finitely many values of c, given by bounded-degree algebraic dependencies
arising in our proof. This finiteness reduction is essential for turning the apparent “for-all”
obstacle into an efficient (ultimately PSPACE) decision procedure.

The following lemma shows that the geometric condition AV(f1, . . . , fm) ⊆ AV(g) can be
intuitively rephrased as follows: Whenever f1, . . . , fm simultaneously approximatively vanish,
the value of g can neither diverge nor converge to a non-zero constant c ∈ C, consequently, it
must converge to 0.

▶ Lemma 1. AV(f1, . . . , fm) ⊆ AV(g) if and only if both the following conditions hold.
1. For all c ∈ C×, f1, . . . , fm, g − c have no common APS, and
2. f1, . . . , fm, y, 1 − yg have no common APS.

Proof. We assume AV(f1, . . . , fm) ̸= ∅ as otherwise AV(g) always contains AV(f1, ..., fm).
Recall that for g ∈ C[x1, . . . , xn], x ∈ AV(g) ⇐⇒ g(x) ≡ 0 mod ε ⇐⇒ ordε(g(x)) ≥ 1.
(⇒) Assume, first, that AV(f1, . . . , fm) ⊆ AV(g).

Proof of condition 1: Let c ∈ C. If f1, . . . , fm, g−c had a common APS at some x ∈ C(ε)n,
then for all 1 ≤ i ≤ m, fi(x) ≡ 0 mod ε, and (g − c)(x) ≡ 0 mod ε. Therefore, g(x) ≡ c

mod ε. Therefore, c = 0, and f1, . . . , fm and g − c have no common APS, for c ̸= 0.
Proof of condition 2. If f1, . . . , fm, y, 1 − yg had a common APS (x, h) ∈ C(ε)n+1. Then
h ≡ 0 mod ε, and for all 1 ≤ i ≤ m, fi(x) ≡ 0 mod ε, and hg(x) ≡ 1 mod ε. Since
AV(f1, . . . , fm) ⊆ AV(g), ordε(g(x)) ≥ 1, which contradicts hg(x) ≡ 1 mod ε.
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(⇐) Assume both conditions 1 and 2 hold, and let x ∈ AV(f1, . . . , fm) \ AV(g). Then
ordε(g(x)) ≤ 0. If ordε(g(x)) = 0, then there is a c ∈ C× such that g(x) ≡ c mod ε.
Therefore, (g − c)(x) ≡ 0 mod ε, which contradicts the condition 1. On the other
hand, if ordε(g(x)) = t ≤ −1. Then (x, h), where h = ε−t

(ε−tg(x))(0) ≡ 0 mod ε, is in
AV(f1, . . . , fm, y, 1 − yg), thus contradicting the condition 2. ◀

While Lemma 1 gives us geometric connection in relation to common solutions, it still
doesn’t give any insight algebraically into the problem. We now show how we can use the
two conditions defined in the lemma to get an algebraic relation between the polynomials
f1, . . . , fm, f .

▶ Lemma 2. Suppose f1, . . . , fm, y, 1 − yg have no common APS. Then for some r ≥ 1,

gr =
r∑

i=0
giQi(f1, . . . , fm),

where Qr ∈ C[y1, . . . , ym] is a constant free polynomial.

Proof. Using Theorem 1.1, if f1, . . . , fm, y, 1 − yg have no common APS, then there exists
a constant free polynomial A in C[y1, . . . , ym+2] such that A(f1, . . . , fm, y, 1 − yg) = 1,
(the polynomial A(y1, . . . , ym+2) − 1 is an annihilator of f1, . . . , fm, y, 1 − yg). Now the
polynomial A(f1, . . . , fm, y, 1 − yg) − 1 ∈ C[x1, . . . , xn, y] is the 0 polynomial and remains so
in C(x1, . . . , xn)[y]. We can set y = 1

g , to get

A(f1, . . . , fm,
1
g

, 0) = 1 (1)

Therefore, A(y1, . . . , ym+2) ̸= 0 mod ym+2, otherwise Equation 1 gives us 0 = 1. Con-
sequently, there is an r ≥ 1 and Gi ∈ C[f1, . . . , fm] with G0 constant free (since A was
constant free)such that

r∑
i=0

1
gi

Gi(f1, . . . , fm) = 1

Rearranging, we get gr =
∑r

i=0 giQi(f1, . . . , fm), where Qr is constant free. ◀

Thus, we have shown how we can use condition (2) to get a polynomial relation. Using this
result along with ondition (1), we can show the following.

