Thinning Protocols for Routing h-Relations
in Complete Networks

Anssi Kautonen* Ville Leppénen' Martti Penttonen*

Abstract

We present two simple routing protocols, called constant thinning and geometric thin-
ning protocol, for complete network under OCPC assumption, analyze them, and compare
them with each other and some other routing protocols.

1 Introduction

Parallel programmers would welcome the “flat” shared memory, because it would make PRAM
[16] style programming possible and thus make easier to utilize the rich culture of parallel algo-
rithms written for the PRAM model. As large memories with a large number of simultaneous
accesses do not seem feasible, the only possible way to build a PRAM type parallel computer
appears to be to build it from processors with local memories. The fine granularity of par-
allelism and global memory access, what makes the PRAM model so desirable for algorithm
designers, sets very high demands for data communication. Fortunately, memory accesses at
the rate of the processor clock are not necessary, but due to the parallel slackness principle [17],
latency in access does not imply inefficiency. It is enough to route an h-relation efficiently. By
definition, in an h-relation there is a complete graph, where each node (processor) has at most
h packets to send, and it is the target of at most h packets. We assume the OCPC (Optical
Communication Parallel Computer) or 1-collision assumption [1]: If two or more packets arrive
at a node simultaneously, all fail. An implementation of an h-relation is work-optimal at cost
c, if all packets arrive at their target in time ch.

The first attempt to implement an h-relation is to use greedy routing algorithm. By greedy
principle, one tries to send packets as fast as one can. The fatal drawback of the greedy algo-
rithm is the livelock: Some packets can cause mutual failure of sending until eternity. Consider
the situation, when two processors have each one packet targeted to the same processor. Due
to greediness they are forced to send — and fail for ever since then.

proc greedy
for all processors i € {1,..., P} pardo
while processor i has packets do
choose an unsent packet at random and try to send it

*University of Joensuu, Department of Computer Science, P.O.Box 111, 80101 Joensuu, Finland, email
{Anssi.Kautonen,Martti.Penttonen } @Qcs.joensuu.fi

tUniversity of Turku, Department of Computer Science, Lemminkiisenkatu 14 A, 20520 Turku, Finland,
email Ville.Leppanen@cs.utu.fi

Another routing algorithm was proposed by Anderson and Miller [1], and it was improved by
Valiant [16]. They realize work-optimally an h-relation for h € Q(logp), where p is the number
of processors. Other algorithms with even lower latency were provided by [6, 7, 2, 3, 11].
Contrary to these, the h-relation algorithm of Geréb-Graus and Tsantilas [5] has the advantage
of being direct, i.e. the packets go to their target directly, without intermediate nodes. For other
results related with direct or indirect routing, see also [4, 15, 8, 9, 12, 14]. The algorithm of
Geréb-Graus and Tsantilas runs work-optimally for h € Q(logploglogp). Due to its simplicity
and directness, we choose the GGT algorithm as our reference point. Our new algorithm
presented in Section 2 is inspired by [14], although the latter deals with the continuous routing
problem, not the h-relation.

proc GGT(h,e,a)
for i = 0 to log, ;) h do Transmit((1 — €)*h,e,a)

proc Transmit(h,e,q)
for all processors P pardo
for & (eh + maz{\/4eahInp, 4aInp}) times do
choose an unsent packet x at random
attempt to send x with probability M

As another point of reference we take what is called Penalty algorithm in [12].

proc Penalty(f: function)
for all processors P do
while processor P has unsent packets do
choose a packet z at random
if 1/ f(number of failures of x) > RandomNumber[0...1) then
attempt to send x

In Penalty algorithm, each packet has an individual failure history, and failures decrease the
sending probability. In literature, similar protocols are often called backoff protocols, and
Ethernet, with f(i) = min{2?, 2!°} is a famous representative of this class [4].

