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1 Introduction

During the last 60 years an extensive theory of computability and computational
complexity has been developed (see e.g. Rogers [Rog 67], Odifreddi [Odi 89], Weih-
rauch [Wei 87], Hopcroft and Ullmann [HU 79], Wagner and Wechsung [WW 86]).
Without doubt this “Type 1 theory” models the behaviour of real world computers
for computations on discrete sets like natural numbers, finite words, finite graphs
etc. quite adequately.

A large part of computers, however, is used for solving numerical problems. Therefore
convincing theoretical foundations are indispensible also for computable analysis.
Several theories for studying aspects of effectivity in analysis have been developed
in the past (see chapter 10). Although each of these approaches has its merits, none
of them has been accepted by the majority of mathematicians or computer scientists.
Compared with Type 1 computability, foundations of computable analysis have been
neglected in research and almost disregarded in teaching.

This paper is an introduction to “Type 2 Theory of Effectivity” (TTE). TTE is
one among the existing theories of effective analysis. It extends ordinary Type 1
computability theory and connects it with abstract analysis. Its origin is a definition
of computable real functions given by Grzegorczyk in 1955 [Grz 55], which is based on
the definition of computable operators on the set w* of sequences of natural numbers.
Real numbers are encoded by fast (with “speed 1/n”) converging Cauchy sequences
of rational numbers, and these are encoded by sequences of natural numbers. A
real function is computable in Grzegorczyk’s sense, iff it can be represented by a
computable operator on such encodings of real numbers. In the following years this
kind of computability has been investigated by several authors (e.g. Grzegorczyk
[Grz 57], Klaua [Kla 61], Hauck [Hau 73, Hau 76] and Wiedmer [Wie 80]). The
computational complexity theory for real functions developed by Ko and Friedmann
[KF 82, Ko 91] can be considered as a special branch.

The study of representations, i.e. functions from w*“ onto sets, as objects of separate
interest results in an essential generalization of Grzegorczyk’s original definition and
admits to find and justify natural computability definitions for functions on most of
the sets used in ordinary analysis. Basic concepts are explained in Weihrauch and
Kreitz [WK 84, Wei 85, KW 85, Wei 87]. The theory has been expanded in several
papers by Hertling, Kreitz, Miiller and Weihrauch ranging from topological conside-
rations to investigation of concrete computational complexity [WK 86, KW 86, Mue
86, Mue 87, WK 91, Wei 91, Wei 93, Wei 92A, Wei 92B, HW 94]. As an interesting
feature, continuity can be interpreted in this context as a very fundamental kind of
effectivity or constructivity, and simple topological considerations explain a number
of well known observations from effective analysis very satisfactorily.

This paper is not a complete presentation of TTE but only a technically and con-
ceptually simplified selection from [Wei 94]. The main stress is put on basic concepts
and on simple but typical applications, while the theoretical background is reduced
to the bare essentials.

We assume that the reader has some basic knowledge in computability theory (Tu-
ring machines, computable functions, recursive sets, recursively enumerable sets).
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Introduction

There are several good introductions, e.g. the classical book by Hopcroft and Ull-
man [HU 79] or Bridges [Bri 94]. In addition to standard Calculus we use some simple
concepts from topology (topological space, open and closed sets, continuous func-
tions, metric space, Cauchy sequence, compact set). Any introduction to topology
(e.g. [Eng 89]) may be used as a reference.

In the following we axplain some notations which will be used in this paper. By
f:C X — Y we denote a partial function from X to Y, i.e. a function from a
subset of X, called the domain of f (dom(f)), to Y. The function f:C X — Y is
total, iff dom(f) = X in this case we write f : X — Y as usual. A finite alphabet is
a non—empty finite set. In Section 2, ¥ denotes any finite alphabet with {0,1} C ¥.
In the following section ¥ is some fixed sufficiently large finite alphabet containing
all the symbols we shall need. Let w :={0,1,2,...} be the set of natural numbers.
As usual, ¥* is the set of all finite words aq ...ay with k& € w and aq,...,a € X. The
empty word is denoted by e. Let ¥ := {aga;... | a; € £} ={p|p:w — X} be the
set of infinite sequences (or w—sequences) with elements from Y. We use suggestive
informal notations for defining finite and infinite sequences over . If uw = a4 ... ay,
v =0b...0p and p = cpeq... € X¥ (ai,bi,ci € Z), then uv := ay...aiby... b,
UP 1= Ay ... QpCoCr ... € XY U™ =y .. @y .. Qg dy . .oap (motimes), u¥ =
YUY ... 1= G ...0L0] . ez = uvw € X and g = uvp € X¥ then u
is a prefix and vis a subword of  and ¢. We extend the above notations to sets of
finite or infinite sequences. For example, 01¥* = {z € ¥* | 01 is a prefix of a2} and
Yru¥® = {p € ¥¥ | u is a subword of p}.

In Chapter 2 we generalize computability from finite to infinite sequences of sym-
bols and illustrate the definition by a number of examples. We introduce the Cantor
topology and show that computable functions are continuous. We introduce nota-
tions and representations and define, how topological and computational concepts
are transferred from sequences to named sets. In Chapter 3 we introduce standard
representations of the real numbers (the interval representation and the Cauchy re-
presentation) and investigate the computability concepts induced by them on the
real numbers. We give examples for computable and non—computable real numbers,
we characterize the recursively enumerable subsets of IR and prove computability of
a number of real functions. In Chapter 4 we give reasons for selecting the interval
and the Cauchy representation and for rejecting, e.g., the decimal representation.
We prove that every computable real function is continuous, we formulate the the-
sis that every physically computable function is continuous and we prove that no
injective and no surjective representation can be equivalent to the Cauchy represen-
tation. In Chapter 5 we introduce representations of the open and of the compact
subsets of the real numbers. We prove effective versions of some well known classical
properties, especially we prove a computational version of the Heine/Borel theorem
on compact sets. We introduce representations of the classes C'(IR) and C[0;1] of
continuous real functions and discuss their effectivity in Chapter 6. We present some
computational versions of well known properties and consider the determination of
a modulus of continuity, of the maximum value, the derivative and the integral.
Determination of zeros of continuous functions is considered in Chapter 7. We prove
that the general problem can not even be solved continuously. Under certain restric-
tions we have a computable but non—extensional solution operator. A computable



operator exists only on the set of continuous functions which have exactly one zero.
In Chapter 8 we introduce as new concepts computation time and input lookahead
of Type 2 machines with infinite output. In Chapter 9 we define the modified binary
representation which is appropriate for introducing computational complexity of real
functions. We determine bounds of time and input lookahead for addition, multipli-
cation and, by an application of Newton’s method, for inversion. Finally we define
the complexity of compact sets, which can be interpreted as “plotter complexity”.
Some other approaches to effective analysis are discussed in Chapter 10.
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2 Computability on Finite and Infinite
Words, Naming Systems

In this Chapter, ¥ is any finite alphabet, i.e. any finite non empty set. Turing machi-
nes are a convenient mathematical model for defining computability of wordfunctions
f:C (¥)¥ — ¥*. By the Church/Turing thesis, a word function is computable
informally or by a physical device, if and only if it can be computed by a Turing
machine. Moreover, Turing machines model time and storage complexity of physical
computers rather realistically. (A standard reference is the book by Hopcroft and
Ullman [HU 79]).

In this section we introduce our basic computational model for computable analysis,
the Type 2 machines. We formulate a generalization of the Church/Turing thesis,
we prove that computable functions on finite or infinite sequences are continuous
and define recursively enumerable sets. We introduce notations and representations
and define, how effectivity of elements, sets, functions and relations is transferred
by naming systems. Many examples illustrate the definitions.

Roughly speaking, a Type 2 machine is a Turing machine for which not only finite
but also infinite sequences of symbols may be considered as inputs or outputs. We
give an informal definition of Type 2 machines and their semantics.

Definition 2.1 ( Type 2 machines)
A Type 2 machine M is defined by two components:

(i) a Turing machine with k£ one—way input tapes (k > 0), a single one—way
output tape and finitely many work tapes,

(ii) a type specification (Y1,..., Yy, Yo) with {Yg,..., Y3} C {¥* ¥¥}.

The type specification expresses that fy :C Y; x ... x Y, — Y is the type of
the function computed by the machine M. It tells which of the input and output
tapes are provided for finite and which for infinite sequences. Notice, that input and
output tapes are restricted to one—way (left to right).

Definition 2.2 (semantics of Type 2 machines)
The function fjs :C Y] x ... x Yy — Y5 computed by the Type 2 machine
M (the semantics of M) is defined as follows:
Case Yy = ¥* (finite output):

Iy, .oy yk) = w € ¥, iff M with input (y1,...,yx) halts with
result w on the output tape.



Case Yy = X¥ (infinite output):

vy, .. ye) = p € X¢ iff M with input (y1,...,yx) computes
forever writing the sequence p on the output tape.

Notice, that in the case Yo = ¥* the result fas(y1,. .., yx) is undefined, if the machine
writes only finitely many symbols on the output tape but does not halt. A Type 2
machine can be visualized by its underlying Turing machine.

o LTI
/—> : k input tapes

ye LA TTITTT]

HEEEEEEE
M T : work tapes
l p

HEEEEEEE

y LTI T LT[ output tape

fM(yla 7yk) )

Readers not familiar with Turing machines find a more detailed definition in Ap-
pendix A.

We use the Type 2 machines for defining computability of functions f :C Yj X
X Yy — Yo ({Yo, .. Y} C{X,X¢}). The following definition generalizes the
common definition of computable wordfunctions, since in the special case Yo = ... =
Y: = ¥ Type 2 machines are ordinary Turing machines.

Definition 2.3 (Type 2 computability)

Let ¥ be a finite alphabet. Assume {Yp,..., ¥} C {¥*, 2%} (k > 0). A
function f :C Y] x ... x Y, — Yg is computable, ift f = fa; for some Type
2 machine M. A sequence y is a computable element of Yy, iff the O0—place
function f:{()} — Yo with f() =y is computable.
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Since Turing machines and their halting computations are finite, they have physi-
cal realizations (of course, only if size and time do not exceed certain bounds). By
definition, Type 2 machines may require infinite input and output tapes and may
perform infinite computations which cannot be realized actually, since infinite tapes
do not exist and infinite computations cannot be completed in reality. Notice, howe-
ver, that for a computation of a Type 2 machine any finite portion of the output can
be obtained already from a finite initial part of the possibly infinite computation,
and for this only finite initial parts of the input tapes are relevant. This means that
the behaviour of a Type 2 machine can be approzimated adequately by its behavi-
our in the finite. In this sense also Type 2 machines and their computations can
be realized physically. Therefore, any Type 2 computable function may be called
“intuitively computable” or “physically computable”.

Instead of Type 2 machines any other common computability model (e.g. FORTRAN
or PASCAL programs) may be used for definition and study of the computable
functions f :C Y] x ... x Yy — Yj, provided inputs and outputs are one-way
(finite or infinite) files of symbols. Merely the definition of computational complexity
depends crucially on the computability model. Below, we shall use Type 2 machines
for this purpose.

Type 2 machines can be considered as a certain kind of oracle Turing machines
(Rogers [Rog 67], Hopcroft and Ullman [HU 79]). Several other computable functions
of higher types have been introduced, e.g. enumeration operators ®, : 2¥ — 2%,
partial recursive operators I :C PF — PF., partial recursive functions F :C w* X
w— wand F:C2¥ X w — w, partial recursive functionals F':C PF — wU {x}
where PF' = {f | f :C w — w} (see Rogers [Rog 67] §§ 9.7, 9.8, 15.1 - 3)
and computable functions F :C w* — w* (Weihrauch [Wei 87]). Each of these
definitions can be derived from our Type 2 computability and vice versa by using
appropriate “natural” encodings. Therefore, it is very likely that every “intuitively
computable” function [ :C Y] x...x Yp — Yg is computable by a Type 2 machine.

The above considerations support the following generalization of the Church/Turing
thesis.

Generalized Church/Turing Thesis

A function f:C Y x...x Y, — Yy (Yo,..., Vi € {¥7,3¥}) is computable
informally or by a physical device, if and only if it can be computed by a
Type 2 machine.

Like Church’s Thesis, also this more comprehensive thesis cannot be proved. In
the definition of Type 2 machines we have restricted input and output tapes to be
one-way. For input tapes and for output tapes with finite output this restriction
is inessential, because a two-way input tape can be simulated by a one-way input
tape and a work tape, and for halting computations a two—way output tape can
be simulated by a work tape and a one-way output tape. The one-way output for
infinite computations, however, is an essential restriction (see Example 4 below).

Among other proposed basic computational models for defining computability on



Type 2 objects like 2¥, w* etc. the Type 2 machines are particularly simple and
concrete, they admit to explain the topological connection between classical analysis
and computational theory in a very transparent way, and moreover they admit a
direct definition of very realistic computational complexities as we shall show later
on. We illustrate the definition of Type 2 computability by several examples.

Example 1
Let ¥ :={0,1} and define f :C ¥¢ — ¥* by

f(0)y = div
f(01p) := 0 forall i € w and p € ¥*.

The following flowchart copies the leftmost zeros from the input tape 1 to the output
tape 0. It halts, iff the input is not 0“.

YR <{"} 00

Y

Y

0,R

HALT

The flowchart together with the type specification (¥“, ¥*) defines a Type 2 machine
which computes the function f.

Example 2
Let ¥ :={0,1} and define f :C ¥¥ — ¥¥ by

div if {o ] p(e) = 1} is finite, else
flp)(n):=¢ 0 if h(p,n) is even
1 if h(p,n) is odd
where h(p,n) is the position of the (n+1)th one in p (i.e. h(p,n) is that number ¢, for
which p(¢) = 1 and card{k < ¢ | p(k) = 1} = n). The following flowchart together

with the type specification (X, X¢) defines a Type 2 machine which computes the
function f.
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Y

LR 0,1 0,R

From now on we shall no longer specify Turing machine flowcharts in full detail but
give only informal descriptions. Type specifications will be given implicitly by the
context.

Example 3

Consider the problem of dividing real numbers by 3, where the real numbers are re-
presented by infinite decimal fractions (decimal expansions). The well-known paper
and pencil method by reading the input left to right and writing the output left to
right can be programmed easily by a Type 2 machine without work tapes. The nth
output symbol b, € {0,...9} and the nth remainder r, € {0, 1,2} are determined
by the symbol a, € {0,...9} and the previous remainder r,_; € {0,1,2} as follows:

10-rp_1+a,=3-b, +r,.

The sign and the decimal point must only be copied from the input to the output
tape. A flowchart consisting of 3 sequences (one for each previous remainder €
{0,1,2}) of 10 consecutive tests (one for each symbol € {0,...,9}) plus write—
statements etc. solves the problem. We omit a detailed flowchart.

Example 4

Consider the problem of multiplying real numbers by 3, where the real numbers are
represented by infinite decimal fractions. The school method for multiplying finite
decimal fractions adds intermediate results from right to left. It is also possible to
perform the addition from left to right. In this case, however, from time to time
carries may appear, which run from right to left switching nines to zeros.



right to left addition left to right addition

0. 2 4 3 3 8 6 6 6 7 - 3 00 2 4 3 3 8 6 6 6 7 . 3
6 6
1 2 1 2
9 9
9 9
2 4 2 4
1 8 1 8
1 8 1 8
1 8 1 8
1 2 1
0 7 3 0 1 6 0 0 0 1 0 7 2
3 1
6 0 1

This method with left to right addition can be applied also to infinite decimal
fractions. It can be implemented easily on a modified Type 2 machine which has a
two—way output tape.

Now we show that no Type 2 machine multiplies infinite decimal fractions by 3.

Assume that there is a Type 2 machine M which muliplies infinite decimal fractions
by 3. Consider the input p = 0.333... = 0.3“. Then M must produce the output
g =1.000... = 1.0 or the output ¢ = 0.999... = 0.9¥. Consider the case ¢ = 1.0*.
There is a computation step in which M writes the first symbol 1 on the output
tape. Up to this step M has read only the first & symbols (for some k € w) from the
input tape. Consider the input sequence ¢’ := 0.3*0“. Since the first k& symbols of
g and ¢’ coincide, also with input ¢’ the machine M will write the symbol 1 as the
first output. But since M is a multiplier, it must write 0.9¥0“ on the output tape.
This is a contradiction. The case ¢ = 0.9¥ is handled accordingly.

Therefore, no Type 2 machine multiplies infinite decimal fractions by 3. Also the
more general problem of multiplying two real numbers in decimal representation
cannot be solved by a Type 2 machine. By Example 4 two-way output is strictly more
powerful than one-way output. We continue with examples for non—computable
functions.

Example 5
Let ¥ :={0,1} and define f :C ¥¢ — ¥* by

f(p) 32{ Ooter=0

1 otherwise.

We show that f is not computable. Assume that some Type 2 machine computes f.
Consider the input p := 00... = 0. Then for some number k£ € w, M will produce
the output 0 in k steps. Consider the input p’ := 0¥10“. Since the first k symbols of
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p and p’ coincide, and since M can read in k steps at most k& symbols, M halts with
output 0 also for input p’. Since f(p') = 1, M cannot compute the function f.

Example 6

The function f from Example 1 has no computable proper extension. Assume, on the
contrary, that for some w € ¥* the function f': ¥ — ¥*, defined by f(0¥) = w,
f(0'1p) = 0 for all : € wand p € ¥¢, is computed by some Type 2 machine M. Then
with input 0¥ for some k € w, M will produce the output w in k steps. Especially,
this implies lg(w) < k. Consider the input ¢ := 0**110“. Since the first & symbols of
0¥ and ¢ coincide and since M can read in k steps at most & symbols, M halts with
output w also for input ¢. Since lg(w) < k we obtain f(q) := 01 % w = fui(q).
Therefore, M cannot compute f.

In the same way it can be shown that also the function f :C ¥ — }* from
Example 2 has no computable proper extension.

In the proofs in Examples 4, 5 and 6 only the following fundamental finiteness
property of computable functions f:C ¥¥ — Y (Y € {¥* ¥¥}) has been used:

Finiteness property (for computable functions)

If f(z) =y, then any finite prefix of the output y is already determined by
some finite portion of the input z.

This finiteness property is equivalent to continuity w.r.t. the Cantor topology on %%
and the discrete topology on X*.

Definition 2.4 (Cantor topology on ¥, discrete topology on ¥*)

(1) 74:={A] A C X%} is called the discrete topology on ¥*.

