Problem with Vadim Tarin's NP=RP Proof

Charanjit S. Jutla
IBM Watson Research

The author manages to show that computing the permanent over characteristic 3 of a matrix M can be reduced in polynomial time to computing the permanent of several duplicated semiVandermonde matrices $W(t)$, where t is a vector of dimension n. The matrix $W(t)$ is similar to the Vandermonde matrix, except (assuming say, $n=2 m$) the rows are upto powers $m-1$, instead of $2 m-1$, and these set of rows are duplicated.

An interesting and correct lemma 5 shows that

$$
\operatorname{per}(W(t))=\frac{\operatorname{det}\left(t^{-\eta} \operatorname{dim}(t)\right)}{\operatorname{det}(\operatorname{Van}(t))}
$$

where $\eta_{\operatorname{dim}(t)}$ is the first $\operatorname{dim}(t)$ members of the sequence $0,1,3,4,6,7, \ldots$ i.e. skipping entries $2 \bmod 3$.
Unfortunately, using this to compute permanent of $\mathrm{W}(\mathrm{t})$ runs into problem if t has duplicate entries, as then the determinant of the Vandermonde matrix $\operatorname{Van}(t)$ is zero.

All naive approaches to reduce finding permament of such a matrix (i.e. one in which $t_{i}=t_{j}$ for some $i, j,(1 \neq j))$ to one where there are no duplicate entries (and then using lemma 5) leads to exponential time solutions.