2 Thinning protocols

The throughput of the greedy routing of randomly addressed packets is characterized by

(1 o %)h—l Z

|

where 1/h is the probability that one of the h — 1 competing processors is sending to the same
processor at the same time. (For all z > 0, (1 —1/x)* ! > e~!.) This would be the throughput
if all processors would create and send a new randomly addressed packet, which is not the case
in routing an h-relation. It may happen that at the end only two processors have a packed,
addressed to the same target. In this situation, under the OCPC assumption, the greedy algo-
rithm, which always tries both packets, ends up in a livelock. The solution is to decrease the

sending probability.

In the GGT algorithm, the sending probability of packets varies between 1 and 1—¢ (0 < € < 1).
The transmission of packets is thus 'thinned’ by factor 1 to 1/1 — €, preventing the livelock.
We now propose a very simple routing protocol, where thinning is more explicit. We have two
flavors of the algorithm, CT for constant thinning [13] and GT for geometric thinning.

proc CT(h,hy,t,J)
% t,0 >1
for all processors do
while packets remain do
Transmit h packets (if so many remain) within time [1..[0th]]

h :=max{(1 — e "/*)h, ho}

proc GT(h,ho,d,0,tmaz)
% d7 57 tmae = 1
for all processors do
t:=1
while packets remain do
Transmit h packets (if so many remain) within time [1..[0th]]
h:=max{(1 — e ") h, ho};t := min(tmas, dt)

In the algorithms above, transmitting (at most) h packets means that h moments of time are
allocated at random to the packets from the time window [1..[d¢h]]. Thus, in the transmission
phase each packet is tried only once.

A drawback of thinning is that a processor cannot successfully send a packet at those moments,
when it does not even try to send. Thinning by factor £ would thus imply inefficiency by factor
t. But this is somewhat balanced by the success probability, which increases from 1/e to

1— —)ht>
(1=2)

1/t

The expected throughput with thinning is thus characterized by the function te'/* whose growth

t 1.011.2]15720]25]3.0]4.0
tel/t12.712.8129(33[3.742]5.1

is very modest with small values of ¢ > 1, which is a small price for the robustness.
Even though a sending probability less than 1 eliminates the deadlock, it does not guarantee
fast throughput. For that reason, the CT has a minimum size hy € Q(logp) for thinning
window, to prevent repeated collisions. In the GT this is not a problem, but a lower bound hg
prevents ’starvation’ of the processor. Note also that until this lower bound is achieved, the
time window of one phase decreases geometrically, because t(1 — e‘l/t) < 1 for all t.

3 Analysis

The analyses for GGT, CT, and GT are very similar. One can prove that
1. the number of unsent packets decreases geometrically from A to logp
2. the rest of the packets can be routed in time O(logploglogp)

Since a proof for CT was presented in [13], we present here only the proof for the GT. To show
that the GT does not use too many routing steps, we need Lemma 3.1.

Lemma 3.1 t(1 — e~ %) < 1, for all t > 0.

Proof. By using the Taylor series for e”, we have

—t+te!/t —t4t4itrtitgs tigs+...
e/t 14l4 L+l
1+ s+ +pmt+-.

1+t +5z+as + .-

< 1,

t(1—e M =

1

7 for all ¢ and natural numbers ¢ > 0.]

since pairwise m <

Theorem 3.2 For h € Q(logploglogp), the GT routes any h-relation in time O(h) with high
probability.

Proof. Consider the 7’th round of the while-loop, when h is set to h; and t is set to {t;,
h; > kologp = hy for a suitable constant ky. For the values of h; and t; our algorithm
sets t; = min(tmae, d™"), hy = h and h; = (1 — e~ "/4=1)h;_y, i > 2. We assume that in the
beginning of each such a routing round the routing situation is an h;-relation, and aim to show
that after the round the routing situation has reduced to an h;q-relation with high probability.

To ease the calculation of probabilities, we worsen the routing situation a little by completing
each initial h;-relation to a full A;-relation. We do this by adding '"dummy packets’ with proper
destination to those processors not having initially h; packets. We assume that the dummy
packets participate routing as the other packets. In the analysis below, the dummy packets can
collide with normal packets as well as with other dummy packets, but in the actual algorithm
attempting to route a dummy packet corresponds to an unallocated time slot (unable to cause
any collisions). Thus the number of successful normal packets is always better in the actual
situation.