(2) 7¢ := {AX¥ | A C ¥*} is called the Cantor topology on 3¢,
(X9, 7¢) is called the Cantor space (over X).

Every set A C ¥* is 7g-open (i.e. A € 74). A set U C ¥ is tc—open (i.e. U € 7¢), iff
there is some A C ¥* with (p € U < (Jw € A) w is a prefix of p) for all p € ¥¢.
It p € U, already a finite prefix w of p suffices to prove this property. The topology
7, can be generated from a metric space. For p,q € ¥¥ define the distance

0 ifp=gq
d(p,q) == ¢ 27" where n is the length of the longest

common prefix, otherwise.
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It is easy to show that (X¢,d) is a metric space. A subset X C ¥ is an open ball,
iff it is a closed ball, iff X = wX¥ for some word w € ¥* (w¥¥ = B(w0¥,2-27") =
Be(w0¥,27") where n := [g(w)). The set of open balls {wX® | w € ¥*} is a basis of
the Cantor topology 7¢. On cartesian products Y x...x Yy (Yi,..., Y, € {¥*,X¢})
we consider the product topologies.

For functions f :C ¥¥ — }“ the finiteness property can be formulated as follows.
Assume f(z) = y. Then for any open ball B(y,¢) there is some open ball B(z,6)
such that f(B(z,6)) € B(y,e). But this means that f is continuous in z, i.e. the
finitenness property is equivalent to continuity.

Theorem 2.5 (computable = continuous)

Every computable function f:C Y] x Yy x ... x Y, — Yy 1is continuous.

Proof

Let f(y1,...yx) = yo. Consider the case Yy = X¢. It suffices to show that for
any neighbourhood weX* of yo there is some neighbourhood X of (y1,...,yx) with
F(X) € weX®. Let M be a Type 2 machine which computes f. Let woX¥ be a
neighbourhood of yo. Then M with input (y1,...,yx) writes the prefix wg of yo
in finitely many steps. During this computation only the prefix w; of the input y;

on Tape ¢ can be read (¢ = 1,...,k). Then X := w;Y] x ... x w;Y} is an open
neighbourhood of (y1,...,yx) with f(X) C weX®. The case Yy = ¥* can be proved
similarly.

O

Therefore, for functions on ¥* and X“ continuity is a necessary condition for compu-
tability (only continuous functions can be computable). Continuity, i.e. the finiteness
property of functions, is a very elementary constructivity property. In each of the ex-
amples 4, 5 and 6 we have proved discontinuity of the function under consideration.
Of course there are also continuous functions which are not computable.

Example 7

Let d : w — w be a total function with range (d) C {0, 1} which is not computable.
Then the functions f :C ¥* — ¥¥ ¢ :C ¥ — ¥* and h : ¥¥ — XY are
continuous but not computable, where:

flw)(n) = d(n) forallwe ¥X* n € w;

0“)

0%1q) := d(k) forallk € w, q€ 3¥;
(

g)(n) = d(n) forall¢€X¥ né€w.

(
(
(
(



12 2 Computability on Finite and Infinite Words, Naming Systems

From a Type 2 machine for f, g or h one could construct a Turing machine computing
the function d.

An important object in ordinary recursion theory (Rogers [Rog 67]) is an “effective
Godel numbering” ¢ : w — PW of the set P of the computable functions
f € w — w. The theory of Type 2 computability can be deepened by introducing
“effective” notations (** :C ¥* — P of the sets P* of the computable functions
f:C ¥ — ¥* and “effective” representations 5 :C ¥¥ — F% of certain sets
F* of continuous functions f :C ¥* — ¥ (a,b € {*,w}). Definitions and some
properties are given in Appendix B. For details see [Wei 94]. These naming systems,
however, will not be used in the following.

The composition of computable functions is computable or has a computable exten-
sion. For simplicity we consider only unary functions.

Theorem 2.6 (composition of computable functions))

Let f:CY) — Yz and ¢ :C Yy — Y3 (Y7, Y5, V5 € {¥*, X¥}) be computa-
ble.

— I (Y5, Y3) (X, ¥%), then ¢f is computable.

— If (Y2,Y3) = (X, ¥%), then ¢f has a computable extension % such that
dom (gf) Ndom (f) = dom (k) N dom (f).

Proof

Let My and M, be Type 2 machines computing f and g, respectively. It is possible
to construct from M; and M, a Type 2 machine M, which simulates alternately
the computations of M; and M, taking in turn the output symbols of M; as the
input symbols for M,: M, is simulated until it requires the first input symbol, My is
simulated until it produces the first output symbol, M, is simulated until it requires
the next input symbol, etc.. The computable function fy; has the desired properties.
O

As a simple consequence of Theorem 2.6, computable functions map computable
elements to computable elements. A subset A C ¥* is recursively enumerable (r.e.),
ifft A = dom (f) for some computable function f :C ¥* — ¥* and A is recursive
(or decidable), iff A and ¥*\ A are r.e. We generalize these basic definitions from
recursion theory as follows:

Definition 2.7 (r.e. and recursive sets)

Consider k> 0 and Yq,..., Y, € {&* E«}.
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(1) A set X C V) x...x Y} is called recursively enumerable (r.e.), iff
X = dom (f) for some computable function f:CY; x ... x Y, — ¥*.

(2) For UCW CYy x...xY,wecall U re. in W, iff U =W nNX for

some r.e. set X.

(3) For U CW CY; x...xYy we call U recursive (or decidable) in W,
ifft U and W\ U are r.e.in W.

Assume M = dom (far), where fry :C Y] x ... x Y, — ¥* for some Type 2 machine
M. This machine M is an “abstract proof system” for the set X = dom(fy). If
y € X then M applied to input y halts. The finite computation can be considered
as a proof for the property “y € X” in this proof system. If y ¢ X, then there is no
such a proof.

If y € dom (far), then only a finite portion of the possible infinite input y can be
read by M during its finite computation. Therefore, any r.e. set is open. Any open
set X C ¥¥ has the form AX* for some A C ¥*. It is easy to show that X C X
is r.e., iff X = AX“ for some r.e. (even for some recursive) subset A C ¥*. U is
recursive in W, iff there is a computable function f :C Y} x ... x ¥, — ¥* with
W Cdom(f) and U = f~He}n W, ie. fly) = ¢ < y € Uforally € W.
The sets U C X% recursive in %% are particularily simple: U is recursive in X%, iff
U = AX¥ for some finite set A C X*. This follows from compactness of 3.

Finite or infinite sequences of symbols can be used as names of other objects like
natural numbers, rational numbers, finite graphs, rational matrices, real numbers,
subsets of w etc.. Examples are the binary notation v, :C ¥* — w of the natu-
ral numbers and the decimal representation vy4.. :C ¥ — IR of the real numbers
(where ¥ is a sufficiently large alphabet). We introduce naming systems and redu-
cibilities for comparing them.

Definition 2.8 (notations, representations, reducibility)

(1) A naming system of a set M is a notation or a representation of M,
where a notation is a surjective function v :C ¥* — M (naming by
finite strings) and a representation is a surjective function 6 :C ¥¥ —
M (naming by infinite sequences).

(2) For functions v :C Y — M and v :C Y — M’ with Y)Y’ €
{E%, 29} we call v reducible to ', v < ', iff (Vy € dom (7)) ~(y) =
7' f(y) for some computable function f :C Y — Y. We call v and +/
equivalent, v =+, iff v < 4" and +' < .
Topological reducibility <, and topological equivalence =, are defined
accordingly by substituting “continuous” for “computable”.
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If v =~'f, we may say that the function f “translates” the naming system ~ into
the naming system ' (examples: translation from PASCAL to ASSEMBLER, from
English to German). For a naming system v :C Y — M there are informations
about the elements of M, which can be obtained computationally from their names.
Translation cannot increase this information. If v < +" and 4" £ ~, we may say that
~-names contain more computationally available information than 4’-names. As an
example consider the following two notations 1 and ~3 of ¥*. Let A C ¥* r.e. and
not recursive. Define vy (w) = w for all w € ¥*, 1n(0w) = w if w € A, rp(lw) = w if
w ¢ A, va(x) = div otherwise. Then obviously, vs < 1y but vy £ va. The first symbol
of any vo—name of a word w is the answer to the (undecidable) question “w € A?”.
This is not the case for r;—names. We illustrate Definition 2.8 by an example.

Example 8

Let d € w, d > 2, and let ¥ be an alphabet with {.,0,1,...,d — 1} C ¥. For any
a € w, 2 <a <d, define a notation v, :C ¥* — w of the natural numbers and a
representation ¢, :C ¥ — R, of the non—negative real numbers as follows (where

Y. :=H0,...,a—1}):

= X7\ {e}

= apa® 4+ ... +apa® (a; €3,)

= .Y

= apa"+ ...+ apa® +a_jat + ... (a; €%,)

Let P, := {e¢ € w | e is a prime factor of a}. Then for any a,b € {2,...,d} the
following properties hold::

(3) 5a§5bvifpbgpa7

(4) 6, %4 8, i Py € P

There is a Turing machine which translates a—adic numbers into b—adic numbers, i.e.
vy < 1. By symmetry we have also v, < v,, hence v, = v,. The computable function
f:C ¥ — ¥¥ with f: w — w.0¥ translates v, into é;. Since v, < vy, (by (1)) we
have v, < 6;. It is not very difficult to design a Type 2 machine which translates
6, to &, if P, C P,. Consider e € P, \ P,. Then 1/e = &, (.c(b—1)(b—1)...) =
o (.(¢+1)00...) for some ¢ € ¥, but 1/e has a unique é,—name p, for which neither
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p € ¥*0¥ nor p € ¥*(a —1)¥. As in Example 4 or 5 it can be shown that there is no
continuous translator which is correct for input p. Details are left to the reader.

A naming system v :C Y — M transforms effectivity concepts from Y to M. First
we define computable points and open, r.e. and recursive subsets.

Definition 2.9
Let v, :CY; — M, (¢ = 1,..., k) be naming systems.

(1) @ € My is yy—computable, iff there is a computable element y € Y; with
nly) = .
(2) X C My x...x My is (y1,...,v)—open (—r.e., —recursive), iff

(s sgp) € Yoo XYy | () melyn))) € X}

is open (r.e., recursive) in dom (y1) X ... x dom ().

For any naming system v :C Y — M, the set 7, := {X C M | X is
v-open } is called the final topology of ~.

Example 9

Let vp;, :C ¥* — w be the binary notation of w. Every n € w is v;,—computable,
every subset A C w is vy;,—open. A subset A C w is vy, -1.e., iff it is r.e.. Let 64.. be
the representation of real numbers by infinite decimal fractions.

(1) Every rational number is d4..—computable. For a proof notice that the decimal
names of the rational numbers are periodic.

(2) V/2is d4ec—computable. A simple trial and error search by squaring finite decimal
fractions yields a sequence p € B¢ with dy.(p) = V2.

(3) For any X C IR, X is open <= X is dg..—0pen.

We sketch a proof. Let X C IR be open. Let p € 6, X. Since X is open,
there is some n € w with [dgec(p) — 107"; dgec(p) + 107" C X. Let w, € ¥
be the prefix of p containing the first n digits after the decimal point. Then
Sdec(w, X% Nidom (64e)) C X, ice. p € w, X% N dom (84.0) C 67 (X). This means,
p has an open neighbourhood in 831 X. Therefore 63! X is open in dom (8). Let
X be é—open. Consider € X and « > 0 (w.l.g.). There is some p € ¥¥ with
dgec(p) = x such that ¢ & 9 whenever p = wq with w € ¥* and ¢ € {0,...,9}“.
Since 67! X is open in dom (64..) there are some w € ¥* and ¢ € {0,...,9}*
with p = wq and w3¥ N dom (4e.) C 5;61C(X). Since ¢ + 9¥ we obtain

& = Ogec(0q) € [0dec(wW0?); 8gec(109Y)) C bgec(wX®) C X
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There is another p’ € ¢ with d4..(p') = @ and ¢ =+ 0¥ whenever p’ = wq with
w € X*and ¢ € {0,...,9}*. As in the first case we conclude that there is some
prefix w’ of p’ with

T € (Sgec(w'0); Sgec(w'97)] C X.

Therefore x € I C X for some open interval I, This shows that X is open.

Notice that the final topology 7, of v :C Y — M is indeed a topology on M. Next,
we define relative computability and continuity of functions and relations.

Definition 2.10 (relatively effective relations and functions)
For ¢ =0,...,k let 7, :C Y; — M, be naming systems.

(1) A relation @ C My x ... x My x My is (y1,...,7k, Yo)—computable (—
continuous), iff there is some computable (continuous) function f :C
Yi x ... x Y, — Yy with

(V1 (y1)s - eyn)s 0 (Y, - yk)) € Q

whenever Ja.(v1(y1), - .., (yr), ) € Q.

(2) A function ¥ C My X ... x My — Mgy is (1, .-, 7k, o) computable
(—continuous), iff there is some computable (continuous) function f :C
Yi x ... x Y, — Yy with

Fln(ya), - wlye)) =v0f (s - us)
whenever F(~1(y1), ..., v (yx)) exists.

Relative computability (continuity) of a relation @) can be considered as an effec-
tive version of the mere existence statement (Vaq,...,25)(J20)Q(21, ..., 2k, xo). If
@ is (71, .., Yk, Yo)—computable, some computable function f transforms any name
(Y15 .- yx) of (x1,...,2) from the domain of @) into a name yo of some x such
that Q(xq,..., 2k, x0). Roughly speaking, for each (w1,...,2;) we can determine
some g with Q(x1, ..., 2k, xo). If in (1), ((y1)s-- s v(yr)) = (v (wi), - v (yp))
implies Yo f(y1, .-, 7%) = Yof(y1,---,¥y;), then there is a (computable or continuous)
function G :C My x ... X M, — My with (zq,..., 25, G(x1,...,2)) € Q. Such a
function (' is called a choice function of (). A relation () may be computable without
having a continuous choice function (see Example 10 below). Definition 2.10(2) is
a special case of 2.10(1) where @ is single—valued. A function F is (y1,..., %%, %0 )—
continuous, iff some continuous function transforms any name (y1,...,yx) of some
(x1,...,2) € dom(F') into some name yo of F(x1,...,x;). Notice that by defini-
tion every restriction F’ of F'is (y1,...,7k, J0)—continuous (—computable) if F' is
(71, Yk, Yo)—continuous (—computable). A Type 2 machine “computing” some re-
lation @) or some function [’ actually transforms merely sequences of symbols; it is
the user who interprets these sequences as names of objects.
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Example 10

Define the enumeration representation En :C X — 2“ of the set of subsets of w

by
n € En(p): <= 10"""'11 is a subword of p

for all n € w and p € £¥, and let vy, :C ¥ — w be the binary notation of w. (We
assume {0,1} C X.) Then the following properties hold.

1) A Cwis En—computable <= A isr.e..

2 An) €2Y xw|n € A} is (En, vy, )-r.e

4) {(A,n) € 2 xw | n € A} is (En, vy, )—computable.

(1)

(2) {(

(3) {(A,n) € 2% xw | n ¢ A} is not (En, vy, )-open.
(4) {(

(5)

5

There is no (En, vy, )—continuous function

f:C2¥ — w with f(A) € A for all A=£0.

We sketch the proofs:
(1) This is a simple recursion theoretic exercise.

(2) Let M be a Type 2 machine which for input (p, w) searches in p for the subword
10"*111, where n := v, (w). M halts, iff such a subword has been found.

(3) We have (En(0¥),1,,(0)) € Qs := {(A,n) | n ¢ A}. Assume, @5 is
(En, vy )—open. Then for some k, (En(q), l/bm( )) € Qs for all ¢ € 0"¥%. But
q = 0%10110¥ € 0*Y* and (En(q ) in(0)) € Qs.

(4) Let M be a Type 2 machine with fy; :C ¥ — ¥*, which searches in input
p € X¢ for the first appearence of a subword 10™*111. If such a word is found
then a word w with v, (w) = m is written on the output tape.

(5) Suppose, there is some continuous function ¢ :C ¥¥ — ¥* with v,9(p) =
f En(p) whenever En (p)= 0. Then ¢(10110¥) = 0, ¢(100110) = 1. By conti-
nuity of g there is some & with g(10110*X%) = {0}, ¢(100110*X*) = {1}. Let
p := 10110¥100110¥ and ¢ := 100110¥10110%. Then 0 = vpng(p) = f En(p) =
10,1} = f En(q) = vbing(q) = 1 (contradiction).

Notice that the set Q = {(A,n) | n € A} is (En, vy, )—computable but has not even
a (En, vy, )—continuous choice function f:C 2¥ — w.

The computability concepts induced on sets by naming systems (Def. 2.9, 2.10)
remain unchanged, if the naming systems are replaced by equivalent ones, and cor-
respondingly the induced topological properties remain unchanged, if the naming
systems are replaced by topologically equivalent ones. For the proof only the fact
that the computable and the continuous functions are closed under composition is
needed.

On the other hand, non—equivalent naming systens induce different computability
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theories on M. Therefore, the induced effectivity concepts on a set (according to
Defs. 2.9 and 2.10) depend crucially on the underlying naming system.

In TTE, computability on a set M is introduced in two steps:
(1) definition of computable functions on finite or infinite sequences of symbols,
(2) definition of a naming system v :C Y — M.

As for number functions we are not interested in arbitrary computability concepts
on M but only in those which meet some intuition, which are “natural”. In Step 1,
which is independent of M, we choose the Type 2 computable functions, which are
“effective” by our generalized Church/Turing thesis (see Chapter 2). “Effectiveness”
of a naming system of a set M can be defined only relative to some structure on M.
It is an essential feature of TTE that effectiveness of the introduced naming systems
is justified by general principles.
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3 Computability on the Real Numbers

In this chapter we introduce standard naming systems for the natural, the rational
and the real numbers and study the induced computability. We give examples of
computable real numbers, characterize the pc—open, —r.e. and —recursive sets and
prove computability of functions like addition and multiplication and of real analytic
functions with computable power series.

From now on let ¥ be a sufficiently large finite alphabet containing all the symbols we
shall need. Let v, :C ¥* — w be the one-to—one binary notation (without leading
zeros) of the natural numbers, and let vg :C ¥* — w be the one-to—one binary
notation of the rational numbers by signed reduced fractions of binary numbers (for
an exact definition see Appendix C). These notations and all the equivalent ones are
usually called “effective”. Are there other “effective” notations of the natural und
rational numbers? In Appendix C we show, that the equivalence classes of v;, and
v can be characterized by simple effectivity properties and a maximality principle.
In the following text we shall use the abbreviations:

U= in(u) for all u € dom(vp),

=vg(u)  for all u € dom(vg).