▶ Lemma 3. Assume that for all c ∈ C×, f1, . . . , fm, g − c have no common APS. Let r ≥ 1,
and for 1 ≤ i ≤ r let Qi ∈ C[y1, . . . , ym] be polynomials with Qr constant free such that

gr =
r∑

i=0
giQi(f1, . . . , fm).

Then there are 1 ≤ k ≤ r, l ≥ 1, and constant free polynomials Fi ∈ C[y1, . . . , ym], for
1 ≤ i ≤ l, such that

gk =
l∑

i=0
giFi(f1, . . . , fm).



XX:10 When Hilbert approximates: A Strong Nullstellensatz for Approximate Polynomial Satisfiability

Proof. If Qi is constant free for all i, then we set k = l = r and Fi = Qi and we are done.
Otherwise, there is atleast some Qi with non-zero constant term. Consider the polynomial

A ∈ C[y1, . . . , ym, z] given by zr+1(1 − Qr) −
(

r∑
i=1

Qi−1zi

)
. Clearly A is constant free and

A(f1, . . . , fm, g) = 0. We rewrite each Qi = Q′
i + ci such that Q′

i is constant free for each i.

We know that cr = 0 and for some i < r, ci ̸= 0. Then A = h(z) −
(

r+1∑
i=1

Q′
r−1zi

)
, where

h(z) = zr+1 − cr−1zr − . . . − c0z is a polynomial in C[z].
Clearly h(z) ̸= zr+1, so there is a finite non-empty subset S ⊂ C×, positive integers es, for

each s ∈ S, and 1 ≤ k ≤ r such that h(z) = zk
∏

s∈S

(z − s)es . Therefore, A(f1, . . . , fm, g) = 0

gives h(f) = A′(f1, . . . , fm, g), where A′ ∈ C[y1, . . . , ym, z] has no term of the form zi, as Q′
i

are constant free.
Now we use condition (1) from Lemma 1. For all s ∈ C×, f1, . . . , fm, g − s have no APS.

In particular, this holds for s ∈ S. Then, by Theorem 1.1, for each s ∈ S there exists a
constant-free polynomial Fs ∈ C[y1, . . . , ym, z] such that Fs(f1, . . . , fm, g − s) = 1. Write
Fs = Gs(y1, . . . , ym) + zHs(y1, . . . , ym, z) with Gs constant-free. Then(∏

s∈S

(z − s)es Hs(y1, . . . , ym, z − s)es −
∏
s∈S

(1 − Gs(y1, . . . , ym))es

)
(f1, . . . , fm, g) = 0.

Hence, there are H ∈ C[y1, . . . , ym, z] and constant-free G ∈ C[y1, . . . , ym] such that

H(f1, . . . , fm, g) h(g) = gk + gk · G(f1, . . . , fm).

Therefore, gk = h(g)H(f1, . . . , fm, g) − gk · G(f1, . . . , fm), and hence

gk = A′(f1, . . . , fm, g)H(f1, . . . , fm, g) − gk · G(f1, . . . , fm),

and the polynomial A′H − zkG ∈ C[y1, . . . , ym, z] has no term of the form zi. To see this
note that the least degree of coefficient of zi in A′H and G is greater than 1. Therefore,
there is an l ≥ 1, and for 1 ≤ i ≤ l, there are constant free polynomials Fi ∈ C[y1, . . . , ym]

such that gk =
l∑

i=0
Fi(f1, . . . , fm). ◀

To summarize, we have obtained the following equivalence AV(f1, . . . , fm) ⊆ AV(g) ⇐⇒
there are r, k, l ≥ 1 with k ≤ r, and polynomials Qi and Fj , for 0 ≤ i ≤ r and 0 ≤ j ≤ l in
C[y1, . . . , ym] with Qr and all Fj constant free such that

gr =
r∑

i=0
giQi(f1, . . . , fm), and (2)

gk =
l∑

i=0
giFi(f1, . . . , fm). (3)

Using this, we now show how we can prove the other direction of Theorem 1.2.

Proof of Theorem 1.2 continued. Suppose l ≤ k, then we can simply rearrange Equation 3
to get gk =

∑k−1
i=0

Fi

1+Fk
gi and we have the desired characterization. Now assume that l > k.