We still need to define precisely the transmission phase in order to calculate the success of
sending. Each packet is given a transmission moment from the time window [1...dt;h;] at
random. However, if several packets in the same processor get the same transmission moment,
no one is transmitted at that moment. In other words, we assume the 1-collision property also
inside a processor, not only between the processors.

We show first that with high probability, the number of packets decreases to h;;1 = (1—e_l/ti)hz-
or below. As a packet has the probability 1/(dt;h;) of being sent at a given moment of time

(from the interval [1...[0t;h;]]), and by the h;-relation assumption, at most h; packets have
the same target, the probability of success for a packet at a given moment of time is at least

1 1 1
-t >
(Stz'hl % (5tlhz) = el/(8t) . (Stzhl,
since 1 1
1— mo 1 — h;—1

for any m < h; — 1 (consider m as the actual number of other packets with the same target)
and

1 h;—1 1 :vh*—x) Ye (1 xh-—l) Ve —1/x
—)" — - ? :> - v :>

for h; > 1 and = > 1.
Since there are t;h; equally suitable moments of time for each packet, the probability of success
for a packet during this final stage is at least

1

- - . — o—1/(8t;)
YRR X 0t;h; =e :

Hence, the expected number of successful packets of a processor within these d¢;h; units of time
is F; = h;/e'/%). Let N be the number of successful packets, and apply Chernoff bound [10]

Pr(N < (1= €)E;) < em2¢F
with (1 — €)E; = h;/e'/%. Thus,

1-§ 1-§
e=1—e% >1—eftmz > €,n

By suitably choosing 6 > 1 and t¢,,., > 1, we can set €,;, = 0.3127. If 6t; > 1.6, then
e!/0) < 1.868 and

Pr(N < hi/el/ti) < o—0-5x0.31272xh;/1.868 _ ,—0.026h; L

- p2.5

for h; > hy = 1001n p. These numerical values are just technical details and uninteresting from
the practical point of view.

Hence, in all p processors, in all log,,;_, h < \/p or fewer rounds (when the current degree
of h;-relation satisfies hy < h; < h), the number of outgoing packets decreases by compression
factor ¢; = 1 — 1/e'/t with probability 1 — 1/p. Guaranteeing that the number of incoming
packets decreases to at most c;h; for each processor is analyzed respectively. Clearly, the full
hi-relation (completed with dummy packets) decreases to c;h; = (1 — 1/e!/)h;-relation. Re-
moving the dummy packets from the system can only decrease the degree of the relation.

Since the compression factor at round i is ¢; < 1 — e~ ! the level hy will be achieved. We show
that — excluding the first two rounds — the number of routing steps S(i) = dt;h; used at round
i satisfies S(i) > S(i+ 1) x min(1 — e 1,1/d),7 > 3. Le., if d > 1, the numbers S(3),S(4),...
form a geometrically converging series, and thus achieving level hgy requires O(dh) routing steps.

We need to study the situation before and after ¢; reaches level t,,,.. After level ¢,,,., the ratio
S(i)/S(i + 1) clearly is ¢; = 1 — e /% < 1 — e~ !, Before level t,,4,, the ratio S(i)/S(i + 1) is

t, B 1 R
tig(1—e V) d(l — e t/d™Y) = gim2 =

QU+

by Lemma 3.1 and since ¢ > 3.

Observe that by choosing a larger hy as in the analysis above, we can easily show the same
progression in the degree of the relation with probability 1 — p™ for any positive constant a.