N

As an example, addition on w is computable w.r.t. v;,, i.e. f : w? — w with

flz,y) == x4y 1S (Vbin, Vbin, Vbin)—computable, in more detail: there is a computable
function g :C ¥*x¥* — ¥* with f(W,?) = vhing(u, v) for all u,v € Dom(vpy,). Also
multiplication, exponentiation, arithmetical subtraction and division, minimum and
maximum are computable w.r.t. v;,. On the rational numbers addition, subtrac-
tion, multiplication, division, maximum and minimum are computable w.r.t. vg.
The most popular representation of the set IR of the real numbers is that by infi-
nite decimal fractions (decimal expansions), d4e. :C 3¢ — IR. Unfortunately, very
simple functions like # + 3z are not (dec, d4ec)—computable (see Example 2.4). This
already indicates that d4.. in not adequate for a foundation of computability on IR,
since real number multiplication should be computable. To overcome this problem
we introduce two standard representations of IR, the interval representation and the
Cauchy representation.

Definition 3.1 (interval and Cauchy representations)

Define two representations p; :C ¥ — IR (interval representation) and
pc :C XY — IR (Cauchy representation) as follows:

pr(p) = x, iff there are ug, v, uy, v1,... € dom(vg) with

p = upfvoffurfvy ... and x = supw; = inf ;.
1€w 1EW

pc(p) = x, iff there are ug, uq, ... € dom(vg) with
p=uoflurt ..., (VE)(Vi > k)|u; — up| < 27 and = = lim u;.

1—00
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If p = uofvofuy ... and pr(p) = x then x is the only point in the intersection of all
closed intervals [u;; v;]. If po(p) = « with p = uefusf. .., then (%;);e, is a Cauchy
sequence of rational numbers converging to z with “speed” 27% and consequently,
[up — x| < 27 for all k € w. Therefore, we can associate with ueffuif ... the special
sequence (1,,),e. of nested intervals where [, := [u,, —27"; 4, +27"]. Notice that we
consider only these fast converging Cauchy sequences as names. First we compare
the three representations 4., pr and pc.

Lemma 3.2 (relation between decimal and Cauchy representation)

Odec < p1 = po
pPC %t 5dec

Proof

Odgec < pr: A Type 2 machine M can be constructed which with input
p € ocap...ap.a_1a_y... € dom(bg.) (¢ € {+,—},a; € {0,...,9}) writes
upfvofuifvrf ... on the output tape, where w; = r and v; = r + 107 if 0 = +,
U = —r — 107 and v; = —r if ¢ = —, and r € @ is the rational value of
the finite decimal fraction ay...ag.a_1...a_;. Then fy; translates é4.. into 6y, i.e.
5dec(p) = prM(p) for all pe dom(5dec)-

pr < pc: Let M be a Type 2 machine which with input p € ugfvofusfvy ... € dom(pr)
(us,v; € dom(vg)) writes ¢ := wofwif. .. on the output tape, where for ¢ = 0,1, ...
the word w; is determined as follows. M searches for a pair of natural numbers (k, m)
with [9,, — ux| < 27" and then sets w; = v,,. Since p € dom(py), the search must be
successful, its result guarantees w; — 27¢ < p1(p) < w;, hence |w; —w,| < 2= for all
n > 1. Therefore p;(p) = pc(q).

pc < pr: Let M be a Type 2 machine which with input p = woﬂwlﬂ S dom(pc')
writes ugfvofuifvy ... on the output tape where uw; := w; — 27" and v; := w; + 27°.
Then obviously pc(p) = prfv(p).

po Lt Ogec: Assume, there is some continuous function f :C ¥¢ — ¥¢ with pe(p) =
dagec f(p) for all p € dom(pc). Since po(1414...) = 1 € R, f(p) = 0.999... or
f(p) =1.000.... Consider the case f(p) = 0.9*. Since f is continuous, there is some
n € w such that f((1§)"X¥) C 0.95%. Let w:= 14 27" and ¢ := (1§)"(u$)”. Then
pc(q) > 1, but f(q) € 0.9%%, hence d4ecf(q) < 1 < pe(q). Therefore f does not
translate ¢ correctly. The case f(p) = 1.0“ is handled accordingly.

O

By Lemma 3.2, the decimal-names contain more continuously accessible information
than pc—names. Below we shall give convincing arguments that not the decimal
representation but the Cauchy—representation is adequate for defining computability
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on the real line. Since po = p; we may use also py instead of po for investigating
computability on IR, whenever appropriate.

Convention

In the following, vy, vg and pe will be our standard naming systems of w, Q and IR,
respectively. For simplicity, in connection with “computable”, “r.e.” and “recursive”
we shall omit prefixes like vy;,,—, (pc, vg)— ete. and shall say “computable” instead

of “(Vbin, Vein)—computable”, “r.e.” instead of (vq, pc, Vpin)—T.€. etc. .

By Definition 2.9, the computable real numbers are (by the above convention) those
numbers, which have computable pc—names or computable p;jnames (Lemma 3.2).

Example 1 (computable real numbers)

(1) Every rational number is computable:
Consider r € Q. Define u € ¥* by w = r, define ¢ := uffuf... = (uf)¥ € X«
Then ¢ is computable and pc(q) = r.

(2) /2 is computable:
Define f : w — w by f(n) := that k € w with k* < 2-2?" < (k +1)?. Then f

is computable. Let w, := f(n)-27". Then p = upfusfus... is computable and

po(p) = V2.

(3) logs b is computable:
Define f : w — w by f(n) := that k¥ € w with 3* < 5" < 3¥! Then f is
computable. Let w, := k/n and ©,, := (k + 1)/n. Then p = upfvofusfivy ... is
computable and p;(p) = logs(5).

(4) For A C w define x4 := X{27" | i € A}. Then
x4 1s computable <= A is recursive.

Assume that A is recursive. For k& € w define u;, € ¥* by uy := X{27" | 7 €
A,t < k}. Then p = uofuqf ... is computable with x4 = pc(p).

Assume that x4 is computable. For all w = aq...a; (k € w,aq,...,a, € {0,1})
let @, := X{a;-27" | i < k}. If 24 = 2, for some w € ¥~ then x4 is computable
by (1). Assume x4 = x,, for all w € ¥*. By assumption, x4 = pc(p) for some
computable p = ugfusf... € ¥, For any w € {0, 1}* there is some ¢ € w with
u; + 270 < x4y or T, < u; — 270 In the first case we have x4 < x,, in the
second case x,, < x4. Therefore W := {w | z, < x4} is decidable. Compute
a sequence ¥, 1, ... of words inductively by yo := (1 if 1 < x4, 0 otherwise),
Ykt = (yrl if 2,1 < 24, yx0 otherwise). Then 1 is the last symbol of yy, iff
k € A. Therefore, A is recursive.
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Further examples of computable real numbers can be obtained by applying compu-
table functions to computable arguments (see below). The limit of any computable
sequence of computable real numbers with computable modulus of convergence is
computable:

Theorem 3.3 (limit of computable sequence with computable convergence)

Let (4:)iew be a (Vpin, po )—computable sequence of real numbers such that
(Vi,5 = m(n))|ly; — y;| < 27" for some computable function m : w — w

(m is called a computable modulus of convergence). Then x := lim y; is
computable.
Proof

By assumption, for any 7,j € w a word u;; € dom(vg) can be computed such that
yi = po(uwiofuat...). Let v; := wpq1y,q2 for all ¢ € w. Then ¢ := vofvif. .. is
computable. For all & > 7 we have

vy —vg| < |ﬂm(i+1),i+2 - ym(i+1)| + |ym(i+1) - ym(k+1)| + |ym(k-l—1) - ﬂm(k+1),k+2|
S 2—i—2 + maX(Q_i_l, Q—k—l) + 2—k—2
<27

and

i — 2| < Um(in)ir2 = Ym(r)| + [Ymiirr) — 2|
S 2—i—2 + 2—i—1
<27

We obtain x = pc(q). Therefore, @ is pc—computable.
O

Example 2

Let A C w be r.e. but not recursive. Define x4 € IR by x4 := X{27" | i € A}. By
Example 3.1, x4 is not computable. Since A is r.e. and not recursive, there is some
total injective computable function f : w — w with A = range(f). Obviously,
x4 = S{277 | n € w}. Define a sequence s := (Y, )new by ¥ = 2277 | k < nl.
Then s is (Vpin, pc)—computable (even (v, vg)—computable) and increasing. Since
its limit 4 1s not computable, it cannot have a computable modulus of convergence

by Theorem 3.3. The idea is from E. Specker [Spe 49].

The set of computable real numbers is a denumerable subset of IR, however it cannot
be enumerated “effectively”. We prove a positive version of this statement: For every
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computable enumeration of computable real numbers a computable number which
is not enumerated can be determined.

Theorem 3.4

Let (2;)icw be a (Vhin, pc)—computable sequence. Then a computable number
r with z = z; for all 7 € w can be determined.

Proof

By diagonalization we construct a computable number = such that = = z; for all
i € w. For any ¢ € w we can determine a sequence ¢; := u;pfuaf ... with @; = pe(q:),

therefore, there is a computable function ¢ :C ¥* — ¥* with ¢(0") = u;242. We

obtain |vgg(0') — z;| < L .37 for all 1 € w. We compute u;,v; € dom(vg) for

2
1 =0,1,... as follows:
o := vg(0") + 1, Tp :=Tp + 1.

Assume u;_; and v;_; have been determined. Define

Uy i= Uj_1,0; = U; +37° if vog(0") > wimq + 2 - 377,

W = U1 +2-37%,0;, :=v,_1 otherwise.

The construction guarentees: v; = uw; + 37, x; ¢ [u;;v;] and [Uiy1;0i41] C [0 704).
Therefore © := pr(uofvoffurfvrf . ..) exists and x = x; for all ¢ € w. Additionally, the
sequence upfvofufvif... € X¥ is computable, hence x is pj—computable, i.e. po—
computable.

O

Next, we characterize the pc—open, the r.e. and the recursive subsets of IR.

Theorem 3.5
For any X C IR

X is open,
(Y C dom(vg) x dom(vg), Y r.e.)
X =U{@w) | (u,v) € Y},

(3) X is po-recursive <= X =0or X =IR.

(1) X is pc—open
(2) X is pe—t.e.

11
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Proof

(1) Let X be pc—open. Consider # € X. There are words u; € dom(vg) with
U — 270 < Uy — 27 <@ < Wy + 2770 < W+ 270 (1 € w). We obtain
po(uofurt...) = x. Since pz'(X) is open in dom(pc), there is some k with
po(uol .. fupdX?) € X. Since x € (up — 27%;up +27%) C peluof . . . furdX®), «
has an open neighbourhood in X. Therefore, X is open. On the other hand, let X
be open. Consider p = ugfiut ... € p;'(X). Since X is open, there is some i € w
such that [po(p)—2-27% po(p)+2-27") C X. Forany ¢ € V := ugfiuiff . . . fu 439N
dom(pc) we have |u; — pc(q)| < 27¢, therefore |pc(q) — po(p)] < 2-27¢, hence
pc(q) € X. Therefore V is an open neighbourhood of p in pg'(X). This shows
that X is pc—open.

(2) Let X be po—r.e. Then there is some r.e. set W C ¥* with p5'(X) = WE¥ N
dom(pc). Let M be a Type 2 machine which for input (u,v) € ¥* x ¥* works as
follows: M searches systematically for some w € W and words wug, uq, ..., u; €
dom(vg) such that (cf. (1) of this proof):

U—1l <t —2"'<...<u—2"<uy42 <. ... <m+27 <u+1,
w is a prefix of wofuqf ... furt,
u=u,— 27" v =1, + 275

M halts as soon as such words have been found. By the proof of (1) above,
Y := dom( far) has the desired properties. On the other hand, let X = [ J{(w;v) |
(u,v) € Y} with ree. Y. Let M be a Type 2 machine which for input p =
uofurf ... € dom(pc) works as follows: M searches systematically for some k € w
and some (u,v) € Y with [uy—27%;up+27%] C (w;9). M halts, iff the search has
been successful. Obviously, dom(far) N dom(pc) = {p | pc(p) € X}. Therefore
X is po-rt.e..

(3) If X is pc—recursive, X is pc—1.e. and IR\ X is pc—r.e.. Therefore X and IR\ X
are pc-open and open by (1). ) and IR are the only sets X with this property,
since the real line is connected.

By Theorem 3.5(1), the final topology of p¢ is the usual topology 7 on IR generated
by the open intervals. By (3) IR has no non-trivial pc—recursive subsets. No non—
trivial property of real numbers can be decided if only pc—names are available. The
characterizations hold accordingly for X C IR" (n > 2).

Lemma 3.6 (some r.e. subsets of IR,IR?)

Let a € IR be computable. The sets

{r€R|z>a},{z€R|z<a},{ze€R|x=*a},
{(z,y) € R? [ <y} {(x,y) € R* | w =y}

are recursively enumerable.
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Proof

We consider only the most general case © < y. Let M be a Type 2 machine which
for input (p,q) = (uofusf... ,vofv1f...) € dom(pc) x dom(pc) searches for some
k € w with up +27% < v, — 27% and halts as soon as such a k has been found. Then
fau(p, q) exists, iff pe(p) < pe(q). The other proofs are left to the reader.

O

The complements of the above sets {z | + < a} etc. are not r.e., since they are
not open (Theorem 3.5.(1)). The r.e. subsets of IR" are closed under finite union
and intersection. By Lemma 3.6, open intervals with computable boundaries are
re.. Let A C w be r.e. and not recursive. Then the interval (0;x4), where x4 =
Y{27% | i € A}, is r.e. (for a proof use Theorem 3.5(2)), but by Example 1 its upper
boundary is not computable. Many of the functions studied in “classical” Analysis
are computable.

Theorem 3.7 (some computable real functions)
(1) The real functions (z,y) — = +y, (x,y) — @ -y, (v,y) — max(z,y)
and z — 1/a are computable.

(2) Let (a;)icw be a (Vpin, pc)—computable sequence and let Ry > 0 be
the radius of convergence of the power series Ya;z'. For each R with
0 < R < Ry the real function fg defined by fr(z) = (Za;z" if |z] < R,

div otherwise) is computable.

Proof

(1) We use the fact that the given functions are continuous and that their restric-
tions to Q (which is dense in IR) are (vg, vg)—computable.

T+ Yy
Let M be a Type 2 machine which for input (p,q), p,q¢ € dom(pc), p =
uofurl ..., ¢ = vofvifl..., writes the sequence r := yofy1f... on the output

tape, such that
yn = ﬂn—l—l + 6n—l—1

for all n € w. Let @ = pe(p) and y = pc(q). For all n > k we have

T, — Vil < [ngr — Upga | + [Ongr — Opga| < 2-27771 =275,

Y, — (@ 4+ y)| < [Tpgr — @] + Vg1 —y| <2277 =278,

We obtain r = fuy(p,q) € dom(pc) and pe(r) = x +y.
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RRTE
Let M be a Type 2 machine which for input (p,q), p,q¢ € dom(pc), p =
uofusl ..., ¢ = vofvif..., writes the sequence r := yofy1f... on the output

tape, such that
Yr, = Umtn * Umn

for all n € w where m is the smallest natural number with
o) +1 < 2™ ! and [vg| +1 < 2™,

Let @ := pc(p) and y := pc(q). For all n € w we have
] < [T — ol + ] < 27

and correspondingly |v,| < 2™~!. For all k > n we have

|yn - yk| < |ﬂm+n '5m+n - ﬂm-l-k '5m+k|
< |ﬂm+n(5TH+n - 5m+k)| + |5m+k(ﬂTfL+n - ﬂm+k)|
< 2 . 2m—1 . 2—m—n — 2—n

and correspondingly |y, — x - y| < 27". We obtain r = fy(p, ¢) € dom(pc) and
po(r) =z -y.

max(x,y):

Let M be a Type 2 machine which for input (p,q), p,q¢ € dom(pc), p =
uofusl ..., ¢ = vofvif..., writes the sequence r := yofy1f... on the output
tape, such that

¥, = max(Uy,U,,)

for all n € w. Let @ = pe(p) and y = pe(q). Assume k > n and s :=
max (U, Uy, Uk, Ux). If s =, then

By symmetry, for the other cases s € {v,,%,0x} we obtain |y, — 7.| < 27F
in the same way. Correspondingly |y, — max(z,y)| < 2% is proved. Therefore

r = fu(p,q) € dom(po) and p(r) = max(z,y).

1/a:

Let M be a Type 2 machine which for input p = uefusf... € dom(pc) and
pc(p) = =+ 0 works as follows. First, M searches for the first N € w with
[un| > 2- 27N As soon as such a number N has been found, M writes vofivqf. ..
on its output tape, where v, = 1/Uyn4p for all k& € w. Since |u;| > 27 for all
1 > N, v exists for all k£ € w. For all k,n with £ < n we obtain

Uk —Un| = [1/Uanyn — 1/Uan sl
= [WaNtn — WanNtk|/ [Tann|[Tan k]
< 27ANZR LN N <ok
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and correspondingly [0, — 1/x| < 27F. Therefore r = fuy(p) € dom(pc) and
po(r)=1/x.

It suffices to prove the theorem for rational numbers R. Let R, € Q be some
rational number with R < Ry < Ry. By Cauchy’s estimate, there is some number
M € w with

la] < M - BT
for all i € w. Given some z with |z| < R, for each n we shall approximate
oo . N .
fr(z) = > aix* by d, := > ¢;b', where N is sufficiently large and b,co, ..., cn
i=0 i=0

are rational numbers where |b — x| and the |a; — ¢;| are sufficiently small such
that |f(z) — d.| < 27"7'. Let M be a Type 2 machine which for any input
p = uoflurd ... € dom(pc) with || < R (where @ = po(p)) generates a sequence
q = voflrf ... (v; € dom(vg)), where v, is computed as follows:

— M, determines some N € w such that
M- (R/RO)NTY Ry /(R — R) <2772,
— My determines some b € Q, |b] < Ry, with
N
o= b[- > MRy i< 277,
i=1
— Forany ¢ =0,..., N the machine My determines some ¢; € Q with

la; — ;| b < 27" /(N +1).
N .
— Define v, :=> ¢ - b'.
=0
For all ,b € IR with |z|,|b| < Ry and all i > 1 we have
o' = b=z —b]- [ 2T 0T < e —b] -0 R

We obtain for |z| < R:

|[fr(2) — 4|
N

N . N . .
<|fr(x) = DD @[+ |3 aie’ = 37 b
=0 =0

1=0
oo . N . .
<| X ax'|+] X (air’ — cb')|
1=N+1 1=0
o0 . . N ) . N . .
< > M-R'R 4> |axt —aib| + > |aibt — ;b
i=N+1 =0 =0

N .
> lai — cil[o]f

=0

N .
<M (R/RONT Ry f(By = R)+ 3 laglle — 0] - By +
=1

N
<27 ple —b| Y i- M/Ry +27"73
=0

< 3.2 "3
< 97nl,
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Consequently, for all & > n we have |v, — v,| < 27". Therefore fr(z) =
po(volforf. ..

