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� Introduction

During the last �� years an extensive theory of computability and computational
complexity has been developed �see e�g� Rogers �Rog ���
 Odifreddi �Odi ���
 Weih�
rauch �Wei ���
 Hopcroft and Ullmann �HU ���
 Wagner and Wechsung �WW ���
�
Without doubt this �Type � theory� models the behaviour of real world computers
for computations on discrete sets like natural numbers
 �nite words
 �nite graphs
etc� quite adequately�

A large part of computers
 however
 is used for solving numerical problems� Therefore
convincing theoretical foundations are indispensible also for computable analysis�
Several theories for studying aspects of e�ectivity in analysis have been developed
in the past �see chapter ��
� Although each of these approaches has its merits
 none
of them has been accepted by the majority of mathematicians or computer scientists�
Compared with Type � computability
 foundations of computable analysis have been
neglected in research and almost disregarded in teaching�

This paper is an introduction to �Type 	 Theory of E�ectivity� �TTE
� TTE is
one among the existing theories of e�ective analysis� It extends ordinary Type �
computability theory and connects it with abstract analysis� Its origin is a de�nition
of computable real functions given by Grzegorczyk in ���� �Grz ���
 which is based on
the de�nition of computable operators on the set �� of sequences of natural numbers�
Real numbers are encoded by fast �with �speed ��n�
 converging Cauchy sequences
of rational numbers
 and these are encoded by sequences of natural numbers� A
real function is computable in Grzegorczyk�s sense
 i� it can be represented by a
computable operator on such encodings of real numbers� In the following years this
kind of computability has been investigated by several authors �e�g� Grzegorczyk
�Grz ���
 Klaua �Kla ���
 Hauck �Hau ��
 Hau ��� and Wiedmer �Wie ���
� The
computational complexity theory for real functions developed by Ko and Friedmann
�KF �	
 Ko ��� can be considered as a special branch�

The study of representations
 i�e� functions from �� onto sets
 as objects of separate
interest results in an essential generalization of Grzegorczyk�s original de�nition and
admits to �nd and justify natural computability de�nitions for functions on most of
the sets used in ordinary analysis� Basic concepts are explained in Weihrauch and
Kreitz �WK ��
 Wei ��
 KW ��
 Wei ���� The theory has been expanded in several
papers by Hertling
 Kreitz
 M�uller and Weihrauch ranging from topological conside�
rations to investigation of concrete computational complexity �WK ��
 KW ��
 Mue
��
 Mue ��
 WK ��
 Wei ��
 Wei ��
 Wei �	A
 Wei �	B
 HW ���� As an interesting
feature
 continuity can be interpreted in this context as a very fundamental kind of
e�ectivity or constructivity
 and simple topological considerations explain a number
of well known observations from e�ective analysis very satisfactorily�

This paper is not a complete presentation of TTE but only a technically and con�
ceptually simpli�ed selection from �Wei ���� The main stress is put on basic concepts
and on simple but typical applications
 while the theoretical background is reduced
to the bare essentials�

We assume that the reader has some basic knowledge in computability theory �Tu�
ring machines
 computable functions
 recursive sets
 recursively enumerable sets
�



� � Introduction

There are several good introductions
 e�g� the classical book by Hopcroft and Ull�
man �HU ��� or Bridges �Bri ���� In addition to standard Calculus we use some simple
concepts from topology �topological space
 open and closed sets
 continuous func�
tions
 metric space
 Cauchy sequence
 compact set
� Any introduction to topology
�e�g� �Eng ���
 may be used as a reference�

In the following we axplain some notations which will be used in this paper� By
f �� X �� Y we denote a partial function from X to Y 
 i�e� a function from a
subset of X
 called the domain of f �dom�f


 to Y � The function f �� X �� Y is
total
 i� dom�f
 � X� in this case we write f � X �� Y as usual� A �nite alphabet is
a non�empty �nite set� In Section 	
 � denotes any �nite alphabet with f�� �g � ��
In the following section � is some �xed su�ciently large �nite alphabet containing
all the symbols we shall need� Let � �� f�� �� 	� � � �g be the set of natural numbers�
As usual
 �� is the set of all �nite words a� � � �ak with k � � and a�� � � � � ak � �� The
empty word is denoted by �� Let �� �� fa�a� � � � j ai � �g � fp j p � � �� �g be the
set of in�nite sequences �or ��sequences
 with elements from �� We use suggestive
informal notations for de�ning �nite and in�nite sequences over �� If u � a� � � �ak

v � b� � � � bl and p � c�c� � � � � �� �ai� bi� ci � �

 then uv �� a� � � �akb� � � � bl

up �� a� � � � akc�c� � � � � ��
 um �� a� � � � aka� � � � ak � � �a� � � � ak �m times

 u� ��
uuu � � � �� a� � � �aka� � � � ak � � � � ��� If x � uvw � �� and q � uvp � �� then u
is a pre�x and v is a subword of x and q� We extend the above notations to sets of
�nite or in�nite sequences� For example
 ���� � fx � �� j �� is a pre�x of xg and
��u�� � fp � �� j u is a subword of pg�

In Chapter 	 we generalize computability from �nite to in�nite sequences of sym�
bols and illustrate the de�nition by a number of examples� We introduce the Cantor
topology and show that computable functions are continuous� We introduce nota�
tions and representations and de�ne
 how topological and computational concepts
are transferred from sequences to named sets� In Chapter � we introduce standard
representations of the real numbers �the interval representation and the Cauchy re�
presentation
 and investigate the computability concepts induced by them on the
real numbers� We give examples for computable and non�computable real numbers

we characterize the recursively enumerable subsets of IR and prove computability of
a number of real functions� In Chapter � we give reasons for selecting the interval
and the Cauchy representation and for rejecting
 e�g�
 the decimal representation�
We prove that every computable real function is continuous
 we formulate the the�
sis that every physically computable function is continuous and we prove that no
injective and no surjective representation can be equivalent to the Cauchy represen�
tation� In Chapter � we introduce representations of the open and of the compact
subsets of the real numbers� We prove e�ective versions of some well known classical
properties
 especially we prove a computational version of the Heine�Borel theorem
on compact sets� We introduce representations of the classes C�IR
 and C��� �� of
continuous real functions and discuss their e�ectivity in Chapter �� We present some
computational versions of well known properties and consider the determination of
a modulus of continuity
 of the maximum value
 the derivative and the integral�
Determination of zeros of continuous functions is considered in Chapter �� We prove
that the general problem can not even be solved continuously� Under certain restric�
tions we have a computable but non�extensional solution operator� A computable



�

operator exists only on the set of continuous functions which have exactly one zero�
In Chapter � we introduce as new concepts computation time and input lookahead
of Type 	 machines with in�nite output� In Chapter � we de�ne the modi�ed binary
representation which is appropriate for introducing computational complexity of real
functions� We determine bounds of time and input lookahead for addition
 multipli�
cation and
 by an application of Newton�s method
 for inversion� Finally we de�ne
the complexity of compact sets
 which can be interpreted as �plotter complexity��
Some other approaches to e�ective analysis are discussed in Chapter ���
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� Computability on Finite and In�nite

Words� Naming Systems

In this Chapter
 � is any �nite alphabet
 i�e� any �nite non empty set� Turing machi�
nes are a convenientmathematicalmodel for de�ning computability of wordfunctions
f �� ���
k �� ��� By the Church�Turing thesis
 a word function is computable
informally or by a physical device
 if and only if it can be computed by a Turing
machine� Moreover
 Turing machines model time and storage complexity of physical
computers rather realistically� �A standard reference is the book by Hopcroft and
Ullman �HU ���
�

In this section we introduce our basic computational model for computable analysis

the Type � machines� We formulate a generalization of the Church�Turing thesis

we prove that computable functions on �nite or in�nite sequences are continuous
and de�ne recursively enumerable sets� We introduce notations and representations
and de�ne
 how e�ectivity of elements
 sets
 functions and relations is transferred
by naming systems� Many examples illustrate the de�nitions�

Roughly speaking
 a Type 	 machine is a Turing machine for which not only �nite
but also in�nite sequences of symbols may be considered as inputs or outputs� We
give an informal de�nition of Type 	 machines and their semantics�

De�nition ��� �Type � machines


A Type 	 machineM is de�ned by two components�

�i
 a Turing machine with k one�way input tapes �k � �

 a single one�way
output tape and �nitely many work tapes


�ii
 a type speci�cation �Y�� � � � � Yk� Y�
 with fY�� � � � � Ykg � f�����g�

The type speci�cation expresses that fM �� Y� � � � � � Yk �� Y� is the type of
the function computed by the machine M � It tells which of the input and output
tapes are provided for �nite and which for in�nite sequences� Notice
 that input and
output tapes are restricted to one�way �left to right
�

De�nition ��� �semantics of Type � machines


The function fM �� Y�� � � �� Yk �� Y� computed by the Type 	 machine
M �the semantics of M
 is de�ned as follows�

Case Y� � �� ��nite output
�

fM �y�� � � � � yk
 � w � ��
 i� M with input �y�� � � � � yk
 halts with
result w on the output tape�



�

Case Y� � �� �in�nite output
�

fM�y�� � � � � yk
 � p � ��
 i� M with input �y�� � � � � yk
 computes
forever writing the sequence p on the output tape�

Notice
 that in the case Y� � �� the result fM �y�� � � � � yk
 is unde�ned
 if the machine
writes only �nitely many symbols on the output tape but does not halt� A Type 	
machine can be visualized by its underlying Turing machine�
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Readers not familiar with Turing machines �nd a more detailed de�nition in Ap�
pendix A�

We use the Type 	 machines for de�ning computability of functions f �� Y� �
� � �� Yk �� Y� �fY�� � � � � Ykg � f�����g
� The following de�nition generalizes the
common de�nition of computable wordfunctions
 since in the special case Y� � � � � �
Yk � �� Type 	 machines are ordinary Turing machines�

De�nition ��� �Type � computability


Let � be a �nite alphabet� Assume fY�� � � � � Ykg � f�����g �k � �
� A
function f �� Y�� � � �� Yk �� Y� is computable
 i� f � fM for some Type
	 machine M � A sequence y is a computable element of Y�
 i� the ��place
function f � f� 
g �� Y� with f� 
 � y is computable�
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Since Turing machines and their halting computations are �nite
 they have physi�
cal realizations �of course
 only if size and time do not exceed certain bounds
� By
de�nition
 Type 	 machines may require in�nite input and output tapes and may
perform in�nite computations which cannot be realized actually
 since in�nite tapes
do not exist and in�nite computations cannot be completed in reality� Notice
 howe�
ver
 that for a computation of a Type 	 machine any �nite portion of the output can
be obtained already from a �nite initial part of the possibly in�nite computation

and for this only �nite initial parts of the input tapes are relevant� This means that
the behaviour of a Type 	 machine can be approximated adequately by its behavi�
our in the �nite� In this sense also Type 	 machines and their computations can
be realized physically� Therefore
 any Type 	 computable function may be called
�intuitively computable� or �physically computable��

Instead of Type 	 machines any other common computabilitymodel �e�g� FORTRAN
or PASCAL programs
 may be used for de�nition and study of the computable
functions f �� Y� � � � � � Yk �� Y�
 provided inputs and outputs are one�way
��nite or in�nite
 �les of symbols� Merely the de�nition of computational complexity
depends crucially on the computability model� Below
 we shall use Type 	 machines
for this purpose�

Type 	 machines can be considered as a certain kind of oracle Turing machines
�Rogers �Rog ���
 Hopcroft and Ullman �HU ���
� Several other computable functions
of higher types have been introduced
 e�g� enumeration operators  z � 	� �� 	�

partial recursive operators F �� PF �� PF 
 partial recursive functions F �� ���
� �� � and F �� 	� �� �� �
 partial recursive functionals F �� PF �� � � f�g
where PF � ff j f �� � �� �g �see Rogers �Rog ��� xx ���
 ���
 ���� � �

and computable functions F �� �� �� �� �Weihrauch �Wei ���
� Each of these
de�nitions can be derived from our Type 	 computability and vice versa by using
appropriate �natural� encodings� Therefore
 it is very likely that every �intuitively
computable� function f �� Y�� � � ��Yk �� Y� is computable by a Type 	 machine�

The above considerations support the following generalization of the Church�Turing
thesis�

Generalized Church�Turing Thesis

A function f �� Y�� � � ��Yk �� Y� �Y�� � � � � Yk � f�����g
 is computable
informally or by a physical device
 if and only if it can be computed by a
Type 	 machine�

Like Church�s Thesis
 also this more comprehensive thesis cannot be proved� In
the de�nition of Type 	 machines we have restricted input and output tapes to be
one�way� For input tapes and for output tapes with �nite output this restriction
is inessential
 because a two�way input tape can be simulated by a one�way input
tape and a work tape
 and for halting computations a two�way output tape can
be simulated by a work tape and a one�way output tape� The one�way output for
in�nite computations
 however
 is an essential restriction �see Example � below
�

Among other proposed basic computational models for de�ning computability on






Type 	 objects like 	�
 �� etc� the Type 	 machines are particularly simple and
concrete
 they admit to explain the topological connection between classical analysis
and computational theory in a very transparent way
 and moreover they admit a
direct de�nition of very realistic computational complexities as we shall show later
on� We illustrate the de�nition of Type 	 computability by several examples�

Example �

Let � �� f�� �g and de�ne f �� �� �� �� by

f���
 �� div

f��i�p
 �� �i for all i � � and p � ���

The following !owchart copies the leftmost zeros from the input tape � to the output
tape �� It halts
 i� the input is not ���

�
�
�
��
�
�
�

� �

�

�� ��
R �
� �
� �
R

HALT

"

�

The !owchart together with the type speci�cation ������
 de�nes a Type 	 machine
which computes the function f �

Example �

Let � �� f�� �g and de�ne f �� �� �� �� by

f�p
�n
 ��

����
���

div if fi j p�i
 � �g is �nite
 else
� if h�p� n
 is even

� if h�p� n
 is odd

where h�p� n
 is the position of the �n"�
th one in p �i�e� h�p� n
 is that number i
 for
which p�i
 � � and card fk � i j p�k
 � �g � n
� The following !owchart together
with the type speci�cation ������
 de�nes a Type 	 machine which computes the
function f �
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From now on we shall no longer specify Turing machine !owcharts in full detail but
give only informal descriptions� Type speci�cations will be given implicitly by the
context�

Example �

Consider the problem of dividing real numbers by �
 where the real numbers are re�
presented by in�nite decimal fractions �decimal expansions
� The well�known paper
and pencil method by reading the input left to right and writing the output left to
right can be programmed easily by a Type 	 machine without work tapes� The nth
output symbol bn � f�� � � � �g and the nth remainder rn � f�� �� 	g are determined
by the symbol an � f�� � � � �g and the previous remainder rn�� � f�� �� 	g as follows�

�� 	 rn�� " an � � 	 bn " rn�

The sign and the decimal point must only be copied from the input to the output
tape� A !owchart consisting of � sequences �one for each previous remainder �
f�� �� 	g
 of �� consecutive tests �one for each symbol � f�� � � � � �g
 plus write�
statements etc� solves the problem� We omit a detailed !owchart�

Example �

Consider the problem of multiplying real numbers by �
 where the real numbers are
represented by in�nite decimal fractions� The school method for multiplying �nite
decimal fractions adds intermediate results from right to left� It is also possible to
perform the addition from left to right� In this case
 however
 from time to time
carries may appear
 which run from right to left switching nines to zeros�
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right to left addition left to right addition

�� � � � � � � � � 	 � � �� � � � � � � � � 	 � �

� �

� � � �
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This method with left to right addition can be applied also to in�nite decimal
fractions� It can be implemented easily on a modi�ed Type 	 machine which has a
two�way output tape�

Now we show that no Type 	 machine multiplies in�nite decimal fractions by ��

Assume that there is a Type 	 machineM which muliplies in�nite decimal fractions
by �� Consider the input p � ����� � � � � ����� Then M must produce the output
q � ����� � � � � ���� or the output q � ����� � � � � ����� Consider the case q � �����
There is a computation step in which M writes the �rst symbol � on the output
tape� Up to this step M has read only the �rst k symbols �for some k � �
 from the
input tape� Consider the input sequence q� �� ���k��� Since the �rst k symbols of
q and q� coincide
 also with input q� the machine M will write the symbol � as the
�rst output� But since M is a multiplier
 it must write ���k�� on the output tape�
This is a contradiction� The case q � ���� is handled accordingly�

Therefore
 no Type 	 machine multiplies in�nite decimal fractions by �� Also the
more general problem of multiplying two real numbers in decimal representation
cannot be solved by a Type 	 machine�By Example � two�way output is strictlymore
powerful than one�way output� We continue with examples for non�computable
functions�

Example 	

Let � �� f�� �g and de�ne f �� �� �� �� by

f�p
 ��

�
� if p � ��

� otherwise�

We show that f is not computable� Assume that some Type 	 machine computes f �
Consider the input p �� �� � � � � ��� Then for some number k � �
 M will produce
the output � in k steps� Consider the input p� �� �k���� Since the �rst k symbols of
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p and p� coincide
 and sinceM can read in k steps at most k symbols
M halts with
output � also for input p�� Since f�p�
 � �
 M cannot compute the function f �

Example 


The function f from Example � has no computable proper extension� Assume
 on the
contrary
 that for some w � �� the function f � � �� �� ��
 de�ned by f���
 � w

f��i�p
 � �i for all i � � and p � ��
 is computed by some Type 	 machineM � Then
with input �� for some k � �
 M will produce the output w in k steps� Especially

this implies lg�w
 
 k� Consider the input q �� �k������ Since the �rst k symbols of
�� and q coincide and sinceM can read in k steps at most k symbols
M halts with
output w also for input q� Since lg�w
 
 k we obtain f�q
 �� �k���j w � fM �q
�
Therefore
 M cannot compute f �
In the same way it can be shown that also the function f �� �� �� �� from
Example 	 has no computable proper extension�

In the proofs in Examples �
 � and � only the following fundamental �niteness
property of computable functions f �� �� �� Y �Y � f�����g
 has been used�

Finiteness property �for computable functions


If f�z
 � y
 then any �nite pre�x of the output y is already determined by
some �nite portion of the input z�

This �niteness property is equivalent to continuity w�r�t� the Cantor topology on ��

and the discrete topology on ���

De�nition ��� �Cantor topology on ��
 discrete topology on ��


��
 �d �� fA j A � ��g is called the discrete topology on ���

�	
 �C �� fA�� j A � ��g is called the Cantor topology on ��

���� �C
 is called the Cantor space �over �
�

Every set A � �� is �d�open �i�e� A � �d
� A set U � �� is �C�open �i�e� U � �C

 i�
there is some A � �� with �p � U �� �
w � A
 w is a pre�x of p
 for all p � ���
If p � U 
 already a �nite pre�x w of p su�ces to prove this property� The topology
�d can be generated from a metric space� For p� q � �� de�ne the distance

d�p� q
 ��

����
���
� if p � q

	�n where n is the length of the longest

common pre�x
 otherwise�



��

It is easy to show that ���� d
 is a metric space� A subset X � �� is an open ball

i� it is a closed ball
 i� X � w�� for some word w � �� �w�� � B�w��� 	 	 	�n
 �
Bc�w��� 	�n
 where n �� lg�w