For the rest of the algorithm, the while loop with h-relation level at most hg, consider sets of
packets with the same target. When the size of such a set is A’ < hg, the success probability of
one such packet is

h' x

1 , / 1
- 't > h x (1 —
5tzh0 5tzh0 (5tzh0
S h 1 S h 1
= ho 0606 T Ry Stpggel/ Fomaz)’
since xe'/® < (x4 v)e'/@*+7) for any v > 0 and x > 1. Thus the expectation of sending times

for one such packet is at most 8t,,qze'/ ¥¥mae) by /h'. The sum of all these expectations, until all
such packets have been sent, is

x (1 Yho=t

dtihg

1 1 1

6tmaxel/(5tw)h0(ﬁ tog g+
1 1

S 6tmamel/(5tmaz)h0(_ _|_
ho

1
.+ =+1)=F 1 .
h0—1+ +2+) € O(hgloghy)

By another form of Chernoff bound [10]

Pr(T >r) < for r > 6E

1
or

we see that 1
PT(T > kihg loghg) < —
p

2.5
for some k; and therefore it is possible to transmit all such packets to their target in time
O(logploglogp) with high probability. Finally, observe that there are at most p such groups
of packets.

By combining the two phases we see that all packets can be routed in time O(h+logploglogp)
with high probability. By choosing h € Q(log ploglogp) we complete the proof. [

4 Experiments

We ran some experiments to get practical experience of the new algorithms, see Tables 1 and
2. In the experiments of Table 1, the number of processors was p = 1024, and each result is the
average of 250 experiments. In all cases, slackness factors h = 16,32, 64,128,256 were tried.
It was assumed that the acknowledgement of packets does not need extra time. Furthermore,
it was assumed that collisions within processors are avoided by allocating a unique sending

| A [Penalty | GGT | CT1.1 [CT2.0 | GT1.1 | GT1.5 ||

16 5.8 5.8 5.7 7.7 5.3 5.6
32 4.8 5.8 4.5 2.5 4.4 4.8
64 4.2 5.7 3.9 4.7 3.9 3.9
128 3.9 5.6 3.6 4.2 3.5 3.6
256 3.9 5.6 3.4 3.9 3.2 3.4

Table 1: Routing cost of the Penalty, GGT, CT, and GT algorithms. In the Penalty protocol,
penalty function f(i) = 1+ i was used. In the GGT, ¢ = 0.5, & = 0.01 were safe and fast.
In the CT1.1 hy = 10,6 = 1.1,¢t = 1.1. CT2.0 is similar otherwise but ¢ = 2.0. In the GT1.1
ho =5,0 = 1.1,d = 1.1, and t,,,4, = 2.0, while in CT2.0 d = 2.0. The standard deviation was
about 0.5 on top lines and about 0.1 on bottom lines.

moment of time for each packet from the time window [1...dth].
The Table 2 demonstrates the cost that is achieved when an h-relation with h = log} p is routed.

Remember, again, that if random packets are created continuously, each packet requires ex-
pected time e for succeeding. Therefore, the cost e is the best one can hope.

| p[CT11]|CT2.0][GTL.1[GTL5 |

128 3.7 4.4 3.7 3.7
256 3.7 4.4 3.7 3.7
012 3.7 4.4 3.6 3.7
1024 3.7 4.3 3.6 3.7
2048 3.7 4.3 3.6 3.7
4096 3.6 4.3 3.6 3.7

Table 2: The cost of routing an h-relation, where h = log% p. In CT1.1 and CT2.0 hy = log, p,
while in GT1.1 and GT1.5 hy = 0.5log, p. In all cases 6 =1.1. In CT1.1 £ =1.1 and in CT2.0
t=20. In GT1.1d=1.1,in GT1.5 d = 1.5, and in both cases %,,,, = 2.0.

By the results in Table 1 and Table 2, the constant thinning algorithm CT and the geometric
thinning algorithm GT appear to work better than the Penalty algorithm and the GGT algo-
rithm.

In addition to mere numbers, our routing simulator shows the progress of routing graphically,
see Figure 1. In CT and GT the throughput is constant, unlike the througput of GGT, which
follows a saw blade pattern. The parameters 9, t, and hg have an important effect on the shape
and the length of the “tail” in Figure 1, i.e. on the routing of the last packets. By some exper-
imentation, or better theoretical reasoning, it may be possible to decrease the cost a little more.