By Lemma 3, we can see that 1 ≤ k ≤ r always. Then we multiply Equation 3 by gr−k

on both sides so that the left hand side has exponent r and right hand side has maximum
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exponent l′ = l + (r − k). Since l > k, we have l′ = l + r − k > r. We will now rename l′ = l

and thus, we always have l > r. We can rewrite Equation 3 as

gr =
l∑

i=0
giFi(f1, . . . , fm) (4)

where F0 = · · · = Fr−k−1 = 0. Now, both equations have the same exponent r on the left
hand side. Rewrite Equation 2 to get gr(1 − Qr) =

∑r−1
i=0 giQi. Multiplying Equation (4) by

1 − Qr, we get

(1 − Qr)gr =
l−1∑
i=0

giFi(1 − Qr) + gl−rFlg
r(1 − Qr)

=
l−1∑
i=0

giFi(1 − Qr) + gl−rFl(
r−1∑
j=0

gjQj) =
l−1∑
i=0

gi(Fi(1 − Qr) + Bi) =
l−1∑
i=0

giHi

where for 0 ≤ i ≤ l − r − 1, Bi = 0, and for all l − r ≤ i ≤ l − 1, Bi = FlQi−(l−r).
Since Fi are constant free, it is easy to see that Hi will be constant free. Hence, starting
from Equation 4, where gr was a linear combination of powers of g up to l we have
reduced it to linear combination of powers of g up to l − 1 over C[f1, . . . , fm] such that

gr = Qrgr +
l−1∑
i=0

Hi(f1, . . . , fm)gi with each Hi, and Qr ∈ C[y1, . . . , ym] being constant free.

We can do this inductively as long as l ≥ r to eventually get

gr =
r∑

i=0
giFi(f1, . . . , fm), (5)

where Fi ∈ C[y1, . . . , ym] is constant free for all i. This can be restated as

gr =
r−1∑
i=0

gi Fi(f1, . . . , fm)
1 − Fr(f1, . . . , fm) ,

which is exactly the formulation we desired in Theorem 1.2. ◀

In order to restate our theorem in the language of integral closures, consider the subring
R := C[f1, . . . , fm] and the maximal ideal m := ⟨f1, . . . , fm⟩ of R.
▶ Remark 5. Notice that the above ring R differs from the standard polynomial ring
C[x1, . . . , xn]. In fact, R ⊆ C[x1, . . . , xn]. Further while m is a maximal ideal of R, it might
not even be an ideal in C[x1, . . . , xn].

Let S := R \ m. Intuitively, S will contain evaluations at f1, . . . , fm of all polynomials
h ∈ C[y1, . . . , ym] with constant term not 0. Consider the ring Rm := S−1R. It is well known
(see [2, Chapter 3]) that in this case Rm is a local ring, i.e., it will have a unique maximal
ideal mRm which is exactly the set of non units in Rm. It is given by

mRm =
{

h(f1, . . . , fm)
1 + g(f1, . . . , fm) | h, g ∈ C[y1, . . . , ym] are both constant free

}
.

We say that an element g ∈ C(x1, . . . , xn) is integral over mRm ⇐⇒ there is a monic
polynomial h ∈ Rm[T ] with coefficients in the ideal mRm such that h(g) = 0. We are now
ready to state our algebro-geometric correspondence in the approximative setting. Thus,
Theorem 1.2 can be restated as follows.
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▶ Theorem 2.1. Let f1, . . . , fm, g ∈ C[x1, . . . , xn]. Then AV(g) ⊇ AV(f1, . . . , fn) if and only
if g is integral over mRm.

▶ Remark 6. A natural question, is, can we get even simpler characterizations that the one in
Theorem 2.1? However, we show two natural candidates do not suffice to fully characterize
AV containment.

g can’t just be characterized by an integral closure without localization: We show that this is
not possible. Consider, f1 = xy, f2 = wz, f3 = yz−1, g = xz. Then AV(g) ⊇ AV(f1, f2, f3)
but g(1 + f3) = f1f2.
g can’t just be characterized by a radical ideal in the local ring: A “radical-type” charac-
terization would be of the form gr = F (f1,...,fm)

1+G(f1,...,fm) . However, we show that this is also
not always possible. Consider f1 = x2 − xy, f2 = y, g = x, then g2 = f1 + g · f2. In fact,
m is maximal so its radical is itself. Therefore, we really need to use integral closure, just
using the radical will not be enough.