In general, for computable (a;);c, the function f(z) = Ya;z' is not computable on
{z | |z] < Ro} where Ry is the radius of convergence.

Example 3

There is some computable injective function h : w — w such that 0 € range(h)
and A := range(h) is r.e. but not recursive. Define ¢, := 1 + 2=mn) and a, = ¢
for all n € w. Then the sequence (ay,)ne, is computable, and the power series Ya,x
has radius of convergence 1. By Theorem 3.7, f(x) := Ya,2" is computable on
every interval [0;r] with 0 < r < 1. We show that f is not computable on [0;1).
If f is computable on [0;1), there is a computable function M : w — w with

Ya,(1 —27%)" < M(k). Define g : w — w by

vl
n
n

g(k) := max{n | h(n) < k}.
We obtain for all k£ € w
M(k+2) = ayp(l—2752)20
(14 27001 — 2742t

(1 +279)(1 = 27420
(1 T 2—k—1 )g(k)

\%

Y

therefore

g(k) < log(M(k +2))/ log(1 + 2771,

Since M, log and division are computable (see below), g(k) < H(k) for some com-
putable function H : w — w. We obtain k € A < dn < H(k).h(n) = k by the
definition of g. Therefore, A must be recursive (contradiction). We conclude that
Ya,x™ is not computable on [0;1).

Since the power series for e, sina, arctan x, In(1 4+ ) etc. are computable, these
functions are computable by Theorem 3.7(2). Since the computable real functions
are closed under composition, many other real functions are computable (at least on
appropriate subsets of their domains),e.g. @ — —x, (2, y) — min(x,y), v — |z|, any
polynomial function with computable coefficients, @ +— v/, v — Inz, (z,y) — 2,
(x,y) — —1/(2? + y?) etc. . Notice that every restriction of a computable function
is computable. Since computable real functions map computable real numbers to
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computable real numbers, numbers like € = €', 7 = 6- arc sin(3), —1/In(e* — 7),
cos(v/2 — 1), 72 ete. are computable.

The join of two computable real functions at a computable point is computable:

Lemma 3.8 (join of two functions)

Let fi1, f2 :C IR — IR be computable functions, let a € IR be computable
with fi(a) = fs(a). Then f:C IR — IR defined by

fla) = { filz) ifz<a

fa(x) otherwise

is computable.

Proof

We only sketch a proof. Consider ¢ € {1,2}. Since f; is computable, there is a Type
2 machine M; which computes f; w.r.t. the Cauchy representation ps. For any input
p and any n € w we can compute an interval I with rational boundaries such that

fipc(p) € I,
lim length (];m) =0

m—00

if p € dom(fpc).

There is some computable sequence ¢ = toftif... (t; € dom(vg)) with a = pc(q).
Let M be a Type 2 machine which for input p = uefiurf... € dom(pc) produces a
sequence vofwofvifnf ..., where the words v, w, € dom(vg) are defined as follows:

I;m Hu, +27"<t,—2™"
[0,;10,] = ];n i, +27" <y, —27"
Jpn otherwise

where J,, is the smallest interval containing I}, and I, . For all p € dom(fpc) we
obtain fpc(p) = prfum(p), therefore, f is computable.
O

Let us call a function f :C IR — IR a polygon, iff there are real numbers
Ty Y0y - - -5 Tpy Y With

Top <21 <...<Zy
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and
div fzx<zgorz>z,
fle) =14y where (x,y) is on the straight line connecting
(ziz1,yim1) and (zi,9), 2y <o <.
The points (zo,Y0), - .-, (Tn, yn) are called vertices of f. As a corollary of lemma 3.8

we obtain that every polygon function with computable vertices is computable.

Computability on the complex plane C is defined by identifying € with IR?. For
any function f :C € — € there are two functions fi, f» :C IR* — IR defined by
flz+iy) = fi(x,y)+ifa(x,y). The function f is called computable, iff f; and f; are
computable. Computability of complex addition, multiplication, division, z — |z|
and z — arg(z) follows from Theorem 3.7(1). The proof of Theorem 3.7(2) can
easily be generalized to complex power series. Therefore, also complex functions like
sin(z), €, (w,z) — w*, In(z) etc. are computable (on appropriate subsets of their
domains).

We conclude with an example of a computable binary relation which has no com-
putable choice function.

Example 4

Let S :={(2,n) € R xw | |t —n| < 1}. Then S as a relation is computable, more
precisely (pc, Vpin )—computable. But S has no continuous choice function, i.e. there
is no (pc, Vpin )—continuous function f : IR — w with (z, f(x)) € S for all € IR.
We prove both statements.

Let M be a Type 2 machine which for input p = upffust... € dom(pc) determines
some word w with |vp,(w) — 2| < 1/2. Then |pe(p) — vem far(p)] < 1 for all p €
dom(pc). Therefore, S is computable. Notice, that we cannot guarantee (pc, Vpin )—
extensionality of fus, i.e. we cannot guarantee vy, far(p) = veinfu(p') if pe(p) =

po(p').

Assume that there is some (pc, Vpin)—continuous function f : IR — w with |z —
f(z)] < 1 for all « € IR. Then there is some continuous function ¢ :C ¥¢ — ¥*
with [pc(p) — vhing(p)| < 1 for all p € dom(pc). We have f(0) = 0 and f(1) = 1. Let
y :=inf{x | f(x) = 1}. There is some p = upfusif ... € dom(pc) such that pe(p) =y
and po(uof. .. furfy®) is a neighbourhood of y for all k& € w. Consider the case
f(y) = 0. Then g(p) = 0. By continuity of g there is some k with g(uof ... fupf¥”) =
{0}. There is some ¢ € upf...fuptE® with fpc(q) = 1. For this ¢ we must have
g(q) =1 (contradiction). The case f(y) =1 is treated accordingly.
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4 Effective Representation of the Real
Numbers

In Section 3 we have introduced ad hoc the Cauchy representation po :C 3% — IR
of the real numbers and studied the induced computability on IR. Since we are not
interested in some arbitrary computability theory on IR, we need a good justification
for the choice of the Cauchy representation (or some equivalent one).

In this section we explain why the Cauchy representation is topologically natural
for the real line, and why it is computationally natural. We mention the concept
of admissible representations and formulate the important continuity theorem for
admissible representations. Finally we explain why several other representations of
IR cannot be natural.

We assume without further discussion (see Appendix C) that our notation vg :C
¥* — Q of the rational numbers induces “the natural” computability on Q. Let K;
be the set of all representations ¢ of IR such that

{(u,v,p)|u < é6(p) < T} is open in ¥* x ¥* x dom(9).
A representation ¢ is in K iff
u < é(p) <T < already a finite portion of p guarantees w < 6(p) < v
or, more formally,
u<d(p) <v < (Jw)(w is a prefix of p and w < §(q) < v for all ¢ € wWE®).

This means that finite portions of p admit to “locate” §(p) arbitrarily precisely by
rational numbers from below and above on the real line. Representations not having
this property don’t seem to be very useful. In fact, the Cauchy representation é¢,
the interval representation é; (Def. 3.1) and also the decimal representation ége.
are elements of K;. Since po &4 64ec, the class K; does not consist of a single -
equivalence class, but p¢ is distinguished by maximality in K:

Theorem 4.1 (p¢ is effective for the real line)

Let K; be the set of all functions 6 :C ¥* — IR such that
{(u,v,p) | uw < é(p) <v} is open in ¥ x ¥* x dom($).
Then for any function 6 :C ¥* — IR

6 € Ky <= ¢ is continuous <= ¢ <; pc.

Thus, pe 1s except for equivalence the unique poorest continuous representation of
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IR. If pc:(p) = x then all true properties of the form “u < & < ©” (and only these) can
be obtained from finite portions of any pc—name p of x. There is a surprising formal
similarity of Theorem 4.1 to a well known theorem in recursion theory [Wei 87]. Let
¢ 1w — PW be some “effective Gédel numbering” of the set P() of the partial
recursive functions f :C w — w. Let K be the set of all numberungs ¢ : w — P
such that Uy := {(z,z,y) € w* | ¥s(z) = y} isr.e.. Then p € K <= 1 < ¢. Notice
that Uy is r.e., iff ¢ satisfies the “universal Turing machine theorem”. There is a
computational version of Theorem 4.1 expressing that the Cauchy representation is
not only topologically but also computationally sound:

Theorem 4.2 (pc is computationally effective)

Let K. be the set of all functions 6 :C ¥ — IR such that
{(u,v,p) |uw < é(p) <T}isre in ¥° x ¥ x dom(§).
Then for any function 6 :C ¥* — IR

0€e K., <= 6 < pc.

Thus, pe is also maximal in the subclass K. C K; w.r.t. computable reducibility.
Notice that we have a definition of “é is continuous” but no definition of “6 is
computable”. As in Theorem 4.1, * — 7
“ <=7 to the “utm-theorem”.

corresponds to the “smn-theorem” and

Proof

Assume 6 € K.. By assumption, there is a Type 2 machine My which for any input
(u,v,p) € ¥* x ¥* x dom(6) halts, iff w < 6(p) < v. Let M be a Type 2 machine
which with input p € X¢ tries to produce a sequence ugfu1f ... (u; € dom(vg)) as
follows. For computing u,, by an exhaustive search M tries to find some (u,v,m) €
Y X ¥* xw with 0 < v—u < 27" such that My with input (u,v, p) halts in at most
m steps. If this search is successful, M chooses w,, := u. Then é6(p) = pc far(p) for
all p € dom/(96).

Assume 6 < pe. By assumption, there is some Type 2 machine M with 6(p) =
pc fu(p) for all p € dom(é). Let M’ be a Type 2 machine, which with input (u, v, p)
(u,v, € dom(vg), p € dom(6)) works as follows. By simulating M with input p M’
generates the sequence fy(p) = uofusf ... and halts as soon as some n is found with
U<U, —2"and u, + 2" <v. Then

{(u,0,p) | W< 6(p) <T} = I x ¥* x dom(6) N dom(far),



therefore, 6 € K.
O

Let 1 be the set of open subsets of IR. By Theorem 4.1 the representation
pc :C X¥ — IR is admissible with final topology 7. Appendix D contains a short
definition of admissible representations. Here we merely formulate the important
continuity theorem. For a broad discussion see [KW 85, Wei 87, Wei 94].

Theorem 4.3 (continuity)

For ¢ =0,...,k let §; :C ¥¥ — M; be an admissible representation. For
any function F :C My x ... x My — My we have:

F'is continuous <= F'is (é1,..., 0k, p)—continuous.

Since every computable function on ¥“ is continuous and since p¢o is admissible, by
Theorem 4.3., every computable real function is continuous. Because of its import-
ance we prove this fact directly without using Theorem 4.3.

Theorem 4.4

Every computable real function is continuous.

Proof

Let f :C IR — IR be computable. Then f is (pr, pc)—computable. There is a Type
2 machine M such that fp;(p) = pcfu(p) for all p € dom(fpr). Let O C IR be open
and let f(z) € O. We have to show that f(/) C O for some open intervall [ with
x € I. There are words u;,v; € dom(vg) with Uy <y < ...and Uy > U1 > ... such
that @ = p;(p) where p = upfvoffurfvqf. ... There are words wo, wy,... € dom(vg)
such that far(p) = ¢ where ¢ = woffwif... € dom(pc). Since pe(q) = f(x) € O and
O is open, there is some m € w such that pc(wef. .. fw, %) C O. For producing
wol . .. fw,,f, the machine M reads at most upfivg. .. furford for some k from the
input tape. Let @' € (Uy; ). Then there is some ¢ € ¢ such that «’ = p;(p') where
Pl = uofvg ... furtvrtq. By the behaviour of M, fa(p') € wolf... 4w, 1%, hence
pofu(p') € O. We obtain f(a') = fpr(p') = pefu(p') € O. Therefore f(1) C O and
x € [ for I := (uy;vy).
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The general case f:C IR" — IR is proved accordingly.
O

At first glance very simple discontinuous real functions like the jump j : =z —
(0 if @ < 0,1 otherwise) or the Gauss bracket g : x +— |z| (integer part of )
are intuitively computable. Clearly, these two functions are easily definable in our
mathematical language, but “easily definable” does not mean “computable”. This
solves the seeming contradiction.

Some functions can be made computable by choosing appropriate representations.
Consider a representation ¢ of the real numbers such that p(0) determines the sign
of x if 6(p) = . Then of course the jump is (8, v4i, )—computable.

Every function f :C IR — IR can be made (6, pc-)—computable for some appropriate
representation 6 depending on f. Define 6(p(0)q(0)p(1)g(1)...) =2 : <= pc(p) =
x and pc(q) = f(x). This “dirty trick” cannot be applied to two—place functions:

Lemma 4.5

There is no representation ¢ :C ¥ — IR such that the test [ : RxIR — w,
where [(x,y) = (0 if < y, 1 otherwise) is (6, 8, V3, )—continuous.

Proof

Assume that there is some continuous function f :C ¥¥ x ¥¥ —— ¥* such that
1(6(p),6(q)) = vhinf(p,q). Consider z = 6(p). We have 1 = [(6(p), 6(p)) = veinf(p, p).
Therefore, f(p,p) = 1 € ¥*. Since f is continuous, f(w¥*,w¥¥) = {1} for some
prefix w of p. For any @,y € 6(wX®) we obtain « > y hence {z} = §(wX®). Therefore,
for any z € IR there is some w € ¥* with {z} = 6(wX®). This, however, is impossible
since card(¥*) < card(IR).

O

We may interpret the result as follows: the function [ is absolutely not computable
by physical devices.

According to Theorem 4.1, the Cauchy representation is distinguished from other
representations of the real numbers (except for topological equivalence), where the
topology 7 on IR by the open intervals with rational boundaries is considered as
the reference structure on IR. Theorems 4.2, 4.3 and 4.4 confirm, that the Cauchy
representation induces the “natural” computability theory on the real line. Since
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the decimal representation 4., is not even t—equivalent to p¢, it is “unnatural”.
Remember also that by Example 2.4 the (computable) real function & +— 3 is
0ot (O4cc, Ogecy—computable. Are there representations in the equivalence class of p¢
which are simpler than pc7 The next theorem excludes some obvious simplifications.

Theorem 4.6 (restrictions for admissible representations of IR)

(1) No total representation 6 : 3 — IR is t—equivalent to p¢.
(2) No injective representation 6 :C ¥¥ — IR is t—equivalent to pc.

(3) Define the “naive” Cauchy representation of IR by p,(p) = x iff there
are ug, Uy, ... € dom(vg) with p = upfus4 ... and x = lim w,.

11— 00

Then p, is not t—equivalent to p¢.

Proof

(1) One can show that ¥“ with the Cantor topology is a compact metric space. If
6 =; pc then 6 is continuous (Theorem 4.1). Since any continuous function maps
compact sets to compact sets, also IR must be compact, but IR is not bounded.

(2) Assume that there is an injective representation ¢ :C ¥ — IR with 6 =; pc.
By Theorem 3.5 X C IR is open <= X is pc—open <= X is o—open.
We conclude that 67! is a continuous function. Any continuous function maps
connected sets to connected sets. The set IR is connected. But § 'R = dom(9) is
not connected: Let p,¢ € § 'R, p=+ ¢. Then there is some w € ¥* with p € w¥*
and ¢ ¢ w¥*. Let A:=wX“N§ 'R, B:=X¥\wX“ N6 R, Then A and B are
both open in §!'IR and non-empty, and § ' IR = AU B and AN B = ). Hence
dom(¢6) is not connected.

(3) Assume that there is some continuous function f with p,(p) = pcf(p) for
all p € dom(p,). Let p = (08)“. Then p,(p) = 0. Let f(p) = uofusf.... By
continuity of f there is some k with f((04)*X%) C uofu 43, Then f is incorrect
for pf 1= (04)} (1) since po f((0)5%) € [~1/2;1/2] but po(p') = 1.

O
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5 Open and Compact Subsets

Since the cardinality of 2%, the power set of IR, is greater than the cardinality of ¥,
it has no representation. Therefore, in our approach we are not able to investigate
computability of functions like f :C 2™ — IR with f(X) =y : <= y = supX. We
restrict our attention to the open subsets and to the compact subsets of IR, which
have representations. We define a standard representation of 7, show that it is
topologically and computationally effective and list some computability results. We
introduce several effective representations of the set K(IR) of the compact subsets
of IR, prove a computational version of the Heine/Borel theorem and give examples
for computable operations on the set K(IR) of compact sets.

Definition 5.1 (representation of )

Define a representation ¢,, of the set 7 of open subsets of IR as follows:

dop(p) = X, iff there are words ug, vo, u1,v1,... € dom(vg)
with w; <7; for all ¢+ € w and p = ugfvofurfvif... such that

X = U{(ﬂi;gi) | Z - w}.

for all p € ¥¥ and X € 7.

We use the convention (a;a) := 0. A sequence p € ¥¥ is a 6, name of X, iff
p enumerates a set of open intervals with rational boundaries which exhausts X.
Since every open subset X of IR is the union of a set of open intervals with rational
boundaries, the above function é,, is surjective, i.e. it is a representation of 7.
The equivalence class of é,, can be defined by a simple effectivity property and a
maximality principle (cf. Theorems 4.1, 4.2):

Theorem 5.2 (effectivity of b,,)
(1) Let K; be the set of all functions 6 :C ¥¥ — 7 such that
{(u,v,p) | u < v and [u;v] C é6(p)} is open in X* x ¥ x dom(9).
Then for all functions 6 :C X% —
0 € Ky <= 6 <y b
(2) Let K. be the set of all functions ¢ :C ¥* — 75 such that
{(u,v,p) |u < v and [u;0] C é6(p)} is r.e. in X° x ¥° x dom(9).
Then for all functions 6 :C X% —

0 < K., <= 6 < by
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Thus, 6,, 1s except for equivalence the unique poorest representations 6 of 7, for
which every true property of the form “[w; o] C X7 can be obtained from a finite
portion of any é—name of X. We omit a proof of Theorem 5.2. A few examples for
induced effectivity are listed in the following theorem.