1
te ALl 7t

4h

]
te A1/t

4h

Figure 1: Graphical output of a CT simulation (upper graph) and a GT simulation (lower
graph). In both simulations p = 1024 and h = 128. In CT simulation hy = 16, § = 1, = 1.2.
In GT simulation hg = 8,0 = d = 1.1. The CT graph is divided in three horizontal bands
by ragged borderlines at 1/t = 83% and at 1/te'/* = 36% of all processors. The bottom
band represents successful processors, the middle band failed processors, and the top band
passive processors. The vertical lines at intervals of dch, 6c®th, ..., until dc'th < hy = 16
(c =1—1/e'/*) separate the phases of the algorithm. The total time in picture is 456 = 3.56h.
In GT simulation, the number of passive processors increases due to geometrically increasing
thinning. The total time is 450 = 3.52h.

References

[1] R.J. Anderson and G.L. Miller. Optical communication for pointer based algorithms. Tech-
nical Report CRI-88-14, Computer Science Department, University of Southern California,
LA, 1988.

[2] A. Czumaj and F. Meyer auf der Heide, and V. Stemann. Shared memory simulations with
triple-logarithmic delay. Proc. ESA95, 46-59, 1995.

[3] M. Dietzfelbinger and and F. Meyer auf der Heide. Simple, efficient shared memory simu-
lations. Proc. SPAA93, 110-119.

[4] J. Hastad, T. Leighton, and B. Rogoff. Analysis of backoff protocols for multiple access
channels. STAM J. Comput. 25:740-774, 1996

[5] M. Geréb-Graus and T. Tsantilas. Efficient optical communication in parallel computers.
In SPAA’92, jth Annual Symposium on Parallel Algorithms and Architectures, San Diego,
California, pages 41 — 48, June 1992.

[6] L.A. Goldberg, M. Jerrum, T. Leighton, and S. Rao. A doubly logarithmic communica-
tion algorithm for the completely connected optical communication parallel computer. In
SPAA’93, 5th Annual Symposium on Parallel Algorithms and Architectures, Velen, Ger-
many, pages 300 — 309, June 1993.

17l

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L.A. Goldberg, Y. Matias, and S. Rao. An optical simulation of shared memory. In
SPAA’9, 6th Annual Symposium on Parallel Algorithms and Architectures, Cape May,
New Jersey, pages 257 — 267, June 1994.

L.A. Goldberg and P.D. MacKenzie. Analysis of Practical Backoff Protocols for Contention
Resolution with Multiple Servers. Proceedings of SODA 7 (1996) 554-563.

L.A. Goldberg and P.D. MacKenzie. Contention Resolution with Guaranteed Constant
Expected Delay, Proceedings of the Symposium on Foundations of Computer Science 38
(1997) 213-222.

T. Hagerup, C. Riib. A guided tour of Chernoff bounds. Information Processing Letters
33:305-308, 1989.

R.M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on a dis-
tributed memory machine. Proc. 24th Annual ACM Symposium on Theory of Computing,
318-326, 1992.

A. Kautonen and V. Leppédnen and M. Penttonen. Simulations of PRAM on Complete
Optical Networks. In Proc. FuroPar’96, LNCS 1124:307-310.

A. Kautonen and V. Leppédnen and M. Penttonen. Constant thinning protocol for routing
h-relations in complete networks. To appear in Proc. EuroPar’98, LNCS.

M. Paterson and A. Srinivasan. Contention resolution with bounded delay. In Proc.
FOCS’95, TEEE Computer Society Press, 104-113.

P. Raghavan, and E. Upfal. Stochastic Contention Resolution With Short Delays. In Proc.
STOC95, 229-237.

L.G. Valiant. General purpose parallel architectures. In Handbook of Theoretical Computer
Science, Vol. A, 943-971, 1990.

L.G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33:103-111, 1990.