We can now see that Theorem 2.1 gives us a very nice characterization analogous to
the strong Hilbert’s Nullstellensatz (SHN). Recall that SHN says that given polynomials
f1, . . . , fm ∈ C[x1, . . . , xn], a polynomial g vanishes on vanishing set of f1, . . . , fm is equivalent
to saying g lies in the radical ideal of f1, . . . , fm. Similarly, Theorem 2.1 says that g

approximatively vanishes on the common approximative vanishing set of f1, . . . , fm if and
only if g is integral over a maximal ideal of a natural fractional subring of C(x1, . . . , xn)
determined by f1, . . . , fm.
▶ Remark 7. Conventionally, an element in the integral closure of an ideal implies the element
is in the radical of the ideal. Suppose we have some ring R and its ideal I. Let

gr =
r−1∑
i=0

aig
i

where ai ∈ I. Then, it simply implies gr mod I = 0 and g lies in the radical of ideal I. This
is because g, ai are coming from the same underlying structure R. However, in our case
while the maximal ideal mRm originates from the ring R = C[f1, . . . , fm], the polynomial g is
instead coming from the larger polynomial ring C[x1, . . . , xn]. Hence, aig

i is not necessarily
a part of ideal I and hence it might be the case that aig

i mod I ̸= 0. Thus, g might not lie
in the radical.

Integral closure over mRm forms an Rm-module: Define mRm to be the integral closure
of mRm in C(x1, . . . , xn). Let f, g ∈ mRm, then AV(f +g) ⊇ AV(f)∩AV(g) ⊇ AV(f1, . . . , fm).
Hence f + g ∈ mRm. Now for r ∈ Rm, AV(rf) ⊇ AV(f) ∪ AV(r) ⊇ AV(f1, . . . , fm). Hence
rf ∈ mRm and mRm is an Rm-module. Clearly, the natural inclusion R ↪→ Rm makes
mRm ∩ C[x1, . . . , xn] an R-module.

Integral closure over mRm is finitely generated: The next proposition proves that
mRm is a finitely generated as an Rm-module. In order to do so, we show that the set of
elements of C(x1, . . . , xn) algebraic over C(f1, . . . , fm) is a finite extension of C(f1, . . . , fm).
Then we use that Rm is an integral Noetherian Nagata domain, i.e., the integral closure of
Rm in a finite extension of its field of fractions is finitely-generated Rm-module (for details
see [28, Definition 31(A)]).

▶ Proposition 2.2. Let R := C[f1, . . . , fm] ⊂ C[x1, . . . , xn] and let m = (f1, . . . , fm) ⊂ R be
a maximal ideal. Let Rm be the integral closure of Rm inside C(x1, . . . , xn). Then Rm is a
finitely generated Rm-module.
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Furthermore, the Rm-module

mRm := {f ∈ Rm | ∃ r ≥ 1 and a0, . . . , ar−1 ∈ mRm s.t. fr =
r−1∑
i=0

aif
i}

is a finitely generated Rm-module.

Proof. Let K := Frac(R) = Frac(Rm) = C(f1, . . . , fm) ⊂ L := C(x1, . . . , xn). Let

E := {ℓ ∈ L : ℓ is algebraic over K}

be the algebraic closure of K in L. Let r := trdegCK (equivalently, r = trdegCC(f1, . . . , fm)).
Since trdegCL = n, we have trdegKL = n−r. Choose a transcendence basis g1, . . . , gn−r ∈ L

of L over K. Then L is algebraic over K(g1, . . . , gn−r). Since the field L = C(x1, . . . , xn) is a
finitely generated algebra over K(g1, . . . , gn−r), by [2, Proposition 7.9] it is a finite algebraic
extension. However, K(g1, . . . , gn−r) ∩ E = K and therefore, [E : K] = [EK(g1, . . . , gn−r) :
K(g1, . . . , gn−r)] ≤ [L : K(g1, . . . , gn−r)] < ∞.

If t ∈ L is integral over Rm, then t is algebraic over K, i.e., t ∈ E. Therefore, the elements
of L integral over R are exactly the elements of E integral over R.

Since R is a finitely generated C-algebra, it is a Nagata ring, and localizing preserves the
Nagata property [28, Definition 31(A)]; hence Rm is Noetherian integral domain that is also
Nagata. By the Nagata property, Rm is a finite (hence finitely generated) Rm-module.