� The set of open balls fw�� j w � ��g is a basis of
the Cantor topology �C � On cartesian products Y��� � ��Yk � Y�� � � � � Yk � f�����g

we consider the product topologies�

For functions f �� �� �� �� the �niteness property can be formulated as follows�
Assume f�z
 � y� Then for any open ball B�y� �
 there is some open ball B�z� �

such that f�B�z� �

 � B�y� �
� But this means that f is continuous in z
 i�e� the
�nitenness property is equivalent to continuity�

Theorem ��	 �computable �� continuous


Every computable function f �� Y� � Y� � � � �� Yk �� Y� is continuous�

Proof

Let f�y�� � � � yk
 � y�� Consider the case Y� � ��� It su�ces to show that for
any neighbourhood w��� of y� there is some neighbourhood X of �y�� � � � � yk
 with
f�X
 � w���� Let M be a Type 	 machine which computes f � Let w��� be a
neighbourhood of y�� Then M with input �y�� � � � � yk
 writes the pre�x w� of y�
in �nitely many steps� During this computation only the pre�x wi of the input yi
on Tape i can be read �i � �� � � � � k
� Then X �� w�Y� � � � � � wkYk is an open
neighbourhood of �y�� � � � � yk
 with f�X
 � w���� The case Y� � �� can be proved
similarly�
�

Therefore
 for functions on �� and �� continuity is a necessary condition for compu�
tability �only continuous functions can be computable
� Continuity
 i�e� the �niteness
property of functions
 is a very elementary constructivity property� In each of the ex�
amples �
 � and � we have proved discontinuity of the function under consideration�
Of course there are also continuous functions which are not computable�

Example �

Let d � � �� � be a total function with range �d
 � f�� �g which is not computable�
Then the functions f �� �� �� ��
 g �� �� �� �� and h � �� �� �� are
continuous but not computable
 where�

f�w
�n
 �� d�n
 for all w � ��� n � ��

g���
 �� div

g��k�q
 �� d�k
 for all k � �� q � ���

h�q
�n
 �� d�n
 for all q � ��� n � ��
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From a Type 	 machine for f 
 g or h one could construct a Turing machine computing
the function d�

An important object in ordinary recursion theory �Rogers �Rog ���
 is an �e�ective
G�odel numbering� � � � �� P 
�� of the set P 
�� of the computable functions
f �� � �� �� The theory of Type 	 computability can be deepened by introducing
�e�ective� notations 	ab �� �� �� P ab of the sets P ab of the computable functions
f �� �a �� �b and �e�ective� representations 
ab �� �� �� F ab of certain sets
F ab of continuous functions f �� �a �� �b �a� b � f�� �g
� De�nitions and some
properties are given in Appendix B� For details see �Wei ���� These naming systems

however
 will not be used in the following�

The composition of computable functions is computable or has a computable exten�
sion� For simplicity we consider only unary functions�

Theorem ��
 �composition of computable functions



Let f �� Y� �� Y� and g �� Y� �� Y� �Y�� Y�� Y� � f�����g
 be computa�
ble�

� If �Y�� Y�
�j ������

 then gf is computable�

� If �Y�� Y�
 � ������

 then gf has a computable extension h such that
dom �gf
 � dom �f
 � dom �h
 � dom �f
�

Proof

Let Mf and Mg be Type 	 machines computing f and g
 respectively� It is possible
to construct from Mf and Mg a Type 	 machine M 
 which simulates alternately
the computations of Mf and Mg taking in turn the output symbols of Mf as the
input symbols for Mg�Mg is simulated until it requires the �rst input symbol
Mf is
simulated until it produces the �rst output symbol
Mg is simulated until it requires
the next input symbol
 etc�� The computable function fM has the desired properties�
�

As a simple consequence of Theorem 	��
 computable functions map computable
elements to computable elements� A subset A � �� is recursively enumerable �r�e�


i� A � dom �f
 for some computable function f �� �� �� ��
 and A is recursive
�or decidable

 i� A and �� n A are r�e� We generalize these basic de�nitions from
recursion theory as follows�

De�nition ��� �r�e� and recursive sets


Consider k � � and Y�� � � � � Yk � f�����g�



��

��
 A set X � Y� � � � � � Yk is called recursively enumerable �r�e��
 i�
X � dom �f
 for some computable function f �� Y� � � � �� Yk �� ���

�	
 For U � W � Y� � � � �� Yk we call U r�e� in W 
 i� U � W �X for
some r�e� set X�

��
 For U � W � Y� � � � �� Yk we call U recursive �or decidable
 in W 

i� U and W n U are r�e� in W �

AssumeM � dom �fM 

 where fM �� Y�� � � ��Yk �� �� for some Type 	 machine
M � This machine M is an �abstract proof system� for the set X � dom�fM 
� If
y � X then M applied to input y halts� The �nite computation can be considered
as a proof for the property �y � X� in this proof system� If y �� X
 then there is no
such a proof�

If y � dom �fM 

 then only a �nite portion of the possible in�nite input y can be
read by M during its �nite computation� Therefore
 any r�e� set is open� Any open
set X � �� has the form A�� for some A � ��� It is easy to show that X � ��

is r�e�
 i� X � A�� for some r�e� �even for some recursive
 subset A � ��� U is
recursive in W 
 i� there is a computable function f �� Y� � � � �� Yk �� �� with
W � dom �f
 and U � f��f�g � W 
 i�e� f�y
 � � �� y � U for all y � W �
The sets U � �� recursive in �� are particularily simple� U is recursive in ��
 i�
U � A�� for some �nite set A � ��� This follows from compactness of ���

Finite or in�nite sequences of symbols can be used as names of other objects like
natural numbers
 rational numbers
 �nite graphs
 rational matrices
 real numbers

subsets of � etc�� Examples are the binary notation �bin �� �� �� � of the natu�
ral numbers and the decimal representation �dec �� �� �� IR of the real numbers
�where � is a su�ciently large alphabet
� We introduce naming systems and redu�
cibilities for comparing them�

De�nition ��
 �notations� representations� reducibility


��
 A naming system of a set M is a notation or a representation of M 

where a notation is a surjective function � �� �� �� M �naming by
�nite strings
 and a representation is a surjective function � �� �� ��
M �naming by in�nite sequences
�

�	
 For functions 
 �� Y �� M and 
� �� Y � �� M � with Y� Y � �
f�����g we call 
 reducible to 
�
 
 
 
�
 i� ��y � dom �


 
�y
 �

�f�y
 for some computable function f �� Y �� Y �� We call 
 and 
�

equivalent
 
 � 
�
 i� 
 
 
 � and 
� 
 
�
Topological reducibility 
t and topological equivalence �t are de�ned
accordingly by substituting �continuous� for �computable��
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If 
 � 
�f 
 we may say that the function f �translates� the naming system 
 into
the naming system 
� �examples� translation from PASCAL to ASSEMBLER
 from
English to German
� For a naming system 
 �� Y �� M there are informations
about the elements ofM 
 which can be obtained computationally from their names�
Translation cannot increase this information� If 
 
 
� and 
� �
 

 we may say that

�names contain more computationally available information than 
��names� As an
example consider the following two notations 
� and 
� of ��� Let A � �� r�e� and
not recursive� De�ne ���w
 � w for all w � ��
 ����w
 � w if w � A
 ����w
 � w if
w �� A
 ���x
 � div otherwise� Then obviously
 �� 
 �� but �� �
 ��� The �rst symbol
of any ���name of a word w is the answer to the �undecidable
 question �w � A #��
This is not the case for ���names� We illustrate De�nition 	�� by an example�

Example 


Let d � �
 d � 	
 and let � be an alphabet with f�� �� �� � � � � d � �g � �� For any
a � �
 	 
 a 
 d
 de�ne a notation �a �� �� �� � of the natural numbers and a
representation �a �� �� �� R�� of the non�negative real numbers as follows �where
�a �� f�� � � � � a� �g
�

dom ��a
 �� ��a n f�g
�a�ak � � � a�
 �� aka

k " � � � " a�a
� �ai � �a


dom ��a
 �� ��a��
�
a

�a�ak � � �a��a��a�� � � �
 �� aka
k " � � � " a�a

� " a��a
�� " � � � �ai � �a


Let Pa �� fe � � j e is a prime factor of ag� Then for any a� b � f	� � � � � dg the
following properties hold��

��
 �a � �b


�	
 �a 
 �b


��
 �a 
 �b
 if Pb � Pa


��
 �a �
t �b
 if Pb �� Pa�

There is a Turing machine which translates a�adic numbers into b�adic numbers
 i�e�
�a 
 �b� By symmetry we have also �b 
 �a
 hence �a � �b� The computable function
f �� �� �� �� with f � w �� w��� translates �b into �b� Since �a 
 �b �by ��

 we
have �a 
 �b� It is not very di�cult to design a Type 	 machine which translates
�a to �b if Pb � Pa� Consider e � Pb n Pa� Then ��e � �b ��c�b � �
�b � �
 � � �
 �
�b ���c"�
�� � � �
 for some c � �b
 but ��e has a unique �a�name p
 for which neither



��

p � ���� nor p � ���a� �
�� As in Example � or � it can be shown that there is no
continuous translator which is correct for input p� Details are left to the reader�

A naming system 
 �� Y ��M transforms e�ectivity concepts from Y to M � First
we de�ne computable points and open
 r�e� and recursive subsets�

De�nition ���

Let 
i �� Yi ��Mi �i � �� � � � � k
 be naming systems�

��
 x �M� is 
��computable
 i� there is a computable element y � Y� with

��y
 � x�

�	
 X �M� � � � ��Mk is �
�� � � � � 
k
�open ��r�e�
 �recursive

 i�

f�y�� � � � � yk
 � Y� � � � �� Yk j �
��y�
� � � � � 
k�yk


 � Xg
is open �r�e�
 recursive
 in dom �
�
� � � �� dom �
k
�

For any naming system 
 �� Y �� M 
 the set �� �� fX � M j X is

�open g is called the �nal topology of 
�

Example �

Let �bin �� �� �� � be the binary notation of �� Every n � � is �bin�computable

every subset A � � is �bin�open� A subset A � � is �bin�r�e�
 i� it is r�e�� Let �dec be
the representation of real numbers by in�nite decimal fractions�

��
 Every rational number is �dec�computable� For a proof notice that the decimal
names of the rational numbers are periodic�

�	

p
	 is �dec�computable� A simple trial and error search by squaring �nite decimal

fractions yields a sequence p � �� with �dec�p
 �
p
	�

��
 For any X � IR
 X is open �� X is �dec�open�

We sketch a proof� Let X � IR be open� Let p � ���decX� Since X is open

there is some n � � with ��dec�p
 � ���n� �dec�p
 " ���n� � X� Let wp � ��

be the pre�x of p containing the �rst n digits after the decimal point� Then
�dec�wp�� � dom ��dec

 � X
 i�e� p � wp�� � dom ��dec
 � ���dec�X
� This means

p has an open neighbourhood in ���decX� Therefore �

��
decX is open in dom ��
� Let

X be ��open� Consider x � X and x � � �w�l�g�
� There is some p � �� with
�dec�p
 � x such that q�j �� whenever p � wq with w � �� and q � f�� � � � � �g��
Since ���decX is open in dom ��dec
 there are some w � �� and q � f�� � � � � �g�
with p � wq and w�� � dom ��dec
 � ���dec�X
� Since q�j �

� we obtain

x � �dec�wq
 � ��dec�w��
� �dec�w��

 � �dec�w�
�
 � X�
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There is another p� � �� with �dec�p�
 � x and q�j �� whenever p� � wq with
w � �� and q � f�� � � � � �g�� As in the �rst case we conclude that there is some
pre�x w� of p� with

x � ��dec�w���
� �dec�w
���
� � X�

Therefore x � I � X for some open interval I
 This shows that X is open�

Notice that the �nal topology �� of 
 �� Y ��M is indeed a topology onM � Next

we de�ne relative computability and continuity of functions and relations�

De�nition ���� �relatively e	ective relations and functions


For i � �� � � � � k let 
i �� Yi ��Mi be naming systems�

��
 A relation Q � M� � � � � �Mk �M� is �
�� � � � � 
k� 
�
�computable ��
continuous

 i� there is some computable �continuous
 function f ��
Y� � � � �� Yk �� Y� with

�
��y�
� � � � � 
k�yk
� 
�f�y�� � � � � yk

 � Q

whenever 
x��
��y�
� � � � � 
k�yk
� x
 � Q�

�	
 A function F � M� � � � � �Mk �� M� is �
�� � � � � 
k� 
�
�computable
��continuous

 i� there is some computable �continuous
 function f ��
Y� � � � �� Yk �� Y� with

F �
��y�
� � � � � 
k�yk

 � 
�f�y�� � � � � yk


whenever F �
��y�
� � � � � 
k�yk

 exists�

Relative computability �continuity
 of a relation Q can be considered as an e�ec�
tive version of the mere existence statement ��x�� � � � � xk
�
x�
Q�x�� � � � � xk� x�
� If
Q is �
�� � � � � 
k� 
�
�computable
 some computable function f transforms any name
�y�� � � � � yk
 of �x�� � � � � xk
 from the domain of Q into a name y� of some x� such
that Q�x�� � � � � xk� x�
� Roughly speaking
 for each �x�� � � � � xk
 we can determine
some x� with Q�x�� � � � � xk� x�
� If in ��

 �
��y�
� � � � � 
k�yk

 � �
��y��
� � � � � 
k�y

�
k



implies 
�f�y�� � � � � 
k
 � 
�f�y��� � � � � y
�
k

 then there is a �computable or continuous


function G �� M� � � � ��Mk �� M� with �x�� � � � � xk� G�x�� � � � � xl

 � Q� Such a
function G is called a choice function of Q� A relation Qmay be computable without
having a continuous choice function �see Example �� below
� De�nition 	����	
 is
a special case of 	�����
 where Q is single�valued� A function F is �
�� � � � � 
k� 
�
�
continuous
 i� some continuous function transforms any name �y�� � � � � yk
 of some
�x�� � � � � xk
 � dom�F 
 into some name y� of F �x�� � � � � xk
� Notice that by de�ni�
tion every restriction F � of F is �
�� � � � � 
k� 
�
�continuous ��computable
 if F is
�
�� � � � � 
k� 
�
�continuous ��computable
� A Type 	 machine �computing� some re�
lation Q or some function F actually transforms merely sequences of symbols� it is
the user who interprets these sequences as names of objects�



�


Example ��

De�ne the enumeration representation En �� �� �� 	� of the set of subsets of �
by

n � En�p
 ��� ��n���� is a subword of p

for all n � � and p � ��
 and let �bin �� �� �� � be the binary notation of �� �We
assume f�� �g � ��
 Then the following properties hold�

��
 A � � is En�computable �� A is r�e��

�	
 f�A�n
 � 	� � � j n � Ag is �En� �bin
�r�e��
��
 f�A�n
 � 	� � � j n �� Ag is not �En� �bin
�open�
��
 f�A�n
 � 	� � � j n � Ag is �En� �bin
�computable�
��
 There is no �En� �bin
�continuous function

f �� 	� �� � with f�A
 � A for all A�j ��

We sketch the proofs�

��
 This is a simple recursion theoretic exercise�

�	
 LetM be a Type 	 machine which for input �p�w
 searches in p for the subword
��n����
 where n �� �bin�w
� M halts
 i� such a subword has been found�

��
 We have �En���
� �bin��

 � Q� �� f�A�n
 j n �� Ag� Assume
 Q� is
�En� �bin
�open� Then for some k
 �En�q
� �bin��

 � Q� for all q � �k��� But
q �� �k������ � �k�� and �En�q
� �bin��

 �� Q��

��
 Let M be a Type 	 machine with fM �� �� �� ��
 which searches in input
p � �� for the �rst appearence of a subword ��m����� If such a word is found
then a word w with �bin�w
 � m is written on the output tape�

��
 Suppose
 there is some continuous function g �� �� �� �� with �bing�p
 �
f En�p
 whenever En �p
�j �� Then g�������
 � �
 g��������
 � �� By conti�
nuity of g there is some k with g������k��
 � f�g
 g�������k��
 � f�g� Let
p �� �����k������� and q �� ������k������ � Then � � �bing�p
 � f En�p
 �
ff�� �g � f En�q
 � �bing�q
 � � �contradiction
�

Notice that the set Q � f�A�n
 j n � Ag is �En� �bin
�computable but has not even
a �En� �bin
�continuous choice function f �� 	� �� ��

The computability concepts induced on sets by naming systems �Def� 	��
 	���

remain unchanged
 if the naming systems are replaced by equivalent ones
 and cor�
respondingly the induced topological properties remain unchanged
 if the naming
systems are replaced by topologically equivalent ones� For the proof only the fact
that the computable and the continuous functions are closed under composition is
needed�
On the other hand
 non�equivalent naming systens induce di�erent computability
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theories on M � Therefore
 the induced e�ectivity concepts on a set �according to
Defs� 	�� and 	���
 depend crucially on the underlying naming system�

In TTE
 computability on a set M is introduced in two steps�

��
 de�nition of computable functions on �nite or in�nite sequences of symbols


�	
 de�nition of a naming system 
 �� Y ��M �

As for number functions we are not interested in arbitrary computability concepts
on M but only in those which meet some intuition
 which are �natural�� In Step �

which is independent of M 
 we choose the Type 	 computable functions
 which are
�e�ective� by our generalized Church�Turing thesis �see Chapter 	
� �E�ectiveness�
of a naming system of a set M can be de�ned only relative to some structure on M �
It is an essential feature of TTE that e�ectiveness of the introduced naming systems
is justi�ed by general principles�
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In this chapter we introduce standard naming systems for the natural
 the rational
and the real numbers and study the induced computability� We give examples of
computable real numbers
 characterize the �C�open
 �r�e� and �recursive sets and
prove computability of functions like addition and multiplication and of real analytic
functions with computable power series�

From now on let � be a su�ciently large �nite alphabet containing all the symbols we
shall need� Let �bin �� �� �� � be the one�to�one binary notation �without leading
zeros
 of the natural numbers
 and let �Q �� �� �� � be the one�to�one binary
notation of the rational numbers by signed reduced fractions of binary numbers �for
an exact de�nition see Appendix C
� These notations and all the equivalent ones are
usually called �e�ective�� Are there other �e�ective� notations of the natural und
rational numbers# In Appendix C we show
 that the equivalence classes of �bin and
�Q can be characterized by simple e�ectivity properties and a maximality principle�
In the following text we shall use the abbreviations�

u �� �bin�u
 for all u � dom��bin
�

u �� �Q�u
 for all u � dom��Q
�

As an example
 addition on � is computable w�r�t� �bin
 i�e� f � �� �� � with
f�x� y
 �� x"y is ��bin� �bin� �bin
�computable
 in more detail� there is a computable
function g �� ����� �� �� with f�u� v
 � �bing�u� v
 for all u� v � Dom��bin
� Also
multiplication
 exponentiation
 arithmetical subtraction and division
 minimum and
maximum are computable w�r�t� �bin� On the rational numbers addition
 subtrac�
tion
 multiplication
 division
 maximum and minimum are computable w�r�t� �Q�
The most popular representation of the set IR of the real numbers is that by in��
nite decimal fractions �decimal expansions