Theorem 5.3 (properties of 6,,)

(1) X is é,p—computable <= X is pc—r.e.

(2) {(x,X)€R X7, |2 € X} is (po,bop)T.€.

(3) Union and intersection on 7g are (6,p, 6op, 6op)—computable.
(4)

4) For f : IR — IR define Hy : 7n, — 75 by H;(X) := f~1(X) for all
X € 7. Then

—  Hy is (64p, 6op)—continuous, if f is continuous,

—  Hy is (84, 6op)—computable, if f is computable.

op

Proof
(1) This is an immediate consequence of Theorem 3.5(2).

(2) Let M be a Type 2 machine which for inputs p = woffwif... € dom(pc) and
q = uofvofurfvt . .. € dom(é,,) works as follows. M searches systematically for
indices ¢, k with @, < w; — 27" and W; + 27° < T). M halts, iff such indices have
been found. We obtain {(p, q) | pc(p) € bop(q)} = dom( far)Ndom(pe)xdom(b,p)
(see Def. 2.9(2) ).

(3) Consider only inputs of the form p = woffvofuifvif... € dom(é,,) and ¢ =
wolfxofwifart. .. € dom(é,p,). For the case of union let M be a Type 2 machine
which produces from p and ¢ the output upfvofwofzofusfvifroifaf .. .. For the
case of intersection let M be a Type 2 machine, which produces a list of all
intervals (w; v) for which there are numbers ¢, k with (@;v) = (w;;0;) N (Wg; Tk).

(4) This follows from the more general Theorem 6.3 below.

a

A subset X C IR is compact, iff X is closed and bounded. By the Heine/Borel
theorem, X is compact, iff for every set 3 C 7 of open subsets of IR with X C Uj
there is some finite subset 5’ C g with X C U’ The characterization remains valid,
if above 7 is replaced by the set of all open intervals with rational boundaries. The
following four representations can be derived from these characterizations.
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Definition 5.4 (representations of the compact sets)

Let K(IR) be the set of all compact subsets of IR. Define a notation ¢ of the
finite sets of open intervals with rational boundaries by

t(w) =B, iff there are words uy, v1,. .., ug, v; € dom(vg) with

w = urfvf .. furtor and B = {(u;01), ..., (U 0r) }-

Define representations k., ke, £, and & of K(IR) as follows:

(1) (“closed representation”)
ke(p) = X, iff 6,,(p) = IR\ X.

(2) (“closed bounded representation”)

keo(p) = X, iff  there are u € dom () and g € dom(é,,) with
p=uq, X =R\ b,(q) and X € [—u;7].

(3) (“weak covering representation”)

ky(p) = X, iff  there are words wo,wy,... € dom(¢) with
p = wodw1¢ ... such that for all w € dom(¢) :
X CUuw) = (FT)w=w;
(4) (“strong covering representation”)

k(p) = X, iff p=wotwi¢... as above such that
{wo,wy,...} ={w | X CJu(w) and VI € (w).IN X % 0}

If k.(p) = X, then p enumerates the complement of X. If £.4(p) = X, then p gives a
bound of X and enumerates the complement of X. If k,,(p) = X, then p enumerates
all coverings of X with finitely many open intervals with rational boundaries. In the
case of k instead of k,,, only the “minimal” coverings are enumerated by names.

The reducibilities between the four above representations are given by the following
theorem.

Theorem 5.5 (computational Heine/Borel theorem)

(1) Reb S Rey Re %t Reb
(2) Ky = ko (computational Heine/Borel theorem)
(3) k < Ky K Lt K
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Proof

(1)

There is a Type 2 machine M with fay(uffuefusf...) = wofusf... for
U, Ug, U1, ... € dom(vg). Then fur translates ko, to k.. If £.(p) = X, then no fi-
nite prefix w of p contains any information about a bound of X, hence k. £; k.
More formally, assume that there is some continuous function f :C ¢ — ¢
with k.(p) = kaf(p) for all p € dom(k.). There is some p = wupfvofuifvrf ...
with k.(p) = R\ é,,(p) = {0}. The sequence f(p) has the form ufugfvyt. ... By
continuity of f there is some prefix w of p with f(wX*) C uff¥*. But there is
some ¢ € wX¥ N dom(k.) with k.(q) ¢ [—u; U] (contradiction).

We show k, < Kep. Assume £,(p) = X. Then p enumerates all coverings of
X with finitely many intervals with rational boundaries. From the first such
covering a bound for X can be determined easily. From the other coverings
one can determine an enumeration of open intervals with rational boundaries
which exhausts IR\ X. We prove this more formally. Let vy : w — ¥* be some
standard bijective numbering of ¥*. There is a Type 2 machine which for input
p = wodwi¢ ... € dom(k,) produces a sequence uffupfvofurfviff... € dom(ke)
with the following properties:

U

(u,v) if vs(7) = 0*fufv with

(uiyvi) = (7;7) N Ue(wy) = 0.
(0,0) otherwise.

Then Ky, (p) = ko frr(p) for all p € dom (k).

We show ko < Ky Assume kg(p) = X. Then from p we know some closed
interval [ with X C [ and an enumeration Iy, I1, ... of open intervals exhausting
IR\ X. Since [ is compact,

X CUw) iffl CUw)U lyU...U I} for some k € w.

Therefore, we can enumerate all words w with X C U(w). We prove this more
formally. There is a Type 2 machine which for input p := ufuefvofuifvef... €
dom(ps) produces a sequence ¢ := wodwi¢ ... € dom(k,) with the following
properties:

w if vg(i) = 0 ¢w with
w; = [—; 7] C U(w) U (to; To) U ... U (Tp; k)

w'  otherwise.

where [—w; u] C Ui(w’). Then ka(p) = kuwfru(p) for all p € dom (k).

Since & is a restriction of k,,, k < k,, is trivial. k,, £; £ follows from Theorem

5.6(1) below.

The equivalence k,, = ko can be considered as a computational version of the
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Heine/Borel theorem. There is an “improvement” &’ of k., for which &' = &, a
stronger computational version of the Heine/Borel theorem, can be proved (see [KW

87).

Every compact subset of IR has a maximum and a minimum, the compact sets are
closed under union and intersection, and f(X) is compact if f is continuous and X
is compact. Effective versions of these facts are listed in the following theorem.

Theorem 5.6 (computable operations on compact sets)

(1) The function max : K(IR) — IR is (k,pc)—computable but not
(Kw, pc)—continuous.

(2) Intersection and union are (Ky,Kw,ky)—computable and (k,k,K)—
computable.

(3) For f : IR — IR define Hy : K(IR) — K(IR) by H{(X) := f(X) for
all X € K(IR). Then
—  Hyis (Ky, Ky )—continuous and (&, k )—continuous, if f is continuous,
—  Hy is (Ky, kyw)—computable and (k, k)—computable, if f is compu-
table.

Proof

(1) There is a Type 2 machine M which transforms any p := wo¢w1¢ ... € dom(k)
into ¢ := upfvofusfvif... € dom(ps), where the u;,v; are defined as follows:

(u;;v;) is the greatest interval in ¢(w;)

w.r.t. the order (u,v) < (v/,v) <= (v < v or (v =2 and u < v')). Then
max k(p) = prfu(p). Assume, there is a continuous function f :C ¥* — 3¢
with max &, (p) = po f(p) for all p € dom (k). There is some p = xo¢x1¢ ... with
ky(p) = [0;1]. Let f(p) = uofurf.... Then pef(p) =1 and wy > 3/4. Since f is
continuous, there is some ¢ € w with f(xod¢x1¢ ... ¢2;¢XY) C upfusfuf3. There
is some ¢ € xo¢x1d ... ¢v;¢2¢) with k,(¢) = {0}. We obtain max x,(¢) = 0 but
pc f(g) > 1/2 (contradiction).

(2) The proof is left to the reader.
(3) This follows from the more general Theorem 6.3 below.

a

The definitions and theorems of this section can be generalized easily from IR to
the n—dimensional Euklidean space IR™. There are theorems similar to Theorem
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5.2 characterizing the “effectivity” of x,, and of k. We don’t go into more details
here. We mention without proof, that s is admissible and that the final topology
7. = {X C K(IR) | s~' X is open in dom(k)} of the representation « is the Hausdorff
topology on the set K(IR) of the compact subsets of IR [Eng 89, Wei 94]. Especially
Theorem 4.3 is applicable to .



42 6 Representations of Continuous Real Functions

6 Representations of Continuous Real
Functions

Let us denote by C'(X) the set { f :C IR — IR | f continuous and dom(f) = X}. We
introduce explicitly standard represenations ég of C'(IR) and é¢ of C'[0;1] and give
sufficient reasons for their effectivity. As examples we consider modulus of continuity,
maximum, differentiation and integration.

Definition 6.1 (representation of C(IR))

Define a representation 6y :C ¥ — C(IR) as follows.

or(p) = f, iff there are words w;, v;, x;, y; € dom(vg) (1 € w)
with p = uofvolxofyodurfoifeifyre ...
such that for all rational numbers a, b, ¢, d :

fla; ] C (¢;d) <= (F)(a =u;,b=";,c =71,y =7;)

for all p € 3¢ and f € C(IR).

Roughly speaking, &y (p) = f iff p enumerates all (a, b, c,d) € Q* with f[a; ] C (c; d).
This representation has the following remarkable effectivity property (cf. Thms. 4.1,
4.2, 5.2).

Theorem 6.2 (6 is effective)

(1) Let L; be the set of all functions 6 :C ¥¥ — C'(IR) such that the func-
tion apply : C(IR) x R — IR, where apply(f,x) := f(x), is (6, pc, pc)—
continuous. Then

0€el; < < op
for all functions ¢ :C ¥ — C(IR).

(2) Let L. be the set of all functions 6 :C ¥¥ — C(IR) such that apply is
(6, pcy po )—computable. Then

0€e L, — 6<op
for all functions ¢ :C ¥¢ — C(IR).

Again there is a formal similarity with the characterization of “effective Godel num-

berings” 1 of PM):

Y satisfies the universal Turing machine theorem <= ¥ < ¢
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(see the remarks after Theorem 4.1). We omit a proof of Theorem 6.2. Especially,
we have 6y € L., i.e. the “universal function” apply :C C(IR) x R — IR of ép
is (0w, pc, pc)—computable. Some interesting properties are listed in the following
theorem.

Theorem 6.3 (some computable operations)

(1) f:IR— IR is (pc, pc)—computable <= f is égp—computable.

(2) The function H : C(IR) X 7, — 7y, defined by H(f, X) := X, is
(Omy Oops O0p)—computable.

(3) The function GG : C(IR)x K(IR) — K(IR), defined by G/(f, X) := f(X),
is (Om, Kuw, K )—computable. and (ég, &, kK)—computable.

(4) The composition F' : C(IR) x C(IR) — C(IR), defined by F(f,g) :=
fog,is (6g,0r, 6 )—computable.

We do not prove this theorem. It is well-known that continuous functions are uni-
formly continuous on compact subsets. We shall prove a computable version of this
theorem. We call a function m : w — w a modulus of continuity of a function

f:CIR — R on X Cdom(f),iff for all z,y € X and n € w:
o =y <270 = | f(z) = fy)| <277

For the set w* = {m | m : w — w} we use the following standard representation
O, 1 C XY —— w¥:

bu(p) =m: <= p=uofurf... with (Vé)vpin(u;) = m(z)

for all p € ¥* and m € w”.

Theorem 6.4 (determination of a modulus of continuity)

There is a computable function h :C ¥ x ¥* — ¥¢ such that 6,h(p, 2)
is a modulus of continuity of dg(p) on [—%Z;Z] for all p € dom(ég) and all
z € dom(vpn,).

Proof

Consider N € w. If f:IR — IR is continuous, for any « € [—N; N] and any n € w
there are numbers a, b,, ¢, d € Q such that @ € (a,;b;) and flas;b:] C (¢;d) and
d—c < 27"t Obviously, [-N; N] € U{(ay;b,) | * € [-N; N]}. Since [—N; N]
is compact, a finite subset of intervals suffices for covering [—N; N]. Therefore, for
n € w there is a finite set of quadrupels (a;, b, ¢;,d;) of rational numbers (i =
L,..., k) such that [-N;N] C (a1;b1) U ... U (ax;br) and fla;; 6] € (¢, d;) and
di —c¢; < 27"V (for i = 1,...,k). Let ¢ := min{b; —a; | ¢ = 1,...,k}. Assume
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—N <2 <y < N and | — y| < c. Then there are 7,5 with @ € (a;;b;), y €
(a;:b;) and (a;; b:) N (a; N b;) * 0. Consequently f(z) € (ci1d;), f(y) € (¢j3d;) and
(ci;d;) N (¢; N dj) = 0. Therefore | f(z) — f(y)] < 27". Let M be a Type 2 machine
which for input p = to¢ti¢ ... € dom(ég) (where t; = wfvifafy;) and z € dom(vy,)
produces a sequence ¢ = wofwsf... where w, is defined as follows. M searches
for a finite set I C w of indices such that 7, — 7; < 277! for all i € [ and
[—Z;Z) € U{(u;;7;) | ¢ € T}. (Such a set [ exists.) M determines m € w with
277" < min{v; —w; | ¢ € I}. Then w, € dom(vpiy,) is determined by vy, (w,) = m.
By the above considerations, 6,,(¢) is a modulus of continuity of f = ég(p) on [—Z; Z].
O

Definition 6.1 and Theorems 6.2, 6.3 and 6.4 can be easily generalized from C(IR) to
C(X) where X C IR is r.e.. Also generalizations from IR to IR" are straightforward.
Next we study the class C[0;1] of the continuous functions f :C IR — IR with
dom(f) =[0;1]. We introduce a metric on C'[0;1] and define, as a generalization of
pc a standard Cauchy representation of C[0;1].

For f,g € C]0;1] define the distance d(f,g) := max{|f(z) — ¢g(z)||0 < = < 1}.
(C[0;1],d) is a metric space. Let Pg be the set of all polygon functions f € C[0;1]
with rational vertices. It is known that Pg is dense in (C[0;1],d), i.e. for any f €
C'10;1]) and n € w there is some g € Pg with d(f,g) < 27". The open ball B(f,a)
with centre f € (C[0;1] and radius ¢ can be visualized by a stripe of width 2a
surrounding f.

Definition 6.5 (Cauchy representation of C[0;1])

(1) Define a notation a :C ¥* — Pg of the set Pg of all polygon functions
with rational vertices from C[0; 1] by:
a(w) = g, iff there are ug, vg, . .., ug, vp € dom(vg) with
w = ugfvol . . . fur oy,
0=1up<...<ur=1and g is the polygon

with the vertices (ug,vo), ..., (tk, k).
(2) Define a representation é6¢ :C ¥ — ('[0; 1] of C[0;1] by:

oc(p) = f, iff there are wg,wy, ... € dom(a) with
p = wotwyi¢ ..., (Vk)(Vi> k)d(a(w;),a(wy)) < 27F
and (VE)d(f, a(wy)) < 27F.

Similar to the definition of the Cauchy representation of the real numbers po we
consider in (2) only fast converging Cauchy sequences of rational polygon functions
as names. Instead of (VE)d(f, a(wy)) < 27% we can also write f = klim awyg). If
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oc(wotwi¢ ...) = f then the graph of f is the intersection of all the closed balls
Be(a(wy),27%). The representation is equivalent to the representation ¢’ obtained
from 0y :C ¥ — C(IR) by restricting the domains from IR to [0; 1]:

Theorem 6.6
Define ¢’ :C ¥¢ — (C[0;1] by

5(p)(x) 1= { Se(p)(z) f0<az<l1

div otherwise

for all p € ¥¥ and x € IR.
Then ¢’ = é..

As a consequence, Theorem 6.2 holds accordingly for é¢ instead of 6. C'[0;1] has
other important dense subsets, e.g. the polynomial functions with rational coeffi-
cients or the trigonometric polynomials with rational coefficients. Standard notati-
ons of these dense subsets induce Cauchy representations which are equivalent to éc.
For the functions from C0; 1] a modulus of continuity can be computed from their
dc—names. We mention without proof that the representation é¢ is admissible where
the final topology is generated by the open balls of the metric space (C[0;1],d). As
a consequence the continuity theorem, Theorem 4.3, can be applied to é¢.

Corollary 6.7 (modulus of continuity)

There is a computable function ¢ :C ¢ — ¥“ such that é,¢9(p) is a
modulus of continuity of éc(p) on [0; 1] for all p € dom(é¢).

Proof

By Theorem 6.6 there is a computable function f :C ¥« — ¥¢ with éc(p) = ¢'f(p).
The modulus of continuity of éx(f(p)) on [—1;1] is a modulus of continuity of éc(p)
on [0;1]. Define ¢g(p) = h(f(p),1) with h from Theorem 6.4.

O

For a function f € C]0;1] the number y = max{f(x) | « € [0;1]} is called the
mazimum value of f, and any a with f(x) = y is called a maxzimum point of f.
For functions f from C[0;1] the maximum values can be determined effectively.
Determination of maximum points will be reduced to the determination of zeros in

Chapter 7.
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Theorem 6.8 (determination of maximum)

The function Max : C[0;1] — IR defined by Maxz(f) := max{f(z) | 0 <
x <1} is (6¢, pc )—computable.

Proof

Let M be a Type 2 machine which for input p = we¢wi¢ ... € dom(é¢c) determines
a sequence ugfuif... where w, := Max(a(w,11)). Let f:=dc(p), f(x) = Max(f),
fn = a(wpg1), folzn) = Max(f,). Then for any n € w

fulwn) = 27770 < flaw) < f(2) < fule) +27770 < fala) +27770,

therefore [u, — Maxz(f)| <27"'. We obtain Max(f) = pc (uofuit...).
O

Especially, the maximum value of a computable function f € C[0; 1] is computable.

We close this section with some remarks on differentiation and integration. By the
next theorem differentiation on the set C*[0;1] of the continuously differentiable
functions from C10; 1] cannot be performed effectively, if 6 is used as the naming
system.

Theorem 6.9 (non—effectivity of differentiation)

The differentiation operator Diff :C C[0;1] — C][0;1], defined by
Diff(f) = g iff ¢ is the derivative of f (for all f,g € C][0;1]), is not

(6c, 6¢')—continuous.