Now for the final part, we note that mRm is a submodule of a finitely generated module
Rm over the Noetherian ring Rm, and we are done. ◀

3 Proof of SAN ∈ PSPACE

In this section, we prove our other main result where we show that the computational problem
SAN can be decided in PSPACE. Degree bounds for annihilating polynomials go back to
Perron [33] and have been extended further in [3, 21]. We use these bounds together with
the “random reductions trick” of GSS to obtain our algorithm. We now present these two
key results for completeness.

▶ Theorem 3.1 (Annihilator bound, Theorem 11, [21]). Let h1, . . . , hℓ ∈ C[x1, . . . , xn] be of
degree at most d, and suppose the algebraic rank (transcendence degree) of {h1, . . . , hℓ} is
r. Then there exists a nonzero annihilating polynomial for (h1, . . . , hℓ) of degree at most
(r + 1)dr, and there are examples where the minimal annihilator has degree at least dr.

▶ Theorem 3.2 (Random reductions, Theorem 4.6, [17]). With high probability, we have
1. Transcendence degree of g1, . . . , gk+1 over C is k.
2. The constant term of every annihilator for g1, . . . , gk+1 is zero if and only if the constant

term of every annihilator of f1, . . . , fm is zero

▶ Theorem. SAN is in PSPACE.

As discussed earlier in Section 1.3, apriori it is not clear how to use the geometric criterion
obtained in Lemma 1, or the integral closure formulation obtained in Theorem 1.2 to obtain a
PSPACE upper bound. However, leveraging the additional structure of our formulation along
with Theorem 3.1, 3.2 we can match the PSPACE upper bound of WAN. We cannot directly
use the annihilator obtained from the algebraic characterization in Theorem 1.2 (shown in
Equation 5), as we have no guarantees about the degree bound there, since Theorem 3.1 only
establishes the singly exponential degree bound for the minimal annihilator of the system
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of polynomials, not all annihilators. However, we can now use Theorem 3.2 to ensure that
it is sufficient to look at the minimal annihilator. Given any system of polynomials, we
first calculate its transcendence degree ρ in PSPACE using linear algebra [33, 34, 4]. Then,
we reduce to ρ + 1 polynomials which are random linear combinations which preserve the
non-emptiness of AV. Since the annihilator ideal of ℓ polynomials h1, . . . , hℓ is principal if
the transcendence degree of the system is ℓ − 1 [17, 21], we can now bound the degree of this
generator by Theorem 3.1.

Proof. We achieve the proof by giving a singly-exponential degree upper bound in the
equivalent criterion of SAN restated below (see Equation 5).

gr =
r∑

i=0
giFi(f1, . . . , fm),

We got this by combining the criteria obtained in Lemma 2 and Lemma 3, and we show that
both of these can be reformulated to have singly exponential degree bounds.

First, we re-inspect the proof of Lemma 2. We started with the condition: f1, . . . , fm, y, 1−
yg have no common APS, and using the above discussion we can reduce to a system of
polynomials g1, . . . , gρ+1 where gj = cj,1f1 + · · · + cj,mfm + cj,m+1y + cj,m+2(1 − yg), and
A(g1, . . . , gρ+1) = 1 such that A(z1, . . . , zρ+1) is constant-free. Let d′ be the maximum degree
of the polynomials f1, . . . , fm, g, then clearly degree of each gj is bounded above by d = d′ +1.
Hence, A has degree bounded by D = (ρ+1)dρ by Theorem 3.1, where ρ is the transcendence
degree of f1, . . . , y, 1 − yg. Similar to proof of Lemma 2, since A(g1, . . . , gρ+1) = 1 holds in
C[x1, .., xn, y], it holds in C(x1, . . . , xn)[y]. Hence, we can set y = 1

g . After this substitution,
each

gj = 1
g

(
g(

m∑
i=1

cj,ifi) + bj

)
= gqj(f1, . . . , fm) + bj

g

where bj ∈ C, qj ∈ C[y1, . . . , ym] such that qj is constant-free. Abusing notation, we will now
call such polynomials qj constant-free in C[f1, . . . , fm]. Any monomial of A(z1, . . . , zρ+1) is
of the form α

∏ρ+1
i=1 zai

i where t =
∑

i ai ≤ D and α ∈ C. On substitution, this monomial
becomes α 1

gt (gqj +bj)aj = α 1
gt (gtvt +gt−1vt−1 + . . .+v0) where, vj are constant-free elements

in C[f1, . . . , fm] for all 1 ≤ j ≤ t, and v0 = ba1
1 · · · b

aρ+1
ρ+1 ∈ C. Further, degree of each vj is

bounded by D in terms of fi. In particular, A(g1, . . . , gk+1) = 1 under this substitution
gives