 �dec �� �� �� IR� Unfortunately
 very
simple functions like x �� �x are not ��dec� �dec
�computable �see Example 	��
� This
already indicates that �dec in not adequate for a foundation of computability on IR

since real number multiplication should be computable� To overcome this problem
we introduce two standard representations of IR
 the interval representation and the
Cauchy representation�

De�nition ��� �interval and Cauchy representations


De�ne two representations �I �� �� �� IR �interval representation
 and
�C �� �� �� IR �Cauchy representation
 as follows�

�I�p
 � x� i� there are u�� v�� u�� v�� � � � � dom��Q
 with

p � u��v��u��v� � � � and x � sup
i��

ui � inf
i��

vi�

�C�p
 � x� i� there are u�� u�� � � � � dom��Q
 with

p � u��u�� � � � � ��k
��i � k
jui � ukj � 	�k and x � lim
i��

ui�
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If p � u��v��u� � � � and �I �p
 � x then x is the only point in the intersection of all
closed intervals �ui� vi�� If �C�p
 � x with p � u��u�� � � �
 then �ui
i�� is a Cauchy
sequence of rational numbers converging to x with �speed� 	�i and consequently

juk � xj 
 	�k for all k � �� Therefore
 we can associate with u��u�� � � � the special
sequence �In
n�� of nested intervals where In �� �un�	�n�un"	�n�� Notice that we
consider only these fast converging Cauchy sequences as names� First we compare
the three representations �dec
 �I and �C �

Lemma ��� �relation between decimal and Cauchy representation


�dec 
 �I � �C

�C �
t �dec

Proof

�dec 
 �I � A Type 	 machine M can be constructed which with input
p � �ak � � �a��a��a�� � � � � dom��dec
 �� � f"��g� ai � f�� � � � � �g
 writes
u��v��u��v�� � � � on the output tape
 where ui � r and vi � r " ���i if � � "

ui � �r � ���i and vi � �r if � � �
 and r � Q is the rational value of
the �nite decimal fraction ak � � �a��a�� � � � a�i� Then fM translates �dec into �I
 i�e�
�dec�p
 � �IfM�p
 for all p � dom��dec
�

�I 
 �C � LetM be a Type 	 machine which with input p � u��v��u��v� � � � � dom��I 

�ui� vi � dom��Q

 writes q �� w��w�� � � � on the output tape
 where for i � �� �� � � �
the word wi is determined as follows�M searches for a pair of natural numbers �k�m

with jvm � ukj � 	�i and then sets wi � vm� Since p � dom��I 

 the search must be
successful
 its result guarantees wi� 	�i � �I �p
 
 wi
 hence jwi�wnj � 	�i for all
n � i� Therefore �I�p
 � �C�q
�

�C 
 �I � Let M be a Type 	 machine which with input p � w��w�� � � � � dom��C

writes u��v��u��v� � � � on the output tape where ui �� wi � 	�i and vi �� wi " 	�i�
Then obviously �C�p
 � �IfM �p
�

�C �
t �dec� Assume
 there is some continuous function f �� �� �� �� with �C�p
 �
�decf�p
 for all p � dom��C
� Since �C����� � � �
 � � � IR
 f�p
 � ����� � � � or
f�p
 � ����� � � �� Consider the case f�p
 � ����� Since f is continuous
 there is some
n � � such that f����
n��
 � ������ Let u �� � " 	�n and q �� ���
n�u�
�� Then
�C�q
 � �
 but f�q
 � �����
 hence �decf�q
 
 � � �C�q
� Therefore f does not
translate q correctly� The case f�p
 � ���� is handled accordingly�
�

By Lemma ��	
 the decimal�names contain more continuously accessible information
than �C�names� Below we shall give convincing arguments that not the decimal
representation but the Cauchy�representation is adequate for de�ning computability



��

on the real line� Since �C � �I we may use also �I instead of �C for investigating
computability on IR
 whenever appropriate�

Convention

In the following
 �bin
 �Q and �C will be our standard naming systems of �
 IQ and IR

respectively� For simplicity
 in connection with �computable�
 �r�e�� and �recursive�
we shall omit pre�xes like �bin�
 ��C � �Q
� etc� and shall say �computable� instead
of ���bin� �bin
�computable�
 �r�e�� instead of ��Q� �C� �bin
�r�e� etc� �

By De�nition 	��
 the computable real numbers are �by the above convention
 those
numbers
 which have computable �C�names or computable �I�names �Lemma ��	
�

Example � �computable real numbers


��
 Every rational number is computable�
Consider r � IQ� De�ne u � �� by u � r
 de�ne q �� u�u� � � � � �u�
� � ���
Then q is computable and �C�q
 � r�

�	

p
	 is computable�

De�ne f � � �� � by f�n
 �� that k � � with k� � 	 	 	�n 
 �k " �
�� Then f
is computable� Let un �� f�n
 	 	�n� Then p � u��u��u� � � � is computable and
�C�p
 �

p
	�

��
 log� � is computable�
De�ne f � � �� � by f�n
 �� that k � � with �k � �n 
 �k��� Then f is
computable� Let un �� k�n and vn �� �k " �
�n� Then p � u��v��u��v� � � � is
computable and �I�p
 � log���
�

��
 For A � � de�ne xA �� �f	�i j i � Ag� Then

xA is computable �� A is recursive�

Assume that A is recursive� For k � � de�ne uk � �� by uk �� �f	�i j i �
A� i 
 kg� Then p � u��u�� � � � is computable with xA � �C�p
�

Assume that xA is computable� For all w � a� � � � ak �k � �� a�� � � � � ak � f�� �g

let xw �� �fai 	 	�i j i 
 kg� If xA � xw for some w � �� then xA is computable
by ��
� Assume xA�j xw for all w � ��� By assumption
 xA � �C�p
 for some
computable p � u��u�� � � � � ��� For any w � f�� �g� there is some i � � with
ui " 	�i � xw or xw � ui � 	�i� In the �rst case we have xA � xw
 in the
second case xw � xA� Therefore W �� fw j xw � xAg is decidable� Compute
a sequence y�� y�� � � � of words inductively by y� �� �� if x� � xA
 � otherwise


yk�� �� �yk� if xyk� � xA� yk� otherwise
� Then � is the last symbol of yk
 i�
k � A� Therefore
 A is recursive�
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Further examples of computable real numbers can be obtained by applying compu�
table functions to computable arguments �see below
� The limit of any computable
sequence of computable real numbers with computable modulus of convergence is
computable�

Theorem ��� �limit of computable sequence with computable convergence


Let �yi
i�� be a ��bin� �C
�computable sequence of real numbers such that
��i� j � m�n

jyi � yjj � 	�n for some computable function m � � �� �
�m is called a computable modulus of convergence
� Then x �� lim

i��
yi is

computable�

Proof

By assumption
 for any i� j � � a word uij � dom��Q
 can be computed such that
yi � �C�ui��ui�� � � �
� Let vi �� um
i����i�� for all i � �� Then q �� v��v�� � � � is
computable� For all k � i we have

jvi � vkj 
 jum
i����i�� � ym
i���j" jym
i��� � ym
k���j" jym
k��� � um
k����k��j

 	�i�� "max�	�i��� 	�k��
 " 	�k��

� 	�i

and

jvi � xj 
 jum
i����i�� � ym
i���j" jym
i��� � xj

 	�i�� " 	�i��


 	�i�

We obtain x � �C�q
� Therefore
 x is �C�computable�
�

Example �

Let A � � be r�e� but not recursive� De�ne xA � IR by xA �� �f	�i j i � Ag� By
Example ���
 xA is not computable� Since A is r�e� and not recursive
 there is some
total injective computable function f � � �� � with A � range�f
� Obviously

xA � �f	�f
n� j n � �g� De�ne a sequence s �� �yn
n�� by yn � �f	�f
k� j k 
 ng�
Then s is ��bin� �C
�computable �even ��bin� �Q
�computable
 and increasing� Since
its limit xA is not computable
 it cannot have a computable modulus of convergence
by Theorem ���� The idea is from E� Specker �Spe ����

The set of computable real numbers is a denumerable subset of IR
 however it cannot
be enumerated �e�ectively��We prove a positive version of this statement� For every



��

computable enumeration of computable real numbers a computable number which
is not enumerated can be determined�

Theorem ���

Let �xi
i�� be a ��bin� �C
�computable sequence� Then a computable number
x with x�j xi for all i � � can be determined�

Proof

By diagonalization we construct a computable number x such that x�j xi for all
i � �� For any i � � we can determine a sequence qi �� ui��ui�� � � � with xi � �C�qi


therefore
 there is a computable function g �� �� �� �� with g��i
 � ui��i��� We
obtain j�Qg��i
 � xij � �

�
	 ��i for all i � �� We compute ui� vi � dom��Q
 for

i � �� �� � � � as follows�

u� �� �Qg��
i
 " �� v� �� u� " ��

Assume ui�� and vi�� have been determined� De�ne

ui �� ui��� vi �� ui " ��i if �Qg��i
 � ui�� "
�
� 	 ��i�

ui �� ui�� " 	 	 ��i� vi �� vi�� otherwise�

The construction guarentees� vi � ui " ��i
 xi �� �ui� vi� and �ui��� vi��� � �ui� vi��
Therefore x �� �I�u��v��u��v�� � � �
 exists and x�j xi for all i � �� Additionally
 the
sequence u��v��u��v�� � � � � �� is computable
 hence x is �I�computable
 i�e� �C�
computable�
�

Next
 we characterize the �C�open
 the r�e� and the recursive subsets of IR�

Theorem ��	

For any X � IR

��
 X is �C�open �� X is open�

�	
 X is �C�r�e� �� �
Y � dom��Q
� dom��Q
� Y r�e�


X �
Sf�u� v
 j �u� v
 � Y g�

��
 X is �C�recursive �� X � � or X � IR�
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Proof

��
 Let X be �C�open� Consider x � X� There are words ui � dom��Q
 with
ui � 	�i � ui�� � 	�i�� � x � ui�� " 	�i�� � ui " 	�i �i � �
� We obtain
�C�u��u�� � � �
 � x� Since ���C �X
 is open in dom��C 

 there is some k with
�C�u�� � � � �uk���
 � X� Since x � �uk � 	�k�uk " 	�k
 � �C�u�� � � � �uk���

 x
has an open neighbourhood inX� Therefore
X is open� On the other hand
 letX
be open� Consider p � u��u�� � � � � ���C �X
� Since X is open
 there is some i � �
such that ��C�p
�			�i� �C�p
"			�i� � X� For any q � V �� u��u�� � � � �ui����
dom��C
 we have jui � �C�q
j 
 	�i
 therefore j�C�q
� �C�p
j 
 	 	 	�i
 hence
�C�q
 � X� Therefore V is an open neighbourhood of p in ���C �X
� This shows
that X is �C�open�

�	
 Let X be �C�r�e� Then there is some r�e� set W � �� with ���C �X
 � W�� �
dom��C
� LetM be a Type 	 machine which for input �u� v
 � ����� works as
follows� M searches systematically for some w � W and words u�� u�� � � � � uk �
dom��Q
 such that �cf� ��
 of this proof
�

u��� � u��	�� � � � � � uk�	�k � uk"	�k � � � � � u�"	�� � u�"�

w is a pre�x of u��u�� � � � �uk�

u � uk � 	�k 
 v � uk " 	

�k�

M halts as soon as such words have been found� By the proof of ��
 above

Y �� dom�fM 
 has the desired properties� On the other hand
 letX �

Sf�u� v
 j
�u� v
 � Y g with r�e� Y � Let M be a Type 	 machine which for input p �
u��u�� � � � � dom��C
 works as follows�M searches systematically for some k � �
and some �u� v
 � Y with �uk�	�k�uk"	�k� � �u� v
�M halts
 i� the search has
been successful� Obviously
 dom�fM 
 � dom��C 
 � fp j �C�p
 � Xg� Therefore
X is �C�r�e��

��
 If X is �C�recursive
 X is �C�r�e� and IR nX is �C�r�e�� Therefore X and IR nX
are �C�open and open by ��
� � and IR are the only sets X with this property

since the real line is connected�

�

By Theorem �����

 the �nal topology of �C is the usual topology �IR on IR generated
by the open intervals� By ��
 IR has no non�trivial �C�recursive subsets� No non�
trivial property of real numbers can be decided if only �C�names are available� The
characterizations hold accordingly for X � IR

n �n � 	
�

Lemma ��
 �some r�e� subsets of IR� IR�


Let a � IR be computable� The sets

fx � IR j x � ag� fx � IR j x � ag� fx � IR j x�j ag�
f�x� y
 � IR� j x � yg� f�x� y
 � IR� j x�j yg

are recursively enumerable�



��

Proof

We consider only the most general case x � y� Let M be a Type 	 machine which
for input �p� q
 � �u��u�� � � � � v��v�� � � �
 � dom��C
 � dom��C
 searches for some
k � � with uk "	

�k � vk � 	�k and halts as soon as such a k has been found� Then
fM �p� q
 exists
 i� �C�p
 � �C�q
� The other proofs are left to the reader�
�

The complements of the above sets fx j x 
 ag etc� are not r�e�
 since they are
not open �Theorem ������

� The r�e� subsets of IRn are closed under �nite union
and intersection� By Lemma ���
 open intervals with computable boundaries are
r�e�� Let A � � be r�e� and not recursive� Then the interval ���xA

 where xA �
�f	�i j i � Ag
 is r�e� �for a proof use Theorem ����	


 but by Example � its upper
boundary is not computable� Many of the functions studied in �classical� Analysis
are computable�

Theorem ��� �some computable real functions


��
 The real functions �x� y
 �� x " y
 �x� y
 �� x 	 y
 �x� y
 �� max�x� y

and x �� ��x are computable�

�	
 Let �ai
i�� be a ��bin� �C
�computable sequence and let R� � � be
the radius of convergence of the power series �aixi� For each R with
� � R � R� the real function fR de�ned by fR�x
 � ��aixi if jxj 
 R

div otherwise
 is computable�

Proof

��
 We use the fact that the given functions are continuous and that their restric�
tions to IQ �which is dense in IR
 are ��Q� �Q
�computable�

x" y�

Let M be a Type 	 machine which for input �p� q

 p� q � dom��C

 p �
u��u�� � � �
 q � v��v�� � � �
 writes the sequence r �� y��y�� � � � on the output
tape
 such that

yn � un�� " vn��

for all n � �� Let x � �C�p
 and y � �C�q
� For all n � k we have

jyn � ykj 
 jun�� � uk��j" jvn�� � vk��j � 	 	 	�k�� � 	�k�
jyn � �x" y
j 
 jun�� � xj" jvn�� � yj 
 	 	 	�k�� � 	�k �

We obtain r � fM�p� q
 � dom��C
 and �C�r
 � x" y�
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x 	 y�
Let M be a Type 	 machine which for input �p� q

 p� q � dom��C

 p �
u��u�� � � �
 q � v��v�� � � �
 writes the sequence r �� y��y�� � � � on the output
tape
 such that

yn � um�n 	 vm�n

for all n � � where m is the smallest natural number with

ju�j" � 
 	m�� and jv�j" � 
 	m���

Let x �� �C�p
 and y �� �C�q
� For all n � � we have

junj 
 jun � u�j" ju�j 
 	m��

and correspondingly jvnj 
 	m��� For all k � n we have

jyn � ykj 
 jum�n 	 vm�n � um�k 	 vm�kj

 jum�n�vm�n � vm�k
j" jvm�k�um�n � um�k
j
� 	 	 	m�� 	 	�m�n � 	�n

and correspondingly jyn � x 	 yj 
 	�n� We obtain r � fM�p� q
 � dom��C
 and
�C�r
 � x 	 y�

max�x� y
�

Let M be a Type 	 machine which for input �p� q

 p� q � dom��C

 p �
u��u�� � � �
 q � v��v�� � � �
 writes the sequence r �� y��y�� � � � on the output
tape
 such that

yn � max�un� vn


for all n � �� Let x � �C�p
 and y � �C�q
� Assume k � n and s ��
max�un� vn� uk� vk
� If s � un
 then

jyn � ykj � un �max�uk� vk
 
 un � uk � 	�k�

By symmetry
 for the other cases s � fvn� uk� vkg we obtain jyn � ykj � 	�k

in the same way� Correspondingly jyn �max�x� y
j 
 	�k is proved� Therefore
r � fM �p� q
 � dom��C
 and ��r
 � max�x� y
�

��x�

Let M be a Type 	 machine which for input p � u��u�� � � � � dom��C
 and
�C�p
 � x�j � works as follows� First
 M searches for the �rst N � � with
juN j � 	 		�N � As soon as such a number N has been found
M writes v��v�� � � �
on its output tape
 where vk � ��u�N�k for all k � �� Since juij � 	�N for all
i � N 
 vk exists for all k � �� For all k� n with k � n we obtain

jvk � vnj � j��u�N�k � ��u�N�nj
� ju�N�n � u�N�kj�ju�N�njju�N�kj
� 	��N�k 	 	N 	 	N 
 	�k



�


and correspondingly jvk � ��xj 
 	�k� Therefore r � fM�p
 � dom��C
 and
�C�r
 � ��x�

�	
 It su�ces to prove the theorem for rational numbers R� Let R� � IQ be some
rational number withR � R� � R�� ByCauchy
s estimate
 there is some number
M � � with

jaij � M 	R�i
�

for all i � �� Given some x with jxj 
 R
 for each n we shall approximate

fR�x
 �
�P
i��

aix
i by dn ��

NP
i��

cib
i
 where N is su�ciently large and b� c�� � � � � cN

are rational numbers where jb � xj and the jai � cij are su�ciently small such
that jf�x
 � dnj � 	�n��� Let M be a Type 	 machine which for any input
p � u��u�� � � � � dom��C 
 with jxj 
 R �where x � �C�p

 generates a sequence
q � v��v�� � � � �vi � dom��Q


 where vn is computed as follows�

� M� determines some N � � such that

M 	 �R�R�

N�� 	R���R� �R
 � 	�n���

� M� determines some b � IQ
 jbj 
 R�
 with

jx� bj 	
NX
i��

M�R� 	 i � 	�n���

� For any i � �� � � � � N the machineM� determines some ci � IQ with

jai � cij jbji � 	�n����N " �
�

� De�ne vn ��
NP
i��

ci 	 bi�

For all x� b � IR with jxj� jbj 
 R� and all i � � we have

jxi � bij � jx� bj 	 jxi�� " xi��b" � � � " bi��j 
 jx� bj 	 i 	Ri��
� �

We obtain for jxj 
 R�

jfR�x
� vnj

 jfR�x
�

NP
i��

aix
ij" j

NP
i��

aix
i �

NP
i��

cib
ij


 j
�P

i�N��

aix
ij" j

NP
i��

�aixi � cib
i
j



�P

i�N��

M 	R�i
� 	Ri "