Proof

Assume that Dif f is (éc, 6c)—continuous. Since the continuity theorem 4.3 can be
applied to é6¢, Diff must be continuous. But this is false. Consider the functions
Iy [y fay .. € CY0;1] defined by f(x) := 0, fu(x) := sin(n7wz)/n for all n > 1 and
x € [0;1]. Then (f,)n>1 converges to f, but (Dif f(f,))n>1 does not converge to

Diff(f).
O

Thus the §c—names of functions f € C''[0; 1] do not contain sufficiently much finitely
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accessible information in order to compute éc—names of the derivatives. On the other
hand, the integration operator is computable.

Theorem 6.10 (computability of integration)
The integration operator Int :C C(IR) X IR x IR — IR, defined by

b

Int(f,a,b) ::/f(:zj)dx,

a

is (0w, pcs po, po)—computable.

We omit the proof. As a corollary the operator Inty : C'[0;1] — IR, where Into(f) =
1

ff(l')dilf, is (6¢, pc)—computable.

0
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7 Determination of zeros

Determination of zeros is an important task in numerical analysis. In this Chapter we
study under which circumstances zeros of functions from C'[0;1] can be determined
effectively.

For a continuous function f :C IR — IR the set {x € IR | f(z) =+ 0} of the non—zeros
is open, and for every open set X there is a continuous function f : IR — IR such
that X is the set of non—zeros. We prove a computable version of this fact (see Defs.

5.1, 6.1).

Theorem 7.1 (characterization of the set of zeros)
Let S:={(f,X) € C(R) x 7 | f71{0} = R\ X}. Then

)
(1) S5 (fu8)-
(2) S7tis (&,p, &g )—computable.

computable,

Proof

(1) Since IR\ {0} is é,,—computable, the statement follows immediately from Theo-
rem 6.3(2).

(2) For any p = upfvot ... € dom(é,,) define 6(p) : IR — IR by

= an(x) 2-

new

{ min(1,v0, —x, 2 —u,) ifu, <z <o,

0 otherwise.

Then IR\ é,,(x) = é(p)~*{0}.

An easy estimation shows that the function 6 :C ¥ — C(IR) has a (6, pc, pc)—
computable apply function. By Theorem 6.2(2) we obtain ¢ < 6, i.e. there is a
computable function ¢ :C ¢ — X with 6(p) = 6rg(p) for all p € dom(é,,).
Therefore, (8,,(p), drg(p)) € S7* for all p € dom(6,,).

O

It can be shown that there is some 6,,~computable set X C IR such that the Lebesgue
measure (X)) is less than 1/2 and @ € X for every éc—computable real number [Spe
59, Wei 87, Wei 94]. Therefore by Theorem 7.1(2), there is a computable function

with many zeros (e.g. in the interval [0;1]) but without any computable zero. As a



consequence, the relation R := {(f,x) € C[0;1] X IR| f(x) = 0} cannot be (6¢, pr)—
computable, since computable functions f :C ¥ — ¥“ map computable elements
to computable elements. We prove that R is not even (é¢, pc)—continuous.

Theorem 7.2 (impossibility of zero finding)
Let R := {(f,x) € C[0;1] x R | f(x#) = 0}. Then R is not (éc,pc)-

continuous.

Proof

For any = € IR define the polygon function G(x) by the vertices
(0,—1), (1/3,2), (2/3,2), (1,1).

Define ¢ :C ¥¥ — C10;1] by 6(p) := G(pc(p)). Then the apply function of ¢
is (6, pc, pc)—computable. Since Theorem 6.2 holds accordingly for éc, we obtain
6 < é¢, i.e. there is some computable function ¢ with G(pc(p)) = dcg(p) for all
p € dom(pc).

Now assume, that there is a continuous function h with éc(p)pch(p) = 0 if éc(p)
has a zero. Let ¢ = 040f. ... Then pc(q) = 0 and y := pchg(q) is a zero of écg(q) =
Gpc(q) = G(0). Obviously 1/3 <y < 2/3. First we consider the case y > 1/3. There
is a sequence (¢;)ie, in X% with pe(g;) = 27 and lim ¢; = ¢. Since y; := pchg(q;) is

a zero of écg(q;) = Gpc(gq;) = G(27%), we have y; < 1/3 for all 7 € w. Since pchg is
continuous, we have

1/3 <y = pchg(q) = pohg(lim ¢;) = lim pohg(qi) = lim y; <1/3.

This is a contradiction. The case y < 2/3 is handled accordingly.
O

Notice, that even the very small subset R := RN {G(x) | * € R} x IR is not
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(6c, pc)—continuous. The contradiction has been derived by using the function G(0)
which is zero on an open interval. If we exclude such situations, and if we consider
only functions which change their sign on [0; 1], we obtain a positive result. The
following theorem is an effective version of a generalized intermediate value theorem
from classical analysis: If f:[0;1] — IR is continuous and changes its sign, then f
has a zero.

Theorem 7.3 (non extensional solution)

Let Fly:={f € C[0;1] | Fz,y)f(x)- f(y) <0and I C f~*{0} for no open
interval [ C [0;1]}. Let

Bug = {(f,2) € Foa x R | f(2) = 0}.

Then

(1) Rnais (6¢, pc)—computable,

(2) Rnq has no (¢, pc)—continuous choice function.

Proof
(1) The following observations can be proved easily.

— Let f € F,q and a,b € [0;1] with f(a)- f(b) < 0. Then there are rational
numbers ', € Q witha < o' < < b, (V'—d') < (b—a)/2, f(a)- f(a') > 0,
F(a) - () < 0 and f(¥) - f(B) >0

—  The sets {(u,p) | éc(p)(@) > 0} and {(u,p) | éc(p)(@) < 0} are r.e. in
¥* x dom(éc).

There is a Type 2 machine M which for input p € dom(é¢) computes sequences
Ug, U1, ... and vg,v1,... of elements of dom(vg) and produces the output ¢ :=
uofurf ... € dom(pc) according to the following rules. First, M searches for
words ug, v such that é¢(p)(To)-6c(p)(To) < 0. Assume w,_; and v,—1 have been
determined. Then M searches for words u,,v, with w,_; < u, < v, < U,_1,
(B 00) < (B —T2)/2, B () Tt )8 () ) > 0,8 ()0 ) 5 ()(F2) < O
and 6¢(p)(0y,) - 6c(p)(Tp—1) > 0.

Assume p € 65" F,4 is the input for M. By the above observations, M determines
some ¢ = upfurf... € dom(pc). Let f := éc(p) and = := pc(q). We prove
f(z) = 0. We have limu; = lim v; = . Consider the case f(u) > 0. Then

f(w;) > 0 and f(u)H? 0 for Z;ﬁoi € w. By continuity of f we have f(z) =
fllimw;) = lim f(w;) > 0 and f(x) = f(lim ;) = lim f(v;) < 0, therefore
(

flz)=0.1f f(ug) < 0, we obtain f(a) = 0 correspondingly.

(2) Suppose that there is a (é¢, pc)—continuous function Z :C C[0;1] — IR such
that fZ(f) = 0 for all f € F,q. For € IR let G(x) be the polygon func-
tion with the vertices (0,—1), (1/3,x), (2/3,2 — 1), (1,1). Then G : R —
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C10;1] is (pc, bc)—computable, hence (p¢, é¢c)—continuous. Therefore, the func-
tion ZG' : IR — R is (p¢, pc)—continuous, i.e. continuous by Theorem 4.3,
and has the property that ZG/(x) is a zero of G(z) for all « € IR. Since conti-
nuous functions map intervals onto intervals, 1 := ZG/(1/3;3) C (0;1/3) (since
ZGR2) =1/9 € Iy and 1/3 ¢ I) and I, := ZG(—=2;2/3) C (2/3;1) (since
2/3 ¢ I, and ZG(—1) =8/9 € I3). This is contradiction.

The following example illustrates Theorem 7.3.

Example 1

Consider the problem to determine a zero of the function f, :C IR — IR from a
given number a € [—1; 1] where

fa(:zj):xS—:z;—l—a

for all @ € IR. (Since for a € [—1;1] the zeros of f, are in the interval [—2;2], we
may restrict the domains to [—2;2] and assume f, € C'[—2;2] for all a € [—1;1].)

?

3 \
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By the method described in (1) of the proof of Theorem 7.3, for given a € [—1;1]
one determines sequences of rational numbers (a;);e, and (b;);e, with

a1 < a; < by <biq, fala;) <0, fu(bi) >0, b —a; < (bioy —a;q)/2.

The sequence (a;);e., converges with speed 27" to a zero x, of f,. If f, has 3 zeros
then it may depend on the given name p € §;'{a} which zero (the leftmost or the
rightmost) is determined. For every algorithm such dependence on the names must
occur, since there is no continuous function 7 : [—1;1] — IR with f,Z(a) = 0 for
all @ € [—1;1]. The proof is quite similar to that of Theorem 7.3(2).

As a corollary of Theorem 7.3(1) we obtain a computable version of the intermediate
value theorem.

Corollary 7.4

Let £, := {f € C[0;1] | f is increasing and f(0) - f(1) < 0}. The function
Z : C[0;1] — IR with dom(Z) = F,, and Z(f) := (the zero of f) is
(6c, pc)—computable.

The function Z from this corollary can be extended to all continuous functions which
have exactly one zero.

Theorem 7.5

Let Fy = {f € C[0;1] | f has exactly one zero}. The function 7 :
C10;1] — IR with dom(Z) = Fy and Z(f) := (the zero of f) is (6¢, pc)-

computable.

Proof
Let vy : w — ¥* be some standard numbering of ¥*. Let M be a Type 2 machine

which for input p = we¢wi¢ ... € dom(éc) produces a sequence ¢ = ugfvofusfoiff. ..
such that
(u,v) if vg(7) = 0% fufv with @ < v and
(g, v;) = la(wg)(z) |[> 227 for all z € [0;1]\ (u; D)
(—1,10) otherwise.

Then éc(p)prfr(p) = 0 whenever 6¢(p) € Fi.
O
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Corollary 7.6

If f € C[0,1] is computable and x € [0;1] is an isolated zero of f, then z is
computable.

Proof

Assume 0 < x < 1. Then there are rational numbers r,s with 0 <r < a2 < s <1
such that x is the only zero of f in [r;s]. Define [’ € C[0;1] by

(r)y f0<y<r
) ny> ifr<y<s

s) ifs<y<l

div otherwise.

Then f’is computable (c.f. Lemma 3.8), and « is its only zero. By Theorem 7.5 we
have & = Z(f’). Since Z is (6¢, pc)—computable and f’ is 6c—computable, x = Z( f')
is pc—computable.

O

Although there is no general method of determining zeros for continuous functions
it is possible to determine for f € C'[0;1] and n € w some = € IR (even x € Q) with
|f(z)] <27 (provided f has a zero).

Theorem 7.7 (approzimate zero)

The relation
R:={(f.n,s) € Cl0;1] x w xQ [ |f(s)] <27"}

is (8¢, Vbin, Vg )—computable.

Proof

There is a Type 2 machine M which for inputs p = wo¢w1¢ ... € dom(é¢) and n € w
searches for some k € w and u € dom(vg) with |a(w)(w)| < 277!, As soon as the
search has been successful, M gives u as its output.

O

For every continuous increasing function f € C(IR) the inverse function f~! is
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continuous. We prove a computational version of this theorem (for simplicity only
for functions f with range(f) = IR; generalizations are straightforward).

Theorem 7.8 (inverse function)

The function Inv :C C(IR) — C(IR) with

f~t if f is increasing and range(f) = IR

Inv(f):= {

div  otherwise

is (0g, Op )—computable.

Proof

We generalize the method for determining zeros of continuous increasing functions.
Since (x,y) — x — y is computable on IR, by Theorem 6.2(2) the function H :
C(R) x R x IR — IR with H(f,z,y) := f(x) — y is (6m, pc, pc, pc)—computable.
Let M be a Type 2 machine which for inputs p € dom(ég) and ¢ € dom(pc)
computes a sequence r = ugfuif... as follows. For determining w,, M searches
for u,v € dom(vg) such that H(ég(p),w,pc(q)) < 0, H(6r(p), v, pc(q)) > 0 and
v —u < 27". As soon as the search has been successful, M chooses w,, := u. Since
H is computable, the search can in fact be programmed by a Type 2 machine. The
search is successful for every n € w and ¢ € dom(pc) if ér(p) is increasing and has
the range IR. Consider f = ég(p) € dom(Inv) and y = pc(q). Then

focfu(p.q) —y =0, ie. [ (y) = pefu(p, ).

Define ¢ :C £% — C(R) by &(p) := (6u(p))~". Then é(p)pc(q) = pcfu(p,q),
i.e. the apply—function of ¢ is (6, pc, pc)—computable. By Theorem 6.2(2) we obtain
0 < 6. This means that there is a computable function ¢ :C ¥¥ — ¥¢ with

Inv(ér(p)) = 8(p) = dny(p)

for all p with ég(p) € dom(Inv). Therefore Inv is (ég, on )—computable.
O

While for functions from C'[0; 1] maximum values can be computed by Theorem 6.8,
the determination of maximum points is as difficult as the determination of zeros.
This follows from the following observation:

— ais a zero of f, iff x is a maximum point of g where g(x) = —|f(z)]
— 2 is a maximum point of f, iff x is a zero of h where h(z) = f(x) — Max(f).

Notice that Max is computable by Theorem 6.8 and that computability of (z,y) —
z —y and  — |z| can be derived from Theorem 3.7.
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8 Computation Time and Lookahead
on X~

Time and tape complexity are the most important computational complexity mea-
sures for Turing machine computations. They model time and storage requirement
of digital computers quite realistically. In this section we introduce the time com-
plexity for Type 2 machines M with fy; :C (3¢)" — ¥“. As a further important
concept we define the input lookahead which measures the amount of information
which is used during a computation. We prove, that co-r.e. sets are the natural
classes with uniform time bound.

Let M be a Turing machine with fj; :C (¥*)” — ¥*. The computation time of M
for input (x1,...,2,) is defined by

Timepn(x1,...,2,) = the number of computation steps which M with input
(1,...,2,) needs until it reaches a HALT statement.

A function ¢t : w — w is a time bound for M, iff

Timepn(xq, ..., ¢n) < t(maxlg(x;)) for all (xq,...,2,) € (X7)™.

Example 1

Consider the multiplication of natural numbers in binary notation. Using the school
method, a Turing machine M can be constructed such that

Vpin far (U, 0) = vpin (1) - vpin (v) for all u,v € dom (v ),
— Timepn(u,v) < en* 4 ¢ where n = max(lg(u),lg(v)) and ¢ € w is a constant.

Therefore, M multiplies binary numbers in time ¢ for some ¢ € O(n?).

Remember, for f:w™ — w
O(f) = {g ™ — w | (Be)(VF € w™)g(7) < ef(T) + ).
For t:w — w,

TIME(t):={fum| M is a Turing machine and some t' € O(t)
is a time bound for M}

is the complexity class of functions computable on Turing machines in Time O(t).

The above definition of Ttmey; cannot be used for machines with infinite output
since valid computations never reach a HALT statement. We introduce as a further
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parameter a number k£ € w and measure the time until M has produced the output
symbol ¢(k) of its infinite output ¢ € X¥. Another important information is the input
lookahead, i.e. the number of input symbols which M requires for producing the
output sequence ¢(0)...q(k). In the following, we consider only the case Y = (X¥)™
for some m € w.

Definition 8.1 (time and input lookahead)

Let M be a Type 2 machine with fy; :C (¥¥)" — X¥. For all y € (¥«)™
and k € w define time and input lookahead by:

Timepn(y)(k) := the number of steps which M with input y
needs until the £th output symbol has been written,
Tapy(y)(k) := the maximal j such that M with input y
reads the jth symbol from some input tape during

the first Timen(y)(k) computation steps.

Notice that Timen(y)(k) may exist for some but not for all £ € w (in such a case
y ¢ dom(far)). Since reading an input symbol requires at least one computation step,
Hapn(y)(k) < Temepn(y)(k). The input lookahead Ila(y) : w — w is a modulus of
continuity of the function fys :C (X%)™ — X¢ in the point y € dom(fu).

While for a Turing machine Timen(y) is a natural number for any y € dom( far), for
a Type 2 machine M with fy :C (¥¢)™ — ¢, the function Timepn(y) 1 w — w
determines the computation time of M with input y € dom(far) as a function of the
output precision, and lay(y) : w — w determines the amount of input information
used by M with input y € dom(fa) as a function of the output precision.

For any Type 2 machine M, the properties Timen(y)(k) =t and Timen(y)(k) <t
are decidable, and the properties [lan(y)(k) = t and Tlay(y)(k) < t are r.e. in
(y,k,t). A simple comterexample shows that [lay(y)(k) =t and Tapy(y)(k) <t
are not recursive in general. We shall consider bounds for time and input lookahead
which are uniform for all y € X for some X C (¥¢)™. The sets X C (X¢)™ such
that Timep(y) has a computable bound uniform for all y € X can be characterized
easily. A set X C (¥“)™ is called co-r.e., iff (£¢)™\ X is r.e.

Theorem 8.2 (uniform time on co—r.e. sets)
Let M be a Type 2 machine with fy; :C (¥¢)" — X¢.

(1) If X € dom(fa) is co-r.e., then (Yy € X)(VEk)Timepn(y)(k) < t(k) for

some computable function ¢ : w — w.
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(2) If t: w — w is computable, then
Xo=A{y € (X%)" | (VE)Timen(y)(k) < t(k)}
is co-r.e. and X C dom( far).

Proof

For simplicity we consider only the case m = 1. The general case is proved accor-
dingly. We use the important fact that the metric space (¥“,d) is compact.

(1)

Since X is co-r.e., there is some Type 2 machine N with fy :C ¥¥ — ¥* such
that ¥¢ \ X = dom(fn). Consider k € w. Then for any p € ¥ there is some n
such that

Timen(p) = n or Timen(p)(k) = n.

Let n, be the first such n and w, the prefix of p of length n,. Since ¥¥ =
U{w, X% | p € ¥¥} and ¥¥ is compact, there is a finite set A C ¥¥ with ¥¥ =
U{w, X% | p € A}. Determine from k € w a number (k) € w as follows: Search
for a finite set W of words with ¥¥ = U{w¥® | w € W} and Timey(w0¥) =
lg(w) or Timep(w0¥)(k) = lg(w) for all w € W. By the above considerations,
such a set W exists. Define (k) := max{lg(w) | w € W and Timep(w0)(k) =
lg(w)}. Then Timen(p)(k) < t(k) for all p € X. The function ¢ : w — w is
computable.