∑D
t=1

1
gt (gtpt,t + · · · + pt,0) = 1 where pt,1, ..., pt,t are constant free polynomials in

C[f1, ..., fm] and pt,0 ∈ C for all 1 ≤ t ≤ D. Further, degree of each pi is bounded by D.
Thus, this becomes

gD = (gDpD,D + · · · + pD,0) + g(gD−1pD−1,D−1 + · · · + pD−1,0) + · · · + gD−1(gp1,1 + p1,0)

In particular, the coefficient of gD is pD,D + pD−1,D−1 + . . . + p1,1. Since each of these pa,a

is constant-free, there will be no term of cgD for some c ∈ C in the right hand side of the
equation. In particular, we get an annihilator gD = gDQD + gD−1QD−1 · · · + Q0 where QD

is constant-free and degree of each Qi is bounded by D. This is exactly like the formulation
we obtained in Lemma 2, with the additional constraint that D and degree of each Qi is
singly exponential in the input parameters.

Now, we re-inspect the proof of Lemma 3 using this annihilator as a starting point.
The corresponding h(z) we get will be a degree D + 1 polynomial in z and hence has at
most D non-zero roots. For each Fs(f1, . . . , fm, g − s) = 1 in the proof, we now instead use
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Fs(g′
1, . . . , g′

ρ+1) = 1 where the g′
j are now random linear combinations of f1, . . . , fm, g−s and

ρ is their transcendence degree. The degree of Fs will be bounded by D. In particular, each g′
j

can be written as g′
j = pj+b′

j(g−s) where each pj ∈ C[f1, . . . , fm] is linear in fi and is constant-
free, and b′

j ∈ C. Any monomial of Fs would be of the form γ
∏ρ+1

j=1(pj + b′
j(g − s))a′

j where∑
a′

j = t ≤ D and γ ∈ C. Thus, any monomial is of the type (g−s)ta′
t+(g−s)t−1q′

t−1+. . .+q′
0

where each q′
i is constant-free in C[f1, . . . , fm] with degree bounded by D − i, and a′

t ∈ C.
Using this we can rewrite Fs(g′

1, . . . , g′
ρ+1) as Q(f1, . . . , fm) + (g − s)P (f1, . . . , fm, g) where

degree of Q in fi is bounded by D and degree of P in fi, g is bounded by D. Also, Q is
constant-free in C[f1, . . . , fm]. Using this annihilator in the proof of Lemma 3, the next step
is to multiply these for all the roots of h(z), which are at most D. Further, we then multiply
with gk where k is also bounded by D (since k was the multiplicity of 0 as a root of h(z)).
Thus, finally we get H(f1, . . . , fm, g)h(g) = gk + gkG(f1, . . . , fm) where degree of H, G is
bounded above by D2 and G is constant-free in C[f1, . . . , fm]. We can again replace h(g)
like in the original proof and get

gk =
l∑

i=0
giFi(f1, .., fm)

where l and degree of Fi is bounded by D′ = D2 + D, and each Fi is constant-free.
We now show that the obtained bounds are sufficient to put SAN in PSPACE. First thing

to note is that D = (ρ+1)dρ. Since ρ was the transcendence degree of the a system of at most
m + 2 polynomials in n + 1 variables, ρ ≤ n + 2. Hence, k, D, D′ is atmost singly exponential
in the input parameters. We can thus set up an exponential-sized system of linear equations
in the same way as for computing annihilator using Perron’s bound [17, 34, 33], which can
be solved in PSPACE [4, 31, 10, 5] ◀

4 Conclusion

In this work, we provide an analog of the SHN for approximative roots of a system of
polynomials. Further, we provide a PSPACE upper bound for testing the same, matching
the best known upper bound for the Weak Approximative Nullstellensatz. We believe that
this work opens up several interesting areas of study in the geometry of approximative
roots. Most prominently, defining the notion of dimension to estimate the size of a set of
approximative roots is particularly interesting. Similarly, examining how intersection theory
of curves translates to this setting is also very intriguing. From a computational perspective,
improving the complexity bounds for WAN and SAN, and algorithmically obtaining the
generators of the integral closure obtained in Theorem 1.2 is also interesting.
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