NP
i��

jaixi � aib
ij"

NP
i��

jaibi � cib
ij


M 	 �R�R�
N�� 	R���R� �R
 "
NP
i��

jaijjx� bj 	 i 	Ri��
� "

NP
i��

jai � cijjbji

� 	�n�� " jx� bj
NP
i��

i 	M�R� " 	�n��

� � 	 	�n��
� 	�n���
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Consequently
 for all k � n we have jvk � vnj � 	�n� Therefore fR�x
 �
�C�v��v�� � � �
�

�

In general
 for computable �ai
i�� the function f�x
 � �aixi is not computable on
fx j jxj � R�g where R� is the radius of convergence�

Example �

There is some computable injective function h � � �� � such that � � range�h

and A �� range�h
 is r�e� but not recursive� De�ne cn �� � " 	�h
n� and an �� cnn
for all n � �� Then the sequence �an
n�� is computable
 and the power series �anxn

has radius of convergence �� By Theorem ���
 f�x
 �� �anxn is computable on
every interval ��� r� with � � r � �� We show that f is not computable on ��� �
�
If f is computable on ��� �

 there is a computable function M � � �� � with
�an��� 	�k
n 
M�k
� De�ne g � � �� � by

g�k
 �� maxfn j h�n
 
 kg�

We obtain for all k � �

M�k " 	
 � ag
k���� 	�k��
g
k�
� ��� " 	�hg
k�
��� 	�k��

g
k�
� ��� " 	�k
��� 	�k��

g
k�
� �� " 	�k��
g
k�

therefore

g�k
 
 log�M�k " 	

� log�� " 	�k��
�

Since M 
 log and division are computable �see below

 g�k
 
 H�k
 for some com�
putable function H � � �� �� We obtain k � A �� 
n 
 H�k
�h�n
 � k by the
de�nition of g� Therefore
 A must be recursive �contradiction
� We conclude that
�anxn is not computable on ��� �
�

Since the power series for ex
 sinx
 arctan x
 ln�� " x
 etc� are computable
 these
functions are computable by Theorem ����	
� Since the computable real functions
are closed under composition
 many other real functions are computable �at least on
appropriate subsets of their domains

e�g� x �� �x
 �x� y
 �� min�x� y

 x �� jxj
 any
polynomial function with computable coe�cients
 x �� p

x
 x �� lnx
 �x� y
 �� xy

�x� y
 �� ����x� " y�
 etc� � Notice that every restriction of a computable function
is computable� Since computable real functions map computable real numbers to



��

computable real numbers
 numbers like e � e�
 � � �	 arc sin��
�

 ��� ln�e� � �



cos�
p
	� �

 �� etc� are computable�

The join of two computable real functions at a computable point is computable�

Lemma ��
 �join of two functions


Let f�� f� �� IR �� IR be computable functions
 let a � IR be computable
with f��a
 � f��a
� Then f �� IR �� IR de�ned by

f�x
 ��

�
f��x
 if x 
 a

f��x
 otherwise

is computable�

Proof

We only sketch a proof� Consider i � f�� 	g� Since fi is computable
 there is a Type
	 machineMi which computes fi w�r�t� the Cauchy representation �C� For any input
p and any n � � we can compute an interval I ip�n with rational boundaries such that

fi�C�p
 � I ip�n

lim
m��

length �I ip�m
 � �

if p � dom�f�C 
�
There is some computable sequence q � t��t�� � � � �ti � dom��Q

 with a � �C�q
�
Let M be a Type 	 machine which for input p � u��u�� � � � � dom��C
 produces a
sequence v��w��v��w�� � � �
 where the words vn� wn � dom��Q
 are de�ned as follows�

�vn�wn� ��

����
���

I�p�n if un " 	�n � tn � 	�n
I�p�n if tn " 	�n � un � 	�n
Jp�n otherwise

where Jp�n is the smallest interval containing I�p�n and I
�
p�n� For all p � dom�f�C 
 we

obtain f�C�p
 � �IfM �p

 therefore
 f is computable�
�

Let us call a function f �� IR �� IR a polygon
 i� there are real numbers
x�� y�� � � � � xn� yn with

x� � x� � � � � � xn
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and

f�x
 ��

����
���

div if x � x� or x � xn

y where �x� y
 is on the straight line connecting

�xi��� yi��
 and �xi� yi
� if xi�� 
 x 
 xi�

The points �x�� y�
� � � � � �xn� yn
 are called vertices of f � As a corollary of lemma ���
we obtain that every polygon function with computable vertices is computable�

Computability on the complex plane IC is de�ned by identifying IC with IR
�� For

any function f �� IC �� IC there are two functions f�� f� �� IR
� �� IR de�ned by

f�x" iy
 � f��x� y
" if��x� y
� The function f is called computable
 i� f� and f� are
computable� Computability of complex addition
 multiplication
 division
 z �� jzj
and z �� arg�z
 follows from Theorem �����
� The proof of Theorem ����	
 can
easily be generalized to complex power series� Therefore
 also complex functions like
sin�z

 ez
 �w� z
 �� wz
 ln�z
 etc� are computable �on appropriate subsets of their
domains
�

We conclude with an example of a computable binary relation which has no com�
putable choice function�

Example �

Let S �� f�x� n
 � IR � � j jx� nj � �g� Then S as a relation is computable
 more
precisely ��C� �bin
�computable� But S has no continuous choice function
 i�e� there
is no ��C� �bin
�continuous function f � IR �� � with �x� f�x

 � S for all x � IR�
We prove both statements�

Let M be a Type 	 machine which for input p � u��u�� � � � � dom��C 
 determines
some word w with j�bin�w
 � u�j 
 ��	� Then j�C�p
 � �binfM �p
j � � for all p �
dom��C
� Therefore
 S is computable� Notice
 that we cannot guarantee ��C � �bin
�
extensionality of fM 
 i�e� we cannot guarantee �binfM�p
 � �binfM �p�
 if �C�p
 �
�C�p�
�

Assume that there is some ��C � �bin
�continuous function f � IR �� � with jx �
f�x
j � � for all x � IR� Then there is some continuous function g �� �� �� ��

with j�C�p
��bing�p
j � � for all p � dom��C
� We have f��
 � � and f��
 � �� Let
y �� inffx j f�x
 � �g� There is some p � u��u�� � � � � dom��C
 such that �C�p
 � y
and �C�u�� � � � �uk���
 is a neighbourhood of y for all k � �� Consider the case
f�y
 � �� Then g�p
 � �� By continuity of g there is some k with g�u�� � � � �uk���
 �
f�g� There is some q � u�� � � � �uk��� with f�C�q
 � �� For this q we must have
g�q
 � � �contradiction
� The case f�y
 � � is treated accordingly�
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� E�ective Representation of the Real

Numbers

In Section � we have introduced ad hoc the Cauchy representation �C �� �� �� IR

of the real numbers and studied the induced computability on IR� Since we are not
interested in some arbitrary computability theory on IR
 we need a good justi�cation
for the choice of the Cauchy representation �or some equivalent one
�

In this section we explain why the Cauchy representation is topologically natural
for the real line
 and why it is computationally natural� We mention the concept
of admissible representations and formulate the important continuity theorem for
admissible representations� Finally we explain why several other representations of
IR cannot be natural�

We assume without further discussion �see Appendix C
 that our notation �Q ��
�� �� IQ of the rational numbers induces �the natural� computability on IQ� Let Kt

be the set of all representations � of IR such that

f�u� v� p
ju � ��p
 � vg is open in �� � �� � dom��
�

A representation � is in Kt i�

u � ��p
 � v �� already a �nite portion of p guarantees u � ��p
 � v

or
 more formally


u � ��p
 � v �� �
w
�w is a pre�x of p and u � ��q
 � v for all q � w��
�

This means that �nite portions of p admit to �locate� ��p
 arbitrarily precisely by
rational numbers from below and above on the real line� Representations not having
this property don�t seem to be very useful� In fact
 the Cauchy representation �C

the interval representation �I �Def� ���
 and also the decimal representation �dec
are elements of Kt� Since �C �
t �dec
 the class Kt does not consist of a single t�
equivalence class
 but �C is distinguished by maximality in Kt�

Theorem ��� ��C is e	ective for the real line


Let Kt be the set of all functions � �� �� �� IR such that

f�u� v� p
 j u � ��p
 � vg is open in �� � �� � dom��
�

Then for any function � �� �� �� IR

� � Kt �� � is continuous �� � 
t �C�

Thus
 �C is except for equivalence the unique poorest continuous representation of
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IR� If �C�p
 � x then all true properties of the form �u � x � v� �and only these
 can
be obtained from �nite portions of any �C�name p of x� There is a surprising formal
similarity of Theorem ��� to a well known theorem in recursion theory �Wei ���� Let
� � � �� P 
�� be some �e�ective G�odel numbering� of the set P 
�� of the partial
recursive functions f �� � �� �� Let K be the set of all numberungs � � � �� P 
��

such that U� �� f�i� x� y
 � �� j �i�x
 � yg is r�e�� Then � � K �� � 
 �� Notice
that U� is r�e�
 i� � satis�es the �universal Turing machine theorem�� There is a
computational version of Theorem ��� expressing that the Cauchy representation is
not only topologically but also computationally sound�

Theorem ��� ��C is computationally e	ective


Let Kc be the set of all functions � �� �� �� IR such that

f�u� v� p
 j u � ��p
 � vg is r�e� in �� � �� � dom��
�

Then for any function � �� �� �� IR

� � Kc �� � 
 �C �

Thus
 �C is also maximal in the subclass Kc � Kt w�r�t� computable reducibility�
Notice that we have a de�nition of �� is continuous� but no de�nition of �� is
computable�� As in Theorem ���
 � �� � corresponds to the �smn�theorem� and
��� � to the �utm�theorem��

Proof

Assume � � Kc� By assumption
 there is a Type 	 machineM� which for any input
�u� v� p
 � �� � �� � dom��
 halts
 i� u � ��p
 � v� Let M be a Type 	 machine
which with input p � �� tries to produce a sequence u��u�� � � � �ui � dom��Q

 as
follows� For computing un
 by an exhaustive search M tries to �nd some �u� v�m
 �
������� with � � v�u � 	�n such that M� with input �u� v� p
 halts in at most
m steps� If this search is successful
 M chooses un �� u� Then ��p
 � �CfM�p
 for
all p � dom��
�

Assume � 
 �C � By assumption
 there is some Type 	 machine M with ��p
 �
�CfM �p
 for all p � dom��
� Let M � be a Type 	 machine
 which with input �u� v� p

�u� v�� dom��Q

 p � dom��

 works as follows� By simulating M with input p M �

generates the sequence fM�p
 � u��u�� � � � and halts as soon as some n is found with
u � un � 	�n and un " 	�n � v� Then

f�u� v� p
 j u � ��p
 � vg � �� ��� � dom��
 � dom�fM �
�



��

therefore
 � � Kc�
�

Let �IR be the set of open subsets of IR� By Theorem ��� the representation
�C �� �� �� IR is admissible with �nal topology �IR� Appendix D contains a short
de�nition of admissible representations� Here we merely formulate the important
continuity theorem� For a broad discussion see �KW ��
 Wei ��
 Wei ����

Theorem ��� �continuity


For i � �� � � � � k let �i �� �� �� Mi be an admissible representation� For
any function F ��M� � � � ��Mk ��M� we have�

F is continuous �� F is ���� � � � � �k� ��
�continuous�

Since every computable function on �� is continuous and since �C is admissible
 by
Theorem ����
 every computable real function is continuous� Because of its import�
ance we prove this fact directly without using Theorem ����

Theorem ���

Every computable real function is continuous�

Proof

Let f �� IR �� IR be computable� Then f is ��I � �C
�computable� There is a Type
	 machineM such that f�I �p
 � �CfM �p
 for all p � dom�f�I 
� Let O � IR be open
and let f�x
 � O� We have to show that f�I
 � O for some open intervall I with
x � I� There are words ui� vi � dom��Q
 with u� � u� � � � � and v� � v� � � � � such
that x � �I�p
 where p � u��v��u��v�� � � �� There are words w�� w�� � � � � dom��Q

such that fM�p
 � q where q � w��w�� � � � � dom��C
� Since �C�q
 � f�x
 � O and
O is open
 there is some m � � such that �C�w�� � � � �wm���
 � O� For producing
w�� � � � �wm�
 the machine M reads at most u��v� � � � �uk�vk� for some k from the
input tape� Let x� � �uk� vk
� Then there is some q � �� such that x� � �I�p

�
 where
p� � u��v� � � � �uk�vk�q� By the behaviour of M 
 fM�p�
 � w�� � � � �wm���
 hence
�CfM�p�
 � O� We obtain f�x�
 � f�I �p�
 � �CfM �p�
 � O� Therefore f�I
 � O and
x � I for I �� �uk� vk
�



�� � E
ective Representation of the Real Numbers

The general case f �� IR
n �� IR is proved accordingly�

�

At �rst glance very simple discontinuous real functions like the jump j � x ��
�� if x 
 �� � otherwise
 or the Gauss bracket g � x �� bxc �integer part of x

are intuitively computable� Clearly
 these two functions are easily de�nable in our
mathematical language
 but �easily de�nable� does not mean �computable�� This
solves the seeming contradiction�

Some functions can be made computable by choosing appropriate representations�
Consider a representation � of the real numbers such that p��
 determines the sign
of x if ��p
 � x� Then of course the jump is ��� �bin
�computable�
Every function f �� IR �� IR can be made ��� �C
�computable for some appropriate
representation � depending on f � De�ne ��p��
q��
p��
q��
 � � �
 � x ��� �C�p
 �
x and �C�q
 � f�x
� This �dirty trick� cannot be applied to two�place functions�

Lemma ��	

There is no representation � �� �� �� IR such that the test l � IR�IR �� �

where l�x� y
 � �� if x � y
 � otherwise
 is ��� �� �bin
�continuous�

Proof

Assume that there is some continuous function f �� �� � �� �� �� such that
l���p
� ��q

 � �binf�p� q
� Consider z � ��p
� We have � � l���p
� ��p

 � �binf�p� p
�
Therefore
 f�p� p
 � � � ��� Since f is continuous
 f�w��� w��
 � f�g for some
pre�x w of p� For any x� y � ��w��
 we obtain x � y hence fzg � ��w��
� Therefore

for any z � IR there is some w � �� with fzg � ��w��
� This
 however
 is impossible
since card���
 � card�IR
�
�

We may interpret the result as follows� the function l is absolutely not computable
by physical devices�

According to Theorem ���
 the Cauchy representation is distinguished from other
representations of the real numbers �except for topological equivalence

 where the
topology �IR on IR by the open intervals with rational boundaries is considered as
the reference structure on IR� Theorems ��	
 ��� and ��� con�rm
 that the Cauchy
representation induces the �natural� computability theory on the real line� Since



��

the decimal representation �dec is not even t�equivalent to �C
 it is �unnatural��
Remember also that by Example 	�� the �computable
 real function x �� �x is
not ��dec� �dec��computable� Are there representations in the equivalence class of �C
which are simpler than �C# The next theorem excludes some obvious simpli�cations�

Theorem ��
 �restrictions for admissible representations of IR


��
 No total representation � � �� �� IR is t�equivalent to �C �

�	
 No injective representation � �� �� �� IR is t�equivalent to �C�

��
 De�ne the �naive� Cauchy representation of IR by �n�p
 � x i� there
are u�� u�� � � � � dom��Q
 with p � u��u�� � � � and x � lim

i��
ui�

Then �n is not t�equivalent to �C �

Proof

��
 One can show that �� with the Cantor topology is a compact metric space� If
� �t �C then � is continuous �Theorem ���
� Since any continuous function maps
compact sets to compact sets
 also IR must be compact
 but IR is not bounded�

�	
 Assume that there is an injective representation � �� �� �� IR with � �t �C�
By Theorem ��� X � IR is open �� X is �C�open �� X is ��open�
We conclude that ��� is a continuous function� Any continuous function maps
connected sets to connected sets� The set IR is connected� But ���IR � dom��
 is
not connected� Let p� q � ���IR
 p�j q� Then there is some w � �� with p � w��

and q �� w��� Let A �� w�� � ���IR
 B �� �� nw�� � ���IR� Then A and B are
both open in ���IR and non�empty
 and ���IR � A � B and A � B � �� Hence
dom��
 is not connected�

��
 Assume that there is some continuous function f with �n�p
 � �Cf�p
 for
all p � dom��n
� Let p � ���
�� Then �n�p
 � �� Let f�p
 � u��u�� � � �� By
continuity of f there is some k with f����
k��
 � u��u����� Then f is incorrect
for p� �� ���
k���
� since �Cf����
k��
 � ����	� ��	� but �n�p�
 � ��
�
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� Open and Compact Subsets

Since the cardinality of 	IR
 the power set of IR
 is greater than the cardinality of ��

it has no representation� Therefore
 in our approach we are not able to investigate
computability of functions like f �� 	IR �� IR with f�X
 � y ��� y � supX� We
restrict our attention to the open subsets and to the compact subsets of IR
 which
have representations� We de�ne a standard representation of �IR
 show that it is
topologically and computationally e�ective and list some computability results� We
introduce several e�ective representations of the set K�IR
 of the compact subsets
of IR
 prove a computational version of the Heine�Borel theorem and give examples
for computable operations on the set K�IR
 of compact sets�

De�nition 	�� �representation of �IR


De�ne a representation �op of the set �IR of open subsets of IR as follows�

�op�p
 � X� i� there are words u�� v�� u�� v�� � � � � dom��Q


with ui 
 vi for all i � � and p � u��v��u��v�� � � � such that

X �
Sf�ui� vi
 j i � �g�

for all p � �� and X � �IR�

We use the convention �a� a
 �� �� A sequence p � �� is a �op�name of X
 i�
p enumerates a set of open intervals with rational boundaries which exhausts X�
Since every open subset X of IR is the union of a set of open intervals with rational
boundaries
 the above function �op is surjective
 i�e� it is a representation of �IR�
The equivalence class of �op can be de�ned by a simple e�ectivity property and a
maximality principle �cf� Theorems ���
 ��	
�

Theorem 	�� �e	ectivity of �op


��
 Let Kt be the set of all functions � �� �� �� �IR such that

f�u� v� p
 j u � v and �u� v� � ��p
g is open in �� � �� � dom��
�

Then for all functions � �� �� �� �IR

� � Kt �� � 
t �op�

�	
 Let Kc be the set of all functions � �� �� �� �IR such that

f�u� v� p
 j u � v and �u� v� � ��p
g is r�e� in �� � �� � dom��
�

Then for all functions � �� �� �� �IR

� 
 Kc �� � 
 �op�



�


Thus
 �op is except for equivalence the unique poorest representations � of �IR
 for
which every true property of the form ��u� v� � X� can be obtained from a �nite
portion of any ��name of X� We omit a proof of Theorem ��	� A few examples for
induced e�ectivity are listed in the following theorem�

Theorem 	�� �properties of �op


��
 X is �op�computable �� X is �C�r�e�

�	
 f�x�X
 � IR � �IR j x � Xg is ��C � �op
�r�e�
��
 Union and intersection on �IR are ��op� �op� �op
�computable�

��
 For f � IR �� IR de�ne Hf � �IR �� �IR by Hf �X
 �� f���X
 for all
X � �IR� Then

� Hf is ��op� �op
�continuous
 if f is continuous


� Hf is ��op� �op
�computable
 if f is computable�

Proof

��
 This is an immediate consequence of Theorem ����	
�

�	
 Let M be a Type 	 machine which for inputs p � w��w�� � � � � dom��C
 and
q � u��v��u��v�� � � � � dom��op
 works as follows� M searches systematically for
indices i
 k with uk � wi� 	�i and wi"	�i � vk�M halts
 i� such indices have
been found� We obtain f�p� q
 j �C�p
 � �op�q
g � dom�fM 
�dom��C 
�dom��op

�see Def� 	���	
 
�

��
 Consider only inputs of the form p � u��v��u��v�� � � � � dom��op
 and q �
w��x��w��x�� � � � � dom��op
� For the case of union let M be a Type 	 machine
which produces from p and q the output u��v��w��x��u��v��w��x�� � � �� For the
case of intersection let M be a Type 	 machine
 which produces a list of all
intervals �u� v
 for which there are numbers i
 k with �u� v
 � �ui� vi
� �wk�xk
�

��
 This follows from the more general Theorem ��� below�

�

A subset X � IR is compact
 i� X is closed and bounded� By the Heine�Borel
theorem
 X is compact
 i� for every set � � �IR of open subsets of IR with X � ��
there is some �nite subset �� � � with X � ���� The characterization remains valid

if above �IR is replaced by the set of all open intervals with rational boundaries� The
following four representations can be derived from these characterizations�
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De�nition 	�� �representations of the compact sets


Let K�IR
 be the set of all compact subsets of IR� De�ne a notation � of the
�nite sets of open intervals with rational boundaries by

��w
 � �� i� there are words u�� v�� � � � � uk� vk � dom��Q
 with

w � u��v�� � � � �uk�vk and � � f�u�� v�
� � � � � �uk� vk
g�

De�ne representations �c
 �cb
 �w and � of K�IR
 as follows�

��
 ��closed representation�


�c�p
 � X� i� �op�p
 � IR nX�
�	
 ��closed bounded representation�


�cb�p
 � X� i� there are u � dom��bin
 and q � dom��op
 with

p � u�q�X � IR n �op�q
 and X � ��u�u��
��
 ��weak covering representation�


�w�p
 � X� i� there are words w�� w�� � � � � dom��
 with

p � w�cjw�cj � � � such that for all w � dom��
 �

X � S ��w
 �� �
i
w � wi

��
 ��strong covering representation�


��p
 � X� i� p � w�cjw�cj � � � as above such that

fw�� w�� � � �g � fw j X � S ��w
 and �I � ��w
�I �X �j �g

If �c�p
 � X
 then p enumerates the complement of X� If �cb�p
 � X
 then p gives a
bound of X and enumerates the complement of X� If �w�p
 � X
 then p enumerates
all coverings of X with �nitely many open intervals with rational boundaries� In the
case of � instead of �w
 only the �minimal� coverings are enumerated by names�

The reducibilities between the four above representations are given by the following
theorem�

Theorem 	�	 �computational Heine�Borel theorem


��
 �cb 
 �c
 �c �
t �cb

�	
 �w � �cb �computational Heine�Borel theorem


��
 � 
 �w
 �w �
t �



��

Proof

��
 There is a Type 	 machine M with fM�u�u��u�� � � �
 � u��u�� � � � for
u� u�� u�� � � � � dom��Q
� Then fM translates �cb to �c� If �c�p
 � X
 then no ��
nite pre�x w of p contains any information about a bound of X
 hence �c �
t �cb�
More formally
 assume that there is some continuous function f �� �� �� ��

with �c�p
 � �cbf�p
 for all p � dom��c
� There is some p � u��v��u��v�� � � �
with �c�p
 � IR n �op�p
 � f�g� The sequence f�p
 has the form u�u���v

�
�� � � �� By

continuity of f there is some pre�x w of p with f�w��
 � u���� But there is
some q � w�� � dom��c
 with �c�q
 �� ��u�u� �contradiction
�

�	
 We show �w 
 �cb� Assume �w�p
 � X� Then p enumerates all coverings of
X with �nitely many intervals with rational boundaries� From the �rst such
covering a bound for X can be determined easily� From the other coverings
one can determine an enumeration of open intervals with rational boundaries
which exhausts IR nX� We prove this more formally� Let �� � � �� �� be some
standard bijective numbering of ��� There is a Type 	 machine which for input
p � w�cjw�cj � � � � dom��w
 produces a sequence u�u��v��u��v�� � � � � dom��cb

with the following properties�

���w�
 � ��u�u�

�ui� vi
 �

����
���
�u� v
 if ���i
 � �k�u�v with

�u� v
 � ���wk
 � ��
��� �
 otherwise�

Then �w�p
 � �cbfM �p
 for all p � dom��w
�
We show �cb 
 �w� Assume �cb�p
 � X� Then from p we know some closed
interval I with X � I and an enumeration I�� I�� � � � of open intervals exhausting
IR nX� Since I is compact


X � ���w
 i�I � ���w
 � I� � � � � � Ik for some k � ��

Therefore
 we can enumerate all words w with X � ���w
� We prove this more
formally� There is a Type 	 machine which for input p �� u�u��v��u��v�� � � � �
dom��cb
 produces a sequence q �� w�cjw�cj � � � � dom��w
 with the following
properties�

wi ��

����
���

w if ���i
 � �kcjw with

��u� v� � ���w
 � �u�� v�
 � � � � � �uk� vk

w� otherwise�

where ��u�u� � ���w�
� Then �cb�p
 � �wfM�p
 for all p � dom��cb
�

��
 Since � is a restriction of �w
 � 
 �w is trivial� �w �
t � follows from Theorem
�����
 below�

�

The equivalence �w � �cb can be considered as a computational version of the



�� � Open and Compact Subsets

Heine�Borel theorem� There is an �improvement� �� of �cb
 for which �� � �
 a
stronger computational version of the Heine�Borel theorem
 can be proved �see �KW
���
�

Every compact subset of IR has a maximum and a minimum
 the compact sets are
closed under union and intersection
 and f�X
 is compact if f is continuous and X
is compact� E�ective versions of these facts are listed in the following theorem�

Theorem 	�
 �computable operations on compact sets


��
 The function max � K�IR
 �� IR is ��� �C
�computable but not
��w� �C
�continuous�

�	
 Intersection and union are ��w� �w� �w
�computable and ��� �� �
�
computable�

��
 For f � IR �� IR de�ne Hf � K�IR
 �� K�IR
 by Hf �X
 �� f�X
 for
all X � K�IR
� Then

� Hf is ��w� �w
�continuous and ��� �
�continuous
 if f is continuous


� Hf is ��w� �w
�computable and ��� �
�computable
 if f is compu�
table�

Proof

��
 There is a Type 	 machineM which transforms any p �� w�cjw�cj � � � � dom��

into q �� u��v��u��v�� � � � � dom��I

 where the ui� vi are de�ned as follows�

�ui� vi
 is the greatest interval in ��wi


w�r�t� the order �u� v
 
 �u�� v�
 �� �v � v� or �v � v� and u 
 u�

� Then
max��p
 � �IfM�p
� Assume
 there is a continuous function f �� �� �� ��

with max�w�p
 � �Cf�p
 for all p � dom��w
� There is some p � x�cjx�cj � � � with
�w�p
 � ��� ��� Let f�p
 � u��u�� � � �� Then �Cf�p
 � � and u� � ���� Since f is
continuous
 there is some i � � with f�x�cjx�cj � � � cjxicj�

�
 � u��u��u���
�� There

is some q � x�cjx�cj � � � cjxicj��
 with �w�q
 � f�g� We obtain max�w�q
 � � but
�Cf�q
 � ��	 �contradiction
�

�	
 The proof is left to the reader�

��
 This follows from the more general Theorem ��� below�

�

The de�nitions and theorems of this section can be generalized easily from IR to
the n�dimensional Euklidean space IR

n� There are theorems similar to Theorem



��

��	 characterizing the �e�ectivity� of �w and of �� We don�t go into more details
here� We mention without proof
 that � is admissible and that the �nal topology
�� � fX � K�IR
 j ���X is open in dom��
g of the representation � is the Hausdor�
topology on the set K�IR
 of the compact subsets of IR �Eng ��
 Wei ���� Especially
Theorem ��� is applicable to ��
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	 Representations of Continuous Real

Functions

Let us denote by C�X
 the set ff �� IR �� IR j f continuous and dom�f
 � Xg� We
introduce explicitly standard represenations �IR of C�IR
 and �C of C��� �� and give
su�cient reasons for their e�ectivity� As examples we consider modulus of continuity

maximum
 di�erentiation and integration�

De�nition 
�� �representation of C�IR



De�ne a representation �IR �� �� �� C�IR
 as follows�

�IR�p
 � f� i� there are words ui� vi� xi� yi � dom��Q
 �i � �


with p � u��v��x��y�cju��v��x��y�cj � � �

such that for all rational numbers a� b� c� d �

f �a� b� � �c� d
 �� �
i
�a � ui� b � vi� c � xi� y � yi


for all p � �� and f � C�IR
�

Roughly speaking
 �IR�p
 � f i� p enumerates all �a� b� c� d
 � IQ� with f �a� b� � �c� d
�
This representation has the following remarkable e�ectivity property �cf� Thms� ���

��	
 ��	
�

Theorem 
�� ��IR is e	ective


��
 Let Lt be the set of all functions � �� �� �� C�IR
 such that the func�
tion apply � C�IR
� IR �� IR
 where apply�f� x
 �� f�x

 is ��� �C� �C
�
continuous� Then

� � Lt �� � 
t �IR

for all functions � �� �� �� C�IR
�

�	
 Let Lc be the set of all functions � �� �� �� C�IR
 such that apply is
��� �C� �C
�computable� Then

� � Lc �� � 
 �IR

for all functions � �� �� �� C�IR
�

Again there is a formal similarity with the characterization of �e�ective G�odel num�
berings� � of P 
���

� satis�es the universal Turing machine theorem �� � 
 �



��

�see the remarks after Theorem ���
� We omit a proof of Theorem ��	� Especially

we have �IR � Lc
 i�e� the �universal function� apply �� C�IR
 � IR �� IR of �IR
is ��IR� �C� �C
�computable� Some interesting properties are listed in the following
theorem�

Theorem 
�� �some computable operations


��
 f � IR �� IR is ��C � �C
�computable �� f is �IR�computable�

�	
 The function H � C�IR
 � �IR �� �IR
 de�ned by H�f�X
 �� f��X
 is
��IR� �op� �op
�computable�

��
 The functionG � C�IR
�K�IR
 �� K�IR

 de�ned byG�f�X
 �� f�X


is ��IR� �w� �w
�computable� and ��IR� �� �
�computable�

��
 The composition F � C�IR
 � C�IR
 �� C�IR

 de�ned by F �f� g
 ��
f � g
 is ��IR� �IR� �IR
�computable�

We do not prove this theorem� It is well�known that continuous functions are uni�
formly continuous on compact subsets� We shall prove a computable version of this
theorem� We call a function m � � �� � a modulus of continuity of a function
f �� IR �� IR on X � dom�f

 i� for all x� y � X and n � ��

jx� yj � 	�m
n� �� jf�x
� f�y
j � 	�n�

For the set �� � fm j m � � �� �g we use the following standard representation
�� �� �� �� ���

���p
 � m ��� p � u��u�� � � � with ��i
�bin�ui
 � m�i


for all p � �� and m � ���

Theorem 
�� �determination of a modulus of continuity


There is a computable function h �� �� � �� �� �� such that ��h�p� z

is a modulus of continuity of �IR�p
 on ��z� z� for all p � dom��IR
 and all
z � dom��bin
�

Proof

Consider N � �� If f � IR �� IR is continuous
 for any x � ��N �N � and any n � �
there are numbers ax� bx� c� d � IQ such that x � �ax� bx
 and f �ax� bx� � �c� d
 and
d � c � 	�n��� Obviously
 ��N �N � � �f�ax� bx
 j x � ��N �N �g� Since ��N �N �
is compact
 a �nite subset of intervals su�ces for covering ��N �N �� Therefore
 for
n � � there is a �nite set of quadrupels �ai� bi� ci� di
 of rational numbers �i �
�� � � � � k
 such that ��N �N � � �a�� b�
 � � � � � �ak� bk
 and f �ai� bi� � �ci� di
 and
di � ci � 	�n�� �for i � �� � � � � k
� Let c �� minfbi � ai j i � �� � � � � kg� Assume
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�N 
 x 
 y 
 N and jx � yj � c� Then there are i� j with x � �ai� bi

 y �
�aj� bj
 and �ai� bi
 � �aj � bj
�j �� Consequently f�x
 � �ci� di

 f�y
 � �cj� dj
 and
�ci� di
 � �cj � dj
�j �� Therefore jf�x
 � f�y
j � 	�n� Let M be a Type 	 machine
which for input p � t�cj t�cj � � � � dom��IR
 �where ti � ui�vi�xi�yi
 and z � dom��bin

produces a sequence q � w��w�� � � � where wn is de�ned as follows� M searches
for a �nite set I � � of indices such that yi � xi � 	�n�� for all i � I and
��z� z� � �f�ui� vi
 j i � Ig� �Such a set I exists�
 M determines m � � with
	�m 
 minfvi � ui j i � Ig� Then wn � dom��bin
 is determined by �bin�wn
 � m�
By the above considerations
 ���q
 is a modulus of continuity of f � �IR�p
 on ��z� z��
�

De�nition ��� and Theorems ��	
 ��� and ��� can be easily generalized from C�IR
 to
C�X
 where X � IR is r�e�� Also generalizations from IR to IRn are straightforward�
Next we study the class C��� �� of the continuous functions f �� IR �� IR with
dom�f
 � ��� ��� We introduce a metric on C��� �� and de�ne
 as a generalization of
�C a standard Cauchy representation of C��� ���

For f� g � C��� �� de�ne the distance d�f� g
 �� maxfjf�x
 � g�x
jj� 
 x 
 �g�
�C��� ��� d
 is a metric space� Let Pg be the set of all polygon functions f � C��� ��
with rational vertices� It is known that Pg is dense in �C��� ��� d

 i�e� for any f �
C��� ��
 and n � � there is some g � Pg with d�f� g
 � 	�n� The open ball B�f� a

with centre f � C��� �� and radius a can be visualized by a stripe of width 	a
surrounding f �

De�nition 
�	 �Cauchy representation of C��� ��


��
 De�ne a notation � �� �� �� Pg of the set Pg of all polygon functions
with rational vertices from C��� �� by�

��w
 � g� i� there are u�� v�� � � � � uk� vk � dom��Q
 with

w � u��v�� � � � �uk�vk�

� � u� � � � � � uk � � and g is the polygon

with the vertices �u�� v�
� � � � � �uk� vk
�

�	
 De�ne a representation �C �� �� �� C��� �� of C��� �� by�

�C�p
 � f� i� there are w�� w�� � � � � dom��
 with

p � w�cjw�cj � � � � ��k
��i � k
d���wi
� ��wk

 � 	�k

and ��k
d�f� ��wk

 
 	�k�

Similar to the de�nition of the Cauchy representation of the real numbers �C we
consider in �	
 only fast converging Cauchy sequences of rational polygon functions
as names� Instead of ��k
d�f� ��wk

 
 	�k we can also write f � lim

k��
��wk
� If



��

�C�w�cjw�cj � � �
 � f then the graph of f is the intersection of all the closed balls
Bc���wk
� 	�k
� The representation is equivalent to the representation �� obtained
from �IR �� �� �� C�IR
 by restricting the domains from IR to ��� ���

Theorem 
�


De�ne �� �� �� �� C��� �� by

���p
�x
 ��

�
�IR�p
�x
 if � 
 x 
 �

div otherwise

for all p � �� and x � IR�
Then �� � �C�

As a consequence
 Theorem ��	 holds accordingly for �C instead of �IR� C��� �� has
other important dense subsets
 e�g� the polynomial functions with rational coe��
cients or the trigonometric polynomials with rational coe�cients� Standard notati�
ons of these dense subsets induce Cauchy representations which are equivalent to �C�
For the functions from C��� �� a modulus of continuity can be computed from their
�C�names� We mention without proof that the representation �C is admissible where
the �nal topology is generated by the open balls of the metric space �C��� ��� d
� As
a consequence the continuity theorem
 Theorem ���
 can be applied to �C�

Corollary 
�� �modulus of continuity


There is a computable function g �� �� �� �� such that ��g�p
 is a
modulus of continuity of �C�p
 on ��� �� for all p � dom��C
�

Proof

By Theorem ��� there is a computable function f �� �� �� �� with �C�p
 � ��f�p
�
The modulus of continuity of �IR�f�p

 on ���� �� is a modulus of continuity of �C�p

on ��� ��� De�ne g�p
 � h�f�p
� �
 with h from Theorem ����
�

For a function f � C��� �� the number y � maxff�x
 j x � ��� ��g is called the
maximum value of f 
 and any x with f�x
 � y is called a maximum point of f �
For functions f from C��� �� the maximum values can be determined e�ectively�
Determination of maximum points will be reduced to the determination of zeros in
Chapter ��
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Theorem 
�
 �determination of maximum


The function Max � C��� �� �� IR de�ned by Max�f
 �� maxff�x
 j � 

x 
 �g is ��C� �C
�computable�

Proof

Let M be a Type 	 machine which for input p � w�cjw�cj � � � � dom��C
 determines
a sequence u��u�� � � � where un ��Max���wn��

� Let f �� �C�p

 f�x
 �Max�f


fn �� ��wn��

 fn�xn
 �Max�fn
� Then for any n � �

fn�xn
� 	�n�� 
 f�xn
 
 f�x
 
 fn�x
 " 	
�n�� 
 fn�xn
 " 	

�n���

therefore jun �Max�f
j 
 	�n��� We obtain Max�f
 � �C �u��u�� � � �
�
�

Especially
 the maximum value of a computable function f � C��� �� is computable�

We close this section with some remarks on di�erentiation and integration� By the
next theorem di�erentiation on the set C���� �� of the continuously di�erentiable
functions from C��� �� cannot be performed e�ectively
 if �C is used as the naming
system�

Theorem 
�� �non�e	ectivity of di	erentiation


The di�erentiation operator Diff �� C��� �� �� C��� ��
 de�ned by
Diff�f
 � g i� g is the derivative of f �for all f� g � C��� ��

 is not
��C� �C
�continuous�

Proof

Assume that Diff is ��C � �C
�continuous� Since the continuity theorem ��� can be
applied to �C
 Diff must be continuous� But this is false� Consider the functions
f� f�� f�� � � � � C���� �� de�ned by f�x
 �� �� fn�x
 �� sin�n�x
�n for all n � � and
x � ��� ��� Then �fn
n�� converges to f 
 but �Diff�fn

n�� does not converge to
Diff�f
�
�

Thus the �C�names of functions f � C���� �� do not contain su�ciently much �nitely



�


accessible information in order to compute �C�names of the derivatives� On the other
hand
 the integration operator is computable�

Theorem 
��� �computability of integration


The integration operator Int �� C�IR
� IR � IR �� IR
 de�ned by

Int�f� a� b
 ��

bZ
a

f�x
dx�

is ��IR� �C� �C � �C
�computable�

We omit the proof� As a corollary the operator Int� � C��� �� �� IR
 where Int��f
 �
�R
�

f�x
dx
 is ��C� �C
�computable�
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 Determination of zeros

Determination of zeros is an important task in numerical analysis� In this Chapter we
study under which circumstances zeros of functions from C��� �� can be determined
e�ectively�

For a continuous function f �� IR �� IR the set fx � IR j f�x
�j �g of the non�zeros
is open
 and for every open set X there is a continuous function f � IR �� IR such
that X is the set of non�zeros� We prove a computable version of this fact �see Defs�
���
 ���
�

Theorem ��� �characterization of the set of zeros


Let S �� f�f�X
 � C�IR
 � �IR j f��f�g � IR nXg� Then
��
 S is ��IR� �op
�computable


�	
 S�� is ��op� �IR
�computable�

Proof

��
 Since IR n f�g is �op�computable
 the statement follows immediately from Theo�
rem ����	
�

�	
 For any p � u��v�� � � � � dom��op
 de�ne ��p
 � IR �� IR by

��p
�x
 ��
X
n��

fn�x
 	 	�n

where

fn�x
 ��

�
min��� vn � x� x� un
 if un � x � vn

� otherwise�

Then IR n �op�x
 � ��p
��f�g�
An easy estimation shows that the function � �� �� �� C�IR
 has a ��� �C� �C
�
computable apply function� By Theorem ��	�	
 we obtain � 
 �IR
 i�e� there is a
computable function g �� �� �� �� with ��p
 � �IRg�p
 for all p � dom��op
�
Therefore
 ��op�p

 �IRg�p

 � S�� for all p � dom��op
�
�

It can be shown that there is some �op�computable setX � IR such that the Lebesgue
measure ��X
 is less than ��	 and x � X for every �C�computable real number �Spe
��
 Wei ��
 Wei ���� Therefore by Theorem ����	

 there is a computable function
with many zeros �e�g� in the interval ��� ��
 but without any computable zero� As a



��

consequence
 the relation R �� f�f� x
 � C��� ��� IR j f�x
 � �g cannot be ��C � �IR
�
computable
 since computable functions f �� �� �� �� map computable elements
to computable elements� We prove that R is not even ��C� �C
�continuous�

Theorem ��� �impossibility of zero �nding


Let R �� f�f� x
 � C��� �� � IR j f�x
 � �g� Then R is not ��C� �C
�
continuous�

Proof

For any x � IR de�ne the polygon function G�x
 by the vertices
�����
� ����� x
� �	��� x
� ��� �
�

�

� u
uu

u

�

x

�

�� �
�
�
�
�
�
��

	
	
	
	
		

De�ne � �� �� �� C��� �� by ��p
 �� G��C�p

� Then the apply function of �
is ��� �C� �C
�computable� Since Theorem ��	 holds accordingly for �C
 we obtain
� 
 �C
 i�e� there is some computable function g with G��C �p

 � �Cg�p
 for all
p � dom��C 
�
Now assume
 that there is a continuous function h with �C�p
�Ch�p
 � � if �C�p

has a zero� Let q � ���� � � �� Then �C�q
 � � and y �� �Chg�q
 is a zero of �Cg�q
 �
G�C�q
 � G��
� Obviously ��� 
 y 
 	��� First we consider the case y � ���� There
is a sequence �qi
i�� in �� with �C�qi
 � 	�i and lim

i��
qi � q� Since yi �� �Chg�qi
 is

a zero of �Cg�qi
 � G�C�qi
 � G�	�i

 we have yi � ��� for all i � �� Since �Chg is
continuous
 we have

��� � y � �Chg�q
 � �Chg� lim
i��

qi
 � lim
i��

�Chg�qi
 � lim
i��

yi 
 ����

This is a contradiction� The case y � 	�� is handled accordingly�
�

Notice
 that even the very small subset R� �� R � fG�x
 j x � Rg � IR is not
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��C� �C
�continuous� The contradiction has been derived by using the function G��

which is zero on an open interval� If we exclude such situations
 and if we consider
only functions which change their sign on ��� ��
 we obtain a positive result� The
following theorem is an e�ective version of a generalized intermediate value theorem
from classical analysis� If f � ��� �� �� IR is continuous and changes its sign
 then f
has a zero�

Theorem ��� �non extensional solution


Let Fnd �� ff � C��� �� j �
x� y
f�x
 	 f�y
 � � and I � f��f�g for no open
interval I � ��� ��g� Let

Rnd �� f�f� x
 � Fnd � IR j f�x
 � �g�

Then

��
 Rnd is ��C� �C
�computable


�	
 Rnd has no ��C� �C
�continuous choice function�

Proof

��
 The following observations can be proved easily�

� Let f � Fnd and a� b � ��� �� with f�a
 	 f�b
 � �� Then there are rational
numbers a�� b� � IQ with a � a� � b� � b
 �b��a�
 
 �b�a
�	
 f�a
 	f�a�
 � �

f�a�
 	 f�b�
 � � and f�b�
 	 f�b
 � ��

� The sets f�u� p
 j �C�p
�u
 � �g and f�u� p
 j �C�p
�u
 � �g are r�e� in
�� � dom��C
�

There is a Type 	 machineM which for input p � dom��C
 computes sequences
u�� u�� � � � and v�� v�� � � � of elements of dom��Q
 and produces the output q ��
u��u�� � � � � dom��C
 according to the following rules� First
 M searches for
words u�� v� such that �C�p
�u�
	�C�p
�v�
 � �� Assume un�� and vn�� have been
determined� Then M searches for words un� vn with un�� � un � vn � vn��

�vn�un
 
 �vn���un��
�	
 �C�p
�un��
	�C�p
�un
 � �
 �C�p
�un
	�C�p
�vn
 � �
and �C�p
�vn
 	 �C�p
�vn��
 � ��

Assume p � ���C Fnd is the input forM � By the above observations
M determines
some q � u��u�� � � � � dom��C
� Let f �� �C�p
 and x �� �C�q
� We prove
f�x
 � �� We have lim

i��
ui � lim

i��
vi � x� Consider the case f�u�
 � �� Then

f�ui
 � � and f�vi
 � � for all i � �� By continuity of f we have f�x
 �
f� lim

i��
ui
 � lim

i��
f�ui
 � � and f�x
 � f� lim

i��
vi
 � lim

i��
f�vi
 
 �
 therefore

f�x
 � �� If f�u�
 � �
 we obtain f�x
 � � correspondingly�

�	
 Suppose that there is a ��C� �C
�continuous function Z �� C��� �� �� IR such
that fZ�f
 � � for all f � Fnd� For x � IR let G�x
 be the polygon func�
tion with the vertices �����
� ����� x
� �	��� x � �
� ��� �
� Then G � IR ��



��

C��� �� is ��C� �C
�computable
 hence ��C � �C
�continuous� Therefore
 the func�
tion ZG � IR �� IR is ��C� �C
�continuous
 i�e� continuous by Theorem ���

and has the property that ZG�x
 is a zero of G�x
 for all x � IR� Since conti�
nuous functions map intervals onto intervals
 I� �� ZG����� �
 � ��� ���
 �since
ZG�	
 � ��� � I� and ��� �� I�
 and I� �� ZG��	� 	��
 � �	��� �
 �since
	�� �� I� and ZG���
 � ��� � I�
� This is contradiction�

�

The following example illustrates Theorem ����

Example �

Consider the problem to determine a zero of the function fa �� IR �� IR from a
given number a � ���� �� where

fa�x
 � x� � x" a

for all x � IR� �Since for a � ���� �� the zeros of fa are in the interval ��	� 	�
 we
may restrict the domains to ��	� 	� and assume fa � C��	� 	� for all a � ���� ���


��

��

��

�

�

�

�

�� �� �� � � � �

f���



�� 
 Determination of zeros

By the method described in ��
 of the proof of Theorem ���
 for given a � ���� ��
one determines sequences of rational numbers �ai
i�� and �bi
i�� with

ai�� � ai � bi � bi��� fa�ai
 � �� fa�bi
 � �� bi � ai 
 �bi�� � ai��
�	�

The sequence �ai
i�� converges with speed 	�i to a zero xa of fa� If fa has � zeros
then it may depend on the given name p � ���C fag which zero �the leftmost or the
rightmost
 is determined� For every algorithm such dependence on the names must
occur
 since there is no continuous function Z � ���� �� �� IR with faZ�a
 � � for
all a � ���� ��� The proof is quite similar to that of Theorem ����	
�

As a corollary of Theorem �����
 we obtain a computable version of the intermediate
value theorem�

Corollary ���

Let Fiv �� ff � C��� �� j f is increasing and f��
 	 f��
 � �g� The function
Z � C��� �� �� IR with dom�Z
 � Fiv and Z�f
 �� �the zero of f
 is
��C� �C
�computable�

The function Z from this corollary can be extended to all continuous functions which
have exactly one zero�

Theorem ��	

Let F� �� ff � C��� �� j f has exactly one zerog� The function Z �
C��� �� �� IR with dom�Z
 � F� and Z�f
 �� �the zero of f
 is ��C� �C
�
computable�

Proof

Let �� � � �� �� be some standard numbering of ��� Let M be a Type 	 machine
which for input p � w�cjw�cj � � � � dom��C
 produces a sequence q � u��v��u��v�� � � �
such that

�ui� vi
 �

����
���
�u� v
 if ���i
 � �k�u�v with u � v and

j��wk
�x
 j� 	 	 	�k for all x � ��� �� n �u� v

���� ��
 otherwise�

Then �C�p
�IfM �p
 � � whenever �C�p
 � F��
�



��

Corollary ��


If f � C��� �� is computable and x � ��� �� is an isolated zero of f 
 then x is
computable�

Proof

Assume � � x � �� Then there are rational numbers r� s with � 
 r � x � s 
 �
such that x is the only zero of f in �r� s�� De�ne f � � C��� �� by

f ��y
 ��

�������
������

f�r
 if � 
 y � r

f�y
 if r 
 y 
 s

f�s
 if s 
 y � �

div otherwise�

Then f � is computable �c�f� Lemma ���

 and x is its only zero� By Theorem ��� we
have x � Z�f �
� Since Z is ��C� �C
�computable and f � is �C�computable
 x � Z�f �

is �C�computable�
�

Although there is no general method of determining zeros for continuous functions
it is possible to determine for f � C��� �� and n � � some x � IR �even x � IQ
 with
jf�x
j � 	�n �provided f has a zero
�

Theorem ��� �approximate zero


The relation

R �� f�f� n� s
 � C��� ��� � � IQ j jf�s
j � 	�ng

is ��C� �bin� �Q
�computable�

Proof

There is a Type 	 machineM which for inputs p � w�cjw�cj � � � � dom��C
 and n � �
searches for some k � � and u � dom��Q
 with j��wk
�u
j � 	�n��� As soon as the
search has been successful
 M gives u as its output�
�

For every continuous increasing function f � C�IR
 the inverse function f�� is



�� 
 Determination of zeros

continuous� We prove a computational version of this theorem �for simplicity only
for functions f with range�f
 � IR� generalizations are straightforward
�

Theorem ��
 �inverse function


The function Inv �� C�IR
 �� C�IR
 with

Inv�f
 ��

�
f�� if f is increasing and range�f
 � IR

div otherwise

is ��IR� �IR
�computable�

Proof

We generalize the method for determining zeros of continuous increasing functions�
Since �x� y
 �� x � y is computable on IR
 by Theorem ��	�	
 the function H �
C�IR
 � IR � IR �� IR with H�f� x� y
 �� f�x
 � y is ��IR� �C� �C � �C
�computable�
Let M be a Type 	 machine which for inputs p � dom��IR
 and q � dom��C

computes a sequence r � u��u�� � � � as follows� For determining un
 M searches
for u� v � dom��Q
 such that H��IR�p
� u� �C�q

 � �
 H��IR�p
� v� �C�q

 � � and
v � u � 	�n� As soon as the search has been successful
 M chooses un �� u� Since
H is computable
 the search can in fact be programmed by a Type 	 machine� The
search is successful for every n � � and q � dom��C
 if �IR�p
 is increasing and has
the range IR� Consider f � �IR�p
 � dom�Inv
 and y � �C�q
� Then

f�CfM �p� q
� y � �� i�e� f���y
 � �CfM �p� q
�

De�ne � �� �� �� C�IR
 by ��p
 �� ��IR�p

��� Then ��p
�C�q
 � �CfM �p� q


i�e� the apply�function of � is ��� �C� �C
�computable� By Theorem ��	�	
 we obtain
� 
 �IR� This means that there is a computable function g �� �� �� �� with

Inv��IR�p

 � ��p
 � �IRg�p


for all p with �IR�p
 � dom�Inv
� Therefore Inv is ��IR� �IR
�computable�
�

While for functions from C��� �� maximumvalues can be computed by Theorem ���

the determination of maximum points is as di�cult as the determination of zeros�
This follows from the following observation�

� x is a zero of f 
 i� x is a maximum point of g where g�x
 � �jf�x
j
� x is a maximum point of f 
 i� x is a zero of h where h�x
 � f�x
�Max�f
�

Notice that Max is computable by Theorem ��� and that computability of �x� y
 ��
x� y and x� jxj can be derived from Theorem ����



��

� Computation Time and Lookahead

on �
�

Time and tape complexity are the most important computational complexity mea�
sures for Turing machine computations� They model time and storage requirement
of digital computers quite realistically� In this section we introduce the time com�
plexity for Type 	 machines M with fM �� ���
m �� ��� As a further important
concept we de�ne the input lookahead which measures the amount of information
which is used during a computation� We prove
 that co�r�e� sets are the natural
classes with uniform time bound�

Let M be a Turing machine with fM �� ���
m �� ��� The computation time of M
for input �x�� � � � � xm
 is de�ned by

T imeM�x�� � � � � xm
 �� the number of computation steps which M with input

�x�� � � � � xm
 needs until it reaches a HALT statement�

A function t � � �� � is a time bound for M 
 i�

T imeM�x�� � � � � xm
 
 t�max
i

lg�xi

 for all �x�� � � � � xm
 � ���
m�

Example �

Consider the multiplication of natural numbers in binary notation� Using the school
method
 a Turing machineM can be constructed such that

� �binfM�u� v
 � �bin�u
 	 �bin�v
 for all u� v � dom��bin



� T imeM�u� v
 
 cn� " c where n � max�lg�u
� lg�v

 and c � � is a constant�

Therefore
 M multiplies binary numbers in time t for some t � O�n�
�

Remember
 for f � �m �� �

O�f
 � fg � �m �� � j �
c
��x � �m
g�x
 
 cf�x
 " cg�
For t � � �� �


TIME�t
 �� ffM j M is a Turing machine and some t� � O�t


is a time bound for Mg
is the complexity class of functions computable on Turing machines in Time O�t
�

The above de�nition of T imeM cannot be used for machines with in�nite output
since valid computations never reach a HALT statement� We introduce as a further



�	 � Computation Time and Lookahead on ��

parameter a number k � � and measure the time until M has produced the output
symbol q�k
 of its in�nite output q � ��� Another important information is the input
lookahead
 i�e� the number of input symbols which M requires for producing the
output sequence q��
 � � � q�k
� In the following
 we consider only the case Y � ���
m

for some m � ��

De�nition 
�� �time and input lookahead


Let M be a Type 	 machine with fM �� ���
m �� ��� For all y � ���
m

and k � � de�ne time and input lookahead by�

T imeM�y
�k
 �� the number of steps which M with input y

needs until the kth output symbol has been written�

IlaM�y
�k
 �� the maximal j such that M with input y

reads the jth symbol from some input tape during

the �rst T imeM�y
�k
 computation steps�

Notice that T imeM�y
�k
 may exist for some but not for all k � � �in such a case
y �� dom�fM 

� Since reading an input symbol requires at least one computation step

IlaM�y
�k
 
 T imeM�y
�k
� The input lookahead Ila�y
 � � �� � is a modulus of
continuity of the function fM �� ���
m �� �� in the point y � dom�fM 
�

While for a Turing machine T imeM�y
 is a natural number for any y � dom�fM 

 for
a Type 	 machine M with fM �� ���
m �� ��
 the function T imeM�y
 � � �� �
determines the computation time of M with input y � dom�fM 
 as a function of the
output precision
 and IlaM�y
 � � �� � determines the amount of input information
used by M with input y � dom�fM 
 as a function of the output precision�

For any Type 	 machineM 
 the properties T imeM�y
�k
 � t and T imeM�y
�k
 
 t
are decidable
 and the properties IlaM�y
�k
 � t and IlaM�y
�k
 
 t are r�e� in
�y� k� t
� A simple comterexample shows that IlaM�y
�k
 � t and IlaM�y
�k
 
 t
are not recursive in general� We shall consider bounds for time and input lookahead
which are uniform for all y � X for some X � ���
m� The sets X � ���
m such
that T imeM�y
 has a computable bound uniform for all y � X can be characterized
easily� A set X � ���
m is called co�r�e�
 i� ���
m nX is r�e�

Theorem 
�� �uniform time on co�r�e� sets


Let M be a Type 	 machine with fM �� ���
m �� ���

��
 If X � dom�fM 
 is co�r�e�
 then ��y � X
��k
T imeM�y
�k
 
 t�k
 for
some computable function t � � �� ��



�


�	
 If t � � �� � is computable
 then

X �� fy � ���
m j ��k
T imeM�y
�k
 
 t�k
g
is co�r�e� and X � dom�fM 
�

Proof

For simplicity we consider only the case m � �� The general case is proved accor�
dingly� We use the important fact that the metric space ���� d
 is compact�

��
 Since X is co�r�e�
 there is some Type 	 machine N with fN �� �� �� �� such
that �� nX � dom�fN 
� Consider k � �� Then for any p � �� there is some n
such that