Let t : w — w be computable. There is a Type 2 machine N which halts for
input p € X iff Timen(p)(k) £ t(k) for some k € w. Then dom(fy) = X\ X.

We shall call a sequence p € ¥* computable in time ¢ : w — w, iff there is a Type 2
machine M with fp; :C (X¥)? — ¢ such that fa() = p and Timen()(k) < t(k)
for all k € w.
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9 Computational Complexity of Real
Functions

In this section we introduce a new representation of the real numbers for measuring
the time complexity of real functions. We prove bounds of time and input lookahead
for addition, multiplication and, as an application of Newton’s method, inversion.
Finally we discuss the computational complexity of compact sets.

By the Main Theorem 4.3, a real function is continuous, iff it is determined by a
continuous function on pc—names. By definition, a real function is computable, iff
it is determined by a computable function on pc—names. We would like to call a
real function computable in time ¢ : w — w, iff it is determined by a function on
pc—names computable in time .

Unfortunately, this definition is unreasonable. First, we observe, that any pc—name p
of a number x € IR can be padded arbitrarily. Assume p = ugfusf ... and pe(p) = x,
and let r : w — w be some function. Then some ¢ = wofw1f ... with pc(q) = x
can be determined easily such that lg(w;) > r(7) for all ¢ € w (choose w; € dom(vg)
with very large numerator and denominator such that [w; — w4, |< 27072). Let M
be a Type 2 machine which computes a real function ¢ :C IR — IR on pc—names.
By padding the outputs of M, a machine M’ can be constructed which computes ¢
on pc—names and operates in time O(n). Therefore, every computable real function
can be computed in time O(n) on pc—names.

To avoid this degeneracy, define temporarily: g is “computable in time ? : w — wW”,
iff some Type 2 machine M computes ¢ on pc—names such that g(x) is determined
with error < 27% in at most #(k) steps. But not even the identity 7d : IR — IR is
“computable in time ¢” for any ¢ : w — w, since on the input tape arbritrarily
redundant, i.e. padded, names are allowed.

We solve the problem by introducing a new representation p :C ¥* —— IR of the
real numbers with p = pe, which does not allow padding. This representation is a
generalization of the representation by infinite binary fractions, in which additionally
the digit —1 may be used. We shall denote the digit —1 by 1 € X.

Definition 9.1 (modified binary representation)

Define p :C ¥ — R as follows (where 1 denotes the digit —1):

dom(p) = {a,...ap-a_1a_y...|n>—1,a; € {1,0,1} for i < n,
a,*+0ifn >0 and a,a,_; ¢ {11,11} if n > 1}

play ...a0-a_ja_y...):=%{a;-2" |1 <n}
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Let p=a,...a0 - a—1a_y... € dom(p) and p[k] := a,, ... a0 -a_q1...a_; for k € w.
Then

p(p[k]0¥) = =z-27% for some integer z € Z,

and for this number z:

p(plk]2¥) = [z—1;241]-27%F =[22 — 2,22 + 2] . 27F1
p(p[RIZ®) = [22 —2;2]- 2741

p(plk]0X¥) = [22 — 152z 4+ 1]-27%1

p(plR]IE) = [22;22 +2]- 27!

Therefore p determines a sequence ([ )xe. of nested closed intervals, Iy := p(p[k]X*),
such that:

—  Ij4q is the left half of I}, if gy = 1, the middle half I} if az4; = 0 and the right
half of I if api 1 =1,

— length (I;) =2-27%

= plp) =0{l | k € w}.

For reducing redundancy we have excluded the prefix 0, the prefix 11, which can
be replaced by 1, and the prefix 11 which can be replaced by 1.Although the repre-
sentation p is not injective (no representation equivalent to pc can be injective by
Theorem 4.5), the sets p~'X for compact X C IR and especially the sets p~'{z}
(x € IR) are compact, i.e. “small”. Remember that a subset X C ¥¢ of the Cantor
space is compact, iff it is closed.

Theorem 9.2

(1) p=pc
(2) For any compact subset X C IR, p~'X C ¢ is compact.

(3) For any k,—computable subset X C IR, p7™'X is co-r.e. (see Def.
5.4.(3)).

Proof
(1) Translators from p to pc and vice versa can be programmed easily.

(2) Let (p:)icw be a sequence in p~'X converging to some p € ¥¥. Since X is
bounded, there is some k € w such that each p; has the form w;.¢; with lg(w;) <
k. We conclude p € dom(p). The representation p is continuous since p¢ is
continuous and p = pe. By continuity, p; — p € dom(p) implies p(p;) — p(p).
Since p(p;) € X for all ¢ and since X is closed, we obtain p(p) € X, hence
p € p~t X. Therefore p~' X is closed and compact.

(3) We leave the proof to the reader.
O



60 9 Computational Complexity of Real Functions

By Theorem 8.2 we know that the time of a Type 2 machine is uniformly bounded
by a computable function on any co-r.e. subset of its domain which is especially
compact. By Theorem 9.2(3), every (p, p)—computable real function has a uniform
computable complexity bound on every «,—computable subset of its domain.

Definition 9.3

Let f :C IR™ — IR be a computable function, let X C dom(f) and let

$:w—w and t:w — w be functions.
A Type 2 machine M computes f on X in time ¢ with input lookahead s,
iff

= J(p(pr)s- -5 p(pm)) = pSra(prs - pm);
— Timep(pr,....pm)(n) < t(n),
— Tlap(pry. .oy pm)(n) < s(n)

for all n € w whenever (p(p1),...,p(pm)) € X.

As a first example we consider addition on IR.

Lemma 9.4 (addition)

There is a Type 2 machine operating in time O(k) with input lookahead
k + 2 such that

pfar(p,q) = p(p) + p(q)

for all p,q € .{1,0,1}~.

Proof

Consider p = .ajay ... and ¢ = .byby. .. (a;,b; € {1,0,1}). Define r_y := ay + b;. For
n > 0 choose inductively r, € {—2,—1,0,1,2} and ¢, € {1,0,1} such that

2rp—1 + Gpg2 + bn—|—2 =4e, + 1y

If ¢,—1 with |r,_1| < 2 exists then ¢, and r, with |r,| < 2 exist. By induction,
¢, and r, exist for all n > 0. If ¢g = 0, define f(p,q) := .cica...; if ¢o+0, define
f(p,q) := co.cicz.... Obviously, there is a Type 2 machine M, which produces
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f(p,q) in time O(n) with input lookahead < n + 2. We prove the correctness of M.
By induction one shows easily

Z ai'2_i‘|’ Z bi'Q_i:ZCi'Q_i—l-rn-Z_”_z

1<n+2 1<n+2 1<n

for all n > —1. Consequently, p(p) + p(q) = pf(p, q).
O

Theorem 9.5 (addition)

For every bounded subset X C IR? there are constants ¢; and ¢, such that
addition on X can be computed w.r.t. p by a Type 2 machine in time
c1 - n + ¢; with input lookahead n + c¢;.

Proof

There is some m € w such that X C [—27;2"]%. If p(p) € [-2";2™] then p = w.q
for some w € {1,0,1}* with lg(w) < m + 1. Let M be a Type 2 machine which for
input (p,q) with (p(p), p(q)) € X shifts the points in p and ¢ m + 1 positions to
the left, runs the machine from lemma 9.4 and shifts the point of the result m + 1

positions to the right.
O

We reduce the multiplication of real numbers w.r.t. p to multiplication of binary
integers by a doubling method. For obtaining good time estimations we need regular
time bounds [F'S 74, Mue 86]. As a tool we use the following improvement lemma,
which we do not prove here.

Lemma 9.6 (improvement lemma)

Let I := p(u.al_...amZ‘”) N p(v.by...byp X¥) %+ 0. Then there are
Cont1y ooy Cmpk € {1,0,1} with T C p(u.ay ... amCpgr ... € 2”). A word
Cmt1 - - - Cmak can be determined from w, v, ay...a, and by ...b, ) in time

O(n) where n :=lg(v) + m + k.

We shall call a function f:w — w regular, iff:
— [ is non—decreasing and (3n)f(n)=+0 and

— there are numbers ng, ¢ € w with

2t(n) < t(2n) < ct(n) for all n > ng.
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We state without proofs (see [Mue 86]) that for regular functions ¢:
- ne0(),

— t € O(n*) for some k € w,

— tlen+¢) € O(t) for every ¢ € w,

= {2 | k < [logan]} € O(1).

Most of the commonly used bounds for complexity classes like polynomials, n-log?n,
n-logn-log logn,... are regular. In the following let Mb: w — w be any regular
upper time bound for binary integer multiplication on Turing machines. For example
by Schénhage’s method [Sch 71], n - log n - log log n is such a bound.

Lemma 9.7 (multiplication)

There is a Type 2 machine N operating in time O(Mb) with input lookahead
< 2n such that

pfn(p.q) = p(p) - pq)

for all p,q € .{1,0,1}~.

Proof

Consider p = .ayay... and ¢ = .byby... (a;,b; € {1,0,1}). N produces the output
sequence r = .¢1¢y ... 1n stages as follows.

Stage 0

Let @ := p(.a15:0%), ya := p(.b16,0¥). Define ¢; := {1 if xoyy > 0, 0 if 23y9 = 0, T
if Tols < 0}

Stage n (n > 1)

Let k := 2". N multiplies the finite (generalized) binary fractions .ay ... ax42 and
by ... bpyo and rounds the result to .e;...er. Then, according to lemma 9.6, N
improves the result .c;...cy/, from Stage n — 1 with .e;...ex to .cp ... cp.

We prove the correctness of the machine N. Define = := p(p), y := p(q), tm =
plear...am0%), ym := p(.by ... 0,0%) for m > 1.

The definition of ¢; guarantees p(.a1a2X®) - p(.b10:X%) C p(.c1¥¥), hence zy €
p(.e1X¥).

Consider n > 1 and k& =2". If .ey ... e} is a rounding of xpy9 - yryo, then

lp(ie1 ... ex0%) — Tpqo - Yrao| < 9kt
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Furthermore,

|2y — Trpoyire] <o — | -yl + |Teee] - |y — yreel
S 2—k—2 + (1 _ 2—k—2) . 2—k—2
< 2—k—1 o 2—2k—2

The triangle inequality yields |p(.e; ... e,0¥) —zy| < 27% hence zy € p(.c; ... e, 3%).
An induction with application of Lemma 9.6 shows zy = p(.c1¢z .. .). For determining
c1, N uses the symbols a; and by, for determining the symbols ¢; for 27711 <7 < 27,
N uses the symbols a; and b; with j < 2" + 2. Therefore N works with input looka-
head < 2k. We estimate the computation time for Stage n. Since p(.ay ... ar420%)
can be written as 27572 (v, (1) — i (v)) with lg(u), lg(v) < k+2, N can determine
the product @j42-yr4o in at most ¢; Mb(k)+¢; steps. The other computations require
at most ¢y - k 4 ¢ steps. Therefore for any m > 2 the word .c; ... ¢, is determined
by N in at most

s(m) = Z{cl . Mb(Zi) deite-2Fe|i< [logm]}

steps. Since Mb is regular, ¢; - Mb(j) + ¢1 + ¢2 - J + 2 € O(Mb) and (again by
regularity of Mb) s € O(Mb).
O

By reduction to Lemma 9.7 one proves easily:

Theorem 9.8 (multiplication)

For every bounded subset X C IR? there is a Type 2 machine M which
performs multiplication on X in time O(Mb) with input lookahead 2n + ¢
for some constant c.

The above multiplication algorithm uses a “doubling” method. The time can be
bounded by t(n) := f(2°) + f(2') 4 ... + f(2[2=2"1) If f is regular then ¢ € O(f).
A general case where a doubling method can be used is Newton’s method for deter-
mining zeros.

By Newton’s method, a zero y of a function f is determined as the limit of a
sequence (&, )new, Where x,41 = @, — f(2,)/f'(x,). If in some neighbourhood of y,
f'(x)=#0 and f"(x) is bounded, the sequence (&,)ne. converges “quadratically”, if
z¢ is sufficiently near to yo. We consider the computation of  — 1/z as a simple but
important example. For @ > 0 let f(z):= 1/ —a. Then 1/a is the zero of f. Simple
computations show that x,41 = x,(2 — ax,) is the Newton recursion equation in
this case and that |z,4q — 1/a| = |a| - |z, — 1/a]* (quadratic convergence).
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Lemma 9.9 (inversion)

There is a Type 2 machine M operating in time O(Mb) with input looka-
head £+ 2 for £ <5 and 2k — 3 for £ > 6 and

pfu(p) =1/p(p)

for all p € 1.{0, 1}?{1,0,1}*.

Proof

Consider p = l.ajay.... A Type 2 machine M produces the output sequence r =
l.cicg ... in stages according to the following rules:

Stage 0:

From a; ...ag determine ¢; ... c4 such that
x € [7/8;2]Np(lay...aeX®) = 1/ € p(l.cy ... c4X%).
Define zo := p(l.cq ... cq0%).

Stage n (n > 1):

kn:=2"43,r, :=p(liay ... ap,+30%), Yo := 2p-1(2 — rnzn-1),
l.ey...ep, := a rounding of y, to k, digits,
zn 1= p(lieq ... e, 0¢).

Let 1.cy...¢ck, be the improvement of the result from Stage n — 1 with l.e;... e
by Lemma 9.6.

n

We have to prove the correctness of the machine and to make time and input looka-
head estimations. By the restriction for p we have 7/8 < p(p) < 2. Let a := p(p).
If € [7/8;2], then 1/x € p(1.2¢). The interval I := p(l.a;...asx®) N [7/8;2] has
length < 27°. A simple numerical calculation shows that its image J w.r.t. @ — 1/
has length < 27%. Therefore, digits cy,...,cq exist with 1/a € J C p(l.cy...csX%).
The machine M contains a finite table for determining ¢ ...¢y from aq...a6. As a
result |zo — 1/a| <271 =275 where ko := 2° 4+ 3. Consider n > 1 and assume that
Zno1 = p(l.ey...ep,_,0%) has been determined such that |z, 1 — 1/a| < 27Fe—1 If
Ty 1= 2p_1(2—az,_1), then |z, —1/a| < |a|27%n-1 < 27%=2 Since |r, —a] < 273
and |z, 1| < 5/4 (since 1/a < 8/7), |xp—yn| < 22_,-27F»=3 < 27*=2 By the rule for
rounding, |y, —z,| < 27" ~L. We obtain |z, —1/a| < |z, —Yn|+ |yn—n| + ]2, —1/a| <
2= Fn

By induction, |p(l.c;...¢,09) — 1/a] < 27% therefore p(1.cicy...) = 1/a.

We estimate the input lookahead of the machine. Simple numerical estimations show
that ¢; can be determined from aqas, ¢1¢c from ay ... a4 and ¢ycycs from ayq ... as. Fur-
thermore, ¢; ... cq 1s determined from a; ...ag and forn > 1 e; for k.1 +1 < 5 <k,
is determined from ay ... ag, 3. From this we conclude that the input lookahead of
Mis <k+2itk <5and <2k —3 it k > 6. For counting input lookaheads observe
that the input and the output begin with “1.”. Since Mb is regular, Stage n can be



65

computed in ¢- Mb(2") 4 ¢ steps. Summation yields a time bound in O(Mb) for M.
O

Theorem 9.10 (inversion)

For every compact subset X C IR with 0 ¢ X there is a Type 2 machine M
which computes  — 1/2 on X in time O(Mb) and input lookahead 2n + ¢
(where ¢ depends on X).

Proof (outline)

There is some m € w such that 27 < |z| < 2™ for all + € X. We consider the case
x> 0 w.l.g.. Assume p(p) = x. Then the first digit of p, which is different from 0,
is 1. By at most m + 4 applications of the transformations 11 + 01, 101 ~— 011 and
1001 +— 0111 from p some z € Z with |z| < m and ¢ = 1.a1aza3q with 27 - p(q) = «
and ay,az,as € {0,1} can be determined. Some r € ¥¢ with p(r) = 1/p(q) can be
determined in Mb(n) time with lookahead 2k + ¢; by Lemma 9.9. Finally the binary
point of r is shifted by z positions.

O

As a final application we define recursiveness and computational complexity for
subsets X C IR". A subset A C w is recursive, iff the characteristic function c¢f4 :
w—w,cfa(x) = (lifx € A, 0 otherwise), is computable. The direct generalization
to subsets of IR, “X C IR is recursive, iff its characteristic function ¢fx : IR — w is
computable”, is useless, since by Theorem 3.5 ¢fy and ¢ fr are the only characteristic
functions which are computable. If we consider w as a metric subspace of the real
line, a subset A C w, A= 0, is recursive, iff the function da : w — IR is (Vpin, p)—
computable, where d4(z) := min{|z — a|la € A}. This characterization has a useful
generalization.

Definition 9.11 (complexity of compact sets)
For any A C IR", A+ () and A compact, define:
(1) da : IR" — R by da(z) := inf{|x — a||a € A},

(2) A is recursive, iff d4 is computable,

(3) A is computable in time ¢, iff d4 is computable in time t.

Simple subsets of IR™ such as the cube [0; 1]", the unit ball, every ball with compu-
table centre and computable radius as well as its sphere and every convex polygon
with computable vertices are computable. We mention without a proof that for
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ACIR, A=+ 0 and A compact, A is recursive, iff A is k—computable, where « is the
representation from Definition 5.4.

This definition of recursive corresponds to located in constructive analysis [BB 85].
The function d4 : IR" — IR of A may be called the “localizer” of A. If n = 2, any
Type 2 machine computing d4 can be used by a plotter for producing approximate
pictures of the figure A C IR®. Let M be some Type 2 machine computing d, :
IR* — IR for some compact set A C [0;1]%. Suppose we have a screen divided into
2" x 2" pixels. For ¢,57 € {1,...,2"} the plotter determines the colour of the pixel
Py =((t—=1)-27" 427" x((j—1)-27"; j-27"] as follows: By simulating the machine M
it computes rational numbers ¢ and b such that d4((¢ —1/2)-27",(j —1/2)-27") €
[a;b] and b — a < 277! The pixel P;; is set to black, if @ < 3-27"71 to white
otherwise. The construction guarantees:

ANP;£0
P;; 1s black

—
— Puy N A= for some i, 5" with |t —¢'| <1 and |j — j'| < 1.

The pixel P;; is set to black, if the annulus contains some point @ € A.

Consequently, the nth approximation A, := (J{P;; is black} of A covers A, i.e.
A C A, but it surrounds A very narrowly, since a pixel Pj; is white if neither the
pixel itself nor any of its immediate neighbours intersect A. In fact, the Hausdorft
distance dy(A,, A) is not greater then 2-27".

The kind of computational complexity of real functions introduced here is sometimes
called bit complexity. Many interesting results on bit complexity of real functions
have already been obtained, see e.g. [Bre 76, KF 82, Ko 91, Mue 86, Mue 87, Sch
90].
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10 Other Approaches to Effective Ana-
lysis

The approach to computability in analysis presented in this paper (TTE) connects
abstract analysis with Turing machine computability. Computability is defined ex-
plicitly on finite and infinite sequences of symbols. Computable functions turn out to
be continuous. Computability and continuity are transferred to other sets by means
of notations and representations where sequences serve as names of objects. Admis-
sible representations, which formalize the concept of approximating sequences, lead
to very natural computability on various sets used in analysis. The basic machine
model admits to introduce realistic computational complexity in analysis.

As already mentioned there are several other approaches to study effectivity in ana-
lysis some of which are listed in the following.

Numerical analysis can be considered as the oldest discipline with this aim. To-
day, numerical algorithms are usually programmed (in FORTRAN, ALGOL, ...)
and realized on computers. Such realizations can at most approximate the intended
real functions since they operate on the finite set of floating point numbers sup-
plied by the machines. No mathematical theory of computability or computational
complexity is used.

The real RAM (real random access machine) is a mathematical machine model
formalizing the intuitive concept of algorithm used in numerical analysis and com-
putational geometry [BSS 89, PS 90]. Since many TTE-computable functions are
not real RAM-computable, and since there are real RAM-computable functions
which are absolutely not computable by a physical device (see Lemma 4.5), the real
RAM model is certainly not adequate for generalizing Church’s computability thesis
from the natural numbers to the real numbers [Sma 92]. Non—continuous functions
computable by real RAM’s can be ordered by levels of discontinuity and classified
by degrees of discontinuity [HW 94].

Interval Analysis controls errors which usually occur, if floating point numbers are
used for performing real computations [Moo 79, Abe 88]. Although no formal de-
finition of computability is considered, it is very closely related to a definition of
computable real functions given by Grzegorczyk [Grz 57] by means of computable
functions on intervals.

A computational model extending the real RAM is used in IBC (information based
complexity) [TWW 88]. For defining computable operators, functions are inserted
into programs as “black boxes” or “oracles”. A typical question in IBC is: How many
evaluations f(x;) are needed for determining the integral of a function f € C (for
some given class (') with precision ¢ > 07

Pour-El and Richards [PR 88] generalize a further characterization of the compu-
table real functions (a real function is computable, iff it has a computable uniform
modulus of continuity and transforms computable sequences of real numbers to com-
putable sequences of real numbers) given by Grzegorczyk [Grz 57] to functions on
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Banach spaces. They study especially solution operators of differential equations
from physics.

Logical approaches are another way to formalize effectivity in analysis. The methods
for proving theorems are restricted to “constructive” ones, especially no indirect
proofs are allowed (see [Bee 85, BR 87, Tro 92] for detailed discussions and further
references). A very far advanced theory is Bishop’s remarkable constructive analysis
[Bis 67, BB 85]. Most of his concepts can be transferred to TTE, if sets are in-
terpreted by (adequate) naming systems and routines by computable or continuous
functions. It should however be mentioned that such logical approaches do not admit
to define computational complexity.

Computational complexity in analysis has been investigated in different ways. While
in the real RAM model and in the IBC approach one evaluation of a real function is
considered as a single step, the “bit complexity” models count the number of Turing
machine operations for approximating a result with a given error 27* [Bre 76, KF

82, Mue 86, Mue 87, Sch 90, Ko 91, Wei 91]. TTE embeds these definitions into a

general frame.

Computable analysis based on Grzegorczyk’s definition via operators is sometimes
called the Polish approach. There is another definition introduced by Ceitin [Cei
59, Kus 85, Abe 80] called Russian approach. The Russian approach considers only
computable real numbers. Computability is introduced by an “effective” notation.
We explain this more precisely in terms of TTE. For any w € X* let £ be the
function f :C ¥* — ¥ computed by the Type 2 machine with program w (see
Appendix B). For any representation ¢ :C ¥¢ — M of a set M we derive a notation

vs :C X% — M of the set My of the é—computable elements of M (Def. 2.9(1)) by

vs(w) = 6(£,7(¢))-

We may say that vs(w) is the element @ € My, computed by the program w relative
to the representation o.

Let p :C ¥¥ — IR be the representation from Def. 9.1. Then IR, is the set of
computable real numbers. In the Russian approach, a function f :C IR, — IR, is
called computable, iff it is (v,, v,)-computable. Correspondingly, computability is
introduced on other sets like the r.e. subsets of IR and the computable elements of
C1[0; 1]. The underlying representations are not defined explicitly but used implicitly.

We discuss the relation between the Polish und the Russian approach. Let ¢ :C
¥¥ — M be a representation and vs :C ¥* — My the derived notation. With

each function f :C My — M;s we can associate a function f :C M — M by

graph(f) := graph(f).
The Russian and the Polish approach would be (essentially) equivalent, if
f is (vs, vs)—computable <= f is (,6)-computable.

The implication “ <= " can be proved easily. The implication “ = 7 does not hold
in general, but for some important special cases:
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Theorem (Ceitin)

Let f :C IR, — IR, be a function such that
(*) v,(X)is dense in dom(f) for some r.e. set X C dom(v,).
Then

fis (v,,v,)-computable <= fis (p, p)-computable.

Remember that (p, p)—computability implies continuity. The condition (*) cannot
be omitted but might be weakened. The theorem can be generalized to computable
metric spaces with Cauchy representation [Cei 59, KLS 59, Mos 64, Wei 87].

The other case is the Myhill/Shepherdson theorem [MS 55]. We formulate it in
the framework of TTE. Let PF := {h | h :C w — w} be the set of all partial
number functions. Define a representation 6 :C ¥ — PF of PF by é6(p) = h iff
p enumerates the graph of A (more precisely, 110°7110+111 is a subword of p +=-
h(i) = j). Notice that PFj is the set P(!) of the partial recursive functions and s
is equivalent to ¢, the standard numbering of P,

Theorem (Myhill/Shepherdson)

For any total function f: P — PO:

fis (vs, vs)-computable <= f is (§,6)-computable.

The theorem can be generalized to computable CPO’s (cf. [Wei 87]).

Seemingly, no other cases, in which “ =7 holds, are known. Therefore the relation
between the Polish and the Russian approach to computable analysis is not yet
fully understood. It is well-known from computability theory that for notations
like £*“ the smn—function is easily computable (at most in polynomial time). As
a consequence, for each (vs,vs)—computable function f :C Ms; — M; there is
some easily computable function ¢ C ¥* — ¥* with frs(w) = vsg(w) for all
w € dom(fvs). Therefore, the Russian approach has no complexity theory.

The references given in this paper, especially in Chapter 10, are by no means com-
plete. Many other authors have contributed considerably to the development of
effective analysis. I apologize to all those whom I did not mention.
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Appendix

Appendix A (Type 2 machines and their semantics)

A Type 2 machine M is defined by:
(i) an input/output alphabet ¥ and a tape alphabet I' with ¥ C T"and B € '\ ¥,

(ii) asequence (Yi,...,Ys, Yo) with {Yg, ... Vi } C {¥*, X} (specifying the function
type fu :C Y1 x... x Yy — Yp),

(iii) finitely many Turing tapes, each with a read/write head, indexed by 0,1,...,n
(k< n),

(iv) a finite flowchart F' with the properties given below.

Only the following statements are admitted in a flowchart F' of a Type 2 machine
(where 0 < ¢ <nandael).

(7, R) (move the head on Tape ¢ one position to the right),
— (1, L) (move the head on Tape ¢ one position to the left),
(¢

a) (write a on the square scanned by the head on Tape ),

Y

)
— (7,a)? (binary branching: is a the symbol on the square scanned by the head on
Tape i7),

- HALT.

Additionally, for Tapes ¢ € {1,...,k} (the input tapes) only statements (¢, a)? and
(7, R) (read only one—way mput) and for Tape 0 (the output tape) only statement
sequences (0,a)(0, R) with a € ¥ (write only one—way output) are admitted.

The semantics of a Type 2 machine is defined via computation sequences of confi-
gurations. As for ordinary Turing machines, a configuration of the Type 2 machine
M is determined by the label of the statement in the flowchart F' to be executed
next and the inscription and head position for each Tape ¢ (0 < ¢ < n). A con-
figuration K’ is the successor of a configuration K, K F K’ iff K’ is obtained
from K by executing the statement at the label of K and going to the next label.
Let the output inscription of a configuration, out (K'), be the longest word w € ¥*
immediately to the left of the head on Tape 0. K is a final configuration, iff its label
has the statement HALT. A computation is a finite or infinite sequence Kgy, K1, ...
of configurations with K; F K;41 (¢ =0,1,...).

Now, we define the function fy; :C Y} x ... x Yy — Yy computed by the Type 2
machine M.

Consider (y1,...,yx) € Y1 X ... x Y}.
The initial configuration K(yi,...,yx) is determined as follows:

— The label is the initial label of the flowchart.

— Tape m (1 < m < k) has the inscription y,,, the remaining squares have the
inscription B and the head is positioned on the first square to the left of the
inscription y,,.

— All the squares on the remaining tapes have the inscription B.
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Case Yy = ¥*:

For w € ¥* we define:
fvu(y1, .., yk) = w, iff there is a finite computation Ko, Ky,..., K; such
that Ko = K(y1,...,y%), K is a final configuration and w = out (K).

Case Yy = X“:

For p € ¥* we define:

fau(y, -y yk) = p, iff there is an infinite computation Ko, K1, ... such that
Ko = K(y1,.-.,yx), out (K;) is a prefix of p for all i € w and the sequence
(length out (K;))ew is unbounded.

Appendix B (Effective naming systems of sets of functions)

First we introduce pairing functions, which are a useful tool also in Type 2 compu-
tability.

Definition B1

(1) For k € wand @ = ay...a; (a1,...,a; € ¥) define
T := a10a30...a;0.

(2) For x,y € ¥* and p,q € ¥ define

<z,y> = zxllyeyx”
<x,p> = <p,x>=2llped”
<pg> = p0)g(0)p(1)q(1)...
(3) For k >3 and zy,...,z;, € ¥* U XY define
L Zyeeny B =< 2y ey Ble1 >3 %k >

The above tuple functions are injective and computable, and the projections of their
inverses are computable. As a generalization of the “effective G6del numbering” ¢ :
w — P [Rog 67, Wei 87] we introduce notations £%° : ¥* — P (a,b € {*,w}).
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Definition B2

(1) Let vpp : ¥* — F'D be some standard notation of all flowcharts of
Type 2 machines with one input tape.

(2) For a,b € {*,w} let P* be the set of all computable functions f :C
¥ — 3P,

(3) For a,b € {*,w} define the notation £%° : ¥* — P by: £(z) is the
function f :C ¥* — %’ computed by the flowchart vrp(z).

The representations £ have a computable universal function and satisfy the “smn—
theorem”. This can be expressed as follows:

Theorem B3

Consider v :C ¥* — P Then
utm(v) <= v <€,

where utm(v) holds, iff there is a computable function u :C ¥* x %¢ —s ¥
such that u(x,y) = v(x)(y) for all x € dom(v) and y € ¥

Theorem 3 expresses the kind of effectivity of the notations ¢*°. For continuous
functions effective representations can be introduced. A subset of a topological space
is called a Gs—set iff it is a countable intersection of open sets.

Definition B4

P (] 7Oy )

P (] FiC 8 — )

F = {f] f:C XY — ¥* fis continuous and dom(f) is open}
Fee = A{f | f:C XY — ¥¢ fis continuous and dom(f) is Gs}

F** (b€ {*,w}) is the set of all continuous functions f :C ¥* — Y. The sets '~
and F'““ represent all continuous functions by the following lemma.
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Lemma B5

Every continuous function f :C ¥ — ¥* has an extension in F'“*. Every
continuous function f :C 3¥* — ¥“ has an extension in F*““.

We define representations of the function sets F'?°.

Definition B6

For a,b € {*,w} define n?* : ¥ — [ by

&Nx) < py> ifg=<ux,p> withz € ¥* and p € ¥

1 ()(y) = {

div otherwise.

The functions 7% : ¥ — F are in fact surjective and satisfy the following
effectivity theorem.

Theorem B7
Consider é§ :C ¥ — F%_ Then
utm(8) <= & <n™,

where utm(§) holds, iff there is a computable function u :C 3% x ¥* — ¥}
such that u(x,y) = 6(x)(y) for all © € dom(6) and y € ¥°.

More details and proofs can be found in [Wei 94].

Appendix C (Notations of w and Q)

Definition C1 (the notations vei, of w and vy of Q)

(1) The notation vy, :C ¥* — w of w is defined by dom(vy;,) := {0} U
1{0,1}* and vpin(ay ... ao) = ap - 28 + ... + ag - 2°.

(2) The notation vg :C ¥* — Q of the rational numbers is defined by

vo(u) := Vpin(u)
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for all u € dom(vyiy),
vo(“ —u”) i = —wpin(u)
for all u € dom(vyi,) \ {0},
vo(“ufv”) = whin(u)/hin(v),
vo(“ —u/v”) = —vhin(u)/Vsin(v)

for all u,v € dom(vy;,) with w0, v ¢ {0,1} such that v, (u) and
Vpin (V) have no common divisor. vg(u) is undefined for all other v € ¥*.

We shall write @ instead of vg(u) for all u € don(vg).

A reasonable notation of the set w of the natural numbers should at least have an
r.e. domain, and the test “n = 07” and upwards and downwards counting should be
computable on names. The class of these notations ordered under reducibility has a
maximum, the notation v,,.

Lemma C1 (effectivity of vpin)

For all notations v :C ¥* — w of w such that dom(v) is r.e. we have:

v < Uy <= {w|v(w)=0} and {(u,v) | v(u)+1=rv(v)} arer.e..

Roughly speaking, v, is the, except for equivalence unique, poorest notation of w
with r.e. domain, for which the zero—test and counting are computable. The proof is
not difficult, we omit it. Also the notation v can be characterized by an effectivity
requirement and maximality.

Lemma C2 (effectivity of vg)

For all notations v :C ¥* — Q of the rational numbers @ we have:

v<vg <= {(u,v,w,2)]| v(w) - vhin(v) = Vhin(w) — vein(2)}

is r.e. in dom(v) x ¥* x ¥* x %,

The proof is very easy.
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Appendix D (Admissible representations)

We introduce a class of very natural representations, called admissible. Let M be a
set and let 0 C 2™ be a set of subsets of M. We say that o identifies the points of
M,iff M=Uosand{Q o |xeQ}={Q€co|yeQ} = x=yforall z,y € M.
(That means, each @ € M can be identified by those properties ) € o which hold
for x.)

Definition D1

Let M be a set and let v :C ¥* — ¢ be a notation of a set ¢ C 2™ which

identifies the points of M. The standard representation ¢, :C X% — M of
M derived from v is defined by

o,(p) = x iff {w |z € v(w)} = Enw(p)
for all p € ¥¥ and x € M, where

Enw(p) :={ay...ap € ¥* | 110a40...0a;11 is a subword of p}

Thus, Enw(p) is the set of all words w € ¥* enumerated by p € ¥, and p is a 6,—
name of x, iff p enumerates the set of all words w with & € v(w). Roughly speaking,
a name of x is a complete list (in arbitrary order, possibly with repetitions) of those
properties () € o which hold for x. We illustrate the definition by examples.

Example 1

1 =R,z € v(w): <= wW=ry(w) <z,

3

(1) M
(2) M =R,z e v(w): <= (w=“uffv” withu < z <7),
(3) M =2, Acv(w): <= wmin(w) € A,

(1) M

4

:= 7 := the set of open subsets of IR,
O €v(w): < (w=u¢v with [u;7] C O),

(5) M =3 pev(w): <= wis a prefix of p.

Every set o C 2™, which identifies the points of M, is a subbase of a T-topology

7 on M (Engelking [Eng 89]), and any subbase of a To—topology on M identifies
points on M. The topology 7 C 2™ is defined from o by:

ri={JalaCp)



76 Appendix

where

ﬂ:{lean|n217le7Qn€0—}

is a base of the topology 7. In Example 1(2), 7 is the usual topology 7 of the real
line, in Example 1(5), 7 is the Cantor topology on ¥“. The representation ¢, and
the topology 7 generated by o as a subbase are very closely related:

Theorem D2

Let 7 be the topology on M generated by the subbase o = range(v) from
Definition D1 . Then

(1) X €7 < 6,'X is open in dom(4,) for all X C M.
(2) 6 is continuous <= ¢ <; 6, (for all functions ¢ :C ¥ — M).

By (1), 7 is the final topology of 6, by (2), 6, is the “greatest” or “poorest” (except
for equivalence) continuous representation of the Ty—space (M, 7). In (2), * =7
corresponds to the smn—theorem and “ <=7 to the utm-theorem from ordinary re-
cursion theory. Theorems 4.1, 5.2(1) and 6.2(1) are special cases of Theorem D2(2).
We call representations which are t—equivalent to some standard representation ad-
missible w.r.t. 7 or T—admissible.

Definition D3

Let (M, 7) be a topological To—space with denumerable subbase. A repre-
sentation 6 :C X — M of M is called 7—admissible, iff

8" is continuous < & <, 6

for all functions 6" :C ¥ — M.

By Theorem D2, every Ty—space (M, 7) with denumerable base has a T—admissible
representation which is unique except for t—equivalence. In Example 1(2) we obtain
6, = pc, hence peo is Tp—admissible; In Example 1(5) we obtain 6, = idse, hence
tdyw is Tc—admissible. Let 7 be the topology induced by the metric on a separable
metric space (M, d). Then (M, 1) is a Ty—space with denumerable subbase which has
a T—admissible representation. The Cauchy representation (for examples see Def. 3.1
and Def. 6.5) is 7—admissible. More details can be found in [Wei 87, Wei 94].

For spaces with admissible representations, a function is (topologically) continuous,
iff it is continuous w.r.t. the representations (see Def. 2.10(2)). This is stated in
Theorem 4.3.
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