T imeN�p
 � n or T imeM�p
�k
 � n�

Let np be the �rst such n and wp the pre�x of p of length np� Since �
� �

�fwp�
� j p � ��g and �� is compact
 there is a �nite set A � �� with �� �

�fwp�� j p � Ag� Determine from k � � a number t�k
 � � as follows� Search
for a �nite set W of words with �� � �fw�� j w � Wg and T imeN�w��
 �
lg�w
 or T imeM�w��
�k
 � lg�w
 for all w � W � By the above considerations

such a set W exists� De�ne t�k
 �� maxflg�w
 j w � W and T imeM�w��
�k
 �
lg�w
g� Then T imeM�p
�k
 
 t�k
 for all p � X� The function t � � �� � is
computable�

�	
 Let t � � �� � be computable� There is a Type 	 machine N which halts for
input p � ��
 i� T imeM�p
�k
 �
 t�k
 for some k � �� Then dom�fN 
 � �� nX�

�

We shall call a sequence p � �� computable in time t � � �� �
 i� there is a Type 	
machine M with fM �� ���
� �� �� such that fM � 
 � p and T imeM� 
�k
 
 t�k

for all k � ��



�� � Computational Complexity of Real Functions

� Computational Complexity of Real

Functions

In this section we introduce a new representation of the real numbers for measuring
the time complexity of real functions� We prove bounds of time and input lookahead
for addition
 multiplication and
 as an application of Newton�s method
 inversion�
Finally we discuss the computational complexity of compact sets�

By the Main Theorem ���
 a real function is continuous
 i� it is determined by a
continuous function on �C�names� By de�nition
 a real function is computable
 i�
it is determined by a computable function on �C�names� We would like to call a
real function computable in time t � � �� �
 i� it is determined by a function on
�C�names computable in time t�

Unfortunately
 this de�nition is unreasonable� First
 we observe
 that any �C�name p
of a number x � IR can be padded arbitrarily� Assume p � u��u�� � � � and �C�p
 � x

and let r � � �� � be some function� Then some q � w��w�� � � � with �C�q
 � x
can be determined easily such that lg�wi
 � r�i
 for all i � � �choose wi � dom��Q

with very large numerator and denominator such that jwi � ui�� j
 	�i��
� Let M
be a Type 	 machine which computes a real function g �� IR �� IR on �C�names�
By padding the outputs of M 
 a machineM � can be constructed which computes g
on �C�names and operates in time O�n
� Therefore
 every computable real function
can be computed in time O�n
 on �C�names�

To avoid this degeneracy
 de�ne temporarily� g is �computable in time t � � �� ��

i� some Type 	 machineM computes g on �C�names such that g�x
 is determined
with error � 	�k in at most t�k
 steps� But not even the identity id � IR �� IR is
�computable in time t� for any t � � �� �
 since on the input tape arbritrarily
redundant
 i�e� padded
 names are allowed�

We solve the problem by introducing a new representation � �� �� �� IR of the
real numbers with � � �C
 which does not allow padding� This representation is a
generalization of the representation by in�nite binary fractions
 in which additionally
the digit �� may be used� We shall denote the digit �� by � � ��

De�nition ��� �modi�ed binary representation


De�ne � �� �� �� IR as follows �where � denotes the digit ��
�

dom��
 �� fan � � �a� 	 a��a�� � � � j n � ��� ai � f�� �� �g for i 
 n�

an�j � if n � � and anan�� �� f��� ��g if n � �g

��an � � �a� 	 a��a�� � � �
 �� �fai 	 	i j i 
 ng



��

Let p � an � � � a� 	 a��a�� � � � � dom��
 and p�k� �� an � � � a� 	 a�� � � � a�k for k � ��
Then

��p�k���
 � z 	 	�k for some integer z � ZZ�

and for this number z�

��p�k���
 � �z � �� z " �� 	 	�k � �	z � 	� 	z " 	� 	 	�k��
��p�k����
 � �	z � 	� 	z� 	 	�k��
��p�k����
 � �	z � �� 	z " �� 	 	�k��
��p�k����
 � �	z� 	z " 	� 	 	�k��

Therefore p determines a sequence �Ik
k�� of nested closed intervals
 Ik �� ��p�k���


such that�

� Ik�� is the left half of Ik if ak�� � �
 the middle half Ik if ak�� � � and the right
half of Ik if ak�� � �


� length �Ik
 � 	 	 	�k

� ��p
 � �fIk j k � �g�
For reducing redundancy we have excluded the pre�x �
 the pre�x ��
 which can
be replaced by �
 and the pre�x �� which can be replaced by ��Although the repre�
sentation � is not injective �no representation equivalent to �C can be injective by
Theorem ���

 the sets ���X for compact X � IR and especially the sets ���fxg
�x � IR
 are compact
 i�e� �small�� Remember that a subset X � �� of the Cantor
space is compact
 i� it is closed�

Theorem ���

��
 � � �C

�	
 For any compact subset X � IR
 ���X � �� is compact�

��
 For any �w�computable subset X � IR
 ���X is co�r�e� �see Def�
������
 
�

Proof

��
 Translators from � to �C and vice versa can be programmed easily�

�	
 Let �pi
i�� be a sequence in ���X converging to some p � ��� Since X is
bounded
 there is some k � � such that each pi has the form wi�qi with lg�wi
 

k� We conclude p � dom��
� The representation � is continuous since �C is
continuous and � � �C � By continuity
 pi � p � dom��
 implies ��pi
 � ��p
�
Since ��pi
 � X for all i and since X is closed
 we obtain ��p
 � X
 hence
p � ���X� Therefore ���X is closed and compact�

��
 We leave the proof to the reader�
�
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By Theorem ��	 we know that the time of a Type 	 machine is uniformly bounded
by a computable function on any co�r�e� subset of its domain which is especially
compact� By Theorem ��	��

 every ��� �
�computable real function has a uniform
computable complexity bound on every �w�computable subset of its domain�

De�nition ���

Let f �� IR
m �� IR be a computable function
 let X � dom�f
 and let

s � � �� � and t � � �� � be functions�
A Type 	 machine M computes f on X in time t with input lookahead s

i�

� f���p�
� � � � � ��pm

 � �fM �p�� � � � � pm



� T imeM�p�� � � � � pm
�n
 
 t�n



� IlaM�p�� � � � � pm
�n
 
 s�n


for all n � � whenever ���p�
� � � � � ��pm

 � X�

As a �rst example we consider addition on IR�

Lemma ��� �addition


There is a Type 	 machine operating in time O�k
 with input lookahead
k " 	 such that

�fM �p� q
 � ��p
 " ��q


for all p� q � �f�� �� �g��

Proof

Consider p � �a�a� � � � and q � �b�b� � � � �ai� bi � f�� �� �g
� De�ne r�� �� a�" b�� For
n � � choose inductively rn � f�	���� �� �� 	g and cn � f�� �� �g such that

	rn�� " an�� " bn�� � �cn " rn�

If cn�� with jrn��j 
 	 exists then cn and rn with jrnj 
 	 exist� By induction

cn and rn exist for all n � �� If c� � �
 de�ne f�p� q
 �� �c�c� � � �� if c��j �
 de�ne
f�p� q
 �� c��c�c� � � �� Obviously
 there is a Type 	 machine M 
 which produces



	�

f�p� q
 in time O�n
 with input lookahead 
 n" 	� We prove the correctness of M �
By induction one shows easilyX

i	n��

ai 	 	�i "
X
i	n��

bi 	 	�i �
X
i	n

ci 	 	�i " rn 	 	�n��

for all n � ��� Consequently
 ��p
 " ��q
 � �f�p� q
�
�

Theorem ��	 �addition


For every bounded subset X � IR
� there are constants c� and c� such that

addition on X can be computed w�r�t� � by a Type 	 machine in time
c� 	 n" c� with input lookahead n" c��

Proof

There is some m � � such that X � ��	m� 	m��� If ��p
 � ��	m� 	m� then p � w�q
for some w � f�� �� �g� with lg�w
 
 m" �� Let M be a Type 	 machine which for
input �p� q
 with ���p
� ��q

 � X shifts the points in p and q m " � positions to
the left
 runs the machine from lemma ��� and shifts the point of the result m " �
positions to the right�
�

We reduce the multiplication of real numbers w�r�t� � to multiplication of binary
integers by a doubling method� For obtaining good time estimations we need regular
time bounds �FS ��
 Mue ���� As a tool we use the following improvement lemma

which we do not prove here�

Lemma ��
 �improvement lemma


Let I �� ��u�a� � � �am��
 � ��v�b� � � � bm�k��
�j �� Then there are
cm��� � � � � cm�k � f�� �� �g with I � ��u�a� � � � amcm�� � � � cm�k�

�
� A word
cm�� � � � cm�k can be determined from u
 v
 a� � � � am and b� � � � bm�k in time
O�n
 where n �� lg�v
 "m" k�

We shall call a function f � � �� � regular
 i��

� f is non�decreasing and �
n
f�n
�j � and
� there are numbers n�� c � � with

	t�n
 
 t�	n
 
 ct�n
 for all n � n��
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We state without proofs �see �Mue ���
 that for regular functions t�

� n � O�t



� t � O�nk
 for some k � �


� t�cn" c
 � O�t
 for every c � �


�
Pft�	k
 j k 
 dlog�neg � O�t
�

Most of the commonly used bounds for complexity classes like polynomials
 n	log�n

n 	 log n 	 log log n� � � � are regular� In the following let Mb � � �� � be any regular
upper time bound for binary integer multiplication on Turing machines� For example
by Sch�onhage�s method �Sch ���
 n 	 log n 	 log log n is such a bound�

Lemma ��� �multiplication


There is a Type 	 machineN operating in timeO�Mb
 with input lookahead

 	n such that

�fN �p� q
 � ��p
 	 ��q


for all p� q � �f�� �� �g��

Proof

Consider p � �a�a� � � � and q � �b�b� � � � �ai� bi � f�� �� �g
� N produces the output
sequence r � �c�c� � � � in stages as follows�

Stage �

Let x� �� ���a�b���

 y� �� ���b�b���
� De�ne c� �� f� if x�y� � �� � if x�y� � �� �
if x�y� � �g�

Stage n �n � �


Let k �� 	n� N multiplies the �nite �generalized
 binary fractions �a� � � � ak�� and
�b� � � � bk�� and rounds the result to �e� � � � ek� Then
 according to lemma ���
 N
improves the result �c� � � � ck�� from Stage n� � with �e� � � � ek to �c� � � � ck�

We prove the correctness of the machine N � De�ne x �� ��p

 y �� ��q

 xm ��
���a� � � �am��

 ym �� ���b� � � � bm��
 for m � ��
The de�nition of c� guarantees ���a�a���
 	 ���b�b���
 � ���c���

 hence xy �
���c���
�

Consider n � � and k � 	n� If �e� � � � ek is a rounding of xk�� 	 yk��
 then

j���e� � � � ek��
� xk�� 	 yk��j 
 	�k���



	�

Furthermore


jxy � xk��yk��j 
 jx� xk��j 	 jyj" jxk��j 	 jy � yk��j

 	�k�� " �� � 	�k��
 	 	�k��

 	�k�� � 	��k��

The triangle inequality yields j���e� � � � ek��
�xyj � 	�k
 hence xy � ���e� � � � ek��
�
An induction with application of Lemma ��� shows xy � ���c�c� � � �
� For determining
c�
N uses the symbols a� and b�
 for determining the symbols ci for 	n��"� 
 i 
 	n

N uses the symbols aj and bj with j 
 	n"	� Therefore N works with input looka�
head 
 	k� We estimate the computation time for Stage n� Since ���a� � � �ak����

can be written as 	�k����bin�u
��bin�v

 with lg�u
� lg�v
 
 k"	
 N can determine
the product xk�� 	yk�� in at most c�Mb�k
"c� steps� The other computations require
at most c� 	 k " c� steps� Therefore for any m � 	 the word �c� � � � cm is determined
by N in at most

s�m
 ��
X

fc� 	Mb�	i
 " c� " c� 	 	i " c� j i 
 dlog meg
steps� Since Mb is regular
 c� 	Mb�j
 " c� " c� 	 j " c� � O�Mb
 and �again by
regularity of Mb
 s � O�Mb
�
�

By reduction to Lemma ��� one proves easily�

Theorem ��
 �multiplication


For every bounded subset X � IR� there is a Type 	 machine M which
performs multiplication on X in time O�Mb
 with input lookahead 	n " c
for some constant c�

The above multiplication algorithm uses a �doubling� method� The time can be
bounded by t�n
 �� f�	�
 " f�	�
 " � � � " f�	dlog�ne
� If f is regular then t � O�f
�
A general case where a doubling method can be used is Newton�s method for deter�
mining zeros�

By Newton�s method
 a zero y of a function f is determined as the limit of a
sequence �xn
n��
 where xn�� � xn � f�xn
�f ��xn
� If in some neighbourhood of y

f ��x
�j � and f ���x
 is bounded
 the sequence �xn
n�� converges �quadratically�
 if
x� is su�ciently near to y�� We consider the computation of x �� ��x as a simple but
important example� For a � � let f�x
 �� ��x�a� Then ��a is the zero of f � Simple
computations show that xn�� � xn�	 � axn
 is the Newton recursion equation in
this case and that jxn�� � ��aj � jaj 	 jxn � ��aj� �quadratic convergence
�
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Lemma ��� �inversion


There is a Type 	 machine M operating in time O�Mb
 with input looka�
head k " 	 for k 
 � and 	k � � for k � � and

�fM �p
 � ����p


for all p � ��f�� �g�f�� �� �g��

Proof

Consider p � ��a�a� � � �� A Type 	 machine M produces the output sequence r �
��c�c� � � � in stages according to the following rules�

Stage ��

From a� � � �a� determine c� � � � c� such that
x � ����� 	� � ����a� � � � a���
 �� ��x � ����c� � � � c���
�
De�ne z� �� ����c� � � � c���
�

Stage n �n � �
�

kn �� 	n " �
 rn �� ����a� � � �akn���
�

 yn �� zn���	� rnzn��



��e� � � � ekn �� a rounding of yn to kn digits

zn �� ����e� � � � ekn�

�
�

Let ��c� � � � ckn be the improvement of the result from Stage n � � with ��e� � � � ekn
by Lemma ����

We have to prove the correctness of the machine and to make time and input looka�
head estimations� By the restriction for p we have ��� 
 ��p
 
 	� Let a �� ��p
�
If x � ����� 	�
 then ��x � ������
� The interval I �� ����a� � � � a���
 � ����� 	� has
length 
 	��� A simple numerical calculation shows that its image J w�r�t� x �� ��x
has length 
 	��� Therefore
 digits c�� � � � � c� exist with ��a � J � ����c� � � � c���
�
The machine M contains a �nite table for determining c� � � � c� from a� � � � a�� As a
result jz�� ��aj 
 	�� � 	�k� 
 where k� �� 	

� " �� Consider n � � and assume that
zn�� � ����e� � � � ekn��

��
 has been determined such that jzn�� � ��aj 
 	�kn�� � If
xn �� zn���	�azn��

 then jxn���aj 
 jaj	��kn�� 
 	�kn��� Since jrn�aj 
 	�kn��

and jzn��j � ��� �since ��a 
 ���

 jxn�ynj 
 z�n�� 		�kn�� 
 	�kn��� By the rule for
rounding
 jyn�znj 
 	�kn��� We obtain jzn���aj 
 jzn�ynj"jyn�xnj"jxn���aj 

	�kn �
By induction
 j����c� � � � ckn��
� ��aj 
 	�kn 
 therefore ����c�c� � � �
 � ��a�
We estimate the input lookahead of the machine� Simple numerical estimations show
that c� can be determined from a�a�
 c�c� from a� � � �a� and c�c�c� from a� � � �a�� Fur�
thermore
 c� � � � c� is determined from a� � � �a� and for n � � ej for kn��"� 
 j 
 kn
is determined from a� � � � akn��� From this we conclude that the input lookahead of
M is 
 k"	 if k 
 � and 
 	k� � if k � �� For counting input lookaheads observe
that the input and the output begin with ����� Since Mb is regular
 Stage n can be



	�

computed in c 	Mb�	n
 " c steps� Summation yields a time bound in O�Mb
 for M �
�

Theorem ���� �inversion


For every compact subset X � IR with � �� X there is a Type 	 machineM
which computes x �� ��x on X in time O�Mb
 and input lookahead 	n" c
�where c depends on X
�

Proof �outline


There is some m � � such that 	�m � jxj � 	m for all x � X� We consider the case
x � � w�l�g� � Assume ��p
 � x� Then the �rst digit of p
 which is di�erent from �

is �� By at most m"� applications of the transformations �� �� ��
 ��� �� ��� and
���� �� ���� from p some z � ZZ with jzj 
 m and q � ��a�a�a�q with 	z 	 ��q
 � x
and a�� a�� a� � f�� �g can be determined� Some r � �� with ��r
 � ����q
 can be
determined inMb�n
 time with lookahead 	k" c� by Lemma ���� Finally the binary
point of r is shifted by z positions�
�

As a �nal application we de�ne recursiveness and computational complexity for
subsets X � IRn� A subset A � � is recursive
 i� the characteristic function cfA �
� �� �
 cfA�x
 � �� if x � A
 � otherwise

 is computable� The direct generalization
to subsets of IR
 �X � IR is recursive
 i� its characteristic function cfX � IR �� � is
computable�
 is useless
 since by Theorem ��� cf
 and cfIR are the only characteristic
functions which are computable� If we consider � as a metric subspace of the real
line
 a subset A � �
 A�j �
 is recursive
 i� the function dA � � �� IR is ��bin� �
�
computable
 where dA�x
 �� minfjx� ajja � Ag� This characterization has a useful
generalization�

De�nition ���� �complexity of compact sets


For any A � IR
n
 A�j � and A compact
 de�ne�

��
 dA � IR
n �� IR by dA�x
 �� inffjx� ajja � Ag


�	
 A is recursive
 i� dA is computable


��
 A is computable in time t
 i� dA is computable in time t�

Simple subsets of IRn such as the cube ��� ��n
 the unit ball
 every ball with compu�
table centre and computable radius as well as its sphere and every convex polygon
with computable vertices are computable� We mention without a proof that for
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A � IR
 A�j � and A compact
 A is recursive
 i� A is ��computable
 where � is the
representation from De�nition ����

This de�nition of recursive corresponds to located in constructive analysis �BB ����
The function dA � IR

n �� IR of A may be called the �localizer� of A� If n � 	
 any
Type 	 machine computing dA can be used by a plotter for producing approximate
pictures of the �gure A � IR�� Let M be some Type 	 machine computing dA �
IR

� �� IR for some compact set A � ��� ���� Suppose we have a screen divided into
	n � 	n pixels� For i� j � f�� � � � � 	ng the plotter determines the colour of the pixel
Pij � ��i��
		�n� i		�n����j��
		�n� j		�n� as follows� By simulating the machineM
it computes rational numbers a and b such that dA��i� ��	
 	 	�n� �j � ��	
 	 	�n
 �
�a� b� and b � a 
 	�n��� The pixel Pij is set to black
 if a � � 	 	�n��
 to white
otherwise� The construction guarantees�

A � Pij �j �
�� Pij is black

�� Pi�j� �A�j � for some i�� j � with ji� i�j 
 � and jj � j�j 
 ��

u
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a

b

The pixel Pij is set to black
 if the annulus contains some point x � A�

Consequently
 the nth approximation An ��
SfPij is blackg of A covers A
 i�e�

A � An
 but it surrounds A very narrowly
 since a pixel Pij is white if neither the
pixel itself nor any of its immediate neighbours intersect A� In fact
 the Hausdor�
distance dH�An� A
 is not greater then 	 	 	�n�

The kind of computational complexity of real functions introduced here is sometimes
called bit complexity� Many interesting results on bit complexity of real functions
have already been obtained
 see e�g� �Bre ��
 KF �	
 Ko ��
 Mue ��
 Mue ��
 Sch
����



	


�
 Other Approaches to E�ective Ana�

lysis

The approach to computability in analysis presented in this paper �TTE
 connects
abstract analysis with Turing machine computability� Computability is de�ned ex�
plicitly on �nite and in�nite sequences of symbols� Computable functions turn out to
be continuous� Computability and continuity are transferred to other sets by means
of notations and representations where sequences serve as names of objects� Admis�
sible representations
 which formalize the concept of approximating sequences
 lead
to very natural computability on various sets used in analysis� The basic machine
model admits to introduce realistic computational complexity in analysis�

As already mentioned there are several other approaches to study e�ectivity in ana�
lysis some of which are listed in the following�
Numerical analysis can be considered as the oldest discipline with this aim� To�
day
 numerical algorithms are usually programmed �in FORTRAN
 ALGOL
 ���

and realized on computers� Such realizations can at most approximate the intended
real functions since they operate on the �nite set of !oating point numbers sup�
plied by the machines� No mathematical theory of computability or computational
complexity is used�

The real RAM �real random access machine
 is a mathematical machine model
formalizing the intuitive concept of algorithm used in numerical analysis and com�
putational geometry �BSS ��
 PS ���� Since many TTE�computable functions are
not real RAM�computable
 and since there are real RAM�computable functions
which are absolutely not computable by a physical device �see Lemma ���

 the real
RAM model is certainly not adequate for generalizing Church�s computability thesis
from the natural numbers to the real numbers �Sma �	�� Non�continuous functions
computable by real RAM�s can be ordered by levels of discontinuity and classi�ed
by degrees of discontinuity �HW ����

Interval Analysis controls errors which usually occur
 if !oating point numbers are
used for performing real computations �Moo ��
 Abe ���� Although no formal de�
�nition of computability is considered
 it is very closely related to a de�nition of
computable real functions given by Grzegorczyk �Grz ��� by means of computable
functions on intervals�

A computational model extending the real RAM is used in IBC �information based
complexity
 �TWW ���� For de�ning computable operators
 functions are inserted
into programs as �black boxes� or �oracles�� A typical question in IBC is� How many
evaluations f�xi
 are needed for determining the integral of a function f � C �for
some given class C
 with precision � � �#

Pour�El and Richards �PR ��� generalize a further characterization of the compu�
table real functions �a real function is computable
 i� it has a computable uniform
modulus of continuity and transforms computable sequences of real numbers to com�
putable sequences of real numbers
 given by Grzegorczyk �Grz ��� to functions on



	� �� Other Approaches to E
ective Analysis

Banach spaces� They study especially solution operators of di�erential equations
from physics�

Logical approaches are another way to formalize e�ectivity in analysis� The methods
for proving theorems are restricted to �constructive� ones
 especially no indirect
proofs are allowed �see �Bee ��
 BR ��
 Tro �	� for detailed discussions and further
references
� A very far advanced theory is Bishop�s remarkable constructive analysis
�Bis ��
 BB ���� Most of his concepts can be transferred to TTE
 if sets are in�
terpreted by �adequate
 naming systems and routines by computable or continuous
functions� It should however be mentioned that such logical approaches do not admit
to de�ne computational complexity�

Computational complexity in analysis has been investigated in di�erent ways� While
in the real RAM model and in the IBC approach one evaluation of a real function is
considered as a single step
 the �bit complexity� models count the number of Turing
machine operations for approximating a result with a given error 	�k �Bre ��
 KF
�	
 Mue ��
 Mue ��
 Sch ��
 Ko ��
 Wei ���� TTE embeds these de�nitions into a
general frame�

Computable analysis based on Grzegorczyk�s de�nition via operators is sometimes
called the Polish approach� There is another de�nition introduced by Ceitin �Cei
��
 Kus ��
 Abe ��� called Russian approach� The Russian approach considers only
computable real numbers� Computability is introduced by an �e�ective� notation�
We explain this more precisely in terms of TTE� For any w � �� let ���w be the
function f �� �� �� �� computed by the Type 	 machine with program w �see
Appendix B
� For any representation � �� �� ��M of a setM we derive a notation
�� �� �� ��M� of the set M� of the ��computable elements of M �Def� 	����

 by

���w
 �� �����w ��

�

We may say that ���w
 is the element x �M�
 computed by the program w relative
to the representation ��
Let � �� �� �� IR be the representation from Def� ���� Then IR	 is the set of
computable real numbers� In the Russian approach
 a function f �� IR	 �� IR	 is
called computable
 i� it is ��	� �	
�computable� Correspondingly
 computability is
introduced on other sets like the r�e� subsets of IR and the computable elements of
C��� ��� The underlying representations are not de�ned explicitly but used implicitly�

We discuss the relation between the Polish und the Russian approach� Let � ��
�� �� M be a representation and �� �� �� �� M� the derived notation� With
each function f �� M� �� M� we can associate a function f �� M �� M by
graph�f 
 �� graph�f
�

The Russian and the Polish approach would be �essentially
 equivalent
 if

f is ���� ��
�computable �� f is ��� �
�computable�

The implication ��� � can be proved easily� The implication � �� � does not hold
in general
 but for some important special cases�



	�

Theorem �Ceitin


Let f �� IR	 �� IR	 be a function such that

��
 �	�X
is dense in dom�f
 for some r�e� set X � dom��	
�

Then

f is ��	� �	
�computable �� f is ��� �
�computable�

Remember that ��� �
�computability implies continuity� The condition ��
 cannot
be omitted but might be weakened� The theorem can be generalized to computable
metric spaces with Cauchy representation �Cei ��
 KLS ��
 Mos ��
 Wei ����
The other case is the Myhill�Shepherdson theorem �MS ���� We formulate it in
the framework of TTE� Let PF �� fh j h �� � �� �g be the set of all partial
number functions� De�ne a representation � �� �� �� PF of PF by ��p
 � h i�
p enumerates the graph of h �more precisely
 ���i����j���� is a subword of p ��
h�i
 � j
� Notice that PF� is the set P 
�� of the partial recursive functions and ��
is equivalent to �
 the standard numbering of P 
���

Theorem �Myhill�Shepherdson


For any total function f � P 
�� �� P 
���

f is ���� ��
�computable �� f is ��� �
�computable�

The theorem can be generalized to computable CPO�s �cf� �Wei ���
�
Seemingly
 no other cases
 in which � �� � holds
 are known� Therefore the relation
between the Polish and the Russian approach to computable analysis is not yet
fully understood� It is well�known from computability theory that for notations
like ��� the smn�function is easily computable �at most in polynomial time
� As
a consequence
 for each ���� ��
�computable function f �� M� �� M� there is
some easily computable function g � �� �� �� with f���w
 � ��g�w
 for all
w � dom�f��
� Therefore
 the Russian approach has no complexity theory�

The references given in this paper
 especially in Chapter ��
 are by no means com�
plete� Many other authors have contributed considerably to the development of
e�ective analysis� I apologize to all those whom I did not mention�
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Appendix A �Type � machines and their semantics�

A Type � machine M is de�ned by�

�i
 an input�output alphabet � and a tape alphabet $ with � � $ and B � $ n �

�ii
 a sequence �Y�� � � � � Yk� Y�
 with fY�� � � � � Ykg � f�����g �specifying the function

type fM �� Y� � � � �� Yk �� Y�



�iii
 �nitely many Turing tapes
 each with a read�write head
 indexed by �� �� � � � � n
�k 
 n



�iv
 a �nite 
owchart F with the properties given below�

Only the following statements are admitted in a !owchart F of a Type 	 machine
�where � 
 i 
 n and a � $
�
� �i� R
 �move the head on Tape i one position to the right



� �i� L
 �move the head on Tape i one position to the left



� �i� a
 �write a on the square scanned by the head on Tape i



� �i� a
# �binary branching� is a the symbol on the square scanned by the head on
Tape i#



� HALT�

Additionally
 for Tapes i � f�� � � � � kg �the input tapes
 only statements �i� a
# and
�i� R
 �read only one�way input
 and for Tape � �the output tape
 only statement
sequences ��� a
��� R
 with a � � �write only one�way output
 are admitted�

The semantics of a Type 	 machine is de�ned via computation sequences of con��
gurations� As for ordinary Turing machines
 a con�guration of the Type 	 machine
M is determined by the label of the statement in the !owchart F to be executed
next and the inscription and head position for each Tape i �� 
 i 
 n
� A con�
�guration K � is the successor of a con�guration K
 K � K �
 i� K � is obtained
from K by executing the statement at the label of K and going to the next label�
Let the output inscription of a con�guration
 out �K

 be the longest word w � ��
immediately to the left of the head on Tape �� K is a �nal con�guration
 i� its label
has the statement HALT� A computation is a �nite or in�nite sequence K��K�� � � �
of con�gurations with Ki � Ki�� �i � �� �� � � �
�
Now
 we de�ne the function fM �� Y� � � � � � Yk �� Y� computed by the Type 	
machineM �

Consider �y�� � � � � yk
 � Y� � � � �� Yk�
The initial con�guration K�y�� � � � � yk
 is determined as follows�

� The label is the initial label of the !owchart�

� Tape m �� 
 m 
 k
 has the inscription ym
 the remaining squares have the
inscription B and the head is positioned on the �rst square to the left of the
inscription ym�

� All the squares on the remaining tapes have the inscription B�
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Case Y� � ���

For w � �� we de�ne�
fM �y�� � � � � yk
 � w
 i� there is a �nite computation K��K�� � � � �Kt such
that K� � K�y�� � � � � yk

 Kt is a �nal con�guration and w � out �K
�

Case Y� � ���

For p � �� we de�ne�
fM �y�� � � � � yk
 � p
 i� there is an in�nite computation K��K�� � � � such that
K� � K�y�� � � � � yk

 out �Ki
 is a pre�x of p for all i � � and the sequence
�length out �Ki

i�� is unbounded�

Appendix B �E�ective naming systems of sets of functions�

First we introduce pairing functions
 which are a useful tool also in Type 	 compu�
tability�

De�nition B�

��
 For k � � and x � a� � � � ak �a�� � � � � ak � �
 de�ne
%x �� a��a�� � � � ak��

�	
 For x� y � �� and p� q � �� de�ne

� x� y � �� %x��%y � ��
� x� p � �� � p� x ��� %x��p � ��

� p� q � �� p��
q��
p��
q��
 � � �

��
 For k � � and z�� � � � � zk � �� � �� de�ne

� z�� � � � � zk ����� z�� � � � � zk�� �� zk � �

The above tuple functions are injective and computable
 and the projections of their
inverses are computable� As a generalization of the �e�ective G�odel numbering� � �
� �� P 
�� �Rog ��
 Wei ��� we introduce notations �ab � �� �� P ab �a� b � f�� �g
�
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De�nition B�

��
 Let �FD � �� �� FD be some standard notation of all !owcharts of
Type 	 machines with one input tape�

�	
 For a� b � f�� �g let P ab be the set of all computable functions f ��
�a �� �b�

��
 For a� b � f�� �g de�ne the notation �ab � �� �� P ab by� �ab�x
 is the
function f �� �a �� �b computed by the !owchart �FD�x
�

The representations �ab have a computable universal function and satisfy the �smn�
theorem�� This can be expressed as follows�

Theorem B�

Consider � �� �� �� P ab� Then

utm��
 �� � 
 �ab�

where utm��
 holds
 i� there is a computable function u �� ����a �� �b

such that u�x� y
 � ��x
�y
 for all x � dom��
 and y � �a�

Theorem � expresses the kind of e�ectivity of the notations �ab� For continuous
functions e�ective representations can be introduced� A subset of a topological space
is called a G��set i� it is a countable intersection of open sets�

De�nition B�

F �� �� ff j f �� �� �� ��g
F �� �� ff j f �� �� �� ��g
F �� �� ff j f �� �� �� ��� f is continuous and dom�f
 is openg
F �� �� ff j f �� �� �� ��� f is continuous and dom�f
 is G�g

F �b �b � f�� �g
 is the set of all continuous functions f �� �� �� �b� The sets F ��

and F �� represent all continuous functions by the following lemma�
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Lemma B	

Every continuous function f �� �� �� �� has an extension in F ��� Every
continuous function f �� �� �� �� has an extension in F ���

We de�ne representations of the function sets F ab�

De�nition B


For a� b � f�� �g de�ne 
ab � �� �� F ab by


ab�q
�y
 ��

�
��b�x
 � p� y � if q �� x� p � with x � �� and p � ��

div otherwise�

The functions 
ab � �� �� F ab are in fact surjective and satisfy the following
e�ectivity theorem�

Theorem B�

Consider � �� �� �� F ab� Then

utm��
 �� � 
 
ab�

where utm��
 holds
 i� there is a computable function u �� ����a �� �b

such that u�x� y
 � ��x
�y
 for all x � dom��
 and y � �a�

More details and proofs can be found in �Wei ����

Appendix C �Notations of � and IQ�

De�nition C� �the notations �bin of � and �Q of IQ


��
 The notation �bin �� �� �� � of w is de�ned by dom��bin
 �� f�g �
�f�� �g� and �bin�ak � � � a�
 � ak 	 	k " � � � " a� 	 	��

�	
 The notation �Q �� �� �� IQ of the rational numbers is de�ned by

�Q�u
 �� �bin�u
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for all u � dom��bin



�Q��� u�
 �� ��bin�u

for all u � dom��bin
 n f�g


�Q��u�v�
 �� �bin�u
��bin�v
�

�Q��� u�v�
 �� ��bin�u
��bin�v

for all u� v � dom��bin
 with u�j �
 v �� f�� �g such that �bin�u
 and
�bin�v
 have no common divisor� �Q�u
 is unde�ned for all other u � ���

We shall write u instead of �Q�u
 for all u � don��Q
�

A reasonable notation of the set � of the natural numbers should at least have an
r�e� domain
 and the test �n � �#� and upwards and downwards counting should be
computable on names� The class of these notations ordered under reducibility has a
maximum
 the notation �bin�

Lemma C� �e	ectivity of �bin


For all notations � �� �� �� � of � such that dom��
 is r�e� we have�

� 
 �bin �� fw j ��w
 � �g and f�u� v
 j ��u
 " � � ��v
g are r�e� �

Roughly speaking
 �bin is the
 except for equivalence unique
 poorest notation of �
with r�e� domain
 for which the zero�test and counting are computable� The proof is
not di�cult
 we omit it� Also the notation �Q can be characterized by an e�ectivity
requirement and maximality�

Lemma C� �e	ectivity of �Q


For all notations � �� �� �� IQ of the rational numbers IQ we have�

� 
 �Q �� f�u� v� w� x
 j ��u
 	 �bin�v
 � �bin�w
� �bin�x
g
is r�e� in dom��
 � �� ��� � ���

The proof is very easy�
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Appendix D �Admissible representations�

We introduce a class of very natural representations
 called admissible� Let M be a
set and let � � 	M be a set of subsets of M � We say that � identi�es the points of
M 
 i� M � �� and fQ � � j x � Qg � fQ � � j y � Qg �� x � y for all x� y �M �
�That means
 each x � M can be identi�ed by those properties Q � � which hold
for x�


De�nition D�

Let M be a set and let � �� �� �� � be a notation of a set � � 	M 
 which
identi�es the points of M � The standard representation �
 �� �� ��M of
M derived from � is de�ned by

�
�p
 � x i� fw j x � ��w
g � Enw�p


for all p � �� and x �M 
 where

Enw�p
 �� fa� � � � ak � �� j ���a�� � � � �ak�� is a subword of pg

Thus
 Enw�p
 is the set of all words w � �� enumerated by p � ��
 and p is a �
�
name of x
 i� p enumerates the set of all words w with x � ��w
� Roughly speaking

a name of x is a complete list �in arbitrary order
 possibly with repetitions
 of those
properties Q � � which hold for x� We illustrate the de�nition by examples�

Example �

��
 M �� IR
 x � ��w
 ��� w � �Q�w
 � x


�	
 M �� IR
 x � ��w
 ��� �w � �u�v� with u � x � v



��
 M �� 	�
 A � ��w
 ��� �bin�w
 � A


��
 M �� �IR �� the set of open subsets of IR

O � ��w
 ��� �w � ucj v with �u� v� � O



��
 M � ��
 p � ��w
 ��� w is a pre�x of p�

Every set � � 	M 
 which identi�es the points of M 
 is a subbase of a T��topology
� on M �Engelking �Eng ���

 and any subbase of a T��topology on M identi�es
points on M � The topology � � 	M is de�ned from � by�

� �� f
	

� j � � �g
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where

� �� fQ� � � � � �Qn j n � �� Q�� � � � � Qn � �g
is a base of the topology � � In Example ��	

 � is the usual topology �IR of the real
line
 in Example ���

 � is the Cantor topology on ��� The representation �
 and
the topology � generated by � as a subbase are very closely related�

Theorem D�

Let � be the topology on M generated by the subbase � � range��
 from
De�nition D� � Then

��
 X � � �� ���
 X is open in dom��

 for all X �M �

�	
 � is continuous �� � 
t �
 �for all functions � �� �� ��M
�

By ��

 � is the �nal topology of �

 by �	

 �
 is the �greatest� or �poorest� �except
for equivalence
 continuous representation of the T��space �M� � 
� In �	

 � �� �
corresponds to the smn�theorem and ��� � to the utm�theorem from ordinary re�
cursion theory� Theorems ���
 ��	��
 and ��	��
 are special cases of Theorem D	�	
�
We call representations which are t�equivalent to some standard representation ad�
missible w�r�t� � or ��admissible�

De�nition D�

Let �M� � 
 be a topological T��space with denumerable subbase� A repre�
sentation � �� �� ��M of M is called ��admissible
 i�

�� is continuous �� �� 
t �

for all functions �� �� �� ��M �

By Theorem D	
 every T��space �M� � 
 with denumerable base has a ��admissible
representation which is unique except for t�equivalence� In Example ��	
 we obtain
�
 � �C 
 hence �C is �IR�admissible� In Example ���
 we obtain �
 � id�� 
 hence
id�� is �C�admissible� Let � be the topology induced by the metric on a separable
metric space �M�d
� Then �M� � 
 is a T��space with denumerable subbase which has
a ��admissible representation� The Cauchy representation �for examples see Def� ���
and Def� ���
 is ��admissible� More details can be found in �Wei ��
 Wei ����
For spaces with admissible representations
 a function is �topologically
 continuous

i� it is continuous w�r�t� the representations �see Def� 	����	

� This is stated in
Theorem ����
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